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Summary

This thesis considers the problem of the steady flow of an incompressible non-Newtonian

viscous fluid through a channel with porous walls, under conditions of suction or in-

jection through the walls and possibly in the presence of a temperature gradient. The

non-Newtonian viscosity function is either of power-law type or has an exponential

dependence upon the temperature within the channel. Solutions of similarity type are

sought for the stream function and asymptotic results are presented. Numerical solu-

tions of the reduced similarity equation system are performed and initial linear stability

calculations are given.
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Chapter 1

Introduction

1.1 Applications

The instance of laminar flow through a channel with porous walls is an idealisation of

the flow behaviour that occurs in the real world in corresponding geometries. It can

be used to model processes such as transpiration cooling, where the walls of a pipe or

channel containing heated fluid are protected from overheating by passing cooler fluid

over the exterior surface of the pipe or channel; another application is to model the

fluid flow occurring during the separation of isotopes of Uranium-235 and Uranium-238

by gaseous diffusion in order to produce fuel for nuclear reactors; controlling boundary

layer flow over aircraft wings by injection or suction of fluid out of or into the wing,

or as part of a model for flow past a membrane or filter. Whereas some of these can

be situations where one or both of the walls of the channel are porous, a motivation

for [Cox91a] is that in an experimental situation, having both walls porous means that

experimental equipment would obstruct the observation of any flow within the channel;

having one transparent solid wall would allow observations to be made. The fluid flow

underlying gaseous diffusion for nuclear fuel was the motivation for Berman’s 1953

paper [Ber53] that describes the problem that now bears his name.

The variation of viscosity with respect to temperature or shearing within a flow

situation is one way of reconciling the difference between mathematical models and

reality. A fluid model with constant viscosity is not a good choice for describing the

flows which have some microstructure or other material property that may change with

temperature e.g. industrial lubricants, polymers. It may be the case that the viscosity

of the material will decrease with increasing temperature, and so a constant viscosity

model may predict inaccurate results in experiments. In addition, the flowing materials

may have a nonlinear relationship between their viscosity and applied shear, e.g. shear-

12



1.2. PROBLEM FORMULATION 13

thickening, where the viscosity increasing with shear-rate so that it becomes harder to

deform the material under the same rate of applied shearing, or shear-thinning, (which

is the opposite effect) where the viscosity decreases as the shear-rate increases, so it

become easier to deform the material under the same rate of shearing. Materials with

these nonlinear and complex behaviours can only be modelled approximately and so

there will be many different models which could be chosen to describe their viscosities.

1.2 Problem Formulation

We wish to consider the steady two-dimensional laminar flow of an incompressible

viscous fluid within a channel. The fluid is assumed to be of a non-Newtonian type,

with a viscosity that may depend upon both the stresses and temperature effects that

the fluid is experiencing. The channel can have uniformly porous walls or a single porous

wall through which fluid may be withdrawn or introduced. In addition a temperature

difference may be imposed between the walls of the channel. The effects of viscous

generation of heat due to internal friction are neglected in this work.

PSfrag replacements

V0VU

−V0VL

x1

x2

x2 = h,T = TU

x2 = −h,T = TL

L

Figure 1.2.1. Channel geometry for both the one and two porous walled cases.

A Cartesian (x1, x2) coordinate system is set up within the channel with the x1

axis located midway between, and parallel to, the channel walls, which are at x2 = ±h.

The upper wall is held at a constant temperature TU and the lower wall is held at a

constant temperature TL.

The main dimensional equations that will govern the fluid flow and temperature
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u(x1, x2, t) = (q1(x1, x2, t), q2(x1, x2, t)) fluid velocity vector
T (x1, x2, t) temperature
p(x1, x2, t) fluid pressure
x1, x2, t coordinate directions and time

ρ fluid density (constant)
k fluid thermal conductivity (constant)
c specific heat of fluid (constant)

κ = k
ρc fluid thermal diffusivity (constant)

µ(Πd, T ) shear rate and temperature dependent
fluid viscosity

ΠA=1
2 (AiiAjj − AijAji) second invariant of tensor A

σij = −pδij + Tij Cauchy stress tensor (i, j ∈ {1, 2}) being
the sum of the fluid pressure and the
deviatoric stress tensor

Tij = 2µdij deviatoric stress tensor
(zero when no shear stresses acting)

δij =

{
1, i = j

0, i 6= j
Kronecker delta tensor (i, j ∈ {1, 2})

dij = 1
2

(
∂qi

∂xj
+

∂qj

∂xi

)
symmetric rate of deformation tensor

(i, j ∈ {1, 2})

Φ function describing the rate of viscous
dissipation of energy as heat

Table 1.1. List of notation
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profile can be stated as follows,

∂qi
∂xi

= 0, (1.2.1)

ρ

(
∂qi
∂t

+ qj
∂qi
∂xj

)
=
∂σij

∂xj
, (1.2.2)

σij = σj i, (1.2.3)

ρc

(
∂T

∂t
+ qi

∂T

∂xi

)
=

∂

∂xi

(
k
∂T

∂xi

)
+ Φ, (1.2.4)

Φ = σijdij . (1.2.5)

where the notation is defined in Table 1.1. These equations represent the conservation

of mass in a fluid particle, conservation of linear momentum, conservation of angular

momentum, conservation of energy and finally the definition of the rate of viscous

dissipation of energy as heat. In stating these we have assumed that the density of

the fluid is constant and that there are no body forces acting upon the fluid as a

whole (e.g. gravity). In addition, the temperature equation has been stated with the

assumption that the total internal energy of the fluid does not explicitly depend upon

any kinematic quantity, e.g. the strain-rate or stress tensor, but it may depend upon

the pressure and temperature.

The conservation of mass statement can be interpreted as the identity1

Id = dii = 0. (1.2.6)

It remains to specify the form of the viscosity function before stating the final set of

dimensional governing equations for the problem. Let us assume that the dependencies

upon temperature and shear rate factor into the form

µ = F1(T )F2(Πd). (1.2.7)

The second factor, F2(Πd) describes the variation of the viscosity with shear rate. A

commonly used model is the power-law model,

F2 = K |Πd |n−1 , (1.2.8)

where the second tensor invariant Πd is defined in Table 1.1. The nondimensional

exponent n determines the type of fluid under consideration. The parameter K is the

1The summation convention is adopted, whereby repeated indices indicate summation over the
possible values of that index. In this case the index i may take the values 1, 2.
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Material Consistency index K n Shear rate range
(Pasn) (s−1)

Ball-point pen ink 10 0.85 100 – 103

Fabric conditioner 10 0.6 100 – 102

Polymer melt 10000 0.6 102 – 104

Molten chocolate 50 0.5 10−1 – 10
Synovial fluid 0.5 0.4 10−1 – 102

Toothpaste 300 0.3 100 – 103

Skin cream 250 0.1 100 – 102

Lubricating grease 1000 0.1 10−1 – 102

Conc. corn starch solution 0.131 1.72 100

Table 1.2. Typical values of the power-law parameters of common materials for a
particular range of shear rates. Collated from [BHW89, page 22], [Ste96, page 80].

consistency index and has units of Pasn. If n = 1 the Newtonian fluid model is re-

covered, where K assumes the role of the dynamic fluid viscosity. If 0 < n < 1 then

the fluid is said to be shear-thinning and the viscosity decreases as the rate of shear

increases. If n > 1 then the fluid is shear-thickening and the viscosity decreases as

the shear rate increases. Shear-thinning fluids are more common than shear-thickening

fluids, and shear-thinning fluids are usually found in industrial applications such as

lubricants. Some typical values of the exponent n and consistency index K are shown

in Table 1.2, the data being reproduced from the work of Barnes, Hutton and Wal-

ters [BHW89, page 22] and Steffe [Ste96, page 80]. Both K and n are in general

temperature dependent, but the temperature dependence of n is so weak that it is

acceptable to use a constant n, [BAH87, page 210]. The temperature dependence of

K can be absorbed into the first functional factor of µ, and so we consider K constant

here.

The first factor, F1(T ), describes the dependence of the viscosity upon the fluid

temperature. It it usual that the viscosity will decrease monotonically as the tempera-

ture increases. It is generally found that the temperature dependence produces a linear

shift aT in the value of the viscosity when plotting the logarithm of the viscosity versus

the logarithm of the shear rate [BAH87, page 139], [Tan00, page 459]. This shift can

be expressed as the following ratio,

aT =
µ(T )T0ρ0

µ(T0)Tρ
=
µ(T )T0

µ(T0)T
(as ρ is constant). (1.2.9)

This can then be rearranged to give an expression for the overall viscosity at temper-

ature T given a reference value at temperature T0. An initial functional form for the
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temperature dependence is provided by the Andrade model (also referred to as the

Arrhenius model) [BAH87, page 140],[Tan00, page 451] and is given by

µ = const ∗ exp

(
E

RT

)
= exp

(
E

RT0

)
exp

(
E

R

(
1

T
− 1

T0

))
, (1.2.10)

where E is the activation energy of the fluid molecules (different for each fluid), R is the

universal gas constant (8.314J/(Kmol)), T is the absolute temperature of the fluid and

T0 is a reference temperature. However, for small temperature variation, this can be

approximated and we will consider two common functional forms: one exponential and

one algebraic. In both cases the viscosity decreases monotonically as the temperature

increases. In this situation we can omit the small ratio T0/T in aT as it is approximately

unity. More specifically we take

F1(T ) = exp

(
E

RT0

)
exp

(
E

R

(
1

T
− 1

T0

))
, (1.2.11)

≈





exp
(

E
RT0

)
exp

(
E

RT0

(
T0−T

T

))
,

(
1 + E

RT0

)(
1 + E

RT0

T0−T
T

)
.

(1.2.12)

The final functional dependence of the viscosity upon temperature and shear rate

is of the form

µ = F1(T )K |Πd |n−1 . (1.2.13)

In summary, the dimensional set of governing partial differential equations that are

to be solved for the fluid flow and temperature problems are

∂q1
∂x1

+
∂q2
∂x2

= 0, (1.2.14a)

ρ
Dq1
Dt

= − ∂p

∂x1
+

∂

∂x1

(
2µ
∂q1
∂x1

)
+

∂

∂x2

(
µ
∂q1
∂x2

)
+

∂

∂x2

(
µ
∂q2
∂x1

)
, (1.2.14b)

ρ
Dq2
Dt

= − ∂p

∂x2
+

∂

∂x1

(
µ
∂q2
∂x1

)
+

∂

∂x1

(
µ
∂q1
∂x2

)
+

∂

∂x2

(
2µ
∂q2
∂x2

)
, (1.2.14c)

ρc
DT

Dt
= k

∂2T

∂x2
1

+ k
∂2T

∂x2
2

+ Φ, (1.2.14d)

Φ = σijdij = (−pδij + Tij) dij =

2µ

{( ∂q1
∂x1

)2
+

1

2

( ∂q1
∂x2

)2
+
∂q1
∂x2

∂q2
∂x1

+
1

2

( ∂q2
∂x1

)2
+
( ∂q2
∂x2

)2
}
, (1.2.14e)

on x2 = +h: q1(x1, h, t) = 0, q2(x1, h, t) = V0VU (x1), T = TU , (1.2.14f)

on x2 = −h: q1(x1,−h, t) = 0, q2(x1,−h, t) = −V0VL(x1), T = TL. (1.2.14g)
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where the symbol D
Dt denotes the material derivative and is defined to be

D

Dt
(·) =

∂

∂t
(·) + (u · ∇)(·), ∇ =

(
∂

∂x1
,
∂

∂x2

)
. (1.2.15)

The boundary conditions being applied are that of no-slip, an upper- and lower-wall

normal fluid speed (which may be position dependent) and an upper- and lower-wall

temperature profile. We restrict attention to temperature profiles that are constant

with respect to longitudinal position. The final parameter, E, is defined to be

E = 1− VL(x1)/VU (x1) (thus VL(x1) = (1− E)VU (x1)) (1.2.16)

and allows a degree of problem selection: if E = 0 we have the two porous walled

problem as stated above; if E = 1 we obtain a problem where there is no fluid motion

through the lower wall; finally if 0 < E < 1 there are different rates of fluid extraction or

injection through the walls. We require VU (x1) and VL(x1) to be non-negative functions

and so the sign of V0 controls whether fluid is being introduced to or removed from the

channel through the porous walls. We therefore are not considering channel cross-flow

situations.

1.3 Problem Nondimensionalisation

The next step is to nondimensionalise the system in order that terms may be consis-

tently compared. It is not possible to make comparisons prior to nondimensionalisation

because each quantity in the system has a physical dimension and it nonsensical to

compare quantities of differing physical dimension. Once these dimensions have been

removed, the sizes of the nondimensional terms may be estimated and progress may

be made to simplify the governing system, where possible. The nondimensionalisation

process is the first step in refining a model by being able to identify the processes that

are most influential upon the system, given the values of the parameters at that time.

Typical values for characteristic dimensions are chosen in accordance with the prob-

lem in hand. In this case we nondimensionalise the system with the following changes

of variables:

x1 = Lx̄, x2 = hȳ, q1 =
V0VUL

h
ū, q2 = V0VU v̄, t =

h

V0VU
t̄,

µ = M0K

∣∣∣∣
V0VUL

2h2

∣∣∣∣
n−1

︸ ︷︷ ︸
µ0

µ̄, p = ρV 2
0 V

2
UP p̄, T = T0 + ∆T︸︷︷︸

=TL−TU

θ̄, (1.3.1)
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where h is a characteristic channel half-width, ∆T a characteristic temperature differ-

ence TL − TU across the channel width, µ0 denotes the fluid viscosity at temperature

T0 (and shear rate 1/τ if applicable) and ε = h/L is the aspect ratio of the channel.

The characteristic fluid velocity is taken to be V0VU , where VU is a non-negative con-

stant characteristic fluid speed and the sign of V0 determines whether there is suction

or injection occurring. The pressure has been scaled with inertia and an additional

parameter P , which can be chosen to find consistent scalings for the different regimes

under consideration.

The nondimensionalisation for the viscosity is obtained by expanding the definition

of µ and requiring that the nondimensional viscosity µ̄ is O (1). The reference value of

T0 is chosen to be TU , the temperature of the upper wall, and then the temperature

problem is that of a cooler upper wall than lower wall if ∆T > 0 (the heated channel

problem) and a hotter upper wall than lower wall if ∆T < 0 (cooled channel prob-

lem). Using M(T ) to denote the generic temperature dependence for convenience, the

nondimensionalisation for the viscosity is found after the following manipulation,

µ = M(T )K

∣∣∣∣∣−
1

2

((
∂q1
∂x1

)2

+
1

2

(
∂q1
∂x2

)2

+
∂q1
∂x2

∂q2
∂x1

+
1

2

(
∂q2
∂x1

)2

+

(
∂q2
∂x2

)2
)∣∣∣∣∣

n−1
2

= M(T )K

∣∣∣∣
1

2

V 2
0 V

2
U

h2

∣∣∣∣
n−1

2

∣∣∣∣∣

(
∂ū

∂x̄

)2

+
1

2

L2

h2

(
∂ū

∂ȳ

)2

+
∂ū

∂ȳ

∂v̄

∂x̄
+

1

2

h2

L2

(
∂v̄

∂x̄

)2

+

(
∂v̄

∂ȳ

)2
∣∣∣∣∣

n−1
2

= M(T )K

∣∣∣∣
1

2

V 2
0 V

2
UL

2

h4

∣∣∣∣
n−1

2

∣∣∣∣∣
h2

L2

(
∂ū

∂x̄

)2

+
1

2

(
∂ū

∂ȳ

)2

+
h2

L2

∂ū

∂ȳ

∂v̄

∂x̄
+

1

2

h4

L4

(
∂v̄

∂x̄

)2

+
h2

L2

(
∂v̄

∂ȳ

)2
∣∣∣∣∣

n−1
2

= M(T )K

∣∣∣∣
V 2

0 V
2
UL

2

4h4

∣∣∣∣
n−1

2

∣∣∣∣∣

(
∂ū

∂ȳ

)2

+O
(
h2

L2

)∣∣∣∣∣

n−1
2

≈M0K

∣∣∣∣
V 2

0 V
2
UL

2

4h4

∣∣∣∣
n−1

2

M(θ̄)

∣∣∣∣∣

(
∂ū

∂ȳ

)2
∣∣∣∣∣

n−1
2

where M0 is the contribution to the reference viscosity µ0 at fixed temperature T0 and

M(θ̄) is the nondimensional temperature dependent contribution to the viscosity. The

nondimensional quantities M0 and M(θ̄) are found to be

eitherM(T ) = e
E

RT0 e
E

RT2
0

(T−T0)
= e

E
RT0 e

−E∆T
RT2

0
θ̄

= M e
0M

e(θ̄), (1.3.2a)

or M(T ) =

(
1 +

E

RT0

)(
1− E∆T θ̄

RT 2
0

)
= Ma

0M
a(θ̄), (1.3.2b)

and we then take either Ma
0 and Ma(θ̄) or M e

0 and M e(θ̄) for M0 and M(θ̄) respectively.
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The governing equations are now expressed as

V0VU

h

∂ū

∂x̄
+
V0VU

h

∂v̄

∂ȳ
= 0, (1.3.3a)

ρV 2
0 V

2
UL

h2

Dū

Dt̄
= −ρV

2
0 V

2
U

L
P
∂p̄

∂x̄
+
V0VUM0K

Lh

∣∣∣∣
V 2

0 V
2
UL

2

4h4

∣∣∣∣
n−1

2 ∂

∂x̄

(
2µ̄
∂ū

∂x̄

)

+
V0VUM0KL

h3

∣∣∣∣
V 2

0 V
2
UL

2

4h4

∣∣∣∣
n−1

2 ∂

∂ȳ

(
µ̄
∂ū

∂ȳ

)
+
V0VUM0K

Lh

∣∣∣∣
V 2

0 V
2
UL

2

4h4

∣∣∣∣
n−1

2 ∂

∂ȳ

(
µ̄
∂v̄

∂x̄

)
,

(1.3.3b)

ρV 2
0 V

2
U

h

Dv̄

Dt̄
= −ρV

2
0 V

2
U

h
P
∂p̄

∂ȳ
+
V0VUM0K

L2

∣∣∣∣
V 2

0 V
2
UL

2

4h4

∣∣∣∣
n−1

2 ∂

∂x̄

(
µ̄
∂v̄

∂x̄

)

+
V0VUM0K

h2

∣∣∣∣
V 2

0 V
2
UL

2

4h4

∣∣∣∣
n−1

2 ∂

∂x̄

(
µ̄
∂ū

∂ȳ

)
+
V0VUM0K

h2

∣∣∣∣
V 2

0 V
2
UL

2

4h4

∣∣∣∣
n−1

2 ∂

∂ȳ

(
2µ̄
∂v̄

∂ȳ

)
,

(1.3.3c)

ρcV0VU∆T

h

Dθ̄

Dt̄
=
k∆T

L2

∂2θ̄

∂x̄2
+
k∆T

h2

∂2θ̄

∂ȳ2
+ Φ̄, (1.3.3d)

Φ̄ = 2
V 2

0 V
2
UM0K

h4

∣∣∣∣
V 2

0 V
2
UL

2

4h4

∣∣∣∣
n−1

2

µ̄

{
h2

L2

(∂ū
∂x̄

)2
+

1

2

(∂ū
∂ȳ

)2
+
h2

L2

∂ū

∂ȳ

∂v̄

∂x̄

+
1

2

h4

L4

(∂v̄
∂x̄

)2
+
h2

L2

(∂v̄
∂ȳ

)2
}
, (1.3.3e)

on ȳ = +1: ū = 0, v̄ = V (x̄), θ̄ = 0, (whereV (x̄) = VU (x̄)/VU ) (1.3.3f)

on ȳ = −1: ū = 0, v̄ = (−1 + E)V (x̄), θ̄ = 1. (1.3.3g)

We now define the nondimensional groups

• Re = ρV0VUh

/(
M0K

∣∣∣V0VUL
2h2

∣∣∣
n−1
)

, the Reynolds number, comparing the ef-

fects of inertia and viscosity;

• Pe = ρcV0VUh
k , the Péclet number, comparing the convective and thermal conduc-

tive length scales;

• Pr = Pe
Re =

cM0K
˛

˛

˛

V0VU L

2h2

˛

˛

˛

n−1

k , the Prandtl number, comparing the relative effects

of thermal conductivity and inertia;

• Br =
M0KV 2

0 V 2
UL2

˛

˛

˛

V0VU L

2h2

˛

˛

˛

n−1

k∆T h2 , the Brinkman number, comparing the thermal ef-

fects from the heat produced by viscous dissipation against the effects of heat

conduction;
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• Na =
V 2
0 V 2

U | dµ
dT |T=T0
k , the Nahme-Griffith number, comparing the heat generated

by viscous dissipation against the temperature change required to change the

viscosity substantially;

• β = Na
Br = ∆T

∣∣∣∣
dµ
dT
µ

∣∣∣∣
T=T0

, which measures the sensitivity of the viscosity to changes

in temperature.

In the cases of the full Andrade model with the algebraic and exponential approxi-

mations (1.2.12), the sensitivity parameter β has the common value of

β =
E∆T

RT 2
0

.

In both the algebraic and exponential cases we make the assumption that

µ (βT )

µ (β · 1)
= O (1) asβ →∞ for T = O (1) , (1.3.4)

and we define µ0 = µ (β) and µ0 � 1, where µ has been evaluated with a typical shear

rate for the fluid. The β →∞ limit corresponds to a biviscosity fluid model, that is a

fluid which has two distinct values for its viscosity.

Using these nondimensional groups, we may rewrite the governing equations in the

form

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0, (1.3.5a)

Re
Dū

Dt̄
= −Reε2P

∂p̄

∂x̄
+ ε2

∂

∂x̄

(
2µ̄
∂ū

∂x̄

)
+

∂

∂ȳ

(
µ̄
∂ū

∂ȳ

)
+ ε2

∂

∂ȳ

(
µ̄
∂v̄

∂x̄

)
, (1.3.5b)

Reε
Dv̄

Dt̄
= −ReεP

∂p̄

∂ȳ
+ ε3

∂

∂x̄

(
µ̄
∂v̄

∂x̄

)
+ ε

∂

∂x̄

(
µ̄
∂ū

∂ȳ

)
+ ε

∂

∂ȳ

(
2µ̄
∂v̄

∂ȳ

)
, (1.3.5c)

Pe
Dθ̄

Dt̄
= ε2

∂2θ̄

∂x̄2
+
∂2θ̄

∂ȳ2
+ Φ̄, (1.3.5d)

Φ̄ = 2Br

∣∣∣∣∣ε
2
(∂ū
∂x̄

)2
+

1

2

(∂ū
∂ȳ

)2
+ ε2

∂ū

∂ȳ

∂v̄

∂x̄
+

1

2
ε4
(∂v̄
∂x̄

)2
+ ε2

(∂v̄
∂ȳ

)2
∣∣∣∣∣

n−1
2

∗
{
ε2
(∂ū
∂x̄

)2
+

1

2

(∂ū
∂ȳ

)2
+ ε2

∂ū

∂ȳ

∂v̄

∂x̄
+

1

2
ε4
(∂v̄
∂x̄

)2
+ ε2

(∂v̄
∂ȳ

)2
}
, (1.3.5e)

on ȳ = +1: ū = 0, v̄ = V (x̄), θ̄ = 0, (1.3.5f)

on ȳ = −1: ū = 0, v̄ = (−1 + E)V (x̄), θ̄ = 1. (1.3.5g)

The Reynolds and Péclet numbers share the same sign, but this sign is reversed when
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the flow changes from injection through the walls to suction through the walls of the

channel.

In order to balance the effects of pressure and viscosity, we now set P =
(
ε2Re

)−1
.

If we now introduce a stream function

ψ(x1, x2) = V0VULψ̄(x̄, ȳ) where (ū, v̄) =

(
∂ψ̄

∂ȳ
,−∂ψ̄

∂x̄

)
(1.3.6)

then the continuity equation is automatically satisfied, and the system becomes,

Re
D

Dt̄

(
∂ψ̄

∂ȳ

)
= −∂p̄

∂x̄
+ ε2

∂

∂x̄

(
2µ̄

∂2ψ̄

∂x̄∂ȳ

)
+

∂

∂ȳ

(
µ̄
∂2ψ̄

∂ȳ2

)
− ε2 ∂

∂ȳ

(
µ̄
∂2ψ̄

∂x̄2

)
, (1.3.7a)

− Reε
D

Dt̄

(
∂ψ̄

∂x̄

)
= −1

ε

∂p̄

∂ȳ
− ε3 ∂

∂x̄

(
µ̄
∂2ψ̄

∂x̄2

)
+ ε

∂

∂x̄

(
µ̄
∂2ψ̄

∂ȳ2

)
− ε ∂

∂ȳ

(
2µ̄

∂2ψ̄

∂ȳ∂x̄

)
,

(1.3.7b)

Pe
Dθ̄

Dt̄
= ε2

∂2θ̄

∂x̄2
+
∂2θ̄

∂ȳ2
+ Φ̄, (1.3.7c)

Φ̄ = 2Br

∣∣∣∣∣ε
2
( ∂2ψ̄

∂x̄∂ȳ

)2
+

1

2

(∂2ψ̄

∂ȳ2

)2
− ε2∂

2ψ̄

∂ȳ2

∂2ψ̄

∂x̄2
+

1

2
ε4
(∂2ψ̄

∂x̄2

)2
+ ε2

( ∂2ψ̄

∂ȳ∂x̄

)2
∣∣∣∣∣

n−1
2

∗

{
ε2
( ∂2ψ̄

∂x̄∂ȳ

)2
+

1

2

(∂2ψ̄

∂ȳ2

)2
− ε2∂

2ψ̄

∂ȳ2

∂2ψ̄

∂x̄2
+

1

2
ε4
(∂2ψ̄

∂x̄2

)2
+ ε2

( ∂2ψ̄

∂ȳ∂x̄

)2
}n−1

2

, (1.3.7d)

on ȳ = +1:
∂ψ̄

∂ȳ
= 0, −∂ψ̄

∂x̄
= V (x̄), θ̄ = 0, (1.3.7e)

on ȳ = −1:
∂ψ̄

∂ȳ
= 0, −∂ψ̄

∂x̄
= (−1 + E)V (x̄), θ̄ = 1. (1.3.7f)

Now, by multiplying the ȳ-momentum equation up by ε, and dropping the overbar
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notation we obtain the nondimensional governing equations

Re
D

Dt

(
∂ψ

∂y

)
= −∂p

∂x
+ ε2

∂

∂x

(
2µ

∂2ψ

∂x∂y

)
+

∂

∂y

(
µ
∂2ψ

∂y2

)
− ε2 ∂

∂y

(
µ
∂2ψ

∂x2

)
, (1.3.8a)

− Re ε2
D

Dt

(
∂ψ

∂x

)
= −∂p

∂y
− ε4 ∂

∂x

(
µ
∂2ψ

∂x2

)
+ ε2

∂

∂x

(
µ
∂2ψ

∂y2

)
− ε2 ∂

∂y

(
2µ

∂2ψ

∂y∂x

)
,

(1.3.8b)

Pe
Dθ

Dt
= ε2

∂2θ

∂x2
+
∂2θ

∂y2
+ Φ, (1.3.8c)

Φ = 2Br

∣∣∣∣∣ε
2
( ∂2ψ

∂x∂y

)2
+

1

2

(∂2ψ

∂y2

)2
− ε2∂

2ψ

∂y2

∂2ψ

∂x2
+

1

2
ε4
(∂2ψ

∂x2

)2
+ ε2

( ∂2ψ

∂y∂x

)2
∣∣∣∣∣

n−1
2

∗

{
ε2
( ∂2ψ

∂x∂y

)2
+

1

2

(∂2ψ

∂y2

)2
− ε2∂

2ψ

∂y2

∂2ψ

∂x2
+

1

2
ε4
(∂2ψ

∂x2

)2
+ ε2

( ∂2ψ

∂y∂x

)2
}n−1

2

, (1.3.8d)

on y = +1:
∂ψ

∂y
= 0, −∂ψ

∂x
= V (x), θ = 0, (1.3.8e)

on y = −1:
∂ψ

∂y
= 0, −∂ψ

∂x
= (−1 + E)V (x), θ = 1. (1.3.8f)

One characteristic scale that has not been defined is L, the distance from the origin

to the end of the channel along the x1 axis. This quantity is in some sense arbitrary, as

it can be defined in terms of the other parameters of the problem in hand. In the case

of a solely thermally varying viscosity, we wish to only consider the flow of fluid in the

region where the effects of inertia and conduction are balanced. In order to do this, we

limit the region of interest to distances along the channel length that are smaller than

the typical thermal conduction length; thus we define

L = Peh (Pe� 1). (1.3.9)

However, in the case of the viscosity depending solely upon the rate-of-shear, this

previous definition is not useful as we would not consider any temperature equation

associated with the flow. In this case we would define L in terms of the aspect ratio of

the channel, and then consider the limiting case of an increasingly small aspect ratio

ε = h/L, ε� 1. (1.3.10)

Therefore, in the case where we can have both temperature and rate-of-shear variation

within the viscosity function, we must take L large enough such that the channel aspect

ratio is sufficiently small and also large enough that the region of interest still encloses
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the region of inertia-conduction balance

L� max {h/ε, hPe} . (1.3.11)

As we are not considering the effects of viscous dissipation of heat we may take

Br � 1 uniformly across the channel. Taking the curl of the momentum equations

gives

Re

(
∂3ψ

∂t∂y2
+
∂ψ

∂y

∂3ψ

∂x∂y2
− ∂ψ

∂x

∂3ψ

∂y3

)
− Re ε2

(
− ∂3ψ

∂t∂x2
− ∂ψ

∂y

∂3ψ

∂x3
+
∂ψ

∂x

∂3ψ

∂y∂x2

)

=
∂2

∂y2

(
µ
∂2ψ

∂y2

)
+ 2ε2

∂2

∂y∂x

(
2µ

∂2ψ

∂x∂y

)
− ε2 ∂

2

∂y2

(
µ
∂2ψ

∂x2

)
− ε2 ∂

2

∂x2

(
µ
∂2ψ

∂y2

)

+ ε4
∂2

∂x2

(
µ
∂2ψ

∂x2

)
, (1.3.12a)

Pe
Dθ

Dt
=
∂2θ

∂y2
+ ε2

∂2θ

∂x2
, (1.3.12b)

on y = +1:
∂ψ

∂y
= 0, −∂ψ

∂x
= V (x), θ = 0, (1.3.12c)

on y = −1:
∂ψ

∂y
= 0, −∂ψ

∂x
= (−1 + E)V (x), θ = 1. (1.3.12d)

Finally, we obtain the leading order unsteady problem

Re

(
∂3ψ

∂t∂y2
+
∂ψ

∂y

∂3ψ

∂x∂y2
− ∂ψ

∂x

∂3ψ

∂y3

)
=

∂2

∂y2

(
µ
∂2ψ

∂y2

)
, (1.3.13a)

Pe

(
∂θ

∂t
+
∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y

)
=
∂2θ

∂y2
, (1.3.13b)

µ = M(θ)

∣∣∣∣
∂2ψ

∂y2

∣∣∣∣
n−1

, (1.3.13c)

on y = +1:
∂ψ

∂y
= 0, −∂ψ

∂x
= V (x), θ = 0, (1.3.13d)

on y = −1:
∂ψ

∂y
= 0, −∂ψ

∂x
= (−1 + E)V (x), θ = 1. (1.3.13e)

In most cases we will consider the steady states of this system, but in the case of

temporal stability the unsteady system will be needed.

When the exponent n = 1 and E = 0, we obtain the two porous-walled Newtonian
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fluid flow problem

Re

(
∂3ψ

∂t∂y2
+
∂ψ

∂y

∂3ψ

∂x∂y2
− ∂ψ

∂x

∂3ψ

∂y3

)
=

∂2

∂y2

(
µ
∂2ψ

∂y2

)
, (1.3.14a)

Pe

(
∂θ

∂t
+
∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y

)
=
∂2θ

∂y2
, (1.3.14b)

µ = M(θ) (exponential or algebraic form as appropriate), (1.3.14c)

on y = +1:
∂ψ

∂y
= 0, −∂ψ

∂x
= V (x), θ = 0, (1.3.14d)

on y = −1:
∂ψ

∂y
= 0, −∂ψ

∂x
= −V (x), θ = 1. (1.3.14e)

and if there is no temperature variation of viscosity, so µ ≡ 1, this further reduces to

Re

(
∂3ψ

∂t∂y2
+
∂ψ

∂y

∂3ψ

∂x∂y2
− ∂ψ

∂x

∂3ψ

∂y3

)
=
∂4ψ

∂y4
, (1.3.15a)

Pe

(
∂θ

∂t
+
∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y

)
=
∂2θ

∂y2
, (1.3.15b)

on y = +1:
∂ψ

∂y
= 0, −∂ψ

∂x
= V (x), θ = 0, (1.3.15c)

on y = −1:
∂ψ

∂y
= 0, −∂ψ

∂x
= −V (x), θ = 1. (1.3.15d)

We shall mainly focus on the one walled (E = 1) problems but having the problems

posed in a general manner allows some progress to be made on the E = 0 two walled

problem with equal wall flow conditions and on the intermediate 0 < E < 1 problem

with unequal wall flow conditions. The effects of the various non-Newtonian influences

will be considered separately; either the power-law fluid model is used and then the

temperature equation is not coupled to the flow problem and so is not considered

further, or the temperature-dependent viscosity model is used and both equations are

needed.



Chapter 2

Previous work

In this chapter we wish to present a brief overview of work that has been done on the

problems under consideration. This has been broken down into two sections: one on the

isothermal problem and one on the non-isothermal problem. As the majority of work

has been on the isothermal problem this section is itself divided into two subsections:

firstly the two porous walled problem with symmetric solutions and secondly the two

porous walled problem with asymmetric solutions and the one porous walled problem.

2.1 Isothermal problems

2.1.1 Two porous walled problem with symmetric solutions

Various asymptotic results have been deduced or proven for the two porous walled

problem with solutions that are symmetrical about the channel centreline. The original

work by Berman [Ber53] produced a first order perturbation solution for the small

Re > 0 suction limit. Sellars [Sel55] obtained an expression for the high Re > 0 suction

limit. This was subsequently extended by Terrill [Ter64] and further work by Robinson

[Rob76] described the three different symmetric suction solution types (I, II, III) that

are possible in this limit. Authors define these solution types differently but we shall

use the descriptions given by Zaturska et al. [ZDB88]. Type I solutions exist for all

values of Re whereas types II and III only exist beyond a critical positive value of

the Reynolds number, given as Re = 12.165. The type I and II solutions differ by

exponentially small terms in the limit Re → ∞, first shown by Robinson [Rob76].

Terrill’s subsequent paper [Ter65] addresses the large injection solution and he corrects

an earlier attempt by Yuan [Yua56], which does not predict the correct behaviour of

the third derivative of the solution across the channel centreline, by constructing an

outer solution and an inner solution near the channel centreline.

26
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In 1984 Durlofsky and Brady [DB84] showed that any injection solution is spatially

stable, that the type I Re > 0 suction solutions are spatially stable but the types II

and III solutions for Re > 0 are spatially unstable.

Two papers by Lu, MacGillivray and Hastings [LMH92, HLM92] proved some of

the numerically known properties of the solutions of the boundary value problem. It

was proved that there is at least one solution for all values of Re, and for sufficiently

large Re > 0 there are three solutions, confirming the work in Robinson’s 1976 paper

[Rob76]. For the injection solution, it was proved that the behaviour of the solution,

away from the channel walls, was sinusoidal and as Re → −∞, the leading order

behaviour was linear. The concave down and increasing non-concave suction solutions

have a vanishing second derivative as Re → ∞ and also have a linear leading order

behaviour. As Re → ∞ these solutions have two distinct regions: an inviscid inner

region and a viscous boundary layer near the wall. The three different solution types

(I,II,III) correspond to the four cases detailed in [LMH92] in the following way: the

concave down solution for Re < 0 and Re > 0 corresponds to the type I injection

and suction solutions; the increasing non-concave solution for sufficiently large Re > 0

corresponds to the type II solution; the solution with a single zero in the half-channel

interior for large enough Re > 0 corresponds to the type III solution.

The type III solutions for Re > 0 were also studied by MacGillivray and Lu in

[ML94] and two rigorous results were proved for the internal zero of these solutions,

namely that the internal zeros move toward the wall as Re → ∞. The asymptotic

description of the solution to the boundary value problem was of an inviscid outer

region, a viscous boundary layer near the wall and a novel transition layer in which

transcendentally small terms were included.

The paper of Cox and A.C. King in 1997 [CK97] established the first detailed asymp-

totic description of the type III suction flows via the transformation of the boundary

value problem derived from a similarity solution of two porous walled problem into an

initial value problem (using a method described by Terrill in [Ter64]). The four region

asymptotic behaviour of the solution to this initial value problem, up to and including

the second zero of the first derivative of the solution, allowed Cox and King to recon-

struct the flow and perform comparisons with other numerical solutions to the original

boundary value problem. Ferro and Gnavi [FG00] show that the type I solutions are

spatially stable for a range of Reynolds numbers, but asymmetric perturbations to the

symmetric solutions are able to cause instability.

Numerical solutions and analysis of the symmetric problems have been produced

by various authors in the course of their work mentioned above. Zaturska, Drazin and

Banks [ZDB88] used numerical results for the symmetric problem to perform temporal
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stability analysis of the asymmetric problem, and also calculated a phase plane for

the unsteady type I solution. MacGillivray and Lu [ML94] compare their asymptotic

results to a numerical solution of the original boundary value problem and also to the

numerics in [ZDB88] and note that their transition layer yields better results. The

asymptotic work in [CK97] on the initial value problem is compared to direct numer-

ical solution of the boundary value problem to show the accuracy of their asymptotic

results; they also disagree with some of the details of the numerical results produced

within [ZDB88]. A full two-dimensional calculation is compared to the behaviour of

the similarity solutions of type I in order to examine the spatial stability predictions

of their work.

Variations to the two porous walled problem in §1 are also investigated by re-

searchers. Durlofsky and Brady [DB84] consider solutions in an axisymmetric tube

geometry and show that the injection solutions are spatially stable and the suction

solutions are spatially stable as long as there is no flow reversal within the tube. They

also consider the basic two porous walled channel problem with accelerating (or decel-

erating) walls and conclude that both the injection and suction solutions are spatially

unstable as there are always regions of flow reversal within the channel. Cox [Cox91a]

considers the accelerating wall problem in the channel by recasting it as an initial value

problem. Cox then proves that the number of solutions to the initial value problem

that have a zero of the first derivative is at most two. From these solutions the flow

behaviour within the channel can be recovered, and he is able to identify solutions

analogous to types I − III.

2.1.2 Two porous walled problem with asymmetric solutions and the

one porous walled problem

The two porous walled problem with asymmetric solutions only received attention once

the 1998 paper by Zaturska et al. [ZDB88] demonstrated the existence of asymmetric

solutions in the suction case. Asymptotic descriptions of the flow behaviour for suction

solutions of type Ia, I
′
a and IIIa, III

′
a were obtained: type Ia consists of an inviscid

sinusoidal core and viscous boundary layers at the walls; type IIIa consists of an inviscid

core, viscous boundary layers at the walls and a viscous shear layer about the mid-line of

the channel. Zaturska et al. found the asymmetric solutions numerically by perturbing

the symmetric solutions with antisymmetric eigenfunctions. They established that

temporally stable asymmetric solutions exist for a limited range of Reynolds numbers.

In 1991 Cox produced two papers [Cox91b, Cox91a] considering variations of the

original two porous walled and one porous walled problems. For the problem of in-

jection through the upper wall and an impermeable lower wall, Cox [Cox91a] found
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that in the limit Re → −∞ there are two flow regions: an inviscid outer region and a

viscous boundary layer near the impermeable wall, in which the solution is the Falkner-

Skan1 profile with m = 1. In this situation there is only one steady solution and it

is temporally stable. For the two porous walled problem and large Re > 0 suction

flow with different amounts of suction at each wall, he noted that there was a three

region behaviour, with an inviscid core and viscous boundary layers at each wall. In

this case the general conclusion to be drawn is that, for large enough Re > 0, the so-

lutions are spatially unstable. The type Ia solution is temporally unstable for a range

of Re values. Considering the situation of suction at the upper wall only, in the steady

problem there are two cases: for small Re > 0 there are three solution branches, one

temporally stable and two temporally unstable; for large enough Re > 0 flow reversal

occurs and so there is a loss of temporal stability as perturbations can be carried in

both directions within the channel. For the unsteady suction problem, the only stable

solution for large Re > 0 occurred as part of a limit cycle. This limit cycle has two

parts: an inward part (according to the behaviour of the limit cycle on the phase plane

[Cox91b, fig.9 p.15]), which has an inviscid solution structure away from the channel

walls, the amplitude of which is exponentially decreasing; the outward part also has

an inviscid core away from the walls but it is rapidly growing and is moderated by

the viscous solution near the matching point with the viscous boundary layer. Cox

mentions that the growing inviscid solution appears to be an intermediate asymptotic.

The temporal stability analysis was performed by using a shooting method to solve the

two-point boundary value problem and the corresponding eigenvalue problem.

For the one porous wall problems Cox [Cox91a] transforms the boundary value

problem into an initial value problem and proves that the number of solutions with

a zero of their first derivative is either two or none, and then compares numerical

solutions with the known injection and suction solution asymptotics in this case. He

also considers the problem with just one accelerating wall (no suction or injection)

and the theoretical results follow through without much amendment. In 1997 Cox

and J.R. King [CK97] produced a four region asymptotic description of the solution

to the initial value problem obtained after transforming the one porous walled channel

boundary value problem. The fluid flow field is recovered from the numerical solution of

the initial value problem combined with the asymptotics and covers both the injection

and suction flows. A schematic of the four region structure is given in Figure (2.1.1),

1The Falkner-Skan problem (this description being a paraphrase of the description given by Batche-
lor [Bat01, page 316]) describes the boundary layer flow of a fluid adjacent to a solid boundary, aligned
with the x-axis, where the far field fluid horizontal velocity is given by u = Cxm with C > 0 and m
constants. A solution of the boundary layer equations may be found of the form ψ = (νUx)1/2f(η), η =
(U/νx)1/2y and the boundary layer system is found to be mf ′2 − (1/2)(m + 1)ff ′′ = m + f ′′′. The
case m = 1 corresponds to the flow of fluid toward a stagnation point at a wall.
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PSfrag replacements

I II III IV

g = O(1) g = O(δ−1/2) g = O(1) g = O(1/α(δ))

X = O(1) O(δ−1/2) O(1) O(1/α(δ))

Figure 2.1.1. Schematic of the single porous walled solution structure in the initial

value problem in [CK97], where α(δ) = log
[
4 log δ−1 + 6 log

(
4 log δ−1

)1/2
]1/2

.

which is not given in [CK97].

Ferro and Gnavi [FG00] extend the spatial stability results of the similarity solutions

to the two porous walled suction problem. They report that the type Ia solution is

spatially stable if there is no flow reversal within the channel whereas the type IIIa

solutions are spatially unstable for any Re > 0 as there is always a region of flow

reversal within the channel. Numerical experiments suggested that these types IIIa

solutions were unstable to both symmetric and antisymmetric perturbations. They

concluded that there is a small range of Re > 0 within which the possible similarity

solutions are spatially stable; the smaller end of the range of Reynolds numbers permits

symmetric spatially stable solutions and the higher end permits asymmetric spatially

stable similarity solutions.

A paper by J.R. King and Cox [KC01] considers the steady and unsteady solutions

of the one porous walled problem and the authors are interested in the large Re limits

of the problem. As we are only looking at the steady problem the discussion will be

limited to that case. In contrast to the previous work on the one porous walled problem

the authors obtain results directly from the boundary value problem formulation and

not via Terrill’s [Ter64] transformation to an initial value problem. They summarise the

three known asymptotic limits of small Re, large negative Re corresponding to injection

driven flow and large positive Re, corresponding to suction driven flow. The small Re

solution is a regular perturbation series and the large injection solution is a singular

perturbation series solution comprising of an inviscid outer region away from the lower

wall and a viscous boundary layer near the lower wall, as reported by Cox in [Cox91b]

and [Cox91a]. The final case of large positive Re consists of a four region solution;

there is an interior region around the nearest internal zero of the solution function to

the upper wall, a boundary layer adjacent to the upper wall, an outer inviscid region

in the main body of the channel and a boundary layer adjacent to the lower wall.
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There are exponentially small terms involved in the boundary layer at the upper wall

which asymptotically match with terms in the interior layer, and these terms have an

influence upon the scalings of the interior layer which are then determined by matching

the solution in that layer to that in the outer, inviscid, region. The authors novel use

of an optimal truncation method upon the diverging series solutions allows an accurate

approximation to be calculated in the case where inverse powers of log(1/Re) occur.

The 2004 paper by Cox and J.R. King [CK04] considers the large Reynolds number

asymptotics of the two-walled porous channel problem in both the E = 0 and 0 < E < 1

cases, obtaining asymptotic descriptions of the asymmetric type I1 and III1 solutions

for E = 0, an improved asymptotic description of the symmetric type III solution

for E = 0, and large Reynolds number asymptotic descriptions for the type I1 and

III1 solutions of the 0 < E < 1 problem (two walled problem with unequal suction

rates). They use matched asymptotic expansions with exponentially small terms at

interior layers and boundary layers together with multiple regions within the channel

width to produce the high suction asymptotic solutions. These are constructed in

two ways: either an “exact” method is used where matching of solutions is attempted

between the outer and inner solutions in the usual manner, or an “ad-hoc” method is

used where the outer solution boundary conditions are replaced with conditions applied

at the interior zero(s) of the solutions. The “ad-hoc” method is seen to yield better

numerical estimates of the outer solution structure than the usual ”exact” method,

with the authors noting that the improved numerical accuracy has come at the cost of

a fully systematic approach to the asymptotic analysis. The analysis is guided by an

detailed examination of the particular boundary layer problems that arise in the course

of matching and are recorded in a companion paper, [CK05].

The companion paper by J.R. King and Cox, [CK05], considers the boundary layer

flows driven by the injection or suction of a viscous fluid at a porous channel wall.

Multiple solutions are reported for high enough rates of suction and these solutions have

different forms; one solution corresponds to the previously found monotone solution

(which connects to the injection solution branch) and the other two solution forms show

regions of flow reversal near to the porous channel wall. The solutions with flow reversal

are not connected to the main branch of solutions. One solution exhibits reversed flow

regions above a critical suction rate and the other solution has reversed flow only up to

a critical flow rate. The three different solution branches are examined in the limit of

large suction (and injection where it is valid) and the reversed flow solutions involve the

matching of exponentially small terms. Numerical simulations are also performed in

order to assess the quality of the asymptotic analysis. The reported multiple solutions

are important in the asymptotic description of the various high suction rate solutions of
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the Berman problem and are used in [CK04] accordingly. The authors then relate their

solutions to the known solutions for the flow of a viscous fluid within the boundary

layer of an impermeable walled channel whose walls are accelerating and also to the

three dimensional suction flow boundary layer solutions, where the number of coexisting

solutions is found to be greater than that of the analogous two-dimensional problem.

2.2 Nonisothermal problem

The only work on the injection or suction of fluid within a channel with porous walls and

involving temperature is [FG02]. Figure 2.2.1 shows a bifurcation diagram reproducing

Figure 2 in [FG02] for the flow of a Newtonian fluid in an isothermal two porous walled

channel upon which the different base solution branches are presented.

2.2.1 Ferro and Gnavi, 2002

Ferro and Gnavi [FG02] consider the effects of viscosity gradients upon the stability

of Berman flows in the two porous walled problem. They take, for simplicity, an

exponential viscosity function µ(T ) = exp(−γT ). If γ > 0 then the viscosity decreases

as the temperature increases (typical for most liquids) but if γ < 0 then the viscosity

increases as the temperature increases (an example of this behaviour is that of dry air at

atmospheric pressure at temperatures above 0◦ [Bat01, Appendix 1]). The exponential

form of viscosity is a good fit for the behaviour of water in the range 10− 100◦C.

Asymptotics are presented for the low thermal conductivity limit of |Pe| � 1 in the

cases of I1(γ), I3(γ) without flow reversal. The solution types are labelled analogously

to those of the isothermal case: types I1, I2 and I3 correspond to different sections of the

type I solution branch for nonzero γ. In the case of large suction the solution structure

comprises an isothermal layer and either one or two temperature boundary layer(s),

depending upon the behaviour of the flow function. Ferro and Gnavi comment that

the temperature in the isothermal layer cannot be found using standard perturbation

theory and they resort to a variational approach to obtain its value. For the injection

scenario there are two outer layers near the walls of the channel and an inner thermal

boundary layer near the stagnation line. In the limit of low thermal conductivity two

fluids of different constant viscosities are injected into the channel and the temperature

jump within the channel occurs across the stagnation line. An analytical description of

the branches of the bifurcation diagram close to the first bifurcation point is produced.

Ferro and Gnavi then reproduce the bifurcation results of previous authors in the

isothermal case to provide a contrast to their bifurcation results. There are solution

branches analogous to those in the γ = 0 problems; in particular there is only one
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branch of solutions that exist for all Re with γ 6= 0, I1(γ). They introduce the effec-

tive Reynolds number, which can only be calculated after the flow problem has been

solved. It is useful for distinguishing the artefacts caused by the viscosity gradients

from those which occur due to the value of the mean viscosity in the channel. They

found that for the steady state solutions, for a fixed value of the effective Reynolds

number, the stagnation line for γ > 0 (γ < 0) is displaced toward the wall of lower

(higher) temperature, i.e. where the viscosity is lowest.

Next the temporal stability of the γ 6= 0 steady state solutions is examined. For

γ 6= 0 the (Re, γ) plane is divided into four regions, in which different types of tempo-

rally stable solution can be found. For fixed γ, these four types are: a single temporally

stable solution; two temporally stable solutions; one temporally stable solution and one

temporally stable periodic solution; and two temporally stable periodic solutions. This

division of the plane is not equal and there is a bias toward one sign of γ. Reinter-

preting these results in terms of the effective Reynolds number removes any bias and

reintroduces symmetry into the (Re, γ) plane. The displacement of the flow field to-

ward regions of lower viscosity accentuates the instability of the asymmetric solution

whereas if it enhances the symmetry of the flow field the stability of the corresponding

solution is improved. In the case of the unsteady problem, the authors note that the

stronger the dependence of the viscosity upon the temperature, the more marked the

increase of the critical Reynolds number corresponding to a Höpf bifurcation bringing

periodic solutions.

The spatial stability of solutions is then considered. The authors note that only

temporally and spatially stable solutions are observable in practice. Their results are

that solutions of type I1 and I3 are spatially stable if there is no flow reversal in the

channel and that all other solution types are spatially unstable; this result is the same

as that found in the constant viscosity spatial stability analysis. Thus, for the injection

problem the solutions are spatially stable for any Re < 0 while the suction solutions are

only spatially stable up to a certain critical value of the Reynolds number, dependent

upon γ. The quantitative behaviour of the solutions in the presence of thermal gradients

is similar to that of the temporal stability case, but the regions in which the stable

solutions are to be found are much smaller and the critical Reynolds number is again

reduced.

The authors finally conclude that most of the solutions of the temperature-dependent

viscosity problem are temporally and/or spatially unstable. The thermal effects reduce

the values of critical Reynolds numbers, and also enhance the stability or instability of

the solutions, depending upon whether the shifting of the solution toward regions of

lower viscosity enhances the symmetry or asymmetry of the flow field.
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Chapter 3

Isothermal power law fluid

problem - preliminaries

In this chapter we start by seeking a similarity solution of separable form for the power-

law fluid flow problem in the general two porous walled geometry as a basis for further

work in subsequent chapters. We then construct a small Reynolds number expansion

of the flow function coming from the similarity solution and finally pose the temporal

and spatial stability problems for the two porous walled isothermal flow.

3.1 Similarity solutions

Introducing the following rescalings

x = αX, y = βY, ψ(x, y) = γS(X,Y ) (α, β, γ ∈ R) (3.1.1)

into the governing steady isothermal system

Re

(
∂ψ

∂y

∂3ψ

∂x∂y2
− ∂ψ

∂x

∂3ψ

∂y3

)
=

∂2

∂y2

(∣∣∣∣
∂2ψ

∂y2

∣∣∣∣
n−1

∂2ψ

∂y2

)
, (3.1.2)

on y = +1:
∂ψ

∂y
= 0, −∂ψ

∂x
= V (x), (3.1.3)

on y = −1:
∂ψ

∂y
= 0, −∂ψ

∂x
= (−1 + E)V (x), (3.1.4)

we obtain from the governing equation that the following relation must hold

αγ−1|γ|n−1 = β|β2|n−1, (3.1.5)

35
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for invariance. If we assume that α, β, γ > 0 and that γ = αλ for some choice of λ,

then we have that

αm = β where m =
1 + (n− 2)λ

2n− 1
. (3.1.6)

This gives

ψ(x, y) = αλS(x/α, y/β) = xλS(1, y/β) = xλf(η), where η = yx−m. (3.1.7)

The governing partial differential equation for ψ(x, y) is transformed into the principal

differential equation for f(η),

Re
(
(λ− 2m)f ′f ′′ − λff ′′′

)
=
(∣∣f ′′

∣∣n−1
f ′′
)′′
, where ′ =

d

dη
, (3.1.8)

while the boundary conditions become

on ηxm = +1: xλ−mf ′(η) = 0, −λxλ−1f(η) +mxλ−1ηf ′(η) = V (x), (3.1.9)

on ηxm = −1: xλ−mf ′(η) = 0, −λxλ−1f(η) +mxλ−1ηf ′(η) = (−1 + E)V (x).

(3.1.10)

Now as the boundaries of the η domain are to remain independent of x under the

similarity transformation, we must have that m = 0, and so η = y. In summary we

have that

ψ(x, y) = xλf(y), λ =
1

2− n, V (x) = −λxλ−1, (3.1.11)

and f(y) satisfies the principal differential equation

λRe
(
f ′f ′′ − ff ′′′

)
=
(
f ′′
∣∣f ′′
∣∣n−1

)′′
, (3.1.12)

and the boundary conditions

on y = +1: f ′ = 0, f = 1, (3.1.13)

on y = −1: f ′ = 0, f = −1 + E, (3.1.14)

We then find that we must consider two cases in order to proceed further: uniform

injection/suction or variable injection/suction. Before investigating these two cases we

should see if there are more general separable similarity solution forms that could be

applied.
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3.1.1 Alternative similarity solution forms

Since, in (3.1.11), we required m = 0 to preserve the boundary conditions (3.1.9) and

(3.1.10), we now choose to seek a more general form of separable solution, namely

ψ(x, y) = −g(x)f(y). (3.1.15)

Substituting this into the steady isothermal system yields,

Regg′
(
f ′f ′′ − ff ′′′

)
= g |g|n−1

(
−nf (iv)

∣∣f ′′
∣∣n−1 − n(n− 1)f ′′

(
f ′′′
)2 ∣∣f ′′

∣∣n−3
)
,

(3.1.16)

on y = +1: − gf ′ = 0, g′f = V (x), (3.1.17)

on y = −1: − gf ′ = 0, g′f = (−1 + E)V (x), (3.1.18)

where ′ means the derivative with respect to the argument of the relevant function.

For (3.1.16) to be separable, we require

gg′

g |g|n−1 =
−nf (iv) |f ′′|n−1 − n(n− 1)f ′′ (f ′′′)2 |f ′′|n−3

Re (f ′f ′′ − ff ′′′) = r (3.1.19)

to hold, where r is the separation constant. This means that we have to satisfy

gg′ = rg |g|n−1 , V (x) = g′, g(0) = 0 (flow symmetry condition), (3.1.20)

leaving the modified equation for f(y),

rRe
(
f ′f ′′ − ff ′′′

)
= −nf (iv)

∣∣f ′′
∣∣n−1 − n(n− 1)f ′′

(
f ′′′
)2 ∣∣f ′′

∣∣n−3
, (3.1.21)

on y = +1: f ′ = 0, f = 1, (3.1.22)

on y = −1: f ′ = 0, f = −1 + E, (3.1.23)

which in general has to be considered numerically.

We assume that g(x) is not identically zero otherwise it would yield a trivial form

for ψ(x, y). The relevant form of the suction or injection profile corresponding to a

particular solution g(x) is determined by the requirement that g′(x) = V (x), coming

from considering the boundary conditions upon the walls.

Cancelling a factor of g(x), we are left with a Bernoulli-type equation for g(x), with
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solutions

g(x) =





(c+ r(2− n)x)
1

2−n , g(x) > 0 andn 6= 2 ⇒ V (x) = r (c+ r(2− n)x)
n−1
2−n

A exp (rx), n = 2 ⇒ V (x) = r exp (rx)

− (c− r(2− n)x)
1

2−n , g(x) < 0 andn 6= 2 ⇒ V (x) = −r (c− r(2− n)x)
n−1
2−n

(3.1.24)

subject to conditions upon x, r, c, A and n.

We want to have suction or injection throughout the whole length of the channel

and as such we must consider the solution branches that are nonzero for all x. We also

want to impose the symmetry condition ψ(0, y) = ψxx(0, y) = 0, an assumption that

was implicitly made in Berman’s paper [Ber53].

When n 6= 2 if we impose the condition g(0) = 0 then we find that c = 0. Rewriting

the function as

g(x) = sgn(x) (r(2− n)|x|) 1
2−n =





(r(2− n)x)
1

2−n , x > 0, n 6= 2

− (r(2− n)(−x))
1

2−n , x < 0, n 6= 2
(3.1.25)

allows the determination of the separation constant r = a2−n/(2−n) for some constant

a. The simplest choice is to take a = 1, i.e. that any extra arbitrary constant in the

definition of ψ can be absorbed into the f -problem by redefining the Reynolds number;

in this case the separation constant is r = 1/(2 − n) = λ. We can then simplify the

form of g(x) to

g(x) = sgn(x)|x| 1
2−n , n 6= 2. (3.1.26)

and have thus extended g(x) to have an odd symmetry about x = 0. In this case we

then have that the injection or suction function V (x) is given by

V (x) =
1

2− n |x|
n−1
2−n , n 6= 2. (3.1.27)

In the case n = 2 the governing equation becomes

rRegg′
(
f ′f ′′ − ff ′′′

)
= g |g|

(
−2f (iv)

∣∣f ′′
∣∣− 2f ′′

(
f ′′′
)2 ∣∣f ′′

∣∣−1
)
, (3.1.28)

with the solution for g(x) in this case being

g(x) = ±B exp(±rx), B > 0, r ∈ R. (3.1.29)

However, we cannot impose the symmetry conditions upon g without forcing it to be

identically zero, and so in this case the centreline has been, in effect, pushed off to plus
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or minus infinity. Solutions of this form are dissimilar to those in the n 6= 2 case due to

the lack of symmetry. Fluid injection occurs when g′ < 0, which is the situation when

the minus signs are taken in the above form of g(x) and in this case the separation

constant r must remain negative; in contrast, suction occurs when by g ′ > 0 which is

the result of taking the positive signs and in this situation r must remain positive.

3.1.2 Uniform injection or suction case

If the injection or suction is constant throughout the channel length (so that V (x) = 1)

we must either have that the separation constant r = 0 or that λ = 1. As r = 0 gives

a trivial form for g(x) this is not possible, and so we must have λ = 1 but then any

possible similarity solution only holds if n = 1 i.e. if the fluid is Newtonian.

In the case of a power-law viscosity function, we conclude that there is no similarity

solution of separable form considered that is valid across the entire channel for the

case of uniform injection or suction problem. We are then left to consider whether

a similarity solution of separable form is relevant over a reduced part of the domain,

e.g. where the solution structure may contain boundary layer phenomena (where Re�
1). This is considered in later sections.

3.1.3 Variable injection or suction case

In contrast to the previous subsection, if we allow the form of the suction or injection

function to be determined whilst finding a separable similarity solution, we may be

able to find other valid solutions with variable suction or injection along the channel

length. These solutions are exactly those described in section 3.1.1.

3.2 Preliminary asymptotic analysis

3.2.1 Small Re limit

To consider the Re → 0 limit, let us pose the regular expansion of f(y) in ε = rRe =

Re/(2− n), namely

f(y) = f0(y) + εf1(y) + ε2f2(y) + · · · . (3.2.1)
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Integrating the governing ordinary differential equation once gives,

ε
(
f ′

2 − ff ′′
)

=
(
−f ′′

∣∣f ′′
∣∣n−1

)′
+ β, (3.2.2)

on y = +1: f ′ = 0, f = 1, (3.2.3)

on y = −1: f ′ = 0, f = −1 + E, (3.2.4)

and substituting the regular expansion for f(y) into the system (3.2.2)–(3.2.4), expand-

ing the integration constant in powers of ε,

β = β0 + εβ1 + ε2β2 + · · · (3.2.5)

and approximating the modulus using (3.3.1) gives the following series of problems at

each order:

O (1) : 0 = −
(
|f ′′0 |n−1f ′′0

)′
+ β0, (3.2.6)

on y = +1: f ′0 = 0, f0 = 1, (3.2.7)

on y = −1: f ′0 = 0, f0 = −1 + E, (3.2.8)

O (ε) : f ′0
2 − f0f

′′
0 = −

(
n|f ′′0 |n−1f ′′1

)′
+ β1, (3.2.9)

on y = +1: f ′1 = 0, f1 = 0, (3.2.10)

on y = −1: f ′1 = 0, f1 = 0. (3.2.11)

For the O (1) problem (3.2.6)–(3.2.8), an exact solution can be found in the general

case where the wall flow rates are not necessarily equal. First consider the situation

where f ′′0 > 0: numerical evidence suggests this is near the lower wall. Denoting the

solution in this region by f0+, we intend to solve the ode

(
f ′′0+
)n ′

= β0, (3.2.12)

on y = −1: f0+ = −1 + E, f ′0+ = 0. (3.2.13)

This has solution

f0+(y) =
(β0y + c0)2+

1
n

β2
0

(
2 + 1

n

) (
1 + 1

n

) + c1y + c2 (3.2.14)

where c0, c1, c2 are constants of integration. It is clear that f ′′0+ ↘ 0+ as y → y∗ = − c0
β0

.

Applying the two boundary conditions allow the determination of c1 and c2 in terms



3.2. PRELIMINARY ASYMPTOTIC ANALYSIS 41

of the remaining quantities β0, c0 and E, giving

c1 = −(c0 − β0)1+
1
n

β0

(
1 + 1

n

) , (3.2.15)

c2 = −1 + E − (c0 − β0)1+
1
n

β0

(
1 + 1

n

)
[

1 +
c0 − β0

β0

(
2 + 1

n

)
]
. (3.2.16)

If we now consider the region where f ′′0 < 0, which is near the upper wall, we have

to solve the following ode

(
−f ′′0−

)n ′
= −β0, (3.2.17)

on y = +1: f0− = 1, f ′0− = 0. (3.2.18)

This has solution

f0−(y) =
− (d0 − β0y)2+

1
n

β2
0

(
2 + 1

n

) (
1 + 1

n

) + d1y + d2. (3.2.19)

We can see that f ′′0− ↘ 0− as y → y∗ = d0
β0

. If we apply the two boundary conditions

we obtain the following values for the integration constants d1 and d2,

d1 = −(d0 − β0)1+
1
n

β0

(
1 + 1

n

) , (3.2.20)

d2 = 1 +
(d0 − β0)1+

1
n

β0

(
1 + 1

n

)
[

1 +
d0 − β0

β0

(
2 + 1

n

)
]
. (3.2.21)

Now in order to proceed to the general solution of the problem, we must first have

that f0 and f ′0 are continuous about y = y∗; this needs the two descriptions of y∗ to

coincide, and so we have that d0 = −c0. Imposing continuity of f ′0(y∗) needs d1 = c1,

and this implies d0 = c0 = 0, which in turn implies y∗ = 0. Now imposing the continuity

of f0(y∗) requires d2 = c2, and this yields

β0 = −
(

1− E

2

)n(
2 +

1

n

)n

. (3.2.22)

In summary we have that the leading order solution is

f0(y) =





f0+(y) =
(1− 1

2
E)

(1+ 1
n)

(−y)2+
1
n +

(1− 1
2
E)(2+ 1

n)
(1+ 1

n)
y + 1

2E, y ∈ [−1, 0],

f0−(y) = −(1− 1
2
E)

(1+ 1
n)
y2+ 1

n +
(1− 1

2
E)(2+ 1

n)
(1+ 1

n)
y + 1

2E, y ∈ [0, 1],
(3.2.23)
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equivalently stated as

f0(y) =




f0+(y) = (2−E)(n+1)

2n (−y)2+1/n + (2−E)(2n+1)
2(n+1) y + E

2 , y ∈ [−1, 0],

f0−(y) = − (2−E)(n+1)
2n y2+1/n + (2−E)(2n+1)

2(n+1) y + E
2 , y ∈ [0, 1].

(3.2.24)

Turning to the O (ε) problem (3.2.9)–(3.2.11), we again must split the problem into

two parts, coinciding with the regions of positive and negative values of f ′′
0 (y).

In the region where f0+(y) is valid, y ∈ [−1, 0], we can substitute the general (i.e.

not E = 0 specific) leading order solution into the O (ε) equation (3.2.9) and find an

expression for f1+(y), namely

f1+(y) = R0 +R1(−y) +R2(−y)1+1/n +R3(−y)2+1/n

+R4(−y)2+2/n +R5(−y)3+2/n +R6(−y)4+3/n, y ∈ [−1, 0],
(3.2.25)

where R0–R6 are constants; the values of R0, R1, R2 and R3 are to be determined while

the values of R4, R5 and R6 are known as they come from the forcing zeroth-order terms

in (3.2.9).

We can immediately use the two boundary conditions at y = −1 to give two equa-

tions relating the Ri coefficients

f1+(−1) = 0 : R0 +R1 +R2 +R3 +R4 +R5 +R6 = 0, (3.2.26)

df1+

dy
(−1) = 0 : −R1 − (1 + 1/n)R2 − (2 + 1/n)R3 − (2 + 2/n)R4

− (3 + 2/n)R5 − (4 + 3/n)R6 = 0. (3.2.27)

The corresponding function f1−(y) valid on y ∈ [0, 1] is

f1−(y) = C0 + C1y + C2y
1+1/n + C3y

2+1/n

+C4y
2+2/n + C5y

3+2/n + C6y
4+3/n, y ∈ [0, 1],

(3.2.28)

where C0–C6 are constants; the values of C0 up to C3 are to be determined whereas the

values of C4, C5 and C6 are known. Applying the two boundary conditions at y = 1

gives two equations for the coefficients Ci

f1−(1) = 0 : C0 + C1 + C2 + C3 + C4 + C5 + C6 = 0, (3.2.29)

df1−

dy
(1) = 0 : C1 + (1 + 1/n)C2 + (2 + 1/n)C3 + (2 + 2/n)C4

+ (3 + 2/n)C5 + (4 + 3/n)C6 = 0. (3.2.30)
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It remains to specify four more conditions in order to determine the values of the

constants; these conditions are that f1(y) and f ′1(y) should be continuous at y = 0

and that the quantities f ′′1 (y)|f ′′0 (y)|n and (f ′′1 (y)|f ′′0 (y)|n)′ should also be continuous

at y = 0. Altogether these specify that

C0 = R0, C1 = −R1, C2 = R2, C3 = −R3. (3.2.31)

Solving the four remaining simultaneous equations for the unknown coefficients gives

the values of all the unknowns in terms of C4, C5 and C6

C0 = C4 = −(2n)n(2n+ 1)2−n(2− E)2−nE

16(n+ 1)2(n+ 2)
, (3.2.32a)

C1 = C5 + 2C6 =
(2n)n(2n+ 1)2−n(2− E)3−n(8n2 − 3n− 9)

48(n+ 1)3(3n+ 2)(4n+ 3)
, (3.2.32b)

C2 = −2C4 =
(2n)n(2n+ 1)2−n(2− E)2−nE

8(n+ 1)2(n+ 2)
, (3.2.32c)

C3 = −2C5 − 3C6 = −(2n)n(2n+ 1)2−n(2− E)3−n(3n2 − n− 3)

8(n+ 1)3(3n+ 2)(4n+ 3)
, (3.2.32d)

C4 = −(2n)n(2n+ 1)2−n(2− E)2−nE

16(n+ 1)2(n+ 2)
, (3.2.32e)

C5 =
(n− 1)(2n)n(2n+ 1)2−n(2− E)3−n

16(n+ 1)3(3n+ 2)
, (3.2.32f)

C6 = −(2n)n+2(2n+ 1)2−n(2− E)3−n

96(n+ 1)3(3n+ 2)(4n+ 3)
, (3.2.32g)

R0 = C0, R1 = −C1, R2 = C2, R3 = −C3, R4 = C4, R5 = −C5, R6 = −C6.

(3.2.32h)

We can state the value of β1 as

β1 =
9(2n+ 1)2(2− E)2

4(3n+ 2)(4n+ 3)
. (3.2.33)

The first order perturbation term f1(y) is therefore found to be

f1(y) =




f1+(y) given in (3.2.25), y ∈ [−1, 0],

f1−(y) given in (3.2.28), y ∈ [0, 1],
(3.2.34)

where the coefficients Ci and Ri are given in (3.2.32a)–(3.2.32h).
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3.3 Linear stability analysis

We wish to perform a numerical linear stability analysis of the power-law viscosity

fluid flow in order to establish whether flows are temporally or spatially stable or not.

In practice, it is only stable flows that are observable, as the perturbations have not

destroyed the base flow to which they were applied. In each case the essence of the

method is to take a specified flow field and add an infinitesimal perturbation, either in

space or in time, and to see what happens next. If the perturbation decreases to zero,

then the base or specified flow is said to be stable to that infinitesimal perturbation;

if the perturbation increases without bound and overshadows the base flow, the base

flow is said to be unstable to that particular infinitesimal perturbation.

The analysis of stability is based upon reducing the perturbed problem to an eigen-

value problem by linearisation of the perturbed problem about the base flow and ap-

proximating the perturbed flow in an appropriate manner. For temporal stability a

normal mode representation is used, while for the spatial stability the perturbation

takes the form of a power of the space-dimension dependence of the base flow. In doing

either of these, an unknown scalar is introduced to the problem, which takes the role

of an eigenvalue.

3.3.1 Spatial stability

The steady version of the system (1.3.13a)–(1.3.13e) for the case n 6= 2, describes

the base flow to which perturbations are applied. We add a spatially-dependent per-

turbation function εH(x, y), where ε � 1, to the base flow described by the stream

function, giving ψ(x, y) = −G(x)F (y) + εH(x, y). Substituting this into the steady

system produces

Re
{(
−GF ′ + εHy

) (
−G′F ′′ + εHxyy

)
−
(
−G′F + εHx

) (
−GF ′′′ + εHyyy

)}

=
(∣∣−GF ′′ + εHyy

∣∣n−1 (−GF ′′ + εHyy

))
yy
,

on y = +1: −GF ′ + εHy = 0, G′F − εHx = V (x),

on y = −1: −GF ′ + εHy = 0, G′F − εHx = (−1 + E)V (x),

where ′ denotes differentiation with respect to the argument and subscripts refer to

partial differentiation. This must now be simplified by expanding the modulus term.
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For generic terms a, b and c one would obtain

∣∣a+ εb+ ε2c+ · · ·
∣∣k = |a|k

∣∣1 + εb/a+ ε2c/a+ · · ·
∣∣k

= |a|k + εkab |a|k−2 +

ε2
(
k

2
(2ac+ b2) +

k

2
(k − 2)a2b2

)
|a|k−2 + · · · . (3.3.1)

Using this expansion, and neglecting terms of quadratic or greater order in ε, produces

the following problems at each order

O (1) ReGG′ (F ′F ′′ − FF ′′′) = G |G|n−1
(
−F ′′

∣∣F ′′
∣∣n−1

)′′
,

on y = +1: GF ′ = 0, G′F = V (x),

on y = −1: GF ′ = 0, G′F = (−1 + E)V (x),

O (ε) Re
(
−GF ′Hxyy −G′F ′′Hy +GF ′′′Hx +G′FHyyy

)
= n

(
Hyy

∣∣−GF ′′
∣∣n−1

)
yy
,

on y = +1: Hy = 0, Hx = 0,

on y = −1: Hy = 0, Hx = 0.

TheO (1) terms reproduce the base flow and they can be recast as two separate ordinary

differential equations (via the method of separation of variables) in order to determine

similarity solutions of the base flow, leading to equations (3.1.20) and (3.1.21)–(3.1.23).

However, to progress further with the perturbation function and so the O (ε) problem,

let us seek perturbations of almost the same similarity form as the leading order terms,

the only difference being that the spatial functional dependence along the channel

length is raised to an unknown power. Thus, we seek solutions of the form

ψ(x, y) = −G(x)F (y) + εGm(x)Ĥ(y), m ∈ R.

Recalling that we sought nontrivial G(x) satisfying (3.1.20), the governing equation for

the O (ε) problem is

mrRe
(
F ′Ĥ ′′ − F ′′′Ĥ

)
+ rRe

(
F ′′Ĥ ′ − FĤ ′′′

)
= −n

(
Ĥ ′′
∣∣F ′′
∣∣n−1

)′′
.

If we define a scaled Reynolds number

R̂ =
rRe

n
=

Re

n(2− n)
(3.3.2)
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then we can restate the O (ε) problem as

mR̂
(
F ′Ĥ ′′ − F ′′′Ĥ

)
+ R̂

(
F ′′Ĥ ′ − FĤ ′′′

)
= −

(
Ĥ ′′
∣∣F ′′
∣∣n−1

)′′
.

It now remains to apply appropriate boundary conditions to the perturbation func-

tion. The boundary conditions at the channel walls are solely O (1) conditions and

so the correct spatial perturbation boundary conditions are homogeneous. Thus, the

eigenvalue problem for determination of the spatial stability of a given base flow F can

be stated as

mR̂
(
F ′′′Ĥ − F ′Ĥ ′′

)
+ R̂

(
FĤ ′′′ − F ′′Ĥ ′

)
=
(
Ĥ ′′
∣∣F ′′
∣∣n−1

)′′
, (3.3.3)

on y = +1: Ĥ ′ = 0, Ĥ = 0, (3.3.4)

on y = −1: Ĥ ′ = 0, Ĥ = 0. (3.3.5)

Where nontrivial functions Ĥ satisfying (3.3.3)–(3.3.5) exist they are called eigen-

functions and the corresponding values of m are called eigenvalues. The stability of

solutions is determined by the eigenvalues, and their interpretation is summarised in

Table 3.1. This has been constructed by considering the general behaviour of the

xλ term multiplying the y-dependent function Ĥ, and the behaviour described there

should be compared with numerical computation of the eigenvalues and correspond-

ing eigenfunctions. For example, for large values of x, the suction problem has fluid

entering the channel from large x positions. If the product (m − 1)λ > 0, then the

perturbation term may not be smaller than the base flow and in this case the distur-

bances would overshadow the base flow behaviour, destroying the similarity solution

downstream of the channel end. Thus, the suction problem is unstable to perturbations

when (m− 1)λ > 0; this produces the entries for both λ > 0, m > 1 and λ < 0, m < 1

when x � 1. Then it does not matter whether the flow is stable or not for x � 1, as

the similarity form has already been destroyed by the perturbations and so the solution

form that has been assumed is no longer valid. In the case of fluid injection the per-

turbation at x � 1 must remain small for the injection flow to be stable; the product

(m− 1)λ < 0 must be satisfied for xmλ < x as x� 1. If the flow is unstable for x� 1

then the corresponding downstream flow for x� 1 is not necessarily going to be of the

assumed similarity form.
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x� 1 x� 1
λ < 0 λ > 0 λ < 0 λ > 0

(n > 2) (0 < n < 2) (n > 2) (0 < n < 2)

m < 1 stable unstable unstable unstable
Inj.

m > 1 unstable stable unstable unstable

m < 1 - unstable unstable stable
Suc.

m > 1 unstable - stable unstable

Table 3.1. Summary of the predictions of spatial stability of similarity solutions for
values of the eigenvalue m, parameter λ = 1/(2 − n) and for large or small x. An
entry of “−” in the suction cases indicates that the upstream position is unstable and
so no prediction can be made about stability of the location in question in the case of
suction.

In the case n = 1 (Newtonian fluid flow) the stability problem reduces to

mRe
(
F ′′′Ĥ − F ′Ĥ ′′

)
+ Re

(
FĤ ′′′ − F ′′Ĥ ′

)
= Ĥ(iv), (3.3.6)

on y = +1: Ĥ ′ = 0, Ĥ = 0, (3.3.7)

on y = −1: Ĥ ′ = 0, Ĥ = 0. (3.3.8)

3.3.2 Temporal stability

In order to consider the temporal stability of the fluid flow we must start with the

system (1.3.13a)–(1.3.13e) (for the case n 6= 2). Before adding perturbations to the

base flow, it is worthwhile recording, for future reference, a similarity solution for the

unsteady problem. Substituting the variables

x = αx̄, y = βȳ, ψ = γψ̄, t = δt̄ (α, β, γ, δ ∈ R > 0)

into the unsteady partial differential equation yields the following relations between

the the four quantities
γ

β2δ
=
γ2

αβ
=

γn

β2n+2
.

First, noting that as the y-domain of the channel is fixed, we must have β = 1. Then

we find that

γ = α
1

2−n , δ = α
1−n
2−n ,

and so the form of similarity solution for the unsteady problem is

ψ̄(x̄, ȳ, t̄) = x
1

2−nψ(1, y, tx
n−1
2−n ) = x

1
2−n f(y, τ), τ = tx

n−1
2−n . (3.3.9)
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Returning to the question of temporal stability, we now add a time-dependent

perturbation function to the steady base flow stream function. Substituting

ψ(x, y, t) = −G(x)F (y) + εH(x, y, t), ε� 1,

into the unsteady system produces

Re
(
εHyyt +

(
−GF ′ + εHy

) (
−G′F ′′ + εHxyy

)

−
(
−G′F + εHx

) (
−GF ′′′ + εHyyy

))

=
(
| −GF ′′ + εHyy|n−1

(
−GF ′′ + εHyy

))
yy
.

Using the expansion for the modulus given in equation (3.3.1), we obtain the fol-

lowing leading order and first order perturbation problems,

O (1) ReGG′ (F ′F ′′ − FF ′′′) = −G|G|n−1
(
F ′′|F ′′|n−1

)′′
,

on y = +1: GF ′ = 0, G′F = V (x),

on y = −1: GF ′ = 0, G′F = (−1 + E)V (x),

O (ε) Re
(
Hyyt −G′ (F ′′Hy − FHyyy

)
−G

(
F ′Hxyy − F ′′′Hx

))

= n|G|n−1
(
|F ′′|n−1Hyy

)
yy
,

on y = +1: Hy = 0, Hx = 0,

on y = −1: Hy = 0, Hx = 0.

The O (1) statement reproduces the steady base flow problem (3.1.16)–(3.1.18) and so

we can use the fact that the functions F (y), G(x) satisfy separate ordinary differential

equations; in particular, if we use (3.1.20) in the first order perturbation problem we

can replace r|G|n−1 with G′. If we now require H(x, y, t) to be of the form

H(x, y, t) = exp (st)H̄(x, y)

then we may obtain, after cancelling common factors, the following bidimensional eigen-

value problem,

rRe

(
s
H̄yy

G′ +
G

G′

(
F ′′′H̄x − F ′H̄xyy

)
+ FH̄yyy − F ′′H̄y

)
= n

(
|F ′′|n−1H̄yy

)
yy
,

(3.3.10)

on y = +1: H̄y = 0, H̄x = 0, (3.3.11)

on y = −1: H̄y = 0, H̄x = 0. (3.3.12)
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In order to obtain one dimensional eigenvalue problems we must use a different

form for the perturbation term rather than just expanding in normal modes, as this

fails to work here. It is found that we need a non-uniform time scale dependent upon

the function G′(x)1. Returning to the O (ε) problem above, setting

H(x, y, t) = −G(x)f(y, τ), τ = G′(x)t, (3.3.13)

produces the partial differential equation for f(y, τ),

rRe
(
−fyyτ − Ffyyy + F ′′fy + F ′ (fyy + (n− 1)τfyyτ )

−F ′′′ (f + (n− 1)τfτ )
)

= −n
(
|F ′′|n−1fyy

)
yy
,

(3.3.14)

where we have used the fact that

GG′′

G′ = (n− 1)G′.

If we wish to obtain an ordinary differential equation boundary value problem, we

must split the function f(y, τ) into separate y- and τ -dependent functions. Then we

must approximate the τ -dependence for large and small τ . Thus the total perturbed

stream function becomes

ψ(x, y, t) = G(x) (−F (y) + εf(y, τ)) = G(x) (−F (y) + εf0(y)T (τ)) , (3.3.15)

and we now wish to approximate T (τ) in the limits of large and small τ .

For τ � 1 the partial differential equation (3.3.14) becomes

rRe
(
−f0yyTτ − Ff0yyyT + F ′′f0yT + F ′f0yyT + F ′′′f0T

)
= −n

(
|F ′′|n−1f0yyT

)
yy
.

If we assume that

T (τ) = exp (sτ) , for τ � 1, s ∈ R,

then upon simplification we are left with the following eigenvalue problem for f0(y),

where s is the unknown eigenvalue and the base flow F has already been determined,

n
(
|F ′′|n−1f ′′0

)′′
+ rRe

(
F ′f ′′0 + F ′′f ′0 − F ′′′f0 − Ff ′′′0

)
= srRef ′′0 , (3.3.16)

on y = +1: f ′0 = 0, f0 = 0, (3.3.17)

on y = −1: f ′0 = 0, f0 = 0. (3.3.18)

1This is reminiscent of the similarity solution form described in equation (3.3.9)
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For τ � 1, we approximate T (τ) by

T (τ) = τ s, for τ � 1, s ∈ R,

and then substitute this into the partial differential equation (3.3.14). Using the fact

that τ � 1, the partial differential equation is simplified to become the following

eigenvalue problem

n
(
|F ′′|n−1f ′′0

)′′
+ rRe

(
F ′′f ′0 + F ′f ′′0 − F ′′′f0 − Ff ′′′0

)

= sRer(n− 1)
(
F ′′′f0 − F ′f ′′0

)
, (3.3.19)

on y = +1: f ′0 = 0, (1 + (n− 1)s)f0 = 0, (3.3.20)

on y = −1: f ′0 = 0, (1 + (n− 1)s)f0 = 0. (3.3.21)

where s is the unknown eigenvalue and the base flow F has already been found. This

particular form of perturbation, arising from the need to split the variables for the

perturbation in a different manner from that for normal modes, has been used in the

analysis of the spatial and temporal stability of Jeffery-Hamel flows2 by McAlpine and

Drazin [MD98].

The case where τ � 1 is able to give information about the stability properties at

different positions along the channel, i.e. for τ � 1 we can have

• G′ � 1, t = O (1): stability information for large x-positions at small and order

one times, as G′ ∼ xλ;

• G′ � 1, t = O (1): stability information for small times near the channel origin ;

• G′ = O (1) , t� 1: stability information for large times for order one x-positions

within the channel.

3.4 Regularisation for power-law viscosity numerical work

In order to perform numerical studies upon the ordinary differential equation for f(y)

we must use a regularised version of the problem. This is because the function |f ′′(y)|
is not analytic, and this causes numerical routines to have problems converging upon a

correct solution. The regularisation modifies the problem so that the resulting function

(f ′′2+δ2)1/2 is analytic and the value δ > 0 is user provided. The parameter δ is chosen

2A Jeffery-Hamel flow is, in polar coordinates (r, θ), the two-dimensional flow of incompressible
viscous fluid between stationary impermeable planes located at θ = ±α, driven by a steady source or
sink of fluid of strength Q at r = 0 where the planes intersect.
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to be small, and the idea is that, as it is reduced, the solutions obtained for successive

δ-values should become better and better approximations to the solution of the original

problem, where the nonanalytic terms appear.

Using the regularisation

|f ′′| → A =
(
f ′′

2
+ δ2

) 1
2

(3.4.1)

the nondimensional power-law part of the viscosity term µ becomes

µ→
(
f ′′

2
+ δ2

)n−1
2

= An−1 (3.4.2)

and the ordinary differential equation that is to be solved is now

rRe
(
f ′f ′′ − ff ′′′

)
= −f (iv)

(
nf ′′

2
+ δ2

)
An−3 − (n− 1)f ′′f ′′′

2
(
nf ′′

2
+ 3δ2

)
An−5

(3.4.3)

on y = +1: f ′ = 0, f = 1, (3.4.4)

on y = −1: f ′ = 0, f = −1 + E, (3.4.5)

where r is the aforementioned separation constant.

3.4.1 Regularised spatial stability problem

In order to perform numerical solutions of the spatial stability problem, we again will

need to regularise the problem formulation in the same manner as that for the base flow

problem considered above in §3.4. Performing the regularisation the spatial stability

problem is then restated in a form that can be further manipulated, if needed, for

numerical work, as follows

mrRe
(
F ′′′H − F ′H ′′)+ rRe

(
FH ′′′ − F ′′H ′)

= nH(iv)An−1 + 2n(n− 1)An−3F ′′F ′′′H ′′′

+ n(n− 1)(n− 3)H ′′ (F ′′)2 (F ′′′)2An−5 + n(n− 1)H ′′
(
F ′′′2 + F ′′F (iv)

)
An−3

(3.4.6)

on y = +1: H ′ = 0, H = 0, (3.4.7)

on y = −1: H ′ = 0, H = 0, (3.4.8)

where r is the separation constant arising from the base flow problem, F is proportional

to the transverse fluid velocity component in the base problem, m is the unknown eigen-
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value and H is the unknown eigenfunction. This problem must be supplemented by one

more condition in order to determine the eigenfunctions, which acts as a normalisation

condition. In this case we take

H ′′(−1) = 1. (3.4.9)

In the case n = 1, the regularised spatial stability problem reduces to

mrRe
(
F ′′′H − F ′H ′′)+ Re

(
FH ′′′ − F ′′H ′) = H(iv), (3.4.10)

on y = +1: H ′ = 0, H = 0, (3.4.11)

on y = −1: H ′ = 0, H = 0, (3.4.12)

which agrees with the analytical formulation of the problem given earlier in (3.3.6)–

(3.3.8), and in previous work by [ZDB88] and [DB84].

3.4.2 Regularised temporal stability problem

Again, a regularisation of the modulus term is required in order to perform numeri-

cal work on the temporal stability eigenproblem. However, in this case there will be

two different regularised problems, corresponding to the two τ limits appearing in the

temporal stability problem’s formulation.

For the first, τ � 1 limit, the regularised eigenproblem for the eigenfunction f0(y)

and eigenvalue s is

srRef ′′0 = nAn−1f
(iv)
0 + 2n(n− 1)F ′′F ′′′f ′′′0 An−3 + n(n− 1)f ′′0

(
F ′′′2 + F ′′F (iv)

)
An−3

+ n(n− 1)(n− 3)f ′′0F
′′2F ′′′2An−5 + rRe

(
F ′f ′′0 + F ′′f ′0 − F ′′′f0 − Ff ′′′0

)
(3.4.13)

on y = +1: f ′0 = 0, f0 = 0, (3.4.14)

on y = −1: f ′0 = 0, f0 = 0, (3.4.15)

and the eigenfunction normalisation condition is

f ′′0 (−1) = 1. (3.4.16)

For the limit τ � 1, the regularised temporal stability problem for the eigenfunction
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f0(y) and eigenvalue s becomes

sr(n− 1)Re
(
F ′′′f0 − F ′f ′′0

)
= nAn−1f

(iv)
0

+ 2n(n− 1)f ′′′0 F
′′F ′′′An−3 + n(n− 1)f ′′0

(
F ′′′2 + F ′′F (iv)

)
An−3

+ n(n− 1)(n− 3)f ′′0F
′′2F ′′′2An−5

+ rRe
(
F ′f ′′0 + F ′′f ′0 − F ′′′f0 − Ff ′′′0

)
, (3.4.17)

on y = +1: f ′0 = 0, (1 + (n− 1)s)f0 = 0, (3.4.18)

on y = −1: f ′0 = 0, (1 + (n− 1)s)f0 = 0, (3.4.19)

and the eigenfunction normalisation condition is

f ′′0 (−1) = 1. (3.4.20)

In the specific case of n = 1 where the temporal stability of Newtonian fluid flow is

being considered, the temporal stability problem reduces to

sRef0
′′ = f0

(iv) + Re
(
F ′f ′′0 + F ′′f ′0 − Ff ′′′0 − F ′′′f0

)
, (3.4.21)

on y = +1: f ′0 = 0, f0 = 0, (3.4.22)

on y = −1: f ′0 = 0, f0 = 0, (3.4.23)

together with the eigenfunction normalisation condition,

f ′′0 (−1) = 1, (3.4.24)

which also agrees with the analytical formulation (3.3.16)–(3.3.18).

3.4.3 Summary

In this chapter we have found a similarity solution for the flow of a power-law fluid

in a channel driven by fluid injection or suction through the porous channel walls.

We have then used this solution as a basis for a small Re expansion of the solution,

for linear spatial and temporal stability problems and then presented the equivalent

regularised problems for flow and stability calculations. In subsequent chapters we

restrict attention to the power-law fluid with exponent n ∈ (0, 2). Flowing materials

modelled by power-law fluid viscosity models are more commonly found with their

power-law exponents in this range than for n > 2. We shall further restrict attention of

the fluid flow to that within a one porous walled channel, corresponding to the problem

selection parameter E = 1.



Chapter 4

Isothermal power law fluid

problem - one porous walled

channel

4.1 Numerical results for base flows

4.1.1 Type I solution bifurcation results

In this section we produce bifurcation diagrams for the various power law flows consid-

ered and a selection of assorted profiles. In each bifurcation plot the variable plotted

on horizontal axis is R̂ (defined in equation (3.3.2)), but the quantity plotted on the

vertical axis depends upon the wall being considered. If the upper wall is considered

then the quantity plotted on the vertical axis is −f ′′(1) (or its logarithm depending

upon the scales of the surrounding data). The quantity −f ′′(1) is plotted rather than

f ′′(1) as the latter is generally negative. The importance of the second derivative of

f(y) is that it is related to the viscous shear stress and so f ′′(1) is proportional to the

viscous stress at the upper wall1.

The regularised system (3.4.3)–(3.4.5) has been solved for each set of data plotted

with the value of the regularisation parameter δ = 0.01 unless otherwise stated.

1The upper wall stress per unit area is given by τw = µψyy(x, 1) with units Pa and has the di-

mensionless form τw = −K
˛

˛V0VUL/2h
2
˛

˛

n−1
(V0VUL/h

2)x1/2−n
˛

˛

˛
x1/2−n

˛

˛

˛

n−1

f ′′(1) |f ′′(1)|
n−1

using the

similarity form ψ = −x1/(2−n)f(y).
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A selection of solutions for fixed values of the flow index n are now given. The

two most extreme values of the scaled Reynolds number R̂ = Re/(n(2 − n)) are for

the cases of high injection and suction rates; the intermediate values that are chosen

depend on whether the fluid is shear-thinning or shear-thickening. If it is shear-thinning

(0 < n < 1) then the intermediate points are where there are turning points on the

bifurcation curve. If it is shear-thickening (1 < n < 2) then an intermediate point is

chosen where the lower wall stress vanishes and then a second point is chosen if there

is a turning point on the curve.

The quantities plotted are f(y) and the first three derivatives of f(y). The values

for f(y) and f ′(y) are proportional to the vertical and horizontal components of velocity

respectively. The quantity f ′′(y) is related to the fluid vorticity by ∇∧ψ = ωk = xf ′′k

and so f ′′′(y) is proportional to the gradient of the vorticity in the y direction.
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Figure 4.1.9. Flow function f(y) and its first three derivatives for selected values of

Re with n = 2. The quantity R̂ is not used as the governing equation for f(y) does

not admit the same scalings for its solution and as such the separation constant in its

derivation is arbitrary, and has been taken to have the value of 1 in the case of suction

and −1 for injection.
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Figure 4.1.10. Flow function f(y) and its first three derivatives for selected values of

R̂ with n = 1.8.
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Figure 4.1.11. Flow function f(y) and its first three derivatives for selected values of

R̂ with n = 1.6.



4.1. NUMERICAL RESULTS FOR BASE FLOWS 61

−1 0 1
−1

−0.5

0

0.5

1

y
f(

y)

 

 

−1 0 1
−2

0

2

4

y

f′ (y
)

−1 0 1
−20

−10

0

10

y

f′′ (y
)

−1 0 1
−100

−50

0

50

100

y

f′′′
(y

)
P

S
frag

rep
lacem

en
ts

R̂ = −20 R̂ = 1 R̂ = 7.339919 R̂ = 15.23464 R̂ = 20

Figure 4.1.12. Flow function f(y) and its first three derivatives for selected values of

R̂ with n = 1.4.
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Figure 4.1.13. Flow function f(y) and its first three derivatives for selected values of

R̂ with n = 1.2.
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Figure 4.1.14. Flow function f(y) and its first three derivatives for selected values of

R̂ with n = 1.
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Figure 4.1.15. Flow function f(y) and its first three derivatives for selected values of

R̂ with n = 0.8.
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Figure 4.1.16. Flow function f(y) and its first three derivatives for selected values of

R̂ with n = 0.5.

Figures 4.1.1–4.1.8 show the upper and lower wall bifurcation diagrams for the one

porous walled channel flow of a power-law fluid for a range of values of exponent n. The

main feature of the upper wall diagrams for shear-thinning fluids (n < 1) as compared

to the Newtonian fluid (n = 1) is that the region of hysteresis remains for suction flow

and occurs for lower values of R̂ as n decreases, whereas the wall stress is increasing as

n decreases and the hysteresis region rotates anticlockwise as n decreases. For small

enough values of n (stronger shear-thinning fluids) there is a looped region of hysteresis.

The corresponding lower wall plots for shear-thinning fluid show that the lower wall

stresses for suction flow also increase as n decreases; the hysteresis region becoming

flatter in height and covering a greater range of R̂ as n decreases. For the injection

flow, the upper and lower wall behaviours remain similar as n decreases and are not

dissimilar to the Newtonian fluid where n = 1.

The solutions for n = 0.8 and n = 0.5 (Figures 4.1.15 and 4.1.16 respectively) show

that injection flow is very similar to that of a Newtonian fluid (Figure 4.1.14). For small

values of suction, up to the first turning point on the region of hysteresis, the profiles

for n = 0.8 and n = 0.5 are similar. The final profile for R̂ = 20 does show differences

between the two flows. For n = 0.5 the minimum of f(y) is less than that for n = 0.8

and the boundary layers in f ′(y) for n = 0.5 are thinner than those for n = 0.8, with a

resulting increase in the gradients of f ′(y) as these layers are encountered adjacent to

the walls. The values of f ′′(±1) and f ′′′(±1) are much greater for n = 0.5 as compared

with n = 0.8 and so the wall shear stresses are accordingly greater for smaller n.

As n increases above 1 the bifurcation diagrams for the shear-thickening fluid (Fig-
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ures 4.1.5–4.1.8) change in character. The region of hysteresis is lost and the upper wall

suction curves flatten out as n increases from n = 1.1 to n = 1.9, with the maximum

value of −f ′′(1) decreasing as n increases. The lower wall suction curves display a sim-

ilar trend in that, as n increases, the hysteresis region is lost and the minimum value

of f ′′(−1) reduces towards zero as n increases. An artefact of the hysteresis region

remains on the lower wall curves for n > 1.5 and near the zero of f ′′(−1) the curvature

of these curves changes sign as n increases. The injection regions for each n are all

similar and only the lower wall bifurcation diagrams help to distinguish the curves; the

upper wall stress increases as n increases, for a fixed value of R̂, and the lower-wall

stress decreases as n increases.

The solutions for shear-thickening fluids (Figures 4.1.13–4.1.10) have qualitative

similarities. As n increases, the minimum value of the suction f(y) profiles reduces

from below −1 when n = 1.2 to above −0.5 when n = 1.8. The profiles for f ′(y) are all

sinusoidal for n > 1 suction flow, indicating a region of reversed flow where f ′(y) < 0,

and the behaviour of f ′(y) around its maxima becomes more peaked as n increases. As

the fluid becomes more shear-thickening the wall values of f ′′(±1) change their relative

ordering, from f ′′(−1) < f ′′(1) when n = 1.2 to f ′′(−1) > f ′′(1) when n = 1.8. The

profiles of f ′′(y) for injection flow all show that there is an area of non-zero f ′′ near

the lower wall and then f ′′ ≈ 0 for the majority of the remaining channel width. The

interior zero of f ′′(y) closest to the upper wall is located on a region with an increasingly

steep negative gradient as n increases above 1 and this can be seen in the sizes of the

spikes of f ′′′(y) as n increases.

For n = 2 the values of R̂ are the same as for Re as the separation constant coming

from the separation of variables similarity solution is now arbitrary as compared to the

n 6= 2 case (where it was determined as r = 1/(2 − n)). The trends described for the

shear thickening power-law fluid above are still shown for the n = 2 bifurcation digram

(Figures 4.1.7 and 4.1.8) and for the solution plotted in Figure 4.1.9.

4.1.2 Type I analysis and asymptotics

Small Re asymptotics

The small Reynolds number asymptotics derived in §3.2.1 can be specialised to the

isothermal one porous walled channel setting by letting E = 1. In this case the first
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two terms of the expansion for f(y) are

f(y) = f0(y) + εf1(y)

(
where ε =

Re

2− n

)

=




f0+(y) + εf1+(y), y ∈ [−1, 0],

f0−(y) + εf1−(y), y ∈ [0, 1],

where

f0+(y) =
n+ 1

2n
(−y)2+1/n +

2n+ 1

2(n+ 1)
y +

1

2
,

f0−(y) = −n+ 1

2n
y2+1/n +

2n+ 1

2(n+ 1)
y +

1

2
,

f1+(y) = − (2n)n(2n+ 1)2−n

16(n+ 1)2(n+ 2)
− (2n)n(2n+ 1)2−n(8n2 − 3n− 9)

48(n+ 1)3(3n+ 2)(4n+ 3)
(−y)

+
(2n)n(2n+ 1)2−n

8(n+ 1)2(n+ 2)
(−y)1+1/n +

(2n)n(2n+ 1)2−n(3n2 − n− 3)

8(n+ 1)3(3n+ 2)(4n+ 3)
(−y)2+1/n

− (2n)n(2n+ 1)2−n

16(n+ 1)2(n+ 2)
(−y)2+2/n − (n− 1)(2n)n(2n+ 1)2−n

16(n+ 1)3(3n+ 2)
(−y)3+2/n

+
(2n)n+2(2n+ 1)2−n

96(n+ 1)3(3n+ 2)(4n+ 3)
(−y)4+3/n,

f1−(y) = − (2n)n(2n+ 1)2−n

16(n+ 1)2(n+ 2)
+

(2n)n(2n+ 1)2−n(8n2 − 3n− 9)

48(n+ 1)3(3n+ 2)(4n+ 3)
y

+
(2n)n(2n+ 1)2−n

8(n+ 1)2(n+ 2)
y1+1/n − (2n)n(2n+ 1)2−n(3n2 − n− 3)

8(n+ 1)3(3n+ 2)(4n+ 3)
y2+1/n

− (2n)n(2n+ 1)2−n

16(n+ 1)2(n+ 2)
y2+2/n +

(n− 1)(2n)n(2n+ 1)2−n

16(n+ 1)3(3n+ 2)
y2+2/n

− (2n)n+2(2n+ 1)2−n

96(n+ 1)3(3n+ 2)(4n+ 3)
y4+3/n.

In particular this predicts the value of f ′′(1) for small ε to be

f ′′(1) = −2n+ 1

2n
− ε(5n2 + 8n+ 6)(2n)n−2(2n+ 1)2−n

(n+ 2)(3n+ 2)(4n+ 3)
+O

(
(ε)2

)
, (4.1.1)

which, when n = 1, agrees with the known Newtonian prediction [Ter64]

f ′′(1)
∣∣
n=1

= −3

2
− 19

70
Re +O

(
Re2

)
.

The leading order small Re expression and its first three derivatives are plotted in

Figures 4.1.17 and 4.1.18 for values of n between 0 and 2. The leading order expressions



4.1. NUMERICAL RESULTS FOR BASE FLOWS 66

are used as an initial guess for the numerical simulations by using the continuity in R̂

of the solution for small R̂.
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Figure 4.1.17. Algebraic small Reynolds number profiles for the one walled flow problem

- here 0 < n ≤ 1. The profiles are presented in a tabular layout, with n increasing

from left to right and the number of derivatives of f(y) taken increasing from top to

bottom.
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Figure 4.1.18. Algebraic small Reynolds number profiles for the one walled flow problem

- here 1 ≤ n ≤ 2. The profiles are presented in a tabular layout, with n increasing

from left to right and the number of derivatives of f(y) taken increasing from top to

bottom.

4.1.3 Large Re→ −∞ asymptotics

We wish to consider the large injection behaviour of the power-law fluid in the one

porous walled channel, governed by the following ordinary differential equation

(
−f ′′

∣∣f ′′
∣∣n−1

)′′
=

Re

2− n
(
f ′f ′′ − ff ′′′

)
, (4.1.2)

on y = +1: f = 1, f ′ = 0, (4.1.3)

on y = −1: f = 0, f ′ = 0. (4.1.4)

If we define ε = −2−n
Re as the small perturbation parameter, we can see that there

will be an outer inviscid flow region and an inner viscous boundary layer near the
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impermeable lower wall. For the outer problem we expand f(y) in regular powers of ε,

f(y) = f0(y) + εf1(y) +O
(
ε2
)
, (4.1.5)

and solve at each order in turn. The problem for f0(y) is

f ′0f
′′
0 − f0f

′′′
0 = 0, (4.1.6)

on y = +1: f0 = 1, f ′0 = 0, (4.1.7)

on y = −1: f0 = 0, (4.1.8)

and has solution

f0(y) = cos

(
π(y − 1)

4

)
. (4.1.9)

The problem for f1(y) is

f ′1f
′′
0 + f ′0f

′′
1 − f0f

′′′
1 − f1f

′′′
0 = 0, (4.1.10)

on y = +1: f1 = 0, f ′1 = 0, (4.1.11)

and has solution

f1(y) = C(y − 1) sin

(
π(y − 1)

4

)
, (4.1.12)

where the constant C is to be determined by matching to the solution in the inner

region.

To consider the inner region adjacent to the lower wall, we rescale the problem with

the scalings

y = −1 + ε
1

1+nY, f(y) = ε
1

1+nF (Y ) (4.1.13)

to obtain the inner problem

−
(
F ′′
∣∣F ′′
∣∣n−1

)′′
+ F ′F ′′ − FF ′′′ = 0, (4.1.14)

on Y = 0: F = 0, F ′ = 0, (4.1.15)

as Y →∞: F ∼ π

4
Y, (4.1.16)

where the far field behaviour has been chosen to ensure matching to the outer flow

region. Again we expand the solution F (Y ) in regular powers of ε,

F (Y ) = F0(Y ) + εF1(Y ) +O
(
ε2
)
,
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and obtain the leading order inner problem

−
(
F ′′

0

∣∣F ′′
0

∣∣n−1
)′′

+ F ′
0F

′′
0 − F0F

′′′
0 = 0, (4.1.17)

on Y = 0: F0 = 0, F ′
0 = 0, (4.1.18)

as Y →∞: F0 ∼
π

4
Y + Y0, (4.1.19)

where the constant Y0 is determinable from the numerical solution of the inner problem

and the coefficient C in the first correction term in the outer region is now determined

to have the value C = Y0/2 by matching. We can first ask if this problem is well

specified. In Appendix A we detail the calculations required to show that the n = 1

case is well specified, the calculations required in the non-Newtonian case are almost

the same as seen below.

Near the lower wall we first express F0(Y ) as a Taylor expansion about Y = 0,

F0(Y ) =
1

2
AY 2 +

1

6
BY 3 + · · · , (4.1.20)

and define F0(Y ) = F e
0 (Y ) + δ̂F̂ (Y ) where F e

0 (Y ) = 1
2AY

2 + 1
6BY

3 and δ̂ � 1.

Substituting this in to the leading order inner problem, retaining the terms of O
(
δ̂
)

and keeping the first term in the expansion of the modulus term gives an ode for the

eigenmodes,

− nF̂ (iv) |A|n−1 +AF̂ ′ +AY F̂ ′′ − 1

2
AY 2F̂ ′′′ −BF̂ = 0. (4.1.21)

Taking F̂ (Y ) = Y q with q = 0, 1, 2, 3 gives four possible eigenmodes. However, the

boundary conditions at Y = 0 eliminate q = 0 and q = 1, meaning that there are only

two degrees of freedom left if A and B are not specified. The q = 2 and q = 3 modes

are consistent with the boundary conditions imposed at the lower wall, and so a total

of two boundary conditions have been imposed so far.

Turning to the far field behaviour, if we now set F0(Y ) = F e
0 (Y ) + δ̂F̂ (Y ) where

F e
0 (Y ) = π

4Y+Y0, substituting into the governing equation gives an ode for the potential

eigenmodes by retaining the lowest order terms on each sides of the equation,

(π
4
F̂ ′′ +

π

4
F̂ ′′′
)

=

(
nF̂ (iv)

∣∣∣F̂ ′′
∣∣∣
n−1

+ n(n− 1)F̂ ′′
(
F̂ ′′′
)2 ∣∣∣F̂ ′′

∣∣∣
n−3
)
. (4.1.22)



4.1. NUMERICAL RESULTS FOR BASE FLOWS 70

Upon substituting F̂ ∼ AY q with Y > 0 and A, q unknown we find that

π

4
Aq(q − 1)(3− q)Y q−2 = A |A|n−1 q(q − 1)(q − 2)(q − 3 + n) |q(q − 1)|n−1 Y n(q−2)−2

(4.1.23)

and the modes q = 0, 1, 3 are potential eigenmodes; equating the exponents of Y gives

the fourth potential eigenmode with

q = − 2n

1− n. (4.1.24)

This fourth mode predicts decay in the far field when 0 < n < 1, but if n > 1 decay

does not occur and in that case it is not consistent with the requirement that δ̂F̂ � F e
0

as Y →∞. When 0 < n < 1 we find that the constant A is positive and has the value

A =

(
4(2n)n(n+ 1)n

π(3− n)(1− n)1−2n

) 1
1−n

. (0 < n < 1) (4.1.25)

Thus two boundary conditions have been imposed in this case: imposing linear be-

haviour in the far field eliminates the q = 3 and q = 1 modes. With the two conditions

imposed at the lower wall a total of four conditions have now been imposed and so

the problem for 0 < n < 1 has the correct number of boundary conditions and is well

specified. In light of this, the eigenmode for q = 0, the constant behaviour, is fixed by

the problem already and so should be able to be determined by a numerical solution

of the problem.

When n = 1 the calculations in Appendix A show that the decaying eigenmode is of

an exponential form, Y −4 exp
(
−πY 2/8

)
, and the other three modes are the algebraic

modes with exponents q = 0, 1 and 3 as seen above for 0 < n < 1 and n > 1.

However, for n > 1 we see that there must be a point, Y ∗ say, at which F ′′
0 (Y ∗)

becomes zero. We are therefore dealing with a free boundary problem to determine

this point. If we pose the free boundary value problem as

(
F ′′

0

∣∣F ′′
0

∣∣n−1
)′′

= F ′
0F

′′
0 − F0F

′′′
0 , (4.1.26)

on Y = 0: F0 = 0, F ′
0 = 0, (4.1.27)

on Y = Y ∗: F ′
0 =

π

4
, F ′′

0 = 0, (4.1.28)

where the position Y ∗ is unknown, we are interested in the local behaviour of F0 about

Y ∗. For Y > Y ∗ we have that F0 ∼ π
4Y + Y0. If we consider F0(Y ) of the form

F0(Y ) = A0 −
π

4
(Y ∗ − Y ) +B0 (Y ∗ − Y )γ , (4.1.29)
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where Y < Y ∗ and A0, B0 are constants to be determined, substitution into the bvp

and balancing the highest derivative with the most significant term from F ′
0F

′′
0 , we find

that

F0(Y ) ∼ A0 −
π

4
(Y ∗ − Y ) +B0 (Y ∗ − Y )

2n−1
n−1 , (4.1.30)

where the constants A0 and B0 are related by

B0
n−1 = A0

(n− 1)2n−1

(2n− 1)n−1nn
. (4.1.31)

By continuity of F0(Y ) at Y = Y ∗ we have the identity

A0 =
π

4
Y ∗ + Y0. (4.1.32)

By integrating the fourth order two-point bvp (4.1.17)–(4.1.19) once and evaluating

the constant of integration by using the far field behaviour, we can then solve the third

order two-point bvp obtained for 0 < n < 2 numerically using Matlab and produce

estimates for the constant A0 as it varies with n. The profile for the solution, its first

and second derivative and the far field behaviour are shown in Figures 4.1.19 and 4.1.20,

and the numerical values are recorded in Table 4.1. However for values of n above 1.5

it is increasingly difficult to obtain an estimate for Y0 and so it is better to consider

solving the free boundary problem for n > 1 separately.
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n Y0 A q Y ∗ Y estimated
0

0.1 -0.30109 0.37188 0.22222 - -
0.2 -0.45963 0.36744 0.50000 - -
0.3 -0.54714 0.37662 0.85714 - -
0.4 -0.59573 0.38904 1.33333 - -
0.5 -0.62265 0.38907 2.00000 - -
0.6 -0.63729 0.34493 3.00000 - -
0.7 -0.64479 0.21157 4.66667 - -
0.8 -0.64807 0.03574 8.00000 - -
0.9 -0.64878 4.29678E-6 18.00000 - -
1.0 -0.64790 - - - -
1.1 -0.64603 - - - -
1.2 -0.64353 - - - -
1.3 -0.64066 - - - -
1.4 -0.63757 - - - -
1.5 -0.63437 - - 2.72925 -0.52299
1.6 - - - 2.42048 -0.51455
1.7 - - - 2.20711 -0.50665
1.8 - - - 2.05286 -0.49927
1.9 - - - 1.93647 -0.49234

Table 4.1. This table shows the values of the constant Y0 obtained by solving the
boundary layer problem (4.1.17)–(4.1.19) for 0 < n < 1.5 when Re→ −∞. The values
of the exponent q and the coefficient A of the decaying term in the far field behaviour
for 0 < n < 1 are found by substitution in (4.1.24) and (4.1.24) .The values of Y ∗

are calculated from the solution to the free boundary problem (4.1.34)–(4.1.36) and
the value of Y estimated

0 is calculated using (4.1.32). The values given from the free
boundary problem calculations used the value δ = 1e − 3 for the lower end of the z
domain and dsq = 1e − 4 for the numerical regularisation parameter. Changing the
small z position from 1e − 3 to 1e − 4 changes the Y ∗ results in the first or second
decimal place and the Y estimated

0 results in the fifth decimal place, and changing the
regularisation parameter from 1e− 4 to 1e− 5 changes the Y ∗ and Y estimated

0 results in
the fifth decimal place. Results for 1.1 ≤ n < 1.5 were not successfully obtained.
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Figure 4.1.19. Profiles and asymptotic behaviour for lower wall region for 0 < n < 1.5.

The data for n = 1 is highlighted in red for comparison with the remainder of the plots.
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from the numerical solution of the system (4.1.17)–(4.1.19). The data for n = 1 is

highlighted in red for comparison with the remainder of the values obtained for the

constant Y0.
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In order to solve the free boundary value problem for n > 1 numerically it is

simpler to transform the problem to a fixed domain and then use a shooting method.

The scalings

F0(Y ) = Y ∗G(Z), Z =
Y ∗ − Y
Y ∗ (4.1.33)

place the problem on the fixed domain Z ∈ [0, 1], but now the domain is traversed from

Z = 0 (Y = Y ∗) to Z = 1 (Y = 0), giving

(
G′′
∣∣G′′

∣∣n−1
)′

= − (Y ∗)1+n

((
G′)2 −GG′′ −

(π
4

)2
)

(4.1.34)

on Z = 0: G′ = −π
4
, G′′ = 0, (4.1.35)

on Z = 1: G = 0, G′ = 0. (4.1.36)

We use the local behaviour near Y = Y ∗
− to form an equivalent behaviour for suitably

small Z = δ � 1, (δ=1e-3 has been used for numerical calculations)

G(Z) ∼ A0

Y ∗ −
π

4
Z +B0 (Y ∗)

n
n−1 Z

2n−1
n−1 , (4.1.37)

and then solve the G(Z) problem on the fixed domain Z ∈ [δ, 1], shooting to obtain

values for Y ∗ and A0 for each 1 < n < 2.

4.1.4 Type I stability problem

The eigenproblem for spatial stability is given by the following system,

(
Ĥ ′′
∣∣F ′′
∣∣n−1

)′′
= mR̂

(
F ′′′Ĥ − F ′Ĥ ′′

)
+ R̂

(
FĤ ′′′ − F ′′Ĥ ′

)
, (4.1.38)

on y = +1: Ĥ ′ = 0, Ĥ = 0, (4.1.39)

on y = −1: Ĥ ′ = 0, Ĥ = 0. (4.1.40)

where R̂ = Re/(n(2 − n)) is the rescaled Reynolds number, F (y) is the unperturbed

flow function, Ĥ(y) is the spatial perturbation and m is the eigenvalue corresponding

to the spatial perturbation.

This system is coupled with the base flow system for F (y) and so an extended
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system is to be solved numerically,

R̂
(
FF ′′′ − F ′F ′′) =

(
F ′′
∣∣F ′′
∣∣n−1

)′′
, (4.1.41)

mR̂
(
F ′′′Ĥ − F ′Ĥ ′′

)
+ R̂

(
FĤ ′′′ − F ′′Ĥ ′

)
=
(
Ĥ ′′
∣∣F ′′
∣∣n−1

)′′
, (4.1.42)

on y = +1: F ′ = 0, F = 1, H = 0, H ′ = 0, (4.1.43)

on y = −1: F ′ = 0, F = 0, H = 0, H ′ = 0, (4.1.44)

together with the normalisation condition H ′′(−1) = 1. We regularise the modulus

terms by replacing them with
(
F ′′2 + δ2

)(n−1)/2
and then, performing the differentia-

tions, the final system to be solved is

R̂
(
FF ′′′ − F ′F ′′) = F (iv)

(
nF ′′2 + δ2

)
An−3

+ (n− 1)F ′′ (F ′′′)2 (nF ′′2 + 3δ2
)
An−5, (4.1.45)

mR̂
(
F ′′′Ĥ − F ′Ĥ ′′

)
+ R̂

(
FĤ ′′′ − F ′′Ĥ ′

)
= Ĥ(iv)An−1 + 2(n− 1)Ĥ ′′′F ′′F ′′′An−3

+ (n− 1)Ĥ ′′
(
F ′′′2 + F ′′F (iv)

)
An−3 + (n− 1)(n− 3)Ĥ ′′F ′′2F ′′′2An−5, (4.1.46)

A =
(
F ′′2 + δ2

) 1
2

on y = +1: F ′ = 0, F = 1, H = 0, H ′ = 0, (4.1.47)

on y = −1: F ′ = 0, F = 0, H = 0, H ′ = 0, H ′′ = 1. (4.1.48)

In the limit δ → 0 this system reduces to the equivalent system involving modulus

signs.

Spatial stability system for small Re

Starting from the base stability eigenproblem (4.1.38)-(4.1.40) we can pose expansions

in powers of R̂ for Ĥ(y) and the eigenvalue m,

Ĥ(y) = H0(y) + R̂H1(y) +O
(
R̂2
)
, m = R̂−1m−1 +m0 + R̂m1 +O

(
R̂2
)
, (4.1.49)

where the inverse power of R̂ in m is motivated by the need to retain the eigenvalue

in the limit of the eigenproblem as R̂ → 0. Now for small Re/(2 − n) ≡ nR̂ we can

express F (y) as

F (y) = f0(y) + nR̂f1(y) +O
((

nR̂
)2
)
. (4.1.50)



4.1. NUMERICAL RESULTS FOR BASE FLOWS 76

The expressions previously derived for this small Re case for F (y) in § 3.2.1 with E = 1

suggest that we will need to split the eigenfunction Ĥ(y) into two parts in a similar

manner, namely

H0(y) =




H0n(y), 0 ≤ y ≤ 1,

H0p(y), −1 ≤ y ≤ 0,
(4.1.51)

where the subscripts n, p correspond to the similarly denoted regions for f0(y).

Substituting into the governing equation we can write down the leading order eigen-

problem for the eigenfunction H0(y) and eigenvalue m−1

H
(iv)
0n = −2

(
n− 1

n

)
y−1H ′′′

0n −
(

(n− 1)(n− 2)

n2
y−2+

m−1

(
2n+ 1

2n

)2−n n

n+ 1

(
1− y 2

n

))
H ′′

0n −m−1

(
2n+ 1

2n

)2−n 1

n
y

2
n
−2H0n,

(4.1.52)

H
(iv)
0p = 2

(
n− 1

n

)
(−y)−1H ′′′

0p +

(
(n− 1)(n− 2)

n2
(−y)−2−

m−1

(
2n+ 1

2n

)2−n n

n+ 1

(
1− (−y)

2
n

))
H ′′

0p −m−1

(
2n+ 1

2n

)2−n 1

n
(−y)

2
n
−2H0p,

(4.1.53)

on y = +1: H0n = 0, H ′
0n = 0, (4.1.54)

on y = −1: H0p = 0, H ′
0p = 0, (4.1.55)

together with continuity of H0 and H ′
0 across y = 0. This may be used to provide

an initial guess for the eigenvalue and eigenfunction in order to facilitate numerical

eigenvalue calculations.

In the case n = 1 this reduces to

H
(iv)
0n = −m−1

3

2

(
1

2

(
1− y2

)
H ′′

0n +H0n

)
, (4.1.56)

H
(iv)
0p = −m−1

3

2

(
1

2

(
1− y2

)
H ′′

0p +H0p

)
, (4.1.57)

on y = +1: H0n = 0, H ′
0n = 0, (4.1.58)

on y = −1: H0p = 0, H ′
0p = 0, (4.1.59)

together with continuity of H0 and H ′
0 across y = 0. It appears that there is not a

closed form solution to this bvp and so a numerical approach is needed even for this

case.



Chapter 5

Nonisothermal temperature

dependent viscosity problem -

one porous walled channel

5.1 One porous walled nonisothermal problem summary

We wish to consider the steady nonisothermal one porous walled channel flow problem

for a fluid with a temperature dependent viscosity. Starting with the general unsteady

formulation of the temperature and stress dependent fluid problem in the two walled

geometry as described in § 1.3 by equations (1.3.13a)–(1.3.13e), we can discard the time

derivatives as we are interested in the steady state solutions of the problem and then

set E = 1 to obtain the one porous walled geometry. In order to simplify the problem

further we then take n = 1, and so are considering a Newtonian viscous fluid with a

temperature dependent modification to its viscosity. This gives the following nondi-

mensional system of equations to be solved for the unknown temperature distribution

θ(x, y) and stream function ψ(x, y)

Re

(
∂ψ

∂y

∂3ψ

∂x∂y2
− ∂ψ

∂x

∂3ψ

∂y3

)
=

∂2

∂y2

(
µ
∂2ψ

∂y2

)
, (5.1.1a)

Pe

(
∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y

)
=
∂2θ

∂y2
, (5.1.1b)

µ = M(θ), (5.1.1c)

on y = +1:
∂ψ

∂y
= 0, −∂ψ

∂x
= 1, θ = 0, (5.1.1d)

on y = −1:
∂ψ

∂y
= 0,

∂ψ

∂x
= 0, θ = 1, (5.1.1e)

77
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and we recall that the nondimensional groups Re and Pe share the same sign.

We restrict the temperature-viscosity relation to an exponential form µ = exp(−βθ(y)).

This form is used by Ockendon and Ockendon [OO77] in the related problem of the

entry region Poiseuille flow in a channel with walls that are nonisothermal and a tem-

perature dependent viscosity. They are concerned with the flow behaviour in the high

β limit. This chapter is concerned with β = O (1) behaviour. Appendix B considers

the large β limit of the problem currently under consideration for both exponential and

algebraic viscosity functional forms in the regimes Re = O (1) with Pe� 1 and Re� 1

with Pe� 1, and for the algebraic viscosity form in the regimes Re� 1 with Pe� 1,

where the three resulting cases Pr� 1, Pr = O (1) and Pr� 1 are considered.

If we now look for a similarity solution to the steady problem we find that it must

have the form

ψ(x, y) = −xf(y), θ(x, y) = g(y), (5.1.2)

and that we are now solving the coupled system

Re
(
f ′f ′′ − ff ′′′

)
= −

(
exp(−βg(y))f ′′

)′′
, (5.1.3a)

Pefg′ = g′′, (5.1.3b)

on y = +1: f ′ = 0, f = 1, g = 0, (5.1.3c)

on y = −1: f ′ = 0, f = 0, g = 1, (5.1.3d)

where ′ denotes d·
dy .

5.1.1 Solutions in particular parameter cases

One observation is that we can integrate the temperature equation (5.1.3b), giving

g(y) =

∫ y
−1 exp

(
Pe
∫ s
−1 f(r)dr

)
ds

∫ 1
−1 exp

(
Pe
∫ s
−1 f(r)dr

)
ds

where y ∈ [−1, 1], (5.1.4)

and substituting this into (5.1.3a) gives an integro-differential equation for f(y).

We can also record some simple solutions for special choices of the nondimensional

parameters Re and Pe. In the case of Pe = 0, we can solve the equation for g(y) exactly,

giving g(y) = 1
2(1− y), and then we have the following problem for f(y),

Re
(
f ′f ′′ − ff ′′′

)
= −

(
exp

(
−β

2
(1− y)

)
f ′′
)′′

, (5.1.5)

together with the remaining boundary conditions for f(y).
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If Re = 0 we find that

f(y) =

∫ y
−1(y − t)(t− a) exp (βg(t)) dt
∫ 1
−1(1− t)(t− a) exp (βg(t)) dt

, (5.1.6)

where the constant a is defined to be

a =

∫ 1
−1 s exp (βg(s)) ds
∫ 1
−1 exp (βg(s)) ds

. (5.1.7)

5.2 Asymptotic Analysis

We now wish to consider the behaviour of the fluid flow and temperature functions in

the case of fluid injection through the upper wall whilst the lower wall is heated. We

initially consider the case of rapid injection of fluid, Re < 0 large, with comparable

thermal convection and conduction length scales, where Pe < 0 is of order one, in

which case the viscous boundary layer adjacent to the lower wall is the dominant flow

feature. We then increase the size of Pe. The case where both of the nondimensional

groups are large can be split into three sub-cases, firstly where Pe is smaller than Re,

then where they are comparable and finally where Pe exceeds Re; these cases describe

the transition from the dominant boundary layer being initially viscous to eventually

thermal. The final case is where Pe is large and Re is of order one and the thermal

boundary layer is the main feature of the flow.

For the large Pe limits considered in this chapter we have assumed that β = O (1).

In the limit of large β the behaviour described here changes and the thermal boundary

layers for β = O (1) split into sublayers when the viscosity function is of exponential

form. This behaviour is described in Appendix B for the cases Pe � 1 with Re � 1

(section B.1.1) and Re = O (1) (section B.1.2) for the exponential viscosity model,

and for Pe � 1 with Re � 1 (section B.1.1), Re = O (1) (section B.1.2) and Re � 1

(sections B.1.3, B.1.3 and B.1.3) with an algebraic viscosity model.

5.2.1 Large injection Re→ −∞ with Pe = O (1)

Starting with the system (5.1.3a)–(5.1.3d) where Pe = O (1) and Re → −∞, we have

an outer region where we neglect the small perturbed term in the flow equation. In

this region we suppose that

f(y) = f0(y) + (−Re)−1/2f1(y) +O
(
−Re−1

)
, (5.2.1)

g(y) = g0(y) + (−Re)−1/2g1(y) +O
(
−Re−1

)
, (5.2.2)
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Re

Pe

−Re� 1
−Pe = O(1)

δ = O
(
(−Re)−1/2

)

θ = 0

−Re� −Pe� 1

−Re� 1
−Re = O(−Pe)

−Pe� −Re� 1

−Pe� 1
−Re = O(1)

δ = 0
θ = O

(
(−Pe)−1/3

)

y = 1

y = −1
δ θ

δ = θ = O
(
(−Re)−1/2

)

δ = O
(
(−Re)−1/2

)

θ = O
(
(−Pe)−1/2

)

δ = O
(
(−Re)−1/2

)

θ = O
(
(−Re)−1/6(−Pe)−1/3

)

Figure 5.2.1. A graphical summary of the different behaviours associated with the
various limits considered for the one walled nonisothermal problem. The extent of the
viscous and thermal boundary layers are denoted by δ and θ respectively.
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where the scaling has been suggested by that of the boundary layer. We then wish to

solve the following reduced problem at leading order

0 = f ′0f
′′
0 − f0f

′′′
0 , (5.2.3)

1

Pe
g′′0 = f0g

′
0, (5.2.4)

on y = +1: f ′0 = 0, f0 = 1, g0 = 0, (5.2.5)

on y = −1: f0 = 1, g0 = 1. (5.2.6)

As the order of the f0 equation has been reduced by one it is only possible to satisfy

three of the four f boundary conditions from the full problem. The leading order outer

solution is found to be

f0(y) = cos
(π

4
(1− y)

)
, g0(y) =

1

A0

∫ 1

y
I0(s)ds, (5.2.7)

where

I0(y) = exp

(
−4Pe

π
sin
(π

4
(1− y)

))
, A0 =

∫ 1

−1
I0(s)ds. (5.2.8)

A boundary layer at the lower wall is needed and the appropriate scalings are

motivated by the desire to reinstate the highest derivative in the f equation and for

the far field behaviour leaving the boundary layer to match to that of the outer region.

These requirements yield

f = (−Re)−1/2F (Y ), y = (−Re)−1/2Y, g(y) = G(Y ), (5.2.9)

with the boundary layer system

(
µ(βG)F ′′)′′ = F ′F ′′ − FF ′′′, (5.2.10)

G′′ = −Pe

Re
FG′, (5.2.11)

on Y = 0: F = 0, F ′ = 0, G = 1, (5.2.12)

as Y →∞: F ∼ π

4
Y, G→ 0. (5.2.13)

Now as O
(
(−Re)−1

)
� O

(
(−Re)−1/2

)
we expand the boundary layer functions as a
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series in powers of (−Re)−1/2,

F (Y ) = F0(Y ) + (−Re)−1/2F1(Y ) + · · · , (5.2.14)

G(Y ) = G0(Y ) + (−Re)−1/2G1(Y ) + · · · , (5.2.15)

and so the leading order boundary layer problem is

(
µ(βG0)F ′′

0

)′′
= F ′

0F
′′
0 − F0F

′′′
0 , (5.2.16)

G′′
0 = 0, (5.2.17)

on Y = 0: F0 = 0, F ′
0 = 0, G0 = 1, (5.2.18)

as Y →∞: F0 ∼
π

4
Y, G0 → 0. (5.2.19)

In this region the temperature problem has already been satisfied and so we are only

interested in F0 problem,

(
µ(βG0)F ′′

0

)′′
= F ′

0F
′′
0 − F0F

′′′
0 , (5.2.20)

on Y = 0: F0 = 0, F ′
0 = 0, (5.2.21)

as Y →∞: F0 ∼
π

4
Y − Y0. (5.2.22)

where µ0 = µ(βG0) is a known constant and Y0 is a constant that is to be found as

part of a numerical solution. The governing equation is fourth order and so requires

four boundary conditions. Two boundary conditions have been applied at the lower

wall and two boundary conditions are imposed by the linear behaviour in the far-field.

The constant solution can in principle be determined from a numerical solution to the

problem. It is possible to rescale the problem to remove the constant µ0 via

Y =

(
4µ0

π

)1/2

z, F =
(πµ0

4

)1/2
ρ, Y0 =

(πµ0

4

)1/2
z0; (5.2.23)

integrating once and using the far-field behaviour yields the Falkner-Skan equation

[Bat01, page 316]

ρ′′′ = ρ′
2 − ρρ′′ − 1, (5.2.24)

on z = 0: ρ = 0 ρ′ = 0, (5.2.25)

as z →∞: ρ′ ∼ 1. (5.2.26)

The constant z0 can be determined numerically by fitting a linear function to the far

field behaviour of ρ(z); z0 is then the negative of the z-intercept of that function.
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A Matlab program was written to solve the Falkner-Skan problem as an initial-value

problem; it did this by minimising the square of the difference between the solution and

unity at the end of a truncated domain. This was run for increasing domain lengths

and the computed values for z0 and ρ′′(0) were found to be

z0 = 0.647900, ρ′′(0) = 1.232588 (to 6 d.p.). (5.2.27)

The first correction terms for the outer region are now found by solving

0 = f ′0f
′′
1 + f ′1f

′′
0 − f0f

′′′
1 − f1f

′′′
0 , (5.2.28)

1

Pe
g′′1 = f0g

′
1 + f1g

′
0, (5.2.29)

on y = 1: f1 = 0, f ′1 = 0, g1 = 0. (5.2.30)

as y → −1: f1 matches to F , g1 → 0. (5.2.31)

The function f1(y) is found to be

f1(y) = A(1− y) sin
(π

4
(1− y)

)
, A = −1

2

(πµ0

4

)1/2
z0, (5.2.32)

where the coefficient A is found by matching to the behaviour of the leading order

boundary layer solution. The solution for g1(y) can then be found, giving

g1(y) = Pe
4

π

(µ0

π

)1/2 z0
A0

(
A1

A0

∫ 1

y
I0(s)ds−

∫ 1

y
I0(s)I1(s)ds

)
, (5.2.33)

I1(y) =
π

4
(1− y) cos

(π
4

(1− y)
)
− sin

(π
4

(1− y)
)
, (5.2.34)

where the constant A1 is defined to be

A1 =

∫ 1

−1
I1(s)ds. (5.2.35)

5.2.2 Large injection Re→ −∞ with Pe→ −∞

The regime 1� −Pe� −Re

In this case we expect to have an outer region, a thermal boundary layer adjacent to the

lower wall and a viscous boundary layer contained within the thermal boundary layer.

Starting from the system (5.1.3a)–(5.1.3d), in the outer region we neglect the terms

multiplied by the small quantities 1/Re and 1/Pe and expand the unknown functions

as

f(y) = f0(y) + o (1) , g(y) = g0(y) + o (1) , (5.2.36)
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giving the following system to be solved at leading order,

0 = f ′0f
′′
0 − f0f

′′′
0 , (5.2.37)

0 = f0g
′
0, (5.2.38)

on y = 1: f0 = 1, f ′0 = 0, g0 = 0, (5.2.39)

on y = −1: f0 = 0. (5.2.40)

The equation for g0 suggests that the correct solution is that g0 = 0 in this region and

we then find that

f0(y) = cos
(π

4
(1− y)

)
, g0(y) = 0. (5.2.41)

In order to consider the solution near the lower wall, we need the near-wall behaviour

of the leading order outer solution f0(y),

f0(y = −1 + δY ) ≈ π

4
δY (δ � 1, Y = O (1)). (5.2.42)

We next consider the thermal boundary layer near the lower wall. To recover the highest

derivative in the temperature equation, we rescale the independent and dependent

variables in the following manner,

y = −1 + (−Pe)−1/2 Y, f = (−Pe)−1/2 F, g = G (5.2.43)

where we have used the small y behaviour of the outer solution for f0 to achieve

matching behaviour as we move from the thermal boundary layer into the outer region.

The thermal boundary layer equations are

− Pe

Re

(
µ(βG)F ′′)′′ = F ′F ′′ − FF ′′′, (5.2.44)

G′′ = −FG′, (5.2.45)

on Y = 0: F = 0, F ′ = 0, G = 1, (5.2.46)

as Y →∞ : F ∼ π

4
Y, G→ 0. (5.2.47)

As Pe
Re � 1 we choose to expand the thermal boundary layer solution as

F (Y ) = F0(Y ) + (−Pe)−1/2F1(Y ) + · · · , (5.2.48)

G(Y ) = G0(Y ) + (−Pe)−1/2G1(Y ) + · · · , (5.2.49)
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and then to lowest order we are solving

0 = F ′
0F

′′
0 − F0F

′′′
0 , (5.2.50)

G′′
0 = −F0G

′
0, (5.2.51)

on Y = 0: F0 = 0, F ′
0 = 0, G0 = 1, (5.2.52)

as Y →∞ : F0 ∼
π

4
Y, G0 → 0. (5.2.53)

The far field behaviour for F0 is sufficient to satisfy the differential equation for F0

but not all of the boundary conditions, but this can be corrected in a smaller viscous

boundary layer nearer to the wall. The leading order solutions in this thermal layer

are

F0(Y ) =
π

4
Y, (5.2.54)

G0(Y ) = erfc

(√
π

8
Y

)
. (5.2.55)

We finally wish to consider an inner-inner region near the lower wall where the viscous

effects become significant. The rescalings used to examine this region are

Y =

(
Pe

Re

)1/2

Ŷ , F =

(
Pe

Re

)1/2

F̂ , G = Ĝ, (5.2.56)

which were motivated by the need to recover the viscous term in the F̂ (Ŷ ) equation

and matching the far-field behaviour of F̂ to that in the Y = O (1) region. We obtain

the viscous boundary layer system

−
(
µ(βĜ)F̂ ′′

)′′
= F̂ ′F̂ ′′ − F̂ F̂ ′′′, (5.2.57)

Ĝ′′ = −Pe

Re
F̂ Ĝ′, (5.2.58)

on Ŷ = 0: F̂ = 0, F̂ ′ = 0, Ĝ = 1, (5.2.59)

as Ŷ →∞: F̂ ∼ π

4
Ŷ , Ĝ(Ŷ ) matches to G(Y ) when Y = O (1) . (5.2.60)
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In this viscous boundary layer region Ĝ = 1 − o (1) and so the Ĝ equation is satisfied

and the viscosity term µ(βĜ) is constant. If we expand the functions in this region as

F̂ (Ŷ ) = F̄0(Ŷ ) +

(
Pe

Re

)1/2

F̄1(Ŷ ) + · · · , (5.2.61)

Ĝ(Ŷ ) = Ḡ0(Ŷ ) +

(
Pe

Re

)1/2

Ḡ1(Ŷ ) + · · · , (5.2.62)

then to leading order we are solving

− µ(β)F̄
(iv)
0 = F̄ ′

0F̄
′′
0 − F̄0F̄

′′′
0 , (5.2.63)

on Ŷ = 0: F̄0 = 0, F̄ ′
0 = 0, (5.2.64)

as Ŷ →∞: F̄0 ∼
π

4
Ŷ − Ȳ0, (5.2.65)

where again the constant term in the far field behaviour comes from analysing the

degrees of freedom of the existing far-field conditions (see Appendix A).

We can rescale this problem to make the coefficient of the highest derivative unity

by the scalings

Ȳ =

(
4µ(β)

π

)1/2

z, F̄0 =

(
µ(β)π

4

)1/2

ρ̄, Ȳ0 =

(
µ(β)π

4

)1/2

z0 (5.2.66)

giving the following system

ρ̄(iv) = ρ̄′′′ρ̄− ρ̄′ρ̄′′, (5.2.67)

on z = 0: ρ̄ = 0, ρ̄′ = 0, (5.2.68)

as z →∞: ρ̄ ∼ z − z0. (5.2.69)

Integrating the system up once produces

ρ̄′′′ = ρ̄′′ρ̄− ρ̄′2 + 1, (5.2.70)

on z = 0: ρ̄ = 0, ρ̄′ = 0, (5.2.71)

as z →∞: ρ̄′ ∼ 1. (5.2.72)

This is not the same as the Falkner-Skan system (5.2.24)–(5.2.26); making the change
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of variables P (η) = ρ̄(−z) we find that P (η) satisfies

− P ′′′ = P ′′P − P ′2 + 1 ⇔ P ′′′ = P ′2 − PP ′′ − 1 (5.2.73)

on η = 0: P = 0, P ′ = 0, (5.2.74)

as η → −∞: P ′ ∼ −1, (5.2.75)

and further analysis is required to determine the solution properties in this case.

If we now return to the thermal boundary layer region we find that the far-field

constant Ȳ0 produces an extra term in the expression for F (Y ), and we can find the

complete expansion for F (Y ) in integer powers of Pe−1 by matching to the outer

sinusoidal behaviour, giving

F (Y ) =

∞∑

n=0

(
πY

4

)2n+1 (Pe)−n

(2n+ 1)!
−
(

Pe

Re

)1/2(πµ(β)

4

)1/2

z0 +O
(

(−Pe)1/2

−Re

)
,

(5.2.76)

G(Y ) = erfc

(√
π

8
Y

)
+O

((
Pe

Re

)1/2
)
. (5.2.77)

The O
((

Pe
Re

)1/2
)

term in F (Y ) can be matched to the first order correction term in

the outer region; if the outer solutions are expanded as

f(y) = f0(y) +

(
1

Re

)1/2

f1(y) + · · · , (5.2.78)

g(y) = g0(y) +

(
1

Re

)1/2

g1(y) + · · · , (5.2.79)

then the first order corrections terms satisfy

0 = f ′0f
′′
1 + f ′′0 f

′′
1 − f0f

′′′
1 − f1f

′′′
0 , (5.2.80)

0 = f0g
′
1 + f1g

′
0, (5.2.81)

on y = 1: f1 = 0, f ′1 = 0, g1 = 0. (5.2.82)

We find that

f1(y) = C (y − 1) sin
(π

4
(1− y)

)
, g1(y) = 0, (5.2.83)

where the constant C has the value

C =
1

2

(
πµ(β)

4

)1/2

z0, (5.2.84)
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which has been determined by matching to the solution in the inner thermal region.

We then have that the outer solution is

f(y) = cos
(π

4
(1− y)

)
−
(

Pe

Re

)1/2 1

2

(
πµ(β)

4

)1/2

z0(1− y) sin
(π

4
(1− y)

)
+O

(
(−Re)−1

)
,

(5.2.85)

g(y) = 0. (5.2.86)

The regime 1� −Pe = O (−Re)

Starting with the system (5.1.3a)–(5.1.3d) we again have an outer region in which

the highest derivatives in both differential equations are neglected. In this region we

suppose that

f(y) = f0(y) + o (1) , g(y) = g0(y) + o (1) , (5.2.87)

and that we are solving the system

0 = f ′0f
′′
0 − f0f

′′′
0 , (5.2.88)

0 = f0g
′
0, (5.2.89)

on y = 1: f0 = 1, f ′0 = 0, g0 = 0, (5.2.90)

on y = −1: f0 = 0. (5.2.91)

We may only impose three conditions upon the solution f0(y) and one upon g0(y), and

we have the leading order outer solutions

f0(y) = cos
(π

4
(1− y)

)
, g0(y) = 0. (5.2.92)

In the boundary layer region adjacent to the lower wall we wish to recover the

viscous and thermal effects that have been neglected in the outer region. As Pe =

O (Re) we will have to recover both of the highest derivatives simultaneously. The

required scalings are

y = −1 + (−Re)−1/2Y, f = (−Re)−1/2F, g = G, (5.2.93)

motivated by recovering the highest derivatives and matching to the lower-wall be-
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haviour of the solution in the outer region, giving the boundary layer system

(
µ(βG)F ′′)′′ = F ′F ′′ − FF ′′′, (5.2.94)

G′′ = −kFG′, (5.2.95)

on Y = 0: F = 0, F ′ = 0, G = 1, (5.2.96)

as Y →∞: F ∼ π

4
Y, G→ 0, (5.2.97)

where k = Pe/Re = O (1).

If we now expand the functions F (Y ), G(Y ) as

F (Y ) = F0(Y ) + (−Re)−1/2F1(Y ) + · · · , (5.2.98)

G(Y ) = G0(Y ) + (−Re)−1/2G1(Y ) + · · · (5.2.99)

and expand the viscosity function as

µ(βG(Y )) = exp(−βG0)(1− β(−Re)−1/2G1 + · · · ), (5.2.100)

we obtain the leading order boundary layer system,

(
µ(βG0)F ′′

0

)′′
= F ′

0F
′′
0 − F0F

′′′
0 , (5.2.101)

G′′
0 = −kF0G

′
0, (5.2.102)

on Y = 0: F0 = 0, F ′
0 = 0, G0 = 1, (5.2.103)

as Y →∞: F0 ∼
π

4
Y − Y0, G0 = 0. (5.2.104)

where, as already noted, Y0 is not the same constant as in the −Re� 1, −Pe = O (1)

boundary layer case as the viscosity is still significant throughout this inner region. The

above coupled system encompasses the viscous and thermal effects that are encountered

within the boundary layer in this particular double limit of −Pe→∞, −Re→∞, and

the solution for G0(Y ) may be written as

G0(Y ) =

∫∞
Y exp

(
−k
∫ s
0 F0(r)dr

)
ds∫∞

0 exp
(
−k
∫ s
0 F0(r)dr

)
ds
, (5.2.105)

= 1−
∫ Y
0 exp

(
−k
∫ s
0 F0(r)dr

)
ds∫∞

0 exp
(
−k
∫ s
0 F0(r)dr

)
ds
. (5.2.106)

As Y →∞, the far field behaviour of G0(Y ) is

G0(Y ) ∼ − 4A0

kπY
exp

(
−kπ

8
Y 2

)
for some A0 ∈ R, (5.2.107)
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and so G0 satisfies the asymptotic relationship

G′
0 ∼ −

kπ

4
Y G0 as Y →∞. (5.2.108)

Returning to the outer region away from the lower wall, we may expand the solutions

there in powers of (−Re)−1/2,

f(y) = f0(y) + (−Re)−1/2f1(y) + · · · , (5.2.109)

g(y) = g0(y) + (−Re)−1/2g1(y) + · · · , (5.2.110)

and find that the first correction terms obey the following governing equations,

0 = f ′0f
′′
1 + f ′1f

′′
0 − f0f

′′′
1 − f1f

′′′
0 , (5.2.111)

0 = f0g
′
1 + f1g

′
0, (5.2.112)

on y = 1: f1 = 0, f ′1 = 0, g1 = 0, (5.2.113)

on y = −1: f1 = 0. (5.2.114)

The first order correction terms for the outer solutions are

f1(y) = C(y − 1) sin
(π

4
(1− y)

)
, g1 = 0, (5.2.115)

and the value of the constant C is found by matching to the leading order inner solution,

giving

C = −Y0

2
, (5.2.116)

where the value of the constant Y0 is not necessarily the same as that of the analogous

constant in the Falkner-Skan equations (5.2.24)–(5.2.26). The outer solution to first

order is

f(y) = cos
(π

4
(1− y)

)
− (−Re)−1/2 1

2
Y0(1− y) sin

(π
4

(1− y)
)

+O
(
−Re−1

)
,

(5.2.117)

g(y) = 0. (5.2.118)

The regime 1� −Re� −Pe

Starting with (5.1.3a)–(5.1.3d) we have an outer region in which the highest derivatives

multiplied by small terms are neglected. In this region we suppose that

f(y) = f0(y) + o (1) , g(y) = g0(y) + o (1) , (5.2.119)
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and that we are solving the system

0 = f ′0f
′′
0 − f0f

′′′
0 , (5.2.120)

0 = f0g
′
0, (5.2.121)

on y = 1: f0 = 1, f ′0 = 0, g0 = 0, (5.2.122)

on y = −1: f0 = 0. (5.2.123)

We may only impose three conditions upon the solution f0(y) and one upon g0(y), and

we have the leading order outer solutions

f0(y) = cos
(π

4
(1− y)

)
, g0(y) = 0. (5.2.124)

We next consider the inner region near the lower wall in which the viscous effects

are significant, but the thermal effects are expected to still be negligible. Using the

scalings

y = −1 + (−Re)−1/2Y, f = (−Re)−1/2F, g = G, (5.2.125)

motivated by recovering the viscous effects and matching to the behaviour of f(y) in

the outer region, we find that the appropriate inner region equations are

(
µ(βG)F ′′)′′ = F ′F ′′ − FF ′′′, (5.2.126)

− Re

Pe
G′′ = FG′. (5.2.127)

However, as the ratio Re/Pe� 1, we obtain that G = 0 to leading order as we expect

F to be nontrivial. If we expand the solution in this region as

F (Y ) = F0(Y ) + o (1) , G(Y ) = G0(Y ) + o (1) , (5.2.128)

then to leading order we are solving the temperature independent system,

F
(iv)
0 = F ′

0F
′′
0 − F0F

′′′
0 , (5.2.129)

on Y = 0: F0 = 0, F ′
0 = 0, (5.2.130)

as Y →∞: F0 ∼
π

4
Y − Y0. (5.2.131)

This can be transformed into the Falkner-Skan problem (5.2.24)–(5.2.26) by integrating

once and using the scalings

Y =
(π

4

)−1/2
z, F =

(π
4

)1/2
ρ, Y0 =

(π
4

)−1/2
z0. (5.2.132)
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In order to facilitate the matching of the subsequent thermal boundary layer solution

with the solution in the viscous boundary layer, we define the constant A0 by

A0 = F ′′
0 (0) =

(π
4

)3/2
ρ′′(0). (5.2.133)

We must now consider the temperature variation which occurs in a thermal bound-

ary layer which is contained within the viscous boundary layer and is situated closer to

the lower wall. In this case, as we have already solved the problem for F (Y ) we must

use its small Y behaviour as the appropriate matching constraint; together with recov-

ering the highest derivative in the temperature equation we find that the appropriate

scalings are

Y =

(
Re

Pe

)1/3

Ȳ , F =

(
Re

Pe

)2/3

F̄ , G = Ḡ, (5.2.134)

yielding the thermal boundary layer system

(
µ(βḠ)F̄ ′′)′′ =

Re

Pe

(
F̄ ′F̄ ′′ − F̄ F̄ ′′′) , (5.2.135)

Ḡ′′ = −F̄ Ḡ′, (5.2.136)

on Ȳ = 0: F̄ = 0, F̄ ′ = 0, Ḡ = 1, (5.2.137)

as Ȳ →∞: F̄ ∼ 1

2
A0Ȳ

2, Ḡ→ 0. (5.2.138)

To lowest order, if we expand the solutions as

F̄ (Ȳ ) = F̄0(Ȳ ) +O
(

Re

Pe

)
, Ḡ(Ȳ ) = Ḡ0(Ȳ ) +O

(
Re

Pe

)
, (5.2.139)

we obtain the leading order thermal boundary problem

(
µ(βḠ0)F̄ ′′

0

)′′
= 0, (5.2.140)

Ḡ′′
0 = −F̄0Ḡ

′
0, (5.2.141)

on Ȳ = 0: F̄0 = 0, F̄ ′
0 = 0, Ḡ0 = 1, (5.2.142)

as Ȳ →∞: F̄0 ∼
1

2
A0Ȳ

2, Ḡ0 → 0. (5.2.143)



5.2. ASYMPTOTIC ANALYSIS 93

The leading order solutions may be expressed as the coupled integrals

Ḡ0 =

∫∞
Ȳ exp

(
−
∫ s
0 F̄0(r)dr

)
ds∫∞

0 exp
(
−
∫ s
0 F̄0(r)dr

)
ds
, (5.2.144)

= 1−
∫ Ȳ
0 exp

(
−
∫ s
0 F̄0(r)dr

)
ds∫∞

0 exp
(
−
∫ s
0 F̄0(r)dr

)
ds
, (5.2.145)

F̄0 = A0

∫ Ȳ

0

Ȳ − s
µ(βḠ0(s))

ds. (5.2.146)

where the coefficient A0 in the expression for F̄0(Ȳ ) is found by matching to the small

Y behaviour in the viscous boundary layer.

5.2.3 Injection with −Re = O (1) and Pe→ −∞

Again starting with the system (5.1.3a)–(5.1.3d) where Re = O (1) and Pe→ −∞, we

have an outer region where we neglect the small perturbed term in the temperature

equation, and then an inner region where the temperature effects are significant.

In the outer region we suppose that

f(y) = f0(y) + o (1) , g(y) = g0(y) + o (1) , (5.2.147)

and that we are solving the system

− 1

Re

(
µ (βg0) f ′′0

)′′
= f ′0f

′′
0 − f0f

′′′
0 , (5.2.148)

0 = f0g
′
0, (5.2.149)

on y = 1: f0 = 1, f ′0 = 0, g0 = 0, (5.2.150)

on y = −1: f0 = 0, f ′0 = 0. (5.2.151)

We may only impose one boundary condition upon g0 as the highest derivative has

been lost. In this case it makes g0 = 0 and so the viscosity term is now unity, and we

are thus solving a temperature independent flow problem in the outer region. As f0(y)

approaches the lower wall it has the approximate behaviour

f0(y) =
1

2
f ′′0 (−1)(−1 + y)2 as y → −1. (5.2.152)

In order to recover the highest derivative in the temperature equation we must

rescale the system and investigate the resulting thermal boundary layer. The correct
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scalings are found to be

y = −1 + (−Pe)−1/3Y, f = (−Pe)−2/3F, g = G, (5.2.153)

and the thermal boundary layer system becomes

(
µ(βG)F ′′)′′ =

Re

Pe

(
F ′F ′′ − FF ′′′) , (5.2.154)

G′′ = −FG′, (5.2.155)

on Y = 0: F = 0, F ′ = 0, G = 1, (5.2.156)

as Y →∞: F ∼ 1

2
f ′′0 (−1)Y 2, G→ 0. (5.2.157)

If we now expand the solution in the thermal layer as

F (Y ) = F0(Y ) + o (1) , (5.2.158)

G(Y ) = G0(Y ) + o (1) , (5.2.159)

then the leading order thermal boundary layer problem is

(
µ(βG0)F ′′

0

)′′
= 0, (5.2.160)

G′′
0 = −F0G

′
0, (5.2.161)

on Y = 0: F0 = 0, F ′
0 = 0, G0 = 1, (5.2.162)

as Y →∞: F0 ∼
1

2
f ′′0 (−1)Y 2, G0 → 0. (5.2.163)

The solution to this system may be expressed as the coupled integrals

F0(Y ) = f ′′0 (−1)

∫ Y

0

Y − s
µ(βG0(s))

ds, (5.2.164)

G0(Y ) =

∫∞
Y exp

(
−
∫ s
0 F0(r)dr

)
ds∫∞

0 exp
(
−
∫ s
0 F0(r)dr

)
ds
. (5.2.165)
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5.3 Stability analysis

5.3.1 Temporal stability problem

Starting with the unsteady governing equations in the form

∂f ′′

∂t
=

1

Re

(
exp(−βg)f ′′

)′′
+
(
f ′f ′′ − ff ′′′

)
, (5.3.1a)

∂g

∂t
=

1

Pe
g′′ − fg′, (5.3.1b)

on y = +1: f ′ = 0, f = 1, g = 0, (5.3.1c)

on y = −1: f ′ = 0, f = 0, g = 1, (5.3.1d)

we add a temporal perturbation to the functions f(y) and g(y) via

f = f0(y) + δ exp(st)F (y), g = g0(y) + δ exp(st)G(y), δ � 1, s ∈ R, (5.3.2)

and substitute these perturbed forms into the unsteady equations. After expressing

the resulting exponential term involving the perturbation δG(y) via it’s power series

form, we can then consider the problems at each order. At O (1) we recover the steady

governing equations for f0(y) and g0(y),

0 =
1

Re

(
exp(−βg0)f ′′0

)′′
+
(
f ′0f

′′
0 − f0f

′′′
0

)
, (5.3.3a)

0 =
1

Pe
g′′0 − f0g

′
0, (5.3.3b)

on y = +1: f ′0 = 0, f0 = 1, g0 = 0, (5.3.3c)

on y = −1: f ′0 = 0, f0 = 0, g0 = 1, (5.3.3d)

while at O (δ) we obtain the ode system governing temporal stability,

sF ′′ =
1

Re

(
exp(−βg0)(F ′′ − βf ′′0G)

)′′
+ f ′0F

′′ + f ′′0F
′ − f0F

′′′ − f ′′′0 F, (5.3.4a)

sG =
1

Pe
G′′ − f0G

′ − Fg′0, (5.3.4b)

on y = +1: F ′ = 0, F = 0, G = 0, (5.3.4c)

on y = −1: F ′ = 0, F = 0, G = 0. (5.3.4d)

We can estimate the values of the first few eigenvalues of the temporal stability

system in the β = 0 and small Re or Pe cases, with a view to using these as appropriate

initial guesses for the numerical solution of the β 6= 0 stability problems via continuation

in β from zero to an appropriate value.
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When β = 0, the stability equations are

sF ′′ =
1

Re
F ′′′′ + f ′0F

′′ + f ′′0F
′ − f0F

′′′ − f ′′′0 F, (5.3.5)

sG =
1

Pe
G′′ − f0G

′ − Fg′0. (5.3.6)

If we now consider the case where Pe = 0 and Re is small, expanding the eigenfunctions

and eigenvalue as

F (y) = F0(y) + ReF1(y) + · · · , G(y) = G0(y) + ReG1(y) + · · · ,
sRe = −s0 + Res1 + · · · , (5.3.7)

and collecting the lowest order terms from each equation gives

F (y) : −s0F ′′
0 = F

(iv)
0 , (5.3.8)

G(y) : 0 = G′′
0, (5.3.9)

and hence we obtain G0 = 0.

The eigenfunctions F0(y) can be divided into two different sets, according to whether

the eigenfunctions are even or odd functions. In both cases the fourth order ode is

solved with four homogeneous conditions and a normalisation condition of F ′′
0 (−1) = 1.

Similar modes to the modes recorder below have previously been found in the context

of the isothermal E = 0 problem considered by Zaturska et.al. [ZDB88]. For the even

solutions, we find that

F0(y) = F e
0k(y) =

1

se
0k

(
1−

cos
(√

se
0ky
)

cos
(√

se
0k

)
)
, s0 = se

0k = (kπ)2, k ∈ N, (5.3.10)

and the first three eigenvalues are −9.87, −39.48 and −88.83 approximately. For the

odd solutions,

F0(y) = F o
0k(y) =

1

so
0k

(
sin
(√

so
0ky)

)

sin
(√

so
0k

) − y
)
, s0 = so

0k, k ∈ N, (5.3.11)

where
√
so
0k is a positive root of the equation tan(

√
so
0k) =

√
so
0k. The first three such

values are −20.19, −59.68 and −118.9 approximately. We can see that the eigenvalues

for the even and odd modes interlace in this case. It remains to be seen whether this

property is preserved as we move away from β = 0; for β = 0 the interlacing of the

eigenvalues remains until the real parts coalesce.
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For β = 0 and F (y) = 0 it is only necessary to expand G(y) and s in terms of Pe,

G(y) = G0(y) + PeG1(y) + · · · , Pes = −s0 + Pes1 + · · · , (5.3.12)

and at lowest order we obtain the ode eigenvalue problem

G′′
0 + s0G0 = 0, G0(−1) = G0(1) = 0, G′

0(−1) = 1, (5.3.13)

with the latter condition being a normalisation condition. We can again split the

eigenfunctions into those that are even eigenfunctions and those that are odd, and we

find that the even eigenfunctions are

G0(y) = Ge
0k(y) =

cos
(√

se
0ky
)

√
se
0k sin

(√
se
0k

) , se
0k =

(
(2k − 1)

2
π

)2

, k ∈ N, (5.3.14)

and the odd eigenfunctions are

G0(y) = Go
0k(y) =

sin
(√

so
0ky
)

√
so
0k cos

(√
so
0k

) , so
0k = (kπ)2, k ∈ N. (5.3.15)

We can represent these eigenfunctions in a single form via

G0k(y) =
sin
(√
s0k(1 + y)

)
√
s0k

, s0k =

(
kπ

2

)2

, k ∈ N, (5.3.16)

where even values of k select the even eigenfunctions and odd values select the odd

eigenfunctions.

5.3.2 Spatial stability problem

The steady governing equations involving the stream function ψ(x, y) and temperature

function T (x, y) are

Re (ψyψxyy − ψxψyyy) = (exp(−βT )ψyy)yy , (5.3.17a)

(ψyTx − ψxTy) =
1

Pe
Tyy, (5.3.17b)

on y = +1: ψy = 0, −ψx = 1, T = 0, (5.3.17c)

on y = −1: ψy = 0, −ψx = 0, T = 1. (5.3.17d)

If we add spatial perturbations to both the stream and temperature functions of



5.3. STABILITY ANALYSIS 98

the form

ψ(x, y) = −xf(y) + δψ1(x, y), T (x, y) = g0(y) + δT1(x, y), δ � 1, (5.3.18)

and substitute them into the governing equations, we obtain

Re
(
(−xf ′ + δψ1y)(−f ′′ + δψ1xyy)− (−f + δψ1x)(−xf ′′′ + δψ1yyy)

)
=

(
exp(−β(g0 + δT1))(−xf ′′ + δψ1yy)

)
yy
, (5.3.19a)

(
(−xf ′ + δψ1y)(g0 + δT1x)− (−f + δψ1x)(g′0 + δT1y)

)
=

1

Pe

(
g0yy + δT1yy

)
,

(5.3.19b)

on y = +1: − xf ′ + δψ1y = 0, f − δψ1x = 1, g0 + δT1 = 0, (5.3.19c)

on y = −1: − xf ′ + δψ1y = 0, f − δψ1x = 0, g0 + δT1 = 1. (5.3.19d)

We now approximate the exponential viscosity term by exp(−βg0)(1 − δβT1) and

then consider the problems at each order in turn. At leading order we obtain the base

problems

Re
(
f ′f ′′ − ff ′′′

)
=
(
− exp(−βg0)f ′′

)′′
, (5.3.20a)

fg′0 =
1

Pe
g′′0 , (5.3.20b)

on y = +1: f = 1, f ′ = 0, g0 = 0, (5.3.20c)

on y = −1: f = 0, f ′ = 0, g0 = 1, (5.3.20d)

and at O (δ) we have the following pde system,

Re
(
−xf ′ψ1xyy − f ′′ψ1y + xf ′′′ψ1x + fψ1yyy

)
=
(
exp(−βg0)(ψ1yy + βxf ′′T1)

)
yy
,

(5.3.21a)

− xf ′T1x − ψ1xg
′
0 + fT1y =

1

Pe
T1yy, (5.3.21b)

accompanied with homogeneous boundary conditions for ψ1 and T1. This system ad-

mits separable solutions of the form

ψ = xλH(y), T1 = xηK(y),

and setting λ = 1 +η permits the reduction to the following coupled odes for H(y) and
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K(y),

Re
(
fH ′′′ − f ′′H ′)+ λRe

(
f ′′′H − f ′H ′′) =

(
exp(−βg0)(H ′′ + βf ′′K)

)′′
, (5.3.22a)

fK ′ + f ′K − λ(Hg′0 + f ′K) =
1

Pe
K ′′, (5.3.22b)

on y = +1: H = 0, H ′ = 0, K = 0, (5.3.22c)

on y = −1: H = 0, H ′ = 0, K = 0. (5.3.22d)

5.4 Numerical results

In this section we present numerical solutions to the governing equations computed

using various codes written using Matlab and discuss the results.

5.4.1 Flow profiles

The base flow problem has been solved for appropriate combinations of parameters

|Pe| = 0.1, 1, 5, 10 and β = −3,−2,−1, 0, 1, 2, 3, 4, 5, where positive values of Pe corre-

spond to positive Re indicating suction flows and negative Pe correspond to negative

Re indicating injection flows. It is necessary to increase the range of Reynolds numbers

for the suction cases as the Péclet number increases in order to capture the important

features that arise in the bifurcation diagrams.
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Figure 5.4.1. Solution profiles for the one porous walled nonisothermal channel flow
with Pe = −0.1, β = 1 and Re = −20.
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Figure 5.4.2. Flow field for the one porous walled nonisothermal channel flow with
Pe = 0.1, β = −3 and Re = 100.

−1 −0.5 0 0.5 1
−2

0
2

f(
y)

y

Profiles of flow and temperature functions for one porous walled channel
with β=−3 n=1 Pe=0.1 and R=0 to 100

−1 −0.5 0 0.5 1
−5

0
5

f′ (y
)

y

−1 −0.5 0 0.5 1
−200

0
200

f′′ (y
)

y
−1 −0.5 0 0.5 1

−2
0
2

x 10
4

f′′′
(y

)

y

−1 −0.5 0 0.5 1
0

0.5
1

g(
y)

y
−1 −0.5 0 0.5 1

−0.55
−0.5

−0.45

g′ (y
)

y

Figure 5.4.3. Solution profiles for the one porous walled nonisothermal channel flow
with Pe = 0.1, β = −3 and Re = 100.
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Figure 5.4.4. Solution profiles for the one porous walled nonisothermal channel flow
with Pe = 0.1, β = −1 and Re = 100.
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Figure 5.4.5. Solution profiles for the one porous walled nonisothermal channel flow
with Pe = 0.1, β = 1 and Re = 20.
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Figure 5.4.6. Flow field for the one porous walled nonisothermal channel flow with
Pe = 0.1, β = 5 and Re = 20.
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Figure 5.4.7. Solution profiles for the one porous walled nonisothermal channel flow
with Pe = 0.1, β = 5 and Re = 20.
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Figure 5.4.8. Flow field for the one porous walled nonisothermal channel flow with
Pe = −1, β = 0 and Re = −20.
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Figure 5.4.9. Solution profiles for the one porous walled nonisothermal channel flow
with Pe = −1, β = 0 and Re = −20.
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Figure 5.4.10. Solution profiles for the one porous walled nonisothermal channel flow
with Pe = −1, β = 1 and Re = −20.
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Figure 5.4.11. Solution profiles for the one porous walled nonisothermal channel flow
with Pe = 1, β = −2 and Re = 20.
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Figure 5.4.12. Flow field for the one porous walled nonsiothermal channel flow with
Pe = 1, β = −3 and Re = 25.
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Figure 5.4.13. Solution profiles for the one porous walled nonisothermal channel flow
with Pe = 1, β = −3 and Re = 25.
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Figure 5.4.14. Flow field for the one porous walled nonisothermal channel flow with
Pe = 1, β = −1 and Re = 20.
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Figure 5.4.15. Solution profiles for the one porous walled nonisothermal channel flow
with Pe = 1, β = −1 and Re = 20.
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Figure 5.4.16. Flow field for the one porous walled nonisothermal channel flow with
Pe = 1, β = 0 and Re = 20.
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Figure 5.4.17. Solution profiles for the one porous walled nonisothermal channel flow
with Pe = 1, β = 0 and Re = 20.
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Figure 5.4.18. Flow field for the one porous walled nonisothermal channel flow with
Pe = 1, β = 1 and Re = 20.
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Figure 5.4.19. Solution profiles for the one porous walled nonisothermal channel flow
with Pe = 1, β = 1 and Re = 20.
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Figure 5.4.20. Solution profiles for the one porous walled nonisothermal channel flow
with Pe = 1, β = 2 and Re = 20.
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Figure 5.4.21. Solution profiles for the one porous walled nonisothermal channel flow
with Pe = 1, β = 3 and Re = 20.
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Figure 5.4.22. Solution profiles for the one porous walled nonisothermal channel flow
with Pe = 1, β = 4 and Re = 20.
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Figure 5.4.23. Solution profiles for the one porous walled nonisothermal channel flow
with Pe = −5, β = 1 and Re = −20.
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Figure 5.4.24. Flow field for the one porous walled nonisothermal channel flow with
Pe = 1, β = 5 and Re = 20.
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Figure 5.4.25. Solution profiles for the one porous walled nonisothermal channel flow
with Pe = 1, β = 5 and Re = 20.
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Figure 5.4.26. Flow field for the one porous walled nonisothermal channel flow with
Pe = 5, β = −3 and Re = 60.
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Figure 5.4.27. Solution profiles for the one porous walled nonisothermal channel flow
with Pe = 5, β = −3 and Re = 60.
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Figure 5.4.28. Solution profiles for the one porous walled nonisothermal channel flow
with Pe = 5, β = −1 and Re = 20.
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Figure 5.4.29. Solution profiles for the one porous walled nonisothermal channel flow
with Pe = 5, β = 1 and Re = 20.
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Figure 5.4.30. Flow field for the one porous walled nonisothermal channel flow with
Pe = 5, β = 5 and Re = 20.
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Figure 5.4.31. Solution profiles for the one porous walled nonisothermal channel flow
with Pe = 5, β = 5 and Re = 20.



5.4. NUMERICAL RESULTS 115

−1 0 1
0

0.5

1

f(
y)

y

Profiles of flow and temperature functions for one porous walled channel
with β=1 n=1 Pe=−10 and R=0 to −20

−1 0 1
0

0.5

1

f′ (y
)

y

−1 0 1
−10

0

10

f′′ (y
)

y
−1 0 1

−100

−50

0

f′′′
(y

)

y

−1 0 1
0

0.5

1

g(
y)

y
−1 0 1

−2

−1

0

g′ (y
)

y

Figure 5.4.32. Solution profiles for the one porous walled nonisothermal channel flow
with Pe = −10, β = 1 and Re = −20.
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Figure 5.4.33. Flow field for the one porous walled nonisothermal channel flow with
Pe = 10, β = −3 and Re = 100.
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Figure 5.4.34. Solution profiles for the one porous walled nonisothermal channel flow
with Pe = 10, β = −3 and Re = 100.
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Figure 5.4.35. Solution profiles for the one porous walled nonisothermal channel flow
with Pe = 10, β = −1 and Re = 100.
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Figure 5.4.36. Solution profiles for the one porous walled nonisothermal channel flow
with Pe = 10, β = 1 and Re = 20.
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Figure 5.4.37. Flow field for the one porous walled nonisothermal channel flow with
Pe = 10, β = 5 and Re = 20.

−1 0 1
−2

0
2

f(
y)

y

Profiles of flow and temperature functions for one porous walled channel
with β=5 n=1 Pe=10 and R=0 to 20

−1 0 1
−5

0
5

f′ (y
)

y

−1 0 1
−500

0
500

f′′ (y
)

y
−1 0 1

−5
0
5

x 10
4

f′′′
(y

)

y

−1 0 1
0

0.5
1

g(
y)

y
−1 0 1

−4
−2

0

g′ (y
)

y

Figure 5.4.38. Solution profiles for the one porous walled nonisothermal channel flow
with Pe = 10, β = 5 and Re = 20.



5.4. NUMERICAL RESULTS 119

5.4.2 Discussion of solution profiles

The β = 0, Pe = −1, Re = −20 injection solution in Figure 5.4.9 is typical of the

injection flow solutions for the range of β and Pe considered. The main features of

the profiles are that the solution f(y) is increasing, f ′(y) is single signed and splits

into two regions, a narrow region of increase away from zero at the lower wall and

then a shallower decreasing behaviour away from the local maximum down to zero

at the upper wall. The temperature distribution within the channel, g(y), is not far

from a linearly decreasing function, with a gradient slightly steeper than the Pe = 0

solution of −1/2 near the lower wall and decreasing to a slightly shallower gradient

than the Pe = 0 prediction at the upper wall. The injection solution profiles for the

case β = 1 shown in Figure 5.4.10 show that the effect of changing β upon the flow

solution is minimal. The flow field for β = 0, Figure 5.4.8 shows that the fluid that

enters the channel through the upper wall is smoothly transported out of the channel

ends and that the maximum horizontal fluid velocity occurs a short distance away from

the heated lower channel wall.

Moving on to the suction flow solutions, the β = 0, Pe = 1, Re = 20 solutions

in Figure 5.4.19 is one basis which comparisons with other suction solutions can be

made. The main features of this particular solution are that f(y) and f ′(y) both take

positive and negative values over the channel width for this particular combination of

Pe and Re. This corresponds to regions of flow which are flowing in opposite directions

to other regions within the channel i.e. recirculation. Where f(y) < 0 and x > 0

there will be fluid moving in the direction of decreasing x and where f(y) > 0 there

will be fluid moving in the direction of increasing x; where f ′(y) < 0 and x > 0 fluid

will be moving downwards and where f ′(y) > 0 fluid will be moving upwards in the

positive x half of the channel. The temperature g(y) is decreasing throughout the

channel width, with a relatively steep gradient near the lower wall, then a region of

increasingly shallow gradient as the region of recirculating flow occurs and as the upper

wall is approached the gradient becomes increasingly negative. The flow field shown in

Figure 5.4.16 illustrates the large proportion of the channel width that is undergoing

recirculating flow and the correspondingly thin region adjacent to the upper wall where

fluid is successfully being removed from the channel.

As β is increased to 1, Figure 5.4.19 show that the regions of positive and negative

f(y) and f ′(y) remain and so recirculating flow will again occur. The changes compared

to the β = 0 in Figure 5.4.17 are that the gradients of f ′′(y) and f ′′′(y) are larger at

the wall than when β = 0 and that there is now a region of almost constant negative

gradient of g′(y) adjacent to the lower wall. The corresponding flow field is shown in

Figure 5.4.18 and is similar to that for β = 0, shown in Figure 5.4.16.
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The suction solution profiles in Figures 5.4.20, 5.4.21, 5.4.22 and 5.4.25, for β =

2, 3, 4 and 5 respectively, show that as β increases the behaviour of f(y) near the upper

wall changes from increasing to the wall value as the wall is approached to decreasing

from above the wall value as the wall is approached. The corresponding f ′(y) profile

show steeper gradients at the lower wall as β increases and a change of behaviour at

the upper wall, from f ′(y) being positive and decreasing for β = 2, 3 to f ′(y) having a

second internal zero and the position of this internal zero moving away from the upper

wall for β = 4, 5. The gradients of f ′′(y) and f ′′′(y) become steeper at the walls as β

increases. The gradient of g′(y) near the lower wall decreases as β increases while the

behaviour in the remainder of the channel does not vary with β. The temperature g(y)

is nonzero throughout the channel for all β. The corresponding flow field for β = 5,

Figure 5.4.24, shows a large region of recirculation in the lower half of the channel and

a region of reversing flow in the upper half of the channel, the streamlines of which

making a more acute angle with the upper wall as |x| increases.

As β decreases from zero, the main changes to the solution behaviour are that the

region where f(y) < 0 is moving away from the lower wall and the minimum of f(y)

is moving closer to the centre of the channel as β decreases. The value of f ′′(−1)

is increasing as β decreases and the behaviour of f ′′(y) near the lower wall changes

from increasing then decreasing when β = −1 to slowly increasing then increasing then

decreasing when β = −3. The temperature g(y) does not change much with β for this

value of Pe. Figures 5.4.15, 5.4.11 and 5.4.13 show the solution profiles for β = −1,−2

and −3 respectively and Figures 5.4.14 and 5.4.12 show the flow fields for the cases

β = −1 and β = −3, where it can be seen that the stagnation line (the horizontal line

through the flow field through which no fluid passes vertically) and the mid-line of the

recirculation region have been displaced towards the upper wall as β decreases from

β = −1 in Figure 5.4.14 to β = −3 in Figure 5.4.12.

When |Pe| is increased to 5, in the case of injection Figure 5.4.23 shows that the

main changes from |Pe| = 1 are that the gradients of f ′′(y) and f ′′′(y) near the lower

wall are steeper and that the temperature function g(y) decreases to zero much more as

we move away from the lower wall, with almost all of the temperature drop occurring

before the mid-line of the channel is reached. When β = 1, Pe = 5 in the case of suction

flow, Figure 5.4.29 again shows that there will be a region of recirculating flow within

the channel as f(y), f ′(y) are multisigned. The gradients of f ′′(y) and f ′′′(y) are steep

near the channel walls and very shallow by comparison in the body of the channel;

the width of the boundary layer of f ′′(y) and f ′′′(y) at the upper wall is thinner than

that at the lower wall. The temperature function g(y) is such that all the significant

temperature changes occur in the lower half of the channel and the gradient g ′(y) is
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always negative, being large initially and increasing to just below zero before the centre

of the channel.

When β = 5, Pe = 5 comparison with β = 1, Pe = 5 shows that, in Figure 5.4.31,

there is a much thinner and steeper boundary layer for f ′(y) adjacent to the lower wall,

that the behaviour of f ′′(y) and f ′′′(y) near the walls is correspondingly steeper and

confined o thinner regions. The temperature function g(y) also changes and now the

region of small g(y) extends from the upper wall well into the lower half of the channel.

The flow field for the case β = 5, Pe = 5 is shown in Figure 5.4.30 and as compared to

β = 5, Pe = 1 in Figure 5.4.24 there is now no region of reversing streamlines in the

upper portion of the channel and the recirculating region now extends to cover almost

3/4 of the channel width instead of the entire width for the β = 5, Pe = 1 case.

As β decreases below zero and Pe = 5, Figures 5.4.28 and 5.4.27 for β = −1 and −3

respectively show that the region of recirculation remains and the gradients in f ′′(y)

and f ′′′(y) near the walls increase in magnitude. The nonzero region of significant

change of g(y) is still confined to the lower half of the channel in both cases. The flow

field for β = −3, Pe = 5 in Figure 5.4.26 shows that the recirculating region extends

to cover over 3/4 of the channel width and that the region of flow near the upper wall

must change direction in a very thin region in order to satisfy the no slip condition at

the upper wall, as compared to the flow field for β = −3, Pe = 1 in Figure 5.4.12.

When |Pe| is increased again to |Pe| = 10, the changes as seen going from |Pe| = 1

to |Pe| = 5 are present and are increased. For the case of injection flow with Pe = −10,

Figure 5.4.32 shows almost the same behaviour as for Pe = −5 and Pe = −1. The

gradients of f ′′(y) and f ′′′(y) near the lower wall have increased and the temperature

changes are again confined to the lower half of the channel, in this case a little more

restricted than for the smaller negative values of Pe.

As β increases above zero, Figures 5.4.36 and 5.4.38 for β = 1 and 5 respectively

show that as β increases, the regions of rapid variation of f ′(y), f ′′(y) and f ′′′(y) become

thinner and more pronounced. As β increases, the gradient g′(y) near the lower wall

is steeper initially and now the region of significant temperature change is confined to

the lowest quarter of the channel width. Figure 5.4.37 show the flow field for Pe = 10,

β = 5 and the stagnation line is located a quarter of the width of the channel away

from the upper wall with the remainder of the channel width being occupied by a

recirculating flow.

For β below zero, Figures 5.4.35 and 5.4.34 for β = −1 and −3 respectively show

that regions of recirculation will remain and that, in the cases illustrated for Re = 100,

the flow function and its derivative are very similar. The only difference between the

solutions can be seen in the temperature g(y) and its derivative, where for β = −3
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the gradient away from the lower wall is slightly less steep than that for β = −1.

Figure 5.4.33 shows that the recirculation region takes up the majority of the channel

width and that the stagnation line has shifted further towards the upper wall than in

the case of Pe = 5, however the overall behaviour is similar to the Pe = 5 case for lower

Reynolds numbers, as shown in Figure 5.4.26.

Finally, when |Pe| is reduced to |Pe| = 0.1 the main feature of all the solutions is

that the entire channel width is needed for the temperature to drop from g = 1 at the

lower wall to g = 0 at the upper wall. For β = 1, Pe = −0.1 injection flow, Figure 5.4.1

shows that the flow solution f(y) is similar to that of the other injection flows, but the

temperature solution is almost linearly decreasing with a gradient that is initially just

steeper than the Pe = 0 solution of −1/2 and then becomes shallower as the upper

wall is approached, ending up with a gradient that is less than the Pe = 0 solution of

−1/2.

The suction solution β = 1, Pe = 0.1 shown in Figure 5.4.5 predicts recirculating

flow in the lower section of the channel and has relatively wide regions of high gradients

of f ′(y), f ′′(y) and f ′′′(y) near the walls. The temperature solution g(y) is again

almost linearly decreasing, the gradient of which varies by less than 10% of the Pe = 0

prediction of −1/2 over the channel width. However, when β is increased to β = 5,

Pe = 0.1 the flow behaviour shown in Figure 5.4.7 changes from that seen for other

values of β and Pe. The solution f(y) now takes on an almost sinusoidal form and has

a large amplitude; the boundary layers in f ′(y) near the walls are very thin (thinner at

the lower wall than at the upper wall) and the form of f ′(y) is now that there are two

regions of flow directed away from the origin of the channel adjacent to the channel

walls and a central region directed towards the channel origin. The values of f ′′(y) and

f ′′′(y) are very large in thin layers at he channel walls. The temperature solution g(y) is

still decreasing over the whole width of the channel but the gradient initially diminishes

and subsequently increases as the channel width is traversed. The corresponding flow

field, Figure 5.4.6, now shows two almost equally sized regions of reversed flow, one in

each half of the channel width; the boundary layers required at each wall in order to

satisfy the boundary conditions are not visible in this figure.

As β decrease below zero, Figures 5.4.4 for β = −1 and 5.4.3 for β = −3 show that

the magnitude of the solution f(y) decreases as β decreases and that the variation in

the higher derivatives of f(y), although similar in form, also decreases in magnitude

as β decreases. The temperature solution g(y) remains decreasing over the channel

width and the gradient varies more for β = −1 than for β = −3; indeed for β = −3

the gradient g′(y) remains constant for a short region next to the lower wall. The flow

field for β = −3, Pe = 0.1 shown in Figure 5.4.2 illustrates the recirculating region of
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flow taking up the majority of the channel width and it is similar in structure to that

for other values of Pe.
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5.4.3 Bifurcation diagrams
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Figure 5.4.39. A pair of bifurcation plots for the one porous walled nonisothermal

channel flow for |Pe| = 0.1, β = 0, 1, 2, 3, 4, 5 with injection and suction, the data

coming from the solution at the upper wall.
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Figure 5.4.40. A pair of bifurcation plots for the one porous walled nonisothermal

channel flow for |Pe| = 0.1, β = 0, 1, 2, 3, 4, 5 with injection and suction, the data

coming from the solution at the lower wall.
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Figure 5.4.41. A pair of bifurcation plots for the one porous walled nonisothermal
channel flow for |Pe| = 1, β = 0, 1, 2, 3, 4, 5 with injection and suction, the data coming
from the solution at the upper wall.
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Figure 5.4.42. A pair of bifurcation plots for the one porous walled nonisothermal
channel flow for |Pe| = 1, β = 0, 1, 2, 3, 4, 5 with injection and suction, the data coming
from the solution at the lower wall.
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Figure 5.4.43. A pair of bifurcation plots for the one porous walled nonisothermal
channel flow for |Pe| = 5, β = 0, 1, 2, 3, 4, 5 with injection and suction, the data coming
from the solution at the upper wall.
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Figure 5.4.44. A pair of bifurcation plots for the one porous walled nonisothermal
channel flow for |Pe| = 5, β = 0, 1, 2, 3, 4, 5 with injection and suction, the data coming
from the solution at the lower wall.
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Figure 5.4.45. A pair of bifurcation plots for the one porous walled nonisothermal
channel flow for |Pe| = 10, β = 0, 1, 2, 3, 4, 5 with injection and suction, the data
coming from the solution at the upper wall.
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Figure 5.4.46. A pair of bifurcation plots for the one porous walled nonisothermal
channel flow for |Pe| = 10, β = 0, 1, 2, 3, 4, 5 with injection and suction, the data
coming from the solution at the lower wall.
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Figure 5.4.47. A pair of bifurcation plots for the one porous walled nonisothermal
channel flow for |Pe| = 0.1, β = −3,−2,−1, 0 with injection and suction, the data
coming from the solution at the upper wall.
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Figure 5.4.48. A pair of bifurcation plots for the one porous walled nonisothermal
channel flow for |Pe| = 0.1, β = −3,−2,−1, 0 with injection and suction, the data
coming from the solution at the lower wall.
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Figure 5.4.49. A pair of bifurcation plots for the one porous walled nonisothermal
channel flow for |Pe| = 1, β = −3,−2,−1, 0 with injection and suction, the data
coming from the solution at the upper wall.
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Figure 5.4.50. A pair of bifurcation plots for the one porous walled nonisothermal
channel flow for |Pe| = 1, β = −3,−2,−1, 0 with injection and suction, the data
coming from the solution at the lower wall.
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Figure 5.4.51. A pair of bifurcation plots for the one porous walled nonisothermal
channel flow for |Pe| = 5, β = −3,−2,−1, 0 with injection and suction, the data
coming from the solution at the upper wall.
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Figure 5.4.52. A pair of bifurcation plots for the one porous walled nonisothermal
channel flow for |Pe| = 5, β = −3,−2,−1, 0 with injection and suction, the data
coming from the solution at the lower wall.
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Figure 5.4.53. A pair of bifurcation plots for the one porous walled nonisothermal
channel flow for |Pe| = 10, β = −3,−2,−1, 0 with injection and suction, the data
coming from the solution at the upper wall.
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Figure 5.4.54. A pair of bifurcation plots for the one porous walled nonisothermal
channel flow for |Pe| = 10, β = −3,−2,−1, 0 with injection and suction, the data
coming from the solution at the lower wall.
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5.4.4 Discussion of bifurcation diagrams

We first consider the bifurcation plots in Figures 5.4.39–5.4.46 where Pe > 0 and β ≥ 0.

For Figure 5.4.39 in the case of suction (Re, Pe > 0) as β increases from 0 the region

of hysteresis on the bifurcation curve disappears, and for β ≥ 3 there is a value of

the Reynolds number at which the upper wall stress passes through zero. For β = 4, 5

there are again regions of hysteresis and both of these curves are strongly decreasing for

small Reynolds numbers. At the lower wall, Figure 5.4.40 shows that each bifurcation

curve changes sign, at which point there is a reversal of flow near the lower wall, but

the Reynolds number at which this flow reversal takes place decreases as β increases.

For the simulations corresponding to β = 4, 5 the lower wall stresses are an order

of magnitude larger than those of the other values of β and failure of the numerical

method to converge precluded calculations further than Re ≈ 10.

For Pe = 1 and β ≥ 0 Figure 5.4.41 shows that increasing β from zero eliminates

the region of hysteresis and the large Re behaviour of the bifurcation curves moves

downwards to lower values as β increases. For β = 4, 5 the bifurcation curves pass

through zero. The lower wall behaviour in Figure 5.4.42 reflects the upper wall be-

haviour in that the bifurcation curves for β = 0, 1, 2, 3 are all similar, only the β = 0

curve has a region of hysteresis and for β = 4, 5 the large Re behaviour is much greater

in magnitude than that of the lower values of β.

For Pe = 5 and β ≥ 0 Figure 5.4.43 shows that increasing β from 0 again eliminates

the hysteresis region and bunches the curves closer together. The curvature of the

bifurcation curves is also reduced as β increases. As Re increases the curves asymptote

to the same behaviour. The lower wall behaviour in Figure 5.4.44 shows that for β > 0

the hysteresis region has been eliminated and a region of oscillation remains on these

curves in the region of the turning point on the β = 0 curve.

For Pe = 10 and β ≥ 0 Figure 5.4.45 shows that once β > 0 then there is no region

of hysteresis and the bifurcation curves are much closer together than in the Pe = 5

case. The curves all asymptote to the same behaviour for large Re. On the lower wall,

Figure 5.4.46 shows that the behaviour is similar to that for Pe = 5; there is a region

of oscillation on the β > 1 curves near the turning point on the β = 0 curve and the

oscillation in this case is larger than that of the Pe = 5 case.

For all of the injection flows Re < 0, Pe < 0 with β ≥ 0, shown in the left hand

plots of Figures 5.4.39–5.4.46, the large Re < 0 behaviours are similar and the curves

approach a constant value for each β. This value does not appear to vary with Pe < 0

for each fixed value of β and the ordering of the curves is such that β = 0 has the highest

values and β = 5 has the smallest values throughout the Re < 0 range where simulations

were performed. As Re approaches zero the behaviour of the curves does vary. For
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Pe = −0.1 and when β = 3, 4, 5 the values of −f ′′(1) drop below their respective

Re → −∞ values as Re → 0−, while the β = 0, 1, 2 values of −f ′′(1) increase above

their Re→ −∞ values as Re→ 0−. As Pe decreases the behaviour changes slightly so

that fewer of the small β curves dip below their large Re → −∞ values as Re → 0−.

For Pe = −1, Figure 5.4.41 shows that only the β = 4, 5 curves decrease markedly as

Re → 0− while the β = 3 curve is almost constant. For Pe = −5 Figure 5.4.43 shows

that all of the β curves reach values greater than their Re→ −∞ values as Re→ 0−,

with the β = 5 curve showing a local maximum for small −Re. Finally for Pe = −10

Figure 5.4.45 shows that all the β curves are increasing as Re→ 0−.

The overall effect of increasing values of β is to eliminate the regions of hysteresis

in the suction cases, and as Pe increases above Pe = 1 the variation in wall stresses at

the upper wall becomes smaller whereas the variation in wall-stress at the lower wall is

larger but still qualitatively the same as for Pe = 1. For the Pe = 0.1 simulations it is

found that larger values of β = 4, 5 produce a large change in wall-stress at the upper

and lower walls; simulations could only be run for a limited range of Reynolds numbers

in comparison to the smaller values of β = 0, 1, 2, 3. The effect of a highly temperature

sensitive viscous fluid may not have been fully captured due to the numerical difficulties

involved.

Now we shall consider Figures 5.4.47–5.4.54 where Re > 0 and β ≤ 0. For the

right half of Figure 5.4.47 where β ≤ 0 and Re > 0 as Re → ∞ the β = 0,−1,−2

curves all asymptote to the same behaviour whilst the β = −3 curve has reached an

almost constant value of wall stress about 3 times smaller than the other curves. As β

decreases a region of “S-shaped” hysteresis on the β = 0 curve changes into a “loop-

shaped” hysteresis region with the Re extent of the loop increasing as β decreases. On

the lower wall, shown in Figure 5.4.48 the “S-shaped” hysteresis region is still visible as

β decreases from 0, but it becomes more and more squashed perpendicular to the Re

axis and more elongated parallel to the Re axis as β becomes more and more negative,

with the point at which the wall stress vanishes moving to smaller values of Re as β

decreases.

For Pe = 1 and β ≤ 0, the upper wall bifurcation curves shown in Figure 5.4.49

display similar behaviour as β decreases. The “S-shaped” hysteresis region for β = 0

changes into a cusp for β = −1 and then into a “loop” as β decreases further. The

extent of the hysteresis region along the Re axis increases as β decreases, the initial

Reynolds number of the hysteresis region increases as β decreases and the overall size

of the hysteresis loop also increases as β decreases. The lower wall behaviour shown

in Figure 5.4.50 is qualitatively similar to that for Pe = 0.1 and is a more pronounced

version of that figure where the curves have been further elongated in the Re direction
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and squashed in the perpendicular direction.

As the value of Pe increases to Pe = 5 and β ≤ 0, Figure 5.4.51 shows similar

behaviours occurring for the bifurcation curves as for the case of Pe = 1. The β = 0

“S-shaped” hysteresis region changes into a tight “loop” for β = −1 and into as β

decreases further the bifurcation curves show that the “loop” changes into a more

“spiral-like” shape. The range of Re where hysteresis occurs increases as β decreases

and the vertical extent of the “loops” also increases. The “loops” seem to be aligning

in the same direction in the −f ′′(1)–Re plane. The lower wall bifurcation diagram

Figure 5.4.52 again shows that the “S-shaped” hysteresis region visible for β = 0

becomes more and more deformed as β decreases.

When Pe = 10 and β ≤ 0 the same behaviour is shown in Figure 5.4.53; the “S-

shaped” hysteresis region for β = 0 changes into “loops” for β < 0 and the hysteresis

“loops” increase in size as β decreases. The extent of the hysteresis region has increased

so much that the numerical simulations must be run up to Re = 100 to ensure that

the region has been captured correctly for β = −3; by this point the other bifurcation

curves have all already approached their same behaviour as Re increases past Re = 20.

The lower wall behaviour shown in Figure 5.4.54 is a more squashed vertically and

stretched horizontally version of the previous lower-wall behaviours for Pe > 0 and

β ≤ 0.

For the injection flows with β ≤ 0 as shown in Figures 5.4.48–5.4.54, the behaviour

for decreasing values of Pe is similar for each value of β. As β decreases the upper

wall stresses are increased over that of the β = 0 values, and the lower wall stresses as

decreased in comparison to the β = 0 values. The upper wall stresses decrease from

a maximum at Re = 0− in a manner broadly inversely proportional to −Re as Re

decreases. The lower wall stresses increase as Re decreases from 0 with the gradients

for each value of β for fixed Pe.

The effect of the negative values of β in the viscosity function, corresponding to

cooling of the lower channel wall, is that the regions of hysteresis are enlarged as β

decreases and Pe increases in the suction cases. Both the wall-stresses at the lower and

upper walls changed quantitatively as β decreased from 0, even if they qualitatively

remained similar.

5.5 Temporal stability for an isothermal reference case

In order to numerically solve the temporal stability problem we must solve the steady

base flow problem and the unsteady perturbation problem in parallel. It is necessary

to split the perturbation term into its real and imaginary parts and, once a particular
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representation of the system has been chosen, a system of 21 first order ordinary dif-

ferential equations is to be solved in Matlab1. The complete system, before rewriting

as a system of first order ordinary differential equations, is

(
µ(βg0)f ′′0

)′′
= Re

(
f0f

′′′
0 − f ′0f ′′0

)
, (5.5.1a)

g′′0 = Pef0g
′
0, (5.5.1b)

(
µ(βg0)(F ′′

R − βf ′′0GR)
)′′

= Re
(
f ′0F

′′
R + f ′′0F

′
R − f0F

′′′
R − f ′′′0 FR

)

+ Re
(
aF ′′

R − bF ′′
I

)
, (5.5.1c)

(
µ(βg0)(F ′′

I − βf ′′0GI)
)′′

= Re
(
f ′0F

′′
I + f ′′0F

′
I − f0F

′′′
I − f ′′′0 FI

)

+ Re
(
bF ′′

R + aF ′′
I

)
, (5.5.1d)

G′′
R = Pe

(
f0G

′
R − FRg

′
0

)
+ Pe (aGR − bGI) , (5.5.1e)

G′′
I = Pe

(
f0G

′
I − FIg

′
0

)
+ Pe (bGR + aGI) , (5.5.1f)

on y = +1: f ′0 = 0, f0 = 1, g0 = 0,

F ′
R = 0, FR = 0, GR = 0,

F ′
I = 0, FI = 0, GI = 0, (5.5.1g)

on y = −1: f ′0 = 0, f0 = 0, g0 = 1,

F ′
R = 0, FR = 0, GR = 0,

F ′
I = 0, FI = 0, GI = 0,

F ′′
R = 1, F ′′

I = 0, (5.5.1h)

where F (y) = FR(y)+iFI(y), G(y) = GR(y)+iGI(y), s = a+ib and a normalisation

condition is given by F ′′(−1) = 1.

For comparison purposes it is necessary to solve the isothermal problem with no

temperature dependent viscosity first. Taking β = Pe = 0, µ is now constant having the

value 1 and together with zero temperature boundary conditions the problem simplifies

1The 21st equation comes from forming the ode dRe/dy = 0 and adding an appropriate boundary
condition to facilitate numerical stepping along the bifurcation curves.
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to just the temporal stability problem for f0,

f
(iv)
0 = Re

(
f0f

′′′
0 − f ′0f ′′0

)
, (5.5.2a)

g′′0 = 0, (5.5.2b)

F
(iv)
R = Re

(
f ′0F

′′
R + f ′′0F

′
R − f0F

′′′
R − f ′′′0 FR

)
+ Re

(
aF ′′

R − bF ′′
I

)
, (5.5.2c)

F
(iv)
I = Re

(
f ′0F

′′
I + f ′′0F

′
I − f0F

′′′
I − f ′′′0 FI

)
+ Re

(
bF ′′

R + aF ′′
I

)
, (5.5.2d)

G′′
R = 0, (5.5.2e)

G′′
I = 0, (5.5.2f)

on y = +1: f ′0 = 0, f0 = 1, g0 = 0,

F ′
R = 0, FR = 0, GR = 0,

F ′
I = 0, FI = 0, GI = 0, (5.5.2g)

on y = −1: f ′0 = 0, f0 = 0, g0 = 0,

F ′
R = 0, FR = 0, GR = 0,

F ′
I = 0, FI = 0, GI = 0,

F ′′
R = 1, F ′′

I = 0. (5.5.2h)

The first three pairs of eigenvalues for the suction and injection cases are shown in

Figures 5.5.1 and 5.5.3, and Figure 5.5.2 shows the region of the suction flow eigenvalue

diagram that contains the critical points for the stability of the base flow.
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Figure 5.5.1. A plot of the first three pairs of eigenvalues against Reynolds number for

the reference case of no temperature dependence of the viscosity and zero boundary

conditions for the temperature in the case of one porous walled suction flow.
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Figure 5.5.2. A plot of the first pair of eigenvalues against Reynolds number for the

reference case in Figure 5.5.1 showing labelled points I0, I1, a1, a2 and H0 .

The eigenvalue branches q1 and r1 in the suction case, as shown in Figure 5.5.1 and

in more detail in Figure 5.5.2, are the determining factors for the temporal stability

of the base flow f0(y). For values of the Reynolds number up to the point a2 at

Re = 7.308 (3d.p.) the flow is steady and so is temporally stable as the dominant

eigenvalue is real and negative (depicted by a solid line), then the real part of q1 first

becomes positive at this point. Following the q1 branch around the loop until the point

a1 at Re = 7.051 (3d.p.) the real part of q1 then becomes negative again, and this

loop describes a region of hysteresis in the interval Re ∈ (7.051, 7.308) (3d.p.) which

can be seen on the bifurcation diagram of −f ′′0 (1) against Re, Figure 5.4.41 (β = 0

curve). In this region there are three steady solutions, the outer two are temporally

stable and the central one is temporally unstable. The branches q1 and r1 merge at

I0, at Re = 7.179 (3d.p.), where their real parts coincide, and from this point the

complex-conjugate solutions have a non-zero imaginary part (depicted by a dashed

line). The corresponding points upon the q2, r2 and q3, r3 branches are at Re = 8.354

and Re = 9.862 (3d.p.) respectively. When the coalesced q1, r1 branches reach H0 at

Re = 12.760 (3d.p.) their real part passes through zero and becomes positive, and this

point denotes the loss of temporal stability of the base flow.
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In the case of injection, the Reynolds number is negative and so is the time variable,

due to the dimensional scalings of time and fluid speed having the same sign. Thus, in

the case of injection, if the real part of the eigenvalue is positive then the eigenfunction

perturbation to the flow decays and the basic flow is temporally stable. This is what

is observed in the simulations, as shown in Figure 5.5.3.
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Figure 5.5.3. A plot of the first three pairs of eigenvalues against Reynolds number for

the reference case of no temperature dependence of the viscosity and zero boundary

conditions for the case of one porous walled injection flow.
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5.6 Numerical results for nonisothermal temporal stabil-

ity calculations
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Figure 5.6.1. A plot of eigenvalues against Reynolds number for the nonisothermal

Pe = 1, β = −1 suction case in the one porous walled channel system.
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Figure 5.6.2. A plot of eigenvalues against Reynolds number for the nonisothermal

Pe = −1, β = −1 injection case for the one porous walled channel system.
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Figure 5.6.3. A plot of eigenvalues against the Reynolds number for the nonisothermal

Pe = 1, β = 1 suction case for the one porous walled channel system.
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Figure 5.6.4. A plot of eigenvalues against the Reynolds number for the nonisothermal

Pe = −1, β = 1 injection case for the one porous walled channel system.
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5.6.1 Discussion of the numerical results for nonisothermal temporal

stability calculations

Comparing the eigenvalues of the nonisothermal simulations for Pe = 1, β = ±1

(suction) with the corresponding isothermal reference case of Pe = 0, β = 0 we can

immediately see that an extra set of eigenvalues is introduced in the nonisothermal

cases. In the β = −1 case (cooled channel or viscosity increasing with temperature

increase) the looped region of the eigenvalue behaviour is retained, but the shape is

more elongated and this is reflected in the greater range of hysteresis: the points a2

and a1 now occur at Re = 10.961 (3d.p.) and Re = 8.823 respectively, as opposed

to Re = 7.308 and Re = 7.051 in the reference case. There is a region of coalesced

eigenvalues between the upper “initially s1” branch and the “initially q1” branch prior

to the hysteresis region. It also appear that the branch corresponding to r1 in the

reference case does not meet the q1 or r1 branches in the range of Reynolds numbers

where calculations have been performed. The point at which the eigenvalues on the

two uppermost branches then coalesce, I0, has not been successfully located using both

branches in the nonisothermal case, but the numerical evidence suggests that it is

located at Re = 8.717 as opposed to Re = 7.719 in the reference case; in both cases

this point is located at a higher Reynolds number than the lower end of the hysteresis

region. The location of the final critical point H0, that of the Hopf bifurcation, where

a complex conjugate pair of eigenvalues cross the real axis, also shifts to Re = 14.467

in the nonisothermal case from Re = 12.760, and so the region of temporally stable

suction solutions is increased to Re ∈ (0, 14.467)

In the β = 1 case (heated channel or viscosity decreasing with temperature increase)

the looped behaviour of the eigenvalues for suction values of the Reynolds number has

been lost. Indeed for β = 1 there is no region of hysteresis upon the main bifurcation

diagram (Figure 5.4.41). The coalescing eigenvalues are no longer the pair s1 and q1

but q1 and r1 and now the s1 branch meets the q1 branch at I0 where Re = 5.450

as opposed to Re = 7.179 in the reference case. The Hopf bifurcation H0 now occurs

at Re = 11.036 instead of Re = 12.760 in the reference case, and so the region of

temporally stable suction solutions has been reduced to Re ∈ (0, 11.036).

In the injection cases for β = ±1 the qualitative results are similar in that in both

cases flows are still temporally stable, with the smallest real part of an eigenvalue being

the s1 eigenvalue in the range of Reynolds numbers calculated. All that differs in the

two cases is the relative positions of the crossings of the horizontal s branches with the

q and r branches that correspond to those in the isothermal reference case.



Chapter 6

Isothermal power law fluid

problem - two porous walled

channel

For the two porous walled problem with equal rates of suction or injection through the

walls, the parameter E = 0, and the base problem under consideration is

rRe
(
f ′f ′′ − ff ′′′

)
= −

(
nf (iv)

∣∣f ′′
∣∣n−1

+ n(n− 1)f ′′
(
f ′′′
)2 ∣∣f ′′

∣∣n−3
)
, (6.0.1)

on y = +1: f ′ = 0, f = 1, (6.0.2)

on y = −1: f ′ = 0, f = −1, (6.0.3)

6.1 Numerical results for Type I base flows

6.1.1 Type I solution bifurcation results

In this section we produce a bifurcation diagram for the various power law flows of

Type I and a selection of associated flow profiles.

The bifurcation diagram Figure 6.1.1 shows that, as found in the E = 1, there is a

change of behaviour for the flows of shear-thinning and and shear-thickening fluids in

the case of suction. The first observation is that there is a very large range of values for

log10(−f ′′(1)) at the upper wall, ranging from 10−2−10−1 for the shear-thickening fluids

up to 104 for the shear-thinning fluids over the range of Reynolds numbers computed.

The injection flows all show similar values for log10(−f ′′(1)), where the shear-thinning

fluids have a higher value of wall-stress as Re → 0 than the shear-thickening fluids.

There appears to be a critical Reynolds number at which the shear-thickening fluids

143



6.1. NUMERICAL RESULTS FOR BASE FLOWS 144

−
20

−
15

−
10

−
5

0
5

10
15

20
25

30
35

40
45

50
10

−
2

10
−

1

10
0

10
1

10
2

10
3

10
4

10
5

R
e

log(−f
′′
(1))

B
ifu

rc
at

io
n 

di
ag

ra
m

 fo
r 

va
rio

us
 p

ow
er

 la
w

 fl
ui

ds
in

 th
e 

tw
o 

po
ro

us
 w

al
l T

yp
e 

I f
lo

w
 s

ce
na

rio

n=
1

n=
0.

9

n=
0.

8

n=
0.

6
n=

0.
5

n=
0.

4

n=
0.

1

n=
0.

2
n=

0.
3

n=
0.

7

n=
1.

1
n=

1.
2

n=
1.

3
n=

1.
4

n=
1.

5

F
ig

u
re

6.
1.

1.
S

ol
u

ti
on

b
ra

n
ch

es
fo

r
va

ri
ou

s
va

lu
es

of
n

fo
r

th
e

p
ow

er
la

w
fl

u
id

fl
ow

in
a

tw
o-

p
or

ou
s-

w
al

le
d

ch
an

n
el

fo
r

th
e

T
y
p

e
I

b
as

e
fl

ow
.

T
h

e
va

lu
e

of
δ

=
5e
−

2
w

as
ch

os
en

fo
r

th
es

e
co

m
p

u
ta

ti
on

s.



6.1. NUMERICAL RESULTS FOR BASE FLOWS 145

−1 0 1
−1

−0.5

0

0.5

1
Profiles for power law fluid n=1.0 δ=0e+00 with E=0.0 R=−20 and f′′(1)=−2.56229

y

f(
y)

−1 0 1
0

0.5

1

1.5

2

y

f′ (y
)

−1 0 1
−4

−2

0

2

4

y

f′′ (y
)

−1 0 1
−4

−3

−2

−1

0

y
f′′′

(y
)

Figure 6.1.2. Typical profile behaviour for all two porous walled injection solution
branches with 0 < n < 2. Here n = 1.

have zero wall-stress, ranging from Re ≈ 21 for n = 1.1 to Re ≈ 7 for n = 1.5,

suggesting that this critical Reynolds number decreases with increasing n. Numerical

difficulties have precluded the reliable calculation of −f ′′(1) for values of n > 1.5 or

n < 0.2 for this problem.

Figures 6.1.3–6.1.8 show the suction flow profiles for power law fluids in a two-porous

walled channel with equal suction speeds through each wall. The n = 1 cases are shown

for comparison: under large injection the function f(y) has a sinusoidal profile and f ′(y)

has a parabolic profile, proportional to the horizontal flow component. For the large

suction flow with n = 1, f(y) is almost linear and only deviates from linearity in thin

boundary layers adjacent to the walls in order to satisfy the boundary conditions upon

the flow. These boundary layers are visible on the f ′(y) profile and their influence can

be seen on the behaviour of the higher derivatives near the walls. As the value of n

is reduced and the fluid becomes shear-thinning, the constant feature across the three

representative figures (Figures 6.1.5, 6.1.4 and 6.1.3) is that, although the qualitative

features are the same, the gradients of the higher derivatives become much steeper as

n decreases. Figure 6.1.5 with n = 0.8 has f ′′(±1) = O
(
102
)

and f ′′′(±1) = O
(
104
)
;

when n = 0.5 Figure 6.1.4 shows that f ′′(±1) = O
(
103
)

and f ′′′(±1) = O
(
106
)
. For

n = 0.2 the results shown in Figure 6.1.3 are for the greatest value of Re that converged,

Re = 10.2, and for this value the corresponding derivatives are f ′′(±1) = O
(
104
)

and
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Figure 6.1.3. Profiles for two porous walled suction solution with n = 0.2, δ = 5e −
2. Note the reduced value of the Reynolds number, Re = 10.8, at which point the
computations failed to converge.
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Figure 6.1.4. Profiles for two porous walled suction solution with n = 0.5, δ = 5e− 2.
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Figure 6.1.5. Profiles for two porous walled suction solution with n = 0.8, δ = 5e− 2.
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Figure 6.1.6. Profiles for two porous walled suction solution with n = 1.
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Figure 6.1.7. Profiles for the two porous walled suction solution with n = 1.1, δ = 5e−2.
There is now a maximum value at which the value of −f ′′(1) remains positive, at
approximately Re = 20.8.
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Figure 6.1.8. Profiles for the two porous walled suction solution with n = 1.5, δ = 5e−2.
There is now a maximum value at which the value of −f ′′(1) remains positive, at
approximately Re = 7.4.
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f ′′′(±1) = O
(
108
)
.

For the shear-thickening suction flows the profiles shown in Figures 6.1.7 and 6.1.8

are for the highest values of Re for which f ′′(1) < 0 holds according to the numerical

simulations performed. For n = 1.1, the critical Reynolds number is Re = 20.8 and,

as shown in Figure 6.1.7, the function f(y) has a sinusoidal profile, f ′(y) has a profile

that is almost parabolic at the channel centre and flatter than parabolic at the walls

and f ′′(y) is oscillatory with steep gradients at the walls. Looking at the behaviour

when n = 1.5 in Figure 6.1.8 where the critical Reynolds number has been reduced

to Re = 7.4, the main features as identified in Figure 6.1.7 for n = 1.1 remain and

are accentuated; the f ′(y) profile now appears more pointed at the channel centre and

even flatter at the walls, the f ′′(y) profile has a correspondingly steeper gradient at the

channel centre (thought not at the walls where it appears flatter than in the n = 1.1

case, probably due to the reduced value of the Reynolds number) and the profile of

f ′′′(y) now has a sharp drop at the centre of the channel.



Chapter 7

Conclusions and Further Work

7.1 Conclusions

This thesis has been concerned with the flow of fluid through a channel with porous

walls. In particular it has aimed to extend the basic Newtonian flow problem consid-

ered by previous researchers. The two extensions considered are that of introducing a

temperature-dependent viscosity and a more general fluid of power-law form and the

interest has been in the effects of changing the viscosity. The main thrust of work has

been on the one-walled problem as it has received less attention in the literature. The

flow problems have been set up for the full two-porous walled problem and then spe-

cialisation to the one-porous walled problem has taken place where necessary. For the

case of the temperature-dependent viscosity fluid the aim has been to extend the one-

porous walled Newtonian fluid work as the two-porous walled case has been considered

by Ferro and Gnavi [FG02]. The power-law fluid work has focussed on the one-walled

case in the main and initial numerical results have been obtained in the two-walled

case.

Summary of power law viscosity fluid results:

Small Re asymptotics A small Reynolds number perturbation expansion for

the power-law fluid flowing in the two-porous walled geometry has been

produced. It encompasses the entire range of the problem selection parame-

ter E ∈ [0, 1] and can be used as a basis for producing initial conditions for

a numerical simulation of the flow over a larger range of Re and where the

power law exponent lies in the range 0 ≤ n ≤ 2.

Numerical simulations for base flows Numerical simulations of the E = 0

two-porous walled channel power-law fluid flow have been performed and

150
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have shown that there is a critical Reynolds number at which the shear-

thickening subset of power-law fluids experience a loss of shear-stress at

the upper wall under the influence of suction at both walls. Numerical

simulations in the E = 1 one-porous walled suction case also show this

phenomenon.

Large −Re� 1 injection asymptotics for E = 1 An asymptotic expansion for

the one-porous walled large injection flow of power-law fluid has been pro-

duced and is analogous to the Newtonian fluid equivalent expression. The

free boundary problem determining the width of the nonzero region of f ′′

within the boundary-layer at the lower wall in this situation has been posed

and has been reported to occur in a different geometry, that of the flow of

a power-law fluid over a flat plate as investigated by Denier and Dabrowski

in [DD04].

Summary of temperature-dependent viscosity fluid results:

Numerical simulations for base flows Numerical simulations of the one-porous

walled temperature-dependent-viscosity fluid flows have been carried out for

a range of Reynolds numbers corresponding to suction and injection flows,

with varying values for the Péclet number and the sensitivity parameter β.

In particular it was found that the bifurcation diagrams (Figures 5.4.39-

5.4.54) displayed differing behaviours of the wall stress depending upon the

values of Pe and β; hysteresis loops occurred for increasingly negative val-

ues of β corresponding to cooling the lower wall as compared to the upper

wall (or a fluid with viscosity that increases with increasing temperature)

whereas the regions of hysteresis were eliminated as the value of β > 0 in-

creased, corresponding to the heating of the lower wall of the channel relative

to the upper wall (or a fluid with viscosity that decreases with increasing

temperature).

Numerical simulations for temporal stability Numerical simulations of the

temporal stability of the one-porous walled temperature-dependent viscosity

were performed for |Pe| = 1, |β| = 1 and compared to the isothermal flow of

a Newtonian fluid. It is found that the range of temporally stable suction

solutions is Re ∈ (0, 12.760) for β = 0, increasing to Re ∈ (0, 14.467) for

β = 1 and decreasing to Re = (0, 11.036) for the β = −1 case.

Asymptotic expressions for Re < 0 Asymptotic descriptions of the injection

Re < 0 behaviour for the temperature-dependent viscosity fluid have been

produced. These have been derived from the starting point of the similarity
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solution derived for the general temperature dependent problem, and the

limits of various nondimensional parameters have subsequently been taken.

Five different regimes have been considered and cover the changes in be-

haviour starting from an order one Reynolds number injection flow with

a large Péclet number, where the thermal boundary layer is the dominant

feature of the flow, through to where the Reynolds and Péclet numbers are

comparable, where the thermal and viscous layers are of comparable sizes

and which subdivides into three cases according to the relative sizes of Re

and Pe, and ending with a large Reynolds number and an order one Péclet

number, where the main feature of the flow is the viscous boundary layer.

In all these cases the thermal sensitivity parameter β = O (1) and the ex-

ponential model has been used for the viscosity dependence. In the limit

of β → ∞ the analysis in Appendix B shows how the thermal boundary

layer will subdivide further according to the particular viscosity model in

question. Similar structures have been reported to occur in the related prob-

lem of steady laminar flow in a channel driven by a pressure gradient and

where the viscosity of the fluid is temperature dependent, where the walls of

the channel are suddenly heated after a fixed point along its length [OO77],

[Ock79]. The analysis in Appendix B has been derived starting from the

partial differential equation system governing the fluid and temperature be-

haviours and the limits of large −Re and large β have been taken of that

system, in contrast to starting with similarity solution reductions of the

system and then considering asymptotic limits.
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Figure 7.1.2. A graphical summary of the temperature dependent viscosity fluid re-

sults obtained in this work for the one porous walled channel. Region A corresponds

to the numerical simulations that have been run for β = O (1) under the exponential

viscosity model described in sections 5.4-5.4.4. The line B corresponds to the numerical

linear temporal stability stability simulations performed on a subset of the simulations

in Region A, and are described in sections 5.6.1-5.6.1. Region C corresponds to the

asymptotic analysis performed for the Re < 0, Pe < 0 cases with β = O (1) in sec-

tion 5.2. Region D corresponds to the large β > 0 limit of the solutions in Region

C and parts of these are discussed in Appendix B for the algebraic and exponential

viscosity models. Regions marked X are not valid in the problem under consideration

as the nondimensional groups Re and Pe must have the same sign. Region E has yet

to be considered and is an area for further work.
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7.2 Further work

Further work that could be considered would be to extend the range of temporal stabil-

ity simulations that have been performed for the temperature-dependent viscosity fluid

model, as only an initial set of computations were able to be performed, and to then

consider the spatial stability of the flow. The same stability questions could then be

asked of the power-law fluid model. In the case of the two-porous walled channel flows,

the existence of multiple solutions has been confirmed numerically for the temperature-

dependent viscosity model by [FG02] and their stability examined, but the power-law

fluid case does not appear to have been investigated. The asymptotic analysis of the

large Re > 0 suction flows in both the power-law and temperature-dependent viscosity

cases for both the one-porous and two-porous walled channel flows is an area for further

work.

The unsteady version of the governing system could also be considered. In this case

further numerical experiments would be required to see whether the work presented

here has captured the possible steady solutions correctly, and whether time-dependent

solutions to the full partial differential equations will tend to other solutions, such as

limit cycles. Such numerical simulations would be more challenging, as even in the

one porous walled Newtonian case [Cox91b] and [KC01] have found that the periodic

solutions for the governing partial differential equation for larger suction Reynolds

numbers (Re ≥ 100) are very difficult to compute accurately.

Another direction of work could be to increase the thickness of the walls so that

they are a porous layer through which flow may occur in addition to flow in the clear

portion of the channel. Factors of relative thicknesses of the clear and porous layers

and the porosity of the porous layer will now possibly influence the resulting flows; in

the Newtonian case work has been done by Deng et.al. [DM05] was motivated by a part

of the process involved in paper-making whereby water is drained from a suspension of

fibres settling over a porous layer.

Different fluids or fluid-like materials could also be considered by amending the

constitutive equation relating the stresses and shear-rates within the fluid elements,

hence amending the viscosity model. The next simplest modifications to the problem

would be to consider the Bingham body model and subsequently the Herschel-Bulkley

body model. An example of a Bingham material is toothpaste or tomato ketchup,

and an example of a Herschel-Bulkley material is minced fish paste [Ste96, 21]. In the

Bingham body there is no flow of the fluid if the shear stress is below a critical value

called the yield stress in shear Ty; if it exceeds the yield stress then the fluid flows and

the deviatoric stress and shear-rate are proportional to each other, the proportionality
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function being the viscosity function. In one dimension, the Bingham model equations

are

γ̇ = 0, if |T | ≤ Ty, (7.2.1)

T − Ty = µpγ̇, if T > Ty, (7.2.2)

where the Bingham model constants are Ty, the yield stress in shear, and µp, the plastic

viscosity. If the shear-rate γ̇ < 0 then the odd extension of T −Ty is assumed to hold.

The one-dimensional Herschel-Bulkley model is given by

γ̇ = 0, if |T | ≤ Ty, (7.2.3)

T − Ty = µp |γ̇|n−1 γ̇, if T > Ty, (7.2.4)

and again if the shear-rate γ̇ is negative then the odd extension of T − Ty holds. In

the three dimensional case, only considering isotropic incompressible materials (and

so the Young’s modulus of the material is 0.5 in any elastic region of the material)

a few preliminary definitions must first be made. If we define the equivalent positive

shear rate γ̇p (adding the subscript ·p to distinguish it from the shear rate previously

discussed) as

γ̇p = 2
√
−Πd =

√
2dijdij , (7.2.5)

(and so dependence upon γ̇p can be replaced by dependence upon Πd and vice versa),

and define the Von Mises’ criterion by which yield is judged to have occurred,

ΠT = Ty =
1

3
Y 2 (7.2.6)

=
1

2
TijTij =

1

3
Y 2 in Cartesian coordinates, (7.2.7)

where Ty is the yield stress in shear and Y is the yield stress measured in tension, then

Herschel-Bulkley material equations can be written as

dij = 0, if Πd ≤ Ty
2, (7.2.8)

Tij = 2

(
Ty

γ̇p
+ µp |γ̇p|n−1

)
dij , if T > Ty. (7.2.9)

If n = 1 then the Bingham model is recovered, if Ty = 0 then the power-law fluid

model is recovered and if n = 1 and Ty = 0 then the Newtonian viscous fluid model is

recovered.

A similar problem to the one presented here, that of fluid flow within a channel
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with accelerating walls, can be considered by simply changing the wall boundary con-

ditions, see [BA81] and [Cox91a] (Cox considers both the two-accelerating walls and

one stationary, one accelerating wall problem). The set of solutions for the accelerating

or decelerating walls problem is larger than that of the porous walled channel prob-

lem [BA81],[Cox91a]. In the purely accelerating walls problem the change of viscosity

model to that of a power-law or the inclusion of temperature-dependent viscosity could

also present an increased number of solutions as compared to the Newtonian fluid case.

There is also an exact solution of the Navier-Stokes system for the hybrid flow of suction

and accelerating walls [ZB03] and this is used to numerically investigate the separate

problems in order to find further branches of solutions and their stabilities.

Reintroducing the effects of viscous dissipation of heat would also be an interesting

problem as it could introduce another mechanism by which the flow could be affected.

The viscous dissipation of heat into the fluid would alter the viscosity locally and

then could cause unwanted changes in the characteristics of the fluid if they are not

controlled, e.g. the physical properties of molten plastics changing under cooling when

considered in an injection moulding process.

The related geometry of pipe flow could also be considered for the non-Newtonian

fluids and compared to the known Newtonian results. Extensions to the three dimen-

sional porous walled channel and two dimensional pipe or annular flows with porous

or accelerating walls could also be considered. Newtonian work has been done by

[TBZD91] for the three dimensional channel geometry and the pipe flow problem have

been considered by [SW78],[BA81],[DB84] and initially by Berman [Ber58] in the case

of an annulus.



Appendix A

Boundary conditions for the

Newtonian fluid large injection

one porous walled channel

problem

In this section we discuss the selection of appropriate boundary conditions for the

large Re injection Newtonian one-walled flow problem, which is a special case of that

described in section §4.1.3.

The problem of appropriate boundary conditions is encountered in this situation

when we consider the flow problem in the boundary layer region y = O
(
(−Re)−1/2

)
,

F ′F ′′ − FF ′′′ = F (iv), (†)
on Y = 0: F = F ′ = 0,

as Y →∞: F (Y ) ∼ π

4
Y.

It is important to ensure that the correct number of boundary conditions are imposed;

here, we would expect four conditions as this is a fourth order ordinary differential

equation. We have to consider how many boundary conditions are actually being

applied by the matching condition, as well as how many are imposed at the lower wall

boundary.

The lower wall boundary appears to impose two conditions out of a possible four.

If we expand F (Y ) in a truncated Taylor expansion,

F (Y ) =
1

2
AY 2 +

1

6
BY 3 + δ̂F̂ = Fo + δ̂F̂ , where δ̂ � 1,

158
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and substitute this into the governing boundary layer equation, then retaining the

O
(
δ̂
)

terms we obtain the ordinary differential equation

F̂ (iv) +
1

2
AY 2F̂ ′′′ −AY F̂ ′′ −AF̂ ′ +BF̂ = 0.

As this is a fourth order linear ordinary differential equation, we expect there to be

four linearly independent solutions, which are eigenmodes. If we now write

F̂ = 1 + c1Y + c2Y
2 + c3Y

3 + c4Y
4, ci ∈ R

as one possible eigenmode, upon substitution into the O
(
δ̂
)

equation we find the

following relation between the coefficients at leading order,

4!c4 −Ac1 +B = 0.

If we take

F̂ = Y + c2Y
2 + c3Y

3 + c4Y
4

we find that

4!c4 −A = 0, as Y � 1.

However, taking F̂ ∼ Y 2 or F̂ ∼ Y 3 we find that 0 = 0 to lowest order, and so no

conditions have been imposed upon the coefficients in those cases. Thus in summary

we have that there are four potential eigenmodes

F̂ ∼ 1, F̂ ∼ Y, F̂ ∼ Y 2, F̂ ∼ Y 3.

The boundary conditions Fo(0) = 0, F ′
o(0) = 0 eliminate the eigenmodes F̂ ∼ 1, F̂ ∼ Y

and so only the third and fourth eigenmodes remain. There are now two degrees of

freedom remaining as long as A and B are not specified; exciting the third mode is the

same as making small changes to the value of A, and a similar statement holds for the

fourth mode and the value of B.

We can now analyse the far field behaviour to see how many boundary conditions

are being imposed by the matching condition. If we now substitute

F (Y ) ∼ Fo(Y ) + δ̂F̂ (Y )

with Fo(Y ) = πY/4, into the governing equation (†) and again consider the O
(
δ̂
)
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terms, we obtain the ordinary differential equation

π

4
F̂ ′′ − π

4
Y F̂ ′′′ = F̂ ′′′′ as Y →∞.

If we now let F̂ ∼ Y q then we have that

π

4
q(q − 1)Y q−2 − π

4
q(q − 1)(q − 2)Y q−2 = q(q − 1)(q − 2)(q − 3)Y q−4

as Y → ∞. We can now see that there are three possible algebraic behaviours, given

by q = 0, 1, 3, obtained by considering the coefficients of the three terms. However, we

still need to find the one remaining behaviour as we are still considering a fourth order

linear ordinary differential equation.

As we are seeking a solution to the boundary layer problem that should be matched

into the behaviour in the outer region, we should consider an exponentially decaying

eigenmode. Taking an eigenmode of the form

F̂ ∼ Y q exp (−CY p) , p > 0,

if we differentiate with respect to Y we get

F̂ ′ = qY q−1 exp (−CY p)− CpY q+p−1 exp (−CY p)

∼ −CpY q+p−1 exp (−CY p) , as Y � 1,

and so substituting this into the differential equation gives, to leading order,

π

4
(−Cp)2Y q+2(p−1) − π

4
(−Cp)3Y 1+q+3(p−1) = (−Cp)4Y q+4(p−1).

The only balance is between the second and third terms, giving p = 2, C = π/8,

and leaving q arbitrary to this order. If we then take the next most significant terms

obtained by substituting this behaviour into the governing equation, we find that q =

−4. The fourth eigenmode has now been found to be

F̂ ∼ Y −4 exp
(
−π

8
Y 2
)
.

The four possible eigenmodes are

F̂ ∼ Y 3, F̂ ∼ Y, F̂ ∼ 1, F̂ ∼ Y −4 exp
(
−π

8
Y 2
)
.

The first mode (cubic) is eliminated as the far field behaviour forces it to have a
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zero coefficient. The second mode (linear) is eliminated as the unperturbed far field

behaviour fixes its coefficient; changing the value of F̂ ∼ AY where A ∈ R corresponds

to changing the prescribed coefficient in the linear far field behaviour, which is not

permitted. Thus we have two remaining candidates. The third mode is permissible

and corresponds to a constant that is able to be determined by a numerical solution

of the boundary layer problem. The fourth mode is exponentially small and decays

into the outer region. We have shown that the linear far field behaviour imposes two

boundary conditions and so in total all four boundary conditions have been specified

and so we conclude that this problem has been well specified.



Appendix B

Nonisothermal temperature

dependent viscosity problem -

large −Pe asymptotics for the one

porous walled channel problem

The problem under consideration here is that of the temperature-dependent viscosity

flow of fluid through a channel with one porous wall, where the sensitivity of the fluid

viscosity to temperature is large. The geometry of the channel is shown in Figure B.0.1.

In this chapter we obtain approximate solutions directly from the asymptotic expan-

sions of the governing system and so the solutions obtained are not limited to those

of similarity solution type. This is in contrast to the work on the β = O (1) problems

in Chapter 5 which started with a similarity solution formulation of the problem and

then sought asymptotic expansions in different regimes. Another distinction from the

work in Chapter 5 is the consideration of an algebraic form for the viscosity function

in addition to an exponential form.
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Figure B.0.1. Channel geometry for the one porous walled case.

Starting with the Navier-Stokes equations and energy equation (1.2.14a)–(1.2.14e)

and the boundary conditions

on x2 = h: q1 = 0, q2 = −V0VU , (B.0.1)

on x2 = 0: q1 = 0, q2 = 0, (B.0.2)

and noting that n = 1, allows the use of the following nondimensionalisations (in the

same manner as in § 1.2),

x1 = Lx̄, x2 = hȳ, q1 =
V0VUL

h
ū, q2 = V0VU v̄, t =

h

V0VU
t̄,

µ = µ1µ̄, p = ρV 2
0 V

2
UP p̄, T = TU + ∆T T̄ ,

where ∆T = TU − TL and µ1 = µ(T = TU ). If we now define a stream function ψ(x, y)

such that (u, v) = (ψy,−ψx) and the nondimensional groups

Re =
ρV0VUh

µ1
, Pe =

ρcV0VUh

k
, Pr =

Pe

Re
=
cµ1

k
, Br =

µ1V
2
0 V

2
UL

2

k∆Th2
,

Na =
V 2

0 V
2
U

∣∣∣ dµ
dT

∣∣∣
T=TU

k
, β =

Na

Br
= ∆T

∣∣∣∣∣
dµ
dT

µ

∣∣∣∣∣
T=TU

, ε =
h

L
, (B.0.3)

we then obtain the governing partial differential equation system after dropping the
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overbars

Re
D

Dt

∂ψ

∂y
= −Reε2P

∂p

∂x
+ ε2

∂

∂x

(
2µ

∂2ψ

∂y∂x

)
+

∂

∂y

(
µ
∂2ψ

∂y2

)
− ε2 ∂

∂y

(
µ
∂2ψ

∂x2

)
, (B.0.4a)

− Reε
D

Dt

∂ψ

∂x
= −ReεP

∂p

∂y
− ε3 ∂

∂x

(
µ
∂2ψ

∂x2

)
+ ε

∂

∂x

(
µ
∂2ψ

∂y2

)
− ε ∂

∂y

(
2µ

∂2ψ

∂y∂x

)
,

(B.0.4b)

Pe
DT

Dt
= ε2

∂2T

∂x2
+
∂2T

∂y2
, (B.0.4c)

on y = 1:
∂ψ

∂y
= 0, −∂ψ

∂x
= −1, T = 0, (B.0.4d)

on y = 0:
∂ψ

∂y
= 0, −∂ψ

∂x
= 0, T = 1. (B.0.4e)

We have assumed that Br� 1 uniformly across the channel and that L = Peh, so that

we are restricting the region of interest to the horizontal length scale where thermal

conduction and inertia are balanced. In this case ε = 1/Pe.

B.1 Pe� 1

We will consider the three cases of Re � 1,Re = O (1) and Re � 1 separately. In the

first two cases, the boundary layer structure is seen to be the same as that presented

in [OO77] for the problem of Poiseuille flow in a pipe with suddenly heated walls, and

so is an application of these boundary layer scalings to a new geometry, even though

the equations themselves are not new. In each case Re < 0 and thus we are considering

the injection of fluid into the channel through the upper wall.

B.1.1 Pe� 1, Re� 1

This regime corresponds to the channel height being much smaller than its length and

the inertial effects from the injection of the fluid being less important than the viscous

effects. Choosing P = Pe2

Re in (B.0.4a)–(B.0.4c) then yields the following system at

lowest order,

∂

∂y

(
µ
∂2ψ

∂y2

)
=

dp

dx
, (B.1.1)

∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
=

1

Pe

∂2T

∂y2
, (B.1.2)
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together with the boundary conditions

on y = 0:
∂ψ

∂x
= 0,

∂ψ

∂y
= 0, T = 1, (B.1.3)

on y = 1:
∂ψ

∂x
= 1,

∂ψ

∂y
= 0, T = 0, (B.1.4)

and the symmetry condition

at x = 0: ψ(0, y) = 0,
∂2ψ

∂x2
(0, y) = 0. (B.1.5)

We may integrate the first equation once with respect to y and seek a similarity

solution of the form T = T (y), ψ = xf(y). Assuming p = p0x, c = c0x we then obtain

µ
d2f

dy2
= p0y + c0, (B.1.6)

1

Pe

d2T

dy2
+ f

dT

dy
= 0, (B.1.7)

subject to the boundary conditions

on y = 0: f = 0, f ′ = 0, T = 1, (B.1.8)

on y = 1: f = 1, f ′ = 0, T = 0. (B.1.9)

In an outer region away from the heated lower wall T = o(1) and so µ = 1. We

then find that

f =
p0

6
y3 +

c0
2
y2 −

(p0

2
+ c0

)
y + 1 +

p0

3
+
c0
2
, (B.1.10)

and satisfying the flow boundary conditions requires c0 = 6, p0 = −12. Thus, in the

core flow region, away from the lower heated wall,

ψ ∼ xy2(3− 2y) + o(1), T ∼ o(1), p = −6x2. (B.1.11)

We now require a thermal boundary layer as we have not been able to satisfy the

thermal boundary condition at the lower wall.

We introduce the scalings

y = α̂Y, f = β̂F, (Y, F = O (1))
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and substituting these into (B.1.1) gives

− β̂

α̂
F

dT

dY
=

1

α̂Pe

d2T

dY 2
, (B.1.12)

with the boundary conditions

on Y = 0: F =
dF

dY
= 0, T = 1, (B.1.13)

as Y →∞: T → 0, (B.1.14)

and the solution F must match f when y = O (1).

If we expand the outer solution f as a Taylor series about y = 0 we find that

f ∼ 1
2f

′′(0)y2 = 3y2 in this thermal boundary layer. Rewriting this in terms of the

boundary layer variables yields α̂2 = β̂. The matching condition has given rise to the

differential equation

µ
d2F

dY 2
= f ′′(0) = 6, (B.1.15)

and so we require F ∼ 3Y 2 in Y = O (1), having used the fact that T → 0 as Y →∞.

Therefore the boundary layer scalings are

y = Pe−
1
3Y, f = Pe−

2
3F, (B.1.16)

and the boundary layer equations become

µ
d2F

dY 2
= 6, (B.1.17)

d2T

dY 2
+ F

dT

dY
= 0, (B.1.18)

subject to

on Y = 0: F =
dF

dY
= 0, T = 1, (B.1.19)

as Y →∞: T → 0. (B.1.20)

In order to further elucidate the boundary layer structure we must consider the

algebraic and exponential functional forms of the viscosity separately.
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Algebraic viscosity

As we wish to consider the β → ∞ behaviour of the boundary layer, we must rescale

the system otherwise the F equation will be inconsistent in this limit. Introducing the

scalings

Y = āȲ , F = b̄F̄ , (Ȳ , F̄ = O (1))

into the boundary layer equations (B.1.17–B.1.18) gives

µ
b̄

ā2

d2F̄

dȲ 2
= 6, (B.1.21)

1

ā2

d2T

dȲ 2
+
b̄

ā
F̄

dT

dȲ
= 0. (B.1.22)

We need to retain both terms in the temperature equation and must introduce µ0 in

the F equation for it to remain consistent in the β →∞ limit. In this case we obtain

the scalings

Y = µ
1
3
0 Ȳ , F = µ

− 1
3

0 F̄ (B.1.23)

and the equations become

µ

µ0

d2F̄

dȲ 2
= 6, (B.1.24)

d2T

dȲ 2
+ F̄

dT

dȲ
= 0, (B.1.25)

subject to the boundary conditions

on Ȳ = 0: F̄ =
dF̄

dȲ
= 0, T = 1, (B.1.26)

as Ȳ →∞: F̄ matches to f when y = O (1), T → 0. (B.1.27)

As β →∞, the factor on the left hand side of (B.1.24) tends to T−n.

Now, as Ȳ →∞, T → 0 and so F̄ ′′ = 0, giving

F̄ ∼ a1Ȳ as Ȳ →∞, (B.1.28)

where a1 is a integration constant. Substituting this into (B.1.25) yields the asymptotic

behaviour

T ∼ A

2Ȳ
exp

{
−a1

2
Ȳ 2
}

as Ȳ →∞, (B.1.29)

and the value of A is determined from the wall boundary conditions to be
√

2a1
π .
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Thus T ∼ o(1) as Ȳ →∞ but the F̄ behaviour does not agree with that in the outer

region. We need an intermediate layer in which F̄ can adjust to the outer behaviour.

If we consider (B.1.24) when T ∼ o(1) then we obtain

F̄ ∼ 3µ0Ȳ
2 + a1Ȳ + a0. (B.1.30)

In the intermediate region we want to have both the quadratic and linear terms being

of the same order. If we introduce the scalings

F̄ = mF̂ , Ȳ = nŶ , (F̂ , Ŷ = O (1))

into (B.1.24) and (B.1.30) and recall that T ∼ o(1) then we obtain

mF̂ ∼ 3µ0n
2Ŷ 2 + a1nŶ + a0, (B.1.31)

1

µ0

m

n2

d2F̂

dŶ 2
= 6. (B.1.32)

We must have n2µ0 = n and m
n2 = µ0 i.e. in this intermediate region the scalings are

F̄ =
1

µ0
F̂ , Ȳ =

1

µ0
Ŷ (B.1.33)

and then in this region

T ∼ o(1), F̂ ∼ 3Ŷ 2 + a1Ŷ +O (µ0) . (B.1.34)

The value of the constant a1 can be determined numerically. Figure B.1.1 summarises

the structure of the boundary layer in this first case.

Exponential viscosity

Starting from (B.1.17–B.1.20) we must again rescale our variables. Using

F = l1F1, T = 1−m1T1, Y = n1Y1, (F1, T1, Y1 = O (1))

we obtain

l1
n1

2
e(−β+m1βT1)

d2F1

dY1
2 = 6, (B.1.35)

m1

n1
2

d2T1

dY1
2 +

m1l1
n1

F1
dT1

dY1
= 0, (B.1.36)
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T
B
L

F̄ ∼ a1Ȳ ,T ∼ A
2Ȳ

exp
{
−a1

2 Ȳ
2
}

F̂ ∼ 3Ŷ 2 + a1Ŷ ,T ∼ o(1)

f = 3y2 − 2y3,T = 0

y = O
(

Pe−
1
3µ

1
3
0

)
, f = O

(
Pe−

2
3µ

− 1
3

0
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y = O
(
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1
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3
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Figure B.1.1. Thermal boundary layer (TBL) structure for Pe � 1, Re � 1 in the

algebraic viscosity case, A =
√

2a1
π .

subject to the boundary conditions

on Y1 = 0: F1 =
dF1

dY1
= 0, T1 = 0, (B.1.37)

as Y1 →∞: m1T1 → 1, (B.1.38)

and that F1 matches to f when y = O (1). Now it is clear that m1 = β−1 but the

choice for the other scales is not yet obvious. So in this region we have

d2F1

dY1
2 = 6e−T1 , (B.1.39)

d2T1

dY1
2 + n1l1F1

dT1

dY1
= 0, (B.1.40)

with the corresponding boundary conditions (B.1.37–B.1.38) and the relation

l1 =
n1

2

µ0
. (B.1.41)

Now, if we assume that n1l1 � 1 then

T1 = a1Y1 + a0 (B.1.42)

and then using (B.1.37) together with (B.1.39) gives

F1 =
6

a1
2
e−a1Y1 +

6

a1
Y1 −

6

a1
2
, T1 = a1Y1, (B.1.43)
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in this near wall region.

Now when T1 = O (β), T will experience O (1) changes and so we must perform a

rescaling. Letting

F1 = l2F2, T1 = m2T2, Y1 = n2Y2, (F2, T2, Y2 = O (1))

we find that we must take m2 = β because of the above argument. Substituting these

scalings into (B.1.43) yields l2 = m2 = n2 = β and so in this second region

d2F2

dY2
2 = 0 +O (β) , (B.1.44)

d2T2

dY2
2 + β2l1n1F2

dT2

dY2
= 0, (B.1.45)

with the boundary conditions

as Y2 → 0: F2 matches to F1, T2 → 0, (B.1.46)

as Y2 →∞: F2 matches to f, T2 → 1. (B.1.47)

Now, as T2 = O (1) we must have that β2l1n1 = 1 and together with (B.1.41) we can

now determine the scalings in these two regions to be

l1 = µ
− 1

3
0 β−

4
3 , m1 = β−1, n1 = µ

1
3
0 β

− 2
3 , (B.1.48)

l2 = m2 = n2 = β. (B.1.49)

Therefore, in this second region, we have that

d2F2

dY2
2 = 0, (B.1.50)

d2T2

dY2
2 + F2

dT2

dY2
= 0, (B.1.51)

and solving the F2 equation subject to the matching condition (B.1.46) gives

F2 = a3Y2 =
6

a1
Y2.

Substituting this into the the T2 equation then gives

T2(Y2) = A

∫ Y2

∞
exp
{
− 3

a1
s2
}

ds+B. (B.1.52)
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We now need to match the behaviour of T2 to that of T1 in the Y1 region and to that

of the core flow.

as Y2 →∞, T2 → 1 : B = 1. (B.1.53)

as Y2 → 0, T2 → 0 : 1−A
∫ ∞

0
exp
{
− 3

a1
s2
}

ds = 0⇒ A =

√
12

a1π
. (B.1.54)

However, we now need to determine the remaining constant a1. Let us introduce

the coordinate Ỹ in the matching region in the following manner:

Y1 = βαỸ , Y2 = βα−1Ỹ ,
(

0 < α < 1, Ỹ = O (1)
)
.

Then we express T1 and T2 in the intermediate variable Ỹ and proceed to determine

the value of the constant that will permit asymptotic matching to occur.

T1(Y1) = T1(βαỸ ) = a1β
αỸ

βT2(Y2) = βT2(βα−1Ỹ ) = β

{
1−

√
12

a1π

∫ ∞

βα−1Ỹ
exp
{
− 3

a1
s2
}

ds

}

= β

{
1−

√
12

a1π

(∫ ∞

0
−
∫ βα−1Ỹ

0
exp
{
− 3

a1
s2
}

ds

)}

= β

{
1−

√
12

a1π

√
a1

3

(∫ ∞

0
−
∫ βα−1

q

3
a1

Ỹ

0
exp

(
−t2
)

dt

)}

= β

{
1− 1 +

√
4

π

∫ βα−1
q

3
a1

Ỹ

0
exp

(
−t2
)

dt

}

= β

√
4

π

∫ βα−1
q

3
a1

Ỹ

0

(
1− t2 +O

(
t4
))

dt

=

√
12

a1π
βαỸ +O

(
β3α−2

)
.

For matching to occur we require

a1 =

√
12

a1π
∴ a1 =

(
12

π

) 1
3

⇒ A = a1 (B.1.55)

We now need a third region to match the behaviour of F2 to that of the outer flow.

In this third region we have that T ∼ o(1). Let

F = l3F3, Y = n3Y3, (F3, Y3 = O (1))



B.1. PE � 1 172

and then we may integrate (B.1.17) to obtain

F ∼ 3Y 2 + a5Y + a6 ⇒ l3F3 ∼ 3n3
2Y3

2 + a5n3Y3 + a6. (B.1.56)

In the second region

F = l1l2F2 = µ
− 1

3
0 β−

1
3F2, Y = n1n2Y2 = µ

1
3
0 β

1
3Y2, (B.1.57)

and we want to have both the linear and quadratic terms to be of the same order and

that F3 = O (1). Thus, as

l3
l1l2

F3 ∼ 3

(
n3

n1n2

)2

Y 2
3 +

6

a1

n3

n1n2
Y3, (B.1.58)

and l3 = n2
3, (B.1.59)

we find that we must satisfy
n3

n1n2
=

n2
3

l1l2
(B.1.60)

giving

l3 = µ
− 4

3
0 β−

4
3 , n3 = µ

− 2
3

0 β−
2
3 . (B.1.61)

The scalings in the third region are

F2 =
1

µ0β
F3, Y2 =

1

µ0β
Y3, (B.1.62)

giving

F3 = 3Y3
2 +

6

a1
(µ0β)

2
3 Y3. (B.1.63)

Figure B.1.2 summarises the structure of the boundary layer in this first case.

B.1.2 Pe� 1, Re = O (1)

This combination of Pe and Re corresponds to the situation where the height of the

channel is much less than the length, and where the effects of inertia and viscosity are
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2 e−a1Y1 + 6
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F2 = 6
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Y2

e
− 3
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2 + 6
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2
3 Y3,T3 ∼ o(1)

Figure B.1.2. Thermal boundary layer (TBL) structure for Pe � 1,Re � 1 in the

exponential viscosity case where a1 =
(

12
π

) 1
3 .

comparable. Starting with (B.0.4a)–(B.0.4c) we choose P = Pe2 and obtain

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
= −∂p

∂x
+

1

Re

∂

∂y

(
µ
∂2ψ

∂y2

)
, (B.1.64)

0 =
∂p

∂y
, (B.1.65)

∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
=

1

Pe

∂2T

∂y2
, (B.1.66)

subject to

on y = 0: T = 1,
∂ψ

∂y
= 0,

∂ψ

∂x
= 0, (B.1.67)

on y = 1: T = 0,
∂ψ

∂y
= 0,

∂ψ

∂x
= 1, (B.1.68)

and the symmetry condition

at x = 0: ψ(0, y) = 0,
∂2ψ

∂x2
(0, y) = 0. (B.1.69)
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The same similarity solution form ψ = xf(y), T = T (y) is used to give

1

Re

d2

dy2

(
µ

d2f

dy2

)
=

d

dy

((df

dy

)2
− f d2f

dy2

)
, (B.1.70)

1

Pe

d2T

dy2
+ f

dT

dy
= 0, (B.1.71)

subject to

on y = 0: T = 1, f =
df

dy
= 0, (B.1.72)

on y = 1: T = 0, f = 1,
df

dy
= 0. (B.1.73)

We may now consider an outer region in the flow domain where f ∼ f0 +O
(
Pe−1

)
.

In this region T = 0 and so µ = 1. Thus f0 satisfies the Proudman-Johnson equation,

1

Re

d4f0

dy4
=

d

dy

((df0

dy

)2
− f0

d2f0

dy2

)
, (B.1.74)

with boundary conditions

on y = 0: f0 = 0,
df0

dy
= 0, (B.1.75)

on y = 1: f0 = 1,
df0

dy
= 0. (B.1.76)

To satisfy the temperature equation we require a thermal boundary layer near y = 0.

Using the scalings

y = α̂Y, f = β̂F, (Y, F = O (1))

we get that
1

α̂2

1

Pe

d2T

dY 2
+
β̂

α̂
F

dT

dY
= 0 (B.1.77)

and therefore we require β̂α̂ = Pe−1.

Substituting these scalings into the f equation and using the requirement upon α̂β̂

gives, to lowest order in Pe−1,

β̂

α̂2

d2F

dY 2
= AY +B, (B.1.78)
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and the boundary conditions have become

on Y = 0: F = 0,
dF

dY
= 0, T = 1, (B.1.79)

as Y →∞: T → 0, (B.1.80)

and the solution F must match f0 when y = O (1). If we rewrite the Taylor expansion

of f0 about y = 0 in the boundary layer variables, we then find that we need β̂ = α̂2 if

we are to match solutions as Y →∞.

We then find that the boundary layer scalings are

y = Pe−
1
3Y, f = Pe−

2
3F, (B.1.81)

and the boundary layer equations are, to leading order,

µ
d2F

dY 2
= f ′′0 (0),

d2T

dY 2
+ F

dT

dY
= 0, (B.1.82)

at Y = 0: F =
dF

dY
= 0, T = 1, (B.1.83)

as Y →∞: F ∼ 1

2
f ′′0 (0)Y 2, T → 0. (B.1.84)

Algebraic viscosity

We must introduce µ0 into the F equation in order to have a consistent problem as

β →∞. Using the scalings

Y = a1Y1, F = b1F1, T = c1T1, (Y1, F1, T1 = O (1))

in (B.1.82) we find

µ
b1
a1

2

d2F1

dY1
2 = f ′′0 (0), (B.1.85)

c1
a1

2

d2T1

dY1
2 +

b1c1
a1

F1
dT1

dY1
= 0, (B.1.86)

at Y1 = 0: F1 = 0,
b1
a1

dF1

dY1
= 0, c1T1 = 1, (B.1.87)

as Y1 →∞: b1F1 ∼
1

2
a1

2f ′′0 (0)Y1
2, T1 → 0. (B.1.88)

We find that the required scalings are

Y = µ
1
3
0 Y1, F = µ

− 1
3

0 F1, T = T1, (B.1.89)
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and so the system to be solved within this region of the boundary layer is

µ

µ0

d2F1

dY1
2 = f ′′0 (0), (B.1.90)

d2T1

dY1
2 + F1

dT1

dY1
= 0, (B.1.91)

at Y1 = 0: F1 = 0,
dF1

dY1
= 0, T1 = 1, (B.1.92)

as Y1 →∞: T1 → 0. (B.1.93)

Now, as Y1 →∞,T1 → 0 and so µ→ 1. Thus

d2F1

dY1
2 ∼ µ0f

′′
0 (0) ⇒ F1 ∼

1

2
µ0f

′′
0 (0)Y1

2 + d1Y1 + d2 (B.1.94)

and as µ0 � 1 we have

as Y1 →∞: F1 ∼ d1Y1. (B.1.95)

Substituting this into (B.1.91) gives the asymptotic behaviour for T1 as Y1 →∞,

T1 ∼
A

2Y1
exp

(
−d1

2
Y1

2

)
, (B.1.96)

and the value of A, determined from the wall boundary condition, is
√

2d1
π .

The temperature behaviour matches up to that of the core region as Y1 → ∞
but the flow behaviour does not and so we require an intermediate layer in which the

velocity correction may occur. In this intermediate layer T = T1 ∼ o(1) and so µ = 1.

Setting

Y1 = a2Y2, F1 = a2F2 (Y2, F2 = O (1))

we wish to have both the quadratic and linear terms coming from the solution of

(B.1.90) being of the same order and that

1

µ0

b2
a2

2

d2F2

dY2
2 = f ′′0 (0). (B.1.97)

Analogous to the Pe� 1, Re� 1 case, the required scalings are

Y1 =
1

µ0
Y2, F1 =

1

µ0
F2, (B.1.98)
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2Y1
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2
}

F2 ∼ 1
2f

′′
0 (0)Y2

2 + d1Y2,T ∼ o(1)

f = f0(y),T = 0

y = O
(

Pe−
1
3µ

1
3
0

)
, f = O

(
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2
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Figure B.1.3. Thermal boundary layer (TBL) structure for Pe� 1, Re = O (1) in the

algebraic viscosity case, A =
√

2d1
π .

and in this intermediate region

F2 =
1

2
f ′′0 (0)Y2

2 + d3Y2, T = o(1), (B.1.99)

which matches to the core region if d3 = d1 and d1 can be determined numerically.

Figure B.1.3 summarises the boundary layer structure in this case.

Exponential viscosity

Starting from (B.1.82–B.1.84) we must again rescale our variables. Using

F = l1F1, T = 1−m1T1, Y = n1Y1, (F1, T1, Y1 = O (1))

we obtain

l1
n1

2
e(−β+m1βT1)

d2F1

dY1
2 = f ′′0 (0), (B.1.100)

m1

n1
2

d2T1

dY1
2 +

m1l1
n1

F1
dT1

dY1
= 0, (B.1.101)

subject to the boundary conditions

on Y1 = 0: F1 =
dF1

dY1
= 0, T1 = 0, (B.1.102)

as Y1 →∞: m1T1 → 1, (B.1.103)
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and that F1 matches to f when y = O (1). Now it is clear that m1 = β−1 but the

choice for the other scales is not yet obvious. So in this region we have

d2F1

dY1
2 = f ′′0 (0)e−T1 , (B.1.104)

d2T1

dY1
2 + n1l1F1

dT1

dY1
= 0, (B.1.105)

with the corresponding boundary conditions (B.1.102–B.1.103) and the relation

l1 =
n1

2

µ0
. (B.1.106)

Now, if we assume that n1l1 � 1 then

T1 = c1Y1 + c0 (B.1.107)

and then using (B.1.102) together with (B.1.104) gives

F1 =
f ′′0 (0)

c12
e−a1Y1 +

f ′′0 (0)

c1
Y1 −

f ′′0 (0)

c12
, T1 = c1Y1 (B.1.108)

in this near wall region.

Now when T1 = O (β), T will experience O (1) changes and so we must rescale.

Letting

F1 = l2F2, T1 = m2T2, Y1 = n2Y2, (F2, T2, Y2 = O (1))

we find that we need m2 = β so that T2 = O (1). Substituting these scalings into

(B.1.108) yields l2 = m2 = n2 = β and so in this second region

d2F2

dY2
2 = 0 +O (β) , (B.1.109)

d2T2

dY2
2 + β2l1n1F2

dT2

dY2
= 0, (B.1.110)

with the boundary conditions

as Y2 → 0: F2 matches to F1, T2 → 0, (B.1.111)

as Y2 →∞: F2 matches to f, T2 → 1. (B.1.112)

Now, as T2 = O (1) we must have that β2l1n1 = 1 and together with (B.1.106) we can
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now determine the scalings in these two regions to be

l1 = µ
− 1

3
0 β−

4
3 , m1 = β−1, n1 = µ

1
3
0 β

− 2
3 , (B.1.113)

l2 = m2 = n2 = β. (B.1.114)

Hence we have that

d2F2

dY2
2 = 0, (B.1.115)

d2T2

dY2
2 + F2

dT2

dY2
= 0. (B.1.116)

Solving the F2 equation subject to the matching condition (B.1.111) gives

F2 = c4Y2 =
f ′′0 (0)

c1
Y2. (B.1.117)

Substituting this into the the T2 equation then gives

T2(Y2) = A

∫ Y2

∞
exp
{
−f

′′
0 (0)

2c1
s2
}

ds+ c7. (B.1.118)

We now need to match the behaviour of T2 to that of T1 in the Y1 region and to that

of the core flow.

as Y2 →∞, T2 → 1 : ⇒ c7 = 1, (B.1.119)

as Y2 → 0, T2 → 0 : 1−A
∫ ∞

0
exp
{
−f

′′
0 (0)

2c1
s2
}

ds = 0,⇒ A =

√
2f ′′0 (0)

c1π
(B.1.120)

However, we now need to determine the remaining constant c1. Let us introduce

the coordinate Ỹ in the matching region in the following manner

Y1 = βαỸ , Y2 = βα−1Ỹ ,
(

0 < α < 1, Ỹ = O (1)
)
. (B.1.121)
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Expressing T1 and T2 in the intermediate variable Ỹ gives

T1(Y1) = T1(βαỸ ) = c1β
αỸ

βT2(Y2) = βT2(βα−1Ỹ ) = β



1−

√
2f ′′0 (0)

c1π

∫ ∞

βα−1Ỹ
exp
{
−f

′′
0 (0)

2c1
s2
}

ds





= β



1−

√
2f ′′0 (0)

c1π

(∫ ∞

0
−
∫ βα−1Ỹ

0
exp
{
−f

′′
0 (0)

2c1
s2
}

ds

)


= β





1−
√

4

π



∫ ∞

0
−
∫

r

f ′′

0 (0)

2c1
βα−1Ỹ

0
exp

(
−t2
)

dt








= β





1− 1 +

√
4

π

∫
r

f ′′

0 (0)

2c1
βα−1Ỹ

0
exp

(
−t2
)

dt





= β

√
4

π

∫
r

f ′′

0 (0)

2c1
βα−1Ỹ

0

(
1− t2 +O

(
t4
))

dt

=

√
2f ′′0 (0)

c1π
βαỸ +O

(
β3α−2

)
.

For matching to occur we require that

c1 =

√
2f ′′0 (0)

c1π
∴ c1 =

(
2f ′′0 (0)

π

) 1
3

⇒ A = c1 (by (B.1.120)) . (B.1.122)

We now need a third region to match the behaviour of F2 to that of the outer flow.

In this third region we have that T ∼ o(1). Let

F = l3F3, Y = n3Y3, (F3, Y3 = O (1))

and then we may integrate (B.1.82) to obtain

F ∼ 1

2
f ′′0 (0)Y 2 + c8Y + c9 ⇒ l3F3 ∼

1

2
f ′′0 (0)n3

2Y3
2 + c8n3Y3 + c9. (B.1.123)

We want to have the quadratic and linear terms and that F3 = O (1) to lowest order.
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Thus, as

l3
l1l2

F3 ∼
1

2
f ′′0 (0)

(
n3

n1n2

)2

Y 2
3 + c8

n3

n1n2
Y3 + c9, (B.1.124)

and l3 = n2
3, (B.1.125)

we find that we must satisfy
n3

n1n2
=

n2
3

l1l2
(B.1.126)

giving

l3 = µ
− 4

3
0 β−

4
3 , n3 = µ

− 2
3

0 β−
2
3 . (B.1.127)

The scalings in the third region are

F2 =
l3
l1l2

F3 =
1

µ0β
F3, Y2 =

n3

n1n2
Y3 =

1

µ0β
Y3, (B.1.128)

with the constants

c8 =
f ′′0 (0)

c1
, c9 = 0,

and so we have

F3 =
1

2
f ′′0 (0)Y3

2 +
f ′′0 (0)

c1
(µ0β)

2
3 Y3. (B.1.129)

Figure B.1.4 summarises the structure of the boundary layer in this case.

B.1.3 Pe� 1, Re� 1

This combination of nondimensional groups corresponds to the case where the channel

height is much less than its length, and that the inertial effects are more important than

the viscous effects. Beginning with the nondimensional governing equations (B.0.4a–

B.0.4c) we choose P = Pe2 and, seeking the same form of similarity solution as in

§B.1.2, we obtain the system

1

Re

d2

dy2

(
µ

d2f

dy2

)
=

d

dy

((df

dy

)2
− f d2f

dy2

)
, (B.1.130)

1

Pe

d2T

dy2
+ f

dT

dy
= 0, (B.1.131)
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c1
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c12 ,T1 ∼ c1Y1

F2 =
f ′′

0 (0)
c1

Y2 ,T2 = 1− c1
∫∞
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exp
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−

f ′′

0 (0)

2c1
s2
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Figure B.1.4. Thermal boundary layer (TBL) structure for Pe� 1, Re = O (1) in the

exponential viscosity case where c1 =
(

2f ′′

0 (0)
π

) 1
3
.

subject to

on y = 0: T = 1, f = 0,
df

dy
= 0, (B.1.132)

on y = 1: T = 0, f = 1,
df

dy
= 0. (B.1.133)

Let us first consider an outer region in which f = f0 + O
(

1
Pe

)
. In this region,

T = 0, µ = 1 and we have that

d

dy

((
df0

dy

)2

− f0
d2f0

dy2

)
= 0 +O

(
1

Re

)
, (B.1.134)

subject to

on y = 1: f0 = 1,
df0

dy
= 0. (B.1.135)

One solution of this is

f0(y) = sin
(π

2
y
)
. (B.1.136)
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We now require thermal and viscous boundary layers as we have not been able to

satisfy the boundary conditions at the lower wall. It is possible that the boundary

layer structures depend upon the size of the nondimensional Prandtl number, which is

defined by Pr = Pe
Re . We must consider three cases (Pr � 1,Pr = O (1) ,Pr � 1) and

within each of these both forms of viscosity function can be investigated separately.

Pr� 1, Algebraic viscosity

Introducing the rescalings

f = aF, y = bY, (F, Y = O (1))

into (B.1.130–B.1.133) yields

a2

b3
d

dY

((dF

dY

)2
− F d2F

dY 2

)
=

1

Re

a

b4
d2

dY 2

(
µ

d2F

dY 2

)
, (B.1.137)

1

Pe

1

b2
d2T

dY 2
+
a

b
F

dT

dY
= 0, (B.1.138)

on Y = 0: T = 1, F = 0,
dF

dY
= 0, (B.1.139)

as Y →∞: T → 0, aF ∼ π

2
bY. (B.1.140)

We must have a = b for the asymptotic behaviour of F to be satisfied. Now, as the

relative sizes of the nondimensional groups are 1� 1
Pe � 1

Re , we will have a thermal

boundary layer and in addition a viscous boundary layer that is contained within the

thermal boundary layer.

In the thermal boundary layer we will want to solve the full temperature equation.

This forces us to take a = b = Pe−
1
2 and so the scalings in this boundary layer are

f = Pe−
1
2F, y = Pe−

1
2Y (B.1.141)

and so we are solving the system

d

dY

((dF

dY

)2
− F d2F

dY 2

)
= Pr

d2

dY 2

(
µ

d2F

dY 2

)
, (B.1.142)

d2T

dY 2
+ F

dT

dY
= 0, (B.1.143)

on Y = 0: T = 1, F = 0,
dF

dY
= 0, (B.1.144)

as Y →∞: T → 0, F ∼ π

2
Y. (B.1.145)
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The F equation is such that the right-hand side is equal to zero to lowest order in Pr.

This ordinary differential equation is satisfied by F = π
2Y and the boundary conditions

for F , except for the derivative condition, are satisfied. We will need a viscous boundary

layer to correct the behaviour accordingly.

As we are now taking F = π
2Y we only have to satisfy (B.1.143). The temperature

dependent viscosity no longer occurs in (B.1.142) and so, to lowest order, (B.1.142)

is consistent in the limit β → ∞ without having to introduce µ0. The solution of

(B.1.143–B.1.145) is thus given by

T = erfc

(√
π

2
Y

)
. (B.1.146)

We now want to satisfy the F conditions at the wall and so must rescale to obtain the

correct viscous boundary layer equations. In particular we want to retain the O (Pr)

term. Using the scalings

F = a1F1, Y = b1Y1 (F1, Y1 = O (1))

in (B.1.142–B.1.145) we obtain that

d

dY1

((dF1

dY1

)2
− F1

d2F1

dY1
2

)
=

Pr

a1b1

d2

dY1
2

(
µ

d2F1

dY1
2

)
, (B.1.147)

1

a1b1

d2T

dY1
2 + F1

dT

dY1
= 0, (B.1.148)

on Y1 = 0: T = 1, F1 = 0,
dF1

dY1
= 0, (B.1.149)

as Y1 →∞: T, F1 match to T, F when Y = O (1) . (B.1.150)

To recover the full F1 equation we must take a1b1 = Pr and if F1 is to match to F then

we need a1 = b1. Therefore the viscous boundary layer scalings are

F = Pr
1
2F1, Y = Pr

1
2Y1 (B.1.151)
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and the system to be solved is now

d

dY1

((dF1

dY1

)2
− F1

d2F1

dY1
2

)
=

d2

dY1
2

(
µ

d2F1

dY1
2

)
, (B.1.152)

1

Pr

d2T

dY1
2 + F1

dT

dY1
= 0, (B.1.153)

on Y1 = 0: T = 1, F1 = 0,
dF1

dY1
= 0, (B.1.154)

as Y1 →∞: T, F1 match to T, F when Y = O (1) . (B.1.155)

As we are interested in the large β limit another rescaling must be performed so that

the behaviour of µ is consistent. Using

F1 = a2F2, Y1 = b2Y2 (F2, Y2 = O (1))

in (B.1.152–B.1.155) we find that we need a2 = b2 = µ
1
2
0 . The rescalings are now

F1 = µ
1
2
0 F2, Y1 = µ

1
2
0 Y2 (B.1.156)

and the system to be solved is

d

dY2

((dF2

dY2

)2
− F2

d2F2

dY2
2

)
=

d2

dY2
2

(
µ

µ0

d2F2

dY2
2

)
, (B.1.157)

1

µ0

1

Pr

d2T

dY2
2 + F2

dT

dY2
= 0, (B.1.158)

on Y2 = 0: T = 1, F2 = 0,
dF2

dY2
= 0, (B.1.159)

as Y2 →∞: T, F2 match to T, F when Y = O (1) . (B.1.160)

The temperature T is fixed by the condition that it must match to the value in the

thermal boundary layer and so in this region we have that T = 1. Thus (B.1.158)

is satisfied and so we are concerned with (B.1.157) and the conditions upon F2 in

(B.1.159) and (B.1.160) only.

We may integrate the differential equation once with respect to Y2; using the asymp-

totic behaviour to determine the integration constant and the fact that µ = µ0 it
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.

remains to find the solution of

d3F2

dY2
3 =

(
dF2

dY2

)2

− F2
d2F2

dY2
2 −

π2

4
, (B.1.161)

on Y2 = 0: F2 = 0,
dF2

dY2
= 0, (B.1.162)

as Y2 →∞: F2 ∼
π

2
Y2. (B.1.163)

Figure B.1.5 illustrates the structure of the boundary layers in this regime.

Pr = O (1), Algebraic viscosity

We are considering the (B.1.130–B.1.133) and wish to find the appropriate boundary

layer equations in this case. Let

f = aF, y = bY (F, Y = O (1))

giving

a2

b3
d

dY

((
dF

dY

)2

− F d2F

dY 2

)
=

a

b4
1

Re

d2

dY 2

(
µ

d2F

dY 2

)
, (B.1.164)

1

Pe

1

b2
d2T

dY 2
+
a

b
F

dT

dY
= 0, (B.1.165)
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subject to the conditions

on Y = 0: T = 1, F = 0 F ′ = 0, (B.1.166)

as Y →∞: T → 0, aF ∼ π

2
bY. (B.1.167)

The matching condition for F as Y → ∞ has been determined by considering the

Taylor expansion of the solution in the main region, sin
(

π
2 y
)
, for small y. This also

provides one condition upon the scalings, namely a = b. The second condition is that

we need abPe = 1. Therefore, the scalings for the boundary layer are

f = Pe−
1
2F, y = Pe−

1
2Y (B.1.168)

giving the boundary layer equations as

d

dY

((
dF

dY

)2

− F d2F

dY 2

)
= Pr

d2

dY 2

(
µ

d2F

dY 2

)
, (B.1.169)

d2T

dY 2
+ F

dT

dY
= 0, (B.1.170)

subject to the conditions

on Y = 0: T = 1, F = 0 F ′ = 0, (B.1.171)

as Y →∞: T → 0, F ∼ π

2
Y. (B.1.172)

As F = πY/2 satisfies the F equation, there is no need to introduce µ0 at this time.

However, the behaviour of F does not satisfy all of the wall boundary conditions; this

will be corrected in a region closer to the wall. In spite of this, this means that we

obtain the solution

T = erfc

(√
π

4
Y

)
(B.1.173)

in this region.

We now need a region near the wall where we can obtain the correct behaviour for

F . Introduce the scalings

F = a1F1, Y = b1Y1, T = c1T1 (F1, Y1, T1 = O (1))

In this region, T1 = 1 and so c1 = 1. To retain both terms in the F1 equation we need

to have a1b1 = µ0 and in order to be able to match the F1 behaviour to that of the F

behaviour we require a1 = b1.
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We have the following scalings in this near wall region

F = µ
1
2
0 F1, Y = µ

1
2
0 Y1, T = T1, (B.1.174)

and we must solve

(
dF1

dY1

)2

− F1
d2F1

dY1
2 −

(π
2

)2
= Pr

d3F1

dY1
3 , (B.1.175)

subject to the conditions

on Y1 = 0: F1 = 0 F ′
1 = 0, (B.1.176)

as Y1 →∞: F1 ∼
π

2
Y1. (B.1.177)

It is possible to reduce this equation to one in which all the numbers are unity by

means of the following transformation

Ȳ =

(
2Pr

π

) 1
2

η, F̄ =
(

Pr
π

2

) 1
2
G(η) (B.1.178)

and then solve this numerically, i.e.

d3G

dη3
−
(

dG

dη

)2

−Gd2G

dη2
= 1, (B.1.179)

subject to

on η = 0: G = 0,
dG

dη
= 0, (B.1.180)

as η →∞: G→ η. (B.1.181)

Figure B.1.6 illustrates the structure of the boundary layers in this regime.

Pr� 1, Algebraic viscosity

We introduce the rescalings

f = aF, y = bY (F, Y = O (1))
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Figure B.1.6. Viscous (VBL) and thermal (TBL) boundary layer structure for Pe �
1,Re� 1,Pr = O (1) in the algebraic viscosity case. The layers are of comparable size
in this case.

into (B.1.130–B.1.133) to get

a2

b3
d

dY

((
dF

dY

)2

− F d2F

dY 2

)
=

a

b4
1

Re

d2

dY 2

(
µ

d2F

dY 2

)
, (B.1.182)

1

Pe

1

b2
d2T

dY 2
+
a

b
F

dT

dY
= 0, (B.1.183)

subject to the conditions

on Y = 0: T = 1, F = 0 F ′ = 0, (B.1.184)

as Y →∞: T → 0, aF ∼ π

2
bY. (B.1.185)

In order to satisfy the asymptotic behaviour for F we must take a = b. As 1� 1
Re �

1
Pe we expect to have a viscous boundary layer and then a thermal boundary layer

contained within the viscous layer.

Within the viscous boundary layer we wish to retain the viscous term in the F

equation and so this determines the viscous boundary layer scalings to be

f = Re−
1
2F, y = Re−

1
2Y. (B.1.186)
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The system to be solved so far is

d

dY

((
dF

dY

)2

− F d2F

dY 2

)
=

d2

dY 2

(
µ

d2F

dY 2

)
, (B.1.187)

1

Pr

d2T

dY 2
+ F

dT

dY
= 0, (B.1.188)

subject to the conditions

on Y = 0: T = 1, F = 0
dF

dY
= 0, (B.1.189)

as Y →∞: T → 0, F ∼ π

2
Y. (B.1.190)

In order to prevent inconsistency in the β → ∞ limit, a rescaling must be introduced

into the F equation. Let us introduce the scalings

F = a1F1, Y = b1Y1 (F1, Y1 = O (1))

and substituting them into the system of odes gives

a2
1

b31

d

dY1

((
dF1

dY1

)2

− F1
d2F1

dY1
2

)
=
a1

b41

d2

dY1
2

(
µ

d2F1

dY1
2

)
, (B.1.191)

1

Pr

1

b21

d2T

dY 2
+
a1

b1
F

dT

dY
= 0, (B.1.192)

subject to the conditions

on Y1 = 0: T = 1, F1 = 0
dF1

dY1
= 0, (B.1.193)

as Y1 →∞: T → 0, a1F1 ∼
π

2
b1Y1. (B.1.194)

Now if we wish to match the behaviour of F1 as Y1 →∞ then we must have T = 0 in this

region (a thermal boundary layer will be required in order to satisfy the temperature

boundary condition) and so µ = 1 here1. Thus we will not need a µ0 rescaling and so

F = F1, Y = Y1 (B.1.195)

1Alternatively, as 1
Pr

� 1 we have that d2T
dY 2 = o(1). Then F dT

dY
= 0 and F 6= 0 which implies T = 0.
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and we are then solving the differential equation

d

dY1

((
dF1

dY1

)2

− F1
d2F1

dY1
2

)
=

d4F1

dY1
4 , (B.1.196)

with T = 0 and subject to the conditions

on Y1 = 0: F1 = 0
dF1

dY1
= 0, (B.1.197)

as Y1 →∞: F1 ∼
π

2
Y1. (B.1.198)

The viscous boundary layer is complemented by a thermal boundary layer which is

contained within it. We wish to find the correct scalings for this region. Let

F1 = a2F2, Y1 = b2Y2 (F2, Y2 = O (1))

and substitute this into (B.1.196–B.1.198) (with the reintroduction of µ and T 6= 0),

giving

a2
2

b32

d

dY2

((
dF2

dY2

)2

− F2
d2F2

dY2
2

)
=
a2

b42

d2

dY2
2

(
µ

d2F2

dY2
2

)
, (B.1.199)

1

Pr

1

b22

d2T

dY2
2 +

a2

b2
F2

dT

dY2
= 0, (B.1.200)

subject to the conditions

on Y2 = 0: T = 1, F2 = 0
dF2

dY2
= 0, (B.1.201)

as Y2 →∞: T here matches to T when Y1 = O (1), (B.1.202)

F2 matches to F1 when Y1 = O (1).

If we perform a Taylor expansion of F1 about Y1 = 0 and then express it in terms of

the new variables we obtain both a matching condition for Y2 → ∞ and a condition

upon the boundary layer scales; namely that

a2F2 =
1

2
b22Y

2
2

d2F1

dY1
2 (0), (B.1.203)

and so a2 = b22.
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We therefore have the following system

b32
d

dY2

((
dF2

dY2

)2

− F2
d2F2

dY2
2

)
=

d2

dY2
2

(
µ

d2F2

dY2
2

)
, (B.1.204)

1

Pr

1

b22

d2T

dY2
2 + b2F2

dT

dY2
= 0, (B.1.205)

subject to the conditions

on Y2 = 0: T = 1, F2 = 0
dF2

dY2
= 0, (B.1.206)

as Y2 →∞: T here matches to T when Y1 = O (1), (B.1.207)

F2 ∼
1

2
Y 2

2

d2F1

dY1
2 (0).

To retain both terms in the T equation we must take b32 = 1
Pr , and so the thermal

boundary layer scales are

F1 = Pr−
1
3F2, Y1 = Pr−

2
3Y2. (B.1.208)

The thermal boundary layer system of differential equations is

1

Pr

d

dY2

((
dF2

dY2

)2

− F2
d2F2

dY2
2

)
=

d2

dY2
2

(
µ

d2F2

dY2
2

)
, (B.1.209)

d2T

dY2
2 + F2

dT

dY2
= 0, (B.1.210)

subject to the conditions

on Y2 = 0: T = 1, F2 = 0
dF2

dY2
= 0, (B.1.211)

as Y2 →∞: T → 0, F2 ∼
1

2
Y 2

2

d2F1

dY1
2 (0). (B.1.212)

As the left hand side of (B.1.209) is small, we can replace it with zero to lowest order.

We can now integrate the differential equation twice with respect to Y2 and obtain the

following equation, which replaces (B.1.209),

µ
d2F2

dY2
2 =

d2F1

dY1
2 (0). (B.1.213)

We must now introduce another rescaling to ensure consistency in the β → ∞ limit.
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Using the scalings

F2 = a3F3, Y2 = b3Y3, (F3, Y3 = O (1))

the system (B.1.210–B.1.212), (B.1.213) becomes

µ
a3

b23

d2F3

dY3
2 =

d2F1

dY1
2 (0), (B.1.214)

1

b23

d2T

dY3
2 +

a3

b3
F3

dT

dY3
= 0, (B.1.215)

subject to the conditions

on Y3 = 0: T = 1, F3 = 0,
dF3

dY3
= 0, (B.1.216)

as Y3 →∞: T → 0, a3F3 ∼
1

2
b23Y

2
3

d2F1

dY1
2 (0). (B.1.217)

We need to take
a3

b23
=

1

µ0
,

a3

b3
=

1

b23

and this determines the scalings to be

F2 = µ
− 1

3
0 F3, Y2 = µ

1
3
0 Y3. (B.1.218)

The thermal boundary layer system of differential equations, consistent in the limit

β →∞, is

µ

µ0

d2F3

dY3
2 =

d2F1

dY1
2 (0), (B.1.219)

d2T

dY3
2 + F3

dT

dY3
= 0, (B.1.220)

subject to the conditions

on Y3 = 0: T = 1, F3 = 0,
dF3

dY3
= 0, (B.1.221)

as Y3 →∞: T → 0, µ
− 1

3
0 F3 ∼

1

2
µ

2
3
0 Y

2
3

d2F1

dY1
2 (0). (B.1.222)

We now consider the large β limit. As Y3 → ∞, T → 0 and µ → 1; then (B.1.219)
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gives the behaviour

d2F3

dY3
2 ∼ µ0

d2F1

dY1
2 (0) ∴ F3 ∼ d1Y3 +O (µ0) as Y3 →∞. (B.1.223)

Substituting this behaviour into (B.1.220) and using the conditions (B.1.221) and

(B.1.222) gives

T (Y3) =
2

d1
√
π

erfc

(√
d1

2
Y3

)
(B.1.224)

which has the asymptotic behaviour

T ∼ 1√
2πd1Y3

e−
d1
2

Y 2
3 as Y3 →∞. (B.1.225)

The temperature behaviour now matches with that in the viscous boundary layer,

but the flow behaviour fails to match with that in the viscous boundary layer. We

require an intermediate layer in which it can be corrected. Introduce the scales

F3 = a4F4, Y3 = b4Y4 (F4, Y4 = O (1))

into (B.1.219–B.1.222). In this region, T ∼ o(1) and so µ ∼ 1. The system becomes

a4

b24

d2F4

dY4
2 = µ0

d2F1

dY1
2 (0), (B.1.226)

1

b24

d2T

dY4
2 +

a4

b4
F4

dT

dY4
= 0, (B.1.227)

subject to the conditions

as Y4 → 0: F4 matches to F3 when Y3 = O (1), (B.1.228)

T matches to T when Y3 = O (1),

as Y4 →∞: F4 matches to F2 when Y2 = O (1), (B.1.229)

T matches to T when Y2 = O (1).

The requirements upon T in this region fix T ∼ o(1). Thus µ ∼ 1 and so the T

equation is satisfied. The F4 matching conditions mean that

as Y4 → 0: F4 matches to F3 ∼ d1Y
2
3 +

µ0

2

d2F1

dY1
2 (0)Y 2

3 when Y3 = O (1).

as Y4 →∞: F4 matches to F1 ∼
π

2
Y1 when Y1 = O (1).
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.

This means that we must take a4 = µ0b
2
4 and a4 = b4, yielding the scales

F3 =
1

µ0
F4, Y3 =

1

µ0
Y4. (B.1.230)

In this transitory region, where T ∼ o(1), the differential equation to be solved is

d2F4

dY4
2 =

d2F1

dY1
2 (0), (B.1.231)

subject to the conditions

as Y4 → 0: F4 matches to F3 when Y3 = O (1), (B.1.232)

as Y4 →∞: F4 matches to F1 when Y1 = O (1). (B.1.233)

This yields

F4 =
1

2

d2F1

dY1
2 (0)Y 2

4 + d5Y4 + d6, (B.1.234)

and matching to the prescribed behaviours determines the constants to be

d5 = d1 =
π

2
, d6 = 0.

Figure B.1.7 illustrates the structure of the boundary layers in this regime.
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