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Summary

We consider the planar flow of Phan-Thien-Tanner (PTT) fluids in geometries where

a singular stress is encountered. The main problem considered is flow around a sharp

corner, with also preliminary results for sink flow in a wedge. Two distinct cases arise

for the corner geometry, where the corner angle is denoted by π/α. For 1/2 ≤ α < 1

we have a re-entrant corner, whilst for 1 < α < ∞ a so called salient corner occurs.

These two regimes have markedly different flow behaviour. The model is considered in

the absence of a solvent viscosity and the flow situation assumes complete flow around

the corner with the absence of a lip vortex.

For the re-entrant corner problem a class of self-similar solutions has been identified

with stress singularities of O(r−2(1−α)) and stream function behaviour O(r(1+α)α) (r

being the radial distance from the corner). These behaviours arise in a core flow region

away from the walls and are shown to be solutions of the incompressible Euler equations.

This region is reconciled with boundary layers at the upstream and downstream walls

using the method of matched asymptotic expansions. The analysis benefits from the

representation of the stress in both Cartesian and natural stress formulations, and is

performed when the Weissenberg number (the dimensionless relaxation time) and the

PTT model parameter κ (a dimensionless mobility factor) are both O(1). The analysis

is then extended for the various limits of these two parameters.

For the salient corner case the mathematically simpler Newtonian balance for the

flow and stress fields are shown to dominate away from the walls. This gives a stream

function behaviour of O(r1+λ0) and stress behaviour O(rλ0−1), where λ0 is the Newto-

nian problem eigenvalue. This behaviour is again reconciled with boundary layers at

the walls which recover viscometric behaviour.
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Chapter 1

Introduction

This thesis is a study of viscoelastic flows of Phan-Thien-Tanner (PTT) fluids in specific

geometries. To begin, this chapter introduces the field of viscoelasticity, including the

motivation behind the governing equations of selected models and culminating in a

description of the PTT model of interest in section 1.2. Following this, an overview of

some industrial applications is given in 1.3, with an outline of the following chapters of

the thesis and a review of the relevant literature in 1.4 upon which the main analysis

of chapters 3–6 is based.

1.1 Introduction

Continuum mechanics is often split into the fields of solid mechanics and fluid me-

chanics, however many materials are not simply classified into one of these two groups.

Rheology is the science of deformation and flow, and instead suggests that everything

flows - provided the time-scale of the observation is long enough. The physical proper-

ties are now determined by the ratio of the experimental time-scale T and the time-scale

of the material concerned τ . For example, consider granite at standard temperature

and pressure. When the ratio τ/T is large granite behaves as a solid, but over geo-

logical time scales when the ratio τ/T is negligibly small, then granite may be seen

to deform as a viscous fluid, [KSI78]. Typical fluid time-scales τ vary from 10−13s for

water, milliseconds for engine oil, minutes for polymer solutions, to hours for soft solids

and melts (see [PT02] for example)1.

Newtonian fluid mechanics is primarily an investigation of the interplay of inertial

and viscous forces, and surface tension where applicable. As eluded to, many common

or industrial fluids display more unusual behaviour due to their complex microstructure,

1Introductory information is primarily based on the excellent textbooks by Renardy [Ren00b], Phan-
Thien [PT02], and Tanner [Tan00], all of which may be approached for further information.

9



CHAPTER 1. INTRODUCTION 10

from suspensions (e.g. bread dough or concrete), foams, granular media (such as sand

or coal) to polymeric fluids like oils, molten plastics, paint, blood or egg white.

The models investigated in this thesis are primarily applied to flows of polymeric

fluids, with their behaviour distinguished from Newtonian fluids due to the presence

of long chain molecules. These molecules affect the flow behaviour by the way in

which they align to the motion of the fluid, are then stretched out by the drag forces,

and consequently want to retract back to their unstressed configuration in an elastic

behaviour. The study of such fluids falls in the field of Viscoelasticity, termed due to

the viscous and elastic behaviours displayed.

This thesis will concentrate on one of the many mathematical models used to de-

scribe viscoelastic fluids, the linear affine Phan-Thien-Tanner model without solvent

viscosity (subsequently just Phan-Thien-Tanner, or PTT model unless specified), and

will analyse the fluid flow behaviour in corner geometries primarily using matched

asymptotic methods.

1.1.1 Balance Laws

All fluid motion is governed by the balance laws of conservation of mass, as well as

linear and angular momentum. This is supplemented by a balance of energy if thermal

effects are considered, although this is not investigated here. Another simplification

made is that only incompressible fluids will be studied, a valid decision given that the

fluids of interest are predominantly liquid at the temperatures they usually exist, and

thus their compressibility is negligible.

For incompressible fluids the conservation of mass is simply

∇.v = 0, (1.1)

where v is the velocity of the fluid, and the balance of linear momentum gives

ρ

(

∂v

∂t
+ (v.∇)v

)

= −∇p+ ∇.T, (1.2)

where ρ is the density, T is the extra stress tensor, and p is the pressure. The left

hand side of this equation represents inertia, which will either be shown or assumed to

be negligible in most of the flows we consider later. T represents the stress the fluid

develops in response to the deformation, with the total stress tensor given by

σ = −pI + T, σ = σT , (1.3)

where the conservation of angular momentum imposes that σ is a symmetric CT2
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tensor as given above.

The derivation of these equations is given (for example) in chapter 6 of [Ach90].

The conservation equations above are not sufficient to determine all of the unknowns

of the flow, so constitutive relations are introduced which relate the motion to the

extra-stress tensor T.

1.1.2 Constitutive relations

Newtonian Fluids

Firstly, it is useful to consider Newtonian fluids as this case occurs widely and has been

studied in great detail. For a Newtonian viscous fluid, we have the constitutive relation

T = 2ηD, (1.4)

where η is the constant viscosity, and D is the rate of deformation tensor

D =
1

2

(

∇v + (∇v)T
)

, v =

(

u(x, y)

v(x, y)

)

, ∇v =

(

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)

. (1.5)

As an example the velocity v and the velocity gradient ∇v have been represented

in two-dimensional Cartesian components, with the velocity components u(x, y) and

v(x, y) along the x and y axis respectively.

A viscous fluid is one in which the fluid resists forces exerted upon it through

internal friction. Most fluids which have small molecules such as gases and water obey

this model, however, as mentioned there are a number of fluids which exhibit other

more complex behaviour. This thesis considers fluids which exhibit memory qualities,

termed viscoelastic fluids, which can behave like elastic materials when deformed.

Viscoelastic Fluids

In viscoelastic fluids, the stresses depend not only on the current motion of the fluid

(as in the Newtonian case), but also on the history of the motion. Although many

methods of model derivation exist, the simplest as an introduction is to model the

flows with mechanical analogues. Viscoelasticity can be considered as fluids consisting

of both viscous elements and elastic elements. We can represent this as a combination

of springs (for the elastic elements) and dashpots (for the viscous elements), see figure

1-1.

Maxwell’s one-dimensional linear model is obtained with elements comprised of a

spring and dashpot in series, as in (A) of figure 1-1. The spring, with spring constant
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Figure 1-1: The spring and dashpot elements which together in various combinations
model viscoelasticity. Two possible fluid elements are shown with (A) having the spring
and dashpot elements arranged in series to create a Maxwell element, and (B) with the
elements in parallel to give a Kelvin-Voigt element.

k, satisfies Hooke’s law

σe = kγe, (1.6)

where σe is the elastic stress and γe is the elastic strain. The dashpot then, as an ideal

viscous element with viscosity η, extends at a rate proportional to the applied force,

giving

σv = ηγ̇v . (1.7)

Since the spring and dashpot are connected in series, the total strain is the sum of the

individual strains, hence

γ = γe + γv. (1.8)

Differentiating with respect to time, substituting in equations (1.6) and (1.7), and

noting that the stresses will be equal since the elements are connected in series (setting

σ = σe = σv), we obtain

σ + λσ̇ = ηγ̇. (1.9)

with λ = η
k being a relaxation time, which is roughly speaking a measure of the time

for which the fluid remembers the flow history, see section 2.2 of [Ren00b]. Other

combinations of springs and dashpots can also be considered, in particular, arranging

one dashpot and one spring in parallel gives the Kelvin-Voigt model, the element shown
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in (B) of figure 1-1. This is derived using similar arguments to the linear Maxwell model,

but here, since the elements are connected in parallel we have that the total stress is

the sum of the individual stresses, σ = σe + σv, and that the strains are all equal,

γ = γe = γv. The model is then

σ = kγ + ηγ̇. (1.10)

Neither of these models are yet in the tensor form of the governing equations (1.1)-

(1.3). We consider the linear Maxwell model of (1.9) and (as described in chapter 1.5

of [Jos90]) we can make this a tensorial equation by declaring that σ is a symmetric

tensor field (as in equation (1.3)) and that γ̇ can be represented by 2D, where D stands

for the symmetric part of ∇v as before in (1.5). The constitutive equations of the rate

type generalising (1.9) are thus (1.3) and

T + λ
∂T

∂t
= 2ηD. (1.11)

Nonlinear models

The linear Maxwell model of equation (1.11) still requires further refinement. Oldroyd

in his 1950 paper [Old50] set out the principles that a constitutive equation must be

based upon, and they were put into a more elegant axiomatic form in the work of Noll

in 1955 and 1958 (his textbook co-authored with Truesdell contains details, [TN65]).

The conditions are

• The principle of determinism of stress, which states that the stress in a non-

Newtonian body is determined by the history of the motion of that body.

• The principle of local action, which states that the stress at a material point is de-

termined by the history of the deformation of an arbitrarily small neighbourhood

around that material point.

• The principle of coordinates invariance, which states that the constitutive equa-

tion must be independent of the frame of reference used to describe them. This

can be automatically satisfied if the equations are expressed in consistent tensorial

form.

• The principle of invariance under superimposed rigid body motion, which states

that the equations must have a significance which is independent of absolute

motion in space, hence the stresses arising within the fluid should be in response

to the material being deformed and not on the relative motion of the observer.
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The fourth condition of frame indifference essentially says that if the material is rotated

and then deformed the stress ought to be the same as without the rotation, and if the

material is deformed then rotated then the stress tensor rotates with the material

(explained in section 2.3 of [Ren00b]). All linear models apart from Newtonian fluids

violate this frame indifference requirement, thus a nonlinear modification of the linear

Maxwell model is necessary for all the principles to be satisfied. Possible modifications

are written in the form

T + λ
DT

Dt
= 2ηD, (1.12)

where the derivative DT

Dt can be defined in any way provided it is invariant. The most

general derivative used to describe viscoelastic behaviour is the Gordon-Schowalter

convected derivative
DT

Dt
=
∂T

∂t
+

�

T, (1.13)

where
�

T= TW− WT − a(TD + DT), W =
1

2

(

∇v− (∇v)T
)

, (1.14)

with W being the the vorticity tensor as defined, and a a model parameter a ∈ [−1, 1].

There are a number of Maxwell models being specific cases of (1.12)–(1.13),

a = 1 : T + λ

(

∂T

∂t
+

5

T

)

= 2ηD, Upper convected Maxwell (UCM), (1.15)

a = −1 : T + λ

(

∂T

∂t
+

4

T

)

= 2ηD, Lower convected Maxwell (LCM), (1.16)

a = 0 : T + λ

(

∂T

∂t
+

◦

T

)

= 2ηD, Corotational Maxwell (COM). (1.17)

The symbols 5, 4, and ◦ above stand respectively for the upper-convected, lower-

convected and corotational derivatives, and are defined2 as

5

T= (v.∇)T − (∇v)T − T(∇v)T , (1.18)

4

T= (v.∇)T + (∇v)TT + T(∇v), and
◦

T=
1

2

(

5

T +
4

T

)

. (1.19)

The constitutive equation (1.12) using the Gordon-Schowalter convected derivative

(1.13)–(1.14) is named the Johnson-Segalman model, [JS77]. It is often written instead

2The problems later are all considered in steady flow and thus we have chosen to define the con-
vected derivatives without the time derivative for easy comparison. The time derivative is thus written
separately in the model equations where appropriate.
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as a modification of the UCM model with the governing equations

ρ

(

∂v

∂t
+ (v.∇)v

)

= −∇p+ ∇.T, ∇.v = 0,

T + λ

(

∂T

∂t
+

5

T +ξ (TD + DT)

)

= 2ηD, (1.20)

where ξ = (1 − a) to agree with (1.14).

The UCM model is the most popular of the Maxwell models, the others being

rarely mentioned in the literature. One reason for this is the accuracy of modelling the

rheological properties of the normal stress differences, which are explained in section

2.3 with their definition in equation (2.44). Crucially UCM is preferred to the other

Maxwell models since it gives the closest match to experimental data for N2
N1

, the ratio

of the second normal stress difference to the first normal stress difference. UCM gives
N2
N1

= 0, LCM gives N2
N1

= −1 and COM gives N2
N1

= −1
2 , whereas experimental data

broadly suggests N2
N1

≈ −0.1 for a range polymer solutions (for example see table 3.9 of

[Tan00]).

Another reason is that the UCM model may be derived directly from considering

the microstructure of the fluid, the theories of which we will consider next.

Constitutive models from microstructure theories

There are a vast number of constitutive models for viscoelastic behaviour, some im-

prove on the accuracy of the UCM model to predict real world behaviour (at the

expense of simplicity), with others adding specific features for particular fluids (and

their individual behaviours).

The models presented here are not derived from the simple spring and dashpot

idea mentioned thus far. Rather, a microstructural approach is considered where a

model for the microstructure is postulated and then the consequences explored at the

macrostructure level after appropriate averaging. There are broadly three approaches

(see [Ren00b] section 2.4) to deriving the constitutive models from the polymer molecule

behaviour:

• Dilute solution theories: These treat the polymer molecules individually, with

each molecule modelled as a chain of beads and springs or beads and rods. The

interaction with the flow is caused by the hydrodynamic drag exerted by the

fluid on the beads. The UCM model can be derived in such a way, with good

explanations in either section 2.4 of [Ren00b], or a more detailed description of

dilute polymer solution modelling in chapter 7 of [PT02]. A particular model of
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a molecule with two beads connected by a spring is the dumbbell model shown

in figure 1-2.

• Network theories: The polymer is considered as a network of springs linked at

junction points. Originally a method for model derivation of solid rubber with

the junctions fixed, the method is altered to allow the junctions to form and decay

following certain statistical laws. The interaction between the polymer and the

flow occurs due to the motion of these junctions. The PTT model was originally

derived using these network theories in the paper by Phan-Thien and Tanner

[PTT77]. An example of this network theory model, based on the initial theories

of Lodge and Yamamoto is shown in figure 1-3.

• Reptation theories: A middle ground between the two above extremes where

the polymer molecules are treated individually, but to represent the interaction

between other polymer molecules, each is constrained laterally by a ‘tube’. A

Doi-Edwards virtual tube is shown in figure 1-4.

Whilst the intricate details will not be presented here, chapter 5 of Engineering Rhe-

ology by Tanner, [Tan00], provides a thorough analysis of these different derivations

and a wide variety of constitutive models, along with references for the original papers

describing these theories.

The UCM model, as mentioned, may be derived from the dilute solution theory.

This is achieved by modelling the polymer molecules individually as a linear elastic

dumbbell, which localises the interactions between solvent and polymer at two beads

at each end of the chain connected by a spring. This situation is shown in figure 1-2,

and gives confidence that as this model had also been derived from continuum theory

then models based on microstructure theories will be valid.

The Oldroyd-B model

The UCM model considers only the polymer contributed stresses. Combining these

with the stresses of the solvent gives the Oldroyd-B model, [Old50], the linear superpo-

sition of the UCM model stress with a Newtonian contribution. These two stresses are

often named the polymer stress, Tp, satisfying (1.15) and solvent stress, Ts, satisfying

(1.4). The governing equations for Oldroyd-B are thus

ρ

(

∂v

∂t
+ (v.∇)v

)

= −∇p+ ∇.T, ∇.v = 0,

T = Ts + Tp, Ts = 2ηsD, Tp + λ

(

∂Tp

∂t
+

5

Tp

)

= 2ηpD, (1.21)
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Figure 1-2: The elastic dumbbell of a polymer molecule. Represented are two beads
connected by an elastic spring of which there would be many such molecules surrounded
by a solvent.

where ηs and ηp are the solvent and polymer viscosities respectively. These equations

may also be written in the other forms

ρ

(

∂v

∂t
+ (v.∇)v

)

= −∇p+ ∇.Tp + ηs∇2v, ∇.v = 0,

Tp + λ

(

∂Tp

∂t
+

5

Tp

)

= 2ηpD, (1.22)

by substituting the T equation into the momentum, or as

ρ

(

∂v

∂t
+ (v.∇)v

)

= −∇p+ ∇.T, ∇.v = 0,

T + λ

(

∂T

∂t
+

5

T

)

= 2η

(

D + λR

(

∂D

∂t
+

5

D

))

, (1.23)

by eliminating Tp from the constitutive equation using the T equation, where η =

ηs+ηp and λR = ηsλ/η. The Oldroyd-B model has been found to qualitatively describe

many of the features of Boger fluids, which are dilute solutions of polymers in highly

viscous solvents ([BB77]).

Dumbbells with limited extension

The UCM and Oldroyd-B models are both derived with the linear dumbbell model,

which allows the dumbbell to be stretched infinitely. This leads to an issue of the

models predicting infinite stress at finite strain rates for elongational flow (see section
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Figure 1-3: An example Lodge-Yamamoto network, from which the PTT ([PTT77])
model may be derived. The polymer liquid forms a network of molecules with tempo-
rary junctions (or entanglements). The element AB of the network is called a chain
and is made up of N molecules with end-to-end vector h.

4.3.1 of [Tan00]). This flow will not be described in this thesis as it is not required for

the corner flow analysis, however, models have been produced to overcome this flaw

by constraining the length of the dumbbell to a maximum allowable length. Models

such as the Chilcott Rallison model [CR88], Giesekus model [Gie82], FENE-P [BW95]

and FENE-L [LHJ+98], may all be found from this dilute polymer dumbbell model

with limited extension, with the PTT model of this thesis ([PTT77]) as previously

mentioned derived from a non-dilute situation, assuming the polymer chains form a

network.

It is possible (and given in [DPT04]) to write down the PTT model as a specific case

of a larger set of equations representing the Chilcott-Rallison, FENE-P and Giesekus

models along with UCM and Oldroyd-B models. This set of equations may be written

∇.v = 0, ρ

(

∂v

∂t
+ (v.∇)v

)

= −∇p+ ∇.Tp + ηs∇2v, g = 1 +
κλ

ηp
tr T,

gTp + λ







∂

∂t

(

Tp

f

)

+

5
(

Tp

f

)






= 2ηpD + Q, f =

(

1 − e

L2

3 + λ
ηp

trT

1 + λ
ηp

tr T/L2

)−1

.

(1.24)
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Figure 1-4: A visualisation of the Doi-Edwards reptating tube model. Here the high
concentration of polymer molecules is modelled with each molecule being constrained
in a virtual tube or cage (in reality formed by the proximity of the other molecules),
with each chain moving through reptation - a random snakelike motion.

The additional parameters are κ, a model parameter of the PTT model, L, the max-

imum extension of the dumbbells, and e, a parameter included to select the model

desired. For UCM, Oldroyd-B, PTT and Chilcott-Rallison then Q = 0. Giesekus has

Q = αT2 where α is a dimensionless ‘mobility factor’. For the FENE-P model, then

Q = −ηp
(

L2 + 2

L2 − 1

)[

(v.∇)

(

I

f

)

− 2D

f

]

. (1.25)

The various models can be retrieved by appropriate choices of e, κ and ηs. For the

PTT model, e = 0 and ηs = 0 (we will return to the exact specification of the PTT

model in the following section). To then simplify to the UCM model set κ = 0. The

Giesekus model has e = 0, κ = 0, and ηs = 0. Both Chilcott-Rallison and FENE-P

have e = 1 and κ = 0, and it reduces to Oldroyd-B when e = 0 and κ = 0. Finally, a

Newtonian fluid is recovered if λ = 0, with viscosity η = ηs + ηp.

There is a vast range of constitutive models available, with new ones appearing all

the time - a more recent example (published in 2003) is the popular Rolie-Poly model

[LG03], derived from the tube theory shown in figure 1-4. This model, like PTT, can

be applied to flows of polymer melts but the added features and accuracy are at the

expense of simplicity (as also seen with the FENE models), with a number of new

parameters to be fixed.
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1.2 The PTT Model

This thesis will focus on the Phan-Thien-Tanner, or PTT, model derived from the

Lodge-Yamamoto network theory shown in figure 1-3 by Phan-Thien and Tanner in

[PTT77]. The model is an extension of the Maxwell model (1.12) with the Gordon-

Schowalter convected derivative of equations (1.13)–(1.14) to include a function de-

pendent upon tr(Tp), the trace of the polymer stress. The model may also include a

solvent viscosity as in the Oldroyd-B model so that there is a contribution from both

the polymer stress and a Newtonian (solvent) stress.

The governing equations for this PTT model, with the Gordon-Schowalter deriva-

tive written in the form of the Johnson-Segalman model (1.20), are

ρ

(

∂v

∂t
+ (v.∇)v

)

= −∇p+ ∇.T, ∇.v = 0,

T = Ts + Tp, Ts = 2ηsD,

f (tr Tp)Tp + λ

(

∂Tp

∂t
+

5

Tp +ξ (TpD + DTp)

)

= 2ηpD. (1.26)

There are three forms of the function f (tr Tp) found in the literature

f (tr Tp) =



















1 + κλ
ηp

tr Tp, Linear PTT,

1 + κλ
ηp

tr Tp + 1
2

(

κλ
ηp

tr Tp
)2
, Quadratic PTT,

exp
(

κλ
ηp

tr Tp
)

, Exponential PTT,

(1.27)

where κ ∈ [0, 1] is a model parameter. The linear and exponential forms of the PTT

model are extensively used, and are the two forms mentioned in sections 5.6.5-5.6.6 of

[Tan00] about the PTT model. The exponential model was first proposed by Phan-

Thien [PT78] a year after the linear model of [PTT77]. The quadratic form is far

less widely used or mentioned in the literature, but is used, for example, to model the

wire-coating process in [NW02], where all three PTT forms are investigated.

Both affine (ξ = 0) and non-affine (ξ 6= 0) PTT models are found in the literature,

but the simpler affine model is more prevalent in the study of contraction and re-

entrant corner flows of which we are most interested (e.g. the numerical analysis of

Alves et. al. [AOP03] and the analytical work of Renardy [Ren97b]). It is also the

simplest extension to the UCM model, which has been studied in detail for the re-

entrant corner problem by Hinch and Renardy, with Evans completing the solution

and analytical work ([Hin93], [Ren95], [Eva05b], for example). Details of the previous

work will be described in section 1.4. The PTT model improves on the UCM model
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for modelling polymeric fluids since the UCM model over predicts stresses at large

deformation rates, along with obtaining a closer fit to the real world normal stress

differences (defined and explained in section 2.3).

Additionally, we mainly consider the PTT model in the limit of vanishing solvent

viscosity. It is expected that this model will display flow behaviour markedly different

to the Newtonian model, being an extension to the simple UCM model before adding

the complicating effects of solvent stresses. Comment is made on the model with solvent

viscosity in appendix A.

The model equations to be studied are thus (1.26) with the linear function from

(1.27) and

ξ = 0, and ηs = 0, implying Ts = 0, T = Tp. (1.28)

Given that there is only a polymer stress contribution, we subsequently drop the su-

perscript p from the equations, and to progress towards solving problems we next

nondimensionalise our PTT governing equations.

Nondimensionalisation

In the problems of the following chapters we consider the PTT equations in steady

state. In dimensional form the equations to consider are

ρ(v.∇)v = −∇p+ ∇.T, ∇.v = 0,

T + λ
5

T +
κλ

η
(tr T)T = 2ηD, (1.29)

which are the momentum, continuity and constitutive equations respectively. We nondi-

mensionalise by scaling the parameters with respective nondimensional length, stress

and velocity scalings using

x = Lx̄, y = Lȳ, T = t0T̄, v = U v̄, p = t0p̄, (1.30)

which (after re-arrangement) give

∇̄.v̄ = 0,
ρU2

t0
(v̄.∇̄)v̄ = −∇̄p̄+ ∇̄.T̄,

Lt0
Uη

T̄ +
Lλ

Uη

(

Ut0
L

5

T̄ +
κt20
η

(tr T̄)T̄

)

= 2D̄, (1.31)
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where D̄ is defined in terms of v̄. Letting t0 = (Uη)/L and dropping bars from the

variables subsequently for clarity gives

Re (v.∇)v = −∇p+ ∇.T, (1.32)

∇.v = 0, (1.33)

T + We

(

5

T +κ (trT)T

)

= 2D, (1.34)

where

Re =
ρUL

η
, We =

λU

L
, (1.35)

and it can be verified that these parameters along with the PTT model parameter κ

are all nondimensional. Here Re is the Reynolds number and We is the Weissenberg

number, a comparison of the elastic forces to the viscous effects. In all subsequent

sections all variables are now non-dimensional.

Clearly both Weissenberg and Reynolds numbers depend on the typical length and

velocity scales. Inertial terms are assumed to be negligible for most flows considered in

this thesis (or are shown to be if Re = O(1)), and given the possibility of a wide range

of Weissenberg numbers, we will consider the cases of both large and small Weissenberg

number as well as We = O(1). For the PTT model parameter κ, values lie in the range

κ ∈ [0, 1], with values approaching 1 being unrealistically large.

In [AGAK96a], Azaiez et. al. simulate the flow of a viscoelastic polymer solution

(specifically a 5 wt.% polyisobutylene (PIB) in tetradecane) through a planar 4:1 con-

traction, comparing and fitting the PTT model to data from the literature. In their

work, they fitted both a one mode and a four mode PTT model to the experimental

data, and using our notation the values are given in table 1.1. Of particular interest is

the value of κ = 0.25.

Another paper [SSP+98] investigates stagnation flow of a 2.5% polyisobutylene

solution both experimentally and numerically, fitting the PTT model well with the

model parameter κ = 0.8. Further typical values of κ are given in [Tan00] when

describing the PTT model in section 5.6.6. Two typical values are suggested of κ = 0.02

for dilute solution behaviour and κ = 0.25 for high density polyethylene (HDPE) melts.

1.3 Industrial Applications

The study of viscoelasticity is relatively new - seminal work by J.G. Oldroyd was

published in 1950, [Old50] and the PTT model was created and published in 1977

[PTT77]. Much of the initial work has been performed by chemical engineers who have
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4-mode PTT model 1-mode PTT model

Mode number 1 2 3 4

κ 0.25 0.25 0.25 0.25 0.25

η 0.0400 0.2324 0.5664 0.5850 1.422

λ 0.6855 0.1396 0.0389 0.0059 0.04

We 15.94 3.25 0.90 0.14 0.93

Re 0.27 0.27 0.27 0.27 0.27

Table 1.1: Table showing the parameters for a 5 wt.% polyisobutylene (PIB) in tetrade-
cane, from [AGAK96a].

used experimental data to derive models and predict more complex behaviour. One of

the best known applications of work in this area was solving a problem of disposing ‘red

mud’ (the waste product of the processing of bauxite to alumina). This research, carried

out by Nguyen and Boger, has been implemented successfully by Alcoa of Australia, an

aluminium mining company, to reduce both costs and environmental impact of their

waste disposal system, [NB98]. These techniques have since been used to examine

pipeline transportation to dispose of clay-based coal tailings from the Hunter Valley

coal mine in New South Wales, also described in [NB98]. Boger has also applied his

work to the oil industry, developing pipeline designs such that the fluidity of high

wax content crude oils is maintained, [WB91]. This work also has applications to the

behaviour of drops of fluids, and is linked to applications in atomisation, inkjet printing,

delivery of agricultural chemicals, and with intelligent gels, [CB00].

Materials exhibiting viscoelastic behaviour also appear in biology. There has been

recent work by numerous people to investigate the behaviour of internal organs, ap-

plications of which are as diverse as providing equations to model organ movement

accurately for use in surgical simulations to understanding internal trauma during

car crashes (see [NBFT04]). The work by Nasseria, Bilston, Fasheun and Tanner in

[NBFT04] is particularly interesting as it predicts behaviour of soft tissue (pig liver) and

bread dough under various compressions using the Phan-Thien-Tanner model studied

in this thesis.

Another biological application is in human and veterinary ophthalmology, where

a viscoelastic fluid - most commonly sodium hyaluronate, is used during surgery to

fill and maintain the anterior chamber, reposition the iris and to coat and protect the

corneal endothelium, [WW99]. It is clear that viscoelastic materials occur in many

diverse and critical situations and, as such, accurate modelling of such fluids is of great

interest.

More applications specific to the Phan-Thien-Tanner model include the modelling

of plastics such as PET resins, which are used in, for example, film casting, [HHVC97].
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It has also been used in many publications to simulate the process of wire-coating,

such as in [NW02]. The latter paper is of further interest as it considers the models

shortcomings, and investigates extensions to the linear PTT model (as mentioned in

section 1.2 here).

1.4 Previous work and outline of thesis

We now discuss the previous work applicable to the following chapters of this thesis, the

structure of which will provide a natural way to order the literature review. Chapter 2

contains preliminary analysis of the PTT model by classifying the type of the equations,

followed by a description of two formulations of the governing equations - those of the

Cartesian and the natural stress basis (see section 2.2 for details). Finally simple shear

flow is investigated, which gives the viscometric behaviour expected for flow near a solid

wall. Chapters 3-5 contain analysis of the specific problems. In particular re-entrant

corner flow (with κ = O(1), We = O(1)) is studied in chapter 3, re-entrant corner flow

in small and high parameter regimes in chapter 4, and salient corner flow in chapter 5.

Chapter 3: Early re-entrant corner work

As mentioned chapter 3 considers re-entrant corner flow of the PTT fluid with κ = O(1),

We = O(1). The PTT model shares many features with the UCM and Oldroyd-B

models, and thus previous analysis involving these models is also of vital importance

for the understanding of the PTT problem.

To make initial progress, Renardy [Ren93] focused on investigating the stresses of

the UCM model with an assumed Newtonian velocity field. It was found that the upper

convected derivative dominates in the constitutive equation away from the walls, and

the solution of this implied that the stress would be dominated by its component in the

flow direction T ∼ g(ψ)vvT , with g(ψ) an arbitrary function of the stream function.

Whilst it was known that the Newtonian velocity field assumption was incorrect, it still

allowed the main features of the flow to be studied, in particular that the core flow

would not recover viscometric behaviour thus determining the presence of boundary

layers near the walls, found to be of thickness θ ∼ r1−λ0 (where r is the radial distance

from the corner, θ is the angle made with the upstream wall, and λ0 ≈ 0.5445 for

the corner angle of 270o. More details of the geometry are given in section 3.1.2).

Another interesting feature found was the instability downstream of the corner when

attempting to integrate the stresses, leading to large amplification of numerical errors

at the downstream wall. The prescribed Newtonian velocity field behaves as ψ ∼ r1+λ0 ,

with the stresses as Tp ∼ r−0.74 (contrasting with Tp ∼ r−0.91 at the walls from the
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viscometric behaviour using the Newtonian shear rate).

Following this work Renardy suggested a method to overcome the downstream in-

stability in [Ren94]. The method was to represent the stresses in a natural stress basis

aligned along the streamlines (more specific details are contained in section 2.2.2). This

basis represents the stresses in three components of vastly different orders of magni-

tude, with the ‘dangerous’ mode ν decoupled from the other variables and avoiding

the instability. This feature of the natural stress basis proves crucial to our analysis.

This idea of transforming the stress variables to align them with the streamlines had

been previously exploited in numerical situations by Keiller [Kei93] and Dupont et al.

[DMC85], but [Ren94] was the first to realise its importance to the re-entrant corner

problem.

The full re-entrant corner problem of the UCM (and/or Oldroyd-B) fluid without

the Newtonian flow field assumption was initially considered in three papers, firstly in

1993 by Davies and Devlin [DD93] and Hinch [Hin93], and later in 1995 by Renardy

[Ren95]. In [DD93] the Oldroyd-B fluid is considered as a singular perturbation series,

whereas the approach of both Hinch and Renardy was to use matched asymptotics

(and it is this approach that we use here). The analysis of both Hinch and Renardy is

given for the specific corner angle of 270o.

As mentioned, [Hin93] is the first paper upon which the analysis of chapter 3 is based

and motivated. It contains the correct balance of the upper convected stress derivative

dominating in the core region away from the walls and consequently the Euler equations

apply and can be solved by a potential flow solution. For the 270o corner angle Hinch

finds a velocity behaviour of v ∼ r5/9 and stresses of Tp ∼ r−2/3. At the walls however,

Hinch could not match the stream function to the expected viscometric behaviour of

ψ ∼ θ2, instead finding a stream function behaviour of ψ ∼ θ7/3.

Renardy illustrated the derivation of the Hinch core solution more clearly in [Ren95],

along with showing that the boundary layer equations have a similarity solution which

may be matched to Hinch’s potential flow solution in the core and to viscometric

behaviour ψ = O(θ2) at the walls. He also determined the boundary layer thickness to

be θ ∼ r1/3. Outstanding from these works is the complete solution to the problem to

include matching to the downstream boundary layer.

Further work of interest was published by Renardy in 1997. [Ren97a] concentrates

on high Weissenberg boundary layers (not around a corner) of the UCM fluid. It is of

interest since the relation between natural stress and Cartesian bases within this high

Weissenberg boundary layer are given and will apply to the Weissenberg O(1) regime

considered around a re-entrant corner. Following this, [Ren97c] contains details of how

the equations governing UCM flow in a high Weissenberg number limit can be reduced
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to the (compressible) Euler equations, with solutions generated by potential flow. The

other area of interest within the paper is a brief discussion of the PTT model. This

discussion includes a comment that for many flows the term tr(T)T must be of a lower

order than the upper convected derivative terms, providing warning when considering

the possible core balances for our problem.

Also in 1997, two papers concerning the PTT fluid were published by Renardy

[Ren97b] and Hagen and Renardy [HR97]. The first of these considers integration of the

constitutive equations of the PTT fluid near a 270o re-entrant corner in a Newtonian

velocity field. This is the first major analytical work published which considers the

PTT fluid, and in fact provides the solution to the case of the PTT flow with a solvent

viscosity, explained in appendix A, which includes a detailed analysis of the results of

[Ren97b]. The analysis performed shares much in common with the earlier paper for

UCM corner flow [Ren93] as once again the numerical results are obtained with the

velocity field assumed to be Newtonian. It is this assumption that is relaxed here in

order to provide the solution to our PTT problem (see chapter 3). Renardy found

the same stream function behaviour of r1+λ0, with λ0 ≈ 0.5445 for the 270o corner,

but with less singular stresses of r−0.329 and thinner boundary layers θ ∼ r(1−λ0)/3

compared to the UCM model in a Newtonian velocity field.

[HR97] finds the boundary layer equations for high Weissenberg number flows of the

PTT fluid in a similar way to [Ren97a]. This paper shows derivation of the viscometric

behaviour of PTT fluids (which is detailed here in section 2.3.1), and also considers

the case of κ being small, specifically when κ is related to the Weissenberg number

by κ = O(We−2). The small κ limit for re-entrant corner flow is considered here in

chapter 4.

Complete descriptions of the re-entrant corner problem

The first papers published resolving the downstream boundary layer to complete the re-

entrant corner solution were published by Rallison and Hinch [RH04] for the Oldroyd-

B fluid, and by Evans [Eva05b] for the UCM fluid. Both papers extend the earlier

work of Renardy and Hinch on the re-entrant corner geometry, and both agree that

for UCM and Oldroyd-B fluids the stream function vanishes as ψ ∼ r(3−α)α, with a

stress singularity of O(r−2(1−α)) and boundary layer thicknesses θ ∼ r1−α where α

is related to the corner angle θ by θ = π/α. These values agree for the 270o corner

angle (α = 2/3) with the previous results of Hinch and Renardy. [Eva05b] provides

analytical work in the Cartesian basis to solve the problem using similarity solutions

with matching performed to recover viscoelastic behaviour uniformly. The downstream

boundary layer issue is resolved through an expansion of the core flow behaviour to
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recover the critical higher order terms required to pose the downstream boundary value

problem numerically. In contrast, [RH04] uses the natural stress basis from [Ren94]

avoiding the need for such an expansion. [Eva05b] also includes work on a double

boundary layer structure possibly present, with a further structure to include reverse

flow in lip vortices in [Eva05a]. These structures are certainly of interest given that

vortices appear experimentally in contraction flows (where 270o re-entrant corners are

present). Other than in this paper, all other analysis assumes complete flow around the

corner with no reverse flow, and this is an assumption made throughout the analysis

of this thesis. Reverse flow and the presence of a separating streamline is very much

an open question and further work would be of interest in this area.

Most recently the papers published in 2008 upon which the analysis of this thesis is

most closely related are those by Evans [Eva08a] and [Eva08b]. These two connected

papers complete the analysis of the re-entrant corner flow of the UCM fluid (with the

assumption of complete flow around the corner) in the Cartesian and natural stress

bases. These papers clarify the analysis of [Eva05b] and display the exact interplay

between these two bases with the benefits of both shown.

Two papers are currently published from the work of this thesis, [ES08] and [ES09],

together describing the work of chapter 3 here. Published in the same volume as

[ES08] was work by Atalik [Ata08] who considers the slightly different approach of using

Lie group theory to obtain the similarity solutions of the boundary layer equations.

This paper investigates the corner flow of both PTT and UCM models, with numerics

presented for the upstream boundary layer and agrees with the analysis of [Eva08a]

and [ES08].

Chapters 4 and 5

Chapter 4 contains analysis of the re-entrant corner problem in the three parameter

regimes of κ→ 0 with We = O(1), and the small and high Weissenberg number limits

with κ = O(1). Directly applicable is the work of Evans [Eva06], where the small and

high limits of the Weissenberg number for the re-entrant corner flow of the UCM model

are considered.

Chapter 5 focuses on salient corner flow. Crucial for this analysis is the understand-

ing of corner flows involving the Newtonian fluid. The problem was initially examined

by Rayleigh in 1920 (referenced in the later papers [DM49] and [Mof64]), but contained

an assumption about the stream function behaviour later shown to be too restrictive by

Dean and Montagnon, [DM49]. Further work to improve the solution and to consider

many complex flow scenarios around the corner including symmetrical flows and flows

with eddies was published in 1964 by Moffatt [Mof64]. The Newtonian solution is of use
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in the non-Newtonian cases of low Weissenberg number (in most viscoelastic models,

setting We = 0 recovers the Newtonian governing equations), and also in salient corner

flow (flow with corners of angle less than 180o). For the re-entrant corner flow (with

corner angle greater than 180o), the Newtonian solution is no longer relevant and quite

different behaviour is found.



Chapter 2

Preliminary analysis

This chapter introduces the main mathematical preliminaries to be used in chapters

3–6. It begins with an analysis of the type of the PTT governing equations in section

2.1, followed by the representation of the equations in the Cartesian and natural stress

formulations in 2.2. The chapter is then concluded by considering the steady shear

flow and viscometric behaviour of the PTT fluid in section 2.3, with descriptions of the

important rheological properties of the viscosity and normal stresses.

2.1 Classification of type

The dimensionless governing equations for steady planar flow for a Phan-Thien-Tanner

viscoelastic fluid are given in (1.32)–(1.34). Although the intention of this thesis is to

solve specific problems rather than to analyse the possible existence and uniqueness

issues relating to the way the problems are posed, it is still of interest to be able to

classify this system of PDEs.

There are numerous good sources discussing classification of PDEs, for instance

chapter 2 of [RR04], with the classification of viscoelastic models of Maxwell type

discussed in particular by Joseph et. al. in [JRS85] and then furthered by Gerritsma

and Phillips [GP01], [GP08].

Whilst detailed analysis exists for the classification and subsequent description of

how to obtain a well-posed problem for the UCM model has been performed in the

above, the PTT model appears to have not been investigated. Given that the PTT

model only extends the UCM model with a nonlinear stress term, it is likely that the

classification will produce the same result as for UCM, however we discuss the details

here following a similar method to that of Gerritsma and Phillips in [GP08].

The steady planar PTT governing equations (1.32)-(1.34) form a system of 6 quasi-

29
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linear equations. They can be written in the form

Lq = A1
∂q

∂x
+ A2

∂q

∂y
+ Sq = 0, (2.1)

where q = (p, u, v, T11, T12, T22)
T . p, u, and v are the pressure and velocity components

in the x and y Cartesian directions as defined in the introduction, T11 and T22 are the

normal stresses in the x and y directions respectively, and T12 is the shear stress. The

matrices in (2.1) are then

A1 =























0 1 0 0 0 0

1 Re u 0 −1 0 0

0 0 Re u 0 −1 0

0 −2We T11 − 2 0 We u 0 0

0 0 −2We T12 0 0 We u

0 0 −We T11 − 1 0 We u 0























,

A2 =























0 0 1 0 0 0

0 Re v 0 0 −1 0

1 0 Re v 0 0 −1

0 −2We T12 0 We v 0 0

0 0 −2We T22 − 2 0 0 We v

0 −We T22 − 1 0 0 We v 0























,

S = (1 + We κ (T11 + T22))























0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 1 0























. (2.2)

Following [GP08], we use the approach to the classification of this system of studying

the stability of short waves. Gerritsma and Phillips consider the UCM equations in

unsteady planar flow, and hence our analysis changes to remove the time dependence,

along with differences in the PTT governing equations and our notation. We first

calculate the symbol of the differential operator, defined as follows:

Consider the linear differential operator

P

(

x,
∂

∂x
,
∂

∂y

)

, (2.3)
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where x = (x, y) are the space coordinates. Then the symbol of P is

Symbol of P = P (x, iξ1, iξ2) . (2.4)

After this, we compute the determinant of this symbol, followed by the zeros of the

principal part (the terms of highest order in ξi) of this polynomial expression.

We consider a plane wave solution of (2.1) propagating in the ξ-direction of the

form

q(x, t) = q0e
iξ.x, (2.5)

where ξ = ξ1ex + ξ2ey is a wave vector (and ex, ey are the unit vectors in the x

and y directions respectively), with wave numbers ξ1 and ξ2, and |ξ| =
√

ξ21 + ξ22 .

Substituting this into our governing equations (2.1) yields

i(ξ1A1 + ξ2A2)q0 + Sq0 = 0, (2.6)

which will have a non-trivial solution q0 if

det (ξ1A1 + ξ2A2 − iS) = 0. (2.7)

As mentioned in [GP08], the symbol of the differential operator defined by (2.1) is the

response of the system to a solution of the form (2.5). Therefore the symbol P (q, i, ξ)

for the PTT model is

P (q, i, ξ) = i(ξ1A1 + ξ2A2 − iS). (2.8)

The requirement that det (P (q, i, ξ)) = 0, leads to the polynomial equation

(ξ21 + ξ22) (We (v.ξ) − i[κ])2
(

ξT (We T + I)ξ − Re (v.ξ) (We (v.ξ) − i[κ])
)

= 0, (2.9)

where [κ] = We κ (T11 + T22) + 1 has been introduced for simplicity. This polynomial

equation in ξ1 and ξ2 is analogous to (16) in [GP08] for the UCM model, with the main

difference that κ = 0 for UCM, causing [κ] = 1, removing the trT term from [κ]. The

principal part of this polynomial, which as mentioned is the terms of highest degree in

ξi, is

P p = We2(ξ21 + ξ22)(v.ξ)
2
(

ξT (We T + I)ξ − ReWe (v.ξ)2
)

, (2.10)

which is identical to the steady UCM model principal part of the symbol (when written

in the same notation). The additional PTT terms involving trT do not contribute to the

principal part of the symbol, which is used to classify the original governing equations.

To make conclusions about the type of the PTT equations, we note from [RR04]
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the classification of the general second-order PDE in two spacial dimensions

Lu = a(x, y)
∂2u

∂x2
+ b(x, y)

∂2u

∂x∂y
+ c(x, y)

∂2u

∂y2

+ d(x, y)
∂u

∂x
+ e(x, y)

∂u

∂y
+ f(x, y)u+ g(x, y) = 0.

(2.11)

Here the principal part of the symbol L is

Lp = −a(x, y)ξ21 − b(x, y)ξ1ξ2 − c(x, y)ξ22 = (ξ1, ξ2)

(

−a −1
2b

−1
2b −c

)(

ξ1

ξ2

)

= ξTAξ,

(2.12)

and is classified as:

• Elliptic - if the symmetric matrix A is (positive or negative) definite,

• Hyperbolic - if A has eigenvalues of both signs,

• Parabolic - if A is singular (i.e. it has at least one zero eigenvalue).

We now consider the factors of P p in (2.10) using the above and with reference to

the previous papers [JRS85], [GP01], and [GP08] (since they include classification of

the type of the UCM equations, which as mentioned has the same principal part) to

conclude:

• Firstly, the factor (v.ξ)2 demonstrates that there are two real characteristics

(v.ξ) = 0, and corresponds to two pieces of information that are convected along

streamlines. As such the system always has at least two linearly independent

eigenvectors associated with this factor, giving the system a hyperbolic character.

• Next we consider the factor (ξ21 + ξ22) = ξTAξ with A = I. The eigenvalues of

I are both +1, so I is positive definite, and the factor is elliptic. This factor

in fact corresponds to the symbol of the Laplace operator resulting from the

incompressibility constraint - specifically from the divergence of the velocity field

and gradient of the pressure.

• Finally, the factor

ξT (We T + I)ξ − ReWe (v.ξ)2 = We ξT
(

T +
1

We
I − Re vvT

)

ξ,

which is associated by Joseph [JRS85] to the vorticity. This factor is more
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complicated and can change type depending on the eigenvalues of the tensor

A =
(

T + 1
WeI − Re vvT

)

as suggested above for the general second-order PDE.

From this we conclude that the system of partial differential equations for the steady

PTT model (regardless of the type of the final factor) is of mixed elliptic-hyperbolic

type.

2.2 Formulations of the governing equations

2.2.1 Cartesian stress basis equations

The governing equations for the PTT fluid are given in equations (1.32)–(1.34). Written

in Cartesian component form for the steady planar case the momentum and constitutive

equations are

Re (v.∇)u = −∂p
∂x

+
∂T11

∂x
+
∂T12

∂y
, (2.13)

Re (v.∇)v = −∂p
∂y

+
∂T12

∂x
+
∂T22

∂y
, (2.14)

and

T11 +

(

u
∂T11

∂x
+ v

∂T11

∂y
− 2

∂u

∂y
T12 − 2

∂u

∂x
T11 + κ(T11 + T22)T11

)

= 2
∂u

∂x
, (2.15)

T22 +

(

u
∂T22

∂x
+ v

∂T22

∂y
− 2

∂v

∂x
T12 − 2

∂v

∂y
T22 + κ(T11 + T22)T22

)

= 2
∂v

∂y
, (2.16)

T12 +

(

u
∂T12

∂x
+ v

∂T12

∂y
− ∂v

∂x
T11 −

∂u

∂y
T22 + κ(T11 + T22)T12

)

=
∂u

∂y
+
∂v

∂x
, (2.17)

where the Weissenberg number, We, has been set to unity as it may be removed via

the scalings

r 7→ r

We1/2
, v 7→ We1/2v, T 7→ We T, p 7→ We p, κ 7→ κ, (2.18)

similarly to remark 2 in [Eva08a]. Clearly these scalings break down in the low and

high Weissenberg limits We → 0+, and We → +∞, and these limits are analysed in

chapter 4. Here also the PTT model parameter κ is taken in the range [0, 1], although

the values at the upper end of this range would be considered unrealistically large,

as mentioned in the introduction. In chapter 3, it is assumed that κ = O(1) where

a distinct behaviour from the UCM model is expected. The UCM limit of κ → 0 is



CHAPTER 2. PRELIMINARY ANALYSIS 34

considered in chapter 4. The velocity field in planar flow can be represented by

v =

(

u

v

)

=

(

∂ψ
∂y

−∂ψ
∂x

)

, (2.19)

where ψ is the usual stream function, and thus causing the continuity equation (1.33)

to be immediately satisfied. The governing equations in terms of the stream function

can thus be written as

T11 +

(

∂ψ

∂y

∂T11

∂x
− ∂ψ

∂x

∂T11

∂y
− 2

∂2ψ

∂y2
T12 − 2

∂2ψ

∂x∂y
T11 + κ(T11 + T22)T11

)

= 2
∂2ψ

∂x∂y
,

(2.20)

T22 +

(

∂ψ

∂y

∂T22

∂x
− ∂ψ

∂x

∂T22

∂y
+ 2

∂2ψ

∂x2
T12 + 2

∂2ψ

∂x∂y
T22 + κ(T11 + T22)T22

)

= −2
∂2ψ

∂x∂y
,

(2.21)

T12 +

(

∂ψ

∂y

∂T12

∂x
− ∂ψ

∂x

∂T12

∂y
+
∂2ψ

∂x2
T11 −

∂2ψ

∂y2
T22 + κ(T11 + T22)T12

)

=
∂2ψ

∂y2
− ∂2ψ

∂x2
,

(2.22)

and

Re

(

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2

)

= −∂p
∂x

+
∂T11

∂x
+
∂T12

∂y
, (2.23)

Re

(

−∂ψ
∂y

∂2ψ

∂x2
+
∂ψ

∂x

∂2ψ

∂x∂y

)

= −∂p
∂y

+
∂T12

∂x
+
∂T22

∂y
. (2.24)

This is a system of 5 coupled, nonlinear, partial differential equations of 2nd order in

ψ, which are mixed elliptic-hyperbolic in nature, as shown in section 2.1.

Determinant relationship

It will also be useful to have a relation between the determinant det(T+I) and ψ as in

[Eva08a]. We have that the symmetric matrix (T + I) is given by

(T + I) =

(

T11 + 1 T12

T12 T22 + 1

)

hence
det(T + I) = (T11 + 1)(T22 + 1) − T 2

12,

tr(T + I) = T11 + T22 + 2,

(2.25)

and a rearrangement of the PTT model (with We scaled out) gives

(v.∇)T =(∇v)(T + I) + (T + I)(∇v)T − (κ(trT) + 1)T. (2.26)
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Computing the matrix multiplication and applying the continuity equation gives the

three equations

(v.∇)T11 = 2(T11 + 1)ux + 2T12uy − (κ(T11 + T22) + 1)T11,

(v.∇)T12 = (T11 + 1)vx + (T22 + 1)uy − (κ(T11 + T22) + 1)T12,

(v.∇)T22 = 2(T22 + 1)vy + 2T12vx − (κ(T11 + T22) + 1)T22. (2.27)

Combining (2.25) and (2.27), and again using continuity where appropriate gives that

(v.∇)det(T + I) = (v.∇)(T11T12 + T11 + T22 + 1 − T 2
12)

= (T11 + 1)(v.∇)T22 + (T22 + 1)(v.∇)T11 − 2T12(v.∇)T12

= − (κ(T11 + T22) + 1)
(

(T11 + 1)T22 + (T22 + 1)T11 − 2T 2
12

)

= (κ(T11 + T22) + 1) (tr(T + I) − 2det(T + I)) . (2.28)

Thus in summary

(v.∇)det(T + I) = (κtr (T) + 1) (tr (T + I) − 2det (T + I)) , (2.29)

and we will later show that

det(T + I) = ∆0

(

ψ

C0

)
2(α−1)
n

, (2.30)

holds in the core region, with the constant ∆0 and n able to be determined by matching

to the upstream boundary layer. The analysis using this determinant relationship is

contained in appendix B.

2.2.2 The natural stress basis equations

In addition to formulating the problem in a Cartesian system, we can use a natural

basis aligned along streamlines, first proposed for application to problems of this kind

by Renardy [Ren94]. This will be of benefit to further the analysis of the Cartesian

basis to complete the description of the downstream boundary layer. We introduce the

vector w given by

w = (w1, w2)
T =

(

− v

u2 + v2
,

u

u2 + v2

)T
, (2.31)

which is orthogonal to v and satisfies | v × w |= 1.
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Figure 2-1: An illustration of a representative streamline along with an element trav-
eling along the streamline. Shown are the basis vectors v and w of the natural stress
formulation, where v is the fluid velocity, and w is a vector perpendicular to v as defined
in (2.31). Also shown are the actions of the natural stress variables on a representative
element.

The extra-stress tensor T can then be represented as

T = −I + λvvT + µ(vwT + wvT ) + νwwT , (2.32)

where λ(x, y), µ(x, y), and ν(x, y) are the natural stress variables3. λ(x, y) and ν(x, y)

represent normal stresses along and perpendicular to the streamline, with µ(x, y) a

shear stress. The vectors v and w, along with the action of the natural stress variables

on a representative element traveling along are streamline are shown in figure 2-1.

The relations between the Cartesian and natural stress bases are then

T11 = −1 + λu2 − 2µuv

|v|2
+
νv2

|v|4
, (2.33)

T12 = λuv +
µ(u2 − v2)

|v|2
− νuv

|v|4
, (2.34)

T22 = −1 + λv2 +
2µuv

|v|2
+
νu2

|v|4
, (2.35)

where |v|2 = u2 + v2, noting that |w|2 = 1/|v|2, and also (for future reference)

det(T + I) = λν − µ2. (2.36)

3It may be also of interest to note that w = ∇ψ

|v|2
, and that v = ∇× (ψk).
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Using these, our constitutive equations (2.15)-(2.17) become

λ+ (v.∇)λ+ 2µ∇.w + κ

(

λ |v|2 − 2 +
ν

|v|2
)(

λ− 1

|v|2
)

=
1

|v|2
, (2.37)

µ+ (v.∇)µ+ ν∇.w + κ

(

λ |v|2 − 2 +
ν

|v|2
)

µ = 0, (2.38)

ν + (v.∇)ν + κ

(

λ |v|2 − 2 +
ν

|v|2
)

(

ν − |v|2
)

= |v|2 , (2.39)

where

∇.w =
1

|v|4
(

(v2 − u2)

(

∂v

∂x
+
∂u

∂y

)

+ 4uv
∂u

∂x

)

, (2.40)

and the momentum equations (2.13)-(2.14) become

Re (v.∇)u = −∂p
∂x

+ (v.∇)(λu) + ∇. (µuw + (µv + νw)w1) , (2.41)

Re (v.∇)v = −∂p
∂y

+ (v.∇)(λv) + ∇. (µvw + (µv + νw)w2) . (2.42)

It is worth noting for comparison to the UCM model that

κ tr(T) = −2κ+ κλ(u2 + v2) +
κν(u2 + v2)

|v|4

= κ

(

λ |v|2 − 2 +
ν

|v|2
)

. (2.43)

2.3 Simple shear flow

An important flow to consider both to display some of the properties of the PTT

fluid, and for use in the more complicated geometries of later sections is that of steady

simple shear. It is with this flow that the crucial rheological property of viscosity can

be understood clearly. In this situation, and for the flows considered in this thesis,

viscosity will refer to shear-rate dependent viscosity and is defined as the ratio of the

shear stress to the shear rate.

There is a thorough discussion in Chapter 3.1 of [Ren00b] of steady simple shear

flow for the UCM, PTT, and other non-Newtonian fluids. Here we concentrate on the

PTT fluid with reference to the results of other fluids for comparison.

In steady simple shear flow, the flow is purely two dimensional with the velocity a

function of y solely in the x direction, i.e. v = (u(y), 0, 0)T . The quantities of interest

will be the shear rate γ̇ = du
dy , the shear stress T12, and the viscosity η = T12

γ̇ , as well
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as the first and second normal stress differences N1 and N2 defined as

N1 = T11 − T22 and N2 = T22 − T33. (2.44)

In a Newtonian fluid when sheared, the fluid resists the motion by developing the

frictional force of viscosity. In a polymeric fluid, the polymer chains align with the

flow, and hence this causes a tension force in the flow direction referred to as a ‘normal

stress’. There are a number of interesting effects associated with these non-zero normal

stresses N1 and N2, such as the Weissenberg effect when a fluid may climb up a rotating

rod, rather than the normal dip near the rod seen with a Newtonian fluid. More of

these unusual effects and photos of the experiments may be found in [BW93].

As the flow profile is uniform in both x and z directions, the stresses in this flow

regime are all functions of y, hence Tij = Tij(y), and T13 = T23 = 0.

Substituting these quantities into the PTT constitutive equations (1.34) gives

T11 (1 + We κ(T11 + T22 + T33)) = 2We γ̇T12,

T12 (1 + We κ(T11 + T22 + T33)) = We γ̇T22 + γ̇,

T22 (1 + We κ(T11 + T22 + T33)) = 0,

T33 (1 + We κ(T11 + T22 + T33)) = 0, (2.45)

with the final two equations thus implying T22 = T33 = 04 (we consider κ = O(1),

We = O(1) here for comparison to UCM and Newtonian flow). This leaves

T11 (1 + We κT11) = 2We γ̇T12,

T12 (1 + We κT11) = γ̇, (2.47)

which upon eliminating T11 from the first of these using the second gives the equation

for the shear stress as

2We2κT 3
12 + T12 = γ̇. (2.48)

Equation (2.48) shows that for small shear rates T12 ∼ γ̇ whereas for large shear rates

T12 ∼
(

γ̇

2We 2
κ

)
1
3
. From this we can determine the viscosity of the PTT model, which

is recorded in table 2.1 along with the viscosities of the Newtonian and UCM models

4The final two equations in (2.45) could instead imply We κ(T11 + T22 + T33) = −1, leading to

T11 =
κ− 1

We κ
− T33, T12 = 0, T22 = −

1

We
. (2.46)

Significantly T12, the shear stress, is zero and hence a physically unrealistic result for shear flow.



CHAPTER 2. PRELIMINARY ANALYSIS 39

for comparison. It is clear from table 2.1 that the viscosity of the PTT model decreases

as the shear rate is increased. This is the property of shear thinning, and a property

the UCM model does not capture.

Newtonian UCM PTT

η Small γ̇ 1 1 ∼ 1

η Large γ̇ 1 1 ∼
(

(

1

2We2
κ

)
1
3
γ̇−

2
3

)

Table 2.1: Table showing the (non-dimensionalised) viscosities of various fluid models.

The result that the UCM model has a constant viscosity may be surprising in that

it is supposed to be a non-Newtonian model. The non-Newtonian nature only becomes

apparent when comparing the normal stress differences. For a Newtonian fluid in shear

flow, the normal stress differences N1 = N2 = 0, however, for a UCM fluid N1 = 2γ̇2

We
and N2 = 0. For the PTT fluid since T22 = T33 = 0, we again have N2 = 0, but from

the first equation in (2.47) we can see that for small shear rates N1 is proportional to

γ̇2, but proportional to γ̇
2
3 at high shear rates.

Engineering Rheology [Tan00], section 3.8, contains experimental data from vari-

ous authors. A large amount of excellent data is from [Mei75], figure 7 in particular

showing clearly the shear thinning behaviour of three low density polyethylene sam-

ples - examples of polymer melts (reproduced in [Tan00] in Fig. 3.17). Table 3.9 of

[Tan00] gives values of N2/N1 for a range of fluids from various sources, confirming the

credentials of the PTT equations for modelling these fluids.

2.3.1 Viscometric behaviour

The main use of simple shear flow behaviour in this thesis is that it is expected that

the flow near the walls in the geometries considered later will satisfy similar behaviour.

The stream function will be expected to vanish as ψ ∼ O(y2) as y → 0 (y being a

Cartesian coordinate away from the wall), thus satisfying both no slip and no normal

velocity, and this, with the resulting stresses is termed viscometric behaviour. We

consider the governing equations in two dimensions with the velocities represented in

the usual stream function form (2.19), and assume the stream function behaviour

ψ ∼ 1

2
γ̇y2, as y → 0, (2.49)
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still with Tij = Tij(y). Substituting these into the constitutive relations (1.34) we

obtain

T11 (1 + We κ(T11 + T22)) − 2We γ̇T12 = 0,

T22 (1 + We κ(T11 + T22)) = 0,

T12 (1 + We κ(T11 + T22)) − We γ̇T22 = γ̇, (2.50)

with the T22 equation implying T22 = 0 (and once again we ignore unphysical solution

of We κ(T11 + T22) = −1, commented on in footnote 4). Simplifying equations (2.50)

we find

T22 = 0, T11 + We κT 2
11 = 2We γ̇T12, and T12 + We κT11T12 = γ̇, (2.51)

which imply that

T22 = 0, γ̇ − T12 = 2We2κT 3
12, and T11 = 2We T 2

12, (2.52)

as found in [HR97]. The behaviour takes different forms depending on the shear rate.

When the shear rate is large, γ̇ � 1, the viscometric behaviour satisfies

ψ ∼ 1

2
γ̇y2, T11 ∼ 2We

(

γ̇

2We2κ

)2/3

, T12 ∼
(

γ̇

2We2κ

)1/3

, T22 = 0,

(2.53)

and when γ̇ � 1 the behaviour is instead

ψ ∼ 1

2
γ̇y2, T11 ∼ 2We γ̇2, T12 ∼ γ̇, T22 = 0, (2.54)

which is in fact the same as the viscometric behaviour found for the UCM model.

The above viscometric behaviours apply when κ = O(1) and We = O(1), with high

shear rate, γ̇ � 1, applicable to re-entrant corner flow and low shear rate, γ̇ � 1,

applicable to salient corner flow (these geometries are defined at the start of chapter

3). Chapter 4 however contains analysis for re-entrant corner flow in the parameter

regimes of small κ (with We = O(1)), and low and high We, (with κ = O(1)). There is

a complex relationship in the second equation of (2.52) between T12, κ and We in these

large and small parameter limits, to determine the applicable viscometric behaviour.

We consider the behaviour for re-entrant corner flow such that all behaviours occur

with γ̇ � 1, and are summarised in table 2.2, where two further forms of viscometric

behaviour (in addition to (2.53) and (2.54)) are found to be relevant. This table is of

interest as it predicts the critical length scales of the asymptotic structures in chapter
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4. Firstly a possible behaviour in the small κ limit is

ψ ∼ 1

2
γ̇y2, T11 ∼ 2

κ
We b2, T12 ∼ b

κ1/2
, T22 = 0, where γ̇ =

b+ 2We2b3

κ1/2
,

(2.55)

and secondly, a possible behaviour for the small We limit is

ψ ∼ 1

2
γ̇y2, T11 ∼ 2

We
b2, T12 ∼ b

We
, T22 = 0, where γ̇ =

b+ 2κb3

We
, (2.56)

the full conditions for when these apply are given in table 2.2. The viscometric be-

haviour of the multiple limits (We � 1, κ = o(1)) and (We � 1, κ = o(1)) are not

included as the full analysis in these situations are left as open problems.

Parameter Regime T12 condition Viscometric behaviour form

We = O(1) , κ� 1 1 � T12 � κ−1/2 T11 ∼ 2We∂
2ψ
∂y2 T12, T12 ∼ ∂2ψ

∂y2 , see (2.54)

We = O(1) , κ� 1 T12 = O
(

κ−1/2
)

T11 ∼ 2We ∂
2ψ
∂y2

T12 − WeκT 2
11,

T12 ∼ ∂2ψ
∂y2 − WeκT11T12, see (2.55)

We = O(1) , κ� 1 1 � κ−1/2 � T12 κT 2
11 ∼ 2∂

2ψ
∂y2

T12, WeκT11T12 ∼ ∂2ψ
∂y2

,

see (2.53)

We � 1 , κ = O(1) 1 � T12 � We−1 T11 ∼ 2We∂
2ψ
∂y2

T12, T12 ∼ ∂2ψ
∂y2

, see (2.54)

We � 1 , κ = O(1) T12 = O
(

We−1
)

T11 ∼ 2We ∂
2ψ
∂y2

T12 − WeκT 2
11,

T12 ∼ ∂2ψ
∂y2

− WeκT11T12, see (2.56)

We � 1 , κ = O(1) 1 � We−1 � T12 κT 2
11 ∼ 2∂

2ψ
∂y2

T12, WeκT11T12 ∼ ∂2ψ
∂y2

,

see (2.53)

We � 1 , κ = O(1) 1 � T12 κT 2
11 ∼ 2∂

2ψ
∂y2

T12, WeκT11T12 ∼ ∂2ψ
∂y2

,

see (2.53)

Table 2.2: Table showing the expected viscometric behaviour as y → 0 for various
parameter regimes. In all cases the shear rate is taken to be large, γ̇ � 1, for applica-
tion to the re-entrant corner geometry. The terms of the constitutive equations which
contribute are listed in the final column (with additionally, in all cases T22 = 0 for vis-
cometric behaviour), along with a reference to the equation containing the appropriate
behaviour.

Irrespective of the form of the viscometric behaviour, the form of the stream function

(equation (2.49)) and stresses being Tij = Tij(y) with T22 = 0 for all forms, then the

momentum equations immediately imply that the pressure must be independent of y,

or equivalently

p = p(γ̇). (2.57)
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When imposing viscometric behaviour as a boundary condition at a wall, the leading

order behaviour implied by the above equations will be required. In re-entrant corner

flow (in the initial κ = O(1), We = O(1) problem) a high shear rate at the wall

is expected, and thus the behaviour is expected to come from equation (2.53) with

We = 1 from the scaling mentioned in (2.18). It follows that the expected viscometric

behaviour is

ψ ∼ κa3y2, T11 ∼ 2a2, T12 ∼ a, T22 = 0, (2.58)

after setting γ̇ = 2κa3. Viscometric behaviour in natural stress can be found using

(2.52) and the relationship equations (2.33)-(2.35), giving

λ =
1 + 2µ2

γ̇2y2
, µ = γ̇ − 2κµ3, ν = γ̇2y2, (2.59)

so clearly λ is unbounded at the boundary y = 0. Setting γ̇ = 2κa3 once again and

considering the leading order behaviour we have

λ ∼ 1 + 2a2

4κ2a6y2
, µ ∼ a, ν ∼ 4κ2a6y2, (2.60)

and if 1 � 2a2 then this finally reduces to

λ ∼ 1

2κ2a4y2
, µ ∼ a, ν ∼ 4κ2a6y2. (2.61)

These behaviours (2.58) and (2.61) are expected to be the relevant behaviours for the

re-entrant corner flow of chapter 3.

2.3.2 An extension to viscometric behaviour

Having found a leading order solution at the wall where ψ ∼ 1
2 γ̇y

2, it is now of interest

to consider a ψ behaviour with an arbitrary power of y. This could apply either in the

limit of γ̇ → 0, where we would expect ψ = O(yn) with n > 2, or when investigating a

more general stream function away from the walls.

Substituting

ψ ∼ ayn, (2.62)
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and Tij = Tij(y) into the constitutive equations (1.34) we obtain

T11 + We
(

−2an(n− 1)yn−2T12 + κ(T11 + T22)T11

)

= 0, (2.63)

T22 + We (κ(T11 + T22)T22) = 0, (2.64)

T12 + We
(

−an(n− 1)yn−2T22 + κ(T11 + T22)T12

)

= an(n− 1)yn−2. (2.65)

The y exponent, n, could be any number provided that ψ = ∂ψ
∂y = 0 on y = 0 to satisfy

the no-slip and no normal velocity conditions, i.e. n > 1. The second equation above,

(2.64), implies that

T22 (1 + We κ(T11 + T22)) = 0, (2.66)

and hence

We κ(T11 + T22) = −1, or T22 = 0. (2.67)

Case (a), Weκ(T11 + T22) = −1

Equations (2.63) and (2.65) become

T11 − We
(

2an(n− 1)yn−2T12

)

− T11 = 0, (2.68)

T12 − We
(

an(n− 1)yn−2T22

)

− T12 = an(n− 1)yn−2. (2.69)

which thus implies that

T12 = 0, T22 = − 1

We
, and T11 =

1

We

(

1 − 1

κ

)

. (2.70)

As before in footnote 4, this behaviour is unrealistic as in shear flow the shear stress

would not be expected to be zero.

Case (b), T22 = 0

Equations (2.63) and (2.65) become

T11 + We
(

−2an(n− 1)yn−2T12 + κT 2
11

)

= 0, (2.71)

T12 + We κT11T12 = an(n− 1)yn−2, (2.72)

which can be simplified to

T12 = an(n− 1)yn−2 − 2We2κT 3
12, T11 = 2We T 2

12. (2.73)
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As previously in the standard viscometric case, we consider a both large and small.

When a� 1 the behaviours become

T22 = 0, T12 ∼ an(n− 1)yn−2, T11 ∼ 2We (an(n− 1))2 y2n−4, (2.74)

whereas when a� 1 the behaviours become

T22 = 0, T12 ∼
(

an(n− 1)

2We2κ

)
1
3

y
1
3
(n−2), T11 ∼ 2We

(

(an(n− 1))2

4We2κ2

)
1
3

y
2
3
(n−2),

(2.75)

and can be simplified by setting

ã =

(

an(n− 1)

2We2κ

)
1
3

, (2.76)

hence

T22 = 0, T12 ∼ ãy
1
3
(n−2), T11 ∼ 2We ã2y

2
3
(n−2). (2.77)

It can be seen from these equations that integer powers of y will occur when n = 2+3k

for k ∈ IN, the first two occurring when ψ ∼ ay2 and ψ ∼ ay5. When the limit γ̇ → 0

is considered for the re-entrant corner problem in section 3.2.3 later, the n = 5 case is

shown to be relevant.



Chapter 3

Re-entrant corner flow κ = O(1),

We = O(1)

The central problem of this thesis is that of the re-entrant corner flow of the PTT fluid

when both the Weissenberg number and the PTT model parameter κ are both O(1)

quantities. The preceding chapters have provided a general introduction and contain

some preliminary results, with the later chapters relying on the analysis contained here.

We define two types of sharp corner. A salient corner has an angle of less than 180◦,

whereas a re-entrant corner is greater than 180◦5.

Section 3.1 gives a further introduction specific to the corner, and contains the

fundamental results upon which the analysis of this chapter will be based. We begin

by motivating the analysis of this corner geometry before defining the problem precisely

in sections 3.1.1-3.1.2. Following this the solution for core flow, the solution away from

the walls, is found in sections 3.1.3-3.1.4.

Analytical work to find the asymptotic structure, the balances appropriate in each

region, and how to correctly define and set up the boundary layer problem is all con-

tained in section 3.2. Given its comparative complexity, a detailed explanation of how

the analysis is undertaken and structured may be found at the beginning of the sec-

tion. Also of note is that the analysis will proceed simultaneously in both Cartesian

and natural stress bases (see section 2.2 for the description of these bases).

The boundary layer equations found in section 3.2 have to be solved numerically.

In section 3.3 we detail how our numerical scheme is implemented followed by the

numerical results and analysis. Section 3.3.1 solves the upstream boundary layer using

5There is some discussion by Tanner in chapter 8 of Engineering Rheology, [Tan00], on the naming of
these corners. Here the widely adopted names from the literature (in particular in the papers discussed
in section 1.4) have been used, with the description re-entrant referring to the corner protruding into
the fluid.

45
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the Cartesian formulation, with section 3.3.2 completing the analysis in the natural

stress basis by providing results for both upstream and downstream boundary layers.

This chapter concludes with a discussion of the results. Of particular interest is the

comparison to the re-entrant corner flow of the UCM fluid, along with the surprising

result that the analysis is found to hold only for corner angles between 180o and 270o.

3.1 Introduction and preliminary analysis

3.1.1 Motivation

The mathematical modelling of fluid flow in or around a sharp corner is of vital im-

portance to modelling flow in a variety of situations. In particular, contraction and

extrusion flows (a contraction shown in figure 3-1), where both salient and re-entrant

corner flows occur.

A contraction can occur when fluid flows between two pipes of different diameters,

and in this case the re-entrant corner has a 270◦ angle. The singularities produced by

the corner cause difficulties in numerical simulation, and hence a detailed mathematical

model of the situation is required so that accurate predictions of the stresses created can

be made. We investigate two dimensional planar flows, which have direct application to

the contraction and extrusion flows with both rectangular and axisymmetric channels,

all of which are standard benchmark problems for numerical schemes.

Figure 3-1: Diagram showing a contraction. Clearly shown are regions of recirculation
in the salient corners, with inset the region close to one of the re-entrant corners
displaying complete flow around the corner. Numerical simulations of contraction flows
show this region of recirculation reaching the re-entrant corners on some occasions or
show the presence of upstream lip vortices. Our analysis will however assume complete
flow around the corner as in the situation shown.
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3.1.2 Problem statement

Figure 3-2 shows the re-entrant corner geometry. We consider the two dimensional

sector 0 < r < ∞, 0 ≤ θ ≤ π/α, with θ = 0 representing the upstream wall and

θ = π/α the downstream wall (so that 1/2 ≤ α < 1). Here (r, θ) are polar coordinates

centred on the corner. Cartesian axes will be taken with the x-axis along the upstream

wall and the y-axis along the ray θ = π/2. On both solid walls both no-slip and no

normal velocity boundary conditions apply (v=0 on the walls), in our case we prefer

to write

ψ =
∂ψ

∂θ
= 0, on θ = 0,

π

α
. (3.1)

Figure 3-2: An illustration of the re-entrant corner geometry, showing clearly both
Cartesian and polar axes centered on the corner, with the flow direction from right to
left. On the walls both no-slip and no normal velocity boundary conditions apply.

To progress, we consider the flow away from the walls in a core (outer) region, and

attempt to find a dominant balance in the constitutive equations (1.34).

3.1.3 The core balance

Crucial to the analysis of the re-entrant corner flow with κ = O(1), We = O(1) is that

the upper convected stress derivative is assumed to dominate in the outer region, i.e.

5

T +o(1) = 0, as r → 0. (3.2)

This assumption can be intuitively justified by considering the orders of magnitude of

the terms in the PTT constitutive equation (1.34). Setting ψ = O(rk) and T = O(r−m)
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for unknown k,m, with m > 0 due to the assumed stress singularity at the corner, the

terms in (1.34) are then

T = O(r−m),
5

T= O(rk−2−m), (trT)T = O(r−2m), D = O(rk−2). (3.3)

The upper convected stress derivative dominates over the rate of strain terms D since

m > 0, and over the stress terms T assuming k < 2. This assumption is physically

realistic as the fluid is expected to accelerate around a re-entrant corner, becoming

infinite as r → 0 (the opposite being true for the salient corner geometry, where the

fluid becomes stagnant at the corner). Finally
5

T � (trT)T if k < 2 −m. From this

analysis, the two possible balances are

5

T +o(1) = 0, or
5

T +κ (trT)T + o(1) = 0, as r → 0, (3.4)

however the second of these has been discussed briefly by Renardy in [Ren97c] with

the conclusion that it is physically unrealistic.

Renardy’s argument benefits from the use of the natural stress formulation, with a

modification of equation (2.32) due to the fact that in this core region T is expected to

dominate over I, the identity matrix, as seen by T = O(r−m) with m > 0 mentioned

above. Thus the transformation takes the form

T = λvvT + µ(vwT + wvT ) + νwwT , (3.5)

in the core region with the second balance in (3.4) becoming

(v.∇)λ+ 2µ∇.w + κ (trT)λ = 0,

(v.∇)µ+ ν∇.w + κ (trT)µ = 0,

(v.∇)ν + κ (trT) ν = 0,











where trT = λ |v|2 +
ν

|v|2
. (3.6)

The argument in [Ren97c] asserts that trT should be positive6, and thus the last

equation determines that ν decreases monotonically along streamlines. In our corner

situation, this prevents matching between upstream and downstream boundary layers,

as the information from the upstream cannot be communicated through the core un-

changed. The possibility of ν = 0 then produces recursive arguments that µ = λ = 0

similarly, with the conclusion then that the trT terms must be of lower order and the

6In corner flow, in the core region away from the walls, the stress component along streamlines λvvT

will be far larger than the component perpendicular, νwwT . λ will also be uniformly positive, as the
fluid is being stretched around the corner. Using these observations it is clear that trT = λ |v|2+ ν

|v|2
>

0.
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first balance in (3.4) holds.

Further work to analyse the second balance in (3.4) would certainly be of interest

however, especially as it appears to be the correct core balance for the PTT fluid in a

wedge geometry (see initial results in appendix C). The previous argument does not

apply in the wedge geometry as in either sink or source wedge flows there is no need

to communicate information between boundary layers, being equivalent to upstream

boundary layers in sink flow, and downstream boundary layers in source flow.

The analysis here will concentrate on the balance in (3.2) with the upper convected

stress derivative dominating. The solution to this balance T = λ(ψ)vvT , discussed in

section 3.1.4, is physically realistic as near the corner (away from the walls) the velocity

gradients are high, and thus comparing the natural stress formulation of the stress in

equation (2.32), the λvvT would indeed be expected to dominate.

3.1.4 The core solution

Away from the boundaries in the outer (core flow) region we expect the upper convected

stress derivative terms to dominate as in (3.2) with the momentum and continuity

equations still applicable. As mentioned in section 3.1.3 this has a solution of the form

T = λ(ψ)vvT , (3.7)

or in component form Tij = λ(ψ)vivj, which is physically realistic as in this region

we expect the fluid to advect and deform affinely - there is no slip of the polymer in

the solvent, and thus the stresses occur along streamlines in the vvT direction (see for

example [Hin93], [Ren93]). The momentum equation becomes

Re vk
∂

∂xk
vi = − ∂p

∂xi
+
∂Tik
∂xk

⇒ Re vk
∂vi
∂xk

= − ∂p

∂xi
+

∂

∂xk
λ(ψ)vivk + λ(ψ)

(

∂vi
∂xk

vk +
∂vk
∂xk

vi

)

⇒ Re vk
∂vi
∂xk

= − ∂p

∂xi
+ vivk

∂λ(ψ)

∂xk
+ λ(ψ)vk

∂vi
∂xk

+ λ(ψ)
∂vk
∂xk

⇒ (Re − λ(ψ)) v.∇vi = − ∂p

∂xi
+ viv.∇λ(ψ) + λ(ψ)vi∇.v

⇒ (Re − λ(ψ)) v.∇vi = − ∂p

∂xi
, (3.8)

which is a form of the Euler equations. Assuming that λ(ψ) � Re since the inertia

terms are expected to be subdominant to the pressure and stress terms in the momen-
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tum equation, we may now consider the equation

λ(ψ)v.∇v−∇p = 0. (3.9)

Before attempting to find a solution for both the stream function and λ(ψ), we re-write

equation (3.9) along streamlines as a modified form of Bernoulli’s equation to solve for

the pressure. Considering a streamline parameter s, such that along a streamline

x = x(s), y = y(s), then (3.9) becomes7

λ(ψ)
dv

ds
=





1
u

(

dp
ds − v ∂p∂y

)

1
v

(

dp
ds − u ∂p∂x

)



 . (3.12)

Adding the two equations of (3.12), this simplifies to

d

ds

(

p−
(

1

2
λ |v|2

))

= 0, thus p = P0(ψ) +
1

2
λ |v|2 , (3.13)

where P0(ψ) is an arbitrary function of the stream function appearing from the inte-

gration. To derive this result we have used information from footnote 7, and that λ(ψ)

is constant along a streamline.

Returning to equation (3.9), we progress by introducing the vector u = λ
1
2 v sim-

plifying (3.9) to

u.∇u −∇p = 0. (3.14)

The vector u still satisfies the continuity equation since

∇.u = ∇.(λ 1
2v) = v.∇λ 1

2 + λ
1
2∇.v = 0. (3.15)

It is also noteworthy that equation (3.14) may also be derived from the natural stress

momentum equations using the same form for u. Continuing with this equation

∇p = u.∇u = (∇× u) × u + ∇
(

1

2
|u|2

)

= Ω × u + ∇
(

1

2
|u|2

)

, (3.16)

7 The chain rule implies that

d

ds
=
dx

ds

∂

∂x
+
dy

ds

∂

∂y
=

(

dx

ds
,
dy

ds

)T

.∇, (3.10)

where d
ds

is the rate of change along a streamline (i.e. in the direction of the velocity v). Thus we also
have

d

ds
= v.∇, implying that u =

dx

ds
, v =

dy

ds
. (3.11)
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and taking the curl of both sides (to simplify since the curl of a gradient is zero) then

gives

0 = ∇× (Ω × u) = (u.∇)Ω − (Ω.∇)u + Ω (∇.u) − u (∇.Ω) = (u.∇)Ω. (3.17)

Now since Ω is the two-dimensional vorticity,

Ω =

(

∂ṽ

∂x
− ∂ũ

∂y

)

k =

(

−∂
2ψ̃

∂x2
− ∂2ψ̃

∂y2

)

k = −
(

∇2ψ̃
)

k = Ωk. (3.18)

Thus by solving 0 = (u.∇) Ω as Ω = −f(ψ̃), where f(ψ̃) is an arbitrary function of ψ̃,

then

∇2ψ̃ = f(ψ̃). (3.19)

This in addition has to satisfy the boundary conditions

ψ̃ = 0, on θ = 0,
π

α
, (3.20)

as u is parallel to v.

In all previous work in the literature (in particular [Hin93], [Ren93], [Ren95],

[Eva05b], [Eva08a], [RH04]) the solution pursued is the homogeneous solution of the

Poisson equation (3.19), thus making the assumption that f(ψ̃) = 0. A brief reasoning

for this case being the physically realistic solution to investigate is given in section 7.2

of [Ren00b]. From the order of magnitude estimates for the core balance in section

3.1.3, then as ψ = O(rk) where k < 2, the function f would satisfy f = O(rk/n−2) if a

balance with the Laplacian term in (3.19) is made (This is explained in (3.24) where

ψ = O(ψ̃n), and n is found to satisfy n > 1). This implies that the f is singular as

r → 0, which would lead to singular behaviour of the stream function and as such it

is unlikely that such a situation is physically relevant. It is interesting to analyse this

case, if only as it has not been considered in the literature, to investigate the possible

alternative stream function solutions. Analysis to include the forcing term f at leading

order is contained in appendix D.

Continuing here with the solution of the homogeneous equation (3.19), Laplace’s

equation in two-dimensional polar coordinates is

1

r

∂

∂r

(

r
∂ψ̃

∂r

)

+
1

r2
∂2ψ̃

∂θ2
= 0. (3.21)
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Using separation of variables, this can be solved to give the solutions

ψ̃ =
(

Ajr
j +

Bj
rj

)

(Cj cos(jθ) +Dj sin(jθ)) , for j ∈ C\{0},
ψ̃ = Ac +A0 log r +B0θ, for j = 0,

(3.22)

where Aj , Bj , Cj , Dj , Ac, A0, and B0, are all arbitrary constants. We require a real

stream function solution that satisfies ψ̃ = 0 on θ = 0, π
α , and that has nonsingular

behaviour as r → 0, then j > 0 ∈ R. The first j to satisfy these requirements, giving

the dominant solution as r → 0 is

ψ̃ = Ahr
α sin(αθ), (3.23)

where Ah ∈ R is an arbitrary constant. ψ̃ is the stream function for u, not the true

velocity field v, but as they are parallel and thus have the same streamlines, then the

true stream function ψ must be a function of ψ̃. Making the assumption that

ψ = g(ψ̃) = c̃1ψ̃
n, (3.24)

where c̃1 and n are constants, then

∂ψ̃

∂y
= λ1/2 ∂ψ

∂y
= nc̃1λ

1/2ψ̃n−1∂ψ̃

∂y
. (3.25)

Therefore we may determine

λ(ψ) =

(

nc̃
1
n
1

)−2

ψ
2(1−n)
n = c̄1ψ

2(1−n)
n . (3.26)

Here, we are effectively assuming a form for the (currently arbitrary) function λ(ψ).

Interestingly, this is not a simple power law form as n > 0 to allow ψ to satisfy the

boundary conditions. Hence the form of λ is in fact assumed to be λ = c̄1ψ
nl , where

−2 < nl <∞. To summarise

ψ = c0r
nα sinn(αθ), (3.27)

λ(ψ) = c1

(

ψ

c0αn

)
2(1−n)
n

, (3.28)

where c0 and c1 are arbitrary constants (combinations of c̄1 and n combined for clarity),

and n is an undetermined exponent.

The solution for the pressure p in the core was determined in equation (3.13). This

can be simplified by using the stream function in polar coordinates, in particular that
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|v|2 =
(

1
r
∂ψ
∂θ

)2
+
(

∂ψ
∂r

)2
, and (3.27)–(3.28) to find

p = P0(ψ) +
1

2
c1c

2
0n

2α2nr−2(1−α) = P0(ψ) + p0r
−2(1−α). (3.29)

The pressure near the upstream wall must satisfy (2.57) which is the viscometric be-

haviour of the pressure. Thus at leading order p must be a function of x only (where

r ∼ x for small θ, explained later in footnote 9), and as such P0(ψ) must be subdomi-

nant. Thus in the core region as r → 0 at leading order

p = p0r
−2(1−α), (3.30)

where p0 = 1
2c1c

2
0n

2α2n is another constant.

For completeness, we are now able to note the form of the constants in (3.23) and

(3.24) in terms of the new constants introduced.

c̃1 =
c0α

n

(c20c1n
2α2n)n/2

=
c0α

n

(2p0)n/2
, (3.31)

hence

ψ = g(ψ̃) =
c0α

n

(2p0)n/2
ψ̃n, ψ̃ =

(

c0
c̃1

)1/n

rα sin(αθ) =
(2p0)

1/2

α
rα sin(αθ). (3.32)

The core flow has thus been determined subject to the two arbitrary constants c0

and p0 (c1 being determined by the other two constants), the exponent n which will be

determined through matching to the wall boundary layers, and the known parameter

α, set by the corner angle of interest.

The asymptotic structure of the corner is based upon this solution behaviour, with

the solution determining that

ψ = O(rnα), T = O(r−2(1−α)), λ = O(r2α(1−n)), p = O(r−2(1−α)), as r → 0,

(3.33)

and being fundamental to the following analysis.
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3.2 Asymptotic Analysis

With the knowledge obtained in the previous section, we now begin to solve the re-

entrant corner problem itself by determining the main asymptotic regions and the

solution behaviour occurring in each. As suggested in section 2.2, there are two rep-

resentations of the stress tensor which will be beneficial, those of the Cartesian and

natural stress bases.

When considering the problem, analysis may be performed using either formulation

without recourse to the other and indeed the papers published from this work [ES08]

and [ES09] use the Cartesian and natural stress bases respectively. It will become

apparent that the Cartesian stress basis is ideal to provide an initial investigation of

the problem and determine the regions, as well as allowing easier interpretation of

the results. The natural stress basis is required however as it is able to complete the

problem to match the solution from the upstream to the downstream boundary layer (a

feat not possible in the Cartesian basis due to the key pieces of information transferred

being at high order in an asymptotic expansion of the core behaviour and thus too

susceptible to numerical error).

In contrast to the papers mentioned, the asymptotic analysis here will proceed

by considering both stress formulations simultaneously to provide a succinct analysis

whilst highlighting the benefit of each stress basis.

The three main asymptotic regions local to the corner are shown in figure 3-3, com-

prising the outer (core) flow region away from the boundaries, and the inner (boundary)

layers at the upstream and downstream walls. Shown is the case where no lip vortex

is present, an assumption made for the analysis in this chapter, although commented

on in the discussion. The distances from the corner are of O(ε) and are assumed small,

with the boundary layer thickness found to be O(ε2−α) on these length scales.

This section will proceed as follows. First in section 3.2.1 we use the core solution

behaviour of section 3.1.4 to motivate core scalings for the variables, and verify the

core balance assumed. As this leading order self-similar solution is not consistent

with the viscometric behaviour of section 2.3.1 we match the core solution into stress

boundary layers in section 3.2.2. The leading order boundary layer equations of section

3.2.2 admit a self-similar form in both stress formulations, which have to be solved

numerically. The wall behaviour of the similarity solution equations is considered in

3.2.3, the far-field behaviour then in 3.2.4. This determines that the upstream problem

may be solved as an initial value problem provided both the upstream wall shear rate

and the pressure are given, and the downstream problem is then solved as a boundary

value problem determining the downstream wall shear rate.
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Figure 3-3: A schematic illustration of the main asymptotic regions local to the corner
for self-similar solutions of PTT fluids when κ = O(1) and We = O(1). Distances to the
corner are of O(ε) and assumed small. The upper convective stress derivative is assumed
to dominate in the core flow and self-similar solutions of the form ψ = c0r

nα sinn(αθ),
T = λ(ψ)vvT can be matched to both upstream and downstream boundary layers
which form symmetrically at the walls. Flow remains parallel within the boundary
layers, with the fluid originating near the upstream wall flowing fully around the corner.
A lip vortex is implicitly assumed to be absent, so that the situation of reverse flow
at the upstream wall is not considered. The boundary layers described here are single
layer structures occurring for the critical value of n = 1 + α which arises in the self-
similar solution of the core. These boundary layers have a wall viscometric behaviour
associated with the PTT high Weissenberg number boundary layer equations [HR97].
The shown dominant balances for the constitutive equations conveniently summarise
the terms that contribute to the leading order equations in their respective regions
(although not all components of each term necessarily appear). The leading order
balances using the natural stress formulation are also shown for the respective regions.

3.2.1 The core region

The analysis of the re-entrant corner geometry takes place in a region close to the corner,

so it is convenient to rescale r by r = εR∗, where ε is an artificial small parameter, thus

the scalings we introduce are

r = εR∗, x = εX∗, y = εY ∗, (3.34)

where 0 < ε� 1, and R∗ = O(1). The outer region is defined as being away from the

walls and for which X∗ = O(1), Y ∗ = O(1). Using the order of magnitudes given in
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(3.33), and the velocity field (2.19) we may then find the scalings

ψ = εnαΨ∗, v = εnα−1v∗, w = ε1−nαw∗, p = ε−2(1−α)p∗, T = ε−2(1−α)T∗,

λ = ε2α(1−n)λ∗, µ = θ2µ
∗, ν = θ3ν

∗,

(3.35)

where the scalings for the natural stress variables µ and ν are as yet undetermined and

denoted by the gauges θ2(ε) and θ3(ε). These gauges will be found after matching into

the boundary layer. For completeness we note then that

Ψ∗ = c0R
∗nα sinn(αθ), v∗ =

(

∂Ψ∗

∂Y ∗

− ∂Ψ∗

∂X∗

)

, T∗ = λ(Ψ∗)v∗v∗T . (3.36)

We now write the governing equations in both Cartesian and natural stress formulae

in the outer (starred) variables. The momentum equations (1.32) in Cartesian form

are

Re ε2α(n−1)(v∗.∇∗)v∗ = −∇∗p∗ + ∇∗.T∗, (3.37)

and in the natural stress basis (2.41) and (2.42) become

Re ε2α(n−1)(v∗.∇∗)u∗ = − ∂p∗

∂X∗ + (v∗.∇∗)(λ∗u∗) + δ2∇∗.(µ∗u∗w∗ + µ∗v∗w∗
1)

+δ3∇∗. (ν∗w∗w∗
1) , (3.38)

Re ε2α(n−1)(v∗.∇∗)v∗ = − ∂p∗

∂Y ∗ + (v∗.∇∗)(λ∗v∗) + δ2∇∗.(µ∗v∗w∗ + µ∗v∗w∗
2)

+δ3∇∗. (ν∗w∗w∗
2) , (3.39)

where we have set

δ2 = θ2ε
2(1−α), and δ3 = θ3ε

2(2−α(1+n)), (3.40)

for convenience. In either formulation it is clear that we require 2α(n−1) > 0 ⇒ n > 1

for the inertia terms to be subdominant. Introducing the scalings into the constitutive

equation (1.34) in the Cartesian basis gives

ε2−αnT∗+
5

T∗ +κεα(2−n)(trT∗)T∗ = 2ε2(1−α)D∗, (3.41)
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and so
5

T∗ dominates at leading-order if

2 − αn > 0 ⇒ n <
2

α
(3.42)

α(2 − n) > 0 ⇒ n < 2 (3.43)

2 − 2α > 0 ⇒ α < 1. (3.44)

As the geometry dictates that 1
2 ≤ α < 1, then these restrictions imply that n < 2,

hence we now have

1 < n < 2. (3.45)

When n = 2 the upper convected stress derivative is balanced by the quadratic stress

terms and the solution (3.27) is no longer applies for κ = O(1). In the case of (3.45)

the stress scaling is fully determined by the angle of the corner and independent of n.

In the following section, n will be shown to be 1 + α, which falls within this range of

validity.

Now the corresponding core constitutive equations in the natural stress variables

(from (2.37)-(2.39)) are

(v∗.∇∗)λ∗ + ε2−nαλ∗ + δ22µ
∗∇∗.w∗ + κ tr(T∗)

(

λ∗ − ε2(1−α)

|v∗|2

)

=
ε4−α(n+2)

|v∗|2
, (3.46)

(v∗.∇∗)µ∗ + ε2−nαµ∗ +
δ3
δ2
ν∗∇∗.w∗ + κ tr(T∗)µ∗ = 0, (3.47)

(v∗.∇∗)ν∗ + ε2−nαν∗ + κ tr(T∗)

(

ν∗ − ε2(1−α)

δ3
|v∗|2

)

=
ε4−α(n+2)

δ3
|v∗|2 , (3.48)

where we have defined

tr(T∗) = εα(2−n)λ∗ |v∗|2 − 2ε2−nα + δ3ε
α(2−n) ν∗

|v∗|2
. (3.49)

It is also possible to relate the two formulations using (2.33)-(2.35), the expressions

becoming

T ∗
11 = −ε2(1−α) + λ∗u∗2 − δ2

2µ∗u∗v∗

|v∗|2
+ δ3

ν∗v∗2

|v∗|4
, (3.50)

T ∗
12 = λ∗u∗v∗ + δ2

µ∗(u∗2 − v∗2)

|v∗|2
− δ3

ν∗u∗v∗

|v∗|4
, (3.51)

T ∗
22 = −ε2(1−α) + λ∗v∗2 + δ2

2µ∗u∗v∗

|v∗|2
+ δ3

ν∗u∗2

|v∗|4
. (3.52)



CHAPTER 3. RE-ENTRANT CORNER FLOW κ = O(1), WE = O(1) 58

We now pose the expansions

Ψ∗ = Ψ∗(0) + o(1), T∗ = T∗(0) + o(1), p∗ = p∗(0) + o(1),

λ∗ = λ∗(0) + o(1), µ∗ = µ∗(0) + o(1), ν∗ = ν∗(0) + o(1), as ε→ 0, (3.53)

and for the natural stress equations make the assumptions

δ2 � 1, δ3 � 1, 1 < n < 2,

δ3
δ2

� 1, δ3ε
α(2−n) � 1,

ε4−α(n+2)

δ3
� 1,

ε2−nα

δ3
� 1, (3.54)

which need to be verified a posteriori once n and the gauges θ2, θ3 are determined.

This then gives the leading order problem

∇∗p∗(0) = ∇∗.T∗(0) =
(

v∗(0).∇∗
)(

λ∗(0)v∗(0)
)

,

5

T∗(0)= 0,
(

v∗(0).∇∗
)

λ∗(0) = 0,
(

v∗(0).∇∗
)

µ∗(0) = 0,
(

v∗(0).∇∗
)

ν∗(0) = 0, (3.55)

in the core region8. These equations may be solved in the same way as in section 3.1.4,

giving

Ψ∗(0) = c0R
∗nα sinn(αθ), λ∗(0) = c1

(

Ψ∗(0)

c0αn

)
2(1−n)
n

, p∗(0) = p0R
∗−2(1−α), (3.57)

where the stream function satisfies Ψ∗(0) = 0 on θ = 0 and θ = π/α, and the constants

c0 and p0 are arbitrary (the constant c1 being determined by the other constants as in

(3.29)).The stress components in the Cartesian basis are

T
∗(0)
11 = c1

(

Ψ∗(0)

c0αn

)
2
n
−2(

∂Ψ∗(0)

∂Y ∗

)2

, T
∗(0)
12 = −c1

(

Ψ∗(0)

c0αn

)
2
n
−2(

∂Ψ∗(0)

∂X∗

∂Ψ∗(0)

∂Y ∗

)

,

T
∗(0)
22 = c1

(

Ψ∗(0)

c0αn

)
2
n
−2(

∂Ψ∗(0)

∂X∗

)2

, (3.58)

8 There is another possible core balance in the ν∗(0) natural stress variable equation where a positive
forcing term intrudes from the quadratic stress term, that of

(

v
∗(0).∇∗

)

ν∗(0) = κλ∗(0)
∣

∣

∣
v
∗(0)
∣

∣

∣

4

, (3.56)

which changes the final assumption in (3.54). Here we would have δ3 = ε2−nα. This balance is found
to be appropriate when 1/2 ≤ α ≤ 2/3 in (3.119)-(3.120), and is analysed further in appendix E.
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and finally we note that µ∗(0), and ν∗(0) are functions of Ψ∗(0). We assume a power law

form for these variables, and then the general solution to their equations is

µ∗(0) = d2

(

Ψ∗(0)

c0αn

)n2

, ν∗(0) = d3

(

Ψ∗(0)

c0αn

)n3

, (3.59)

for arbitrary constants d2, d3, and exponents n2 and n3. An important observation

here is that λ∗(0), µ∗(0), and ν∗(0) are constant along leading order streamlines, with the

information received from the upstream boundary layer being unchanged through the

core region and then delivered to the downstream layer thus linking the two boundary

layers together.

To match with the upstream boundary layer we consider the behaviour as Y ∗ → 0,

which corresponds to θ → 0. By considering the expansions of sin(θ) and cos(θ) for

small θ then R∗ ∼ X∗ and θ ∼ Y ∗/X∗ at leading order9. Then from (3.57) we derive

the matching conditions as

Ψ∗(0) ∼ c0X
∗nααn

(

Y ∗

X∗

)n

= C0X
∗n(α−1)Y ∗n, p∗(0) ∼ p0X

∗2α−2, (3.64)

9Firstly, we record the expansions for sin(θ), cos(θ) and the relationships between (r, θ) and (x, y).

sin(θ) = θ −
θ3

3!
+ ..., cos(θ) = 1 −

θ2

2!
+
θ4

4!
− ...,

x = r cos θ, y = r sin θ, r2 = x2 + y2, tan(θ) =
y

x
. (3.60)

We can also note that

f(z) = tan−1(z) f ′(z) = 1
1+z2

f ′′(z) = −2z
(1+z2)2

f ′′′(z) = 2(3z2−1)

(1+z2)3

f(0) = 0 f ′(0) = 1 f ′′(0) = 0 f ′′′(0) = −2
(3.61)

such that

θ = tan−1
( y

x

)

=
y

x
−

1

3

( y

x

)3

+ .... (3.62)

Using r2 = x2 + y2 and performing a Taylor series expansion we have

r = x+
1

2

y2

x
+ ..., (3.63)

so the second terms for both r and θ are
(

y
x

)2
smaller than the leading order terms.
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from (3.58) we can see that

T
∗(0)
11 ∼ c1

(

C0

c0αn
X∗n(α−1)Y ∗n

)
2
n

(1−n)

C2
0X

2(α−1)nn2Y ∗2(n−1)

= C1X
∗(2α−2), (3.65)

T
∗(0)
12 ∼ −c1

(

C0

c0αn
X∗n(α−1)Y ∗n

) 2
n

(1−n)

C2
0n(α− 1)X∗n(α−1)−1Y ∗nnXn(α−1)Y n−1

= C1(1 − α)X∗(2α−3)Y ∗, (3.66)

T
∗(0)
22 ∼ c1

(

C0

c0αn
X∗n(α−1)Y ∗n

) 2
n

(1−n)

C2
0n

2(α− 1)2X∗2n(α−1)−2Y ∗2n

= C1(1 − α)2X∗(2α−4)Y ∗2, (3.67)

and from (3.57) and (3.59) the natural stress variables have the limiting behaviour

λ∗(0) ∼ c1X
∗2(α−1)(1−n)Y ∗2(1−n), µ∗(0) ∼ d2X

∗n(α−1)n2Y ∗nn2,

ν∗(0) ∼ d3X
∗n(α−1)n3Y ∗nn3 , (3.68)

where the constants

C0 = c0α
n, C1 = c1n

2C2
0 , p0 =

1

2
C1, (3.69)

have been introduced for convenience. Similar expressions can be deduced for the

behaviour at the downstream wall, the way the two are related is given at the start of the

following section. However, since neither upstream nor downstream behaviours capture

the viscometric behaviour (in (2.58)) this leads to consideration of wall boundary layers.

3.2.2 Wall boundary layer structures

The governing equations hold in both the upstream and downstream regions. The

natural choice of Cartesian axes for the downstream region is with the x-axis along the

downstream wall θ = π/α and the y-axis orthogonal along the ray θ = π/α+ π/2 into

the wall. Comparing then the upstream and downstream regions the transformation

relating the two is

ψ 7→ −ψ, y 7→ −y, T12 7→ −T12, µ 7→ −µ. (3.70)

leaving the governing equations invariant. This is analogous to remark 3 of [Eva08a].

Inner regions are now sought at both walls, and the boundary layer equations will be

found to be the same as those noted by [HR97] for the high Weissenberg number limit.
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The upstream wall is considered without loss of generality, since the re-orientation of

axes from (3.70) allows the downstream wall to be similarly considered. To move into

the upstream boundary layer we need only to rescale the y variable, since rescaling x

would only bring us even closer to the corner. Hence the scalings are

X∗ = X̄, Y ∗ = δ(ε)Ȳ , Ψ∗ = γ(ε)Ψ̄. (3.71)

Using the matching conditions (3.64)-(3.68), we can determine γ = δn, and the scalings

for the other variables become

T ∗
11 = T̄11, T ∗

12 = δT̄12, T ∗
22 = δ2T̄22, p∗ = p̄,

u∗ = δn−1ū, v∗ = δnv̄, w∗
1 = δ2−nw̄1,

w∗
2 = δ1−nw̄2, λ∗ = δ2(1−n)λ̄, µ∗ = δnn2 µ̄, ν∗ = δnn3 ν̄, (3.72)

where

ū =
∂Ψ̄

∂Ȳ
, v̄ = − ∂Ψ̄

∂X̄
, w̄1 = − v̄

ū2 + δ2v̄2
, w̄2 =

ū

ū2 + δ2v̄2
, (3.73)

and the gauge δ = δ(ε) is to be determined, but is presumed small in order for this

region to be thin i.e. a boundary layer. To scale our equations in the boundary layer

it is useful to note

∇∗.w∗ =
∂w∗

1

∂X∗ +
∂w∗

2

∂Y ∗ = δ−n
(

∂w̄2

∂Ȳ
+ δ2

∂w̄1

∂X̄

)

= δ−n∇̄.w̄, (3.74)

(v∗.∇∗) =

(

u∗
∂

∂X∗ + v∗
∂

∂Y ∗

)

= δn−1

(

ū
∂

∂X̄
+ v̄

∂

∂Ȳ

)

= δn−1(v̄.∇̄). (3.75)
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For the inner region X̄ = O(1), Ȳ = O(1) these give the constitutive equations in the

Cartesian stress basis as

ε2−nα

δn−1
T̄11 +

(

∂Ψ̄

∂Ȳ

∂T̄11

∂X̄
− ∂Ψ̄

∂X̄

∂T̄11

∂Ȳ
− 2

∂2Ψ̄

∂Ȳ 2
T̄12 − 2

∂2Ψ̄

∂X̄∂Ȳ
T̄11

)

+
εα(2−n)

δn−1
κ(T̄11 + δ2T̄22)T̄11 = 2ε2(1−α) ∂2Ψ̄

∂X̄∂Ȳ
, (3.76)

ε2−nα

δn−1
T̄22 +

(

∂Ψ̄

∂Ȳ

∂T̄22

∂X̄
− ∂Ψ̄

∂X̄

∂T̄22

∂Ȳ
+ 2

∂2Ψ̄

∂X̄2
T̄12 + 2

∂2Ψ̄

∂X̄∂Ȳ
T̄22

)

+
εα(2−n)

δn−1
κ(T̄11 + δ2T̄22)T̄22 = −2

ε2(1−α)

δ2
∂2Ψ̄

∂X̄∂Ȳ
, (3.77)

ε2−nα

δn−1
T̄12 +

(

∂Ψ̄

∂Ȳ

∂T̄12

∂X̄
− ∂Ψ̄

∂X̄

∂T̄12

∂Ȳ
+
∂2Ψ̄

∂X̄2
T̄11 −

∂2Ψ̄

∂Ȳ 2
T̄22

)

+
εα(2−n)

δn−1
κ(T̄11 + δ2T̄22)T̄12 =

ε2(1−α)

δ2

(

∂2Ψ̄

∂Ȳ 2
− δ2

∂2Ψ̄

∂X̄2

)

, (3.78)

and using natural stress variables

(v̄.∇̄)λ̄+

(

ε2−nα

δn−1

)

λ̄+

(

δ2δ
nn2

δ

)

2µ̄∇̄.w̄

+ κ tr(T̄)

(

λ̄− ε2(1−α)

ū2 + δ2v̄2

)

=

(

ε4−α(n+2)

δn−1

)

1

ū2 + δ2v̄2
, (3.79)

(v̄.∇̄)µ̄+

(

ε2−nα

δn−1

)

µ̄+

(

δ3δ
nn3+1

δ2δn(n2+2)

)

ν̄∇̄.w̄ + κ tr(T̄)µ̄ = 0, (3.80)

(v̄.∇̄)ν̄ +

(

ε2−nα

δn−1

)

ν̄

+ κ tr(T̄)

(

ν̄ − ε2(1−α)δ2(n−1)

δ3δnn3

(

ū2 + δ2v̄2
)

)

=

(

ε4−α(n+2)

δ1−n+nn3δ3

)

(

ū2 + δ2v̄2
)

,

(3.81)

where

∇̄.w̄ =
∂

∂Ȳ

(

ū

ū2 + δ2v̄2

)

− δ2
∂

∂X̄

(

v̄

ū2 + δ2v̄2

)

=
∂

∂Ȳ

(

1

ū

)

+O(δ2), (3.82)

and we define

tr(T̄) =
εα(2−n)

δn−1

(

λ̄
(

ū2 + δ2v̄2
)

− 2ε2(1−α) +
δ3

δ2(n−1)−nn3

(

v̄

ū2 + δ2v̄2

))

. (3.83)
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The momentum equations are then

Re ε2α(n−1)δ2(n−1)

(

∂Ψ̄

∂Ȳ

∂2Ψ̄

∂X̄∂Ȳ
− ∂Ψ̄

∂X̄

∂2Ψ̄

∂Ȳ 2

)

= − ∂p̄

∂X̄
+
∂T̄11

∂X̄
+
∂T̄12

∂Ȳ
, (3.84)

Re ε2α(n−1)δ2n
(

−∂Ψ̄

∂Ȳ

∂2Ψ̄

∂X̄2
+
∂Ψ̄

∂X̄

∂2Ψ̄

∂X̄∂Ȳ

)

= − ∂p̄

∂Ȳ
+ δ2

(

∂T̄12

∂X̄
+
∂T̄22

∂Ȳ

)

, (3.85)

and

Re δ2(n−1)ε2α(n−1)(v̄.∇̄)ū = − ∂p̄

∂X̄
+ (v̄.∇̄)(λ̄ū)

+ δ2δ
nn2−1

{

∂

∂Ȳ

(

µ̄ūw̄2 + δ2µ̄v̄w̄1

)

+ δ2
∂

∂X̄
(2µ̄ūw̄1)

}

+ δ3δ
nn3+2−2n

{

∂

∂Ȳ
(ν̄w̄2w̄1) + δ2

∂

∂X̄

(

ν̄w̄1
2
)

}

, (3.86)

Re δ2n−1ε2α(n−1)(v̄.∇̄)v̄ = − δ−1 ∂p̄

∂Ȳ
+ δ(v̄.∇̄)(λ̄v̄)

+ δ2δ
nn2

{

∂

∂Ȳ
(2µ̄v̄w̄2) +

∂

∂X̄

(

µ̄ūw̄2 + δ2µ̄v̄w̄1

)

}

+ δ3δ
nn3+1−2n

{

∂

∂Ȳ

(

ν̄w̄2
2
)

+ δ2
∂

∂X̄
(ν̄w̄1w̄2)

}

. (3.87)

Dominant balance in equations (3.76)-(3.78) that retains quadratic stress and rate of

strain terms occurs when δn−1 = εα(2−n) and δ2 = ε2(1−α), which determines

δ = ε1−α, and n = 1 + α, (3.88)

with dominant balance in (3.79)-(3.81) requiring

δ2δ
nn2

δ
= 1,

εα(2−n)

δn−1
= 1,

(

δ3δ
nn3+1

δ2δn(n2+2)

)

= 1,
ε2(1−α)δ2(n−1)

δ3δnn3
= 1, (3.89)

which give additionally

δ2δ
nn2 = ε1−α, δ3δ

nn3 = ε2(1−α
2), i.e. θ2δ

nn2 = εα−1, θ3δ
nn3 = ε2(2α−1). (3.90)

For clarity in the natural stress variable equations, we note the equations in the bound-

ary layer are now

Re ε2α(v̄.∇̄)ū = − ∂p̄

∂X̄
+ (v̄.∇̄)(λ̄ū) +

∂

∂Ȳ
(µ̄ūw̄2) +O(δ2), (3.91)

Re ε2(v̄.∇̄)v̄ = − ∂p̄

∂Ȳ
+O(δ2), (3.92)
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and

(v̄.∇̄)λ̄+ ε2(1−α)λ̄+ 2µ̄∇̄.w̄ + κ tr(T̄)
(

λ̄−O(ε2(1−α))
)

= O(ε4(1−α)), (3.93)

(v̄.∇̄)µ̄+ ε2(1−α)µ̄+ ν̄∇̄.w̄ + κ tr(T̄)µ̄ = 0, (3.94)

(v̄.∇̄)ν̄ + ε2(1−α)ν̄ + κ tr(T̄)
(

ν̄ − ū2 +O(δ2)
)

= O(ε2(1−α)), (3.95)

with

tr(T̄) = λ̄
(

ū2 +O(δ2)
)

− 2ε2(1−α) +O(ε2(1−α)). (3.96)

Considering X̄ = O(1), Ȳ = O(1), noting that δ = ε1−α is small and thus that at

leading order w̄1 = − v̄
ū2 , w̄2 = 1

ū , and also ∇̄.w̄ = − 1
ū2

∂ū
∂Ȳ

, then the leading order

boundary layer equations are

(

∂Ψ̄

∂Ȳ

∂T̄11

∂X̄
− ∂Ψ̄

∂X̄

∂T̄11

∂Ȳ
− 2

∂2Ψ̄

∂Ȳ 2
T̄12 − 2

∂2Ψ̄

∂X̄∂Ȳ
T̄11

)

+ κT̄ 2
11 = 0, (3.97)

(

∂Ψ̄

∂Ȳ

∂T̄22

∂X̄
− ∂Ψ̄

∂X̄

∂T̄22

∂Ȳ
+ 2

∂2Ψ̄

∂X̄2
T̄12 + 2

∂2Ψ̄

∂X̄∂Ȳ
T̄22

)

+ κT̄11T̄22 = −2
∂2Ψ̄

∂X̄∂Ȳ
, (3.98)

(

∂Ψ̄

∂Ȳ

∂T̄12

∂X̄
− ∂Ψ̄

∂X̄

∂T̄12

∂Ȳ
+
∂2Ψ̄

∂X̄2
T̄11 −

∂2Ψ̄

∂Ȳ 2
T̄22

)

+ κT̄11T̄12 =
∂2Ψ̄

∂Ȳ 2
, (3.99)

with equation (3.85) implying that 0 = − ∂p̄
∂Ȳ

. This gives p̄ = p̄(X̄), and hence (3.84)

at leading order gives

0 = − dp̄

dX̄
+
∂T̄11

∂X̄
+
∂T̄12

∂Ȳ
, (3.100)

where we note that the linear stress terms are subdominant in (3.97)-(3.99) being of

O(ε2(1−α)) relative to the terms retained. The natural stress boundary layer equations

at leading order are

0 = − dp̄

dX̄
+ (v̄.∇̄)(λ̄ū) +

∂µ̄

∂Ȳ

(v̄.∇̄)λ̄− 2µ̄

ū2

∂ū

∂Ȳ
+ κλ̄2ū2 = 0,

(v̄.∇̄)µ̄− ν̄

ū2

∂ū

∂Ȳ
+ κλ̄µ̄ū2 = 0,

(v̄.∇̄)ν̄ + κλ̄ū2
(

ν̄ − ū2
)

= 0, (3.101)

where p̄ = p̄(X̄) is confirmed from the second momentum equation (3.92). These are

equivalent to the boundary layer equations in the high Weissenberg number situation

by Hagen and Renardy [HR97]. They are also related to those stated in Cartesian
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stress components in (3.97)-(3.100), using the change of variables

T̄11 = λ̄ū2, T̄12 = λ̄ūv̄ + µ̄, T̄22 = −1 + λ̄v̄2 +

(

2µ̄v̄

ū

)

+
( ν̄

ū2

)

, (3.102)

which follow from

T̄11 = −δ2 + λ̄ū2 − δ2
(

2µ̄ūv̄

z̄

)

+ δ4
(

ν̄v̄2

z̄2

)

, (3.103)

T̄12 = λ̄ūv̄ +
µ̄

z̄

(

ū2 − δ2v̄2
)

− δ2
( ν̄ūv̄

z̄2

)

, (3.104)

T̄22 = −1 + λ̄v̄2 +

(

2µ̄ūv̄

z̄

)

+

(

ν̄ū2

z̄2

)

, (3.105)

at leading order. These equations are precisely the relationships derived by Renardy

[Ren97a] in the context of the high Weissenberg number boundary layers, and can be

written using the stream function as

T̄11 = λ̄

(

∂Ψ̄

∂Ȳ

)2

, (3.106)

T̄12 = µ̄− λ̄

(

∂Ψ̄

∂Ȳ

)(

∂Ψ̄

∂X̄

)

, (3.107)

(

∂Ψ̄

∂Ȳ

)2

T̄22 =

(

∂Ψ̄

∂Ȳ

)2
{

−1 + λ̄

(

∂Ψ̄

∂X̄

)2
}

− 2µ̄

(

∂Ψ̄

∂X̄

)(

∂Ψ̄

∂Ȳ

)

+ ν̄. (3.108)

The leading order boundary layer equations (3.101) may also be stated in terms of the

stream function

− dp̄

dX̄
+

(

∂Ψ̄

∂Ȳ

)

∂

∂X̄

(

λ̄
∂Ψ̄

∂Ȳ

)

−
(

∂Ψ̄

∂X̄

)

∂

∂Ȳ

(

λ̄
∂Ψ̄

∂Ȳ

)

+
∂µ̄

∂Ȳ
=0, (3.109)

(

∂Ψ̄

∂Ȳ

)2
{

∂Ψ̄

∂Ȳ

∂λ̄

∂X̄
− ∂Ψ̄

∂X̄

∂λ̄

∂Ȳ
+ κλ̄2

(

∂Ψ̄

∂Ȳ

)2
}

− 2µ̄
∂2Ψ̄

∂Ȳ 2
=0, (3.110)

(

∂Ψ̄

∂Ȳ

)2
{

∂Ψ̄

∂Ȳ

∂µ̄

∂X̄
− ∂Ψ̄

∂X̄

∂µ̄

∂Ȳ
+ κλ̄µ̄

(

∂Ψ̄

∂Ȳ

)2
}

− ν̄
∂2Ψ̄

∂Ȳ 2
=0, (3.111)

∂Ψ̄

∂Ȳ

∂ν̄

∂X̄
− ∂Ψ̄

∂X̄

∂ν̄

∂Ȳ
+ κλ̄

(

∂Ψ̄

∂Ȳ

)2
{

ν̄ −
(

∂Ψ̄

∂Ȳ

)2
}

=0. (3.112)

These leading order boundary layer equations (in either basis) represent the leading

order problem in this inner region and the problem can be solved without the need to



CHAPTER 3. RE-ENTRANT CORNER FLOW κ = O(1), WE = O(1) 66

proceed to the higher order terms. They are completed with the matching conditions

as Ȳ → ∞ : Ψ̄ ∼ C0X̄
n(α−1)Ȳ n, T̄11 ∼ C1X̄

(2α−2),

T̄12 ∼ C1(1 − α)X̄(2α−3)Ȳ , T̄22 ∼ C1(1 − α)2X̄(2α−4)Ȳ 2,

λ̄ ∼ c1X̄
2(α−1)(1−n)Ȳ 2(1−n), µ̄ ∼ d2X̄

(α−1)nn2 Ȳ nn2 ,

ν̄ ∼ d3X̄
(α−1)nn3 Ȳ nn3, p̄ ∼ p0X̄

2(α−1), (3.113)

from (3.64)-(3.68), where n = 1+α, and c1 = 2p0
(1+α)2C2

0
, as well as viscometric behaviour

at the walls arising from the solid boundary and no slip conditions

at Ȳ = 0, Ψ̄ =
∂Ψ̄

∂Ȳ
= 0. (3.114)

As mentioned at the start of this section the problem statement for the downstream

layer is exactly the same and may be deduced using the transformation given in (3.70)

which leave the boundary layer (and full governing equations) invariant. Consequently

the above equations (3.97)-(3.114) pertain for the downstream boundary layer, the only

difference being a change in sign of the coefficient C0.

For analysis of the boundary layer equations, attention will focus upon similarity

solutions. The one parameter scaling group

X̄ = α̂X̂, Ȳ = α̂2−αŶ , Ψ̄ = α̂1+αΨ̂, T̄11 = α̂2α−2T̂11, T̄12 = α̂α−1T̂12,

T̄22 = T̂22, p̄ = α̂2α−2p̂, λ̄ = α̂−2αλ̂, µ̄ = α̂α−1µ̂, ν̄ = α̂2(2α−1)ν̂, (3.115)

for real α̂, leaves the problem (3.97)-(3.100) and (3.109)-(3.114) invariant. This also

determines the values

n2 =
α− 1

n
= −1 − α

1 + α
, n3 =

2(2α − 1)

n
=

2(2α − 1)

1 + α
, (3.116)

which gives the gauges θ2, θ3, using (3.90) as

θ2 = εα(α−1), θ3 = ε2α(2α−1). (3.117)
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The assumptions in (3.54) leading to the dominant balances become

δ2 = ε(1−α)(2−α) � 1, δ3 = ε2(1−α)(2−α) � 1, 1 < 1 + α < 2,

δ3
δ2

= ε(1−α)(2−α) � 1, δ3ε
α(2−n) = ε(1−α)(4−α) � 1,

ε4−α(n+2)

δ3
= ε3α(1−α) � 1,

ε2−nα

δ3
= ε(3α−2)(1−α) � 1, (3.118)

which can all be verified except the final one, which is only small when 2/3 < α < 1.

This contradiction implies that the assumption made was only correct for this α range,

and instead that for 1/2 ≤ α ≤ 2/3 the assumption should be that

δ3 = ε2−nα, thus θ3 = εnα+2α−2 = εα
2+3α−2. (3.119)

The balance that changes in the core region is in the ν∗(0) equation, where now

(

v∗(0).∇∗
)

ν∗(0) = κλ∗(0)
∣

∣

∣
v∗(0)

∣

∣

∣

4
, (3.120)

as already mentioned in (3.56) in footnote 8. Details of this situation (which is in fact

found to consist of the two cases 1/2 ≤ α < 2/3 and α = 2/3) can be found in appendix

E.

In Cartesian and all three natural stress cases 1/2 ≤ α < 2/3, α = 2/3 and

2/3 < α < 1, the governing equations and wall and matching conditions are invariant

under the one parameter scaling group given in (3.115). This scaling group suggests

the similarity solution

ξ =
Ȳ

X̄2−α
, Ψ̄ = κX̄1+αf(ξ), p̄ = p0X̄

−2(1−α),

T̄11 = X̄2α−2t11(ξ), T̄12 = X̄α−1t12(ξ), T̄22 = t22(ξ),

λ̄ =
1

κ2
X̄−2αλ̃(ξ), µ̄ = X̄α−1µ̃(ξ), ν̄ = κ2X̄2(2α−1)ν̃(ξ), (3.121)

where the opportunity to scale out the (order one) parameter κ has been taken10. The

10It is also possible to scale with p0 as well, since it is common to all three regions (core and both
boundary layers). This option will be exploited later before considering the numerics in section 3.2.5.
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leading order boundary layer equations become

2(α − 1)(t11 − p0) − (2 − α)ξt′11 + t′12 = 0, (3.122)

−(1 + α)ft′11 + 2t11
[

−αf ′ + (2 − α)ξf ′′
]

− 2f ′′t12 + t211 = 0, (3.123)

−(1 + α)ft′22 + 2t12
[

α(1 + α)f − (2 − α)(3α − 1)ξf ′ + (2 − α)2ξ2f ′′
]

+2(1 + t22)
[

(2α− 1)f ′ − (2 − α)ξf ′′
]

+ t11t22 = 0, (3.124)

−(1 + α)ft′12 +
[

α(1 + α)f − (2 − α)(3α − 1)ξf ′ + (2 − α)2ξ2f ′′
]

t11

−(1 − α)f ′t12 − (1 + t22)f
′′ + t11t12 = 0, (3.125)

where ′ denotes d/dξ, or in natural stress variables

f(1 + α)
(

λ̃f ′′ + λ̃′f ′
)

+ λ̃f ′2 − 2(1 − α)p0 − µ̃′ = 0, (3.126)

2µ̃f ′′ −
(

λ̃2f ′2 − 2αλ̃f ′ − fλ̃′ (1 + α)
)

f ′2 = 0, (3.127)

ν̃f ′′ −
(

µ̃λ̃f ′2 − µ̃f ′ (1 − α) − µ̃′f (1 + α)
)

f ′2 = 0, (3.128)

λ̃f ′2
(

f ′2 − ν̃
)

+ 2 (1 − 2α) ν̃f ′ + ν̃ ′f (1 + α) = 0. (3.129)

In either formulation these represent a fifth order system of four coupled ODEs, and

require the boundary and matching conditions

at ξ = 0 : f = f ′ = 0, (3.130)

as ξ → ∞ : f ∼ C0

κ
ξ1+α, t11 ∼ C1, t12 ∼ C1(1 − α)ξ, t22 ∼ C1(1 − α)2ξ2.

(3.131)

For the natural stress equations the matching conditions to the core flow instead are

as ξ → ∞ : f ∼ C0

κ
ξ1+α, λ̃ ∼ 2p0κ

2

(1 + α)2C2
0

ξ−2α, µ̃ ∼ d2ξ
α−1,

ν̃ ∼











d3
κ2 ξ

2(2α−1), for 2
3 < α < 1,

−10p0C0

3κ ξ
2
3 log (ξ) , for α = 2

3 ,

−2p0(1+α)C0

(2−3α)κ ξα, for 1
2 ≤ α < 2

3 .

(3.132)

The α = 2/3 and 1/2 ≤ α < 2/3 ν̃ matching conditions being detailed in appendix

E. Since the points ξ = 0 and ξ = ∞ are both singular for the system of equations,
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further analysis of the asymptotic behaviour near such points is required.

The similarity form of the boundary layer equations (3.126)-(3.129) are related to

the Cartesian formulation (3.122)-(3.125) through the relationships

λ̃ =
t11
f ′2

, (3.133)

µ̃ = t12 +
t11
f ′

{

(1 + α)f − (2 − α)ξf ′
}

, (3.134)

ν̃ = (1 + t22)f
′2 + t11

{

(1 + α)f − (2 − α)ξf ′
}2

+ 2t12f
′
{

(1 + α)f − (2 − α)ξf ′
}

, (3.135)

which follows from (3.106)-(3.108).

3.2.3 Behaviour at the wall

At the wall, we are interested in viscometric behaviour for the equations (3.122)-(3.125),

and equations (3.126)-(3.129). Consequently, we consider a power series expansion

about ξ = 0 which yields for (3.122)-(3.125) the behaviour

f(ξ) = a3ξ2 + a4bξ3 +
1

4!
f ′′′′(0)ξ4 +O(ξ5), (3.136)

t11(ξ) = 2a2 + 2((1 − α) + 2b)a3ξ + ((1 − α)(11α − 17) + 2b(b− α))a4ξ2 +O(ξ3),

(3.137)

t12(ξ) = a+ (6(1 − α) + b)a2ξ + (4 − 3α)(1 − α+ 2b)a3ξ2 +O(ξ3), (3.138)

t22(ξ) = 6(1 − α)aξ + 3((7 − 6α)(1 − α) + b)a2ξ2

+

(

2(1 − 2α)b2 + (1 − α)

(

(13 − 2α)b +
2

3
(34α2 − 83α+ 42)

))

a3ξ3 +O(ξ4),

(3.139)

and for the natural stress equations (3.126)-(3.129) the behaviour

f(ξ) = a3ξ2 + a4bξ3 +
1

4!
f ′′′′(0)ξ4 +O(ξ5), (3.140)

λ̃(ξ) =
1

2a4
ξ−2 +

(1 − α) − b

2a3
ξ−1 +O(1), (3.141)

µ̃(ξ) = a+ {3(1 − α) + b} a2ξ +O(ξ2), (3.142)

ν̃(ξ) = 4a6ξ2 + 12 {(1 − α) + b} a7ξ3 +O(ξ4), (3.143)

where we have that

p0 = −a2

(

1 +
b

2(1 − α)

)

, (3.144)



CHAPTER 3. RE-ENTRANT CORNER FLOW κ = O(1), WE = O(1) 70

and

f ′′′′(0) = 2((1 − α)(17α − 33) + 6b(b− 1))a5. (3.145)

It can be seen that (3.136)-(3.139) reproduces viscometric behaviour as ξ → 0 by using

the leading order terms for f and tij and seeing that they are consistent with the

equations (2.58) found in section 2.3.1 (with κ = 1 as it has been scaled out of the

equations here). Equivalently the expansions (3.140)-(3.143) again satisfy viscometric

behaviour as ξ → 0, as the leading order terms are consistent with the equations (2.61),

which hold provided 1 � 2a2 (again κ has been scaled out here). The constants a and

b are related to f ′′(0) and f ′′′(0) by

f ′′(0) = 2a3, f ′′′(0) = 6a4b. (3.146)

The expansions above involve two independent parameters (a, p0), where the parameter

b has been introduced for convenience and is given in terms of the other two via (3.144).

Imposing the asymptotic behaviour (3.136)-(3.139) upon the system (3.122)-(3.125), or

equivalently imposing (3.140)-(3.143) on (3.126)-(3.129), furnishes a different boundary

condition count according to the sign of the parameter a. This is crucial as a < 0 and

a > 0 represent flow towards and away from the corner respectively (as it determines

the sign of f , see equation (3.136) for example).

Cartesian wall analysis

To determine the number of degrees of freedom contained within the asymptotic be-

haviours (3.136)-(3.143) we perform an eigenmode analysis and consider the perturba-

tion

(f(ξ), tij(ξ)) =
(

f0(ξ), t
0
ij(ξ)

)

+ δ̂
(

f̂(ξ), t̂ij(ξ)
)

, as ξ → ∞ (3.147)

where f0(ξ), t
0
ij(ξ) represent the regular power series expansion terms given in (3.136)-

(3.139), and δ̂ � 1 is a small artificial gauge. Keeping terms of O(δ̂), we record the
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linearised equations satisfied by f̂(ξ), t̂ij(ξ) in the Cartesian basis

0 = ξ (−2 + α) t̂′11 − 2 t̂11 + t̂′12 + 2 t̂11α, (3.148)

0 =
(

(4 ξ − 2 ξ α) t̂11 − 2 t̂12
)

f (0)′′ +
(

(4 ξ − 2 ξ α) t
(0)
11 − 2 t

(0)
12

)

f̂ ′′ + f̂ (−1 − α) t
(0)′
11

+ f (0) (−1 − α) t̂′11 − 2 t̂11f
(0)′α− 2 t

(0)
11

(

f̂ ′ α− t̂11

)

, (3.149)

0 = 2
(

ξ (−2 + α) t
(0)
12 + 1 + t

(0)
22

)

(−2 + α) ξ f̂ ′′ + 2 (−2 + α) ξ
(

ξ (−2 + α) t̂12

+t̂22
)

f (0)′′ +
(

(

4 ξ + 6 ξ α2 − 14 ξ α
)

t
(0)
12 + (−2 + 4α) t

(0)
22 − 2 + 4α

)

f̂ ′

+
((

4 ξ + 6 ξ α2 − 14 ξ α
)

t̂12 + (−2 + 4α) t̂22
)

f (0)′ + f̂ (−1 − α) t
(0)′
22

+ f (0) (−1 − α) t̂′22 + 2α f̂ (1 + α) t
(0)
12 + 2α f (0) (1 + α) t̂12 +

(

t̂11t
(0)
22 + t

(0)
11 t̂22

)

,

(3.150)

0 =
(

ξ2 (−2 + α)2 t
(0)
11 − t

(0)
22 − 1

)

f̂ ′′ +
(

ξ2 (−2 + α)2 t̂11 − t̂22

)

f (0)′′

+
((

3 ξ α2 − 7 ξ α+ 2 ξ
)

t̂11 + t̂12 (α− 1)
)

f (0)′ +
(

(

3 ξ α2 − 7 ξ α+ 2 ξ
)

t
(0)
11

+t
(0)
12 (α− 1)

)

f̂ ′ + f̂ (−1 − α) t
(0)′
12 + f (0) (−1 − α) t̂′12 +

(

(

α+ α2
)

f̂ + t̂12

)

t
(0)
11

+ t̂11

(

(

α+ α2
)

f (0) + t
(0)
12

)

. (3.151)

We can then substitute in the behaviour (3.136)-(3.139), and find the five asymptotic

behaviours as ξ → 0 (there will be five behaviours as we are considering a fifth order

system). Three behaviours can be found with power series approximations in ξ for the

functions f̂ and t̂ij . They are

f̂ ∼ 1

t̂11 ∼ − (1+α)(17α−3 b−13)a
3

t̂12 ∼ − (1+α)(31α−23)
6

t̂22 ∼ − (1+α)(4α−3)
a























,

f̂ ∼ ξ

t̂11 ∼ 1 − α

t̂12 ∼ 1−2α
a

t̂22 ∼ 1−2α
a2























,

f̂ ∼ ξ2

t̂11 ∼ 4
3a

t̂12 ∼ 1
3a2

t̂22 ∼ 2(1−α)
a2

ξ























, (3.152)

The final two behaviours are found by considering an exponential rather than power

series form, being

f̂ = ξqexp

(

− 2
a(1+α)ξ ±

4
√

2a(1−2α)

a(1+α)ξ1/2
+O(ξ1/2)

)

t̂11 = 4
(1+α)2a3

ξq−4exp

(

− 2
a(1+α)ξ ±

4
√

2a(1−2α)

a(1+α)ξ1/2
+O(ξ1/2)

)

t̂12 = 4(2−α)
(1+α)2a3

ξq−3exp

(

− 2
a(1+α)ξ ±

4
√

2a(1−2α)

a(1+α)ξ1/2
+O(ξ1/2)

)

t̂22 = ∓2
√

2a(1−2α)

a5(1+α)2
ξq−7/2exp

(

− 2
a(1+α)ξ ±

4
√

2a(1−2α)

a(1+α)ξ1/2
+O(ξ1/2)

)















































, (3.153)
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where

q =
27α+ 11 + 8b

4(1 + α)
.

In the particular case α = 1/2, the last two modes become

f̂ = ξqexp
(

− 2
a(1+α)ξ

)

t̂11 = 16
9a3
ξq−4exp

(

− 2
a(1+α)ξ

)

t̂12 = 8
3a3
ξq−3exp

(

− 2
a(1+α)ξ

)

t̂22 = 8(4b+10−3q)
3a4(4b−1−3q)ξ

q−3exp
(

− 2
a(1+α)ξ

)































, (3.154)

where

q =
1

6

(

8b+ 23 ±
√

97
)

.

For the exponential eigenmodes, sufficient terms in the expansions are needed to obtain

the correction terms beyond the controlling factor. We note that the third algebraic

mode in (3.152) corresponds to changes in the free parameter a and that its sign

also determines the sign of the controlling factors in the exponential modes. Thus,

the consistency of these eigenmodes with the wall behaviour (3.136)-(3.139) depends

upon the sign of the parameter a and whether it is specified or not. Before drawing

conclusions from this analysis, we note that a similar procedure can be undertaken to

find the natural stress wall eigenmodes.

Natural stress wall analysis

Similarly to determine the number of degrees of freedom contained within the asymp-

totic behaviours (3.140)-(3.143) we perform an eigenmode analysis and consider the

perturbation

(

f(ξ), λ̃(ξ), µ̃(ξ), ν̃(ξ)
)

= (f0(ξ), λ0(ξ), µ0(ξ), ν0(ξ)) + δ̂
(

f̂(ξ), λ̂(ξ), µ̂(ξ), ν̂(ξ)
)

,

as ξ → ∞
(3.155)

where f0(ξ), λ0(ξ), µ0(ξ), ν0(ξ) represent the regular power series expansion terms

given in (3.140)-(3.143). The natural stress wall eigenmodes are thus

f̂ ∼ 1

λ̂ ∼ − (1+α)(5α−3)
6a5 ξ−2

µ̂ ∼ 1+α
a ξ−1

ν̂ ∼ 4a4(1 + α)ξ























,

f̂ ∼ ξ

λ̂ ∼ − 1
2a7 ξ

−3

µ̂ ∼ 25(1−α)
6a

ν̂ ∼ 4a3ξ























,

f̂ ∼ ξ2

λ̂ ∼ − 2
3a7 ξ

−2

µ̂ ∼ 1
3a2

ν̂ ∼ 8a3ξ2























, (3.156)
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and

f̂ ∼ ξqexp

(

− 2
a(1+α)ξ ±

4
√

2a(1−2α)

a(1+α)ξ1/2
+O(ξ1/2)

)

λ̂ ∼ 1
(1+α)2a9

ξq−6exp

(

− 2
a(1+α)ξ ±

4
√

2a(1−2α)

a(1+α)ξ1/2
+O(ξ1/2)

)

µ̂ ∼ 2(3−α)
(1+α)2a3 ξ

q−3exp

(

− 2
a(1+α)ξ ±

4
√

2a(1−2α)

a(1+α)ξ1/2
+O(ξ1/2)

)

ν̂ ∼ ∓8a
√

2a(1−2α)

(1+α)2
ξq−3/2exp

(

− 2
a(1+α)ξ ±

4
√

2a(1−2α)

a(1+α)ξ1/2
+O(ξ1/2)

)















































,

where q =
27α + 11 + 8b

4(1 + α)
.

(3.157)

The third eigenmode corresponds to changes in the parameter a. In the particular case

α = 1/2, the last two modes become

f̂ ∼ ξqexp
(

− 2
a(1+α)ξ

)

λ̂ ∼ 4
9a9 ξ

q−6exp
(

− 2
a(1+α)ξ

)

µ̂ ∼ 8(2+α)
9a3

ξq−3exp
(

− 2
a(1+α)ξ

)

ν̂ ∼ 32(3q−4b−10)
3(3q−4b+1) ξ

q−1exp
(

− 2
a(1+α)ξ

)































, where q =
1

6

(

8b+ 23 ±
√

97
)

. (3.158)

Wall behaviour conclusions

The conclusions from the Cartesian eigenmode analysis (also holding from the natural

stress analysis) are thus

• The case a < 0 represents flow towards the corner singularity and is relevant to

the upstream boundary layer. Specifying a (and p0) in (3.136)-(3.139) means that

such an expansion imposes five conditions on the system (3.122)-(3.125) since all

modes are now inconsistent. Consequently the upstream boundary layer problem

may be posed as an initial value problem, the complete wall expansion being

analytic in this case.

• The case a > 0 is relevant to the downstream boundary layer, where the usual sit-

uation is for a to be left unspecified and determined as part of the solution. The

expansion (3.136)-(3.139) now imposes only two conditions on (3.122)-(3.125).

Consequently the downstream boundary layer needs to be posed as a bound-

ary value problem, where the far-field matching conditions need to supply three

boundary conditions (i.e. three linearly independent pieces of information need

to come from the solution in the core outer region). The wall expansion is no
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longer analytic but now contains an essential singularities manifested through

two sets of linearly independent exponentially small terms.

The degenerate case of zero shear rate a = 0 needs care and is not straightforward for

the expansion (3.136)-(3.139), we consider this in the Cartesian basis as an illustration

of the issue. Performing the same substitutions as at the beginning of this section, but

assuming that the power series of f starts at ξ3 then the wall expansion now takes the

form

f(ξ) =
4

5
(α− 1)3p3

0ξ
5 +

8

21
(α− 1)4p4

0(2α − 3)ξ7 +O(ξ8), (3.159)

t11(ξ) = 8(α− 1)2p2
0ξ

2 +
56

15
(α− 1)3p3

0(2α − 3)ξ4 +O(ξ5), (3.160)

t12(ξ) = 2(α− 1)p0ξ −
16

3
(α− 1)2p2

0(2α− 3)ξ3 +O(ξ5), (3.161)

t22(ξ) = −3(α− 1)p0(2α − 3)ξ2 +
1

15
(α− 1)2p2

0(115α − 167)(2α − 3)ξ4 +O(ξ5),

(3.162)

which cannot be obtained simply by taking the limit a → 0 in (3.136)-(3.139). The

leading order terms do agree however with those found in section 2.3.2, where a more

general expansion than viscometric behaviour has been investigated. To relate these

coefficients to equation (2.77) we set

n = 5, ã = −2(1 − α)p0, and We = 1. (3.163)

To find out how this relates to the nonzero a case we consider the pressure, p0. With

a nonzero the pressure is given in (3.144), and thus for the pressure to be nonzero

and finite in the a → 0 case, we require b → ∞ with b = O(a−2). Such a behaviour

eventually causes certain coefficients in each variable in (3.136)-(3.139) to become sin-

gular (note the third term for t22(ξ), see (3.139), whilst it occurs for latter terms in the

expansion for the other variables). Consequently the double limit (a, ξ) → 0 appears

to be non-uniform, in contrast to that of the UCM model. Another observation is that

since p0 > 0, the expansion (3.159)-(3.162) appears only to be relevant to the upstream

boundary layer due to the stream function f being negative close to the wall. In other

words, the equations do not seem to allow parallel (as oppose to reverse) flows with

zero shear rate to form at the downstream wall.

These issues with the a→ 0 limit are possibly expected. The form of the viscometric

behaviour (2.58) which arises from the expansions (3.136)-(3.139) from the boundary

layer equations
5

T +κ (trT)T = 2D is actually the form for when the shear rate is

large (see section 2.3.1, equation (2.53)). The a → 0 limit is the limit of zero shear,
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and thus the viscometric behaviour from section 2.3.1 would be of the UCM form of

(2.54). This suggests that in the a → 0 limit there is a complex relationship between

the sizes of ξ and ε causing a different balance in the boundary layer equations.

3.2.4 The far-field behaviour

Knowing the conditions supplied by imposing behaviour at the upstream and down-

stream walls, we now investigate the behaviour in the far-field.

Cartesian far-field analysis

Since we know the asymptotic behaviour as ξ → ∞ of our functions (from (3.131)), we

can perturb a small amount δ̂ away:

f ∼ C0

κ
ξ(1+α)(1 + δ̂f̂), t11 ∼ C1(1 + δ̂t̂11),

t12 ∼ C1(1 − α)ξ(1 + δ̂t̂12), t22 ∼ C1(1 − α)2ξ2(1 + δ̂t̂22), (3.164)

For the Cartesian modes, substituting f̂ = ξm and t̂ij = Aijξ
m and linearising the

equations gives values of m of

m = 0,−2(1 − α),−1,−(2 − α),−2(2 − α) (3.165)

and thus the asymptotic behaviours for the eigenmodes are

f̂ ∼ 1

t̂11 ∼ 0

t̂12 ∼ 0

t̂22 ∼ 0























,

f̂ ∼ ξ−2(1−α)

t̂11 ∼ 4α−2
1+α ξ

−2(1−α)

t̂12 ∼ 4α−4
1+α ξ

−2(1−α)

t̂22 ∼ 4α−6
1+α ξ

−2(1−α)























,

f̂ ∼ ξ−1

t̂11 ∼ 0

t̂12 ∼ −1
1−α2 ξ

−1

t̂22 ∼ −2
1−α2 ξ

−1























, (3.166)

f̂ ∼ ξ−(2−α)

t̂11 ∼ 2(2−α)(2α−1)(1−α)
(1+α)(α2−5α+2)

ξ−(2−α)

t̂12 ∼ 2(2−α)(2α−1)(α2−2α+2)
(1−α)(1+α)(α2−5α+2)

ξ−(2−α)

t̂22 ∼ 2(2−α)(2α−1)(α2−2α+3)
(1−α)(1+α)(α2−5α+2)

ξ−(2−α)























, (3.167)

f̂ ∼ ξ−2(2−α)

t̂11 ∼ 6(1−α)(2−α)(2α−3)
(1+α)(3α2−10α+6) ξ

−2(2−α)

t̂12 ∼ 12(−2+α)(α2−3α+3)
(1+α)(3α2−10α+6)

ξ−2(2−α)

t̂22 ∼ 2(−2+α)(6α5−33α4+75α3−73α2+20α+6)
α(1−α)2(1+α)(3α2−10α+6)

ξ−2(2−α)























. (3.168)
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It should be noted that the coefficients involved in the fourth eigenmode are singular at

α = 5−
√

7
3 ≈ 0.785, indicating that such terms require modifying at this isolated value

of the corner angle.

Full far-field description

To continue the work in the far-field using the Cartesian basis, we need to determine

higher order terms in the asymptotic expansion (not just the leading order terms in

(3.131)), to have a correct specification of the problem. This will include homogeneous

terms which can be determined from the eigenmodes above, and the forcing terms which

were neglected in the linearised equations. It would be expected that the expansion

contain five free constants (C0, C2, C3, C4, C5), with each eigenmode corresponding to

small changes in these constants, as was found by Evans for the UCM model in [Eva08a].

C1 is fixed by equation (3.69) and it has been assumed that p0 is also fixed in our

analysis.

The expressions found are significantly larger than the UCM equivalent, and thus

are recorded in appendix F. Here we note simply the forms of the expansions, being

f(ξ) ∼C0

κ
ξ1+α

(

1 + C2ξ
−2+2α + C3ξ

−1 +C4ξ
−2+α

+C5ξ
−4+2α +

[

2(2α − 1)κp0

α(1 − α)(3α − 2)C0
ξ−α + additional forcing terms

])

,

(3.169)

t11(ξ) ∼C1

(

1 +
2(2α − 1)C2

1 + α
ξ−2+2α +

(

2(1 − α)(2α − 1)(2 − α)C4

(1 + α)(α2 − 5α+ 2)

)

ξ−2+α

+
6(2α − 3)(1 − α)(2 − α)C5

(1 + α)(3α2 − 10α + 6)
ξ−4+2α +

[

κC1

C0(1 + α)(3α − 2)
ξ−α

+ additional forcing terms]) , (3.170)

t12(ξ) ∼C1(1 − α)ξ

(

1 − 4(1 − α)C2

1 + α
ξ−2+2α − C3

(1 − α)(1 + α)
ξ−1

+
2(α2 − 2α + 2)(2α − 1)(2 − α)C4

(1 + α)(α2 − 5α + 2)(1 − α)
ξ−2+α

+
12(α2 − 3α+ 3)(−2 + α)C5

(1 + α)(3α2 − 10α+ 6)
ξ−4+2α

+

[

κC1(α
2 − 4α+ 2)

C0(1 + α)(3α − 2)(1 − α)2
ξ−α + additional forcing terms

])

,

(3.171)
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t22(ξ) ∼C1(1 − α)2ξ2
(

1 +
2(2α − 3)C2

1 + α
ξ−2+2α − 2C3

(1 − α)(1 + α)
ξ−1

+
2C4(2 − α)(2α − 1)(α2 − 2α + 3)

(1 − α)(1 + α)(α2 − 5α+ 2)
ξ−2+α

+
2C5(−2 + α)(6α5 − 33α4 + 75α3 − 73α2 + 20α + 6)

α(1 + α)(1 − α)2(3α2 − 10α+ 6)
ξ−4+2α

+

[

(α2 − 6α+ 3)κC1

(1 + α)(3α − 2)(1 − α)2C0
ξ−α + additional forcing terms

])

.

(3.172)

It should be noted that the expansions recorded in appendix F are for both α 6= 2/3 and

α = 2/3, the second case arising as the coefficients of the leading order forced terms are

singular at α = 2/3. It is also important to note that the forcing terms intrude in the

expansion between the unforced terms, the terms of O(ξ−α) shown indeed occur before

the unforced terms of O(ξ−2+2α) for 1/2 < α < 2/3. Using the relationship between

the two bases, (3.133)-(3.135), we can now use these full far-field expansions to find

the asymptotic behaviour of the natural stress variables in terms of the Cartesian free

constants as

λ̃ ∼ κ2C1

(1 + α)2C2
0

ξ−2α, (3.173)

µ̃ ∼







−
(

C1C4α(1−α)(2−α)
(α2−5α+2)(1+α)

)

ξ−1+α, for α 6= 2
3 ,

−
(

3969C3
1κ

2

320C2
0

− C1C4
5

)

ξ−1/3, for α = 2
3 ,

(3.174)

ν̃ ∼







































C2
0 (2−α)2

243κ2C1α(3α2−10α+6)

(

− (3α5−16α4+15α3+15α2−21α+6)C2
4

2(α2−5α+2)

+C5(2α− 3)(1 + α)
)

ξ4α−2 + C1C0(1+α)
κ(3α−2) ξα, for α 6= 2

3 ,

−5C0C1
3κ ξ2/3 log(ξ)

+
(

−C1C0
24κ + 9741079971

5120000
C5

1κ
2

C2
0

+ 310511
4800 C3

1C4

+
14C2

0C1C2
4

9κ2 − 200C2
0C1C5

9κ2

)

ξ2/3 for α = 2
3 ,

(3.175)

as ξ → ∞.
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Natural stress far-field analysis

In the natural stress basis we know the asymptotic behaviour as ξ → ∞ of our functions

from (3.132). We thus perturb by δ̂ similarly to the Cartesian analysis:

f ∼ C0

κ
ξ(1+α)(1 + δ̂f̂), λ̃ ∼ 2p0κ

2

(1 + α)2C2
0

ξ−2α(1 + δ̂λ̂), µ̃ ∼ d2ξ
α−1(1 + δ̂µ̂),

ν̃ ∼















d3
κ2 ξ

2(2α−1)(1 + δ̂ν̂), for 2
3 < α < 1,

−5C0C1
3κ ξ2/3 log(ξ)(1 + δ̂ν̂), for α = 2

3 ,
d1C3

0n
3

κ(3α−2)ξ
α(1 + δ̂ν̂), for 1

2 ≤ α < 2
3 .

(3.176)

To find the eigenmodes we linearise by keeping only the O(δ̂) terms. Retaining only

the leading order we obtain

2αf̂ ′ + λ̂′(1 + α) = 0,

(1 − α)f̂ ′ + µ̂′(1 + α) = 0,

ξ2f̂ ′′ + ξ(1 + α)λ̂′ + 4ξf̂ ′ + (1 + α)(1 − α)(2f̂ + λ̂) = 0, (3.177)

with either

2(1 − 2α)f̂ ′ + ν̂ ′(1 + α) = 0, (3.178)

when 2
3 ≤ α < 1, or when 1

2 ≤ α < 2
3 the ν̂ equation is

(3α− 2)(1 + α)(3f̂ + λ̂− ν̂) + ξ
(

(1 + α)ν̂ ′ + 2(4α − 3)f̂ ′
)

= 0. (3.179)

The far-field eigenmodes are found from the above equations for 2
3 < α < 1 as

f̂ ∼ 1

λ̂ ∼ −2

µ̂ ∼ 0

ν̂ ∼ 0























,

f̂ ∼ 0

λ̂ ∼ 0

µ̂ ∼ 1

ν̂ ∼ 0


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













,

f̂ ∼ 0
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ν̂ ∼ 1























,

f̂ ∼ ξ−1

λ̂ ∼ − 2α
1+αξ

−1

µ̂ ∼ −1−α
1+αξ

−1

ν̂ ∼ −2(1−2α)
1+α ξ−1























,

f̂ ∼ ξ−2(1−α)

λ̂ ∼ − 2α
1+αξ

−2(1−α)

µ̂ ∼ −1−α
1+αξ

−2(1−α)

ν̂ ∼ −2(1−2α)
1+α ξ−2(1−α)























, (3.180)
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for 1
2 ≤ α < 2

3 as

f̂ ∼ 1

λ̂ ∼ −2

µ̂ ∼ 0

ν̂ ∼ 1














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f̂ ∼ 0
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µ̂ ∼ 1

ν̂ ∼ 0
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
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f̂ ∼ 0
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


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






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λ̂ ∼ − 2α
1+αξ

−1
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1+αξ

−1
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1+αξ

−1


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

















,

f̂ ∼ ξ−2(1−α)

λ̂ ∼ − 2α
1+αξ

−2(1−α)

µ̂ ∼ −1−α
1+αξ

−2(1−α)

ν̂ ∼ 19α2−21α+6
α(1+α) ξ−2(1−α)




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















, (3.181)

and finally

f̂ ∼ 1

λ̂ ∼ −2

µ̂ ∼ 0

ν̂ ∼ 1























,

f̂ ∼ 0

λ̂ ∼ 0

µ̂ ∼ 1

ν̂ ∼ 0























,

f̂ ∼ 0

λ̂ ∼ 0

µ̂ ∼ 0

ν̂ ∼ 1/ log(ξ)























,

f̂ ∼ ξ−1

λ̂ ∼ −4
5ξ

−1

µ̂ ∼ −1
5ξ

−1

ν̂ ∼ 2
5ξ

−1























,

f̂ ∼ ξ−2/3

λ̂ ∼ −4
5ξ

−2/3

µ̂ ∼ −1
5ξ

−2/3

ν̂ ∼ 2
5ξ

−2/3























, (3.182)

for α = 2/3. We are now in a position to write a full far-field expansion of the natural

stress variables, with it being

f ∼ C0

κ
ξ1+α, λ̃ ∼ 2p0κ

2

(1 + α)2C2
0

ξ−2α, µ̃ ∼ d2ξ
−1+α,

ν̃ ∼
{

d3
κ2 ξ

4α−2 + C1C0(1+α)
κ(3α−2) ξα, for α 6= 2

3

−5C0C1
3κ ξ2/3 log(ξ) + d3

κ ξ
2/3 for α = 2

3 ,
(3.183)

The two terms in the ν̃ expansion change their relative order depending on the value

of α. This shows where the free constant d3 appears for 1
2 ≤ α < 2

3 , and that as α

reaches and then exceeds 2
3 the term involving d3 dominates.

Boundary layer analysis summary

We summarise the findings from the wall and far-field analysis.

• The case a < 0 is relevant to the upstream layer, where the Cartesian system

(3.122)-(3.125), or the natural stress system (3.126)-(3.129) with the appropriate

expansions from (3.136)-(3.143) can be posed as an IVP to attain the far-field
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behaviours (F.1)-(F.8) or (3.183). The coefficients a and p0 need to be specified

and the wall expansion may be expressed as a power series in ξ.

• The case a > 0 applies to the downstream layer, where (3.122)-(3.125) with

(3.136)-(3.139) and (F.1)-(F.8), or the natural stress system (3.126)-(3.129) with

(3.140)-(3.143) and (3.183) is a two-point BVP. Imposing the wall behaviour

furnishes two conditions with the remaining three from prescribing C0, d2 and d3

in the natural stress formulation, or any three from C0, C2, C3, C4, C5, in the

Cartesian formulation. The coefficient a is now to be determined (p0 still needs

to be specified) and the wall expansion in addition to the power series contains

exponentially small terms (see the two sets of exponential wall eigenmodes in

either basis).

Considering the natural stress formulation, the first two terms in the far-field be-

haviour for ν̃ (3.183) are of relevance. We note that when 1/2 ≤ α ≤ 2/3, the homo-

geneous terms O(ξ2(2α−1)) match into corresponding higher order homogeneous outer

solution terms of size O(δ3α−2) = O(ε(1−α)(3α−2)) relative to ν∗(0). This is precisely the

relative difference in the two scalings for θ3, which were

θ3 = ε2α(2α−1), n3 = 2(2α−1)
1+α , for 2/3 < α < 1,

θ3 = εα
2+3α−2, n3 = α

1+α , for 1/2 ≤ α ≤ 2/3,
(3.184)

where we have included the different values of n3 for reference also. These values are

continuous at α = 2/3.

As stated, both (3.122)-(3.125) and (3.126)-(3.129) are fifth-order implicit systems.

They can be rearranged to form an explicit system, which we demonstrate for the

natural stress equations. Using (3.127) and (3.128) in (3.126), we may obtain the

expression

f ′′ = f ′2
2p0(1 − α2)f + µ̃f ′(λ̃f ′ + α− 1) − (1 + α)ff ′2λ̃(λ̃f ′ + 1 − 2α)

(1 + α)2f2f ′2λ̃− 2(1 + α)ff ′µ̃+ ν̃
. (3.185)

As a result, (3.185) with (3.127)-(3.129) allow an explicit statement of the system

involving f , f ′, λ̃, µ̃, ν̃, which is more convenient for numerical implementation.
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3.2.5 Solution parameter dependence

Considering the Cartesian system, the continuous scaling group

ξ = βξ̄, f =
1

β
f̄ , t11 =

1

β2
t̄11, t12 =

1

β
t̄12, t22 = t̄22, p0 =

1

β2
p̄0,

a =
1

β
ā, b = b̄, C0 =

1

β2+α
C̄0 C1 =

1

β2
C̄1, C2 = β2(1−α)C̄2,

C3 = βC̄3, C4 = β2−αC̄4, C5 = β2(2−α)C̄5, (3.186)

leaves the equations (3.122)–(3.125), the wall expansions (3.136)–(3.139) and the far-

field behaviours (F.1)–(F.8) invariant for β real. Such an invariance may be exploited

to reduce the solution parameter dependence as follows. Since the pressure gradient

coefficient p0 is common to all three asymptotic regions, we choose to normalise its

value to unity by using β = p
−1/2
0 in the above scalings. Consequently, if we have

the parameter values (a, p0, C0, C2, C3, C4, C5) = (ā, p̄0, C̄0, C̄2, C̄3, C̄4, C̄5) in the case

p̄0 = 1 (where b is fixed through (3.144)), then we can obtain their values for general

p0 > 0 via the relationships

a = p
1/2
0 ā, C0 = p

1+(α/2)
0 C̄0 C2 = pα−1

0 C̄2, C3 = p
−(1/2)
0 C̄3,

C4 = p
−1+(α/2)
0 C̄4, C5 = pα−2

0 C̄5. (3.187)

Similarly, the parameter p0 can be removed from the equations (3.126)-(3.129)

through the scalings

ξ = p
−1/2
0 ξ̂, f = p

1/2
0 f̂ , λ̃ = p−1

0 λ̂, µ̃ = p
1/2
0 µ̂, ν̃ = p2

0ν̂, (3.188)

allowing the wall and far-field behaviours ((3.140)-(3.143) and (3.183) respectively) to

be expressed in terms of the similarity parameters

a

p
1/2
0

,
C0

κp
1+(α/2)
0

,
d2

p
α/2
0

,
d3

κ2p1+2α
0

, (3.189)

this last parameter (associated with the far-field behaviour of ν̃) needing modification

in the case α = 2/3 to
d3

κ2p
7/3
0

+
5

3

C0

κp
4/3
0

log(p0). (3.190)

As such, the boundary layer solution can be described without explicit prescription of

the parameters p0 and κ.
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3.3 Numerical analysis

To complete the solution, we provide numerical results for the upstream and down-

stream boundary layers. Initially we will consider the Cartesian formulation, for which

we can give numerical results for the upstream boundary layer followed by results using

the natural stress formulation for both upstream and downstream boundary layers.

3.3.1 Cartesian numerical results for the upstream boundary layer

Here we use the Cartesian system of equations applied to the upstream wall bound-

ary layer. We are interested in solving the fifth order system (3.122)-(3.125) subject to

wall expansions (3.136)-(3.139) in the case where a < 0 in which flow is towards the

singularity. Imposing (3.136)-(3.139) gives us the five boundary conditions needed to

be able to solve this system numerically as an initial value problem using MATLAB’s

stiff solver ode15s, which is a variable-order, multi-step solver based on numerical dif-

ferentiation formulas. The equations (3.122)-(3.125) as stated are implicit, but can

be made explicit by using (3.123) and (3.125) in (3.122) to obtain an equation for

f ′′(ξ) and consequently can be expressed as a system of first-order equations involving

f, f ′, t11, t12, t22. Tight solver tolerances of RelTol = 10−13 and AbsTol = 10−13 were

used and the numerical domain taken as [ξ0, ξ∞] with ξ0 > 0 and ξ∞ being suitably

small and large, respectively. As initial data, two terms of the expansions (3.136)-

(3.139) were used at ξ = ξ0.

Figure 3-4 illustrates the numerical solution in the case of a 270o corner for param-

eter values α = 2/3, a = −1, p0 = 1, ξ0 = 10−6. Figure 3-4(B) shows convergence to

the far-field behaviour (3.131), and at ξ∞ = 1030 it produces the estimates

f

ξ1+α∞
' −4.14563377595242,

t11 ' 2.00000000001192, t11 = C1 = 2,

t12
ξ∞

' 0.66666666667468,
t12
ξ∞

= C1(1 − α) =
2

3
= 0.6̇,

t22
ξ2∞

' 0.22222222222624,
t22
ξ2∞

= C1(1 − α)2 =
2

9
= 0.2̇, (3.191)

which agree well with the leading order approximations (agreement to 10 decimal

places), shown on the right, where C1 = 2p0 has been used from (3.69).

We may use the leading order asymptotic behaviour for the similarity stream func-
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Figure 3-4: Illustration of the numerical solution to (3.122)-(3.125) as an initial value
problem and relevant to the upstream case of a 270o corner. Parameter values are
α = 2/3, a = −1, p0 = 1, ξ0 = 10−6 with (A) and (B) showing the solution for small
and large ξ respectively.
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tion variable f in (3.131) to give estimates of C0/κ, denoted by Ce0/κ, as follows

Ce0/κ = f(ξ∞)ξ−(1+α)
∞ . (3.192)

Figure 3-5 shows such estimates with varying upstream wall shear rate coefficient a in

the case p0 = 1 for selected α. For a fixed corner angle parameter α, the profiles are

monotonic decreasing as −a increases with maximum values occurring in the limit of

vanishing wall shear rate. The curves in Figure 3-5(A) suggest a limiting value in this

latter case, which we denote by k0. The variation of

k0 = lima→0 (−C0/κ) , (3.193)

with corner angle parameter α is shown in Figure 3-5(B) for p0 = 1.

In table 3.1, sensitivity of these estimates for Ce0/κ are given as the domain end

points ξ0, ξ∞ are varied, illustrating convergence for the specific case of p0 = 1, α = 2/3

and selected a. As |a| increases, smaller ξ0 and larger ξ∞ values are needed in order

to obtain a specified accuracy. The convergence rate to the far-field behaviour appears

slower for these PTT equations than in the corresponding UCM equations.

As the eigenmode analysis in section 3.2.4 displayed, to complete the solution de-

scription with the downstream boundary layer, at least three of the constants (C0, C2,

C3, C4, C5) need to be known to be passed to the downstream boundary value problem.

To determine estimates for the next constant in the far-field expressions, C2, we con-

sider the simplest case when α > 2/3 (the other cases arising due to the non-uniform

ordering of the terms in the far-field expansions). The possible approximations found

from the full far field expansions of the stress variables ((F.1)–(F.4)) are

C
(11)e
2 =

(

t11(ξ∞)

C1
− 1

)

(1 + α)

(4α − 2)
ξ2−2α
∞ ,

C
(12)e
2 =

(

t12(ξ∞)

C1(1 − α)ξ∞
− 1

)

(1 + α)

(4α − 4)
ξ2−2α
∞ ,

C
(22)e
2 =

(

t22(ξ∞)

C1(1 − α)2ξ2∞
− 1

)

(1 + α)

(4α− 6)
ξ2−2α
∞ . (3.194)

Figure 3-6 illustrates the convergence to the constant C2 using these three estimates,

with (A) showing the whole data range and (B) plotted on restricted axes to show the

converging region more closely. These plots show the numerical instability for large ξ

values clearly. When using looser tolerances, this instability occurs at smaller ξ values,

so we know that it is a problem with the numerical method. Unfortunately, without

a reliable approximation for C2, the other constants cannot be found and hence a
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Figure 3-5: Estimates of the far-field parameter C0/κ in the case p0 = 1. (A) shows
estimates using (3.192) with varying a for selected α. The choice ξ0 = 10−6 was used
for |a| < 1 and ξ0 = 10−6/(−a)3/2 for |a| > 1. The estimate (3.192) was evaluated
at ξ∞ = 1030. (B) gives the values of k0, the limiting value of C0/κ, with α. The
estimates were evaluated at a = −10−2 using ξ0 = 10−6, ξ∞ = 1030.
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(A) a = −10−2

ξ0 = 10−2 ξ0 = 10−4 ξ0 = 10−6 ξ0 = 10−8

ξ∞ Ce0/κ

105 −3.56050322 −3.56050320 −3.56050320 −3.56050320
1010 −3.53646547 −3.53646545 −3.53646545 −3.53646545
1015 −3.53644628 −3.53644626 −3.53644626 −3.53644626
1020 −3.53644627 −3.53644625 −3.53644625 −3.53644625

(B) a = −1

ξ0 = 10−2 ξ0 = 10−4 ξ0 = 10−6 ξ0 = 10−8

ξ∞ Ce0/κ

105 −4.17776182 −4.17699266 −4.17699259 −4.17699259
1010 −4.14641455 −4.14565670 −4.14565662 −4.14565663
1015 −4.14639171 −4.14563386 −4.14563379 −4.14563379
1020 −4.14639170 −4.14563385 −4.14563378 −4.14563378

(C) a = −102

ξ0 = 10−2 ξ0 = 10−4 ξ0 = 10−6 ξ0 = 10−8

ξ∞ Ce0/κ

105 −2958.68348598 −1735.93922309 −1735.18925647 −1735.18918253
1010 −270.83875830 −271.79638196 −271.74017753 −271.74017199
1015 −264.11415047 −269.01239218 −268.95783487 −268.95782949
1020 −264.11059066 −269.01098681 −268.95643035 −268.95642497
1025 −264.11058899 −269.01098614 −268.95642968 −268.95642430
1030 −264.11058898 −269.01098613 −268.95642967 −268.95642429

Table 3.1: Estimates of the upstream boundary layer far-field constant Ce0/κ in the
case p0 = 1, α = 2/3 for selected a. The estimates use (3.192) evaluated at ξ = ξ∞.
Sensitivity of these estimates to the initial starting value ξ0 and the interval end point
ξ∞ are shown in each table (A)-(C). Convergence is illustrated for both decreasing ξ0
and increasing ξ∞ as well as the necessity for taking smaller ξ0 and larger ξ∞ as |a|
increases.
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scheme for the downstream layer cannot be numerically implemented. We see clearly

here the deficiency with the analysis in the Cartesian basis - the natural stress basis

rearranges the equations to have the information carrying constants at leading order

in the far field expansion and hence avoid complications arising with the C2 and C3

constants. Numerical analysis using the natural stress basis will be pursued in the

following sections.

3.3.2 The case 2/3 < α < 1 in the natural stress basis

In the Cartesian formulation access to the far field constants required to furnish the

downstream boundary problem with the required number of boundary conditions was

prevented through numerical inaccuracy. As we have seen, the natural stress formu-

lation can help to unpick the complex Cartesian full far field descriptions (F.1)–(F.8),

allowing enough independent constants for the downstream problem to be found at

leading order in the natural stress variables.

For the case 2/3 < α < 1, numerical solutions can be obtained for the upstream

and downstream boundary layers linked through a well behaved outer solution. The

numerical approach we adopt is similar to that used in the UCM case [Eva08b].

The upstream boundary layer

The IVP for the upstream layer is to solve (3.127)-(3.129) with (3.185) for a given

value of α over the truncated interval [ξ0, ξ∞]. The wall behaviour (3.140)-(3.143) is

imposed at ξ = ξ0 and the far-field behaviour (3.183) is to be attained. The interval

end points ξ0 and ξ∞ are taken sufficiently small and large respectively in order to

obtain convergence to the far-field behaviour to within specified accuracy (their values

determined by numerical experiment). For clarity we label the parameters in the wall

and far-field behaviours with a subscript u to identify them as upstream parameters.

For numerical implementation it is convenient to use the scaled stress variables

l(ξ) = ξ2λ̃(ξ), m(ξ) = µ̃(ξ), n(ξ) =
ν̃(ξ)

ξ2
, (3.195)
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for which the wall behaviour is now finite, and using (3.140)-(3.143) gives us the initial

conditions

at ξ = ξ0 f = a3
uξ

2
0 + a4

ubuξ
3
0 , (3.196)

l =
1

2a4
u

+
(1 − α) − bu

2a3
u

ξ0, (3.197)

m = au + {3(1 − α) + bu} a2
uξ0, (3.198)

n = 4a6
u + 12 {(1 − α) + bu} a7

uξ0, (3.199)

where bu and C1u are found from the relationships

p0u = −a2
u

(

1 +
bu

2(1 − α)

)

, C1u = 2p0u. (3.200)

The following results were obtained using MATLABs ode15s solver with error tolerances

RelTol = AbsTol = 10−13. Illustrative solution profiles are shown in figure 3-7 in the

parameter case au = −1, p0u = 1, α = 0.75 with ξ0 = 10−15, ξ∞ = 1030. Figure 3-8

shows estimates of the far-field similarity parameters

Csp0u =
C0u

κp
1+(α/2)
0u

, dsp2u =
d2u

p
α/2
0u

, dsp3u =
d3u

κ2p1+2α
0u

, (3.201)

as the upstream wall similarity parameter aspu = au

p
1/2
0u

is varied for selected values of α.

The scalings (3.188) have been employed. Noteworthy in figure 3-8 is the suggestion of

the limiting behaviours

C0u

κp
1+(α/2)
0u

∼ k0,
d2u

p
α/2
0u

∼ k2,
d3u

κ2p1+2α
0u

∼ k3, as
au

p
1/2
0u

→ 0−, (3.202)

where the parameters k0, k2, k3 vary with α. These provide explicit parameter depen-

dencies for the limits of small upstream wall shear rate or large upstream wall pressure

coefficient.

The downstream boundary layer

For the downstream boundary layer, where flow is away from the corner and a > 0,

we need to solve (3.127)-(3.129) with (3.185) for fixed α as a two-point BVP over the

truncated interval [ξ0, ξ∞]. The wall expansions (3.140)-(3.143) supply two conditions

with the far-field behaviour (3.183) supplying the three remaining conditions. These

behaviours will be imposed at the interval end points. For clarity we label parameters

with a subscript d to identify them as belonging to the downstream problem. Allowing
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for a suitable change of sign for axes orientation, the upstream and downstream layer

far-field parameters are linked through the outer solution via

p0d = p0u, C0d = −C0u, d2d = −d2d, d3d = d3u. (3.203)

This problem is significantly more difficult to solve numerically than that of the cor-

responding UCM case in [Eva08b]. One approach is to use continuation to deform the

UCM downstream layer equations into those that we have here for PTT.

The constitutive equations in inner variables were recorded in equations (3.79)-

(3.81), with the dominant balance occurring when n = 1 + α. However, for the UCM

model in [Eva08b], then the dominant balance changes, and gives n = 3 − α. We thus

create a combined model where both UCM and PTT can be recovered dependent upon

a new artificial parameter s. UCM occurs when s = 1, and PTT when s = 0, with our

suggestion of

n̂ = (1 + 2s) + α(1 − 2s), (3.204)

creating a straightforward interpolation of the two model equations.

The hybrid similarity solution equations from this interpolation are

f ′′ =
f ′2

n̂2f2f ′2λ̃− 2n̂ff ′µ̃+ ν̃

(

2(1 − α)n̂p0f + µ̃f ′((1 − s)λ̃f ′ + α− 1)

+s(µ̃− n̂λ̃ff ′) − n̂ff ′2λ̃((1 − s)λ̃f ′ + 2 − α− n̂)
)

, (3.205)

2µ̃f ′′ −
(

(1 − s)λ̃2f ′2 + (2 − 2n̂)λ̃f ′ − n̂f λ̃′ + sλ̃
)

f ′2 = 0, (3.206)

ν̃f ′′ −
(

(1 − s)µ̃λ̃f ′2 − µ̃f ′ (1 − α) − n̂µ̃′f + sµ̃
)

f ′2 = 0, (3.207)

n̂f ν̃ ′ + (1 − s)
(

2(1 − 2α)ν̃f ′ + λ̃f ′2(f ′2 − ν̃)
)

+ s
(

f ′2 − (1 + 2f ′)ν̃
)

= 0. (3.208)

The eigenmode analysis of sections 3.2.3-3.2.4 found that downstream two conditions

are applied by the wall behaviour and thus three conditions must be applied in the

far-field (by fixing the three independent constants C0, d2 and d3 from the upstream),

and this is also the same for the UCM equations.

For the upstream hybrid BVP we take the wall and matching conditions

at ξ = ξ0, f =
(

a3
u(1 − s) +

sau
2

)

ξ20 , λ̃ =

(

(1 − s)

2a4
u

+ 2s

)

ξ−2
0 ,

µ̃ = au, ν̃ =
(

4a6
u(1 − s) + sa2

u

)

ξ20 , (3.209)
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and use

at ξ = ξ∞, f =

(

C0u

κ

)h

ξn̂∞, µ̃ = (d2u)
hξα−1

∞ , ν̃ =

(

d3u

κ2

)h

ξ2s+2(1−s)(2α−1)
∞ ,

(3.210)

to obtain estimates of the upstream far-field hybrid parameters denoted with a super-

script h.

For the downstream hybrid BVP we take the wall and matching conditions

at ξ = ξ0, f =

(

µ̃3(1 − s) +
sµ̃

2

)

ξ20 , ν̃ =
(

4µ̃6(1 − s) + sµ̃2
)

ξ20 , (3.211)

at ξ = ξ∞, f = −
(

C0u

κ

)h

ξn̂∞, µ̃ = −(d2u)
hξα−1

∞ , ν̃ =

(

d3u

κ2

)h

ξ2s+2(1−s)(2α−1)
∞ .

(3.212)

The scheme proceeds as follows for given values of the upstream parameters (au, p0u)

and corner angle parameter α:

• At each step in s, the hybrid equations (3.205)–(3.208) are solved as an IVP

subject to (3.209) with (3.210) used to obtain estimates of the far-field parameters.

• MATLABs ode15s is used with error tolerances RelTol = AbsTol = 10−7 and

interval end points ξ0 = 10−10, ξ∞ = 1030.

• These far-field parameter estimates are used in the downstream hybrid problem

(using relation (3.203)), where (3.205)–(3.208) with (3.211)–(3.212) are solved on

a truncated domain with ξ0 = 10−1, ξ∞ = 101 using MATLABs bvp4c solver

with relaxed error tolerances RelTol = AbsTol = 10−1.

• The solution at the previous s value is used as the initial guess.

• This iteration in s continues from s = 1 to s = 0 (typically in steps of 10−2) after

which the downstream domain is extended to ξ0 = 10−4.1, ξ∞ = 104.1 and error

tolerances tightened to RelTol = 10−3, AbsTol = 10−6.

• At the start s = 1, an initial guess solution for the downstream equations can

be obtained from solving the upstream hybrid IVP with s = 1 on the truncated

domain ξ0 = 10−1, ξ∞ = 101 and using these profiles with a change of sign for f

and µ̃.

• The scheme benefits from use of the transformed stress variables (3.195).
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Figure 3-9 illustrates downstream profiles in the parameter case α = 0.75, au = −1,

p0u = p0d = 1, as well as convergence of estimates for the downstream wall parameter

ad. A parameter plot of the downstream wall similarity parameter aspd = ad/p
1/2
0d against

the corresponding upstream parameter is shown in figure 3-10 for selected corner angle

values of α. These numerical results suggest the limiting behaviour

ad

p
1/2
0d

∼ kd, as
au

p
1/2
0u

→ 0−, (3.213)

where the parameter kd varies with α.

3.4 Discussion

The asymptotic structure local to re-entrant corners has been described for a class of

self-similar solutions of the PTT equations in the model parameter regime κ = O(1),

and with We = O(1). Rather surprisingly these solutions appear restricted to the

corner angle parameter range 2/3 < α < 1 (i.e. re-entrant corners angles in the range

(180o, 270o)) in the situation of complete flow around the corner. We make remarks

about the remaining range 1/2 ≤ α ≤ 2/3 (i.e. angles in the interval [270o, 360o])

where the outer solutions as constructed here are unable to match into the downstream

boundary layer (the analysis having been performed in appendix E).

The case 1/2 ≤ α ≤ 2/3

For this parameter range, the outer solution for ν∗(0) can no longer be matched into

the downstream boundary layer. The difficulty arises since the outer solution (E.7)

increases monotonically in θ along streamlines (and becomes unbounded as θ → π/α

for 1/2 < α ≤ 2/3). It cannot then be reconciled with the required behaviour (E.17)

or (E.22), which must equally hold for the downstream layer (allowing for suitable sign

changes associated with axes orientation).

Specifically it is certainly possible to compute the upstream behaviour in the same

way as for 2/3 < α < 1, obtaining the far-field constants using (3.183), but these

constants cannot then be used for the downstream analysis, d3 in particular, as through

the core it has increased monotonically becoming unbounded.
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As such we are unable to construct solutions for the asymptotic structure presented

here in the range 1/2 ≤ α ≤ 2/3. It thus remains an open question as to whether the

PTT model has an attached flow at the downstream wall for these corner angles.11

The consideration of alternative flow structures now arises, particularly those in-

volving the presence of a separating streamline from the corner (upstream or down-

stream or even both). Two such situations are depicted in figure 3-11 which are worth

briefly remarking upon. Figure 3-11(A) shows an upstream separating streamline taken

at θ = 0, with the upstream wall at θ = −θ0. The outer and downstream boundary layer

solutions of the earlier sections should be applicable, except that we would anticipate a

greater combination of values for the outer solution coefficients (C0, d2, d3) (than those

given by the upstream boundary layer solution). Alternatively, figure 3-11(B) shows

the situation of a downstream separating streamline now taken at θ = π/α, with the

downstream wall at θ = π/α + θ0. The upstream boundary layer and outer solutions

as constructed earlier may be expected to apply. In both cases 2/3 < α < 1 and we

mention that the total corner angle π/α + θ0 need not be restricted to being 270o or

greater and may also occur for total corner angles down to 180o.

Figure 3-11: Schematic illustration of two possible flow scenarios involving a separating
streamline, where the solutions of this chapter may be partially relevant. We have the
restricted range α ∈ (2/3, 1), although the total corner angle π/α + θ0 may exceed
270o. The outer and downstream boundary layer regions may occur in (A), while the
outer and upstream boundary layer regions may apply to (B). This assumes that the
separating streamline in both instances can be locally straightened near the corner.

11If such solutions do exist, then either a different self-similar solution dominates (for example, one
controlled by global considerations rather than local) or it is no longer of self-similar form. In respect of
the former case, it is worth noting here the presence of logarithmic terms at the critical angle α = 2/3.
This is suggestive of a possible transition between first and second kind self-similar solutions (see the
illustrative model problem in section 6.5.3 of [OHLM99]).
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Solutions for reverse flow regions have yet to be constructed, but would certainly

be interesting and important for future work. It is worth noting that in full numerical

simulations (performed by an anonymous referee of the paper [ES09]), the situation of

figure 3-11(A) appears to be the one of preference for all re-entrant corner angles. The

lip vortex intensity increases with both increasing corner angle and Deborah number

(in our notation, this is our Weissenberg number, with the typical length and velocity

scales being based on the exit channel half-width and velocity). We may here note

that there has been good numerical work for the PTT model published in contraction

flows (for example [AGAK96b], [AGAK96a], and [AOP03]). All three papers use the

numerically simpler PTT model with solvent viscosity, so do not apply to this case.

The recent (2003) work of Alves et. al. [AOP03] agrees well with the analytical results

of Renardy [Ren97b], whose application to the solvent viscosity model is described in

appendix A.

The case 2/3 < α < 1 and final remarks

The class of solutions for this parameter regime is associated with the balance (3.2),

which holds away from the walls in a core flow outer region and give a stress singular-

ity of O
(

r−2(1−α)
)

. The stream function vanishes as O (rnα), the index n = 1 + α in

(3.27) being determined by matching such solutions into wall boundary layers. The wall

boundary layers are needed to recover viscometric behaviour and it is noted that the

leading order equations are the same as those obtained in the high Weissenberg limit,

where the linear stress terms are uniformly subdominant. Thus the asymptotic struc-

ture, stress singularity and boundary layer thicknesses are the same as those obtained

for the UCM model, the difference for the PTT equations being the slower vanishing

of the stream function in the core (equivalently slower far-field growth in the boundary

layers) compared to O
(

rα(3−α)
)

for the UCM model. The solution structure has been

shown to depend upon two parameters, the upstream pressure coefficient p0u and wall

shear rate au, in terms of which the amplitudes of the outer core stream function and

stresses have been determined (part analytically and part numerically).

These two coefficients are set by incoming flow behaviour to the corner and may be

conveniently combined into the similarity combination au/p
1/2
0u .

An important comment is that the amplitudes of the velocity and stress fields

C0 and C1 appear to be genuinely independent and that this local analysis does not

impose a relationship between them. This is correlated to the independence of the

upstream pressure coefficient p0u and wall shear rate au. Any dependence between

these parameters appears to require global information from the full flow fields away

from the corner.



Chapter 4

Re-entrant corner flows in low

and high parameter regimes

The previous chapter has identified a similarity solution for the flow of the PTT fluid

around a re-entrant corner when the Weissenberg number and the PTT model param-

eter κ are both O(1). Here we investigate the flow in the physically relevant limits of

low and high Weissenberg number, and firstly of small κ.

The analysis for re-entrant corner flows of the UCM fluid in the two limits of low

(We → 0) and high (We → ∞) Weissenberg number are given by Evans in [Eva06].

These limits are also of interest with the PTT model equations (1.32)–(1.34), with

κ = O(1). The double limits of (We, κ) → (0, 0), and (We, κ) → (∞, 0) are left as an

open problem (although the regions found in the analysis of this chapter would likely

be present in more complicated asymptotic structures).

4.1 The UCM limit of the PTT equations, κ → 0, We =

O(1)

4.1.1 Introduction

To extend the analysis of the previous chapter, we now describe the local asymptotic

structure at re-entrant corners of the PTT model in the limit of vanishing model pa-

rameter κ. The same situation of steady planar flow is taken and the PTT model is

again considered in the absence of any solvent viscosity. In the case κ = 0, the PTT

model reduces to that of the Upper Convected Maxwell (UCM) model for which an

analogous similarity solution (sharing the same stress singularity and wall boundary

layer thicknesses) has been constructed in [Eva08a], [Eva08b]. Our intention then is to

99
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understand the transition between these two cases which occurs in the model parameter

limit κ → 0. The setup of the problem will be the same as the previous chapter, and

hence will not be repeated here.

The dimensionless governing equations are

0 = −∇p+ ∇.T, ∇.v = 0, T+
5

T +κ (trT)T = 2D. (4.1)

The only dimensionless parameter is the model parameter κ which will be assumed

small. The inertia terms have been neglected in the momentum equations (the analysis

has been performed including them, but they play no role at leading order in any of

the regions and are thus excluded for conciseness. Neglecting inertia terms is common

in the literature, e.g. [Hin93], [Ren95]) and the dimensionless relaxation time (the

Weissenberg number) taken as unity, possible through the scalings (2.18). The x, y

axes are aligned at the upstream wall as before and the usual stream function ψ used

to represent the velocity field, which satisfies the no-slip condition on the walls. The

situation with the main asymptotic regions is shown in figure 4-1.

The downstream boundary layer equations can be obtained from the upstream

boundary layers through the transformation (3.70), and hence upstream and down-

stream are labeled together.

4.1.2 The main length scale r = O(κ
1

2(1−α) )

We begin by determining the length scale on which fullest balance is obtained in the

constitutive equations, where both the linear and quadratic stress terms are retained

in the boundary layer. This is the expected balance as it would contain all the terms

contained in both the UCM (κ = 0) and PTT with κ = O(1) boundary layer equations.

We thus consider distances from the corner of O(ε), with the gauge ε(κ) being a small

parameter whose dependency on κ is to be found. In the outer region away from the

walls we consider the scalings

r = εR∗, x = εX∗, y = εY ∗, ψ = εqΨ∗, v = εq−1v∗,

T = ε2(α−1)T∗, p = ε2(α−1)p∗, (4.2)

where we anticipate that the stress scaling will not change from the κ = O(1) and

κ = 0 cases (it being the same for both) and the velocity scaling left arbitrary for the
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Figure 4-1: A schematic illustration of the asymptotic regions local to the re-entrant
corner for the PTT model when κ = o(1). The structure is composed of nine regions

based on three length scales. The exterior regions occur for κ
1

2(1−α) � r � 1, which
comprise core region 1 and boundary layers (BL 1, upstream and downstream) in
which the UCM problem is obtained at leading order. The intermediate regions occur

for r = O(κ
1

2(1−α) ), comprising core region 2 and boundary layers BL 2. Finally for

r � κ
1

2(1−α) we have core region 3 and boundary layers BL 3, in which we have the PTT
κ = O(1) problem. The boundary layer thicknesses are O(r2−α), with the upstream
wall structures repeated at the downstream wall. The three boundary layer balances are
those associated with the high Weissenberg number limit for the PTT model identified
in [HR97] and UCM in [Ren97a]. The stress singularity O(r−2(1−α)) is also common to
the three core regions. The scaling for the stream function in core region 2 varies with
radial distance, with q taking values in the range stated in (4.6).

moment through the index q. The momentum and constitutive equations become

0 = −∇∗p∗ + ∇∗.T∗, (4.3)

ε2−qT∗+
5

T∗ +κε2α−q(trT∗)T∗ = 2ε2(1−α)D∗. (4.4)
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The upper convected stress derivative dominates if

q < 2 and κε2α−q � 1. (4.5)

The first restriction on q holds for α ∈ [1/2, 1) since we show later when we consider

the intermediate regions in section 4.1.3 that q lies in the range

(3 − α)α ≤ q ≤ α2 − α+ 2 = (3 − α)α + 2(1 − α)2, (4.6)

the lower limit being associated with the velocity scaling for UCM case κ = 0 and the

upper limit for the PTT κ = O(1) case. In this outer region, the value of q is not fixed,

but actually changes between these limits according to the radial distance, this being

a consequence of the stream function not being self-similar (separable).

In the wall boundary layers we adopt the scalings

X∗ = X̄, Y ∗ = ε1−αȲ , Ψ∗ = εq̄Ψ̄,

T ∗
11 = T̄11, T ∗

12 = ε1−αT̄12, T ∗
22 = ε2(1−α)T̄22, p∗ = p̄, (4.7)

where the scalings for T ∗
ij and p∗ are assumed to be the same as the scalings in both

κ = 0 and κ = O(1) cases, the scaling for Y ∗ follows from the retention of the rate of

strain terms D12 and D22 (again as in the κ = 0 and κ = O(1) cases), and the scaling

for the stream function is left general and to be found. The momentum equations

become

0 = − ∂p̄

∂X̄
+
∂T̄11

∂X̄
+
∂T̄12

∂Ȳ
, 0 = − ∂p̄

∂Ȳ
+ ε2(1−α)

(

∂T̄12

∂X̄
+
∂T̄22

∂Ȳ

)

, (4.8)

and we have the constitutive equations

ε3−q−α−q̄T̄11 +

(

∂Ψ̄

∂Ȳ

∂T̄11

∂X̄
− ∂Ψ̄

∂X̄

∂T̄11

∂Ȳ
− 2

∂2Ψ̄

∂Ȳ 2
T̄12 − 2

∂2Ψ̄

∂X̄∂Ȳ
T̄11

)

+ κε1+α−q−q̄(T̄11 + ε2(1−α)T̄22)T̄11 = 2ε2(1−α) ∂2Ψ̄

∂X̄∂Ȳ
, (4.9)

ε3−q−α−q̄T̄22 +

(

∂Ψ̄

∂Ȳ

∂T̄22

∂X̄
− ∂Ψ̄

∂X̄

∂T̄22

∂Ȳ
+ 2

∂2Ψ̄

∂X̄2
T̄12 + 2

∂2Ψ̄

∂X̄∂Ȳ
T̄22

)

+ κε1+α−q−q̄(T̄11 + ε2(1−α)T̄22)T̄22 = −2
∂2Ψ̄

∂X̄∂Ȳ
, (4.10)

ε3−q−α−q̄T̄12 +

(

∂Ψ̄

∂Ȳ

∂T̄12

∂X̄
− ∂Ψ̄

∂X̄

∂T̄12

∂Ȳ
+
∂2Ψ̄

∂X̄2
T̄11 −

∂2Ψ̄

∂Ȳ 2
T̄22

)

+ κε1+α−q−q̄(T̄11 + ε2(1−α)T̄22)T̄12 =
∂2Ψ̄

∂Ȳ 2
− ε2(1−α) ∂

2Ψ̄

∂X̄2
, (4.11)
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and so the linear stress terms are retained when q̄ = 3 − q − α, giving

T̄+
5

T̄ +κε2(α−1)(trT̄)T̄ = 2D̄, (4.12)

where

(trT̄) = T̄11 + ε2(1−α)T̄22, D̄11 = 2ε2(1−α) ∂2Ψ̄

∂X̄∂Ȳ
,

D̄12 =
∂2Ψ̄

∂Ȳ 2
− ε2(1−α) ∂

2Ψ̄

∂X̄2
, D̄22 = −2

∂2Ψ̄

∂X̄∂Ȳ
. (4.13)

The quadratic stress terms are thus retained when

ε = κ
1

2(1−α) , (4.14)

which identifies the key radial length scale in this problem12 with the boundary layer

equations being those noted in the PTT high Weissenberg limit for small κ in [HR97].

We also note agreement with the analysis of viscometric behaviour from section 2.3.1,

which as seen in table 2.2 predicts T12 = O(κ−1/2) in an intermediate boundary layer

between the two extremes of UCM and PTT κ = O(1) viscometric boundary layers.

The analysis of this section gives the scaling T12 = εα−1T̄12 = κ−1/2T̄12 confirming this.

We are now able to build the asymptotic structure shown in figure 4-1, where we

obtain the PTT κ = O(1) problem on smaller length scales and the UCM κ = 0

problem on larger length scales. Our intention is to identify the scalings for these

asymptotic regions and the leading order equations arising within them. As such, we

consider the governing equations in Cartesian form and avoid the use of natural stress

variables (although brief analysis in the natural stress variables will be considered later

in section 4.1.4). Also, without loss of generality we consider the upstream boundary

layers, where similar structures are assumed to occur at the downstream wall.

4.1.3 The asymptotic regions

The exterior regions κ
1

2(1−α) � r � 1

These are the length scales on which we obtain the UCM problem. We label the

‘outer’ region away from the walls as core region 1 and the inner regions at the walls

as boundary layer 1 (which occur upstream and downstream). The scalings for core

12We now have κε2α−q = κ
2−q

2(1−α) and the second condition in (4.5) holds provided the first one does.
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region 1 are

r = ε̂R̂∗, x = ε̂X̂∗, y = ε̂Ŷ ∗,

ψ = ε̂(3−α)αΨ̂∗, v = ε̂(3−α)α−1v̂∗, T = ε̂2(α−1)T̂∗, p = ε̂2(α−1)p̂∗, (4.15)

where we use the gauge ε̂ for our exterior region length scale and satisfies ε � ε̂ � 1.

The governing equations are

0 = −∇̂∗p̂∗ + ∇̂∗.T̂
∗
, (4.16)

ε̂(2−α)(1−α)T̂
∗
+

5

T̂∗ +κε̂α(α−1)(trT̂
∗
)T̂

∗
= 2ε̂2(1−α)D̂

∗
. (4.17)

The quadratic stress terms are subdominant at leading order since

κε̂(α−1)α =
(

ε2−α
(ε

ε̂

)α)1−α
� 1, (4.18)

and consequently the upper convected stress derivative dominates in the constitutive

equations. The leading order solution in this case is the UCM potential flow and

stretching solution of section 3.1.4

Ψ̂∗ =
Ĉ0

αn1
R̂∗αn1 sinn1(αθ), T̂

∗
= λ̂∗(Ψ̂∗)v̂∗v̂∗T , p̂∗ =

p̂0

R̂∗2(1−α)
, (4.19)

with

λ̂∗(Ψ̂∗) =
2p̂0

n2
1Ĉ

2
0

(

Ψ̂∗

Ĉ0

)

2(1−n1)
n1

, and n1 = 3 − α. (4.20)

The constants Ĉ0, p̂0 are set from incoming flow from outside this region.

The scalings for boundary layer 1 are

X̂∗ = X̂, Ŷ ∗ = ε̂1−αŶ , Ψ̂∗ = ε̂(1−α)(3−α)Ψ̂,

p̂∗ = p̂, T̂ ∗
11 = T̂11, T̂ ∗

12 = ε̂1−αT̂12, T̂ ∗
22 = ε̂2(1−α)T̂22, (4.21)

the governing equations being

0 = − ∂p̂

∂X̂
+
∂T̂11

∂X̂
+
∂T̂12

∂Ŷ
, 0 = − ∂p̂

∂Ŷ
+ ε̂2(1−α)

(

∂T̂12

∂X̂
+
∂T̂22

∂Ŷ

)

,

T̂+

5

T̂ +
(ε

ε̂

)2(1−α)
(trT̂)T̂ = 2D̂, (4.22)
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where

(trT̂) = T̂11 + ε̂2(1−α)T̂22, D̂11 = 2ε̂2(1−α) ∂2Ψ̂

∂X̂∂Ŷ
,

D̂12 =
∂2Ψ̂

∂Ŷ 2
− ε̂2(1−α) ∂

2Ψ̂

∂X̂2
, D̂22 = −2

∂2Ψ̂

∂X̂∂Ŷ
. (4.23)

At leading order we obtain the UCM boundary layer equations

0 = − dp̂

dX̂
+
∂T̂11

∂X̂
+
∂T̂12

∂Ŷ
(4.24)

T̂11 +

(

∂Ψ̂

∂Ŷ

∂T̂11

∂X̂
− ∂Ψ̂

∂X̂

∂T̂11

∂Ŷ
− 2

∂2Ψ̂

∂Ŷ 2
T̂12 − 2

∂2Ψ̂

∂X̂∂Ŷ
T̂11

)

= 0, (4.25)

T̂22 +

(

∂Ψ̂

∂Ŷ

∂T̂22

∂X̂
− ∂Ψ̂

∂X̂

∂T̂22

∂Ŷ
+ 2

∂2Ψ̂

∂X̂2
T̂12 + 2

∂2Ψ̂

∂X̂∂Ŷ
T̂22

)

= −2
∂2Ψ̂

∂X̂∂Ŷ
, (4.26)

T̂12 +

(

∂Ψ̂

∂Ŷ

∂T̂12

∂X̂
− ∂Ψ̂

∂X̂

∂T̂12

∂Ŷ
+
∂2Ψ̂

∂X̂2
T̂11 −

∂2Ψ̂

∂Ŷ 2
T̂22

)

=
∂2Ψ̂

∂Ŷ 2
, (4.27)

subject to the core 1 matching conditions

as Ŷ → ∞, Ψ̂ ∼ Ĉ0X̂
n1(α−1)Ŷ n1 , p̂ = p̂0X̂

2α−2, T̂11 ∼ 2p̂0X̂
(2α−2),

T̂12 ∼ 2p̂0(1 − α)X̂(2α−3)Ŷ , T̂22 ∼ 2p̂0(1 − α)2X̂(2α−4)Ŷ 2, (4.28)

with no-slip at the wall. Details of solutions for these core and boundary layer equations

are given in [Eva08a] and [Eva08b].

The interior regions r � κ
1

2(1−α)

These are the length scales on which we obtain the PTT κ = O(1) problem. We label

the outer region away from the walls as core region 3 and the inner regions at the walls

as boundary layer 3. The scalings for core region 3 are

r = ε̃R̃∗, x = ε̃X̃∗, y = ε̃Ỹ ∗,

ψ = κε̃(1+α)αΨ̃∗, v = κε̃(1+α)α−1ṽ∗, T = ε̃2(α−1)T̃∗, p = ε̃2(α−1)p̃∗, (4.29)
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where we use the gauge ε̃ for our interior region length scale and satisfies ε̃ � ε � 1.

The governing equations are

0 = −∇̃∗p̃∗ + ∇̃∗.T̃
∗
, (4.30)

ε̃(2+α)(1−α)

κ
T̃

∗
+

5

T̃∗ +ε̃α(1−α)(trT̃
∗
)T̃

∗
= 2ε̃2(1−α)D̃

∗
. (4.31)

The linear stress terms are subdominant at leading order since

ε̃(2+α)(1−α)

κ
=

(

ε̃

ε

)2(1−α)

ε̃α(1−α) � 1, (4.32)

and consequently the upper convected stress derivative dominates at leading order in

the constitutive equations. The leading order solution in this case is the PTT potential

flow and stretching solution (3.27)–(3.30), thus

Ψ̃∗ =
C̃0

αn3
R̃∗αn3 sinn3(αθ), T̃

∗
= λ̃∗(Ψ̃∗)ṽ∗ṽ∗T , p̃∗ =

p̃0

R̃∗2(1−α)
, (4.33)

with

λ̃∗(Ψ̃∗) =
2p̃0

n2
3C̃

2
0

(

Ψ̃∗

C̃0

)

2(1−n3)

n3

, and n3 = 1 + α. (4.34)

The constants C̃0, p̃0 are set from incoming flow from outside this region, namely the

intermediate regions which we will consider next.

The scalings for boundary layer 3 are

X̃∗ = X̃, Ỹ ∗ = ε̃1−αỸ , Ψ̃∗ = ε̃1−α
2
Ψ̃,

p̃∗ = p̃, T̃ ∗
11 = T̃11, T̃ ∗

12 = ε̃1−αT̃12, T̃ ∗
22 = ε̃2(1−α)T̃22, (4.35)

the governing equations being

0 = − ∂p̃

∂X̃
+
∂T̃11

∂X̃
+
∂T̃12

∂Ỹ
, 0 = − ∂p̃

∂Ỹ
+ ε̃2(1−α)

(

∂T̃12

∂X̃
+
∂T̃22

∂Ỹ

)

,

(

ε̃

ε

)2(1−α)

T̃+

5

T̃ +(trT̃)T̃ = 2D̃, (4.36)
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where

(trT̃) = T̃11 + ε̃2(1−α)T̃22, D̃11 = 2ε̃2(1−α) ∂2Ψ̃

∂X̃∂Ỹ
,

D̃12 =
∂2Ψ̃

∂Ỹ 2
− ε̃2(1−α) ∂

2Ψ̃

∂X̃2
, D̃22 = −2

∂2Ψ̃

∂X̃∂Ỹ
. (4.37)

At leading order we obtain the PTT κ = 1 boundary layer equations

0 = − dp̃

dX̃
+
∂T̃11

∂X̃
+
∂T̃12

∂Ỹ
(4.38)

(

∂Ψ̃

∂Ỹ

∂T̃11

∂X̃
− ∂Ψ̃

∂X̃

∂T̃11

∂Ỹ
− 2

∂2Ψ̃

∂Ỹ 2
T̃12 − 2

∂2Ψ̃

∂X̃∂Ỹ
T̃11

)

+ T̃ 2
11 = 0, (4.39)

(

∂Ψ̃

∂Ỹ

∂T̃22

∂X̃
− ∂Ψ̃

∂X̃

∂T̃22

∂Ỹ
+ 2

∂2Ψ̃

∂X̃2
T̃12 + 2

∂2Ψ̃

∂X̃∂Ỹ
T̃22

)

+ T̃11T̃22 = −2
∂2Ψ̃

∂X̃∂Ỹ
, (4.40)

(

∂Ψ̃

∂Ỹ

∂T̃12

∂X̃
− ∂Ψ̃

∂X̃

∂T̃12

∂Ỹ
+
∂2Ψ̃

∂X̃2
T̃11 −

∂2Ψ̃

∂Ỹ 2
T̃22

)

+ T̃11T̃12 =
∂2Ψ̃

∂Ỹ 2
, (4.41)

subject to the core 3 matching conditions

as Ỹ → ∞, Ψ̃ ∼ C̃0X̃
n3(α−1)Ỹ n3 , p̃ ∼ p̃0X̃

2α−2, T̃11 ∼ 2p̃0X̃
(2α−2),

T̃12 ∼ 2p̃0(1 − α)X̃(2α−3)Ỹ , T̃22 ∼ 2p̃0(1 − α)2X̃(2α−4)Ỹ 2, (4.42)

and no-slip at the wall.

We refer to chapter 3 for details of the solution for these core and boundary layer

regions, where we note that construction of a self-similar solution is currently restricted

to the corner angle range 2/3 < α < 1.

The intermediate regions r = O(κ
1

2(1−α) )

The scalings for the regions on this length scale have been identified in section 4.1.2.

In core region 2 (the outer region away from the walls) we have at leading order

0 = −∇∗p∗ + ∇∗.T∗,
5

T∗= 0. (4.43)

These equations have been shown in [Ren97c], and also here in section 3.1.4 to be

equivalent to the compressible Euler equations, the solution in this region belonging

to the general solution class for such equations. The incompressible potential flow

solutions appear only relevant in the radial limits as core regions 1 and 3 are approached.
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Specifically, for matching we have

as R∗ → ∞, Ψ∗ = h(ψ̂) = Ĉ0

(

ψ̂

(2p̂0)1/2

)n1

, T∗ = λ∗(Ψ∗)v∗v∗T ,

p∗ =
1

2
λ∗(Ψ∗)v∗2 =

p̂0

R∗2(1−α)
, (4.44)

where

λ∗ =

(

dh

dψ̂

)−2

, ψ̂ =
(2p̂0)

1/2

α
R∗α sin(αθ), (4.45)

where equation (3.32) has been utilised to find these behaviours, and we also have the

analogous behaviour

as R∗ → 0, Ψ∗ = h(ψ̃) = C̃0

(

ψ̃

(2p̃0)1/2

)n3

, T∗ = λ∗(Ψ∗)v∗v∗T ,

p∗ =
1

2
λ∗(Ψ∗)v∗2 =

p̃0

R∗2(1−α)
, (4.46)

where

λ∗ =

(

dh

dψ̃

)−2

, ψ̃ =
(2p̃0)

1/2

α
R∗α sin(αθ). (4.47)

Here the function h takes power law form and the stream functions ψ̂ and ψ̃ are associ-

ated with the velocity field λ1/2v (see section 3.1.4). The separable potential solution

that vanishes on the walls θ = 0 and θ = π/α has been taken for the associated stream

functions, with the arbitrary multiplicative constant chosen to give the appropriate

pressure coefficient (see (3.32) as mentioned). For R∗ = O(1), it appears that there is

no such behaviour of this form even for a more general function h which is consistent

with these two limiting radial behaviours and the requirement of matching to the wall

boundary layers. A more general solution within the compressible Euler class appears

necessary, this solution only being self-similar (separable) in the extreme radial limits.

Work performed to search for more general solutions is given in appendix D.

The solution behaviour (4.44) now matches with (4.19) of core region 1 provided

q = n1α = (3 − α)α in this large R∗ limit, whilst (4.46) matches with (4.33) if q =

n3α + 2(1 − α) in the small R∗ limit. For intermediate R∗ we anticipate the value of

q to lie in between as given in (4.6), its variability a consequence of the solution not

being a simple power of the radial variable.
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We may write the core 2 solution wall behaviour in the form

as Y ∗ → 0, Ψ∗ ∼ a0(X
∗, Y ∗), p∗ ∼ b0(X

∗), T ∗
11 ∼ a11(X

∗),

T ∗
12 ∼ a12(X

∗)Y ∗, T ∗
22 ∼ a22(X

∗)Y ∗2, (4.48)

where a0, b0, aij are functions determined by boundary layer 2, the form of the extra-

stresses being deducible from the scalings (4.7). If the stream function is to vanish

on the walls then a0(X
∗, 0) = 0 and further we expect (4.48) to have the limiting

behaviours

as X∗ → ∞, a0(X
∗, Y ∗) ∼ Ĉ0X

∗n1(α−1)Y ∗n1 ,

b0 ∼ p̂0X
∗2α−2, a11 ∼ 2p̂0X

∗(2α−2),

a12 ∼ 2p̂0(1 − α)X∗(2α−3), a22 ∼ 2p̂0(1 − α)2X∗(2α−4), (4.49)

and

as X∗ → 0, a0(X
∗, Y ∗) ∼ C̃0X

∗n3(α−1)Y ∗n3 ,

b0 ∼ p̃0X
∗2α−2, a11 ∼ 2p̃0X

∗(2α−2),

a12 ∼ 2p̃0(1 − α)X∗(2α−3) , a22 ∼ 2p̃0(1 − α)2X∗(2α−4), (4.50)

for consistency with (4.44) and (4.46).

The boundary layer 2 equations are

0 = − dp̄

dX̄
+
∂T̄11

∂X̄
+
∂T̄12

∂Ȳ
(4.51)

T̄11 +

(

∂Ψ̄

∂Ȳ

∂T̄11

∂X̄
− ∂Ψ̄

∂X̄

∂T̄11

∂Ȳ
− 2

∂2Ψ̄

∂Ȳ 2
T̄12 − 2

∂2Ψ̄

∂X̄∂Ȳ
T̄11

)

+ T̄ 2
11 = 0, (4.52)

T̄22 +

(

∂Ψ̄

∂Ȳ

∂T̄22

∂X̄
− ∂Ψ̄

∂X̄

∂T̄22

∂Ȳ
+ 2

∂2Ψ̄

∂X̄2
T̄12 + 2

∂2Ψ̄

∂X̄∂Ȳ
T̄22

)

+ T̄11T̄22 = −2
∂2Ψ̄

∂X̄∂Ȳ
,

(4.53)

T̄12 +

(

∂Ψ̄

∂Ȳ

∂T̄12

∂X̄
− ∂Ψ̄

∂X̄

∂T̄12

∂Ȳ
+
∂2Ψ̄

∂X̄2
T̄11 −

∂2Ψ̄

∂Ȳ 2
T̄22

)

+ T̄11T̄12 =
∂2Ψ̄

∂Ȳ 2
. (4.54)

which are subject to no-slip on the wall and the matching conditions with core region

2 behaviour (4.48), namely

as Ȳ → ∞, Ψ̄ ∼ ā0(X̄, Ȳ ), p̄ ∼ b0(X̄), T̄11 ∼ a11(X̄),

T̄12 ∼ a12(X̄)Ȳ , T̄22 ∼ a22(X̄)Ȳ 2. (4.55)
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Here we have introduced the function ā0, defined by

a0(X̄, ε
1−αȲ )

ε3−α−q
= ā0(X̄, Ȳ ) = O(1), (4.56)

which is required to hold if the stream functions in core 2 and boundary layer 2 regions

are to match. Using (4.49) and (4.50), we note that this expression holds in the large

and small X̄ limits where

ā0(X̄, Ȳ ) =

{

Ĉ0X̄
n1(α−1)Ȳ n1 as X̄ → ∞, q = n1α,

C̃0X̄
n3(α−1)Ȳ n3 as X̄ → 0, q = n3α+ 2(1 − α).

(4.57)

There is no straightforward self-similar solution13 to the these boundary layer equa-

tions, the solution to which (as well as the core 2 equations) needs to be determined

numerically.

For completeness, we explain how matching proceeds between the boundary layer

equations of this region and those of the exterior and interior regions. We recover

boundary layer 1 equations (4.24)-(4.27) from (4.51)-(4.54) through the scalings

X̄ =
ε̂

ε
X̂, Ȳ =

(

ε̂

ε

)2−α

Ŷ , Ψ̄ =

(

ε̂

ε

)n1

Ψ̂,

p̄ =

(

ε̂

ε

)2(α−1)

p̂, T̄11 =

(

ε̂

ε

)2(α−1)

T̂11, T̄12 =

(

ε̂

ε

)α−1

T̂12, T̄22 = T̂22, (4.59)

the quadratic stress terms being subdominant to the linear stress terms at leading order

since ε � ε̂. In a similar manner we obtain boundary layer 3 equations (4.38)-(4.41)

from (4.51)-(4.54) using these same scalings (except with hats replaced with tildes and

n1 replaced with n3). The linear stress terms are now subdominant to the quadratic

stress terms at leading order since ε̃� ε.

4.1.4 The κ = o(1) limit using the natural stress basis

We add to the small κ limit analysis using the Cartesian stress basis of the previous

section by considering the limit using the natural stress variables, with the governing

equations in the natural stress are given in (2.37)–(2.42). This is an important consid-

eration because as we have seen, the natural stress formulation allows the solution to

be completed at the downstream wall.

13It is worth mentioning that these boundary layer equations possess the similarity solution

ξ =
Ȳ

X̄2
Ψ̄ = X̄2f(ξ), T̄11 = t11(ξ), T̄12 = t12(ξ), T̄22 = t22(ξ), (4.58)

although this does not appear to play any role for the situation under consideration.
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The analysis is very similar to the Cartesian basis of the previous section, and thus

only the interesting points (which occur in the intermediate region) will be mentioned.

The main length scale r = O(κ
1

2(1−α) )

In the core region, the balance
5

T= 0 may be converted to natural stress variables using

(2.32) becoming

(v.∇)λ+ 2µ∇.w +
2

|v|4 vT (∇v)v = 0,

(v.∇)µ+ ν∇.w− |v|2∇.w = 0, (v.∇)ν − 2vT (∇v)v = 0, (4.60)

which can be be more conveniently written as

(v.∇)

(

λ− 1

|v|2
)

+ 2µ∇.w = 0,

(v.∇)µ+
(

ν − |v|2
)

∇.w = 0, (v.∇)
(

ν − |v|2
)

= 0. (4.61)

We expect, however, that the balance to hold in the core will be

(v.∇)λ+ 2µ∇.w = 0, (v.∇)µ+ ν∇.w = 0, (v.∇)ν = 0, (4.62)

since requiring the fullest balance would in fact be equating terms which are the same

size as the terms from 2D, giving a different core balance. Hence we can now determine

the scalings for the core region.

To begin, we confirm the length scale which will give fullest balance in the consti-

tutive equations, thus we consider distances O(ε) from the corner, where ε(κ) is a small

parameter whose dependency on κ is to be found. We consider the scalings (found

from balancing terms in (4.62)) of

r = εR∗, x = εX∗, y = εY ∗, ψ = εqΨ∗,

v = εq−1v∗, w = ε1−qw∗, λ = εχ−4q+4λ∗,

µ = εχ−2q+2µ∗, ν = εχν∗, T = εχ−2q+2T∗, p = εχ−2q+2p∗, (4.63)

which give the leading order momentum equations in outer variables as

0 = − ∂p∗

∂X∗ + (v∗.∇∗)(λ∗u∗) + ∇∗.(µ∗u∗w∗ + µ∗v∗w∗
1) + ∇∗. (ν∗w∗w∗

1) ,

0 = − ∂p∗

∂Y ∗ + (v∗.∇∗)(λ∗v∗) + ∇∗.(µ∗v∗w∗ + µ∗v∗w∗
2) + ∇∗. (ν∗w∗w∗

2) , (4.64)
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and the constitutive equations in outer variables, from (2.37)-(2.39), are

(v∗.∇∗)λ∗ + ε2−qλ∗ + 2µ∗∇∗.w∗ + κtr(T∗)

(

λ∗ − ε2q−2−χ 1

|v∗|2
)

= εq−χ
1

|v∗|2 ,

(v∗.∇∗)µ∗ + ε2−qµ∗ + ν∗∇∗.w∗ + κtr(T∗)µ∗ = 0,

(v∗.∇∗)ν∗ + ε2−qν∗ + κtr(T∗)
(

ν∗ − ε2q−2−χ|v∗|2
)

= εq−χ|v∗|2, (4.65)

where

tr(T∗) =

(

εχ−3q+4λ∗|v∗|2 − 2ε2−q + εχ−3q+4 ν∗

|v∗|2
)

. (4.66)

We also have

T∗ = −ε2q−2−χI + λv∗v∗T + µ∗(v∗w∗T + w∗v∗T ) + ν∗w∗w∗T . (4.67)

Assuming that

κεχ−3q+4 � 1, and 2 > q > χ, (4.68)

which may be verified as we can determine that χ = 2q+2α−4 by using the T scaling

of T = ε2(α−1)T∗ in equation (4.2), and that q is in the range given in (4.6), then at

leading order in the constitutive equations we have

(v∗.∇∗)λ∗ + 2µ∗∇∗.w∗ = 0, (v∗.∇∗)µ∗ + ν∗∇∗.w∗ = 0, (v∗.∇∗) ν∗ = 0. (4.69)

To scale into the boundary layer we use

X∗ = X̄, Y ∗ = δȲ , Ψ∗ = δq1Ψ̄, u∗ = δq1−1ū,

v∗ = δq1 v̄, |v∗|2 = δ2q1−2 ¯|v|2, w∗
1 = δ2−q1w̄1, w∗

2 = δ1−q1w̄2,

λ∗ = δχ1−4q1+2λ̄, µ∗ = δχ1−2q1+1µ̄, ν∗ = δχ1 ν̄, p∗ = δp1 p̄, (4.70)

where

ū =
∂Ψ̄

∂Ȳ
, v̄ = − ∂Ψ̄

∂X̄
, ¯|v|2 = ū2 + δ2v̄2, w̄1 = − v̄

¯|v|2
, and w̄2 =

ū
¯|v|2
.
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The momentum equations become

0 = −δp1+2q1−χ1
∂p̄

∂X̄
+ (v̄.∇̄)(λ̄ū)

+ δ2
∂

∂X̄
(2µ̄ūw̄1 + δ2ν̄w̄2

1) +
∂

∂Ȳ
(µ̄ūw̄2 + δ2µ̄v̄w̄1 + δ2ν̄w̄1w̄2), (4.71)

0 = −δp1+2q1−χ1
∂p̄

∂Ȳ
+ δ2(v̄.∇̄)(λ̄v̄)

+ δ2
∂

∂X̄
(δ2µ̄v̄w̄1 + µ̄ūw̄2 + δ2ν̄w̄1w̄2) + δ2

∂

∂Ȳ
(2µ̄v̄w̄2 + ν̄w̄2

2), (4.72)

and the constitutive equations in inner variables become

(v̄.∇̄)λ̄+ δ1−q1ε2−qλ̄+ 2µ̄∇̄.w̄ + κtr(T̄)

(

λ̄− δ2q1−χ1ε2q−2−χ 1
¯|v|2

)

= δ1+q1−χ1εq−χ
1
¯|v|2
, (4.73)

(v̄.∇̄)µ̄+ δ1−q1ε2−qµ̄+ ν̄∇̄.w̄ + κtr(T̄)µ̄ = 0, (4.74)

(v̄.∇̄)ν̄ + δ1−q1ε2−qν̄ + κtr(T̄)
(

ν̄ − δ2q1−2−χ1ε2q−2−χ ¯|v|2
)

= δq1−1−χ1εq−χ ¯|v|2, (4.75)

where

tr(T̄) =

(

δχ1−3q1+1εχ−3q+4λ̄ ¯|v|2 − 2δ1−q1ε2−q + δχ1−3q1+3εχ−3q+4 ν̄
¯|v|2

)

, (4.76)

and

∇̄ · w̄ =
∂

∂Ȳ

(

ū

ū2 + δ2v̄2

)

− δ2
∂

∂X̄

(

v̄

ū2 + δ2v̄2

)

.

We obtain fullest balance when

δp1+2q1−χ1 = 1, δ1−q1ε2−q = 1, δq1−1−χ1εq−χ = 1, κδχ1−3q1+1εχ−3q+4 = 1 (4.77)

which give

p1 = χ1 − 2q1, κ = δ2, δ = ε
q−2
1−q1 , (2 − χ)(1 − q1) + (2 − q)χ1 = 0. (4.78)

Using the known values of χ = 2q + 2α − 4 and δ = ε1−α from the Cartesian analysis

we can thus find

κ = ε2(1−α), q1 =
3 − α− q

1 − α
, χ1 =

2(3 − α− q)

1 − α
, p1 = 0, (4.79)
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thus at leading order

0 = − dp̄

dX̄
+ (v̄.∇̄)(λ̄ū) +

∂µ̄

∂Ȳ
, (4.80)

(v̄.∇̄)λ̄+ λ̄− 2µ̄

ū2

∂ū

∂Ȳ
+ λ̄2ū2 = 0, (4.81)

(v̄.∇̄)µ̄+ µ̄− ν̄

ū2

∂ū

∂Ȳ
+ λ̄µ̄ū2 = 0, (4.82)

(v̄.∇̄)ν̄ + ν̄ + λ̄ū2
(

ν̄ − ū2
)

= ū2. (4.83)

To make any further progress, a solution to the core solution (4.69) would need to be

found, to then be able to write matching conditions. Otherwise we can merely say that

as Y ∗ → 0, Ψ∗ ∼ a0(X
∗, Y ∗), p∗ ∼ b0(X

∗), λ∗ ∼ b1(X
∗, Y ∗),

µ∗ ∼ b2(X
∗, Y ∗), ν∗ ∼ b3(X

∗, Y ∗), (4.84)

where

as X∗ → ∞ a0(X
∗, Y ∗) ∼ Ĉ0X̂

∗n1(α−1)Ŷ ∗n1 , b0 ∼ p̂0X̂
∗2α−2,

b1(X
∗, Y ∗) ∼ 2p̂0

n2
1Ĉ

2
0

X̂∗2(n1−1)(1−α)Ŷ ∗2(1−n1),

b2(X
∗, Y ∗) ∼ d̂2X̂

∗(2−n1)(α−1)Ŷ ∗2−n1 ,

b3(X
∗, Y ∗) ∼ d̂3X̂

∗2(α−1)Ŷ ∗2, (4.85)

with n1 = 3 − α, and

as X∗ → 0 a0(X
∗, Y ∗) ∼ C̃0X̃

∗n3(α−1)Ỹ ∗n3 , b0 ∼ p̃0X̃
∗2α−2,

b1(X
∗, Y ∗) ∼ 2p̃0

n2
3C̃

2
0

X̃∗2(n3−1)(1−α)Ỹ ∗2(1−n3),

b2(X
∗, Y ∗) ∼ d̃2X̃

∗(α−1)2 Ỹ ∗α−1,

b3(X
∗, Y ∗) ∼ d̃3X̃

∗2(2α−1)(α−1)Ỹ ∗2(2α−1), (4.86)

with n3 = 1+α (holding when 2/3 < α < 1) to match to the UCM and PTT κ = O(1)

situations.

4.1.5 Summary

Nine asymptotic regions local to the re-entrant corner, have been identified for the

planar flow of a Phan-Thien-Tanner fluid in the limit of small model parameter κ. These

regions are summarised in figure 4-1 and hold for the case of no solvent viscosity. The



CHAPTER 4. LOW AND HIGH PARAMETER REGIMES 115

scalings and matching between the various regions have been explained, where the key

radial length scale on which the fullest balance in the boundary layer equations occurs

when r = O
(

κ
1

2(1−α)

)

. This distance gives the regions at the heart of the structure,

the solutions in which need to be determined numerically since analytical progress from

the original PDEs appears limited, unlike in the UCM and PTT κ = O(1) regions. The

Weissenberg number has been taken as unity and we expect such a structure to hold

for Weissenberg order 1.
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4.2 The Newtonian limit of the PTT equations, κ = O(1),

We → 0

We consider here the analysis of the Newtonian limit, We → 0, of the PTT model

equations with the parameter κ = O(1). The analysis of the small Weissenberg number

limit follows a similar approach to the previous section, 4.1, where the small κ limit

was investigated. The analysis will differ in structure slightly from the UCM small

Weissenberg number limit of [Eva06], although the results will be clear for comparison

between the UCM and PTT models, indeed showing a high degree of similarity.

To begin, we naively set We = 0 in the governing equations (1.32)–(1.34). This

then gives the balance T ∼ 2D from the constitutive equation, which along with

the unchanged momentum and continuity equations form the Newtonian governing

equations. The Newtonian solution is explained in detail in the following chapter, in

section 5.1, and as such the analysis of this section will refer to there where relevant.

The Newtonian solution behaviour will be expected to persist until the point at

which the small parameter We interacts with the length scale away from the corner in

a similar way to the small κ limit. This interaction will yield three sets of core and

boundary layer regions, the exterior containing the Newtonian solution as explained,

the interior closest to the corner recapturing We = O(1) behaviour, and an intermediate

region where a fuller balance of terms is expected.

Figure 4-2 shows the main asymptotic regions in the small Weissenberg number limit

of the PTT equations (1.32)–(1.34). Included are the important results of the stream

function and stress orders of magnitude, boundary layer thicknesses and leading order

balances holding in each of the regions. As in previous analysis we consider complete

flow around the corner, thus excluding the possibility of reverse flow regions at either

upstream or downstream wall.

The intermediate regions and the main length scale, r = O
(

We
1

1−λ0

)

To begin, we determine the length scale at which the Newtonian solution no longer

persists, and the fullest balance in the constitutive equations is obtained. Considering

distances from the corner of O(ε), with the gauge ε(We) being a small parameter whose

dependency on We is to be found, then an outer region away from the walls is found

via the scalings

r = εR∗, x = εX∗, y = εY ∗, ψ = εqΨ∗, v = εq−1v∗, T = εwT∗, p = εwp∗,

(4.87)
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Figure 4-2: Schematic illustration of the main asymptotic regions local to the re-entrant
corner in the limit We → 0. The dominant balances are shown in all three core re-
gions and the two boundary layer regions upstream (and repeated in the downstream
boundary layers as the structure is assumed to be symmetric). Core region 2 applies
uniformly up to the walls and thus there is no need to consider an intermediate bound-
ary layer in region 2. The core and boundary layer regions 3 are in fact artificial as
they depend upon the artificial parameter ε̂, with the only restriction ε̂� We1/(1−λ0).

where the velocity and stress scalings are left arbitrary through the unknown exponents

q and w to be found, and this intermediate core region holds for R∗ = O(1). The

pressure scaling is determined to be equal to the stress scaling to achieve balance in

the momentum equations. The constitutive equations (from (1.34)) in this region are

thus

ε2−q

We
T∗+

5

T∗ +εw+2−qκ(trT∗)T∗ = 2
1

εwWe
D∗. (4.88)

The three critical length scales are now apparent:

• r = O
(

We1/(2−q)
)

: The fullest balance is able to retain all terms, and determines

w = q − 2 and We = ε2−q.

• r � O
(

We1/(2−q)
)

: Here the linear stress terms dominate over the upper con-
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vected derivative, and the Newtonian balance is recovered. This region holds up

to r = O(1).

• r � O
(

We1/(2−q)
)

: The upper convected stress derivative now dominates over

the linear stress terms, and the We = O(1) PTT balance is recovered.

In this intermediate region then, r = O
(

We1/(2−q)
)

, w = q − 2 and We = ε2−q,

implying that ε = We1/(2−q). The constitutive and momentum equations are thus

T∗+
5

T∗ +κ(trT∗)T∗ = 2D∗, εqRe (v∗.∇∗)v∗ = −∇∗p∗ + ∇∗.T∗, (4.89)

implying that q > 0, or equivalently ε2We−1 � 1 for the inertia terms to be negligible.

To match the Newtonian stream function behaviour of the exterior regions we require

q = 1 + λ0 (see equation (5.2)), and this determines the key radial length scale

ε = We
1

1−λ0 . (4.90)

Although explicit solutions to the leading order equations cannot be obtained, to

match into the interior core region, where we expect the PTT We = O(1) problem to

be recovered we note that

as R∗ → 0, Ψ∗ ∼ c̃0R
∗nα sinn(αθ), T∗ ∼ g(Ψ∗)v∗v∗T (4.91)

where g(Ψ∗) = c̃1Ψ
∗(2/n)(1−n), c̃0, c̃1 are arbitrary constants, and n is an as yet unknown

exponent, but which will be found to be n = 1+α when we consider these inner regions.

The scalings for this intermediate region were for the core, away from the walls.

Given that all terms in the constitutive equations have been retained, there is no need

for a boundary layer. To confirm the viscometric behaviour as y → 0 however, we

create an artificial boundary layer via the scalings

X∗ = X̄, Y ∗ = δ∗Ȳ , Ψ∗ = δ∗2Ψ̄, p∗ = p̄

T ∗
11 = T̄11, T ∗

12 = T̄12, T ∗
22 = δ∗T̄22, (4.92)

where δ∗ is an artificial small gauge. At leading order the constitutive equations are

then

T̄11 + κT̄ 2
11 = 2

∂2Ψ̄

∂Ȳ 2
T̄12, T̄12 + κT̄11T̄12 =

∂2Ψ̄

∂Ȳ 2
, T̄22 + κT̄11T̄22 = −2

∂2Ψ̄

∂X̄∂Ȳ
.

(4.93)
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Comparing this to the viscometric behaviour given in table 2.2 we can see that all

the necessary terms are retained. Also, we can confirm the size of T12. Here T12 =

O(εq−2) = O(We−1), which again is as expected in section 2.3.1, table 2.2.

The exterior regions, r � We
1

1−λ0

Discussed in the introduction of the problem, the exterior regions at leading order

recover the Newtonian governing equations. This holds even for the radial distance

r = O(1). As we are interested in the behaviour near the corner, we consider the

behaviour as r → 0, but still with r � We
1

1−λ0 . The leading order momentum and

constitutive equations are given in equation (5.1), and the solution of these equations

is explained in detail throughout section 5.1 with the important results

as r → 0, ψ ∼ c0r
1+λ0f0(θ), T ∼ 2D, (4.94)

where the exponent λ0 satisfies equation (5.14) (the numerical solution given in figure

5-1), and the function f0(θ) is found in (5.17). Finally, the solution for the pressure is

given in equation (5.21). Critically, for re-entrant corner flow λ0 < 1, and from these

solutions we may obtain the order of magnitude estimates for the exterior core region

as

for r = O(1) : ψ = O(1), T = O(1),

as r → 0 : ψ = O(r1+λ0), T = O(r−1+λ0).
(4.95)

The behaviour of the Newtonian solution variables as θ → 0 is given in (5.33) and

is not consistent with PTT viscometric behaviour, thus demonstrating the need for a

boundary layer. These θ → 0 behaviours determine the boundary layer scalings as

x = X̂, y = WeŶ , ψ = We2Ψ̂, p = p̂0(X̂) + Wep̂,

T11 = WeT̂11, T12 = T̂12, T22 = WeT̂22, (4.96)

where the scaling for y is determined through the only possible balance of T̂11 =

O
(

∂2Ψ̂
∂Ŷ 2

T̂12

)

in the T̂11 equation (if the y scaling is left general, all other possible

balances of terms result in a large y scaling signifying a wide, and thus unphysical,
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boundary layer thickness). The momentum equations become

We3Re

(

∂Ψ̂

∂Ŷ

∂2Ψ̂

∂X̂∂Ŷ
− ∂Ψ̂

∂X̂

∂2Ψ̂

∂Ŷ 2

)

= −We
∂p̂0

∂X̂
+ We2

(

− ∂p̂

∂X̂
+
∂T̂11

∂X̂

)

+
∂T̂12

∂Ŷ
,

(4.97)

We3Re

(

−∂Ψ̂

∂Ŷ

∂2Ψ̂

∂X̂2
+
∂Ψ̂

∂X̂

∂2Ψ̂

∂X̂∂Ŷ

)

= − ∂p̂

∂Ŷ
+
∂T̂12

∂X̂
+
∂T̂22

∂Ŷ
, (4.98)

with the constitutive equations

T̂11 + We2

(

∂Ψ̂

∂Ŷ

∂T̂11

∂X̂
− ∂Ψ̂

∂X̂

∂T̂11

∂Ŷ

− 2

We2

∂2Ψ̂

∂Ŷ 2
T̂12 − 2

∂2Ψ̂

∂X̂∂Ŷ
T̂11 + κ

(

T̂11 + T̂22

)

T̂11

)

= 2
∂2Ψ̂

∂X̂∂Ŷ
, (4.99)

T̂22 + We2

(

∂Ψ̂

∂Ŷ

∂T̂22

∂X̂
− ∂Ψ̂

∂X̂

∂T̂22

∂Ŷ

+2
∂2Ψ̂

∂X̂2
T̂12 + 2

∂2Ψ̂

∂X̂∂Ŷ
T̂22 + κ

(

T̂11 + T̂22

)

T̂22

)

= −2
∂2Ψ̂

∂X̂∂Ŷ
, (4.100)

T̂12 + We2

(

∂Ψ̂

∂Ŷ

∂T̂12

∂X̂
− ∂Ψ̂

∂X̂

∂T̂12

∂Ŷ

+We2 ∂
2Ψ̂

∂X̂2
T̂11 −

∂2Ψ̂

∂Ŷ 2
T̂22 + κ

(

T̂11 + T̂22

)

T̂12

)

=
∂2Ψ̂

∂Ŷ 2
− We2 ∂

2Ψ̂

∂X̂2
. (4.101)

At leading order in We we thus obtain

T̂11 − 2
∂2Ψ̂

∂Ŷ 2
T̂12 = 2

∂2Ψ̂

∂X̂∂Ŷ
, T̂22 = −2

∂2Ψ̂

∂X̂∂Ŷ
, T̂12 =

∂2Ψ̂

∂Ŷ 2
, (4.102)

0 =
∂T̂12

∂Ŷ
, 0 = − ∂p̂

∂Ŷ
+
∂T̂12

∂X̂
+
∂T̂22

∂Ŷ
, (4.103)

which have the exact solution

Ψ̂ =
1

2
c0f

′′
0 (0)X̂λ0−1Ŷ 2, T̂11 = 2

(

(λ0 − 1)c0f
′′
0 (0)X̂λ0−2Ŷ + (c0f

′′
0 (0))2X̂2(λ0−1)

)

,

T̂12 = c0f
′′
0 (0)X̂λ0−1, T̂22 = −2(λ0 − 1)c0f

′′
0 (0)X̂λ0−2Ŷ ,

p̂ = −(λ0 − 1)c0f
′′
0 (0)X̂λ0−2Ŷ + p0X̂

λ0−1,

(4.104)
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after matching to the small θ core behaviour (5.33), and satisfying the low shear rate

PTT viscometric behaviour of (2.54) as Ŷ → 0, where γ̇ = c0f
′′
0 (0)X̄λ0−1 to agree. The

solution to these boundary layer equations is described in more detail in the salient

corner flow problem of section 5.2 as the same leading order boundary layer equations

are relevant.

The interior regions, r � We
1

1−λ0

The final regions to consider are the interior regions closest to the corner, where we

expect to recover the PTT We = O(1) problem. We introduce the rescaled variables

r = ε̃R̃∗, x = ε̃X̃∗, y = ε̃Ỹ ∗, ψ = εq−nαε̃nαΨ̃∗,

v = εq−nαε̃nα−1ṽ∗, T = εq−2αε̃−2(1−α)T̃∗, p = εq−2α ε̃−2(1−α)p̃∗, (4.105)

which have been obtained from using the limiting solution approaching this region from

core region 2 given in equation (4.91) and the scalings (4.87). The small parameter ε̃

satisfies ε̃� ε and thus
(

ε̃
ε

)

� 1. The constitutive equations in this region are then

(

ε̃

ε

)2−nα

T̃
∗
+

5

T∗ +

(

ε̃

ε

)(2−n)α

κ(trT̃
∗
)T̃

∗
= 2

(

ε̃

ε

)2(1−α)

D̃
∗
, (4.106)

which confirms that the upper convected stress derivative dominates, with the core

balance being

5

T∗ +o(1) = 0. (4.107)

The momentum equations become

εq
(

ε̃

ε

)2α(n−1)

Re (ṽ∗.∇̃∗)ṽ∗ = −∇̃∗p̃∗ + ∇̃∗.T̃
∗
, (4.108)

with the inertia terms negligible provided n > 1.

These core region 3 equations at leading order are the same as the We = O(1)

problem, and thus the results of section 3.2.1 hold (or indeed the results of core region

3 in the small κ analysis). Specifically, we have the matching behaviour

as Ỹ ∗ → 0, Ψ̃∗ ∼ C̃0X̃
∗n(α−1)Ỹ ∗n, p̃∗ ∼ p̃0X̃

∗2α−2, T̃ ∗
11 ∼ 2p̃0X̃

∗(2α−2),

T̃ ∗
12 ∼ 2p̃0(1 − α)X̃∗(2α−3)Ỹ ∗, T̃ ∗

22 ∼ 2p̃0(1 − α)2X̃∗(2α−4)Ỹ ∗2,

(4.109)
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which motivates the boundary layer scalings

X̃∗ = X̃, Ỹ ∗ =

(

ε̃

ε

)1−α

Ỹ , Ψ̃∗ =

(

ε̃

ε

)n(1−α)

Ψ̃,

p̃∗ = p̃, T̃ ∗
11 = T̃11, T̃ ∗

12 =

(

ε̃

ε

)1−α

T̃12, T̃ ∗
22 =

(

ε̃

ε

)2(1−α)

T̃22, (4.110)

with the governing equations becoming

Re εq
(

ε̃

ε

)2(n−1) (∂Ψ̄

∂Ȳ

∂2Ψ̄

∂X̄∂Ȳ
− ∂Ψ̄

∂X̄

∂2Ψ̄

∂Ȳ 2

)

= − ∂p̄

∂X̄
+
∂T̄11

∂X̄
+
∂T̄12

∂Ȳ
,

Re εq
(

ε̃

ε

)2(n−α)(

−∂Ψ̄

∂Ȳ

∂2Ψ̄

∂X̄2
+
∂Ψ̄

∂X̄

∂2Ψ̄

∂X̄∂Ȳ

)

= − ∂p̄

∂Ȳ
+ ε̃2(1−α)

(

∂T̄12

∂X̄
+
∂T̄22

∂Ȳ

)

, (4.111)

and

(

ε̃

ε

)3−α−n

T̃+

5

T̃ +

(

ε̃

ε

)1+α−n

κ(trT̃)T̃ = 2D̃, (4.112)

where

(trT̃) = T̃11 +

(

ε̃

ε

)2(1−α)

T̃22, D̃11 = 2

(

ε̃

ε

)

∂2Ψ̃

∂X̃∂Ỹ
,

D̃12 =
∂2Ψ̃

∂Ỹ 2
−
(

ε̃

ε

)2(1−α) ∂2Ψ̃

∂X̃2
, D̃22 = −2

∂2Ψ̃

∂X̃∂Ỹ
. (4.113)

This confirms that n = 1 + α, and then at leading order we obtain the PTT with

We = O(1) boundary layer equations

0 = − dp̃

dX̃
+
∂T̃11

∂X̃
+
∂T̃12

∂Ỹ
(4.114)

(

∂Ψ̃

∂Ỹ

∂T̃11

∂X̃
− ∂Ψ̃

∂X̃

∂T̃11

∂Ỹ
− 2

∂2Ψ̃

∂Ỹ 2
T̃12 − 2

∂2Ψ̃

∂X̃∂Ỹ
T̃11

)

+ T̃ 2
11 = 0, (4.115)

(

∂Ψ̃

∂Ỹ

∂T̃22

∂X̃
− ∂Ψ̃

∂X̃

∂T̃22

∂Ỹ
+ 2

∂2Ψ̃

∂X̃2
T̃12 + 2

∂2Ψ̃

∂X̃∂Ỹ
T̃22

)

+ T̃11T̃22 = −2
∂2Ψ̃

∂X̃∂Ỹ
, (4.116)

(

∂Ψ̃

∂Ỹ

∂T̃12

∂X̃
− ∂Ψ̃

∂X̃

∂T̃12

∂Ỹ
+
∂2Ψ̃

∂X̃2
T̃11 −

∂2Ψ̃

∂Ỹ 2
T̃22

)

+ T̃11T̃12 =
∂2Ψ̃

∂Ỹ 2
, (4.117)
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subject to the core 3 matching conditions

as Ỹ → ∞, Ψ̃ ∼ C̃0X̃
n(α−1)Ỹ n, p̃ ∼ p̃0X̃

2α−2, T̃11 ∼ 2p̃0X̃
(2α−2),

T̃12 ∼ 2p̃0(1 − α)X̃(2α−3)Ỹ , T̃22 ∼ 2p̃0(1 − α)2X̃(2α−4)Ỹ 2, (4.118)

and no-slip at the wall.

We refer to chapter 3 for details of the solution for these core and boundary layer

regions, where we again note that construction of a self-similar solution is currently

restricted to the corner angle range 2/3 < α < 1.

Summary

A complex seven region structure has been identified local to the re-entrant corner for

the planar flow of the Phan-Thien-Tanner fluid in the small Weissenberg number limit.

These regions are summarised in figure 4-2 and hold for the case of no solvent viscosity.

The analysis has been performed in the Cartesian stress basis to allow the determi-

nation of the important length scales, and to identify the asymptotic structure. As has

been seen in the κ → 0 limit of the PTT equations, the analysis in the natural stress

basis is likely to follow similarly, and has thus been omitted here, although would need

to be performed for a complete description of the problem.

The structure has been found to be very similar to the UCM low Weissenberg case,

in particular the length scales at which each region exists, boundary layer thicknesses

and the stress singularity sizes all agree. Core and boundary layer regions 1, where

Newtonian flow dominates, agree for both UCM and PTT fluids. The quadratic stress

terms of the PTT equations play a role in core region 2, however the stream function

and stresses are of the same orders of magnitude. The differences only manifest in core

and boundary layer regions 3, where the We = O(1) problem is recaptured for both

UCM and PTT, and hence the stream function vanishes at a slower rate for PTT, as

found in chapter 3.
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4.3 The high Weissenberg number limit, κ = O(1), We →
∞

The high Weissenberg limiting behaviour of the PTT equations again mirrors that of

the UCM analysis [Eva06] closely, however there are subtle differences in all regions.

The asymptotic structure is shown in figure 4-3.

Figure 4-3: Schematic illustration of the main asymptotic regions local to the re-entrant
corner in the limit We → ∞. The dominant balances are shown in all three core regions
and upstream boundary layers (and repeated in the downstream boundary layers as
the structure is assumed to be symmetric).

The exterior: core and boundary layer 1

Away from the boundaries we expect the upper convected stress derivative terms to

dominate, however we check that this is the case by letting We → ∞ in the constitutive

equations and observing that the balance of

5

T +o(1) = 0, (4.119)
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holds as in the We = O(1) case. The solution to this balance is given in (3.27)–(3.28),

and thus we consider the form

T = λ(ψ)vvT , ψ =
Ĉ0

αn1
rn1α sinn1(αθ), λ(ψ) =

2p̂0

n2
1Ĉ

2
0

(

ψ

Ĉ0

)

2(1−n1)
n1

, (4.120)

which has the limiting behaviour

as y → 0, ψ ∼ Ĉ0x
n1(α−1)yn1, T11 ∼ 2p̂0x

2α−2,

T12 ∼ 2p̂0(1 − α)x2α−3y, T22 ∼ 2p̂0(1 − α)2x2α−4y2. (4.121)

The solution above does not capture viscometric behaviour, which may be recovered

in a boundary layer using the scalings

x = X̂, y =
Ŷ

We1/2
, ψ =

Ψ̂

We1/2
, T11 = T̂11,

T12 =
T̂12

We1/2
, T22 =

T̂22

We
, p = p̂, (4.122)

with matching to core region 1 determining n1 = 1. This boundary layer is of thickness

O(We−1/2), and occurs at distances r = O(1) from the corner. The leading order

boundary layer equations are

0 = − dp̂

dX̂
+
∂T̂11

∂X̂
+
∂T̂12

∂Ŷ
(4.123)

(

∂Ψ̂

∂Ŷ

∂T̂11

∂X̂
− ∂Ψ̂

∂X̂

∂T̂11

∂Ŷ
− 2

∂2Ψ̂

∂X̂∂Ŷ
T̂11 − 2

∂2Ψ̂

∂Ŷ 2
T̂12

)

+ κT̂ 2
11 = 0, (4.124)

(

∂Ψ̂

∂Ŷ

∂T̂22

∂X̂
− ∂Ψ̂

∂X̂

∂T̂22

∂Ŷ
+ 2

∂2Ψ̂

∂X̂∂Ŷ
T̂22 + 2

∂2Ψ̂

∂X̂2
T̂12

)

+ κT̂11T̂22 = −2
∂2Ψ̂

∂X̂∂Ŷ
, (4.125)

(

∂Ψ̂

∂Ŷ

∂T̂12

∂X̂
− ∂Ψ̂

∂X̂

∂T̂12

∂Ŷ
+
∂2Ψ̂

∂X̂2
T̂11 −

∂2Ψ̂

∂Ŷ 2
T̂22

)

+ κT̂11T̂12 =
∂2Ψ̂

∂Ŷ 2
, (4.126)

subject to the matching conditions

as Ŷ → ∞, Ψ̂ ∼ Ĉ0X̂
−(1−α)Ŷ , T̂11 ∼ 2p̂0X̂

(2α−2),

T̂12 ∼ 2p̂0(1 − α)X̂(2α−3)Ŷ , T̂22 ∼ 2p̂0(1 − α)2X̂(2α−4)Ŷ 2,

(4.127)
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with p̂ = p̂0X̂
2(α−1)and the usual wall conditions

on Y = 0, Ψ̂ =
∂Ψ̂

∂Ŷ
= 0. (4.128)

The intermediate layer: core and boundary layer 2

To consider a region closer to the corner than that of r = O(1) in core region 1, we

re-scale r so that

r = εR∗, x = εX∗, y = εY ∗, (4.129)

where ε = ε(We) � 1 is to be determined. Matching to core region 1 determines

ψ = εαΨ∗, T = ε−2(1−α)T∗, p = ε−2(1−α)p∗, (4.130)

and thus the constitutive equations become

ε2−αT∗ + We

(

5

T∗ +κεα(tr T∗)T∗
)

= 2ε2(1−α)D∗, (4.131)

with
5

T∗ dominating. Again, we need to recover viscometric behaviour in a boundary

layer via the scalings

x = εX̄, y =
ε2−α

We1/2
Ȳ , ψ =

ε1+α

We1/2
Ψ̄,

T11 = ε2(α−1)T̄11, T12 =
εα−1

We1/2
T̄12, T22 =

1

We
T̄22, p = ε−2(1−α)p̄, (4.132)

which give the same boundary layer equations as in boundary layer region 1 with hats

replaced with bars. These are then subject to the matching conditions

as Ȳ → ∞, Ψ̄ ∼ c̄0(X̄)Ȳ n2 , T̄11 ∼ c̄11(X̄),

T̄12 ∼ c̄12(X̄)Ȳ , T̄22 ∼ c̄22(X̄)Ȳ 2, (4.133)

with n2 = 1 + α (determined by matching to the core and boundary layer regions 3).

Considering the core to boundary layer scalings of Y ∗ = ε1−α

We1/2 Ȳ and Ψ∗ = ε

We1/2 Ψ̄

then we can determine that

(

ε1−α

We1/2

)n2

=
ε

We1/2
, (4.134)
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which implies ε2(n2−1−n2α) = Wen2−1. With n2 = 1 + α we can also determine ε as

ε = We−1/2α. (4.135)

Core and boundary layer regions 3

Finally we consider the inner regions. To consider core region 3 we introduce

r = ε̃R̃, x = ε̃X̃, y = ε̃Ỹ , (4.136)

for some gauge ε̃ � ε. In this core region, we once again obtain the balance (4.119).

In this region we take the self similar solution

ψ = δ̃0
C̃0

αn3
R̃n3α sinn3(αθ), T = δ̃1δ̃

−(2/n3)
0 λ̃(ψ)vvT , (4.137)

where λ̃(ψ) = 2p̃0
n2

3C̃
2
0

(

ψ

C̃0

)

2(1−n3)
n3 and n3 = 1 + α as in this region we expect to recover

the We = O(1) PTT problem. Matching these to the equivalent solution in core region

2 determines

δ̃0 = ε(1−n3)αε̃n3α = ε−α
2
ε̃(1+α)α, δ̃1 = ε̃2α. (4.138)

Viscometric behaviour is given by boundary layer region 3, defined by the scalings

x = ε̃X̃, y =
δ

We1/2
Ỹ , ψ =

ε̃n3(α−1)δn3

We1/2
Ψ̃,

T11 = ε̃2(α−1)T̃11, T12 =
ε̃2α−3δ

We1/2
T̃12, T22 =

ε̃2α−4δ2

We
T̃22, p = ε̃−2(1−α)p̃, (4.139)

where the fullest balance of the upper convected derivative terms with the strain terms

determines δ = ε̃2−α. The leading order boundary layer equations in boundary layer

region 3 are once again the same as in boundary layer region 1, but with hats replaced

with tildes. These are then subject to the usual wall conditions and the matching

conditions

as Ỹ → ∞, Ψ̃ ∼ C̃0X̃
−n3(1−α)Ỹ n3, T̃11 ∼ 2p̃0X̃

(2α−2),

T̃12 ∼ 2p̃0(1 − α)X̃(2α−3)Ỹ , T̃22 ∼ 2p̃0(1 − α)2X̃(2α−4)Ỹ 2,

(4.140)

with p̂ = p̂0X̂
2(α−1), where n3 = 1 + α.
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Summary

Nine asymptotic regions local to the re-entrant corner, have been identified for the

planar flow of a Phan-Thien-Tanner fluid in the limit of the high Weissenberg number.

These regions are summarised in figure 4-3 and hold for the case of no solvent viscosity.

The structure has been found to be very similar to the UCM high Weissenberg

case, in particular the same length scales at which each region exists and the same

boundary layer thicknesses are found. The only significant difference is the stream

function vanishes at a slower rate as r → 0 in all core regions, UCM has ψ = O(r3α),

ψ = O(We−3/2) and ψ = O(We−α/2r(3−α)α) in core regions 1-3 respectively, compared

to the PTT results of ψ = O(rα), ψ = O(We−1/2) and ψ = O(Weα/2r(1+α)α). This, as

in the We = O(1) problem may be attributed to the shear thinning behaviour of the

PTT fluid.

4.4 Discussion

For the re-entrant corner geometry, we have considered three physically relevant limits

of the PTT equations, those of small κ with We = O(1), and small and high We

with κ = O(1). The double limits involving both κ and We are expected to form

an even more complicated structure with additional regions needing to be included.

The structures of this chapter are likely to be present as part of these more complex

structures however.

Whilst the natural stress formulation has not been utilised in either Weissenberg

number limit, it is not expected to provide any further information. All asymptotic

regions and variable behaviours have been able to be identified through the use of the

simpler Cartesian formulation.

It would be of interest to see if the three structures here can be validated through full

numerical simulation of the equations. Unlike for the UCM equations, full numerical

work for the particular PTT equations considered here (affine and without solvent

viscosity) is less prevalent. In particular, validation of the radial behaviours of the

stress and stream function and also identification of the balances proposed here in the

constitutive equations for the respective regions would be of interest.

Finally, it should be noted that the κ = O(1), We = O(1) problem is recovered

closest to the corner for all three structures found here. This implies that the same

issue of finding complete flow only for 2/3 < α < 1 occurs in this region. A possibility

is that this could determine the size of an upstream (or downstream) lip vortex in both

small κ and small We limits as complete flow is still able to be achieved through core and

boundary layer regions 1 (where UCM and Newtonian flow occurs respectively). This
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Figure 4-4: A possible flow scenario around a re-entrant corner with an upstream vortex
in the limit We → 0. Further analytical and numerical work to understand lip vortices
is required, here we have speculated that the results of section 4.2 imply a lip vortex
of size O(We1/1−λ0). The situation could instead have a downstream lip vortex of the
same size. Finally, similar speculation suggests a lip vortex of size O(κ1/2(1−α)) when
We = O(1) and κ→ 0.

situation is shown for the We → 0 structure in figure 4-4. If this hypothesis is correct,

full numerical results should be able to determine lip vortex size of O(κ1/2(1−α)) for

small κ, andO(We1/1−λ0) for small Weissenberg number flow, and would be particularly

useful to motivate work on reverse flow and separating streamlines.



Chapter 5

Salient corner flow

In this chapter we will consider the salient corner flow of the PTT fluid. The salient

corner analysis is given in section 5.2, preceded by a full description of corner flow

(both re-entrant and salient) for the Newtonian fluid in section 5.1. The Newtonian

analysis has direct application to the salient flow of PTT (and other viscoelastic) fluids

so is appropriate to include this here. A discussion will then be given, including brief

consideration of the high and low Weissenberg limits.

5.1 Newtonian flow

Before considering the salient corner flow it is important to understand the Newtonian

solution. This is because the Newtonian solution will dominate in the core region away

from the walls. As seen in previously, it is also useful in other situations such as low

Weissenberg number flow.

The analysis here is based upon that of Dean and Montagnon [DM49] and Moffatt

[Mof64], and will build on their work where appropriate for use in other problems of this

thesis. [Mof64] contains other more complex flow scenarios around the corner including

symmetrical flows and flows with eddies. Whilst we will not discuss these here, such

situations could be interesting to consider for viscoelastic fluids.

The governing equations for Newtonian flow are

Re(v.∇)v = −∇p+ ∇.T, ∇.v = 0, T = 2D, (5.1)

with the equations written in the same form as the viscoelastic fluids to allow for easy

comparison. Noting that since the distance to the corner whilst small (r � 1) is not

prescribed, there is no length scale and thus upon introducing the usual stream function

ψ in polar coordinates, vr = 1
r
∂ψ
∂θ and vθ = −∂ψ

∂r , we see it can be expressed in the

130
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separable form

ψ = c0r
1+λ0f0(θ), (5.2)

where c0 is a constant.

From the stream function behaviour we can determine the order of magnitude

estimates

ψ = O(r1+λ0), v = O(rλ0), D =
1

2

(

∇v + (∇v)T
)

= O(r−1+λ0),

T = O(r−1+λ0), ∇.T = O(r−2+λ0), ∇p = O(r−2+λ0), (v.∇)v = O(r−1+2λ0),

(5.3)

and hence the inertia terms are negligible in the momentum equation when 1+λ0 > 0,

which is true since we expect the stream function behaviour in (5.2) to vanish as r → 0.

At leading order then, after simplification we have

∇p = ∇.
(

∇v + (∇v)T
)

, (5.4)

implying that

∇p = ∇2v, (5.5)

seen by expanding the right hand side of (5.4) and using incompressibility, ∇.v = 0.

This can then be reduced to the biharmonic equation

∇4ψ = 0, where ∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
, (5.6)

after introducing the stream function, differentiating the two equations by the appro-

priate independent variables and combining them. This is more straightforward in

Cartesian components, but may be also proven in polar coordinates noting that the

Laplacian operator acting on a vector in polar coordinates is

∇2A =

(

∇2Ar −
Ar
r2

− 2

r2
∂Aθ
∂θ

)

er +

(

∇2Aθ −
Aθ
r2

+
2

r2
∂Ar
∂θ

)

eθ. (5.7)

Substituting behaviour (5.2) into equation (5.6) yields the nonlinear eigenvalue

problem

f ′′′′0 + 2(λ2
0 + 1)f ′′0 + (λ2

0 − 1)2f0 = 0, (5.8)

and we also have to satisfy no-slip and no normal velocity at the walls, hence require
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the boundary conditions

f0(0) = f ′0(0) = f0(π/α) = f ′0(π/α) = 0. (5.9)

The simplest general solution to (5.8) is

f0s = C1s sin ((λ0 − 1)θ) +C2s cos ((λ0 − 1)θ) + C3s sin ((λ0 + 1)θ)

+ C4s cos ((λ0 + 1)θ) , (5.10)

but can instead be written

f0 =C1 sin
(

(λ0 − 1)
(

θ − π

2α

))

+ C2 cos
(

(λ0 − 1)
(

θ − π

2α

))

+ C3 sin
(

(λ0 + 1)
(

θ − π

2α

))

+ C4 cos
(

(λ0 + 1)
(

θ − π

2α

))

, (5.11)

allowing simple use of the fact that the solution is required to be symmetric about

θ+ π
2α , and hence C1 = C3 = 0. The boundary conditions at f0(0) = f ′0(0) = f0(π/α) =

f ′0(π/α) = 0 imply the two equations

C2 cos
(

(λ0 − 1)
( π

2α

))

+ C4 cos
(

(λ0 + 1)
( π

2α

))

= 0, (5.12)

C2(λ0 − 1) sin
(

(λ0 − 1)
( π

2α

))

+ C4(λ0 + 1) sin
(

(λ0 + 1)
( π

2α

))

= 0, (5.13)

hence combining these and using double angle formulae leaves

sin

(

λ0π

α

)

= −λ0 sin
(π

α

)

, (5.14)

to be solved numerically to determine λ0. Equation (5.12) can now be used to determine

C4 in terms of C2 to find f0 as

f0 = C2

(

cos
(

(λ0 − 1)
(

θ − π
2α

))

cos
(

(λ0 − 1)
(

π
2α

)) − cos
(

(λ0 + 1)
(

θ − π
2α

))

cos
(

(λ0 + 1)
(

π
2α

))

)

cos
(

(λ0 − 1)
( π

2α

))

,

(5.15)

and it is also possible to determine that

f ′′0 (0) = 4λ0C2 cos
(

(λ0 − 1)
( π

2α

))

, (5.16)
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hence

f0 =
f ′′0 (0)

4λ0

(

cos
(

(λ0 − 1)
(

θ − π
2α

))

cos
(

(λ0 − 1)
(

π
2α

)) − cos
(

(λ0 + 1)
(

θ − π
2α

))

cos
(

(λ0 + 1)
(

π
2α

))

)

. (5.17)

Finally, the pressure may now be determined from (5.5). Using ∇ = er
∂
∂r +eθ

1
r
∂
∂θ , and

the vector Laplacian operator from (5.7) then

∂p

∂r
=

1

r2
∂2ψ

∂r∂θ
+

1

r

∂3ψ

∂r2∂θ
+

1

r3
∂3ψ

∂θ3
, (5.18)

∂p

∂θ
= −r∂

3ψ

∂r3
− ∂2ψ

∂r2
− 1

r

∂3ψ

∂r∂θ2
+

1

r

∂ψ

∂r
+

2

r2
∂2ψ

∂θ2
. (5.19)

Now using the ψ behaviour from (5.2) these become

∂p

∂r
= c0r

λ0−2
(

f ′′′0 + (1 + λ0)
2f ′0
)

,
∂p

∂θ
= −c0(λ0 − 1)rλ0−1

(

f ′′0 + (1 + λ0)
2f0

)

.

(5.20)

Equation (5.8) can be determined from here by differentiating these equations by θ and

r respectively and combining them, however we instead may determine p to be

p =
c0

λ0 − 1
rλ0−1

(

f ′′′0 + (1 + λ0)
2f ′0
)

= c0f
′′
0 (0)rλ0−1 sin

(

(1 − λ0)
(

θ − π
2α

))

cos
(

(1 − λ0)
(

π
2α

)) , (5.21)

having also used the solution for f0 from (5.17).

In summary the solution to the Newtonian flow around a corner is defined by the

form of the stream function in (5.2), where the exponent λ0 must satisfy (5.14) and

the function f0(θ) is found in (5.17). The pressure is found above in equation (5.21),

and finally the stress components are

Trr = 2
∂vr
∂r

= 2c0λ0r
λ0−1f ′0,

Trθ =
∂vθ
∂r

+
1

r

∂vr
∂θ

− vθ
r

= c0r
λ0−1

(

f ′′0 + (1 − λ2
0)f0

)

,

Tθθ = 2

(

vr
r

+
1

r

∂vθ
∂θ

)

= −2c0λ0r
λ0−1f ′0, (5.22)

where these forms for the stress components can be found from writing T = 2D in

polar coordinates (see for example the appendix A4 of [Tan00]).

The transcendental equation (5.14) must be solved numerically. For re-entrant

corners and large angled salient corners, i.e. corners with angles greater than about

146.3o, (5.14) may be solved relatively simply by searching for the smallest positive
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root λ0 of the equation. For corner angles smaller than this, the root λ0 is complex

and thus requires some analysis first. We write

λ0 = xλ0 + iyλ0, (5.23)

where both xλ0 and yλ0 are real. Substituting this into (5.14), using double angle

formulae and the exponential forms of cos, sin, cosh and sinh, leads to the two equations

Real part: sin
(xλ0π

α

)

cosh
(yλ0π

α

)

= −xλ0 sin
(π

α

)

, (5.24)

Imaginary part: cos
(xλ0π

α

)

sinh
(yλ0π

α

)

= −yλ0 sin
(π

α

)

. (5.25)

The roots xλ0 and yλ0 can be found simultaneously using MATLAB’s ‘fminsearch’

routine. Inputted are initial guesses for xλ0 and yλ0 and the routine searches for the

local minimiser for the function

∣

∣

∣
sin
(xλ0π

α

)

cosh
(yλ0π

α

)

+ xλ0 sin
(π

α

)∣

∣

∣
+
∣

∣

∣
cos
(xλ0π

α

)

sinh
(yλ0π

α

)

+ yλ0 sin
(π

α

)∣

∣

∣
.

(5.26)

Initially, we start from a small α (large corner angle) where we already know yλ0 = 0,

and to form a guess for xλ0 we note that cosh(θ∗) > 0 always, and sinh(θ∗) > 0 for

θ∗ > 0. In our case we have θ∗ = yλ0π
α . Mapping yλ0 7→ −yλ0 leaves the equations

invariant, so we may take yλ0 > 0 without loss of generality, hence sinh
(yλ0π

α

)

> 0.

Finally, we must require xλ0 > 0 to have the correct ψ behaviour vanishing as r → 0.

All of this implies that

sin
(xλ0π

α

)

< 0 and cos
(xλ0π

α

)

< 0, (5.27)

(with xλ0 > 0). For these to be true then

α(1 + 2nλ0) < xλ0 < α

(

3

2
+ 2nλ0

)

, (5.28)

where nλ0 ∈ Z. The smallest positive root will lie in the interval of nλ0 = 0, and hence

a sensible guess for xλ0 lies in the range

α < xλ0 <
3α

2
. (5.29)

Figure 5-1 shows the values of λ0 (when not complex), xλ0 and yλ0 over a range of α,

showing in particular that 1/2 ≤ λ0 < 1 for re-entrant corners where 1/2 ≤ α < 1,

and that <(λ0) > 1 for salient corners where α lies in the range (1,∞). Also shown is
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the value of the minimiser of (5.26) confirming that the solutions are genuine roots of

(5.14).
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Figure 5-1: Plots of xλ0 and yλ0, the real and imaginary parts of λ0 as defined in (5.23).
(A) shows the small α behaviour, with the corner angle shown from 360o to 90o.(B)
shows the larger α behaviour, up to α = 360 (a corner angle of 0.5o). Shown is that
πxλ0
α and πyλ0

α both tend to constants as α increases. There is agreement with Table
1 of [Mof64], for example at α = 18 (θ = 10o), πxλ0

α = 4.213 and πyλ0
α = 2.245, and at

α = 2 (θ = 90o), πxλ0
α = 4.303 and πyλ0

α = 1.758.

To show that there is no need for boundary layers in this Newtonian case, we

consider the limit θ → 0 and verify that the wall behaviour satisfies simple shear. To

find the matching behaviour of all the variables, we need the limiting behaviour of f0,

f ′0, and obviously f ′′0 → f ′′0 (0) as θ → 0.

It is possible through double angle formulae and use of the λ0 equation (5.14) to

determine

f0 ∼ 1

2
f ′′0 (0)θ2, f ′0 ∼ f ′′0 (0)θ, and p ∼ p0r

λ0−1 + c0f
′′
0 (0)rλ0−1(1 − λ0)θ, (5.30)

where p0 = −c0f ′′0 (0) tan
(

(1−λ0)π
2α

)

.

For use in later sections, this will be more convenient in Cartesian and hence we

consider how to convert from the polar coordinate form. We have that r̂ = cos(θ)i +

sin(θ)j and θ̂ = − sin(θ)i + cos(θ)j, so

T = T11ii
T + T12ij

T + T12ji
T + T22jj

T

= Trrr̂r̂
T + Trθr̂θ̂

T + Trθθ̂r̂
T + Tθθθ̂θ̂

T , (5.31)
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and thus the conversion is

T11 = cos2 θTrr − 2 sin θ cos θTrθ + sin2 θTθθ,

T12 = sin θ cos θTrr + (cos2 θ − sin2 θ)Trθ − sin θ cos θTθθ,

T22 = sin2 θTrr + 2 sin θ cos θTrθ + cos2 θTθθ. (5.32)

All variable limits can now be approximated in the θ → 0 limit as previously in footnote

9, and in particular in (3.62) and (3.63).

This produces the behaviours

ψ ∼ 1

2
c0f

′′
0 (0)xλ0−1y2, p ∼ p0x

λ0−1 + (1 − λ0)c0f
′′
0 (0)xλ0−2y,

T11 ∼ 2(λ0 − 1)c0f
′′
0 (0)xλ0−2y, T12 ∼ c0f

′′
0 (0)xλ0−1,

T22 ∼ −2(λ0 − 1)c0f
′′
0 (0)xλ0−2y, as y → 0, (5.33)

confirming that steady shear flow (where we require ψ ∼ 1
2 γ̇y

2, T11 = T22 = 0, T12 ∼ γ̇)

is achieved near the walls, and thus there is no need for boundary layers.
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5.2 Salient corner flow of the PTT fluid, κ = O(1), We =

O(1)

We consider now the salient corner flow of the PTT fluid (1.32)–(1.34). The geometry to

consider is shown in figure 5-2. In this geometry, it is expected that the velocity gradient

Figure 5-2: Salient corner geometry, with the main asymptotic regions and dominant
balances shown. Distances to the corner are of O(ε), and are assumed to be small. This
geometry differs from the re-entrant corner as here the corner angle depends upon α
in the range α ∈ (1,∞).

and viscous stresses are zero (for example section 4 of [Ren00a]) which correspond to

the zero Weissenberg number limit, the dominant behaviour being described by the

Stokes equation. As such, we assume the balance in the core flow away from the walls

to satisfy

T + o(1) = 2D. (5.34)

This means that the analysis of the previous section all applies, the only thing to note

is for salient corners we have α in the range α ∈ (1,∞), and thus the critical stream

function exponent λ0 satisfies <(λ0) > 1. We note here that for corners with angles

less than about 146.3o λ0 is complex and may give rise to eddies near the corner (as

suggested by Moffatt, [Mof64]). The presence of these eddies may require a change

to our asymptotic structure and thus this salient corner analysis is only guaranteed to

hold for corner angles θ ∈ (146.3o, 180o).
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Using the wall behaviour as y → 0 from (5.33) we may see that although it satisfies

the simple shear of Newtonian flow, it does not satisfy PTT viscometric behaviour,

either with large shear rate (2.53) or low shear rate (2.54). Low shear rate would be

expected in salient corner flow in comparison to the high shear rate of re-entrant corner

flow due to the comparative motion of the fluid being trapped in the corner.

As viscometric behaviour is not satisfied, we require wall boundary layers, and can

use the behaviours (5.33) to suggest the scalings

x = εX̄, y = δȲ , ψ = ελ0−1δ2Ψ̄, p = ελ0−1p̄0(X) + ελ0−2δp̄,

T11 = ελ0−2δT̄11, T12 = ελ0−1T̄12, T22 = ελ0−2δT̄22, (5.35)

and then the constitutive equations become

T̄11 +

(

ελ0−2δ

(

∂Ψ̄

∂Ȳ

∂T̄11

∂X̄
− ∂Ψ̄

∂X̄

∂T̄11

∂Ȳ
− 2

∂2Ψ̄

∂X̄∂Ȳ
T̄11

)

− 2ελ0δ−1 ∂
2Ψ̄

∂Ȳ 2
T̄12

)

+ ελ0−2δκ(T̄11 + T̄22)T̄11 = 2
∂2Ψ̄

∂X̄∂Ȳ
, (5.36)

T̄22 + ελ0−2δ

(

∂Ψ̄

∂Ȳ

∂T̄22

∂X̄
− ∂Ψ̄

∂X̄

∂T̄22

∂Ȳ
+ 2

∂2Ψ̄

∂X̄2
T̄12 + 2

∂2Ψ̄

∂X̄∂Ȳ
T̄22

)

+ ελ0−2δκ(T̄11 + T̄22)T̄22 = −2
∂2Ψ̄

∂X̄∂Ȳ
, (5.37)

T̄12 +

(

ελ0−2δ

(

∂Ψ̄

∂Ȳ

∂T̄12

∂X̄
− ∂Ψ̄

∂X̄

∂T̄12

∂Ȳ
− ∂2Ψ̄

∂Ȳ 2
T̄22

)

+ ελ0−4δ3
∂2Ψ̄

∂X̄2
T̄11

)

+ ελ0−2δκ(T̄11 + T̄22)T̄12 =
∂2Ψ̄

∂Ȳ 2
−
(

δ

ε

)2 ∂2Ψ̄

∂X̄2
, (5.38)

with the momentum equations

Re ελ0−2δ3
(

∂Ψ̄

∂Ȳ

∂2Ψ̄

∂X̄∂Ȳ
− ∂Ψ̄

∂X̄

∂2Ψ̄

∂Ȳ 2

)

= −
(

(

δ

ε

)

∂p̄0

∂X̄
+

(

δ

ε

)2 ∂p̄

∂X̄

)

+

(

δ

ε

)2 ∂T̄11

∂X̄
+
∂T̄12

∂Ȳ
(5.39)

Re ελ0−2δ3
(

−∂Ψ̄

∂Ȳ

∂2Ψ̄

∂X̄2
+
∂Ψ̄

∂X̄

∂2Ψ̄

∂X̄∂Ȳ

)

= − ∂p̄

∂Ȳ
+
∂T̄12

∂X̄
+
∂T̄22

∂Ȳ
. (5.40)

The only possible balance which allows a thin boundary layer (where δ � ε), is that of
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δ = ελ0 , leaving

T̄11 +

(

ε2(λ0−1)

(

∂Ψ̄

∂Ȳ

∂T̄11

∂X̄
− ∂Ψ̄

∂X̄

∂T̄11

∂Ȳ
− 2

∂2Ψ̄

∂X̄∂Ȳ
T̄11

)

− 2
∂2Ψ̄

∂Ȳ 2
T̄12

)

+ ε2(λ0−1)κ(T̄11 + T̄22)T̄11 = 2
∂2Ψ̄

∂X̄∂Ȳ
, (5.41)

T̄22 + ε2(λ0−1)

(

∂Ψ̄

∂Ȳ

∂T̄22

∂X̄
− ∂Ψ̄

∂X̄

∂T̄22

∂Ȳ
+ 2

∂2Ψ̄

∂X̄2
T̄12 + 2

∂2Ψ̄

∂X̄∂Ȳ
T̄22

)

+ ε2(λ0−1)κ(T̄11 + T̄22)T̄22 = −2
∂2Ψ̄

∂X̄∂Ȳ
, (5.42)

T̄12 +

(

ε2(λ0−1)

(

∂Ψ̄

∂Ȳ

∂T̄12

∂X̄
− ∂Ψ̄

∂X̄

∂T̄12

∂Ȳ
− ∂2Ψ̄

∂Ȳ 2
T̄22

)

+ ε4(λ0−1) ∂
2Ψ̄

∂X̄2
T̄11

)

+ ε2(λ0−1)κ(T̄11 + T̄22)T̄12 =
∂2Ψ̄

∂Ȳ 2
− ε2(λ0−1) ∂

2Ψ̄

∂X̄2
, (5.43)

and

Re ε2(2λ0−1)

(

∂Ψ̄

∂Ȳ

∂2Ψ̄

∂X̄∂Ȳ
− ∂Ψ̄

∂X̄

∂2Ψ̄

∂Ȳ 2

)

= −
(

ελ0−1∂p̄0

∂X̄
+ ε2(λ0−1) ∂p̄

∂X̄

)

+ ε2(λ0−1) ∂T̄11

∂X̄
+
∂T̄12

∂Ȳ

(5.44)

Re ε2(2λ0−1)

(

−∂Ψ̄

∂Ȳ

∂2Ψ̄

∂X̄2
+
∂Ψ̄

∂X̄

∂2Ψ̄

∂X̄∂Ȳ

)

= − ∂p̄

∂Ȳ
+
∂T̄12

∂X̄
+
∂T̄22

∂Ȳ
. (5.45)

At leading order we thus obtain

T̄11 − 2
∂2Ψ̄

∂Ȳ 2
T̄12 = 2

∂2Ψ̄

∂X̄∂Ȳ
, T̄22 = −2

∂2Ψ̄

∂X̄∂Ȳ
, T̄12 =

∂2Ψ̄

∂Ȳ 2
, (5.46)

0 =
∂T̄12

∂Ȳ
, 0 = − ∂p̄

∂Ȳ
+
∂T̄12

∂X̄
+
∂T̄22

∂Ȳ
, (5.47)

and as such, contains no contribution from the quadratic stress terms of the PTT

equations. This indicates that the analysis would be identical to that of UCM salient

corner flow.

From the leading order boundary layer equations 0 = ∂T̄12

∂Ȳ
and T̄12 = ∂2Ψ̄

∂Ȳ 2 imply

that ∂3Ψ̄
∂Ȳ 3 = 0, and thus

Ψ̄ =
1

2
ā(X̄)Ȳ 2 + b̄(X̄)Ȳ + c̄(X̄). (5.48)

The no-slip and no normal velocity conditions on the wall imply that Ψ̄ = ∂Ψ̄
∂Ȳ

= 0 on
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Ȳ = 0, forcing b̄(X̄) = c̄(X̄) = 0 and leaving

Ψ̄ =
1

2
ā(X̄)Ȳ 2. (5.49)

The other boundary layer equations may then be used to find

T̄11 = 2
(

ā′(X̄)Ȳ + ā(X̄)2
)

, T̄12 = ā(X̄), T̄22 = −2ā′(X̄)Ȳ ,

p̄ = −ā′(X̄)Ȳ + p̄∗(X̄), (5.50)

which is an explicit solution to the boundary layer equations in terms of the arbitrary

functions ā(X̄) and p̄∗(X̄). The far-field behaviour as Ȳ → ∞ can be obtained from

(5.33) as

Ψ̄ ∼ 1

2
c0f

′′
0 (0)X̄λ0−1Ȳ 2, p̄ ∼ p0X̄

λ0−1 + (1 − λ0)c0f
′′
0 (0)X̄λ0−2Ȳ ,

T̄11 ∼ 2(λ0 − 1)c0f
′′
0 (0)X̄λ0−2Ȳ , T̄12 ∼ c0f

′′
0 (0)X̄λ0−1,

T̄22 ∼ −2(λ0 − 1)c0f
′′
0 (0)X̄λ0−2Ȳ , as Ȳ → ∞, (5.51)

and thus we may determine the functions ā = c0f
′′
0 (0)X̄λ0−1 and p̄∗ = p0X̄

λ0−1. To

summarise, the leading order boundary equations have the solution

Ψ̄ =
1

2
c0f

′′
0 (0)X̄λ0−1Ȳ 2, T̄11 = 2

(

(λ0 − 1)c0f
′′
0 (0)X̄λ0−2Ȳ + (c0f

′′
0 (0))2X̄2(λ0−1)

)

,

T̄12 = c0f
′′
0 (0)X̄λ0−1, T̄22 = −2(λ0 − 1)c0f

′′
0 (0)X̄λ0−2Ȳ ,

p̄ = −(λ0 − 1)c0f
′′
0 (0)X̄λ0−2Ȳ + p0X̄

λ0−1,

(5.52)

which matches to the far-field behaviour, and satisfies the low shear rate PTT viscomet-

ric behaviour of (2.54) as Ȳ → 0, which is also UCM viscometric behaviour. To agree

with (2.54), We = 1 as it has been scaled out of the problem, and γ̇ = c0f
′′
0 (0)X̄λ0−1.

5.3 Discussion

The salient corner flow of the PTT fluid has now been found. The flow, dominated by

Newtonian behaviour, has zero velocity gradient and viscous stresses at the corner in

comparison to the singular behaviour of these in re-entrant corner flow. These features

allow the analysis to be far more straightforward, indeed as far as to have an analytical

solution in the core and boundary layer regions. The quadratic stress terms of the

PTT model are subdominant in both core and boundary layer regions and as such
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the analysis of the UCM fluid will follow as above (the UCM fluid having not been

considered in the literature, presumably due to its simplicity when compared to the

re-entrant corner problem). This solution is only guaranteed to hold for corner angles

θ ∈ (146.3o, 180o) due to the complex nature of the Newtonian eigenvalue λ0 for smaller

corner angles. Further work to understand eddy formation for UCM or PTT fluids (as

in [Mof64] for Newtonian flow) is required.

We conclude by making remarks on the continuity of the salient and re-entrant cor-

ner solution behaviours and then discuss the salient corner flow in the various parameter

limits as considered for the re-entrant corner.

5.3.1 Continuity between salient and re-entrant flow

It is of interest to consider the limit α→ 1 in both the salient (α→ 1+) and re-entrant

(α → 1−) corner flows, to see if they agree. It should be mentioned that the analysis

breaks down in these limits, and as such this is only a brief exploration of the continuity

between the two flows.

The stream function in the core flow of the salient corner is ψ = c0r
λ0+1f0(θ) from

(5.2), and f0 is given in (5.17). In the limit α → 1+, the plot in figure 5-1 shows that

λ0 → 1+, or indeed directly from equation (5.14) it can be calculated that λ0 = 1 when

α = 1.

Setting α = λ0 = 1 gives

f0 =
f ′′0 (0)

4

(

1 − cos2(θ) + sin2(θ)
)

=
f ′′0 (0)

2
sin2(θ),

thus ψ → c0
f ′′0 (0)

2
r2 sin2(θ) as α→ 1+. (5.53)

Considering now the stream function for the core flow of the re-entrant corner, we

have that ψ = c0r
nα sinn(αθ), where n = 1 + α, from (3.27). Thus

ψ → c0r
2 sin2(θ) as α→ 1−. (5.54)

This simple analysis would thus suggest the unknown and arbitrary constant f ′′0 (0)

be fixed as f ′′0 (0) = 2.

The stresses are not as simple to compare, and the boundary layer behaviour may

not be expected to be continuous as the viscometric behaviour for the two situations

is different for the PTT model (see section 2.3.1). In the limit α→ 1 the higher order

(in ε) terms in the boundary layer equations for both corner situations may become

important at leading order, and would be of interest for future work - although the

simpler case of the UCM fluid may be easier to approach initially.
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5.3.2 Low Weissenberg number limit

As for the re-entrant corner, it is of interest to consider the limits of the parameter κ

and the Weissenberg number. Given that the quadratic stress terms play no role in

the We = O(1) problem, and hence the PTT and UCM models behave identically at

leading order for salient corner flow, the small κ limit is irrelevant.

The limit of low Weissenberg number (with κ = O(1)) is straightforward, and is

summarised in figure 5-3.

Figure 5-3: Salient corner geometry in the limit of low Weissenberg number, with
the main asymptotic regions and dominant balances shown. Core and boundary layer
regions 2 are artificial, the same leading order equations, stream function and stress
behaviours occur in the low Weissenberg limit as for We = O(1), with the behaviours
now extending to r = O(1).

At leading order in the outer core (core region 1) the behaviour T ∼ 2D from (5.34)

still applies, and so then does ψ ∼ r1+λ0f(θ), although now these behaviours hold for
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r = O(1). The boundary layer scalings

x = X̂, y = WeŶ , ψ = We2Ψ̂, p = p̂0(X̂) + Wep̂,

T11 = WeT̂11, T12 = T̂12, T22 = WeT̂22, (5.55)

recover the leading order boundary layer equations (5.46)–(5.47) with the same solution

(5.52), all with bars replaced with hats. Moving closer to the corner, we use the scalings

r = εR∗, x = εX∗, y = εY ∗, ψ = ε1+λ0Ψ∗, p = ελ0−1p∗, T = ελ0−1T∗ (5.56)

to match to the behaviour of core region 1. The constitutive and momentum equations

are thus

T∗ + We ελ0−1

(

5

T∗ +κ(trT∗)T∗
)

= 2D∗, Re ελ0+1(v∗.∇∗)v∗ = −∇∗p∗ + ∇∗.T∗,

(5.57)

and the same Newtonian balance dominates at leading order. The boundary layer

scalings motivated by the Newtonian matching behaviour (5.33) are then

X∗ = X̄, Y ∗ = δȲ , Ψ∗ = δ2Ψ̄, p∗ = p̄0(X) + δp̄,

T ∗
11 = δT̄11, T ∗

12 = T̄12, T ∗
22 = δT̄22, (5.58)

and then the constitutive equations become

T̄11 + We ελ0−1

(

δ

(

∂Ψ̄

∂Ȳ

∂T̄11

∂X̄
− ∂Ψ̄

∂X̄

∂T̄11

∂Ȳ
− 2

∂2Ψ̄

∂X̄∂Ȳ
T̄11

)

− 2δ−1 ∂
2Ψ̄

∂Ȳ 2
T̄12

+δκ(T̄11 + T̄22)T̄11

)

= 2
∂2Ψ̄

∂X̄∂Ȳ
, (5.59)

T̄22 + We ελ0−1δ

(

∂Ψ̄

∂Ȳ

∂T̄22

∂X̄
− ∂Ψ̄

∂X̄

∂T̄22

∂Ȳ
+ 2

∂2Ψ̄

∂X̄2
T̄12 + 2

∂2Ψ̄

∂X̄∂Ȳ
T̄22

+ελ0−2δκ(T̄11 + T̄22)T̄22

)

= −2
∂2Ψ̄

∂X̄∂Ȳ
, (5.60)

T̄12 + We ελ0−1

(

δ

(

∂Ψ̄

∂Ȳ

∂T̄12

∂X̄
− ∂Ψ̄

∂X̄

∂T̄12

∂Ȳ
− ∂2Ψ̄

∂Ȳ 2
T̄22

)

+ δ3
∂2Ψ̄

∂X̄2
T̄11

+ελ0−2δκ(T̄11 + T̄22)T̄12

)

=
∂2Ψ̄

∂Ȳ 2
− δ2

∂2Ψ̄

∂X̄2
, (5.61)
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determining δ = We ελ0−1. The momentum equations are then

Re ε2(2λ0−1)We3

(

∂Ψ̄

∂Ȳ

∂2Ψ̄

∂X̄∂Ȳ
− ∂Ψ̄

∂X̄

∂2Ψ̄

∂Ȳ 2

)

= −
(

We ελ0−1 ∂p̄0

∂X̄
+ We2ε2(λ0−1) ∂p̄

∂X̄

)

+ We2ε2(λ0−1) ∂T̄11

∂X̄
+
∂T̄12

∂Ȳ
(5.62)

Re ε2(2λ0−1)We3

(

−∂Ψ̄

∂Ȳ

∂2Ψ̄

∂X̄2
+
∂Ψ̄

∂X̄

∂2Ψ̄

∂X̄∂Ȳ

)

= − ∂p̄

∂Ȳ
+
∂T̄12

∂X̄
+
∂T̄22

∂Ȳ
. (5.63)

Once again the leading order boundary layer equations are (5.46)–(5.47) with the same

solution (5.52). This determines that core and boundary layer regions 2 are artificial,

having the same behaviour as core and boundary layer regions 1, but on length scales

near to the corner. This can be instead thought of as the low Weissenberg number

limit of the salient corner flow being the same as the flow with We = O(1) but with

the behaviour extending to radial distances of r = O(1), rather than being restricted

to regions near to the corner.

Other parameter limits

The other possible parameter limits of We → ∞ with κ = O(1) and (We, κ) → (∞, 0)

are left as open problems. The salient corner flow with We → ∞ and κ = O(1) is

likely to have a very similar structure to the low Weissenberg re-entrant corner flow

(with κ = O(1)) but with the dominant behaviours reversed - it would be expected

that the behaviours are PTT We = O(1), an intermediate region and then Newtonian

behaviour closest to the corner.



Chapter 6

Discussion

The asymptotic structure local to both re-entrant and salient corners has been de-

scribed for a class of self-similar solutions of the PTT equations in applicable parameter

regimes. Discussions of the results of each problem are given at the end of the relevant

chapters. Here we discuss the achievements and limitations of the work presented,

along with future work to be pursued.

Prior to the work of this thesis the re-entrant corner problem was well understood

for the UCM fluid, with the salient corner assumed trivial due to the Newtonian flow

field dominating. Analysis using the more complex PTT model was limited, with only

the work of Renardy [Ren97b] and an incorrect Newtonian flow assumption available.

Whilst the main parameter limits (for both salient and re-entrant corners) have

been investigated, some are left as open problems. The regions in the parameter lim-

its of chapter 4 and the end of chapter 5 will likely form part of a larger and more

complex structure in the multiple limits of both the PTT model parameter κ and the

Weissenberg number. The particular limit of (κ,We) → (0,∞) is of interest for all

geometries of the PTT fluid as many fluids of interest have κ = o(1) as described in the

introduction (in section 1.2). Numerical schemes have trouble converging with increas-

ing Weissenberg number (although cope more easily with low Weissenberg number due

to the Newtonian flow behaviour which dominates), and as such this limit is of use to

aid in the understanding of this high Weissenberg number problem. It is noteworthy

that the best source of numerical results for the flow of the PTT fluid, in [AOP03],

actually apply to the PTT model with solvent viscosity considered in appendix A here.

Their results, in particular Fig. 12 of [AOP03], confirm the behaviours found in (A.23)

for the PTT model with solvent viscosity. It would therefore be of particular interest

to see similar results using the PTT model considered here.

This thesis has improved the understanding of the PTT corner problem and un-
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covered some interesting features of the model. Whilst all of the work presented has

assumed complete flow around the corner (both re-entrant and salient), the analysis

has indicated that this class of solutions may only hold for corner angles (180o, 270o).

Suggestions have been made in figures 3-11 and 4-4 that reverse flow situations arise

to allow the analysis to hold for any corner angle. It would be of great interest to see if

these hypotheses can be investigated in full numerical simulations. There has been some

work by Evans in [Eva05a] and comment in the paper by Rallison and Hinch [RH04]

about the problem of reverse flow (for the UCM and Oldroyd-B fluids). A suggestion

common to both is the possibility of a wide region of recirculation (i.e. not restricted

to a thin boundary layer), with results of chapter 3 applicable in the rest of the flow. In

this case, the limit of zero shear rate (a→ 0) may be relevant, being applicable on the

separating streamline. This limit was not fully understood here in section 3.2.3 for the

PTT fluid, in comparison to the UCM case which had a well defined and understood

zero shear rate case. One issue raised in section 3.2.3 was that the wall behaviour in

the a→ 0 limit appeared relevant only to the upstream boundary layer. In this context

of reverse flow this may be justified by the observation that lip vortices are found to

occur at the upstream rather than the downstream wall (see the discussion on reverse

flow in section 3.4). Whilst many of these suggestions are speculative it appears that

the PTT model may support the physically important situations of reverse flow and

lip vortices more readily than apparent with the UCM model. The problem, however,

is a long way from being fully understood for the viscoelastic fluids mentioned, and is

an open problem for which insight is needed.

Another extension to the work here is to consider the flows of the other viscoelastic

fluids mentioned in the introduction. The Giesekus model, for example, appears to

be very similar to the PTT model. The Giesekus equations in contrast do not admit

boundary layer structures for the balances considered in chapter 3 and as such the

re-entrant corner flow remains an open question. As more complex models such as

FENE-P and Rollie-Poly become more widely used in numerical simulations the need to

understand the asymptotic behaviours near singularities (to benchmark the numerical

algorithms) also increases. It is clear that the need to understand simpler models is

important before tackling these problems however - the analysis of the PTT equations

here would not have been possible without the understanding of the UCM model first.

Finally we mention other geometries and flows of interest. Here the case of anti-

symmetrical flow around a corner has been pursued, being of relevance to contraction

and expansion flows. For the Newtonian fluid Moffatt has also considered symmetrical

flow in [Mof64], a situation which may be of interest to analyse for the viscoelastic

models discussed. There is also more detail in [Mof64] about the situation when the
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stream function exponent for Newtonian flow, λ0, becomes complex (a situation relevant

to the salient corner flow of section 5.2). Moffatt relates this to a series of eddies induced

near the corner. Further analysis (using the UCM model) to understand the presence

of these eddies, indeed a comparison to the Newtonian flow results to ascertain any

differences, would be interesting to pursue. Sink wedge flow is understood for the UCM

and Oldroyd-B models (see [EH08]), however following the same process for the PTT

fluid fails, detailed in appendix C. Once the flow into the wedge is understood, the

problem of a wedge with a line source is then of interest. Other flows to consider

are stick-slip flow and flows with separation points, although these would need to be

investigated initially with the simpler UCM equations.



Appendix A

PTT model with solvent viscosity

As mentioned in the introduction (section 1.2), the PTT model can also be considered

with a solvent viscosity, being formed analogously as the Oldroyd-B model from the

UCM model i.e. by considering the superposition of the Newtonian solvent stresses

with the PTT stresses. The (non-dimensional) governing equations of this model are

∇.v = 0, Re (v.∇)v = −∇p+ ∇.T, (A.1)

T = Ts + Tp, Ts = 2βD, (A.2)

Tp+
5

Tp +κ (trTp)Tp = 2(1 − β)D, (A.3)

where the Weissenberg number has been scaled out in the usual way. To analyse which

terms will dominate in the core, we set ψ = O(rk), Tp = O(r−p) and T = O(r−m) for

unknown k, p, and m, with p > 0 due to the assumed stress singularity at the corner.

The solvent stress behaviour can be determined as Ts = O(rk−2). It is also noteworthy

that either m = p, m = 2 − k, or indeed m = p = 2 − k. The terms in the governing

equation (A.3) are then

Tp = O(r−p),
5

Tp= O(rk−2−p), (trTp)Tp = O(r−2p), D = O(rk−2), (A.4)

showing that the two largest terms are
5

Tp and (trTp)Tp. The expected dominant

balance is that the upper convected stress derivative dominates (as in the other cases

of Oldroyd-B, UCM and PTT without solvent viscosity) and hence −p > k − 2. This

condition thus means that the solvent stress dominates the polymer stress in the core
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region. In summary in the core at leading order

Ts � Tp � 1, T ∼ Ts = 2βD, 0 = −∇p+ ∇.T,
5

Tp= 0, (A.5)

the inertia terms also being negligible in the momentum equations provided k > 0.

With the Newtonian solvent stress dominating in the core, the velocity field may be

assumed to be the Newtonian solution (described in section 5.1).

Crucially with the Newtonian velocity field being present in the core, this shows

that the results of Renardy’s PTT re-entrant corner paper [Ren97b] should in fact

provide results for the case with a solvent viscosity. The analysis of this case has

been performed by Evans (in submission, [Eva09]), following similar techniques to the

analysis in chapter 3. It was found that the problem was in fact simpler than the PTT

without solvent viscosity problem due to the decoupling of the polymer stress and flow

fields, with the integration of the stresses in the known flow field far simpler.

As [Ren97b] was the only corner analysis for the PTT fluid at the commencement

of this thesis, it is worthwhile to explain its analysis, and compare the results to that

of [Eva09].

The key results of [Ren97b] are of finding the boundary layer thickness and the

(polymer) stress singularity. These are found through an elegant argument comparing

the expected behaviour of the variables in the core and boundary layer regions, a

modified version is explained below.

The PTT corner analysis of Renardy

Beginning at the wall, viscometric behaviour is expected, as given in (2.58). The stream

function in Newtonian flow (see section 5.1, specifically equation (5.2) for more details)

is

ψ = c0r
λ0+1f(θ) ∼ 1

2
γ̇y2 ∼ 1

2
γ̇ (rθ)2 , (A.6)

with the latter results coming from the viscometric behaviour of the stream function.

Thus

f ∼ θ2, γ̇ ∼ rλ0−1. (A.7)

The viscometric stresses satisfy

T prr ∼ γ̇2/3, T prθ ∼ γ̇1/3, T pθθ ∼ γ̇1/3θ, (A.8)
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with the dominant stress component thus being T p11.
14

The viscometric behaviour comes from the boundary layer equations of

5

Tp +κ (trTp)Tp = 2D, (A.10)

and thus the behaviour persists until terms become of the same magnitude, before

further from the walls the upper convected stress derivative dominates. The sizes of

these terms for the dominant stress component are

5

T prr∼ r
5
3
(λ0−1)θ, (trTp)T prr ∼ r

4
3
(λ0−1), 2Drr = 2

∂vr
∂r

∼ rλ0−1θ, (A.11)

with the largest two terms
5

T prr and (trTp)T prr balancing when

θ ∼ r
1−λ0

3 , (A.12)

which is small as λ0 < 1 for re-entrant corners (again see the analysis of section 5.1).

At values of θ greater than this, the core region starts and the upper convected stress

derivative dominates.

At the transition between boundary layer and core then we have

θ ∼ r
1−λ0

3 , T prr ∼ r
2(λ0−1)

3 , ψ ∼ r1+λ0θ2, (A.13)

allowing the determination (for later use) of

vr ∼ rλ0θ ∼
(

ψ

θ

)

λ0
1+λ0

θ = ψ
λ0

1+λ0 θ
1−λ0
1+λ0 . (A.14)

Combining the above we also can find

ψ ∼ r
5+λ0

3 , T prr ∼ ψ
2(λ0−1)
5+λ0 . (A.15)

Now, the core region begins at

θ = θ0 = r
1−λ0

3 ∼ ψ
1−λ0
5+λ0 , (A.16)

14These may be derived from r̂ = cos(θ)i+sin(θ)j and θ̂ = − sin(θ)i+ cos(θ)j and the comparison of
the stress tensor written in both Cartesian and polar coordinates, giving the small θ conversion of

Trr ∼ T11, Trθ ∼ T12, Tθθ ∼ T22 − 2θT12. (A.9)

A more detailed discussion of this conversion is given in the Newtonian analysis section, equations
(5.31)-(5.32).



APPENDIX A. PTT MODEL WITH SOLVENT VISCOSITY 151

and in the core Tp = g(ψ)vvT . From (A.14) we can find that

(

vvT
)

rr
= v2

r ∼ ψ
2λ0

1+λ0 θ
2(1−λ0)
1+λ0 . (A.17)

From the beginning of the core region, at θ = θ0, if we proceed along a streamline (so

that ψ is constant) until θ = O(1) then the stress goes from T prr ∼ g(ψ)ψ
2λ0

1+λ0 θ
2(1−λ0)

1+λ0
0

to T prr ∼ g(ψ)ψ
2λ0

1+λ0 , thus the stress has been magnified by an amplitude

θ
2(λ0−1)
1+λ0

0 = ψ
−2(1−λ0)2

(1+λ0)(5+λ0) . (A.18)

Multiplying this by the known value of the stress at the transition from equation (A.15),

we find the stress singularity of

T prr ∼ ψ
4(λ0−1)

(1+λ0)(5+λ0) ∼ r
4(λ0−1)
5+λ0 , (A.19)

since ψ ∼ r1+λ0 when θ = O(1). This analysis has thus provided us the two important

results that the boundary layer thickness (from (A.12)) is

θ ∼ r
1−λ0

3 , thus y ∼ r
4−λ0

3 , (A.20)

and the stress singularity in the core region (when θ = O(1)) is

T p11 ∼ T prr ∼ r
−4(1−λ0)

5+λ0 . (A.21)

The PTT with solvent viscosity analysis

As mentioned, the full analysis of the re-entrant corner problem has been completed by

Evans [Eva09], using similar methods to the work in this thesis for the PTT without

solvent viscosity and Newtonian models. This analysis provides the two results of

the Renardy analysis, the boundary layer thickness (in A.20) and stress singularities

(in A.21) both arising from their respective boundary layer scalings. The analysis of

[Eva09] finds that y scales like εδ into the boundary layer, where δ = ε(1−λ0)/3, and

the polymer stresses scale with ε2λ0+n1(λ0+1) in the core region. Both δ and n1 =

−2(λ0+2)
λ0+5 are found after correctly balancing the terms in the boundary layer equations

analogously to (3.88) here.

It is interesting to note the comparisons between the PTT with and without the

solvent viscosity, and with the UCM model. We summarise the stream function, stress,
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polymer stress and boundary layer thicknesses here as

ψ ∼











r1+λ0 for PTT with ηs 6= 0

r(1+α)α for PTT with ηs = 0

r(3−α)α for UCM

T ∼











r−(1−λ0) for PTT with ηs 6= 0

r−2(1−α) for PTT with ηs = 0

r−2(1−α) for UCM

Tp ∼















r
−4

1−λ0
5+λ0 for PTT with ηs 6= 0

r−2(1−α) for PTT with ηs = 0

r−2(1−α) for UCM

θ ∼











r(1−λ0)/3 for PTT with ηs 6= 0

r1−α for PTT with ηs = 0

r1−α for UCM

(A.22)

and remark that for α = 2/3, a corner angle of 270o, these have values

ψ ∼











r1.54 for PTT with ηs 6= 0

r10/9 ≈ r1.11 for PTT with ηs = 0

r14/9 ≈ r1.56 for UCM

T ∼











r−0.456 for PTT with ηs 6= 0

r−2/3 for PTT with ηs = 0

r−2/3 for UCM

Tp ∼











r−0.329 for PTT with ηs 6= 0

r−2/3 for PTT with ηs = 0

r−2/3 for UCM

θ ∼











r0.152 for PTT with ηs 6= 0

r1/3 for PTT with ηs = 0

r1/3 for UCM

(A.23)

and so we may conclude that the stream function vanishes faster for both UCM and

PTT with a solvent viscosity at similar rates than PTT with ηs = 0, however the

dominant stresses are more singular for UCM and PTT with ηs = 0 than for the PTT

model with ηs 6= 0. Finally, we can see that the boundary layer thickness of the UCM

and PTT with ηs = 0 are the same size and thinner than the PTT with a solvent

viscosity boundary layer. This may explain why the PTT with solvent viscosity model

has been found to be simpler to implement numerically than either PTT with ηs = 0

or the UCM model.



Appendix B

Determinant relationship

A determinant relationship is given in section 2.2, specifically in equation (2.29). If

the analysis of chapter 3 proceeded first using the Cartesian stress basis, then this

relationship could be used to determine the core scalings of the natural stress variables

µ and ν (although only for the case 2/3 < α < 1 as we will see). Instead, these scalings

have been left unknown and determined by matching to the self-similar boundary layer

equations, however in this appendix we show how the determinant relationship may be

used, and verify the scalings found in chapter 3.

First, we record our determinant relationship in core variables. Equation (2.29)

becomes

(v∗.∇∗)det(T∗ + ε2(1−α)I) =
(

κε2−αntr(T∗) + ε4−α(n+2)
)(

tr(T∗ + ε2(1−α)I) − 2ε2(α−1)det(T∗ + ε2(1−α)I)
)

,

(B.1)

and hence to leading order we have

(v∗.∇∗)det(T∗ + ε2(1−α)I) = 0. (B.2)

This suggests that det(T∗ + ε2(1−α)I) is constant along streamlines, and we make the

assumption that it takes the form

det(T∗ + ε2(1−α)I) = εm1∆0

(

Ψ∗

C0

)m2

, (B.3)

for some constants m1, m2 to be determined next.

Now, scaling our determinant relationship into the boundary layer and using the
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similarity scalings gives

ε2(1−α)X̄2(α−1)
(

t11(t22 + 1) − t212
)

= εm1+m2n(1−α)X̄m2(1+α)∆0

(

f

C0

)m2

. (B.4)

Equating powers of X̄ and ε determines m1 and m2 as

m1 = 2(1 − α)(2 − α), m2 =
2(α − 1)

n
, (B.5)

so in the boundary layer

t11(t22 + 1) − t212 = ∆0

(

f

C0

)
2(α−1)
n

. (B.6)

We finally then have the condition

det(T + I) = ∆0

(

ψ

C0

)
2(α−1)
n

, (B.7)

holding in the core region.

We can verify the values of θ2 and θ3 by using a relationship between the two bases

involving the determinant. From (2.36) we had that

det(T + I) = λν − µ2, (B.8)

and with our determinant relationship (B.7) we can now verify the scalings for µ and

ν. We had the scalings

ψ = εnαΨ∗, λ = ε2α(1−n)λ∗, µ = θ2µ
∗, ν = θ3ν

∗, (B.9)

and we can now consider the scaling for det(T + I) into the core, which is

(εnα)
2(α−1)
n = ε2α(α−1). (B.10)

We can finally balance this with the other terms in equation (B.8) to find that

θ2 = εα(α−1), and θ3 = ε2α(α+n−2). (B.11)

which agrees with (3.117). This result only holds for the 2/3 < α < 1 region, which can

be seen by instead carefully performing the scalings in the natural stress basis. The

term κλ∗(0)
∣

∣v∗(0)
∣

∣

4
once again intrudes when 1/2 ≤ α ≤ 2/3, but in the (B.8) equation.
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Finally, we use the complete description of the far-field and consider our determinant

relationship. Using the far-field behaviour for f(ξ) in equation (B.6) we find at leading

order

t11(t22 + 1) − t212 ∼ ∆0ξ
−2+2α, as ξ → ∞. (B.12)

Using our full far-field expansions, we can verify that this is satisfied for α > 2/3, with

the constant

∆0 =
C2

1 (2 − α)2

α(1 + α)(3α2 − 10α + 6)

(

2(2α − 3)C5

+
(1 − 2α)(3α6 − 22α5 + 54α4 − 30α3 − 45α2 + 48α − 12)C2

4

(1 + α)(α2 − 5α+ 2)2

)

, (B.13)

however in the cases α = 2/3 and α < 2/3, a forcing term intrudes and the leading

order term of t11(t22 + 1) − t212 is at O(log(ξ)ξ−2/3) and O(ξ−α) respectively. Thus

confirms that this determinant relationship holds only for α ∈ (2
3 , 1).

It can be verified when 2/3 < α < 1 that these satisfy

λ̃ν̃ − µ̃2 ∼ ∆0ξ
−2+2α, as ξ → ∞, (B.14)

with ∆0 as given in (B.13), showing consistency with (B.7). The forcing term in ν

intrudes for the other ranges causing the breakdown of this determinant relationship

analysis, and again displays that it holds only when 2/3 < α < 1.
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Wedge sink flow using the PTT

equations

We here provide a brief initial investigation of the flow of the PTT fluid into a wedge -

wedge sink flow. The analysis here attempts a similar analysis to that of the UCM and

Oldroyd-B models in this geometry by Evans and Hagen in [EH08], but matching the

core solution to a viscometric boundary layer fails. The geometry in question is shown

in figure C-1.

C.1 The core solution

The scalings in the core are motivated by assuming that away from the walls the

component of the velocity in the θ direction is zero, i.e. the stream function away from

the walls will be a function of θ only. Thus ψ = ψ(θ) in the core, and θ = O(1). These

motivate the order of magnitude estimates

r = O(ε), ψ = O(1), v = O(ε−1), T = O(ε−q), p = O(ε−p∗). (C.1)

The terms in the governing equations (1.32)–(1.34) are then of the sizes

Re (v.∇)v = O(ε−3), −∇p = O(ε−p∗−1), ∇.T = O(ε−q−1),

T = O(ε−q),
5

T= O(ε−2−q), κ (tr T)T = O(ε−2q), 2D = O(ε−2). (C.2)
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The fullest balance, which retains the inertia terms in the momentum, occurs when

q = p∗ = 2 and gives the leading order core equations of

Balance 1: Re (v.∇)v = −∇p+ ∇.T,
5

T +κ (tr T)T = 0. (C.3)

There are two other possibilities not considered here of

Balance 2: p∗ = 2, q < 2 Re (v.∇)v = −∇p
5

T= 0,

Balance 3: p∗ = q, q > 2 ∇p = ∇.T, (tr T)T = 0. (C.4)

Figure C-1: Schematic of the wedge sink flow geometry, symmetric about θ = π/2α.
Shown are the likely asymptotic regions of the core flow and boundary layers using
the PTT equations. The boundary layer thicknesses and boundary layer balances are
unknown as matching the core solution to wall boundary layers has been unsuccessful.

In the core region we seek a solution to balance 1. The following calculations are

performed in polar coordinates. Assuming

T =
1

r2

(

grr(θ) grθ(θ)

grθ(θ) gθθ(θ)

)

, and ψ = g(θ), (C.5)
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then substituting into balance 1 gives

−2g′′grθ + κgrr(grr + gθθ) = 0 (C.6)

gθθ(−4g′ + κ(grr + gθθ)) = 0 (C.7)

−2g′grθ − g′′gθθ + κgrθ(grr + gθθ) = 0, (C.8)

giving two possible solutions where gθθ = 0 and gθθ 6= 0 in (C.7). The first solution

has gθθ = 0 to satisfy (C.7), causing grr = 2g′

κ (ignoring the trivial solution) and

grθ = 2g′2

κg′′ . Solution 2 has gθθ = 16g′3

κ(g′′2+4g′2) to solve (C.7), causing grr = 4g′g′′2

κ(g′′2+4g′2)

and grθ = 8g′2g′′

κ(g′′2+4g′2)
. A third solution comes from considering the form of the UCM

solution, and instead taking Trθ = Tθθ = 0. This automatically solves two of the

constitutive equations, and the third gives

rg′
∂Trr
∂r

+ 2g′Trr + κT 2
rrr

2 = 0 (C.9)

which has the general solution

Trr =
g′

r2(κ log(r) +A(θ)g′)
, where A(θ) is an arbitrary function of θ. (C.10)

Solution 1

Using the solution

Trr =
2g′

κr2
, Trθ =

2g′2

κg′′r2
, Tθθ = 0, (C.11)

we find the momentum equations implying p = p(r), and

−2g′2g′′′ − g′′2
(

−Reg′2κ+
dp

dr
r3κ− 2g′

)

= 0, (C.12)

with solution

p(r) =
1

r2

(

g′2g′′′

κg′′2
− Reg′2

2
− g′

κ

)

+ Cp =
p0

r2
+ Cp. (C.13)

Solution 2

This is the solution

Trr =
4g′g′′2

κ(g′′2 + 4g′2)r2
, Trθ =

8g′2g′′

κ(g′′2 + 4g′2)r2
, Tθθ =

16g′3

κ(g′′2 + 4g′2)r2
, (C.14)
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however, when substituted into the momentum equations this solution form does not

give the desired effect of forcing p = p(r).

Solution 3

The solution

Trr =
g′

r2(κ log(r) +A(θ)g′)
, Trθ = Tθθ = 0, (C.15)

where A(θ) is an arbitrary function of θ in the momentum equations gives p = p(r)

and

dp

dr
=

(

ReA(θ)2g′3 + 2Reκ log(r)A(θ)g′2 + (Reκ2 log(r)2 −A(θ))g′ − κ− κ log(r)
)

g′

r3(κ log(r) +A(θ)g′)2
,

(C.16)

provided κ log(r)+A(θ)g′ 6= 0, which has no easy solution for p. This form of the stresses

would motivate boundary layer scalings containing logarithmic terms, consequently

preventing a simple balance to obtain viscometric behaviour.

C.2 The matching behaviour of solution 1

Continuing with solution 1, to find boundary layer scalings we require the behaviour

as θ → 0. In Cartesian coordinates, solution 1 is (without approximation)

T11 = cos2 θ
2g′

κr2
− 2 sin θ cos θ

2g′2

κg′′r2
=

2g′

κr2
cos θ

(

cos θ − 2 sin θ
g′

g′′

)

,

T12 = sin θ cos θ
2g′

κr2
+ (cos2 θ − sin2 θ)

2g′2

κg′′r2
=

2g′

κr2

(

sin θ cos θ + (cos2 θ − sin2 θ)
g′

g′′

)

,

T22 = sin2 θ
2g′

κr2
+ 2 sin θ cos θ

2g′2

κg′′r2
=

2g′

κr2
sin θ

(

sin θ + 2cos θ
g′

g′′

)

, (C.17)

which as θ → 0 implies

T11 ∼ 2g′

κr2
cos θ (cos θ) ∼ 2g′

κr2
,

T12 ∼ 2g′

κr2
cos θ

(

sin θ + cos θ
g′

g′′

)

∼ 2g′

κr2

(

θ +
g′

g′′

)

,

T22 ∼ 2g′

κr2
sin θ

(

sin θ + 2cos θ
g′

g′′

)

∼ 2g′

κr2
θ

(

θ + 2
g′

g′′

)

. (C.18)
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Making the power law assumption that

g ∼ C0θ
n + C1θ

n+1 + ... as θ → 0, (C.19)

motivates the boundary layer scalings

x = εX̄, y = δȲ , ψ =

(

δ

ε

)n

Ψ̄,

p = ε2p̄, T11 =
δn−1

εn+1
T̄11, T12 =

δn

εn+2
T̄12, T22 =

δn+1

εn+3
T̄22, (C.20)

provided n 6= 1. If n = 1 the scalings change and correct terms to achieve visco-

metric behaviour are unable to be retained, unfortunately however, when using the

scalings from (C.20) then to obtain the correct terms in the boundary layer equations

for viscometric behaviour forces n = 1. This result (that n = 1) is as expected when

performing the analysis as in [EH08]. This is seen as in the UCM and Oldroyd-B cases

it was found that sink wedge flow had the same results as for the upstream boundary

layer re-entrant corner flow but with α = 0. PTT re-entrant corner flow has the stream

function vanishing as O(rnα) with n = 1 + α, compared to n = 3 − α for both UCM

and Oldroyd-B. It is this result that now prevents the same analysis holding for the

PTT flow in the sink wedge geometry.

We note briefly that modifications to (C.19) including g ∼ C0θ + C1θ
2 log(θ), g ∼

C0θ log(θ) +C1θ and g ∼ C0θ log(θ)2 +C1θ are unable to match the core solution into

a viscometric boundary layer.

The solution for sink wedge flow of the PTT fluid remains an outstanding problem.



Appendix D

A generalised core solution

In section 3.1.4, a derivation of the core solution relevant to the situation when the

upper convected derivative dominates was given. There is an assumption made to

equation (3.19) that the forcing term f must be zero, with brief discussion made. Here

we relax this assumption, and attempt to find a more general core solution relevant

to the corner flows we have been considering. Unfortunately none of the solutions

found are able to both determine the correct core balance and match into viscometric

boundary layers. We record the analysis here as the solutions may be of relevance for

other problems or situations.

D.1 The particular solution with a constant forcing term

Poisson’s equation in two-dimensional polar coordinates is

1

r

∂

∂r

(

r
∂ψ̃

∂r

)

+
1

r2
∂2ψ̃

∂θ2
= k, (D.1)

where the arbitrary forcing term function f has been assumed to be a constant f(ψ̃) =

k. We now take the form

ψ̃ = A1r
m1g1(θ) +A2r

m2g2(θ), (D.2)

and derive the equation

A1m1
2rm1g1 +A2m2

2rm2g2 +A1r
m1
d2g1
dθ2

+A2r
m2
d2g2
dθ2

= kr2. (D.3)

There is a choice of balances, but since m1 < m2, then clearly we must have m1 = 2.

The homogeneous option here would give the solution of section 3.1.4. At leading order

161
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then, we have the equation

4A1g1 +A1
d2g1
dθ2

= k. (D.4)

This equation in g1 is a second order, constant coefficient ODE, and hence can be easily

solved as g1 = C1 cos(2θ)+C2 sin(2θ)+ k
4A1

. Combining this with the no-slip conditions

at the walls, of g(0) = g(π/α) = 0, the solution becomes

ψ̃ =
k

4
r2

(

1 − cos(2θ) +
cos(2π

α ) − 1

sin(2π
α )

sin(2θ)

)

, (D.5)

and thus as θ → 0,

ψ̃ ∼ k

2
r2θ

(

cos(2π
α ) − 1

sin(2π
α )

)

. (D.6)

The resulting matching conditions and scalings

Having found the behaviour of ψ̃, we now want to find the matching conditions for ψ

and its derivatives to determine this solutions suitability. From above we have

ψ̃ ∼ k

2
r2θ

(

cos(2π
α ) − 1

sin(2π
α )

)

, (D.7)

and then we convert this into our stream function ψ using (3.24), (3.62), and (3.63).

This means that

ψ ∼ c1

(

k

2

(

cos(2π
α ) − 1

sin(2π
α )

))n

r2nθn. (D.8)

The core scalings we obtain from this, along with our knowledge that T = λ(ψ)vvT

and λ = c1ψ
2(1−n)
n allows us to find the core scalings

r = εR∗, x = εX∗, y = εY ∗, ψ = ε2nR∗, v = ε2n−1v∗, T = ε2T∗, p = ε2p∗.

(D.9)

The governing equations thus become

Re ε4n−4(v∗.∇∗)v∗ = −∇∗p∗ + ∇∗.T∗, ∇∗.v∗ = 0,

ε2−2nT∗ +

(

5

T∗ +κε4−2n(tr T∗)T∗
)

= ε−22D∗. (D.10)
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Unfortunately these scalings show that
5

T∗ does not dominate in the core region for

any choice of n, and hence this form for the stream function does not work. We can

achieve the Newtonian balance of T∗ = 2D∗ if we choose n = 2, although this is not of

interest here.

D.2 The particular solution with a power law forcing term

The Poisson equation in two-dimensional polar coordinates that we are interested in is

1

r

∂

∂r

(

r
∂ψ̃

∂r

)

+
1

r2
∂2ψ̃

∂θ2
= f(ψ̃). (D.11)

We assume the arbitrary function f takes a power law form f(ψ̃) = kψ̃−q. To make

progress, we take the form

ψ̃ = A1r
m1g1(θ) +A2r

m2g2(θ), (D.12)

and derive the equation

A1g1m
2
1r
m1−2 +A2g2m

2
2r
m2−2 +A1r

m1−2g′′1 +A2r
m2−2g′′2

= k (A1r
m1g1 +A2r

m2g2)
−q , (D.13)

which after expanding and truncating the right hand side is

A1g1m
2
1r
m1−2 +A2g2m

2
2r
m2−2 +A1r

m1−2g′′1 +A2r
m2−2g′′2

= k
(

A−q
1 r−qm1g−q1 − qA−q−1

1 A2r
m2−m1(q+1)g−q−1

1 g2

)

.

(D.14)

At leading order, this equation becomes

A1g1m
2
1r
m1−2 +A1r

m1−2g′′1 = kA−q
1 r−qm1g−q1 . (D.15)

D.2.1 Case 1, q 6= 1

In this case, we can balance the r powers (choosing not to gives Hinch’s core solution),

and find that m1 = 2
1+q , provided q 6= −1. We are then left with the equation

4A1+q
1 g1+q

1 + (1 + q)2A1+q
1 g′′1g

q
1 = (1 + q)2k, (D.16)
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and to make further progress we make the substitution

g1 = B1θ
p1 +B2θ

p2. (D.17)

The resulting balances give two options.

Case 1(a), q < 1

By making this choice, the leading order balance gives p1 = 1 and then p2 = 2 − q. It

is possible to determine B2 in terms of the other variables, requiring q 6= 1, 2, but as

q < 1, this does not pose any further restrictions. Here then the form for ψ̃ is

ψ̃ ∼ A1r
2

1+q
(

B1θ +B2θ
2−q) . (D.18)

Converting this, we see

ψ ∼ c1A
n
1r

2n
1+q
(

B1θ +B2θ
2−q)n ,

∼ c1A
n
1r

2n
1+q
(

Bn
1 θ

n + nBn−1
1 B2θ

n+1−q) ,

∼ C0r
2n
1+q
(

θn + C1θ
n+1−q) , (D.19)

allowing us to find the core scalings

r = εR∗, x = εX∗, y = εY ∗,

ψ = ε
2n
1+qR∗, v = ε

2n
1+q

−1
v∗, T = ε

4
1+q

−2
T∗, p = ε

4
1+q

−2
p∗. (D.20)

This is true provided n 6= 0. The governing equations thus become

Re ε
4n−4
1+q (v∗.∇∗)v∗ = −∇∗p∗ + ∇∗.T∗, ∇∗.v∗ = 0,

ε2−
2n
1+qT∗ +

(

5

T∗ +κε
4−2n
1+q (tr T∗)T∗

)

= ε2−
4

1+q 2D∗. (D.21)

So here we have the correct balances providing (in the case of q > −1): n > 1, n < 1+q,

n < 2, q > 1. So here there is a contradiction, and D∗ dominates. In the case of q < −1,

all of these conditions swap their inequalities, and so we require n < 1, 1+q < n, 2 < n,

q < 1, and the contradiction comes from stating that n < 1, but also n > 2.

Case 1(b), q > 1

By making this choice, the leading order balance gives p1 = 2
1+q and then p2 = 2q

1+q . It

is possible to determine B1 in terms of the other variables and actually take out A1 too,
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with the requirement q 6= 1, but as q > 1, this does not pose any further restrictions.

Here then the form for ψ̃ is

ψ̃ ∼ A0r
2

1+q

(

θ
2

1+q +B2θ
2q

1+q

)

,

∼ A0(rθ)
2

1+q

(

1 +B2θ
2q−2
1+q

)

. (D.22)

Converting this, we see

ψ ∼ c1A
n
0 (rθ)

2n
1+q

(

1 +B2θ
2q−2
1+q

)n
,

∼ c1A
n
0 (rθ)

2n
1+q

(

1 + nB2θ
2q−2
1+q

)

,

∼ C0(rθ)
2n
1+q

(

1 + C1θ
2q−2
1+q

)

, (D.23)

allowing us to find the core scalings

r = εR∗, x = εX∗, y = εY ∗,

ψ = ε
2n
1+qR∗, v = ε

2n
1+q

−1v∗, T = ε
4

1+q
−2T∗, p = ε

4
1+q

−2p∗. (D.24)

This is true provided n 6= 0. The governing equations thus become

Re ε
4n−4
1+q (v∗.∇∗)v∗ = −∇∗p∗ + ∇∗.T∗, ∇∗.v∗ = 0,

ε
2− 2n

1+qT∗ +

(

5

T∗ +κε
4−2n
1+q (tr T∗)T∗

)

= ε
2− 4

1+q 2D∗. (D.25)

So here we have the correct balances providing n > 1, 1 + q > n, 2 > n, q > 1.

Summarising, we need 1 < n < 2, with all other conditions satisfied due to the q > 1

range already imposed. In this case we have the correct core balance and continue to

make progress into the boundary layer.

We had the stream function as

ψ ∼ C0(rθ)
2n
1+q

(

1 + C1θ
2q−2
1+q

)

, (D.26)
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and at leading order we know r ∼ x, θ ∼ y
x as θ → 0. Thus

ψ ∼ C0y
2n
1+q

(

1 + C1

(y

x

)
2q−2
1+q

)

,

∂ψ

∂x
∼ C0y

2n+2q−2
1+q

(

C1

(

2 − 2q

1 + q

)

x
1−3q
1+q

)

,

∂ψ

∂y
∼ C0

(

2n

1 + q

)

y
2n−1−q

1+q . (D.27)

Unfortunately, the scalings for the Tij ’s require ∂ψ
∂x /

∂ψ
∂y ∼ F (x)y to balance the terms

within the upper convected stress derivative, yet here ∂ψ
∂x /

∂ψ
∂y ∼ F (x)y

3q−1
1+q , thus requir-

ing q = 1, which is outside our current range q > 1.

D.2.2 Case 2, q = 1

Here we discuss the degenerate case of q = 1, and the leading order equations then

force a balance of m1 = 1. The equation for g1 becomes

A2
1g1(g1 + g′′1 ) = k. (D.28)

There is a possible solution g1=Const, so we perform an eigenmode analysis about

g1 = C0. Linearising so that g1 = C0g + δg2, and taking terms of O(δ) gives a solvable

ODE in g2, with solution

g2 = C1g sin(
√

2θ) + C2g cos(
√

2θ). (D.29)

This implies looking for the type of form as has been considered previously. Considering

the θ powers, the options for p1 at leading order are p1 = 1 to balance, or p1 = 0 in the

homogeneous case. As would be expected from Case 1, the choice of p1 = 1 causes a

contradiction in the size of p2 relative to p1 at the following order (this situation would

be Case 1 with q = 1 so was likely to have issues), and thus the remaining option

to consider p1 = 0. So, in this case ψ̃ ∼ A1r + . . . , which clearly cannot satisfy the

boundary condition that ψ̃ → 0 as θ → 0.

There is an alternative form for g1 which we could also consider

g1 = C0θ
n log(θ)m. (D.30)
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We then have the equation

C2
0A

2
1θ

2n−2m(m− 1) log(θ)2m−2 + 2m

(

n− 1

2

)

θ2n−2C2
0A

2
1 log(θ)2m−1

+C2
0A

2
1n log(θ)2m(n− 1)θ2n−2 = k, (D.31)

and thus we must balance n = 1 leaving

C2
0A

2
1m(m− 1) log(θ)2m−2 +mC2

0A
2
1 log(θ)2m−1 = k, (D.32)

forcing m = 1/2. Thus at leading order, we have the stream function

ψ = A1C0rθ
√

log(θ). (D.33)

For small θ this then gives the unrealistic result of complex stream function behaviour.

D.2.3 Case 3, q = −1

Here assuming the form of ψ as ψ = A1r
m1g1 gives the equation

(

m2
1g1 + g′′1

)

rm1−1 = krm1+1g1. (D.34)

Clearly it is impossible to balance the r powers, and thus the leading order must be

the homogeneous equation m2
1g1 + g′′1 = 0, providing us with Hinch’s core solution

previously studied.

D.3 A log(r) form for ψ, with q = 1

It is possible to assume a leading order form for ψ of

ψ̃ ∼ A1r
m1 (log(r)m2g1(θ) +A2g2(θ)) , (D.35)

and at leading order in the Poisson equation, balancing forces m1 = 1. To balance the

leading order with the forcing term gives m2 = 0, which would remove the logarithmic

behaviour, so the next possibility of those terms being homogeneous, and the next

terms balancing gives then the requirement that A2 = 0, m2 = 1/2, and g1 + g′′1 = 0.

This final ODE has the general solution g1 = C1 sin(θ) + C2 cos(θ). At leading order,

the only thing left is to require A2
1g

2
1 = k. We thus have

ψ̃ ∼ A1r
√

log(r) (C1 sin(θ) + C2 cos(θ)) . (D.36)
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Requiring A2
1g

2
1 = k unfortunately requires C2 =

√
k

A1
when θ = 0, and thus we do not

have ψ̃ → 0 as θ → 0.

D.4 A different forcing term in Poisson’s equation

A recap of the Poisson equation in two-dimensional polar coordinates that we are

interested in is

1

r

∂

∂r

(

r
∂ψ̃

∂r

)

+
1

r2
∂2ψ̃

∂θ2
= f(ψ̃). (D.37)

We can instead now assume the arbitrary function f has a log form f(ψ̃) = kψ̃−1 logψ,

where we are trying to find an analogue of the q = 1 case before, but hopefully the log

term prevents the degeneracy. Assuming the form

ψ̃ = A1r
m1θp1 (log(θ)p2 +A2) , (D.38)

and balancing we find that A1 =
√
k, m1 = p1 = p2 = 1, and A2 is arbitrary. Thus

ψ̃ ∼
√
krθ (log(θ) +A2) , (D.39)

which then gives

ψ̃ ∼
√
ky (log(y/x) +A2) ,

∂ψ̃

∂x
∼ −

√
k (y/x) ,

∂ψ̃

∂y
∼

√
k (log(y/x) +A2 + 1) .

(D.40)

The scalings resulting from this behaviour would involve logarithmic terms and not

allow the correct balances to be obtained.



Appendix E

Re-entrant corner flow in the
1
2 ≤ α ≤ 2

3 case

Revisiting the core region analysis, but with the knowledge that the ν∗(0) core balance is

that of (3.120) for the case 1
2 ≤ α ≤ 2

3 (which corresponds to corners 270o ≤ θ ≤ 360o),

the leading order equations are

0 = ∇∗p∗(0) + (v∗(0).∇∗)(λ∗(0)v∗(0)),

(v∗(0).∇∗)λ∗(0) = 0, (v∗(0).∇∗)µ∗(0) = 0,
(

v∗(0).∇∗
)

ν∗(0) = κλ∗(0)
∣

∣

∣
v∗(0)

∣

∣

∣

4
, (E.1)

with T∗(0) = λ∗(0)v∗(0)v∗(0)T . The general solution to these equations is then

Ψ∗(0) =
C0

αn
R∗nα sinn(αθ), p∗(0) = p0R

∗−2(1−α),

λ∗(0) =
2p0

n2C2
0

(

Ψ∗(0)

C0

)
2(1−n)
n

, µ∗(0) = d2

(

Ψ∗(0)

C0

)n2

, (E.2)

with the solution for ν∗(0) considered next.

The simplest way to investigate the solution to (3.120) is to consider it in polar coor-

dinates and convert it into an ODE with respect to the polar angle θ along streamlines.

Following [Ren97b], we have

(

v∗(0).∇∗
)

= vr
∂

∂R∗ +
vθ
R∗

∂

∂θ
, (E.3)
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and vr
vθ

= 1
R∗

dR∗

dθ , where vr = 1
R∗

∂Ψ∗(0)

∂θ , vθ = −∂Ψ∗(0)

∂R∗ . From (E.3) then

(

v∗(0).∇∗
)

=
vθ
R∗

dR∗

dθ

∂

∂R∗ +
vθ
R∗

∂

∂θ
=

vθ
R∗

(

dR∗

dθ

∂

∂R∗ +
∂

∂θ

)

=
vθ
R∗

d

dθ
. (E.4)

The core balance (3.120) now becomes

vθ
R∗

dν∗(0)

dθ
= κλ∗(0)

∣

∣

∣
v∗(0)

∣

∣

∣

4
, (E.5)

which upon using the general solutions (E.2) gives

dν∗(0)

dθ
= −2p0κC0nα

3α−2
α

(

Ψ∗(0)

C0

)1+ 2α−2
nα

sin
2−4α
α (αθ), (E.6)

with solution

ν∗(0) =































−2p0κC0n
(

Ψ∗(0)

C0

)
n−1
n
(

− log δ +
∫ s=θ
s=π/2α

1
sin(αs)ds

− 1
2n log

(

Ψ∗(0)

C0

))

, for α = 2
3 ,

−2p0κC0nα
3α−2
α

(

Ψ∗(0)

C0

)1+ 2α−2
nα ∫ s=θ

s=0 (sin(αs))
2−4α
α ds, for 1

2 ≤ α < 2
3 .

(E.7)

This solution omits the additive homogeneous solutions (i.e. the arbitrary functions

of Ψ∗(0)). Such terms match into higher order boundary layer terms and play no role

in the main analysis. Further, the integral limits follow only after matching with the

upstream boundary layer (which have been pre-empted here for conciseness, but will

be derived later in this appendix). In the α = 2/3 case the quadrature has the explicit

evaluation

∫ s=θ

s=π/2α

1

sin(αs)
ds =

1

α
log

(

sin(αθ)

1 + cos(αθ)

)

. (E.8)

For matching purposes, the upstream wall behaviour as θ → 0 is then

as Y ∗ → 0, Ψ∗(0) ∼ C0X
∗n(α−1)Y ∗n, p∗(0) ∼ p0X

∗2(α−1),

λ∗(0) ∼ 2p0

n2C2
0

X∗2(α−1)(1−n)Y ∗2(1−n), µ∗(0) ∼ d2X
∗n(α−1)n2Y ∗nn2 ,

ν∗(0) ∼
{

−2p0κC0nX
∗(1−n)/3Y ∗n−1

(

− log δ + log
(

Y ∗

X∗4/3

))

, for α = 2
3 ,

−2p0κC0n
2−3α X∗1+(n+2)(α−1)Y ∗n−1, for 1

2 ≤ α < 2
3 .

(E.9)
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The boundary layer

The scalings from (3.72) continue to hold with this different core balance for ν∗(0). The

only difference lies in the scaling ν∗ = δnn3 ν̄, where (E.9) would suggest n3 = (n−1)/n

in contrast to the other range 2/3 < α < 1 where n3 = 2(2α − 1)/n. The scaling

exponent n3 here will be left general as (E.9) has only been stated but not proven from

the previous section.

As the scalings have not been altered, the analysis of the boundary layer equations

follows as in section 3.2.2. The same leading order boundary layer equations are found

(as in (3.101), or (3.109) in terms of the stream function), with the dominant balance

giving the same results as in (3.90). In particular, this gives θ3δ
nn3 = ε2(2α−1) but

also from the core balance for this range 1/2 ≤ α ≤ 2/3 we have in (3.119) that

θ3 = εα
2+3α−2. These pieces of information allow the determination of n3 as

n3 =
α

1 + α
. (E.10)

The matching conditions in (3.113) hold for this range 1/2 ≤ α ≤ 2/3, except for

ν̄. We thus seek to find the form for the ν̄ matching condition, and confirm the results

of equations (E.7) and (E.9). The core balance (3.120) scaled into the boundary layer

is

δn−1+nn3
(

Ψ̄Ȳ ν̄X̄ − Ψ̄X̄ ν̄Ȳ
)

= κ
C1

n2C
2/n
0

Ψ̄
2(1−n)
n δ2(1−n)

(

δ2(n−1)Ψ̄2
Ȳ + δ2nΨ̄2

X̄

)2
, (E.11)

which at leading order (having used n3 from (E.10)) this says

Ψ̄Ȳ ν̄X̄ − Ψ̄X̄ ν̄Ȳ = κ
C1

n2C
2/n
0

Ψ̄
2(1−n)
n Ψ̄4

Ȳ . (E.12)

Making the assumption that the ν̄ matching condition is of the form

ν̄ ∼ EX̄m1 Ȳ m2 (E.13)

for unknown constants E, m1 and m2, then (E.12) with the applicable results of (3.113)

give

E (m1 +m2(1 − α)) X̄n(α−1)+m1−1Ȳ n−1+m2

∼ κ
C1

n2C
2/n
0

C
2(1−n)
n

+3
0 n3X̄2(α−1)(1+n)Ȳ 2(n−1). (E.14)
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Equating coefficients gives

m1 = (α− 1)(2 + n) + 1 = α2 + 2α− 2, m2 = α, E = −κC0C1n

2 − 3α
, (E.15)

or E in terms of d1 or p0 equivalently

E = −κd1C
3
0n

3

2 − 3α
= −2p0κ(1 + α)C0

2 − 3α
. (E.16)

The coefficient E has a singularity when α = 2/3, indicating the assumed form in

(E.13) has to be modified for this value of α, and will be considered next. To conclude,

there are three cases to consider in the natural stress basis: 1/2 ≤ α < 2/3, α = 2/3,

and 2/3 < α < 1, and in the 1
2 ≤ α < 2

3 case the ν matching condition is

as Ȳ → ∞, ν̄ ∼ −2p0κ(1 + α)C0

2 − 3α
X̄α2+2α−2Ȳ α. (E.17)

It can also be noted that this is invariant under the scaling group (3.115), and thus the

same similarity solution will occur for both cases 1
2 < α < 2

3 and 2
3 < α < 1.

The case α = 2
3

The two cases 1
2 < α < 2

3 and 2
3 < α < 1 now need to be joined by a third case at the

point α = 2
3 . As well as being of mathematical interest, this corresponds to the 270o

angle that occurs in a contraction flow, mentioned at the start of chapter 3 and shown

in figure 3-1. The leading order boundary layer equation for the ν̄ matching condition

is given in (E.12), and the assumption (E.13) needs to be altered to take into account

the singularity in E occurring at α = 2/3. Considering

ν̄ = E0X̄
m1 Ȳ m2

(

L1 log(X̄) + L2 log(Ȳ )
)

, (E.18)

with unknown constants E0, L1 and L2, where m1 = −2
9 , m2 = 2

3 as α = 2/3 in this

case, leads to

5

9
E0C0 (3L1 + L2) X̄

− 16
9 Ȳ

4
3 ∼

(

5

3

)2

κC1C
2
0X̄

− 16
9 Ȳ

4
3 , (E.19)

after using (E.12) and the known matching conditions as Ȳ → ∞. The X̄ and Ȳ powers

agree, leaving only to equate

E0 =
5κC0C1

3L1 + L2
=

10κp0C0

3L1 + L2
, (E.20)
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and hence

as Ȳ → ∞, ν̄ ∼ 10κp0C0

3L1 + L2
X̄− 2

9 Ȳ
2
3

(

L1 log(X̄) + L2 log(Ȳ )
)

, (E.21)

where L1 and L2 are still arbitrary. For the scaling group (3.115) to leave this matching

condition invariant, we require L2 = −3
4L1, which simplifies the matching condition to

as Ȳ → ∞, ν̄ ∼ −10

3
κp0C0X̄

− 2
9 Ȳ

2
3 log

(

Ȳ

X̄4/3

)

. (E.22)



Appendix F

Full far-field expansions

We record here the full far-field expansions relevant to section 3.2.4. The expressions

found are significantly larger than the UCM equivalent, and thus many of the coeffi-

cients are recorded separately, with the superscripts of these coefficients indicating the

free constants for which the forcing term is associated (e.g. F (23) is a forcing term asso-

ciated with C2 and C3). Additionally, there are two expansions given - one for α 6= 2/3

and one for α = 2/3 due to the singular coefficients at this specific (and important) α

value.

Similar to UCM in [Eva08a], it is found that the forcing terms associated with C2

increase in number as α→ ∞. All terms involving C2 which are larger than O(ξ−4+2α)

(the size of the last eigenmode) are given for the range 1/2 ≤ α ≤ 2/3, with more terms

intruding (but not given) as α increases. All terms involving the other constants are

included irrespective of the value of α.

The order of the terms in the series varies with α, and so the terms are ordered in

the case when α < 2/3 (in the α 6= 2/3 expansion). We thus have the α 6= 2/3 farfield

expansion as

f(ξ) ∼ C0

κ
ξ1+α

(

1 +
κC1(2α− 1)

α(3α − 2)(1 − α)C0
ξ−α +C2ξ

−2+2α + C3ξ
−1 + F2ξ

−2α

+C4ξ
−2+α +

κC1C3(2α − 1)

C0α(3α − 2)(1 − α)(1 + α)
ξ−1−α + F3ξ

−3α + F
(2)
1 ξ−4+4α + F

(23)
1 ξ2α−3

+
(

F
(2)
2 + F

(3)
1 + F

(4)
1

)

ξ−2 + F
(3)
2 ξ−1−2α + F4ξ

−4α +
(

F
(24)
1 + F

(2)
3

)

ξ3α−4

+
C3C4(2α − 1)

1 + α
ξα−3 +

(

F
(2)
4 + F

(4)
2 +

κ(3α + 2)(α− 1)

6C0α(1 + α)(3α − 2)(2 + α)

)

ξ−2−α

+F
(3)
3 ξ−1−3α + F5ξ

−5α + F
(2)
5 ξ6α−6 + F

(23)
2 ξ−5+4α + C5ξ

−4+2α

+
(

F
(2)
6 + F

(24)
2

)

ξ−6+5α + F
(2)
7 ξ−8+8α

)

, (F.1)
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t11(ξ) ∼ C1

(

1 +
κC1

C0(1 + α)(3α − 2)
ξ−α +

2(2α − 1)C2

1 + α
ξ−2+2α +A2ξ

−2α

+

(

2(1 − α)(2α − 1)(2 − α)C4

(1 + α)(α2 − 5α+ 2)
+A

(2)
1

)

ξ−2+α +A
(3)
1 ξ−1−α +A3ξ

−3α

+
4C2

2 (2α − 1) (α− 1)

(1 + α)2
ξ−4+4α +

4 (α− 1) (2α− 1)C3C2

(1 + α)2
ξ2α−3

+
(

A
(2)
2 +A

(4)
1

)

ξ−2 +A
(3)
2 ξ−1−2α +A4ξ

−4α

+
(

A
(24)
1 +A

(2)
3

)

ξ3α−4 +
(

A
(23)
1 +A

(34)
1

)

ξα−3

+

(

κ

3C0α (3α − 2) (1 + α)
+A

(4)
2 +

ακC1C
2
3

2C0 (3α− 2) (1 + α)2
+A

(2)
4

)

ξ−2−α

+A
(3)
3 ξ−1−3α +A5ξ

−5α +A
(2)
5 ξ6α−6 +

16(2α − 1)(1 − α)2C2
2C3

(1 + α)3
ξ−5+4α

+

(

A
(2)
6 +A

(24)
2 +A

(23)
2 +A

(4)
3 +

6(2α − 3)(1 − α)(2 − α)C5

(1 + α)(3α2 − 10α + 6)

)

ξ−4+2α

+
(

A
(24)
3 +A

(2)
7

)

ξ−6+5α +A
(2)
8 ξ−8+8α

)

, (F.2)

t12(ξ) ∼ C1(1 − α)ξ

(

1 +
κC1(α

2 − 4α+ 2)

C0(1 + α)(3α − 2)(1 − α)2
ξ−α

−4(1 − α)C2

1 + α
ξ−2+2α − C3

(1 − α)(1 + α)
ξ−1

+B2ξ
−2α +

(

2(α2 − 2α+ 2)(2α − 1)(2 − α)C4

(1 + α)(α2 − 5α+ 2)(1 − α)
+B

(2)
1

)

ξ−2+α

+B
(3)
1 ξ−1−α +B3ξ

−3α +B
(2)
2 ξ−4+4α +B

(23)
1 ξ2α−3

+
(

B
(2)
3 +B

(4)
1

)

ξ−2 +B
(3)
2 ξ−1−2α +B4ξ

−4α +
(

B
(24)
1 +B

(2)
4

)

ξ3α−4

+
(

B
(23)
2 +B

(34)
1

)

ξα−3

+

(

B
(2)
5 +B

(3)
3 +B

(4)
2 +

(α2 − 2α− 2)κ

3C0α(3α − 2)(1 + α)2(α− 1)

)

ξ−2−α

+B
(3)
4 ξ−1−3α +B5ξ

−5α +B
(2)
6 ξ6α−6 +B

(23)
3 ξ−5+4α

+

(

12(α2 − 3α+ 3)(−2 + α)C5

(1 + α)(3α2 − 10α + 6)
+B

(4)
3 +B

(24)
2 +B

(23)
4 +B

(2)
7

)

ξ−4+2α

+
(

B
(2)
8 +B

(24)
3

)

ξ−6+5α +B
(2)
9 ξ−8+8α

)

, (F.3)
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t22(ξ) ∼ C1(1 − α)2ξ2
(

1 +
(α2 − 6α + 3)κC1

(1 + α)(3α − 2)(1 − α)2C0
ξ−α +

2(2α − 3)C2

1 + α
ξ−2+2α

− 2C3

(1 − α)(1 + α)
ξ−1 +D2ξ

−2α +

(

2C4(2 − α)(2α − 1)(α2 − 2α+ 3)

(1 − α)(1 + α)(α2 − 5α+ 2)
+D

(2)
1

)

ξ−2+α

+D
(3)
1 ξ−1−α +D3ξ

−3α +
4C2

2 (2α− 3)(4α2 − 9α+ 4)

(4α− 3)(1 + α)2
ξ−4+4α

+
4C2C3(2α

2 − 5α+ 4)

(1 + α)2
ξ2α−3

+

(

D
(4)
1 +D

(2)
2 +

C2
3

(1 − α)2(1 + α)2
− 1

C1(1 − α)2

)

ξ−2

+D
(3)
2 ξ−1−2α +D4ξ

−4α +
(

D
(24)
1 +D

(2)
3

)

ξ3α−4 +
(

D
(23)
1 +D

(34)
1

)

ξα−3

+

(

D
(2)
4 +D

(3)
3 +D

(4)
2 +

κ(α3 − 2α2 + 4α+ 3)

3C0α(1 + α)2(1 − α)2(3α− 2)

)

ξ−2−α

+D
(3)
4 ξ−1−3α +D5ξ

−5α +D
(2)
5 ξ6α−6 +D

(23)
2 ξ−5+4α

+

(

2C5(−2 + α)(6α5 − 33α4 + 75α3 − 73α2 + 20α + 6)

α(1 + α)(1 − α)2(3α2 − 10α+ 6)

+D
(4)
3 +D

(24)
2 +D

(23)
3 +D

(2)
6

)

ξ−4+2α

+
(

D
(24)
3 +D

(2)
7

)

ξ−6+5α,+D
(2)
8 ξ−8+8α

)

. (F.4)
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and the α = 2/3 expansion as

f(ξ) ∼ C0

κ
ξ5/3

{

1 −
[

3κC1 ln (ξ)

2C0
− C2

]

ξ−2/3 +C3ξ
−1

+

[

63κ2C1
2 (ln (ξ))2

40C0
2 +

3κC1 (−56C0C2 + 351κC1) ln (ξ)

80C0
2 + C4

]

ξ−4/3

−
[

9C3κC1 ln (ξ)

10C0
+

3C3 (3κC1 − 2C0C2)

10C0

]

ξ−5/3 −
[

207κ3C1
3 (ln (ξ))3

400C0
3

+
9κ2C1

2 (1417κC1 − 184C0C2) (ln (ξ))2

1600C0
3

+
κC1

(

893187κ2C1
2 − 304200κC1C2C0 + 18208C0

2C2
2 + 11840C0

2C4

)

ln (ξ)

38400C0
3

− Flog

460800C0
3

]

ξ−2

+

[

63κ2C1
2C3 (ln (ξ))2

200C0
2 +

3κC1C3 (603κC1 − 56C0C2) ln (ξ)

400C0
2

+
C3

(

80C0
2C4 + 3159κ2C1

2 − 504κC1C2C0

)

400C0
2

]

ξ−7/3

+

[

567κ4C1
4 (ln (ξ))4

16000C0
4 +

27κ3C1
3 (3021κC1 − 112C0C2) (ln (ξ))3

32000C0
4

+
3κ2C1

2
(

3089367κ2C1
2 − 420930κC1C2C0 + 280C0

2C2
2 + 14000C0

2C4

)

(ln (ξ))2

320000C0
4

+
1

25600000C0
4

(

2060800

(

150

161
+

(

C2
2 − 50

23
C4

)

C2C1

)

κC0
3

+995520C1
2

(

C2
2 +

69490

1037
C4

)

κ2C0
2

−403213680κ3C1
3C2C0 + 1736030961κ4C1

4
)

ln (ξ) +C5

]

ξ−8/3
}

, (F.5)
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t11(ξ) ∼ C1

{

1 −
[

3κC1 ln (ξ)

5C0
+

27κC1 − 4C0C2

10C0

]

ξ−2/3

−
[

9κ2C1
2 (ln (ξ))2

25C0
2 +

3κC1 (−16C0C2 + 63κC1) ln (ξ)

100C0
2 +

C4

5

+
32C0

2C2
2 + 792κC1C2C0 − 11421κ2C1

2

1600C0
2

]

ξ−4/3

+

[

6C3κC1 ln (ξ)

25C0
+

2C3 (−2C0C2 + 9κC1)

25C0

]

ξ−5/3 +

[

9639κ3C1
3 (ln (ξ))2

4000C0
3

+
3κC1

(

223317κ2C1
2 − 37080κC1C2C0 + 224C0

2C2
2 − 320C0

2C4

)

ln (ξ)

32000C0
3

+
T11log

128000C0
3

]

ξ−2 +

[

36κ2C1
2C3 (ln (ξ))2

125C0
2 +

3C3κC1 (45κC1 − 16C0C2) ln (ξ)

125C0
2

+
32C3

(

10C4 + C2
2
)

C0
2 + 1368C0C2C3C1κ− 13689κ2C1

2C3

2000C0
2

]

ξ−7/3

+

[

27κ4C1
4 (ln (ξ))4

125C0
4 +

9κ3C1
3 (11463κC1 − 1280C0C2) (ln (ξ))3

20000C0
4

+
κ2C1

2
(

118240C2
2 + 94400C4

)

C0
2 − 2472984κ3C1

3C2C0 + 7039953κ4C1
4

320000C0
4 (ln (ξ))2

+
1

960000C0
4

(

18560

(

−450

29
−
(

590

29
C2C4 +

180

29
C3

2 − C2
3

)

C1

)

κC0
3

+940608C1
2κ2

(

C2
2 +

5825

1633
C4

)

C0
2 + 1282068κ3C1

3C2C0

−77896971κ4C1
4
)

ln (ξ) +
1

2304000000C0
4

(

(

−9216000000C5 + 921600000C4
2

+26624000C2
4 − 450560000C2

2C4 + 184320000C3
2C2

)

C0
4

+529689600

(

− 75

209
+

(

−22590

2299
C2C4 −

720

121
C3

2 + C2
3

)

C1

)

κC0
3

+7877027520C1
2κ2

(

2752510

911693
C4 + C2

2

)

C0
2 − 83327978880κ3C1

3C2C0

+436053477951κ4C1
4
) ]

ξ−8/3
}

, (F.6)
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t12(ξ) ∼
1

3
C1ξ

{

1 +

[

6κC1 ln (ξ)

5C0
− 27κC1 + 4C0C2

5C0

]

ξ−2/3 − 9C3

5
ξ−1

−
[

18κ2C1
2 (ln (ξ))2

5C0
2 +

3κC1 (−80C0C2 + 531κC1) ln (ξ)

50C0
2

+2C4 +
−2952κC1C2C0 + 160C0

2C2
2 + 1215κ2C1

2

800C0
2

]

ξ−4/3

+

[

42C3κC1 ln (ξ)

25C0
+
C3 (153κC1 − 28C0C2)

25C0

]

ξ−5/3 +

[

28917κ3C1
3 (ln (ξ))2

2000C0
3

+
9κC1

(

240453κ2C1
2 − 37080κC1C2C0 + 224C0

2C2
2 − 320C0

2C4

)

ln (ξ)

16000C0
3

+
T

(1)
12log

64000C0
3



 ξ−2 +

[

198κ2C1
2C3 (ln (ξ))2

125C0
2 +

3C3κC1 (549κC1 − 176C0C2) ln (ξ)

250C0
2

+
352C3

(

10C4 + C2
2
)

C0
2 + 13320C0C2C3C1κ− 143775κ2C1

2C3

4000C0
2

]

ξ−7/3

+

[

702κ4C1
4 (ln (ξ))4

625C0
4 +

9κ3C1
3 (30495κC1 − 3328C0C2) (ln (ξ))3

10000C0
4

+

(

T
(2)
12log

)

(ln (ξ))2

800000C0
4 +

1

12000000C0
4

(

1206400

(

−450

29
+

(

−590

29
C2C4

−180

29
C3

2 +C2
3

)

C1

)

κC0
3 + 67524480C1

2κ2

(

C2
2 +

77495

23446
C4

)

C0
2

−68122620κ3C1
3C2C0 − 4506576021κ4C1

4
)

ln (ξ)

+
1

1152000000C0
4

(

(

−1171456000C2
2C4 + 479232000C3

2C2

−23961600000C5 + 69222400C2
4 + 2396160000C4

2
)

C0
4 + 1393228800κ

(

−3225

6047

+

(

−60150

6047
C2C4 + C2

3 − 36000

6047
C3

2

)

C1

)

C0
3

+21660730560

(

7526030

2507029
C4 + C2

2

)

C1
2κ2C0

2

−224268963840κ3C1
3C2C0 + 1098503540343κ4C1

4
) ]

ξ−8/3
}

, (F.7)
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t22(ξ) ∼
1

9
C1ξ

2

{

1 +

[

3κC1 ln (ξ)

C0
− 81κC1 + 20C0C2

10C0

]

ξ−2/3 − 18C3

5
ξ−1

+

[

18κ2C1
2 (ln (ξ))2

5C0
2 +

3κC1 (−32C0C2 + 477κC1) ln (ξ)

20C0
2

+
19

5
C4 +

−1696C0
2C2

2 − 22968κC1C2C0 + 4617κ2C1
2

1600C0
2

]

ξ−4/3 −
[

84C3κC1 ln (ξ)

25C0

−C3 (56C0C2 + 531κC1)

25C0

]

ξ−5/3

+

[

−243κ3C1
3 (ln (ξ))3

25C0
3 − 81κ2C1

2 (3011κC1 − 960C0C2) (ln (ξ))2

4000C0
3

+
3κC1

(

3822687κ2C1
2 + 229752κC1C2C0 − 87392C0

2C2
2 − 72640C0

2C4

)

ln (ξ)

32000C0
3

+
−1152000C0

3 + 414720C1C3
2C0

3 + 581120C1C2C4C0
3

128000C1C0
3 +

T
(1)
22log

128000C1C0
3



 ξ−2

+

[

396κ2C1
2C3 (ln (ξ))2

25C0
2 +

33C3κC1 (909κC1 − 160C0C2) ln (ξ)

250C0
2

+
C3

(

C0
2
(

5536C2
2 + 32320C4

)

− 147177κ2C1
2 − 36360κC1C2C0

)

4000C0
2

]

ξ−7/3

+

[

4914κ4C1
4 (ln (ξ))4

625C0
4 +

9κ3C1
3 (469347κC1 − 46592C0C2) (ln (ξ))3

20000C0
4

+
κ2C1

2
(

T
(2)
22log

)

(ln (ξ))2

1600000C0
4 +

1

6000000C0
4

(

(

κ
(

3768800C2
3 − 85256000C2C4

−26208000C3
2
)

C1 − 49320000κ
)

C0
3 + 362366280

(

C2
2 +

2298260

1006573
C4

)

C1
2κ2C0

2

−3318326595κ3C1
3C2C0 + 248634279κ4C1

4
)

ln (ξ)

+
1

2304000000C0
4

(

(

−12032000000C2
2C4 + 6709248000C3

2C2 − 252518400000C5

+582041600C2
4 + 26910720000C4

2
)

C0
4 − 14867942400

(

13425

64531
−
(

−773490

64531
C2C4

+C2
3 − 431640

64531
C3

2

)

C1

)

κC0
3 + 320208050880C1

2κ2

(

107208790

37061117
C4 + C2

2

)

C0
2

−3351648352320κ3C1
3C2C0 + 14078177461539κ4C1

4
) ]

ξ−8/3
}

, (F.8)
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where

Flog = 94720C2C4C0
3 + 92160C3

2C0
3 + 4352C2

3C0
3 − 19683567κ3C1

3

+ 9141984C2C0C1
2κ2 − 960480C1κC0

2C2
2 + 227520C1κC0

2C4,

T11log = 1476225κ3C1
3 − 1205280C2C0C1

2κ2 + 2560C2C4C0
3

− 1792C2
3C0

3 + 113184C1κC0
2C2

2 + 66240C1κC0
2C4,

T
(1)
12log = 3

(

2575125κ3C1
3 − 1353600C2C0C1

2κ2 + 114080C1κC0
2C2

2

+64960C1κC0
2C4 + 2560C2C4C0

3 − 1792C2
3C0

3
)

,

T
(2)
12log = κ2C1

2
(

1537120C2
2 + 1227200C4

)

C0
2

− 33144120κ3C1
3C2C0 + 101328813κ4C1

4,

T
(1)
22log = 37928331κ3C1

4 − 13404960C0κ
2C1

3C2 + 260448C1
2κC0

2C2
2

+ 1957440C1
2κC0

2C4 − 38144C1C2
3C0

3,

T
(2)
22log = 2115705987κ2C1

2 − 526235400κC1C2C0

+ 21610400C0
2C2

2 + 17051200C0
2C4.
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The coefficients in the α 6= 2/3 expansions are

F2 = − C2
1κ

2
(

8α4 − 39α3 + 47α2 − 21α + 3
)

4αC2
0 (1 + α)(1 − α)2(2α − 1)2(3α− 2)2

,

F3 = −κ
3C3

1

(

120α6 − 439α5 + 436α4 − 71α3 − 102α2 + 50α − 6
)

6α2C3
0(3α − 1)(2α − 1)(5α − 2)(α − 1)2(1 + α)2(3α− 2)3

,

F4 =

(34560α12−184288α11+378928α10−349905α9+55207α8+191663α7

−196009α6+83387α5−10803α4−4779α3+2337α2−394α+24)κ4C4
1

32α3C4
0 (4α − 1)(3α − 1)(5α − 2)(1 − α)3(1 + α)3(2α − 1)4(3α − 2)4

,

F5 =











(1075200α14−5198216α13+9006495α12−4648586α11−5731564α10

+10310478α9−5922050α8+345887α7

+1365070α6−755590α5+152789α4+5415α3−8028α2+1332α−72)C5
1κ

5

60α4C5
0 (1−4α)(3α−1)(7α−2)(5α−2)

·(5α−1)(2α−1)2(α−1)4(1+α)4(3α−2)5











.

F
(2)
1 =

C2
2 (8α − 3)(α − 1)

2(1 + α)(4α − 3)
,

F
(2)
2 = −

(112α10−728α9+2152α8−3261α7

+1705α6+1692α5−3204α4+2131α3−721α2+122α−8)C2
1C2κ2

4α2C2
0 (α2 − 5α+ 2)(α− 1)2(2α− 1)2(3α − 2)2(1 + α)2

,

F
(2)
3 =

4C1C
2
2κ(2α − 1)2(53α6 − 225α5 + 340α4 − 258α3 + 151α2 − 75α+ 18)

3C0α(1 − α)(−2 + α)(3α − 4)(3α − 2)(4α − 3)(α2 − 5α+ 2)(1 + α)2
,

F
(2)
4 =

C3
1C2κ3(420α9−2408α8+4287α7−798α6

−3155α5+1850α4+542α3−724α2+200α−16)

3α3C3
0(1 + α)4(3α− 2)3(α2 − 5α+ 2)(2 + α)(5α − 2)

,

F
(2)
5 =

C3
2 (α− 1)(144α3 − 338α2 + 225α − 45)

6(4α − 3)(6α − 5)(1 + α)2
,

F
(2)
6 =

16(2α−1)2(1089α8−7008α7+18388α6−25941α5

+22586α4−14145α3+7208α2−2625α+450)κC1C3
2

15(1+α)3(α2−5α+2)(6α−5)
·(3α−2)(3α−4)(6−5α)(−2+α)(α−1)αC0

,
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F
(2)
7 =

C4
2 (α−1)(6144α6−32960α5+70256α4

−76150α3+44377α2−13218α+1575)

8(6α − 5)(8α − 7)(4α − 3)2(1 + α)3
.

F
(23)
1 =

C2C3(3α − 1)

1 + α
, F

(23)
2 =

C2
2C3(α− 1)(5α − 3)(8α − 3)

2(4α − 3)(1 + α)2
.

F
(3)
1 =

αC2
3

2(1 + α)
, F

(3)
2 =

C2
1C3κ

2(8α4 − 39α3 + 47α2 − 21α+ 3)

4αC2
0 (α− 1)(2α − 1)2(3α− 2)2(1 + α)2

,

F
(3)
3 =

κ3C3
1C3(120α

6 − 439α5 + 436α4 − 71α3 − 102α2 + 50α − 6)

6α2C3
0 (3α − 1) (5α− 2) (α− 1)2 (1 + α)3 (3α− 2)3

.

F
(4)
1 =

κC1C4(2 − α)(α4 + 2α3 + 30α2 − 34α + 9)

4C0(1 + α)(3α − 2)(α− 1)(α2 − 5α + 2)
,

F
(4)
2 =

κ2C2
1C4(α − 1)(12α7 − 100α6 + 557α5 − 521α4 − 46α3 + 238α2 − 88α + 8)

6α2C2
0(1 + α)3(3α− 2)2(α2 − 5α+ 2)(2 + α)(2α − 1)

.

F
(24)
1 =

2C2C4(5α
3 + 10α2 − 31α+ 12)(1 − 2α)

3(1 + α)(α2 − 5α+ 2)(3α − 4)
,

F
(24)
2 =

2C2
2C4(1383α6−3518α5

−2197α4+15388α3−18570α2+9126α−1620)(2α−1)

15(1 + α)2(α2 − 5α+ 2)(3α − 4)(4α − 3)(6 − 5α)
.

A2 =
C2

1κ
2(8α3 − 5α2 − 3α+ 2)

2α(3α − 2)2(1 + α)2C2
0 (2α − 1)(α − 1)

,

A3 =
κ3C1

3
(

120α6 − 115α5 − 80α4 + 118α3 − 22α2 − 13α + 4
)

4 (α− 1)2 (2α − 1)2 (3α− 2)2 (1 + α)3 C0
3α2 (5α− 2)

,

A4 =

κ4C1
4(15360α11−39176α10+16975α9+42297α8

−56710α7+18215α6+10862α5−10316α4+2521α3+212α2−192α+24)

12(3α − 1) (5α− 2) (2α− 1)3 (α− 1)3 (1 + α)4 (3α− 2)4 C0
4α3

,

A5 =









(16800000α16−61746272α15+63298920α14+48264601α13−164903817α12

+133113062α11−3168672α10−68802120α9+49756418α8−10949986α7

−4337136α6+3501931α5−876981α4+36368α3+27844α2−5904α+384)C1
5κ5

96(4α−1)(3α−1)

·(5α−2)(2α−1)4(α−1)4(1+α)5(3α−2)5(7α−2)C0
5α4









.

A
(2)
1 =

κC1C2(α− 1)(17α3 − 9α2 − 8α+ 4)

C0α (3α− 2) (α2 − 5α+ 2) (1 + α)2
,

A
(2)
2 =

C1
2κ2 (2α− 1)

(

7α4 − 2α3 + 17α2 − 24α + 8
)

C2

C0
2α2 (α2 − 5α+ 2) (3α− 2)2 (1 + α)3

,
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A
(2)
3 =

κC1C2
2(512α7−1553α6

+1479α5−1495α4+2765α3−2752α2+1204α−192)

2C0α (4α− 3) (3α− 2) (α2 − 5α+ 2) (1 + α)3 (2 − α)
,

A
(2)
4 =

(5040α14−41496α13+197832α12−538427α11+927557α10−1070645α9+773999α8

−176831α7−317497α6+440649α5−292775α4+118358α3−29484α2+4168α−256)κ3C1
3C2

12α3C0
3(3α− 1)(5α − 2)(α2 − 5α + 2)(2α − 1)2(α− 1)2(1 + α)4(3α − 2)3

,

A
(2)
5 =

4C2
3 (α− 1) (2α− 1) (2α− 3) (3α− 2)

(4α− 3) (1 + α)3
,

A
(2)
6 =











(24192α15−312480α14+1757520α13−5967664α12+13979363α11

−23774018α10+29480427α9−26421228α8+17607647α7−10310216α6+6898447α5

−4766162α4+2493156α3−833112α2+156864α−12672)(2α−3)κ2C2
1C

2
2

12C2
0α

2(1−α)(2−α)(3α−4)(4α−3)

·(3α2−10α+6)(α2−5α+2)(2α−1)2(3α−2)2(1+α)4











,

A
(2)
7 =

(164352α10−1114330α9+3170123α8−5087920α7

+5504508α6−4913864α5+4056421α4−2733766α3+1237444α2−317592α+34560)κC1C3
2

6αC0(2 − α)(3α − 4)(3α − 2)(4α − 3)(6α − 5)(α2 − 5α + 2)(1 + α)4
,

A
(2)
8 =

16C4
2 (α− 1)(2α − 1)(2α − 3)(18α3 − 56α2 + 52α − 15)

3(4α − 3)(1 + α)4(6α − 5)
.

A
(3)
1 =

κC1C3α

C0 (2 − 3α) (1 + α)2
, A

(3)
2 =

C1
2κ2(8α3 − 5α2 − 3α + 2)C3

(1 − α) (2α− 1) (3α− 2)2 (1 + α)3C0
2
,

A
(3)
3 =

3κ3C3
1C3(120α

6 − 115α5 − 80α4 + 118α3 − 22α2 − 13α + 4)

4 (2 − 5α) (α− 1)2 (2α − 1)2 (3α− 2)2 (1 + α)4 C0
3α

.

A
(23)
1 =

κC1C2C3(2 − α)(1 − α)(17α3 − 9α2 − 8α+ 4)

(3α − 2) (α2 − 5α+ 2) (1 + α)3 αC0

,

A
(23)
2 =

C2C
2
3α(1 − α)(15α2 − 35α + 16)(2α − 3)

(3α2 − 10α + 6)(1 + α)3
.

A
(4)
1 =

κC1C4 (α− 1)
(

α3 + 21α2 − 26α+ 8
)

2C0α (3α− 2) (α2 − 5α+ 2) (1 + α)2
,

A
(4)
2 =

(6α9−9α8+235α7−510α6+802α5−1387α4

+1753α3−1258α2+456α−64)κ2C1
2C4

12C0
2α2 (3α− 2)2 (1 + α)3 (α− 1) (2α− 1) (α2 − 5α+ 2)

,

A
(4)
3 =

C2
4 (1 − α)(2 − α)(2α − 1)(3α2 − α+ 2)(2α − 3)

(1 + α)2(α2 − 5α+ 2)(3α2 − 10α + 6)
.

A
(24)
1 =

2C2C4(1 − α) (2α− 1) (α2 + 11α − 8)

(1 + α)2 (α2 − 5α+ 2)
,
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A
(24)
2 =

(2α−3)(27α9−99α8+882α7

−5684α6+14181α5−14313α4+1870α3+7056α2−4848α+960)κC1C2C4

6αC0 (1 + α)3 (3α− 2) (α2 − 5α+ 2) (3α2 − 10α + 6) (3α− 4)
,

A
(24)
3 =

C2
2C4(1 − α)(2α − 1)(824α5 − 729α4 − 4866α3 + 10349α2 − 7290α + 1728)

3(1 + α)3(α2 − 5α + 2)(4α − 3)(3α − 4)
.

A
(34)
1 =

2C3C4(2 − α)2 (α− 1) (2α− 1)

(1 + α)2 (α2 − 5α+ 2)
.

B2 =
C2

1κ
2(8α3 − 5α2 − 3α+ 2)(α2 − 3α+ 1)

C2
0α(1 + α)2(3α − 2)2(2α− 1)2(1 − α)2

,

B3 =
C3

1κ
3(120α6 − 115α5 − 80α4 + 118α3 − 22α2 − 13α+ 4)(3α2 − 8α+ 2)

4C3
0α

2(α− 1)3(2α − 1)2(3α − 2)2(1 + α)3(5α− 2)(3α − 1)
,

B4 =

C4
1κ

4(15360α11−39176α10+16975α9+42297α8−56710α7

+18215α6+10862α5−10316α4+2521α3+212α2−192α+24)(2α2−5α+1)

6(4α − 1)(3α − 1)(5α − 2)(2α − 1)3(1 − α)4(1 + α)4(3α− 2)4α3C4
0

,

B5 =















(16800000α16−61746272α15+63298920α14+48264601α13−164903817α12

+133113062α11−3168672α10−68802120α9

+49756418α8−10949986α7−4337136α6+3501931α5−876981α4

+36368α3+27844α2−5904α+384)κ5C5
1 (5α2−12α+2)

96C5
0α

4(4α−1)

·(3α−1)(5α−2)(2α−1)4(α−1)5(1+α)5(3α−2)5(7α−2)(5α−1)















.

B
(2)
1 =

κC1C2(α
2 − 2α+ 2)(17α3 − 9α2 − 8α+ 4)

C0α(α − 1)(3α − 2)(α2 − 5α+ 2)(1 + α)2
,

B
(2)
2 =

8C2
2 (α− 1) (2α− 3) (2α− 1)

(4α− 3) (1 + α)2
,

B
(2)
3 =

2κ2C2
1C2(2α− 1)(7α4 − 2α3 + 17α2 − 24α + 8)

C2
0α

2(1 − α)(α2 − 5α+ 2) (3α− 2)2 (1 + α)3
,

B
(2)
4 =

κC1C2
2 (512α7−1553α6+1479α5

−1495α4+2765α3−2752α2+1204α−192)(3α2−8α+6)

6C0α(4α − 3)(3α − 2)(α2 − 5α+ 2)(1 + α)3(2 − α)(1 − α)2
,

B
(2)
5 =

κ3C3
1C2(5040α14−41496α13+197832α12−538427α11+927557α10−1070645α9+773999α8

−176831α7−317497α6+440649α5−292775α4+118358α3−29484α2+4168α−256)(α2−2α−2)

12α3C3
0 (3α− 1)(5α − 2)(α2 − 5α+ 2)(2α − 1)2(α− 1)3(1 + α)5(3α− 2)3

,

B
(2)
6 =

8 (α− 1) (3α− 5) (3α− 2) (2α− 3) (2α− 1)C2
3

(6α− 5) (4α− 3) (1 + α)3
,
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B
(2)
7 =















(α2−3α+3)(24192α15−312480α14+1757520α13−5967664α12

+13979363α11−23774018α10+29480427α9−26421228α8

+17607647α7−10310216α6+6898447α5

−4766162α4+2493156α3−833112α2+156864α−12672)κ2C2
1C

2
2

6α2(1−α)2(−2+α)
·(3α−4)(4α−3)(3α2−10α+6)(α2−5α+2)(2α−1)2(3α−2)2(1+α)4C2

0















,

B
(2)
8 =











κC1C3
2 (164352α10−1114330α9+3170123α8

−5087920α7+5504508α6−4913864α5+4056421α4

−2733766α3+1237444α2−317592α+34560)(5α2−14α+10)

30C0α(2−α)(3α−4)
·(3α−2)(4α−3)(6α−5)(α2−5α+2)(1+α)4(1−α)2











,

B
(2)
9 =

32C4
2 (1 − α)(2α − 1)(2α − 3)(18α3 − 56α2 + 52α − 15)(7 − 4α)

3(4α − 3)(1 + α)4(6α− 5)(8α − 7)
.

B
(3)
1 =

κC1C3α(3 − α)

C0(3α− 2) (1 + α)2 (α− 1)
, B

(3)
2 =

(8α3 − 5α2 − 3α+ 2)(5 − 2α)κ2C2
1C3

2(2α − 1)(1 − α)2(3α − 2)2(1 + α)3C2
0

,

B
(3)
3 =

κC1C
2
3α(α2 − 2α− 2)

2C0(3α − 2)(1 + α)3(α − 1)
,

B
(3)
4 =

κ3C3
1C3(120α

6 − 115α5 − 80α4 + 118α3 − 22α2 − 13α+ 4)(7 − 3α)

4α (5α − 2) (α− 1)3 (2α− 1)2 (3α− 2)2 (1 + α)4 C0
3

.

B
(23)
1 =

2C2C3(2α
2 − 5α+ 4)(2α − 1)

(α− 1)(1 + α)2
,

B
(23)
2 =

(α2 − 3α+ 4)(17α3 − 9α2 − 8α+ 4)κC1C2C3

(3α− 2) (α2 − 5α + 2) (1 + α)3 αC0

,

B
(23)
3 =

4C2
2C3(4α

2 − 11α + 8)(2α − 1)

(1 + α)3
,

B
(23)
4 =

2α(α2 − 3α+ 3)(−15α2 + 35α− 16)C2C
2
3

(1 + α)3(3α2 − 10α + 6)
.

B
(4)
1 =

(α3 + 21α2 − 26α+ 8)κC1C4

αC0 (1 + α)2 (2 − 3α) (α2 − 5α+ 2)
,

B
(4)
2 =

(6α9−9α8+235α7−510α6+802α5−1387α4

+1753α3−1258α2+456α−64)(α2−2α−2)κ2C2
1C4

12C2
0α

2(3α− 2)2 (1 + α)4 (1 − α)2(2α − 1)(α2 − 5α+ 2)
,

B
(4)
3 =

2C2
4 (−2 + α) (2α− 1) (3α2 − α+ 2)(α2 − 3α+ 3)

(1 + α)2 (α2 − 5α+ 2)(3α2 − 10α+ 6)
.
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B
(24)
1 =

2C2C4(3α
2 − 8α+ 6)(2α − 1)(α2 + 11α− 8)

3(1 − α)(1 + α)2(α2 − 5α+ 2)
,

B
(24)
2 =

(27α9−99α8+882α7−5684α6+14181α5

−14313α4+1870α3+7056α2−4848α+960)(α2−3α+3)κC1C2C4

3(3α − 2)(α2 − 5α+ 2) (1 + α)3 (3α2 − 10α + 6)(3α − 4)(α − 1)αC0

,

B
(24)
3 =

C2
2C4(5α2−14α+10)(2α−1)(824α5−729α4

−4866α3+10349α2−7290α+1728)

15(1 − α) (1 + α)3 (α2 − 5α+ 2)(4α − 3)(3α − 4)
.

B
(34)
1 =

2(α2 − 3α+ 4)(2α − 1)(−2 + α)C3C4

(1 + α)2(α2 − 5α+ 2)
.

D2 =
C1

2κ2(16α7 − 114α6 + 275α5 − 256α4 + 52α3 + 60α2 − 37α+ 6)

2α (3α− 2)2 (1 + α)2 (1 − α)4 (2α− 1)2 C0
2

,

D3 =

(1080α10−7155α9+16065α8−11851α7−5623α6

+14177α5−8265α4+1363α3+475α2−218α+24)κ3C3
1

4C0
3α2 (2α − 1)2 (3α− 2)3 (1 + α)3 (1 − α)4 (5α− 2) (3α− 1)

,

D4 =

(122880α15−958528α14+2821832α13−3541478α12+323795α11+4567774α10

−5786529α9+2823103α8+203380α7−999274α6+542659α5−126337α4

+3039α3+5124α2−1080α+72)C4
1κ

4

12α3 (3α− 1) (5α − 2) (2α− 1)4 (3α− 2)4 (1 + α)4 (α− 1)5 (4α− 1)C4
0

,

D5 =





















κ5C5
1 (84000000α19−695131360α18+2213106856α17

−3039970107α16+143228956α15+5512858522α14

−7934496954α13+4263700113α12+1059332424α11−3062912192α10

+1944015496α9−451644873α8−130446584α7+130753922α6

−42348774α5+6054483α4+108500α3−173916α2+24240α−1152)

96C5
0α

4(4α−1)(3α−1)(5α−2)

·(2α−1)4(1+α)5(3α−2)5(1−α)6(5α−1)(7α−2)





















.

D
(2)
1 =

κC1C2(17α
6 − 60α5 + 112α4 − 112α3 + 11α2 + 36α − 12)

C0α(3α − 2)(α2 − 5α+ 2)(1 − α)2(1 + α)2
,

D
(2)
2 =

κ2C2
1C2(56α11−100α10−86α9+535α8−1622α7+3665α6

−5468α5+5271α4−3254α3+1239α2−264α+24)

C2
0α

2(−α2 + 5α− 2)(2α − 1)2(3α− 2)2(1 + α)3(1 − α)4
,

D
(2)
3 =

κC1C2
2 (1536α9−9779α8+24863α7−34092α6

+36508α5−48665α4+58945α3−42808α2+15828α−2304)

6C0α(4α − 3)(3α − 2)(α2 − 5α+ 2)(1 − α)2(1 + α)3(2 − α)
,

D
(2)
4 =

κ3C3
1C2(5040α17−66696α16+410352α15−1513643α14+3554028α13

−5376137α12+5104076α11−2300444α10−1307506α9+3371424α8−2988402α7

+1289235α6+32982α5−387951α4+235806α3−71724α2+11480α−768)

12C3
0α

3(3α− 1)(5α − 2)(α2 − 5α+ 2)(2α − 1)2(3α − 2)3(α− 1)4(1 + α)5
,
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D
(2)
5 =

4(3α − 5)(2α − 1)(2α − 3)(6α2 − 15α+ 8)C3
2

(6α − 5)(4α − 3)(1 + α)3
,

D
(2)
6 =















κ2C2
1C

2
2 (48384α19−842688α18+6714432α17

−32825264α16+110314198α15−269117807α14+489058280α13

−666788284α12+678137319α11−515801737α10+329118060α9−261929520α8+286735673α7

−277037324α6+190448578α5−88820636α4+27253160α3−5176464α2+532224α−20736)

12C2
0α

3(2−α)(3α−4)(4α−3)

·(3α2−10α+6)(α2−5α+2)(2α−1)2(3α−2)2(1−α)3(1+α)4















,

D
(2)
7 =

κC1C3
2 (821760α12−8529986α11+38854795α10−102702524α9

+177237865α8−217902404α7+211353737α6−178609948α5

+131893863α4−76164602α3+29945756α2−6889320α+691200)

30C0α(2 − α)(3α − 4)(3α − 2)(4α − 3)(6α − 5)(α2 − 5α+ 2)(1 − α)2(1 + α)4
,

D
(2)
8 =

16C4
2 (2α− 1)(2α − 3)(4α − 7)(8α2 − 21α + 12)(18α3 − 56α2 + 52α − 15)

3(6α − 5)(4α − 3)2(1 + α)4(8α − 7)
.

D
(3)
1 =

κC1C3(2 − α)(α3 − 5α2 + α+ 1)

(3α − 2) (1 + α)2 (α− 1)3C0

,

D
(3)
2 =

(16α7 − 98α6 + 185α5 − 100α4 − 16α3 + 18α2 + 3α− 2)κ2C2
1C3

α (2α− 1)2 (3α− 2)2 (1 − α)3 (1 + α)3 C2
0

,

D
(3)
3 =

κC1C
2
3 (2 − α)(α3 − 3α2 − 5α+ 1)

2C0(1 + α)3(1 − α)2(2 − 3α)
,

D
(3)
4 =

κ3C3
1C3(1080α10−6435α9+12015α8−4791α7

−7775α6+8781α5−2839α4+15α3+71α2+30α−8)

4α2 (1 − 3α) (5α− 2) (2α− 1)2 (3α− 2)2 (α− 1)4 (1 + α)4C0
3
.

D
(23)
1 =

κC1C2C3(17α
6 − 77α5 + 189α4 − 183α3 + 92α− 32)

C0α(1 + α)3(α− 1)(3α − 2)(α2 − 5α+ 2)
,

D
(23)
2 =

8(2α − 1)(2α − 3)(4α2 − 11α+ 8)C2
2C3

(4α− 3)(1 + α)3
,

D
(23)
3 =

(30α7 − 205α6 + 587α5 − 797α4 + 368α3 + 162α2 − 160α + 24)C2C3
2

α(1 + α)3(1 − α)(3α2 − 10α + 6)
.

D
(4)
1 =

κC1C4(α
7 + 21α6 − 32α5 − 78α4 + 225α3 − 247α2 + 126α − 24)

2C0α(1 − α)3(1 + α)2(3α− 2)(α2 − 5α+ 2)
,

D
(4)
2 =

κ2C2
1C4(6α12−39α11+286α10−1628α9+4184α8

−5574α7+6184α6−6508α5+4434α4−251α3−1870α2+1112α−192)

12C2
0α

2(1 + α)4(α− 1)3(3α− 2)2(2α − 1)(α2 − 5α+ 2)
,

D
(4)
3 =

C2
4 (2 − α)(2α − 1)(6α6 − 29α5 + 58α4 − 51α3 + 48α2 − 54α + 12)

α(1 + α)2(1 − α)(α2 − 5α+ 2)(3α2 − 10α + 6)
.
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D
(24)
1 =

2C2C4(2α − 1)(3α4 + 23α3 − 125α2 + 191α − 96)

3(1 + α)2(1 − α)(α2 − 5α+ 2)
,

D
(24)
2 =

(54α13−441α12+3087α11−20971α10+92388α9

−244625α8+380321α7−291541α6−38574α5

+303618α4−282268α3+120464α2−22752α+1152)κC1C4C2

6C0α2(1 + α)3(1 − α)2(3α − 2)(α2 − 5α+ 2)(3α2 − 10α + 6)(3α − 4)
,

D
(24)
3 =

C2
2C4(2α−1)(4120α7−18477α6+3552α5

+125318α4−311122α3+334855α2−172854α+34560)

15(1 + α)3(1 − α)(α2 − 5α+ 2)(4α − 3)(3α − 4)
.

D
(34)
1 =

2C3C4(2 − α)(2α − 1)(α4 − 5α3 + 13α2 − 15α + 8)

(1 − α)2(1 + α)2(−α2 + 5α − 2)
.
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