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Summary

We investigate the behaviour of both European and American-style options on dividend paying

underlyings under the assumptions used in the Black-Scholes-Merton model [17, 84]. For Eu-

ropean options we show explicitly how the small-time, large-time and small-volatility limiting

behaviour may be derived in the context of matched asymptotic expansions. In particular,

exponentially small terms are obtained for the small-time and small-volatility problems using

WKBJ expansions. This work is consistent with that of Addison et al. [2] in relation to the

Stefan problem and the terms carry over into the American option problem. The large-time

work results in a similarity solution which has not previously been mentioned in the context of

the European option problem and which is accurate for surprisingly small times. In extending

the asymptotic analysis to the standard American option and American barrier option prob-

lems we demonstrate that reverse barriers give rise to different small-time asymptotic behaviour

versus the standard problem. The large-time behaviour for both American-style problems has

not previously been derived explicitly, but is identified in the course of this work.

In an attempt to bridge the gap between the small- and large-time asymptotic work for stan-

dard American options, we extend the popular uniformly valid approximation due to MacMillan

[79] and Barone-Adesi & Whaley [10] (the MBAW approximation). By posing the approxima-

tion as the leading order term in a homotopic series, following an approach adopted recently

by Zhu [106], we are able to derive three-term analytic expressions for the optimal exercise

boundary and price of the standard American option. The resulting expression for the optimal

exercise boundary improves greatly on the accuracy of the leading order term, but maintains

the advantage of being fast and easy to determine, requiring only an accurate method for the

calculation of the cumulative normal distribution function. The approach generalises attempts

by previous authors such as Ju & Zhong [69] to find correction terms to the MBAW approxima-

tion. We demonstrate the potential to extend this approach to other American-style options by

deriving a two-term analytical approximation for the American up-and-out put option, where

the leading order term has previously been identified by AitSahlia & Lai [3], with similarly

promising results.
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Chapter 1

Introduction

1.1 Financial Derivatives and Option Pricing

A derivative financial instrument is one whose value is dependent on, or derived from, the price

of an underlying asset S. Examples of typical types of underlying are equities, interest rate

products such as bonds, currency rates, commodities (precious metals, energy products etc.)

and even other derivatives since these can also be classed as assets.

An option is a particular instance of a derivative, which conveys upon the purchaser (the holder)

the right, but not the obligation, to buy (a call option) or sell (a put option) the underlying at

a future time T (the expiry) and at a pre-specified price K (the strike). This optionality comes

at a price which the option holder pays to the seller of the option (the writer) at time t, which

we denote Ve(S, t). At expiry a rational holder will take up this right (exercise the option) if

there is a profit to be made, which leads to the payoff functions at expiry

Call option payoff: Ce(S, T ) = max (S −K, 0) , (1.1a)

Put option payoff: Pe(S, T ) = max (K − S, 0) . (1.1b)

The max notation represents the holder’s choice to exercise the option at expiry if it is profitable

to do so, or leave it to expire unexercised if not. For the holder, the maximum loss is the cost

of the option, while the potential profit is unlimited for a call and capped at K for a put. The

position of the option writer is therefore inherently more risky as his best outcome is that the

option remains unexercised, whereas his worst-case losses are potentially unlimited if he has

written a call option.

5
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The option described above, where the holder may only exercise at expiry, is known as a

European style option. Such options are often given the name vanilla as they were among

the earliest exchange-traded options, with the Chicago Board Options Exchange (CBOE) first

trading call options in 1973 and put options in 1977 [62].

In the intervening years many non-vanilla, or exotic, option contracts have been conceived with

increasingly more complex payoffs, such as options on extreme and average values of the price

of the underlying, path dependent options with barriers which affect the state of the option and

options which allow the holder to exercise prior to expiry at a time of their choosing. Options

exhibiting the latter early-exercise feature are known as American style options.

Though the increasing complexity of derivative products allows the mitigation of increasingly

more complex risks, the valuation of the instruments involved, together with the quantification

of the risks around the positions they create, leads to ever more challenging mathematical

problems.

1.2 European Options and the Black-Scholes-Merton Equa-

tion

Black & Scholes [17] showed that, under a certain set of assumptions, the European option

problem has a unique solution for a given set of parameters. The assumptions of the classical

Black-Scholes model are:

• The risk-free interest rate, r, is deterministic and constant;

• Instantaneous price returns for the underlying, defined as dS
S , are normally distributed;

• The underlying pays no dividends;

• There are no transaction costs; and

• The underlying is infinitely divisible and short selling, or holding a negative position in

the stock, is permitted.

The second assumption is equivalent to the existence of a non-negative price process for the

underlying which evolves according to the stochastic differential equation

dS = µSdt+ σSdW, (1.2)
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where µ is the mean (or drift), σ is the standard deviation (or volatility) of the price returns

and dW is the increment of a Brownian motion which is normally distributed with zero mean

and variance dt. An underlying which follows such a price process is said to exhibit geometric

Brownian motion (or GBM ) and was first proposed as a model for stock prices by Samuelson

[95].

The solution derived in [17] uses a combination of the available assets (or portfolio) composed

of a positive (or long) position in the stock and a fractional negative (or short) position in the

option. It is shown, through continuously adjusting the short position (or hedging), that the

risky stochastic component of the portfolio return can be eliminated, resulting in a deterministic

payoff for the portfolio at expiry.

The central concept of no-arbitrage, which prohibits the existence of riskless profits, forces such

a deterministic portfolio to have a return equal to the risk-free interest rate. The construction

of a riskless hedging portfolio and no-arbitrage lead to the Black-Scholes PDE

S ∈ (0,∞), t ∈ (0, T )
∂Ve
∂t

+
σ2S2

2

∂2Ve
∂S2

+ rS
∂Ve
∂S

− rVe = 0, (1.3a)

which has the following properties:

• Linear,

• First-order in time,

• Second-order in space (except at S = 0),

• Homogeneous in S,

• Backwards parabolic and

• Degenerate at S = 0.

The approach of Black & Scholes relies on the option being a continuously tradeable asset in

order to perfectly hedge the risky stock price movements. However, this can be circumvented

as long as there exists a bank account which pays or charges the risk-free rate on long or short

cash positions. In this case a continuously adjusted portfolio can be formed which perfectly

reproduces (or replicates) the option payoff at expiry. A further consequence of no-arbitrage

is that a portfolio which does not require a net flow of funds from an external source, called a

self financing portfolio, and which replicates the option payoff at expiry must have the same

cost to construct at all earlier times. A more detailed discussion of replication, no-arbitrage

and hedging can be found in Bjork [16].
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We note that the form of the Black-Scholes PDE is independent of the type of option which is

defined through the payoff function and the boundary conditions. For a European put option

these consist of

as S → ∞ Pe(S, t) → 0, (1.3b)

as S → 0 Pe(S, t) → e−r(T−t)K, (1.3c)

at t = T Pe(S, T ) = max (K − S, 0). (1.3d)

The large S condition (1.3b) specifies that the price of a put option on an underlying which

is far above the strike (S ≫ K, or deeply out-of-the-money) approaches zero. The economic

intuition for this is that as S becomes very large, there is a vanishingly small probability of

the option having a positive payoff (S < K, or being in-the-money) at expiry, and is therefore

likely to expire unexercised without generating a cash flow.

The small S condition (1.3c) specifies the value of a put option on an underlying with zero

value. To motivate this condition, we can see from the form of GBM (1.2) that an underlying

which has reached zero is deterministically zero at all subsequent times. Thus our option has a

known payoff K at expiry and no-arbitrage enforces the price to be the discounted value of the

payoff, or Ke−r(T−t) under a deterministic interest rate. The final condition (1.3d) provides

the final condition at expiry which is simply the put option payoff (1.1b).

This initial boundary value problem can be solved using a number of methods, for example

by transformation to the heat equation and solving using a Green’s function [103], to give the

Black-Scholes equation for a put option on a non-dividend paying underlying

Pe(S, t) =
1

2

[
Ke−r(T−t)erfc

(
d2√
2

)
− Serfc

(
d1√
2

)]
, (1.4)

where erfc(ζ) is the complementary error function

erfc(ζ) =
2√
π

∫ ∞

ζ

e−
s2

2 ds (1.5)

and

d1 =
ln
(
S
K

)
+
(
r + σ2

2

)
(T − t)

σ
√
(T − t)

, (1.6a)

d2 =
ln
(
S
K

)
+
(
r − σ2

2

)
(T − t)

σ
√
(T − t)

. (1.6b)
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Although this thesis centres around the PDE approach to option pricing, any introduction to

the subject would not be complete without reference to the risk neutral valuation approach,

which is a body of work initiated and formalised in the papers of Cox & Ross [33], Cox, Ross

& Rubinstein [34], Harrison & Kreps [52] and Harrison & Pliska [53]. This approach leads

to the concept of pricing options as the expected value of the final payoff under a particular

probability measure Q (the risk-neutral measure) discounted at the risk free rate. Under Q,

the expected return of all assets is the risk-free rate, with the dynamics of S given by

dS = rSdt+ σSdW (1.7)

and the value of the option written as

Ve(St, t) = e−r(T−t)EQ [f(ST )|St] , (1.8)

where St and ST represent the price of the underlying at times t and T respectively and f(ST )

represents the payoff at expiry. It transpires that results which hold in the risk-neutral world

are valid using the real world (or objective) measure P. We mention that the formulation of

the problem as the expectation (1.8) can be shown to be equivalent to the PDE formulation

(1.3a) the using the Feynman-Kac theorem, a discussion of which can be found in Joshi [67].

The book by Baxter & Rennie [11] contains an informal but illuminating description of this

approach to derivative pricing, while a more rigorous discussion can be found in Karatzas and

Shreve [71].

1.2.1 The Inclusion of Dividends

The limitations of the Black-Scholes assumptions when applied to real-world situations are

widely discussed in the literature, with broad discussions of the issues involved and possible

extensions found in Hull [62] and Wilmott [103].

For the purpose of our work, the most relevant extension is the generalisation of the price

process (1.2) to include underlyings which pay continuous dividends, which was introduced by

Merton [84]. The risk-neutral price process for an underlying yielding a continuous dividend

D, defined as a percentage of the prevailing price of the underlying, is

dS = (r −D)Sdt+ σSdW, (1.9)

where the quantity r −D is sometimes referred to as the cost-of-carry and represents the cost
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of financing the purchase of a long position in the underlying, with the cost of borrowing offset

by any dividends received through holding the underlying. This leads to the problem for a put

option on a dividend paying underlying

S ∈ (0,∞), t ∈ (0, T )
∂Pe

∂t
+
σ2S2

2

∂2Pe

∂S2
+ (r −D)S

∂Pe

∂S
− rPe = 0, (1.10a)

subject to

as S → 0 Pe(S, t) → e−r(T−t)K, (1.10b)

as S → ∞ Pe(S, t) → 0, (1.10c)

at t = T Pe(S, T ) = max (K − S, 0). (1.10d)

The solution of this initial boundary value problem is

Pe(S, t) =
1

2

[
Ke−r(T−t)erfc

(
d2√
2

)
− Se−D(T−t)erfc

(
d1√
2

)]
, (1.11)

where

d1 =
ln
(
S
K

)
+
(
(r −D) + σ2

2

)
(T − t)

σ
√
(T − t)

, (1.12a)

d2 =
ln
(
S
K

)
+
(
(r −D)− σ2

2

)
(T − t)

σ
√
(T − t)

. (1.12b)

In what follows, we shall work under the Black-Scholes-Merton model assumptions for a divi-

dend paying underlying which follows GBM, unless otherwise specified.

1.2.2 Put-Call Parity for European Options

Although the relevant results presented in this thesis relate specifically to European put options,

the equivalent results for a European call option may be obtained through the put-call parity

relationship

Pe(S, t) + e−D(T−t)S = Ce(S, t) + e−r(T−t)K. (1.13)

This result can be obtained simply by demonstrating that the European put option plus a

stock position, with any dividends received reinvested in the stock, is a self-financing replicating

portfolio for the European call option plus a position in the bank account. The reader is directed
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towards Hull [62] for the details.

1.3 Early Exercise and American Options

American options differ from European style options in that the holder is able to exercise at

any time prior to expiry. The American option remains an important problem in finance as a

significant proportion of options transacted today have early exercise features. In the discrete

case, where early exercise is only permitted at one or more specified times before expiry, the

option is said to be Bermudan.

The extra optionality afforded to the holder through early exercise translates into a higher

option value (or premium) compared to the European option price. The European option price

therefore forms a trivial lower bound on the American option price.

From an economic viewpoint, the holder’s decision over whether or not to exercise is influenced

by three competing factors:

1. Interest income foregone (call) or gained (put) from a change in cash position from early

exercise,

2. Dividend income gained (call) or foregone (put) from holding or giving up the underlying,

3. Insurance value from holding an unexercised option.

Allowing the holder of a put option the right to exercise at any point in time, receiving the

intrinsic value, gives rise to the formulation of an optimal stopping problem [13, 70, 100] where

the value of the option at time t is given by the maximum value taken by considering all possible

stopping times t∗, or

Va(St, t) = sup
t∗

(
e−r(T−t∗)EQ [f(St∗)|St]

)
, (1.14)

where f(St∗) represents the payoff achieved by exercising the option at t∗.

McKean [83] showed that the optimal stopping problem for an American call could be posed as

a free boundary problem with two conditions applied at an unknown optimal exercise boundary

S∗(t). These conditions separate the problem into a region in which the option is active and

a region in which the option is exercised. The properties of S∗(t) were investigated by van

Moerbeke [100], who derived an integral equation for the optimal exercise boundary. Proof of

the existence and uniqueness of the optimal exercise boundary is provided by Peskir [89].
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A summary of this body of work, together with proofs for the American put option in the

absence of dividends, is contained in the review paper by Myneni [86] who derives the following

conditions for the American put option

as S → ∞ Pa(S, t) → 0, (1.15a)

at t = T Pa(S, T ) = max (K − S, 0), (1.15b)

at S = S∗(t) Pa(S
∗(t), t) = K − S∗(t), (1.15c)

∂Pa

∂S

∣∣∣∣
S=S∗(t)

= −1. (1.15d)

Conditions (1.15a) and (1.15b) are the same as for the European option, with the former

representing the vanishingly small chance of the option finishing in-the-money as S becomes

very large, while the latter is simply the final payoff. Condition (1.15c) is termed the value

matching condition and represents the continuity of the option price on the optimal exercise

boundary. Condition (1.15d) is termed the high contact condition, and together with (1.15a-

1.15c) provides sufficient conditions to specify the location of S∗(t). We term the value matching

and high contact conditions together, the early exercise conditions. One further condition on

the option price is the requirement

Pa(S, t) ≥ max (K − S, 0), (1.16)

which states that the intrinsic value forms a lower bound on the American option price.

Somewhat heuristic motivations of the high contact condition are contained in Dewynne et al.

[38] and also in Joshi [67]. The approach contained in the latter is illustrated in Figures 1.1(a)

& 1.1(b). Consider first the case illustrated in Figure 1.1(a) where the unexercised price meets

the intrinsic value line such that ∂P
∂S < −1 . We can find 0 < ϵ≪ 1 such that ∂P

∂S < −1− δ on

the interval (S∗, S∗ + ϵ), for some 0 < δ ≪ 1. The option price at S = S∗ + ϵ is then

P (S∗ + ϵ, t) = P (S∗, t) + ϵ
∂P

∂S

∣∣∣∣
S∗

+O(ϵ2)

= (K − S∗) + ϵ(−1− δ) +O(ϵ2)

= (K − (S∗ + ϵ))− ϵδ +O(ϵ2), (1.17)

which is less than the intrinsic value of the option and is a violation of no-arbitrage. This leads

us to conclude ∂P
∂S

∣∣
S∗(τ)

≥ −1.

Next, consider the case illustrated in Figure 1.1(b) where the unexercised price meets the
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S∗ S

Pa(S, τ)

-ϵ

(a) ∂P
∂S

∣∣
S∗(τ) < −1

S∗
ϵ

S

Pa(S, τ)

S∗

ϵ�

Pa(S
∗, t)

P ϵ
a(S

∗, t)

(b) ∂P
∂S

∣∣
S∗(τ) > −1

Figure 1-1: Motivation by Joshi [67] of the high contact condition at the optimal exercise

boundary
(

∂Pa

∂S

∣∣
S∗(t)

= −1
)
. If the gradient were less than −1 (Figure 1.1(a)) then an option

price below the intrinsic value would exist in a region local to the boundary. If the gradient
were greater than −1 (Figure 1.1(a)) then a different boundary would exist for which the option
price is higher, and therefore the assumed boundary is suboptimal.

intrinsic value line such that ∂P
∂S

∣∣
S∗(τ)

> −1. We perturb the position of the optimal exercise

boundary according to S∗
ϵ = S∗ − ϵ for 0 < ϵ ≪ 1 such that ∂P

∂S > −1 on the interval (S∗
ϵ , S

∗).

Thus we can find some 0 < δ ≪ 1 such that ∂P
∂S

∣∣
S∗
ϵ (τ)

> −1 + δ. The option price at S = S∗
ϵ is

then

P ϵ
a(S

∗, t) = P ϵ
a(S

∗
ϵ , t) + ϵ

∂P ϵ
a

∂S

∣∣∣∣
S∗
ϵ

+O(ϵ2)

> (K − S∗
ϵ ) + ϵ(−1 + δ) +O(ϵ2)

> (K − (S∗
ϵ + ϵ)) + ϵδ +O(ϵ2)

> (K − S∗) + ϵδ +O(ϵ2), (1.18)

which is greater than the value attainable by exercising at S∗ and therefore S∗ is a suboptimal

exercise strategy. Therefore, combined with the previous scenario, we conclude that the option

price at the optimal exercise boundary must satisfy the condition ∂P
∂S

∣∣
S∗(τ)

= −1.

1.3.1 The Inclusion of Dividends

Since the American option obeys the same dynamics as the European option in the active

region, we should expect the inclusion of dividends to produce the same governing equation as

in the European case. There is an additional impact however regarding the initial position of
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the optimal exercise boundary S∗(0) which is illustrated using an approach due to Dewynne et

al. [38]. Using the transformation

Pa(S, t) = (K − S) + e−r(T−t)p(S, t), (1.19)

gives the governing equation

S ∈ (S∗(t),∞), t ∈ (0, T )
∂p

∂t
+
σ2S2

2

∂2p

∂S2
+ (r −D)S

∂p

∂S
= er(T−t) (rK −DS) ,

(1.20a)

subject to

as S → ∞ p(S, t) ∼ er(T−t)(S −K), (1.20b)

at t = T p(S, T ) = max (S −K, 0), (1.20c)

at S = S∗(t) p(S∗(t), t) = 0, (1.20d)

∂p

∂S

∣∣∣∣
S=S∗(t)

= 0. (1.20e)

The source term in (1.20a) is negative for S < rK
D and positive for S > rK

D . Since the constraint

Pa(S, t) ≥ 0 also implies p(S, t) ≥ 0, this forbids S∗(T ) < rK
D for r < D as it would give rise

to p(S, t) < 0 instantaneously for S ∈
[
S∗(T ), rKD

)
with S < K. The positive source term for

S > rK
D indicates that p(S, t) > 0 instantaneously on the interval S ∈

(
rK
D ,K

]
, which does

not satisfy condition (1.20d). Considering the case r < D, this indicates the optimal exercise

boundary starts at S∗(T ) = rK
D . For r ≥ D the source term is instantaneously negative for

S < K and therefore S∗(T ) = K. We therefore conclude that the initial condition of the

optimal exercise boundary for a put option on a dividend paying underlying is

S∗(0) = min

(
rK

D
,K

)
. (1.21)

1.3.2 Formulation of the American Put Option Problem

The results above lead us to the free boundary problem for the American put option in the

presence of dividends

S ∈ (S∗(t),∞), t ∈ (0, T )
∂Pa

∂t
+
σ2S2

2

∂2Pa

∂S2
+ (r −D)S

∂Pa

∂S
− rPa = 0, (1.22a)
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subject to

as S → ∞ Pa(S, t) → 0, (1.22b)

at t = T Pa(S, T ) = max (K − S, 0), (1.22c)

S∗(T ) = min (rK/D,K), (1.22d)

at S = S∗(t) Pa(S
∗(t), t) = K − S∗(t), (1.22e)

∂Pa

∂S

∣∣∣∣
S=S∗(t)

= −1. (1.22f)

Unlike the European option problem, the presence of the optimal exercise boundary makes the

American option problem nonlinear. We note that the Landau transformation X = ln (S/S∗(t))

transforms the problem onto a fixed semi-infinite domain, and would reveal the nonlinearity in

the governing equation via the time dependence of the optimal exercise boundary.

Existence and uniqueness results for the problem (1.22a-1.22f) in the absence of dividends

(β = α) are shown by Chen et al. [30], with reference to the texts by Friedman [43, 44]. The

optimal exercise boundary is shown to be convex by Ekström [40], a result also obtained in

[31]. Similar results in the presence of dividends have not been found to date. Regularity

of the optimal exercise boundary for both American calls and puts on non-dividend paying

underlyings is demonstrated by Blanchet [18].

In the strictest sense, no general analytic closed-form solution to the American option problem

has been found to date, though closed-form solutions have been derived in particular cases

discussed later.

Although the standard American problem can be solved via a range of numerical schemes, much

effort has been placed in finding analytical approximations which are accurate in certain limits,

while easy to implement uniform approximations continue to be popular among practitioners

though their accuracy tends to be reduced for intermediate times to expiry. Any improvement in

the accuracy of such approximations would be valuable to practitioners as a basis for valuation,

while such approximations are also used as seed inputs for other numerical routines and therefore

a more accurate starting point would improve their efficiency.
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1.3.3 Put Call Parity for American Options

An equivalent American put-call parity result to that found for European options was derived

by Bjerksund & Stensland [14] and MacDonald & Schroder [82]

Pa(S, t; r,D, σ,K) = Ca(K, t;D, r, σ, S), (1.23)

while the optimal exercise boundary of a put option S∗
p and the corresponding American call

option S∗
c are related via

S∗
p(t; r,D, σ,K)S∗

c (t;D, r, σ,K) = K2. (1.24)

From (1.23) & (1.24), results obtained for American put options within this document can be

applied to the corresponding American call option.

1.3.4 Relationship to Other Free Boundary Problems

As discussed by Dewynne et al [38] in relation to the American call option, the introduction of

the non-dimensional interest rate α, cost-of-carry β and time τ

α =
2r

σ2
, β =

2(r −D)

σ2
, τ =

σ2(T − t)

2
, (1.25)

together with

η = ln

(
S

K

)
+ (β − 1)τ, η∗(τ) = ln

(
S∗(t)

K

)
+ (β − 1)τ,

Pa(S, t) = (1− eη−(β−1)τ ) + e−ατu(η, τ), (1.26)

transforms the problem (1.22a-1.22f) into

η̄ ∈ (η∗,∞), τ ∈ (0, T )
∂u

∂τ
=
∂2u

∂η2
+ eατ

[
(α− β)e−(β−1)τeη − α

]
, (1.27a)
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subject to

as η → ∞ u(η, τ) ∼ eατ
[
e−(β−1)τeη − 1

]
, (1.27b)

at τ = 0 u(η, 0) = max (eη − 1, 0), (1.27c)

η∗(0) = min (ln (α/(α− β)), 0), (1.27d)

at η = η∗(τ) u (η∗, τ) = 0, (1.27e)

∂u

∂η

∣∣∣∣
η∗

= 0. (1.27f)

which is analogous to the problem for oxygen diffusion in an absorbing medium developed by

Crank and Gupta [35], but with a time and space-varying oxygen source.

Ockendon et al. [87] show the oxygen consumption problem can be related to the most widely

studied parabolic free boundary problem, the Stefan problem for melting or solidification of a

material by heat conduction, by defining it as the time derivative of the oxygen consumption

problem v(η, τ) = ∂u
∂τ . Howison [59] discusses the move from the Stefan problem to the oxygen

consumption problem using the Baiocchi transformed Stefan problem u(η, τ) =
∫ τ

η∗−1(η)
v(η, s)

where η∗−1(η) is the inverse of η∗(τ).

The classification of the Stefan problem within a class of free boundary problems satisfying the

heat equation with the boundary condition v (η∗, τ) = 0, but with a general dynamic interface

equation can be found in the book by Galaktionov [45]. This class of equations contains the

Florin equation which has the first spatial derivative condition ∂v
∂η

∣∣
η∗ = 1 but, like the Stefan

problem, the derivative is not smooth at the interface which is a requirement of the American

option problem. References for both the Stefan and Florin problems can be found in [45].

1.4 Summary of Previous Relevant Work

We classify previous work relevant to this thesis into five broad categories: closed form solu-

tions available in specific cases, uniformly valid approximations, work based around an integral

formulation, asymptotic analysis, the identification of bounds on the option price or boundary

and schemes developed for the numerical solution of the problem.

1.4.1 Closed-Form Solutions

To date, no closed-form analytical solution has been found to the general problem. However,

solutions have been proposed which are valid in certain situations.
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Merton [84] demonstrated that early exercise is never optimal for an American call option in the

absence of dividends and hence the price must be the same as for the corresponding European

call option. In the same paper, a closed-form solution for the value of a perpetual American

put was derived on the basis that the problem is the steady state solution to (1.22a-1.22f).

Closed-form solutions have also been derived in the case of an underlying which pays discrete

dividends prior to expiry. This work is usually known as the Roll-Geske-Whaley model. The

origin of the work is the observation by Roll [93] that the holder of an American call option

on an underlying paying a single discrete dividend faces a choice at an instant before the stock

goes ex-dividend; exercise, in which case we receive the underlying and the dividend at the

expense of the strike; hold, in which case we effectively have the equivalent European option

since it is never optimal to exercise a call in the absence of dividends [84].

The important observation by Roll is that the outcomes of this decision can be replicated via

the use of vanilla European options and a European compound option which is an option on an

underlying, which is itself an option. By the usual no arbitrage arguments, this portfolio then

prices the American option. Since the compound option was priced in closed-form by Geske

[48], a price for the American option on an underlying paying a single dividend may be derived.

In a subsequent note, Geske [47] observes that a simpler replicating portfolio exists by consid-

ering only the ex-dividend portfolios at t with the critical value of the stock price separating

the two regions. Essentially the holder then has a chooser option with expiry at t with one

payoff consisting of the stock plus a cash amount, and the other is an option itself (hence the

compound characteristic). The same approach employed in [48] is used to form, then evalu-

ate, the resulting risk neutral expectation. Geske shows how this approach may be extended

to underlyings with more than one dividend at the expense of calculating high dimensional

multivariate normal distributions.

Whaley [101] identifies discrepancies in the arguments of both the previous authors and provides

corrected formulae. He points out that the options Roll uses in his replicating portfolio are not

a unique solution and in fact, the strike price for one of the options is misspecified leading to

incorrect cash flows at the ex-dividend date. He further identifies that Geske has an incorrect

correlation coefficient in his formula. Correction of both these errors leads to an equivalent

valuation formula.

1.4.2 Uniformly Valid Approximations

Analyic approximations to the PDE have been investigated by a number of authors [79, 10, 9, 4,

69], who have produced approximations for the price and the optimal exercise boundary which
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are quick to determine, but which are only typically accurate in certain limits. A summary of

this work is included in the review paper by Barone-Adesi [8].

MacMillan [79] was the first to approach this problem for American put options on non-dividend

paying assets. The option price is decomposed into a European option plus a premium, rep-

resenting the optimal exercise feature, both of which satisfy the Black-Scholes PDE subject

to different boundary conditions. Through an appropriate time transformation, MacMillan’s

formulation contains a term which is small at either small or large times to expiry. Neglecting

this term leads to simple free boundary ODE with a closed-form solution. The free boundary is

obtained as the solution to a transcendental equation which can be simply solved via bisection.

Barone-Adesi & Whaley [10] use the same approach and extend the model to cover both puts

and calls on dividend paying underlyings.

Barone-Adesi & Elliot [9] and later Allegretto et al. [4] assume the premium has the form

derived in [10, 79] and attempt to solve the PDE exactly by choice of the parameters and

through the transcendental equation for the optimal exercise boundary. In similarity with the

approach of MacMillan, finding a tractable solution requires neglecting a term which is small

near the boundary and/or far from expiry. The resulting expression for the boundary is more

accurate than in [79], but the expression for the price deteriorates rapidly in regions away from

the boundary. Allegretto et al. also note that the form for the boundary is not monotone far

from expiry which violates no-arbitrage and introduce an ad-hoc relaxation constant to adjust

for this behaviour.

Ju & Zhong [69] extend the approach in [10, 79] by adding a correction term into the form

for the exercise premium which leads to more accurate prices, particularly for intermediate

times to expiry. However the approach does not include a corresponding correction term in

the calculation of the boundary and requires some apparently ad-hoc assumptions to produce

a tractable form for the correction term.

Aitsahlia & Lai [3] apply the same approach adopted in [10, 79] to the American barrier option

problem, and the resulting approximation is used as a seed input for another numerical routine.

Other expressions have been derived which represent solutions to the full problem if an infinite

number of terms can be determined, but in practice require the numerical computation of a

truncated series.

Geske & Johnson [49] consider the American put option problem in the absence of dividends as

a discrete series of exercise decisions, or a Bermudan option, which converges to the continuous

solution as the time between decisions goes to zero and the series becomes infinite. Geske’s

technique [48] is used to evaluate the series of decisions working back from expiry using the
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discounted expected value under the risk-neutral measure. The convergence of the series is

improved using Richardson extrapolation on a sequence of Bermudan options with an increasing

number of exercise dates. An approach to allow for a dividend paying underlying is suggested

based on interpolating between the price in the absence of dividends and the price at the critical

dividend value above which exercise is not optimal. A more efficient scheme for evaluating the

series is proposed by Bunch & Johnson [27] while the model is extended to include stochastic

interest rates by Ho et al. [58].

More recently, Zhu [106] derives a series solution to the American put option problem in the

absence of dividends based on homotopy analysis. As with the Geske & Johnson approach,

exact evaluation of the resulting expression requires the sum of an infinite series. Zhu claims

that the series is convergent after 30 terms if the European option price is taken as a starting

point but it is not clear to us why Zhu’s solution is any more closed-form than Geske and

Johnson’s.

1.4.3 Integral Formulation

In a further thread of work, Kim [72] formulates the American option problem as the limiting

case of a series of Bermudan options in the same vein as Geske & Johnson [49]. Rather than

the approach taken in [49], Kim forms an integral equation by taking the expected value and

working backwards recursively. The resulting expression decomposes the American put option

price into the equivalent European option plus the American put option premium

Pa(S, t) = Pe(S, t) +
1

2

∫ T

t

[
rKe−r(T−s)erfc

(
d2(S, S

∗(s), s)√
2

)
,

−DSe−D(T−s)erfc

(
d1(S, S

∗(s), s)√
2

)]
ds, (1.28a)

where

d1(S, S
∗(s), s) =

ln
(

S
S∗(s)

)
+
(
(r −D) + σ2

2

)
(T − s)

σ
√
T − s

, (1.28b)

d2(S, S
∗(s), s) =

ln
(

S
S∗(s)

)
+
(
(r −D)− σ2

2

)
(T − s)

σ
√
T − s

(1.28c)
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and the boundary S∗(s) is the solution to

K − S∗(s) = Pe(S
∗(s), s) +

1

2

∫ T

s

[
rKe−r(T−ξ)erfc

(
d2(S, S

∗(ξ), ξ)√
2

)
,

−DSe−D(T−ξ)erfc

(
d1(S, S

∗(ξ), ξ)√
2

)]
dξ. (1.28d)

Uniqueness and regularity results for the optimal exercise boundary S∗(t) given in Kim’s integral

equation (1.28d) are derived by Peskir [89].

The same integral formulation is also derived by Jacka [65] using an optimal stopping problem,

and Carr et al. [28] in the absence of dividends by forming an integral expression for the

discounted price process for an American option and taking expectations under the risk-neutral

measure. The inclusion of dividends is trivial and results in identical expressions to (1.28a) and

(1.28d). Carr et al. also show that the option price can be decomposed into its intrinsic value

plus a time value component.

An advantage of the integral formulation is that, with a known boundary form or approximation,

evaluation of the option price becomes a simple quadrature exercise. If the boundary is not

known, it can be determined at discrete points by solving (1.28d) which is a nonlinear Volterra

equation of the second kind and can be solved recursively. However, as Kim mentions, this

procedure is not necessarily more efficient than finite difference methods.

A number of attempts have been made to optimise the solution of the integral decomposition.

Huang et al. [105] use Richardson extrapolation in the same vein as [49] to approximate

the price in terms of the equivalent Bermudan options. The advantage computationally is

that the boundary only needs to be determined at a discrete set of points determined by the

exercise dates of the composite Bermudan options. Further, the scheme avoids the use of time-

intensive multivariate normal integrals which hamper the approach of Geske & Johnson. The

disadvantage of this approach is the underlying assumption that boundary is piecewise linear on

each interval. Ju [68] assumes a multipiece exponential form for the optimal exercise boundary

which allows the integral equations for both the boundary and the option price to be solved in

closed-form. The resulting unknown coefficients specifying the boundary on each subinterval

are determined by application of the value matching and high contact conditions and the use of

multidimensional Newton-Raphson routine. Richardson extrapolation is used to approximate

the American option price based on options with different numbers of sub-intervals. Ibáñez

[64] summarises the work in this area, highlighting the strengths and weaknesses of the various

approaches. The non-monotonicity of the approximate option value with increasing terms in

the Richardson extrapolation is demonstrated for typical parameters which impacts negatively



CHAPTER 1. INTRODUCTION 22

on the work of Huang et al. [105]. By discounting the optimal exercise premium, Ibáñez forms a

monotonic series which is more amenable to Richardson extrapolation and allows more efficient

determination of the option price and the boundary.

1.4.4 Asymptotic Analysis

The asymptotic behaviour of the optimal exercise boundary near expiry has been investigated

using a variety of methods and incorporating both the PDE and integral equation formulations,

with the type of behaviour dependent on the relationship between the interest rate and the

dividend yield.

Dewynne et al. [38] identify that the boundary for a call option on a dividend paying underlying

with r > D exhibits a jump as we move away from expiry and has parabolic leading order

behaviour thereafter. Alobaidi & Mallier [5] use the same approach as in [38] but include

higher order terms in their asymptotic expansion. Knessl [74] derives an integral equation

for the optimal exercise boundary, using a Laplace transform, and investigates its small-time

asymptotic properties for both r > D, where the behaviour is parabolic, and r ≤ D, where the

behaviour is parabolic-logarithmic.

Barles at al [7] construct super- and sub-solutions for the boundary of an American put option

on a non-dividend paying underlying and show that the two bounds tend to the same asymptotic

limit near expiry. A number of approaches are used to derive an integral equation for the optimal

exercise boundary of the American put option. Kuske & Keller [75], Goodman & Ostrov [51]

and Chen et al. [29] use Green’s functions, Stamicar et al. [97] use a Fourier transform, and

Knessl [73] uses a Laplace transform. All of these approaches produce the same parabolic-

logarithmic small-time behaviour as in [7] up to a constant term. Kuske & Keller’s initial

paper contains an error which is corrected in a later paper [41] and brings their result into line

with other authors. Chen et al. derive higher order terms in the expansion, but these are only

accurate for very small times. As in his paper on call options [74], Knessl also looks at the

behaviour in a range of parameter limits.

Evans et al. [41] are the first to derive the small-time asymptotic behaviour of the American

put option for both r ≥ D and r < D, using integral equations and via the use of matched

asymptotic expansions. Lamberton & Villeneuve [76] independently derive the same behaviour

for r = D and, up to a multiplicative constant, for r > D. Alobaidi & Maillier [6] assume a

logarithmic series expansion to derive higher order behaviour for r ≥ D. The expression for

r > D shows the same parabolic-logarithmic behaviour as in [41], while the behaviour for r = D

is expressed in terms of the Lambert W function.
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In a separate paper, Mallier [80] prices American options using Monte Carlo simulation with

an exercise strategy given by the boundary approximations discussed above. This provides a

measure of the sensitivity of the price to errors in the boundary.

1.4.5 Option Price Bounds

An alternative approach to that of finding an approximation for either the option price or the

exercise boundary, is to look for bounds on the price. The first attempt to price an American

option through the use of option bounds was performed for a put option, in the absence of

dividends, by Johnson [66]. Johnson uses a result from Margrabe’s [81] work on exchange

options, which suggests an American option with a strike replaced by the underlying process

will never be exercised before expiry. This leads to an equivalence between the price of an

American option with a strike which grows at the risk-free rate and the corresponding European

option with the same strike. A weighted average price is formed based on these bounds, with

the form for the weighting function determined by regression analysis on option price data

from Parkinson [88]. Blomeyer [19] modifies Johnson’s work to include underlyings which pay

a single discrete and known dividend before expiry.

Broadie & Detemple [24] use a constant exercise boundary strategy to derive bounds on both the

price and on the optimal exercise boundary of American options on dividend paying underlyings.

A lower price bound is determined by optimising the option price for all constant exercise

boundary strategies; since constant exercise boundary strategies are suboptimal, the true price

must be greater than any price obtained using such a strategy. The lower bound on the optimal

exercise boundary is found as the limiting case of a scheme formed by iterating the lower price

bound routine. The latter is used in conjunction with the integral formulation developed by

Kim [72] and Carr et al. [28] to form an upper bound on the option price.

Although the work in [24] refers to previous work on capped calls [23, 20], the constant exercise

boundary is more easily understood in the framework of barrier options: since the cap provides

the maximum payoff, exercise is always optimal at the cap and the option behaves like an

up-and-out barrier option with a rebate equal to the payoff at the cap. The valuation of barrier

options due to Rubenstein & Renier [94] and is correctly identified as the solution to the low

dividend problem for capped calls in [23].

Bjerksund & Stensland [15] independently consider the same constant exercise boundary ap-

proach to the lower bound as Broadie and Detemple, though without reference to capped

options. The result can be shown to be identical to those given in [94] and [24]. In setting the

level of the constant boundary, two approaches are adopted. The first considers an approximate
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form based on the closed forms for the perpetual boundary and the boundary at expiry. The

second considers the same optimisation problem as in [24].

In a subsequent paper [15], the same authors consider an extension to this approach in the form

of a stepped boundary over two time intervals. The boundary levels are based on a modified

form from the earlier paper while the time intervals are chosen based on a ”golden rule”. The

method is shown to increase the accuracy of the lower bound.

1.4.6 Numerical Schemes

Many numerical schemes have been proposed for the American option problem. Some of these

schemes, such as the formulation of analytical approximations and the methods for solution of

the integral formulation of the American option problem, have been discussed in the relevant

sections. What we discuss here are the most popular remaining schemes which we broadly

classify into (i) binomial methods, (ii) finite difference methods and (iii) Monte Carlo simulation.

Binomial Methods

The use of binomial models in option pricing is attributable to Cox, Ross & Rubenstein [34]

(or the CRR model) who model GBM as a discrete random walk with the parameters chosen

such that its distributional properties converge to that of the continuous model as the step size

tends to zero. When applied to the American option and its early exercise feature, the CRR

model becomes a dynamic programming problem with the price at each step determined as

the greater of the backward induced value and the intrinsic value. Many extensions have been

proposed to the CRR model, particularly in relation to the use of different lattices, and the

reader is directed towards [25] for a discussion.

The ease of implementation means tree-based numerical routines are often developed as an

initial numerical approach to new valuation problems. The intuitive feel of the CRR model

also means it is prevalent as a teaching aid throughout the literature, with almost every op-

tion pricing text containing a sizeable reference to the material [67, 62, 63, 103]. Relevant to

American options however, a weakness arises when attempting to pin down the location of the

optimal exercise boundary, which typically occurs between lattice points.

Finite Difference Methods

Finite difference methods have been similarly popular among practitioners and academics due

to the wide range of literature available from numerical studies of other physical problems. The

earliest use of finite difference methods in solving the American option problem is attributed to
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Brennan & Schwartz [21, 22], who use an implicit time-stepping scheme to solve the variational

inequality formulation of the American option problem, with the intrinsic value condition (1.16)

imposed at each grid point in the solution and the optimal exercise boundary identified as the

first point at which the solution meets this lower bound.

Dewynne at al. [38] pose the American call option as a linear complementarity problem and

solve the system iteratively using a projected successive over relaxation (or PSOR) algorithm.

This approach, typically employing a Crank-Nicolson [36] stepping scheme, has become highly

popular as a first approach to modelling the American option problem using finite differences.

For a discussion of this approach, the reader is directed to the book by Duffy [39].

To avoid the iterative overhead required by the PSOR method, Wu & Kwok [104] use a front-

fixing transformation due to Landau [77]

X̂ = ln

(
S

S∗(t)

)
, (1.29)

for the American put option problem in the absence of dividends, which places the problem on

a fixed domain at the expense of a nonlinear term, derived from the rate of movement of the

boundary, appearing in the governing equation

X̂ ∈ (0,∞), t ∈ (0, T )
∂Pa

∂t
+
σ2

2

∂2Pa

∂X̂2
+

[
r − σ2

2
+

1

S∗
dS∗

dt

]
∂Pa

∂X̂
− rPa = 0, (1.30a)

subject to

as X̂ → ∞ Pa(X̂, t) → 0, (1.30b)

at t = T Pa(X̂, T ) = 0, (1.30c)

S∗(T ) = K, (1.30d)

at X̂ = 0 Pa(0, t) = K − S∗(t), (1.30e)

∂Pa

∂X̂

∣∣∣∣
X̂=0

= −S∗(t). (1.30f)

As an aside, we note that the Landau transformation is used by authors in other areas of work

on the American option problem [69, 106].

A numerical scheme seemingly less popular in the available literature is the method of lines (or

MOL) approach due to Meyer et al. [85]. This is a well tested technique which has been applied

to a number of problems and has the advantage of only employing temporal discretisation of

the PDE, resulting in an ODE at each time-step which can be solved using a range of available
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numerical routines such as those contained in [92].

Monte Carlo Simulation

Though we do not consider the numerical issues relating to the expectation pricing of American

options, which has traditionally been viewed as a less suitable way of tackling the problem than

grid-based methods, we mention the popular least-squares approach of Longstaff and Schwartz

[78] and refer the reader to the comprehensive text by Glasserman [50] for a detailed discussion

and further references.

1.5 Parameter Considerations

Before selection of a numerical scheme, we first present a brief discussion of the considerations

used in selecting the parameters used in this thesis. This is intended to ensure the work is

relevant to the prevailing market conditions, but takes into account some historic variations

around this position to produce a reasonable parameter set. Since we have restricted ourselves

to the Black-Scholes-Merton model, under which the underlying follows GBM, we use data

from global stock market indices for the underlying parameters. GBM is typically seen as a

reasonable model in the case of indices and is often assumed in broad texts on the subject such

as Hull [62].

For the estimation of the volatility and risk-free rate we have looked at historical data since the

start of 1995. This takes in a short period prior to the dot-com boom through to the current

global financial crisis. For the estimation of the dividend yield we have used data going back

to the turn of the last century as yields have remained below the long-run average since 1995,

though they have risen sharply with the recent collapse in asset prices.

Volatility

In selecting a volatility parameter, we have looked at a 250-day moving average of annualised

daily stock market returns for the major US, European and Asian indices. Figure 1-2 shows

that the volatility of Asian index returns are typically higher than that of Continental Europe

which are in turn, typically higher than those of the UK and US. The moving average volatility

has broadly ranged from 10-50% over the period, though this is weighted towards the lower end

of the range with a simple average of the volatility of returns over the period giving figures in

the range 20-25%. Against this, the volatility has been rising since the end of 2007, with the

moving average currently in the range 40-50%.
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As we do not wish to make a prediction as to how long the current global financial crisis

may last, and therefore whether the current level of market volatility will persist, we feel it is

prudent to take a value slightly above the average observed since 1995, and we will therefore

use a volatility of 30%.

(a) US Indices (b) European Indices

(c) Asian Indices

Figure 1-2: Evolution of the volatility of major global stock indices since 1995.

Risk-Free Rate

When considering which of the wide range of available interest rates is the most relevant as a

proxy for the risk-free rate in the Black-Scholes-Merton model, we remind ourselves that the

derivation of the pricing equation assumes the formation of a risk-free portfolio via continuous

hedging, and therefore a continuously changing cash position. We therefore require the risk-free

rate to be a short-term rate of borrowing and have a high degree of liquidity.

On this basis, we have selected the 3-Month LIBOR rate as the risk-free proxy as this is typically

considered a short-term maturity, while it offers more liquidity than alternative short-term rates

such as the 3-Month US T-Bill. We highlight that this may not be the most applicable rate for

all writers and holders of options, particularly where access to cheaper collateralised short-term

lending via overnight repo rates are available.

Figure 1-3 shows 3-Month LIBOR to be at its lowest level over our period of interest, which
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is a result of the attempt by central banks to stimulate interbank and retail lending which

collapsed as the credit crunch worsened through the third quarter of 2008. The simple average

over the period provides a figure of 5.5%, but as with the choice of volatility parameter we take

a steer from the prevailing level and therefore choose a risk-free rate slightly below the average

at 5.0%.

Dividend Yield

Quarterly dividend yield for US stocks going back to before the start of the 1900s has been

aggregated by Schiller [96]. The evolution of the dividend yield is shown in Figure 1-4 and,

as with other financial metrics, shows a wide degree of variation over time. Typically high

dividend yields are associated with times of economic difficulty such as the great depression

of the 1930s. This occurs due to declining asset prices, while companies will typically seek to

maintain their divided policy where possible.

Since the early 1990s, dividend yields have been at historically low levels with the dot-com

bubble driving yields well below 2% as investors increasingly looked to share price appreciation

as a source of capital growth rather than income received via dividends. The existing global

financial crisis has seen a dramatic deflation in asset prices resulting in a return of yields to the

level seen at the start of the 1990s, though dividend yield is a forward looking measure and the

impact of the crisis on dividend policy is likely to have some influence as we move forward.

Based on the period studied in Figure 1-4, we consider a reasonable range for the dividend yield

parameter to be 2-8%.
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1.6 Numerical Scheme Considerations

From the approaches investigated, our preferred scheme for determining benchmark numerics

is the MOL [85]. This approach satisfies the requirements of providing a smooth boundary with

the capability to run out to very large times to expiry (T = 200) in reasonable computation time.

Finally we are mindful of the requirement to be able to easily extend the scheme to model barrier

options if required. In comparison, we found the finite difference approach employing PSOR [38]

did not provide a smooth enough boundary unless the time discretisation was reduced to the

point where large expiry runs took a prohibitively large amount of time. Though interpolation

schemes were investigated, none were reliably able to provide a suitably smooth boundary.

Our MOL scheme is implemented in Microsoft Visual C++.NET 2003 using a second-order

backward time approximation and the solution to the ODE at each step is performed using a

fourth order Runge-Kutta routine [92] with a variable spatial mesh.

The extension to allow investigation of the American barrier option problem simply involves

the replacement of the condition at the truncated boundary in the standard problem, with the

barrier condition and any assumed rebate as discussed in Chapter 4.

1.6.1 Asymptotic Behaviour of Benchmark Numerics

A comparison of the asymptotic behaviour of our MOL boundary with the small-time asymp-

totics of the optimal exercise boundary derived by Evans et al. [41], together with the large-time

approach to the perpetual boundary, is shown in Figure 1-5. We note that the boundary in these

numerics has been normalised by the strike, while the time transformation h(t) = 1− e−r(T−t)

has also been used.

The small-time behaviour of the optimal exercise boundary is observed to be consistent with

the relevant asymptotic results, while for large times, the boundary approaches the steady-

state solution, though we mention that a large number of time-steps is required to avoid the

propagation of errors from small times significantly affecting the large-time behaviour.

All of the numerics in this thesis were performed on a laptop with a 1.66GHz Intel R⃝ Core2TM

CPU and 1GB of RAM. The generation of the small-time boundary in Figures (1.5(a),1.5(c),1.5(e))

took 200 minutes each, while the generation of the large-time boundary in Figures (1.5(b),1.5(d),1.5(f))

took 18 hours each. Corresponding results for the American option MOL scheme adapted for

the inclusion of a barrier are provided in Chapter 4.
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Figure 1-3: Evolution of the 3-Month LIBOR rate since 1995.
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Figure 1-4: Evolution of the dividend yield of US stocks since 1900 as reported by Schiller [96].
The magnitude of the dividend yield is typically inversely correlated with the strength of the
global economy.
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Figure 1-5: A comparison of the benchmark MOL boundary with the asymptotic results from
Evans et al. [41] for the small-time plots, and with the steady state boundary for the large-time
plots. For the small-time numerics 20000 time-steps and 25000 spatial points were used with
15000 space-steps on the interval [S̄∗

∞, 1], and 10000 on the interval [1, 5]. For the large-time
numerics 200000 time-steps and 25000 spatial points were used with 15000 space-steps on the
interval [S̄∞, 1], and 10000 on the interval [1, 50]



Chapter 2

The European Option Problem

In preparation for the investigation of the asymptotic properties of the American option prob-

lem, we first consider the case of the European put option problem under the Black-Scholes-

Merton model (1.10a-1.10d). This will illustrate the main principles of the technique of matched

asymptotic expansions [12, 57] on a well-known problem with a closed-form solution. We look

first at the small-time asymptotics of the European put option problem and subsequently at

the problem when the volatility is small relative to the risk-free rate and the cost-of-carry. The

European option problem has recently attracted interest in terms of the application of asymp-

totic techniques, with Howison [60] looking at the small-time behaviour of the European call

option in the absence of dividends, while Firth et al. [42] and Widdicks et al. [102] look at the

small-volatility behaviour of the European call option with and without dividends respectively.

Non-dimensionalisation of the problem (1.10a-1.10d) through the introduction of the scalings

α =
2r

σ2
, β =

2(r −D)

σ2
, τ =

σ2(T − t)

2
, (2.1)

S = KS̄, Pe(S, t) = P̄e(S̄, τ),

gives

S̄ ∈ (0,∞), τ ∈ (0, T )
∂P̄e

∂τ
= S̄2 ∂

2P̄e

∂S̄2
+ βS̄

∂P̄e

∂S̄
− αP̄e, (2.2a)

33
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subject to the boundary conditions

as S̄ → 0 P̄e(S̄, τ) → e−ατ , (2.2b)

as S̄ → ∞ P̄e(S̄, τ) → 0, (2.2c)

at τ = 0 P̄e(S̄, 0) = max
(
1− S̄, 0

)
. (2.2d)

The problem (2.2a-2.2d) has solution

P̄e(S̄, τ) =
e−ατ

2

[
erfc

(
d̄2√
2

)
− eβτ S̄erfc

(
d̄1√
2

)]
, (2.3)

where

d̄1√
2
=

1

2

[
ln (S̄)

τ
1
2

+ (β + 1)τ
1
2

]
, (2.4a)

d̄2√
2
=

1

2

[
ln (S̄)

τ
1
2

+ (β − 1)τ
1
2

]
. (2.4b)

We note that we may also choose to transform the governing equation (2.2a) into one with

constant coefficients through the use of the transformation X̄ = ln (S̄).

2.1 Small-Time Behaviour

The small-time European put option problem presents a simple situation with which to begin

our asymptotic analysis. We introduce the time scaling τ = ϵ2T̂ into (2.2a-2.2d), where ϵ is a

small artificial parameter (0 < ϵ≪ 1) and T̂ = O(1). This gives the small-time problem

S̄ ∈ (0,∞), T̂ ∈ (0,∞)
1

ϵ2
∂P̄e

∂T̂
= S̄2 ∂

2P̄e

∂S̄2
+ βS̄

∂P̄e

∂S̄
− αP̄e, (2.5a)

subject to

as S̄ → 0 P̄e(S̄, T̂ ) → e−ϵ2αT̂ , (2.5b)

as S̄ → ∞ P̄e(S̄, T̂ ) → 0, (2.5c)

at T̂ = 0 P̄e(S̄, 0) = (1− S̄)+. (2.5d)

The presence of the small scaling factor leads to a global problem with reduced, easier to solve

sub-problems in certain regions. For instance, we can observe immediately that for S̄ = O(1)

the dominant term is the time derivative but that for some small region about some judiciously
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chosen point in S̄, we can recover the diffusion term. Intuition tells us that this is the behaviour

we expect for the small-time European option: for small times the majority of the change will

occur in a small region about the discontinuity in the option payoff, while we expect little

change far from this region. All of this points towards a three-region structure with two outer

regions for S̄ < 1 and S̄ > 1 and an inner region for S̄ = 1 + δ(ϵ)Ŝ, where δ(ϵ) is a scaling

factor to be determined, and Ŝ = O(1).

Outer Regions

For S̄ < 1 we write P̄e(S̄, T̂ ) = P̄Out1
e (S̄, T̂ ) and we have the outer 1 problem

S̄ ∈ (0, 1), T̂ ∈ (0,∞)
1

ϵ2
∂P̄Out1

e

∂T̂
= S̄2 ∂

2P̄Out1
e

∂S̄2
+ βS̄

∂P̄Out1
e

∂S̄
− αP̄Out1

e , (2.6a)

subject to

as S̄ → 0 P̄Out1
e (S̄, T̂ ) → e−αϵ2T̂ , (2.6b)

at T̂ = 0 P̄Out1
e (S̄, 0) = 1− S̄. (2.6c)

Posing a regular expansion in even powers of ϵ

P̄Out1
e (S̄, T̂ ; ϵ) = P̄Out1

0 (S̄, T̂ ) + ϵ2P̄Out1
1 (S̄, T̂ ) + ϵ4P̄Out1

2 (S̄, T̂ ) +O(ϵ6) as ϵ→ 0, (2.7)

gives the following subproblems: for P̄Out1
0 (S̄, T̂ )

S̄ ∈ (0, 1), T̂ ∈ (0,∞)
∂P̄Out1

0

∂T̂
= 0, (2.8a)

subject to

as S̄ → 0 P̄Out1
0 (S̄, T̂ ) → 1, (2.8b)

at T̂ = 0 P̄Out1
0 (S̄, 0) = 1− S̄; (2.8c)

for P̄Out1
1 (S̄, T̂ )

S̄ ∈ (0, 1), T̂ ∈ (0,∞)
∂P̄Out1

1

∂T̂
= S̄2 ∂

2P̄Out1
0

∂S̄2
+ βS̄

∂P̄Out1
0

∂S̄
− αP̄Out1

0 , (2.9a)



CHAPTER 2. THE EUROPEAN OPTION PROBLEM 36

subject to

as S̄ → 0 P̄Out1
1 (S̄, T̂ ) ∼ −αT̂ , (2.9b)

at T̂ = 0 P̄Out2
1 (S̄, 0) = 0; (2.9c)

and for P̄Out1
2 (S̄, T̂ )

S̄ ∈ (0, 1), T̂ ∈ (0,∞)
∂P̄Out1

2

∂T̂
= S̄2 ∂

2P̄Out1
1

∂S̄2
+ βS̄

∂P̄Out1
1

∂S̄
− αP̄Out1

1 , (2.10a)

subject to

as S̄ → 0 P̄Out1
2 (S̄, T̂ ) ∼ 1

2
α2T̂ 2, (2.10b)

at T̂ = 0 P̄Out2
2 (S̄, 0) = 0. (2.10c)

The outer 1 expansion up to algebraic terms is therefore

P̄Out1
e (S̄, T̂ ; ϵ) ∼ (1− S̄) + ϵ2T̂

(
(α− β)S̄ − α

)
+
ϵ4

2
T̂ 2
(
α2 − (α− β)2S̄

)
+O(ϵ6) as ϵ→ 0,

(2.11)

though we note that we could construct a simple inductive proof which would demonstrate that

the remaining terms of the algebraic expansion generate the solution

P̄Out1
e (S̄, T̂ ; ϵ) ∼ e−αϵ2T̂ − S̄e−(α−β)ϵ2T̂ as ϵ→ 0, (2.12)

which can be shown to be the trivial lower bound on the European put option price ensured

by no-arbitrage.

For S̄ > 1 we write P̄e(S̄, T̂ ) = P̄Out2
e (S̄, T̂ ) and we have the outer 2 problem

S̄ ∈ (1,∞), T̂ ∈ (0,∞)
1

ϵ2
∂P̄Out2

e

∂T̂
= S̄2 ∂

2P̄Out2
e

∂S̄2
+ βS̄

∂P̄Out2
e

∂S̄
− αP̄Out2

e , (2.13a)

subject to

as S̄ → ∞ P̄Out2
e (S̄, T̂ ) → 0, (2.13b)

at T̂ = 0 P̄Out2
e (S̄, 0) = 0. (2.13c)
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Posing a regular expansion in even powers of ϵ

P̄Out2
e (S̄, T̂ ; ϵ) = P̄Out2

0 (S̄, T̂ ) + ϵ2P̄Out2
1 (S̄, T̂ ) +O(ϵ4) as ϵ→ 0, (2.14)

gives the following subproblems: for P̄Out2
0 (S̄, T̂ )

S̄ ∈ (1,∞), T̂ ∈ (0,∞)
∂P̄Out2

0

∂T̂
= 0, (2.15a)

subject to

as S̄ → ∞ P̄Out2
0 (S̄, T̂ ) → 0, (2.15b)

at T̂ = 0 P̄Out2
0 (S̄, 0) = 0; (2.15c)

and for P̄Out2
1 (S̄, T̂ )

S̄ ∈ (1,∞), T̂ ∈ (0,∞)
∂P̄Out2

1

∂T̂
= S̄2 ∂

2P̄Out2
0

∂S̄2
+ βS̄

∂P̄Out2
0

∂S̄
− αP̄Out2

0 , (2.16a)

subject to

as S̄ → ∞ P̄Out2
1 (S̄, T̂ ) → 0, (2.16b)

at T̂ = 0 P̄Out2
1 (S̄, 0) = 0. (2.16c)

These problems have the trivial solutions P̄Out2
0 (S̄, T̂ ) = P̄Out2

1 (S̄, T̂ ) = 0 with the same true

for all algebraic terms giving the outer 2 expansion

P̄Out2
e (S̄, T̂ ; ϵ) = 0 as ϵ→ 0, (2.17)

to all powers of ϵ. We highlight that the algebraic expansions only capture the trivial lower

option price bound in both outer regions. To find the non-trivial perturbative terms to the

lower option price bound in the outer 2 region, we use an approach adopted by Addison et al.

[2] in relation to the Stefan problem and pose a WKBJ-type expansion [12] of the form

P̄Out2
e (S̄, T̂ ; ϵ) = ϵqĀOut2

0 (S̄, T̂ )
(
1 + ϵ2ĀOut2

1 (S̄, T̂ ) +O(ϵ4)
)
e−

a(S̄,T̂ )

ϵ2 as ϵ→ 0, (2.18)

where the scaling in the exponential follows from the governing equation and the index q will
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be determined via matching. This leads to the following subproblems: for a(S̄, T̂ )

S̄ ∈ (1,∞), T̂ ∈ (0,∞)
∂a

∂T̂
+ S̄2

(
∂a

∂S̄

)2

= 0, (2.19a)

subject to

as S̄ → ∞ a(S̄, T̂ ) → ∞, (2.19b)

as T̂ → 0 a(S̄, 0) → ∞; (2.19c)

for ĀOut2
0 (S̄, T̂ )

S̄ ∈ (1,∞), T̂ ∈ (0,∞)
∂ĀOut2

0

∂T̂
= −2S̄2 ∂a

∂S̄

∂ĀOut2
0

∂S̄
−
(
βS̄

∂a

∂S̄
+ S̄2 ∂

2a

∂S̄2

)
ĀOut2

0 ,

(2.20a)

subject to

as S̄ → ∞ ĀOut2
0 (S̄, T̂ ) → 0, (2.20b)

at T̂ = 0 ĀOut2
0 (S̄, 0) = 0; (2.20c)

and for ĀOut2
1 (S̄, T̂ )

S̄ ∈ (1,∞), T̂ ∈ (0,∞)
∂ĀOut2

1

∂T̂
=− 2S̄2 ∂a

∂S̄

∂ĀOut2
1

∂S̄
−
(
βS̄

∂a

∂S̄
+ S̄2 ∂

2a

∂S̄2

)
ĀOut2

1

+ S̄2 ∂
2ĀOut2

0

∂S̄2
+ βS̄

∂ĀOut2
0

∂S̄
− αĀOut2

0 , (2.21a)

subject to

as S̄ → ∞ ĀOut2
1 (S̄, T̂ ) → 0, (2.21b)

at T̂ = 0 ĀOut2
1 (S̄, 0) = 0. (2.21c)

The problem for a(S̄, T̂ ) is a first order nonlinear PDE with complete integral

a(S̄, T̂ ) = C1 ln S̄ − C2
1 T̂ + C2, (2.22)

which can be derived using Charpit’s method [99, 87] or identified directly in a reference such

as [91] where C1 and C2 are arbitrary constants. The complete integral (2.22) however fails to
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satisfy the boundary conditions (2.19b,2.19c). A further solution exists which is not captured

by the references above and which is singular in T̂ with no arbitrary constants. The form of

this solution can be determined by considering the value of a for which the discriminant of the

quadratic formed by the arbitrary constant C1 is zero. Details of singular solutions and their

identification can be found in Piaggio [90]. The solution in this case is given by

a(S̄, T̂ ) =

(
ln
(
S̄
))2

4T̂
(2.23)

and we observe that this solution satisfies both conditions (2.19b) and (2.19c). We mention in

passing that we could have reasoned the form of (2.23) from the scaling of the controlling factor.

The scaling ϵ−2 suggests we look for a solution a(S̄, T̂ ) = ã(S̄)

T̂
which, upon substitution into

(2.19a) yields ã(S̄) = (ln (S̄))2

4 after matching with the leading order Inner expression derived

later and it is reassuring that we can obtain the same solution using both arguments.

Having obtained the solution for a, we can now find ĀOut2
0 (S̄, T̂ ) as the solution to the linear

first order PDE

S̄ ∈ (1,∞), T̂ ∈ (0,∞)
∂ĀOut2

0

∂T̂
= − S̄

T̂
ln (S̄)

∂ĀOut2
0

∂S̄
− 1

2T̂

(
(β − 1) ln (S̄) + 1

)
ĀOut2

0 ,

(2.24a)

subject to

as S̄ → ∞ ĀOut2
0 (S̄, T̂ ) → 0, (2.24b)

at T̂ = 0 ĀOut2
0 (S̄, 0) = 0, (2.24c)

which is amenable to the method of characteristics [87], or the solution may be found by direct

reference [91] as

ĀOut2
0 (S̄, T̂ ) = Φ0

(
T̂

ln (S̄)

)
S̄

1−β
2(

ln (S̄)
) 1

2

, (2.25)

for some arbitrary function Φ
(

T̂
ln (S̄)

)
. From (2.23) and (2.25) the asymptotic behaviour of the

outer 2 expansion is therefore

P̄Out2
e (S̄, T̂ ; ϵ) ∼ Φ0

(
ϵ2T̂

ln (S̄)

)
S̄

1−β
2(

ln (S̄)
) 1

2

e−
(ln (S̄))2

4ϵ2T̂

(
1 + ϵ2ĀOut2

1 (S̄, T̂ ) +O(ϵ4)
)

as ϵ→ 0,

(2.26)
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where we have written ϵqΦ0

(
T̂

ln (S̄)

)
= Φ0

(
ϵ2T̂
ln (S̄)

)
without loss of generality and satisfying the

correct scaling of the problem.

We can use the same approach to identify the non-trivial asymptotic behaviour of outer 1

problem with a WKBJ-type expansion of the form

P̄Out1
e (S̄, T̂ ; ϵ) =e−αϵ2T̂ − S̄e−(α−β)ϵ2T̂

+ ϵqĀOut1
0 (S̄, T̂ )

(
1 + ϵ2ĀOut1

1 (S̄, T̂ ) +O(ϵ4)
)
e−

a(S̄,T̂ )

ϵ2 as ϵ→ 0,

(2.27)

which leads to the following subproblems: for a(S̄, T̂ )

S̄ ∈ (1,∞), T̂ ∈ (0,∞)
∂a

∂T̂
+ S̄2

(
∂a

∂S̄

)2

= 0, (2.28a)

subject to

as S̄ → 0 a(S̄, T̂ ) → ∞, (2.28b)

at T̂ = 0 a(S̄, 0) = ∞; (2.28c)

for ĀOut1
0 (S̄, T̂ )

S̄ ∈ (1,∞), T̂ ∈ (0,∞)
∂ĀOut1

0

∂T̂
= −2S̄2 ∂a

∂S̄

∂ĀOut1
0

∂S̄
−
(
βS̄

∂a

∂S̄
+ S̄2 ∂

2a

∂S̄2

)
ĀOut1

0 ,

(2.29a)

subject to

as S̄ → ∞ ĀOut1
0 (S̄, T̂ ) → 0, (2.29b)

at T̂ = 0 ĀOut1
0 (S̄, 0) = 0; (2.29c)

and for ĀOut1
1 (S̄, T̂ )

S̄ ∈ (0, 1), T̂ ∈ (0,∞)
∂ĀOut1

1

∂T̂
=− 2S̄2 ∂a

∂S̄

∂ĀOut1
1

∂S̄
−
(
βS̄

∂a

∂S̄
+ S̄2 ∂

2a

∂S̄2

)
ĀOut1

1

+ S̄2 ∂
2ĀOut1

0

∂S̄2
+ βS̄

∂ĀOut1
0

∂S̄
− αĀOut1

0 , (2.30a)
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subject to

as S̄ → 0 ĀOut1
1 (S̄, T̂ ) → 0, (2.30b)

at T̂ = 0 ĀOut1
1 (S̄, 0) = 0. (2.30c)

The solutions to these problems are the same as those for the corresponding outer 2 problems

and lead to the outer 1 expansion

P̄Out1
e (S̄, T̂ ; ϵ) =e−αϵ2T̂ − S̄e−(α−β)ϵ2T̂

+Φ0

(
ϵ2T̂

ln (S̄)

)
S̄

1−β
2(

ln (S̄)
) 1

2

e−
(ln (S̄))2

4ϵ2T̂

(
1 + ϵ2ĀOut1

1 (S̄, T̂ ) +O(ϵ4)
)

as ϵ→ 0,

(2.31)

where the unknown function Φ0 will again be determined during matching.

Inner Region

In order to smooth the discontinuity in the derivative of the final payoff at the strike for small

times, we look in a small inner region about S̄ = 1, where intuition tells us that most of the

price change will occur. We introduce the length scaling S̄ = 1 + δ(ϵ)Ŝ, where the required

scaling δ(ϵ) = ϵ is motivated by the dominant balance in the governing equation and Ŝ = O(1).

Writing the outer 1 expansion in terms of the inner variable Ŝ suggests an inner expansion with

the scaling P̄e(S̄, T̂ ; ϵ) = ϵP̂ In
e (Ŝ, T̂ ; ϵ), which gives the inner problem

Ŝ ∈ (−∞,∞), T̂ ∈ (0,∞)
1

ϵ2
∂P̂ In

e

∂T̂
=
(
1 + ϵŜ

)2 1

ϵ2
∂2P̂ In

e

∂Ŝ2
+ β

(
1 + ϵŜ

) 1

ϵ

∂P̂ In
e

∂Ŝ
− αP̂ In

e ,

(2.32a)

subject to

at T̂ = 0 P̂ In
e (Ŝ, 0) =

(
−Ŝ
)+

. (2.32b)

Posing a regular expansion in powers of ϵ

P̂ In
e (Ŝ, T̂ ; ϵ) = P̂ In

0 (Ŝ, T̂ ) + ϵP̂ In
1 (Ŝ, T̂ ) + ϵ2P̂ In

2 (Ŝ, T̂ ) +O(ϵ3) as ϵ→ 0, (2.33)
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gives the following subproblems: for P̂ In
0 (Ŝ, T̂ )

Ŝ ∈ (−∞,∞), T̂ ∈ (0,∞)
∂P̂ In

0

∂T̂
=
∂2P̂ In

0

∂Ŝ2
, (2.34a)

subject to

at T̂ = 0 P̂ In
0 (Ŝ, 0) =

(
−Ŝ
)+

; (2.34b)

for P̂ In
1 (Ŝ, T̂ )

Ŝ ∈ (−∞,∞), T̂ ∈ (0,∞)
∂P̂ In

1

∂T̂
=
∂2P̂ In

1

∂Ŝ2
+ 2Ŝ

∂2P̂ In
0

∂Ŝ2
+ β

∂P̂ In
0

∂Ŝ
, (2.35a)

subject to

at T̂ = 0 P̂ In
1 (Ŝ, 0) = 0; (2.35b)

and for P̂ In
2 (Ŝ, T̂ )

Ŝ ∈ (−∞,∞), T̂ ∈ (0,∞)
∂P̂ In

2

∂T̂
=
∂2P̂ In

2

∂Ŝ2
+ 2Ŝ

∂2P̂ In
1

∂Ŝ2
+

β
∂P̂ In

1

∂Ŝ
+ Ŝ2 ∂

2P̂ In
0

∂Ŝ2
+ βŜ

∂P̂ In
0

∂Ŝ
− αP̂0, (2.36a)

subject to

at T̂ = 0 P̂ In
2 (Ŝ, 0) = 0. (2.36b)

The problem (2.34a-2.34b) has the similarity solution P̂ In
0 (Ŝ, T̂ ) =

√
T̂ h0(ζ) where ζ = Ŝ

2
√

T̂

and where h0(ζ) is the solution to

h
′′

0 + 2ζh
′

0 − 2h0 = 0, (2.37a)

subject to

as ζ → ∞ T̂
1
2h0(ζ) → 0, (2.37b)

as ζ → −∞ h0(ζ) ∼ −2ζ. (2.37c)
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The ODE (2.37a) has the general solution

h0(ζ) = 2C01ζ + C02ierfc(ζ), (2.38)

for arbitrary constants C01 and C02, where the expression

ierfc(ζ) =
1√
π
e−ζ2

− ζerfc(ζ) (2.39)

is the first repeated integral of the complementary error function which can be determined via

the recurrence relation [1] for n ≥ 1

inerfc(ζ) = − ζ

n
in−1erfc(ζ) +

1

2n
in−2erfc(ζ), (2.40)

where

i0erfc(ζ) = erfc(ζ), (2.41)

i−1erfc(ζ) =
2√
π
e−ζ2

. (2.42)

For the purpose of determining C01 and C02, we need the asymptotic behaviours

erfc(ζ) ∼


e−ζ2

√
πζ

(
1− 1

2ζ2 + 3
4ζ4 +O(ζ−6)

)
as ζ → ∞,

2 + e−ζ2

√
πζ

(
1− 1

2ζ2 + 3
4ζ4 +O(ζ−6)

)
as ζ → −∞,

(2.43)

ierfc(ζ) ∼


e−ζ2

2
√
π

(
1
ζ2 − 3

2ζ4 +O(ζ−6)
)

as ζ → ∞,

−2ζ + e−ζ2

2
√
π

(
1
ζ2 − 3

2ζ4 +O(ζ−6)
)

as ζ → −∞,

(2.44)

from which we can write

h0(ζ) ∼

2C01ζ +O
(
ζ−2e−ζ2

)
as ζ → ∞,

2(C01 − C02)ζ +O
(
ζ−2e−ζ2

)
as ζ → −∞.

(2.45)

The asymptotic behaviour (2.45) together with conditions (2.37b) and (2.37c) requires

C01 = 0, C02 = 1 (2.46)



CHAPTER 2. THE EUROPEAN OPTION PROBLEM 44

and therefore

h0(ζ) =
1√
π
e−ζ2

− ζerfc(ζ). (2.47)

The problem (2.35a-2.35b) has the similarity solution P̂ In
1 (Ŝ, T̂ ) = T̂ h1(ζ) where h1(ζ) is the

solution to

h
′′

1 + 2ζh
′

1 − 4h1 = −4ζh
′′

0 − 2βh
′

0, (2.48a)

subject to

as ζ → ∞ T̂ h1(ζ) → 0, (2.48b)

as ζ → −∞ T̂ h1(ζ) → 0. (2.48c)

This has the general solution [1]

h1(ζ) = C11(2ζ
2 + 1) + 2C12i

2erfc(ζ) +
ζ√
π
e−ζ2

− β

2
erfc(ζ), (2.49)

for arbitrary constants C11 and C12, where (2.40) determines

i2erfc(ζ) =
1

4

[
(2ζ2 + 1)erfc(ζ)− 2√

π
ζe−ζ2

]
, (2.50)

which has the asymptotic behaviour

i2erfc(ζ) ∼


1
4

e−ζ2

√
πζ3

(
1− 3

ζ2 +O(ζ−4)
)

as ζ → ∞,

ζ2 + 1
2 + 1

4
e−ζ2

√
πζ3

(
1− 3

ζ2 +O(ζ−4)
)

as ζ → −∞.

(2.51)

To specify C11 and C12 we use (2.49) and (2.51) to write

h1(ζ) ∼

C21

(
2ζ2 + 1

)
+O

(
ζe−ζ2

)
as ζ → ∞,

(C11 + C12)
(
2ζ2 + 1

)
− β +O

(
ζe−ζ2

)
as ζ → −∞,

(2.52)

which along with conditions (2.48b) and (2.48c) leads to

C11 = C12 = 0 (2.53)
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and therefore

h1(ζ) =
ζ√
π
e−ζ2

− β

2
erfc(ζ). (2.54)

The problem (2.36a-2.36b) has the similarity solution P̂ In
2 (Ŝ, T̂ ) = T̂

3
2h2(ζ) where h2(ζ) is the

solution to

h
′′

2 + 2ζh
′

2 − 6h1 = −4ζh
′′

1 − 2βh
′

1 − 4ζ2h
′′

0 − 4βζh
′

0 + 4αh0, (2.55a)

subject to

as ζ → ∞ T̂
3
2h2(ζ) → 0, (2.55b)

as ζ → −∞ T̂
3
2h2(ζ) → 0, (2.55c)

which has the general solution [1]

h2(ζ) =C21
1

3

(
ζ3 +

3

2
ζ

)
+ C22i

3erfc(ζ) +
e−ζ2

√
π

(
ζ4 − 1

3
(1 + 3β)ζ2 +

1

4

(
β(β − 1)− 1

3

))
− (α− β)ierfc(ζ), (2.56)

for arbitrary constants C21 and C22 and where, from (2.40),

i3erfc(ζ) =
1

6

[
1√
π
(1 + ζ2)e−ζ2

−
(
3ζ

2
+ ζ3

)
erfc(ζ)

]
, (2.57)

which has the asymptotic behaviour

i3erfc(ζ) ∼


e−ζ2

6
√
π

(
3

4ζ6 − 4
7ζ4 +O(ζ−6)

)
as ζ → ∞,

− 1
3

(
ζ3 + 3ζ

2

)
+ e−ζ2

6
√
π

(
3

4ζ6 − 4
7ζ4O(ζ−6)

)
as ζ → −∞.

(2.58)

To specify C21 and C22 we use (2.56) and (2.58) to write

h2(ζ) ∼

C21
1
3

(
ζ3 + 3

2ζ
)
+O

(
ζ4e−ζ2

)
as ζ → ∞,

(C21 − C22)
1
3

(
ζ3 + 3

2ζ
)
+ 2(α− β)ζ +O

(
ζ4e−ζ2

)
as ζ → −∞,

(2.59)
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which along with the conditions (2.55b) and (2.55c) leads to

C21 = C22 = 0 (2.60)

and therefore

h2(ζ) =
e−ζ2

√
π

(
ζ4 − 1

3
(1 + 3β)ζ2 +

1

4

(
β(β − 1)− 1

3

))
− (α− β)ierfc(ζ). (2.61)

Hence we can write the Inner expansion in terms of the Inner spatial variable Ŝ as

P̂ In
e (Ŝ, T̂ ; ϵ) = ϵ

√
T̂ h0

(
Ŝ

2
√
T̂

)
+ ϵ2T̂ h1

(
Ŝ

2
√
T̂

)
+ ϵ3T̂

3
2h2

(
Ŝ

2
√
T̂

)
+O(ϵ4) as ϵ→ 0,

(2.62)

where

h0(ζ) =
1√
π
e−ζ2

− ζerfc(ζ), (2.63a)

h1(ζ) =
ζ√
π
e−ζ2

− β

2
erfc(ζ), (2.63b)

h2(ζ) =
e−ζ2

√
π

(
ζ4 − 1

3
(1 + 3β)ζ2 +

1

4

(
β(β − 1)− 1

3

))
− (α− β)ierfc(ζ). (2.63c)

Matching Region

For a discussion of the possible approaches to matching inner and outer expansions the reader

is directed to Hinch [57]. In this piece of work we define a matching region where ϵ≪ S̄ − 1 =

ϵŜ ≪ 1 through the introduction of an intermediate variable S̃ which is related to the outer

spatial variable through S̄ − 1 = ϵnS̃ and the inner spatial variable through Ŝ = ϵn−1S̃ where

0 < n < 1. In the matching region we take the limit ϵ→ 0 with S̃ fixed which requires S̄ → 1−

and Ŝ → −∞ in the outer 1 region, and S̄ → 1+ and Ŝ → ∞ for the outer 2 region. By

looking at the asymptotic behaviour of the outer (2.26,2.31) and inner (2.62) expressions in the

appropriate limits, together with the unknown function in the outer expansion, we will seek to

form a matching expression by forcing the expressions to be the same in the relevant matching

region. A suitable matching expression allows the formation of a uniform expansion, valid for

all S̄, by the summation of the outer and inner expansion and the subtraction of the matching

expression. For a discussion of the formation of uniform expansions the reader is directed to

Bender & Orszag [12].
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In the matching region we define the contribution of the inner expansion in terms of the in-

termediate variable through P̂ In
e (Ŝ, T̂ ; ϵ) = P̃ In

e (S̃, T̂ ; ϵ) and the contribution of the terms of

the inner expansion in the matching region as h0(ζ) = h̃0

(
S̃

2
√

T̂
; ϵ

)
, h1(ζ) = h̃1

(
S̃

2
√

T̂
; ϵ

)
and

h2(ζ) = h̃2

(
S̃

2
√

T̂
; ϵ

)
.

Using (2.63a-2.63c) together with (2.43) and (2.44), the asymptotic behaviours of the terms of

the inner expansion are

h0(ζ) ∼


e−ζ2

2
√
π

(
1
ζ2 − 3

2ζ4 +O(ζ−6)
)

as ζ → ∞,

−2ζ + e−ζ2

2
√
π

(
1
ζ2 − 3

2ζ4 +O(ζ−6)
)

as ζ → −∞,

(2.64a)

h1(ζ) ∼


e−ζ2

2
√
π

(
2ζ − β

ζ + β
2ζ3 +O(ζ−4)

)
as ζ → ∞,

−β + e−ζ2

2
√
π

(
2ζ − β

2ζ + β
4ζ3 +O(ζ−4)

)
as ζ → −∞,

(2.64b)

h2(ζ) ∼


e−ζ2

2
√
π

(
2ζ4 − 2

3 (1 + 3β)2ζ2 +O(1)
)

as ζ → ∞,

2(α− β)ζ + e−ζ2

2
√
π

(
2ζ4 − 2

3 (1 + 3β)2ζ2 +O(1)
)

as ζ → −∞
(2.64c)

and therefore the contribution of the terms of the inner expansion in the matching region have

the following forms: for P̂ In
0 (Ŝ, T̂ )

ϵ
√
T̂ h̃0

(
S̃

2
√
T̂
; ϵ

)
∼


1√
π
e−ϵ2(n−1) S̃2

4T̂ ψ̃0(S̃, T̂ ; ϵ) as ϵ→ 0, S̃ > 0,

−ϵnS̃ + 1√
π
e−ϵ2(n−1) S̃2

4T̂ ψ̃0(S̃, T̂ ; ϵ) as ϵ→ 0, S̃ < 0,

(2.65a)

where

ψ̃0(S̃, T̂ ; ϵ) = ϵ3−2n 2T̂
3
2

S̃2
− ϵ5−4n 12T̂

5
2

S̃4
+ ϵ7−6n 120T̂

7
2

S̃6
+O

(
ϵ9−8n

)
; (2.65b)

for P̂ In
1 (Ŝ, T̂ )

ϵ2T̂ h̃1

(
S̃

2
√
T̂
; ϵ

)
∼


1√
π
e−ϵ2(n−1) S̃2

4T̂ ψ̃1(S̃, T̂ ; ϵ) as ϵ→ 0, S̃ > 0,

−βϵ2T̂ + 1√
π
e−ϵ2(n−1) S̃2

4T̂ ψ̃1(S̃, T̂ ; ϵ) as ϵ→ 0, S̃ < 0,

(2.66a)

where

ψ̃1(S̃, T̂ ; ϵ) = ϵn+1 T̂
1
2 S̃

2
− ϵ3−nβT̂

3
2

S̃
+ ϵ5−3n 2βT̂

5
2

S̃3
−O

(
ϵ5−3n

)
; (2.66b)
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and for P̂ In
2 (Ŝ, T̂ )

ϵ3T̂
3
2 h̃2

(
S̃

2
√
T̂
; ϵ

)
∼


1√
π
e−ϵ2(n−1) S̃2

4T̂ ψ̃2(S̃, T̂ ; ϵ) as ϵ→ 0, S̃ > 0,

(α− β)ϵn+2S̃T̂ + 1√
π
e−ϵ2(n−1) S̃2

4T̂ ψ̃2(S̃, T̂ ; ϵ) as ϵ→ 0, S̃ < 0,

(2.67a)

where

ψ̃2(S̃, T̂ ; ϵ) = ϵ4n−1 S̃4

16T̂
1
2

+O
(
ϵ2n+1

)
. (2.67b)

We note from the asymptotic expressions (2.65b,2.66b,2.67b) that the ordering of terms in the

expansion (2.62) breaks down for n ≤ 2
3 and we therefore look for a matching region such

that n > 2
3 . However, leaving n unrestricted on the interval n ∈

(
2
3 , 1
)
does not allow us to

determine where the first term of (2.66b) at O(ϵn+1) contributes to the matching expression.

Indeed for n = 1, all orders of the expansion (2.65b) are dominant.

We also observe that the matching expression formed by the inner is singular at S̃ = 0 (S̄ = 1).

This is to be expected as the WKBJ terms in the outer expansions are singular at S̄ = 1. We

would like the singular terms of the matching and outer expressions to cancel in the limit as

S̃ → 0 (S̄ → 1) otherwise our uniform expansion will also be singular in this limit. To this

end we note that the O(ϵ3−n) term from (2.66b), which contains S̃−1, can only dominate the

O(ϵ5−4n) term from (2.65b), which contains S̃−4, for n < 2
3 . In fact for some general integer

k > 0, terms of O(ϵk−(k−1)n) from (2.66b), which contain S̃(1−k), can only dominate terms

of O(ϵ(k−2)−(k−4)n) from (2.65b), which contain S̃(4−k), for n < 2
3 . Therefore, the restriction

n > 2
3 prohibits the formation of a truncated matching expression containing all negative

integral powers of S̃ up to some finite integer.

We now look for the contribution of the outer expansions (2.26) and (2.31) to the matching

regions which we previously related to the intermediate variable through S̄− 1 = ϵnS̃. Writing

the terms of the outer expansion in terms of the intermediate variable S̃ and function Φ0 as a

Taylor series

Φ0

(
ϵ2T̂

ln (1 + ϵnS̃)

)
≃Φ0

(
ϵ2−n T̂

S̃

)
−
(
ϵ2T̂ + . . .

)
Φ′

0

(
ϵ2−n T̂

S̃

)
as ϵ→ 0, (2.68)

produces the leading order contribution of the outer 2 expansion in the matching region for
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S̃ > 0

P̃Out2
e (S̃, T̂ ; ϵ) ∼ 1

(ϵS̃)
n
2

Φ0

(
ϵ2−n T̂

S̃

)
e−ϵ2n−2 S̃2

4T̂ e−ϵ3n−2 S̃3

4T̂ as ϵ→ 0 (2.69)

and the outer 1 expansion in the matching region for S̃ < 0

P̃Out1
e (S̃, T̂ ; ϵ) ∼ϵnS̃ − βϵ2T̂ + (α− β)ϵn+2S̃T̂ +O(ϵ4)

+
1

(ϵS̃)
n
2

Φ0

(
ϵ2−n T̂

S̃

)
e−ϵ2n−2 S̃2

4T̂ e−ϵ3n−2 S̃3

4T̂ as ϵ→ 0. (2.70)

Matching the forms of (2.69) and (2.70) with the relevant leading order term of the inner terms

in the matching region for S̃ > 0 and S̃ < 0 from (2.65b) identifies that matching of the

exponential terms is only possible for n > 2
3 , which is consistent with our observation from the

ordering of terms in the inner expansion in the matching region, and further that the unknown

function Φ0 has the form

Φ0

(
ϵ2T̂

ln (S̄)

)
=

2√
π

(
ϵ2T̂

ln (S̄)

) 3
2

as ϵ→ 0 (2.71)

and therefore we can rewrite (2.25) as

ĀOut2
0 (S̄, T̂ ; ϵ) = ĀOut1

0 (S̄, T̂ ; ϵ) ∼ 2ϵ3T̂
3
2

√
π

S̄
1−β
2(

ln (S̄)
)2 as ϵ→ 0. (2.72)

Defining the contribution of the leading order terms of the outer expansion to the matching

region, for n ∈
(
2
3 , 1
)
, through ĀOut2

0 (S̄, T̂ ) = ÃOut2
0 (S̃, T̂ ; ϵ) and ĀOut1

0 (S̄, T̂ ) = ÃOut1
0 (S̃, T̂ ; ϵ)

gives

ÃOut2
0 (S̃, T̂ ; ϵ) = ÃOut1

0 (S̃, T̂ ; ϵ) ∼ 1√
π

(
ϵ3−2n 2T̂

3
2

S̃2
+ ϵ3−n(3− β)

T̂
3
2

S̃
+O(ϵ3)

)
as ϵ→ 0

(2.73)

and therefore for S̃ > 0

P̃Out2(S̃, T̂ ; ϵ) ∼ 1√
π
e−ϵ2(n−1) S̃2

4T̂

(
ϵ3−2n 2T̂

3
2

S̃2
+ ϵn+1 T̂

1
2 S̃

2
+ ϵ4n−1 S̃4

16T̂
1
2

+ ϵ3−n(3− β)
T̂

3
2

S̃
+O(ϵ2n+1)

)
as ϵ→ 0, (2.74)
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while for S̃ < 0

P̃Out1(S̃, T̂ ; ϵ) ∼ϵnS̃ − βϵ2T̂ + (α− β)ϵn+2S̃T̂ +O(ϵ4)

+
1√
π
e−ϵ2(n−1) S̃2

4T̂

(
ϵ3−2n 2T̂

3
2

S̃2
+ ϵn+1 T̂

1
2 S̃

2
+ ϵ4n−1 S̃4

16T̂
1
2

+ ϵ3−n(3− β)
T̂

3
2

S̃

+O(ϵ2n+1)

)
as ϵ→ 0. (2.75)

Comparison of (2.74) and (2.75) with the inner matching conditions from (2.65b) reveals a term

of O
(
ϵ5−4n

)
missing from the outer expressions which dominates the O

(
ϵ3−n

)
term for n > 2

3 ,

but it is dominated by the O
(
ϵ4n−1

)
term for n < 3

4 . We could form the three-term matching

expression

1√
π
e
−ϵ2(n−1) 2S̃2

4T̂

(
ϵ3−2n T̂

3
2

S̃2
+ ϵn+1 T̂

1
2 S̃

2
− ϵ4n−1 S̃4

16T̂
1
2

)
as ϵ → 0, S̃ > 0, (2.76)

which is valid for n ∈ ( 23 ,
3
4 ), but does not cancel with the singular terms at O(ϵ3−n) in (2.74)

and (2.75) and therefore the corresponding uniform expansion will be singular as S̄ → 1. We

also observe that the coefficient (3 − β) at O(ϵ3−n) in (2.74,2.75) does not match with the

corresponding coefficient β from (2.66b). We therefore look to the contribution in the matching

region of the next order term in the outer expansions, ĀOut2
1 (S̄, T̂ ) and ĀOut1

1 (S̄, T̂ ).

Using the behaviour of Φ0 (2.71) determined during matching at leading order, we can rewrite

the problem for AOut2
1 (S̄, T̂ ) (2.21a-2.21c) which becomes

S̄ ∈ (1,∞), T̂ ∈ (0,∞)
∂ĀOut2

1

∂T̂
=− S̄

T̂
ln (S̄)

∂ĀOut2
1

∂S̄
−

(
(β − 1)2

4
+ α− 6(

ln (S̄)
)2
)
,

(2.77a)

subject to

as S̄ → ∞ ĀOut2
1 (S̄, T̂ ) → 0, (2.77b)

at T̂ = 0 ĀOut2
1 (S̄, 0) = 0. (2.77c)

As in the case of the Ā0 problem, (2.77a-2.77c) is a linear first order PDE which is amenable
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to method of characteristics, giving the solution

ĀOut2
1 (S̄, T̂ ) = −T̂

 6(
ln (S̄)

)2 +
COut2

1

(
ln (S̄)/T̂

)
ln (S̄)

+
(β − 1)2

4
+ α

 , (2.78)

for some arbitrary function COut2
1

(
ln (S̄)/T̂

)
.

The problem for ĀOut1
1 (S̄, T̂ ) (2.30a-2.30c) becomes

S̄ ∈ (0, 1), T̂ ∈ (0,∞)
∂ĀOut1

1

∂T̂
=− S̄

T̂
ln (S̄)

∂ĀOut1
1

∂S̄
−

(
(β − 1)2

4
+ α− 6(

ln (S̄)
)2
)
,

(2.79a)

subject to

as S̄ → 0 ĀOut1
1 (S̄, T̂ ) → 0, (2.79b)

at T̂ = 0 ĀOut1
1 (S̄, 0) = 0. (2.79c)

which has the same solution as the outer 2 problem

ĀOut1
1 (S̄, T̂ ) = −T̂

 6(
ln (S̄)

)2 +
COut1

1

(
ln (S̄)/T̂

)
ln (S̄)

+
(β − 1)2

4
+ α

 , (2.80)

for some arbitrary function COut1
1

(
ln (S̄)/T̂

)
.

We can now use (2.71) together with (2.78) and (2.80) to write the outer 2 expansion (2.26) as

P̄Out2
e (S̄, T̂ ; ϵ) ∼ 2ϵ3√

π

T̂
3
2 S̄

1−β
2(

ln (S̄)
)2 e− (ln (S̄))2

4ϵ2T̂ ×(
1− ϵ2T̂

[
6(

ln (S̄)
)2 +

COut2
1

ln (S̄)
+

(β − 1)2

4
+ α

]
+O(ϵ4)

)
as ϵ → 0 (2.81)

and the outer 1 expansion (2.31) as

P̄Out1
e (S̄, T̂ ; ϵ) ∼ e−αϵ2T̂ − S̄e−(α−β)ϵ2T̂ +

2ϵ3√
π

T̂
3
2 S̄

1−β
2(

ln (S̄)
)2 e− (ln (S̄))2

4ϵ2T̂ ×(
1− ϵ2T̂

[
6(

ln (S̄)
)2 +

COut1
1

ln (S̄)
+

(β − 1)2

4
+ α

]
+O(ϵ4)

)
as ϵ → 0. (2.82)

In terms of the intermediate variable, the contributions of ĀOut1
1 (S̄, T̂ ) and ĀOut2

1 (S̄, T̂ ) to the
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matching region expressions (2.74) and (2.75) are

ÃOut1
1 (S̃, T̂ ; ϵ) = ÃOut2

1 (S̃, T̂ ; ϵ) ∼ 1√
π
e
−ϵ2(n−1) S̃2

4T̂

(
−ϵ5−4n 12T̂

5
2

S̃4
− ϵ3−n 3T̂

5
2

S̃
+O(ϵ5−3n)

)
as ϵ → 0

(2.83)

and we observe that this contributes both the terms required to match with the inner match-

ing expressions at O(ϵ5−4n) and O(ϵ3−n). However, in order to match these terms we have

introduced a 1

(ln (S̄))
4 term into the outer expression which will contribute a term of the form

S̄−3. As discussed previously, we are unable to form a matching expression which contains the

relevant term without going to further orders in the outer series. This process prevents the

cancellation of singular terms as S̄ → 1 and therefore the creation of a non-singular uniform

expression is not possible using a finite number of terms. Finally, we note that determination of

the arbitrary functions COut2
1 , COut1

1 in (2.78) and (2.80) requires matching at O(ϵ5−3n) in the

intermediate variable. This term is dominated by the O(ϵ7−6n) term from the Inner matching

expression (2.65b) which contains the term S̄−6 suggesting we need to go to additional terms

in the outer to match to this order. We observe however that the inner matching expression

(2.66b) suggests we should find COut1
1 = COut2

1 = 2β.

We therefore define an outer 2 matching expression for S̃ > 0 which is valid for n ∈ ( 23 ,
4
5 ) as

P̃Match2
e (S̃, T̂ ; ϵ) ∼ 1√

π
e−ϵ2(n−1) S̃2

4T̂ ψ̃(S̃, T̂ ; ϵ) as ϵ→ 0 (2.84a)

and the corresponding outer 1 matching expression for S̃ < 0 as

P̃Match1
e (S̃, T̂ ; ϵ) ∼ e−αϵ2T̂ − S̄e−(α−β)ϵ2T̂ +

1√
π
e−ϵ2(n−1) S̃2

4T̂ ψ̃(S̃, T̂ ; ϵ) as ϵ→ 0, (2.84b)

where

ψ̃(S̃, T̂ ; ϵ) = ϵ3−2n 2T̂
3
2

S̃2
+ ϵn+1 T̂

1
2 S̃

2
+ ϵ4n−1 S̃4

16T̂
1
2

− ϵ5−4n 12T̂
5
2

S̃4
− ϵ3−nβ

T̂
3
2

S̃
, (2.84c)

with the relative magnitude of the O(ϵ4n−1) and O(ϵ5n−4) terms depending on whether n is

greater than or less than 3
4 .

For consistency, we define our final outer 1 and outer 2 expansions as

P̄Out2
e (S̄, T̂ ; ϵ) ∼ 2ϵ3√

π

T̂
3
2 S̄

1−β
2(

ln (S̄)
)2 e− (ln (S̄))2

4ϵ2T̂

(
1− ϵ2T̂

6(
ln (S̄)

)2
)

as ϵ→ 0 (2.85)



CHAPTER 2. THE EUROPEAN OPTION PROBLEM 53

and

P̄Out1
e (S̄, T̂ ; ϵ) ∼e−αϵ2T̂ − S̄e−(α−β)ϵ2T̂ +

2ϵ3√
π

T̂
3
2 S̄

1−β
2(

ln (S̄)
)2 e− (ln (S̄))2

4ϵ2T̂

(
1− ϵ2T̂

6(
ln (S̄)

)2
)

as ϵ→ 0,

(2.86)

which contain the terms successfully matched with the inner expansion.

Comparison with the Closed-Form Solution

We can verify that the WKBJ expansion has captured the correct behaviour by looking at the

small-time asymptotic behaviour of the European option price in the inner and outer regions.

We can represent the non-dimensional small-time European put option price in terms of the

complementary error function as

P̄e(S̄, T̂ ; ϵ) =
1

2

(
e−αϵ2T̂ erfc

(
d̄2√
2

)
− S̄e−(α−β)ϵ2T̂ erfc

(
d̄1√
2

))
, (2.87)

where

d̄1√
2
=

ln (S̄)

2ϵ
√
T̂

+
(β + 1)

2
ϵ
√
T̂ , (2.88a)

d̄2√
2
=

ln (S̄)

2ϵ
√
T̂

+
(β − 1)

2
ϵ
√
T̂ . (2.88b)

In the outer regions, d̄1√
2
, d̄2√

2
→ −∞ as ϵ → 0, for S̄ ≫ 1 and d̄1√

2
, d̄2√

2
→ ∞ as ϵ → 0, for

S̄ ≪ 1. Using (2.43) together with (2.87) we derive the small-time behaviour in the outer 2

region (S̄ ≫ 1) as

P̄Out2
e (S̄, T̂ ; ϵ) ∼ 2ϵ3√

π

T̂
3
2

(ln (S̄))2
e−

(ln (S̄))2

4ϵ2T̂

S̄
β−1
2

×(
1− ϵ2T̂

[
α+

(β − 1)2

4
+

2β

ln (S̄)
+

6

(ln (S̄))2

]
+O

(
ϵ4
))

as ϵ→ 0,

(2.89)
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and in the outer 1 region (S̄ ≪ 1) as

P̄Out1
e (S̄, T̂ ; ϵ) ∼ e−αϵ2T̂ − S̄e−(α−β)ϵ2T̂ +

2ϵ3√
π

T̂
3
2

(ln (S̄))2
e−

(ln (S̄))2

4ϵ2T̂

S̄
β−1
2

×(
1− ϵ2T̂

[
α+

(β − 1)2

4
+

2β

ln (S̄)
+

6

(ln (S̄))2

]
+O

(
ϵ4
))

as ϵ→ 0,

(2.90)

which we observe are consistent with the outer expansions, and further confirms that we expect

C1 = 2β.

For the inner region, defined by S̄ = 1 + ϵŜ, as ϵ→ 0 we have

d̂1√
2
≃ Ŝ

2T̂
1
2

+
ϵ

2

(
(β + 1)T̂

1
2 − Ŝ2

2T̂
1
2

)
+
ϵ2

6

Ŝ

T̂
1
2

+O(ϵ3), (2.91a)

d̂2√
2
≃ Ŝ

2T̂
1
2

+
ϵ

2

(
(β − 1)T̂

1
2 − Ŝ2

2T̂
1
2

)
+
ϵ2

6

Ŝ

T̂
1
2

+O(ϵ3), (2.91b)

and we use the Taylor expansions

erfc

(
d̂1√
2

)
≃ erfc

(
Ŝ

2T̂
1
2

)
+

(
ϵ

2

(
(β + 1)T̂

1
2 − Ŝ2

2T̂
1
2

)
+

ϵ2

6

Ŝ

T̂
1
2

+ . . .

)
erfc′

(
Ŝ

2T̂
1
2

)
, (2.92a)

erfc

(
d̂2√
2

)
≃ erfc

(
Ŝ

2T̂
1
2

)
+

(
ϵ

2

(
(β − 1)T̂

1
2 − Ŝ2

2T̂
1
2

)
+

ϵ2

6

Ŝ

T̂
1
2

+ . . .

)
erfc′

(
Ŝ

2T̂
1
2

)
, (2.92b)

to derive the inner behaviour

P̂ In
e (S̄, T̂ ; ϵ) ∼ϵ

(
T̂

1
2

√
π
e
− Ŝ2

4T̂ − Ŝ

2
erfc

(
Ŝ

2T̂
1
2

))
+ ϵ2

(
ŜT̂

1
2

2
√
π
e
− Ŝ2

4T̂ − βT̂ erfc

(
Ŝ

2T̂
1
2

))
+O(ϵ3) (2.93)

which can be shown to be equivalent to (2.62) using the substitution ζ = Ŝ

2T̂
1
2
, and the results

(2.63a) and (2.63b).

The three region structure for the small-time problem is illustrated in Figure 2-1, while a

numerical comparison of our inner (2.63a-2.63c), outer (2.81-2.82) and matching (2.84a-2.84c)

expansions with the closed-form solution (2.87) is shown in Figure 2-2. Although graphically it

appears that the outer and inner expressions are indistinguishable for S̄ ≫ 1, the error graphs

show that the inner expression goes to zero much faster than the closed-form solution, whereas

the outer expression captures the correct asymptotic behaviour in this limit. This demonstrates

that the validity of the inner series as an approximation for the outer behaviour of the European
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option, as suggested by previous authors [42, 60, 102] is valid only up to algebraic terms in the

out-of-the-money outer region. The same effect would be observed for the exponentially small

terms for S̄ ≪ 1, but the effect is not leading order and is dominated by the size of the intrinsic

value for small times. The put-call parity result (1.13) ensures the behaviour in (2.89) will be

observed in the small-time European call option problem for S̄ ≪ 1, whereas the use of the

first term of the inner expansion of the corresponding call option, as provided in [60], can be

shown to give to the small-time asymptotic behaviour as S̄ → 0

C̄Out1
e (S̄, T̂ ; ϵ) ∼ 2√

π

ϵ3T̂
3
2

(S̄ − 1)2
e−

(S̄−1)2

4ϵ2T̂ as ϵ→ 0, (2.94)

which does not capture the leading order exponentially small behaviour (2.89) as S̄ → 0 and

which contains a residual non-zero term at S̄ = 0.

Finally, the breakdown of the outer expansion near S̄ = 1 is clear. This is caused by the

presence of logarithmic terms in the outer expansion which require an increasing number of

terms in order to match in the inner region.

S̄ = e−βτ
S̄

P̄ (S̄, τ)

e−ατ

O
(
τ

1
2

)

O
(
τ

1
2

)

Outer 1 Inner Outer 2

Figure 2-1: A schematic showing the small-time asymptotic structure of the European put
option. The structure uses an O(

√
τ) inner layer about S̄ = 1 in which the price is O(

√
τ). For

S̄ < 1 an outer region exists in which the price can be represented by an algebraic series in
powers of τ . For S̄ > 1 an second outer region exists in which the price is exponentially small

and can be shown to have the leading order asymptotic behaviour P̄e ∼ 2e−ατ
√
π

τ
3
2 S̄

1−β
2

(ln (S̄))
2 e−

(ln (S̄))2

4τ .
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Figure 2-2: Comparison of the small-time behaviour of the Black-Scholes-Merton price for the
European put option with the derived inner (2.62), outer (2.85-2.86) and matching (2.84a-2.84b)
expressions for a range of values of τ and with α = 10

9 and β = 2
3 . The prices in Figures 2.2(a),

2.2(c) & 2.2(e) are scaled by the exponential factor exp
((

ln
(
S̄
))2

/4τ
)
and a change in the

asymptotic behaviour of the Black-Scholes-Merton price from the inner expression to the outer
expression for large S̄ can be observed. The error plotted in Figures 2.2(b), 2.2(d) & 2.2(f) is
defined as the difference between the value of the relevant expression and the Black-Scholes-
Merton price, expressed as a percentage of the Black-Scholes-Merton price.
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2.2 Small-Volatility Behaviour

The scenario in which the variance of returns is small compared to the risk-free interest rate and

the cost-of-carry is investigated by Widdicks et al [102], though in the absence of dividends and

without the investigation of outer terms beyond the trivial lower bound. We can represent this

case through the scalings of our non-dimensional variables (2.1) τ = ϵ2T̂ , α = α̂
ϵ2 and β = β̂

ϵ2 ,

where ϵ is a small artificial parameter (0 < ϵ ≪ 1) and α̂, β̂ = O(1). Much of the approach

used in this section is similar to that used in the previous section and we therefore omit some

of the detail and refer to the previous section where relevant.

The non-dimensional European put option problem (2.2a-2.2d) under our small volatility scal-

ings is

S̄ ∈ (0,∞), T̂ ∈ (0,∞)
1

ϵ2
∂P̄e

∂T̂
= S̄2 ∂

2P̄e

∂S̄2
+
β̂

ϵ2
S̄
∂P̄e

∂S̄
− α̂

ϵ2
P̄e, (2.95a)

subject to

as S̄ → 0 P̄e(S̄, T̂ ) → e−α̂T̂ , (2.95b)

as S̄ → ∞ P̄e(S̄, T̂ ) → 0, (2.95c)

at T̂ = 0 P̄e(S̄, 0) = (1− S̄)+. (2.95d)

This problem has a three-region structure with two outer regions for eβ̂T̂ S̄ < 1 and eβ̂T̂ S̄ > 1

and an inner region for eβ̂T̂ S̄ = 1 + ϵŜ, where Ŝ = O(1).

Outer Regions

For eβ̂T̂ S̄ < 1 we write P̄e(S̄, T̂ ) = P̄Out1
e (S̄, T̂ ) and we have the outer 1 problem

S̄ ∈ (0, 1), T̂ ∈ (0,∞)
1

ϵ2
∂P̄Out1

e

∂T̂
= S̄2 ∂

2P̄Out1
e

∂S̄2
+
β̂

ϵ2
S̄
∂P̄Out1

e

∂S̄
− α̂

ϵ2
P̄Out1
e , (2.96a)

subject to

as S̄ → 0 P̄Out1
e (S̄, T̂ ) → e−α̂T̂ , (2.96b)

at T̂ = 0 P̄Out1
e (S̄, 0) = 1− S̄. (2.96c)
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Posing a regular expansion in even powers of ϵ yields the outer 1 expansion

P̄Out1
e (S̄, T̂ ; ϵ) = e−α̂T̂ − S̄e−(α̂−β̂)T̂ as ϵ→ 0. (2.97)

For eβ̂T̂ S̄ > 1 we write P̄e(S̄, T̂ ) = P̄Out2
e (S̄, T̂ ) and we have the outer 2 problem

S̄ ∈ (1,∞), T̂ ∈ (0,∞)
1

ϵ2
∂P̄Out2

e

∂T̂
= S̄2 ∂

2P̄Out2
e

∂S̄2
+
β̂

ϵ2
S̄
∂P̄Out2

e

∂S̄
− α̂

ϵ2
P̄Out2
e , (2.98a)

subject to

as S̄ → ∞ P̄Out2
e (S̄, T̂ ) → 0, (2.98b)

at T̂ = 0 P̄Out2
e (S̄, 0) = 0. (2.98c)

Posing a regular expansion in even powers of ϵ yields the trivial the trivial outer 2 expansion

P̄Out2
e (S̄, T̂ ; ϵ) = 0 as ϵ→ 0, (2.99)

to all orders of ϵ. The results (2.97) and (2.99) are given by Widdicks et al [102] as the asymp-

totic behaviour of the small-volatility European put option price in the outer regions. This is a

trivial result which can be obtained as a trivial lower bound from no-arbitrage arguments. Our

small-time work suggests we can do better, and we look to obtain the non-trivial leading order

behaviour in the outer 2 region using a WKBJ type expansion of the form

P̄e(S̄, T̂ ; ϵ) = ϵqĀOut2
0 (S̄, T̂ )

(
1 + ϵ2ĀOut2

1 (S̄, T̂ ) +O(ϵ4)
)
e−

a(S̄,T̂ )

ϵ2 as ϵ→ 0, (2.100)

which gives the following subproblems: for a(S̄, T̂ )

S̄ ∈ (1,∞), T̂ ∈ (0,∞)
∂a

∂T̂
+ S̄2

(
∂a

∂S̄

)2

− β̂S̄
∂a

∂S̄
= 0, (2.101a)

subject to

as S̄ → ∞ a→ ∞, (2.101b)

at T̂ = 0 a = ∞; (2.101c)
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for ĀOut2
0 (S̄, T̂ )

S̄ ∈ (1,∞), T̂ ∈ (0,∞)
∂ĀOut2

0

∂T̂
= S̄

[
β̂ − 2S̄

∂a

∂S̄

]
∂ĀOut2

0

∂S̄
−
[
α̂+ S̄2 ∂

2a

∂S̄2

]
ĀOut2

0 ,

(2.102a)

subject to

as S̄ → ∞ ĀOut2
0 (S̄, T̂ ) → 0, (2.102b)

at T̂ = 0 ĀOut2
0 (S̄, 0) = 0; (2.102c)

and for ĀOut2
1 (S̄, T̂ )

S̄ ∈ (1,∞), T̂ ∈ (0,∞)
∂ĀOut2

1

∂T̂
= S̄

[
β̂ − 2S̄

∂a

∂S̄

]
∂ĀOut2

1

∂S̄
+

S̄2

ĀOut2
0

∂2ĀOut2
0

∂S̄2
, (2.103a)

subject to

as S̄ → ∞ ĀOut2
1 (S̄, T̂ ) → 0, (2.103b)

at T̂ = 0 ĀOut1
1 (S̄, 0) = 0. (2.103c)

We can again use Charpit’s method or look for the relevant first order nonlinear PDE solution

in [91] to show that (2.101a) has the complete integral

a(S̄, T̂ ) = C1 ln (e
β̂T̂ S̄)− C2

1 T̂ + C2, (2.104)

where C1 and C2 are arbitrary constants. Again, the complete integral (2.104) fails to satisfy

the boundary conditions and we find a singular solution with no arbitrary constants which has

the form

a(S̄, T̂ ) =

(
ln
(
eβ̂T̂ S̄

))2
4T̂

(2.105)

and we observe that this satisfies the boundary conditions. ĀOut2
0 (S̄, T̂ ) is then the solution to

S̄ ∈ (1,∞), T̂ ∈ (0,∞)
∂ĀOut2

0

∂T̂
=

(
β̂S̄ − S̄

T̂
ln (eβ̂T̂ S̄)

)
∂ĀOut2

0

∂S̄

−
(
α̂+

1

2T̂

(
1− ln (eβ̂T̂ S̄)

))
ĀOut2

0 , (2.106a)
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subject to

as S̄ → ∞ ĀOut2
0 (S̄, T̂ ) → 0, (2.106b)

at T̂ = 0 ĀOut2
0 (S̄, 0) = 0, (2.106c)

which is a first order linear PDE with general solution found via the method of characteristics

to be

ĀOut2
0 (S̄, T̂ ) = Φ0

(
T̂

ln (eβ̂T̂ S̄)

)
e−α̂T̂

(
eβ̂T̂ S̄

) 1
2

(
ln (eβ̂T̂ S̄)

) 1
2

, (2.107)

for some arbitrary function Φ0

(
T̂

ln (eβ̂T̂ S̄)

)
. The asymptotic behaviour of the outer 2 solution is

therefore of the form

P̄Out2
e (S̄, T̂ ; ϵ) ∼ Φ0

(
ϵ2T̂

ln (eβ̂T̂ S̄)

)
e−α̂T̂

(
eβ̂T̂ S̄

) 1
2

(
ln (eβ̂T̂ S̄)

) 1
2

e
−

(
ln

(
eβ̂T̂ S̄

))2

4ϵ2T̂

(
1 + ϵ2ĀOut2

1 (S̄, T̂ ) +O(ϵ4)
)

as ϵ → 0,

(2.108)

where the problem for the second term in the WKBJ expansion again depends on an unknown

function Φ0.

Though we omit the details here, the same approach can be used to identify the asymptotic

behaviour to the outer 1 problem as

P̄Out1
e (S̄, T̂ ; ϵ) ∼e−α̂T̂ − S̄e−(α̂−β̂)T̂+

Φ0

(
ϵ2T̂

ln (eβ̂T̂ S̄)

)
e−α̂T̂

(
eβ̂T̂ S̄

) 1
2

(
ln (eβ̂T̂ S̄)

) 1
2

e
−

(
ln

(
eβ̂T̂ S̄

))2

4ϵ2T̂

(
1 + ϵ2ĀOut1

1 (S̄, T̂ ) +O(ϵ4)
)

as ϵ → 0,

(2.109)

where the governing equation for ĀOut1
1 (S̄, T̂ ) will be the same as for ĀOut2

1 (S̄, T̂ ) but subject

to the relevant boundary conditions in the outer 1 region.

Inner Region

For the small volatility problem, we define an inner region through the scaling eβ̂T̂ S̄ = 1 + ϵŜ,

Ŝ = O(1). Letting P̄e(S̄, T̂ ; ϵ) = ϵP̂ In
e (Ŝ, T̂ ; ϵ)
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gives the inner problem

Ŝ ∈ (−∞,∞), T̂ ∈ (0,∞)
∂P̂ In

e

∂T̂
=
(
1 + ϵŜ

)2 ∂2P̂ In
e

∂Ŝ2
− α̂P̂ In

e , (2.110a)

subject to

at T̂ = 0 P̂ In
e (Ŝ, 0) =

(
−Ŝ
)+

. (2.110b)

Posing a regular expansion in powers of ϵ

P̂ In
e (Ŝ, T̂ ; ϵ) = e−α̂T̂

(
P̂ In
0 (Ŝ, T̂ ) + ϵP̂ In

1 (Ŝ, T̂ ) + ϵ2P̂ In
2 (Ŝ, T̂ ) +O(ϵ3)

)
as ϵ→ 0,

(2.111)

gives the following subproblems: for P̂ In
0 (Ŝ, T̂ )

Ŝ ∈ (−∞,∞), T̂ ∈ (0,∞)
∂P̂ In

0

∂T̂
=
∂2P̂ In

0

∂Ŝ2
, (2.112a)

subject to

at T̂ = 0 P̂ In
0 (Ŝ, 0) =

(
−Ŝ
)+

; (2.112b)

for P̂ In
1 (Ŝ, T̂ )

Ŝ ∈ (−∞,∞), T̂ ∈ (0,∞)
∂P̂ In

1

∂T̂
=
∂2P̂ In

1

∂Ŝ2
+ 2Ŝ

∂2P̂ In
0

∂Ŝ2
, (2.113a)

subject to

at T̂ = 0 P̂ In
1 (Ŝ, 0) = 0; (2.113b)

and for P̂ In
2 (Ŝ, T̂ )

Ŝ ∈ (−∞,∞), T̂ ∈ (0,∞)
∂P̂ In

2

∂T̂
=
∂2P̂ In

2

∂Ŝ2
+ 2Ŝ

∂2P̂ In
1

∂Ŝ2
+ Ŝ2 ∂

2P̂ In
0

∂Ŝ2
, (2.114a)

subject to

at T̂ = 0 P̂ In
2 (Ŝ, 0) = 0. (2.114b)
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As in the small-time case, though subject to a different spatial scaling, the problem (2.34a-

2.34b) has the similarity solution P̂ In
0 (Ŝ, T̂ ) =

√
T̂ h0(ζ) where ζ = Ŝ

2
√

T̂
and where h0(ζ) is

the solution to

h
′′

0 + 2ζh
′

0 − 2h0 = 0, (2.115a)

subject to

as ζ → ∞ T̂
1
2h0(ζ) → 0, (2.115b)

as ζ → −∞ h0(ζ) ∼ −2ζ. (2.115c)

This has the general solution

h0(ζ) = 2C01ζ + C02ierfc(ζ), (2.116)

where ierfc(ζ) is given by (2.39) and C01 and C02 are arbitrary constants determined using the

asymptotic behaviour

h0(ζ) ∼

2C01ζ +O
(
ζ−2e−ζ2

)
as ζ → ∞,

2(C01 − C02)ζ +O
(
ζ−2e−ζ2

)
as ζ → −∞,

(2.117)

which along with conditions (2.115b) and (2.115c) leads to

C01 = 0, C02 = 1 (2.118)

and therefore

h0(ζ) =
1√
π
e−ζ2

− ζerfc(ζ). (2.119)

The problem (2.113a-2.113b) has the similarity solution P̂ In
1 (Ŝ, T̂ ) = T̂ h1(ζ) where h1(ζ) is the

solution to

h
′′

1 + 2ζh
′

1 − 4h1 = −4ζh
′′

0 , (2.120a)
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subject to

as ζ → ∞ T̂ h1(ζ) → 0, (2.120b)

as ζ → −∞ T̂ h1(ζ) → 0. (2.120c)

This has the general solution [1]

h1(ζ) = C11(2ζ
2 + 1) + 2C12i

2erfc(ζ) +
ζ√
π
e−ζ2

, (2.121)

where i2erfc(ζ) is given by (2.50) and C11 and C12 are arbitrary constants determined using

the asymptotic behaviour

h1(ζ) ∼

C21

(
2ζ2 + 1

)
+O

(
ζe−ζ2

)
as ζ → ∞,

(C11 + C12)
(
2ζ2 + 1

)
+O

(
ζe−ζ2

)
as ζ → −∞,

(2.122)

which, along with conditions (2.120b) and (2.120c), leads to

C11 = C12 = 0 (2.123)

and therefore

h1(ζ) =
ζ√
π
e−ζ2

. (2.124)

The problem (2.114a-2.114b) has the similarity solution P̂ In
2 (Ŝ, T̂ ) = T̂

3
2h2(ζ) where h2(ζ) is

the solution to

h
′′

2 + 2ζh
′

2 − 6h1 = −4ζh
′′

1 − 4ζ2h
′′

0 , (2.125a)

subject to

as ζ → ∞ T̂
3
2h2(ζ) → 0, (2.125b)

as ζ → −∞ T̂
3
2h2(ζ) → 0. (2.125c)
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This has the general solution [1]

h2(ζ) =C21
1

3

(
ζ3 +

3

2
ζ

)
+ C22i

3erfc(ζ) +
e−ζ2

√
π

(
ζ4 − ζ2

3
+

1

12

)
, (2.126)

where i3erfc(ζ) is given by (2.57) and C21 and C22 are arbitrary constants which are determined

using the asymptotic behaviour

h2(ζ) ∼

C21
1
3

(
ζ3 + 3

2ζ
)
+O

(
ζ4e−ζ2

)
as ζ → ∞,

(C21 − C22)
1
3

(
ζ3 + 3

2ζ
)
+O

(
ζ4e−ζ2

)
as ζ → −∞,

(2.127)

which, along with the conditions (2.125b) and (2.125c), leads to

C21 = C22 = 0 (2.128)

and therefore

h2(ζ) =
e−ζ2

√
π

(
ζ4 − ζ2

3
+

1

12

)
. (2.129)

Hence we can write the small volatility inner series in terms of the inner variable Ŝ as

P̂ In(Ŝ, T̂ ; ϵ) = ϵ
√
T̂ h0

(
Ŝ

2
√
T̂

)
+ ϵ2T̂ h1

(
Ŝ

2
√
T̂

)
+ ϵ3T̂

3
2h2

(
Ŝ

2
√
T̂

)
+O(ϵ4) as ϵ→ 0,

(2.130)

where

h0(ζ) =
1√
π
e−ζ2

− ζerfc(ζ), (2.131a)

h1(ζ) =
ζ√
π
e−ζ2

, (2.131b)

h2(ζ) =
e−ζ2

√
π

(
ζ4 − ζ2

3
+

1

12

)
. (2.131c)

We note here that our choice of inner scaling (eβ̂T̂ S̄ = 1 + ϵŜ) differs from the equivalent

expression of Widdicks et al. [102] if dividends were included (S̄ = e−β̂T̂ + ϵŜ). This results

in a series of problems which have simple similarity solutions which do not require numerical

schemes such as the Crank-Nicolson scheme used therein.
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Matching Region

For the purpose of matching, we define a matching region through the introduction of an

intermediate variable S̃ such that eβ̂T̂ S̄ = 1+ ϵnS̃ and Ŝ = ϵn−1S̃ where 0 < n < 1. We define

the contribution of the inner series in the matching region as P̂ In
e (Ŝ, T̂ ; ϵ) = P̃ In

e (S̃, T̂ ; ϵ).

Using (2.43) we can write the first three terms of the inner series in terms of the intermediate

variable S̃ as

ϵ
√
T̂ h0

(
ϵn−1S̃

2
√
T̂

)
∼


1√
π
e−ϵ2(n−1) S̃2

4T̂ ψ̃0(S̃, T̂ ) as ϵ→ 0, S̃ > 0,

−ϵnS̃ + 1√
π
e−ϵ2(n−1) S̃2

4T̂ ψ̃0(S̃, T̂ ) as ϵ→ 0, S̃ < 0,

(2.132a)

where

ψ̃0(S̃, T̂ ) = ϵ3−2n 2T̂
3
2

S̃2
− ϵ5−4n 12T̂

5
2

S̃4
+ ϵ7−6n 120T̂

7
2

S̃6
+O(ϵ9−8n), (2.132b)

and

ϵ2T̂ h1

(
ϵn−1S̃

2
√
T̂

)
=

1√
π
e−ϵ2(n−1) S̃2

4T̂

(
ϵn+1 S̃T̂

1
2

2

)
as ϵ→ 0,

(2.133)

ϵ3T̂
3
2h2

(
ϵn−1S̃

2
√
T̂

)
=

1√
π
e−ϵ2(n−1) S̃2

4T̂

(
ϵ4n−1 S̃4

16T̂
1
2

− ϵ2n+1 S̃
2T̂

1
2

12
+ ϵ3

T̂
3
2

12

)
as ϵ→ 0.

(2.134)

As with the small-time problem, the series order breaks down for n ≤ 2
3 and is singular as

S̃ → 0 (S̄ → 1).

To find the outer expressions in terms of the intermediate variable we expand the terms of

(2.108) and we write the unknown function Φ0 as a Taylor series

Φ0

(
ϵ2T̂

ln (1 + ϵnS̃)

)
≃Φ0

(
ϵ2−n T̂

S̃

)
−
(
ϵ2T̂ + . . .

)
Φ′

0

(
ϵ2−n T̂

S̃

)
as ϵ→ 0, (2.135)

which produces the leading order behaviour in the matching region for S̃ > 0

P̃Out2
e (S̃, T̂ ) ∼ 1

(ϵS̃)
n
2

Φ0

(
ϵ2−n T̂

S̃

)
e−ϵ2n−2 S̃2

4T̂ e−ϵ3n−2 S̃3

4T̂ as ϵ→ 0 (2.136)
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and for S̃ < 0

P̃Out1
e (S̃, T̂ ) ∼e−α̂T̂ − S̄e−(α̂−β̂)T̂ +

1

(ϵS̃)
n
2

Φ0

(
ϵ2−n T̂

S̃

)
e−ϵ2n−2 S̃2

4T̂ e−ϵ3n−2 S̃3

4T̂ as ϵ→ 0.

(2.137)

Matching the form of (2.136) and (2.137) with the leading order inner matching condition

from (2.132a-2.132b) identifies that matching of the exponential terms is only possible for

n > 2
3 , which is consistent with our observation from the inner series, and suggests the unknown

function Φ has the form

Φ0

(
ϵ2T̂

ln (ebT̂ S̄)

)
=

2√
π

(
ϵ2T̂

ln (eβ̂T̂ S̄)

) 3
2

. (2.138)

We can therefore rewrite (2.107) as

ĀOut2
0 (S̄, T̂ ) = ĀOut1

0 (S̄, T̂ ) = e−α̂T̂ 2ϵ3T̂
3
2

√
π

(
eβ̂T̂ S̄

) 1
2

(ln (eβ̂T̂ S̄))2
, (2.139)

with the behaviour of ĀOut2
0 (S̄, T̂ ) and ĀOut1

0 (S̄, T̂ ) for n ∈ ( 23 , 1) given by

ÃOut2
0 (S̃, T̂ ) = ÃOut1

0 (S̃, T̂ ) ∼e
−α̂T̂

√
π

(
ϵ3−2n 2T̂

3
2

S̃2
+ ϵ3−n 3T̂

3
2

S̃
+O(ϵ3)

)
as ϵ→ 0. (2.140)

Therefore the contribution of the outer expressions to the matching region become, for S̃ > 0

P̃Out2
e (S̃, T̂ ) ∼ 1√

π
e−ϵ2(n−1) S̃2

4T̂

(
ϵ3−2n 2T̂

3
2

S̃2
+ ϵn+1 T̂

1
2 S̃

2
+ ϵ4n−1 S̃4

16T̂
1
2

+ ϵ3−n 3T̂
3
2

S̃

+O(ϵ2n+1)

)
as ϵ→ 0 (2.141)

and for S̃ < 0

P̃Out1
e (S̃, T̂ ) ∼ e−α̂T̂ − S̄e−(α̂−β̂)T̂ +

1√
π
e−ϵ2(n−1) S̃2

4T̂

(
ϵ3−2n 2T̂

3
2

S̃2
+ ϵn+1 T̂

1
2 S̃

2
+ ϵ4n−1 S̃4

16T̂
1
2

+ ϵ3−n 3T̂
3
2

S̃
+O(ϵ2n+1)

)
as ϵ→ 0, (2.142)

with the relative magnitude of the O(ϵ4n−1) and O(ϵ3−n) terms dependent whether n is greater

or less than 4
5 .

A comparison of the outer (2.141-2.142) and inner (2.132a-2.132b,2.133-2.134) matching con-
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ditions reveals a term of O
(
ϵ5−4n

)
missing from the outer expressions. For n > 2

3 this term

dominates the O
(
ϵ3−n

)
term and therefore these singular terms cannot be matched without

finding the next term in the outer expansions, ĀOut1
1 (S̄, T̂ ) and ĀOut2

1 (S̄, T̂ ).

Using the behaviour of Φ determined during matching at leading order (2.138), we can rewrite

problem for ĀOut2
1 (S̄, T̂ ) (2.103a-2.103c) as

S̄ ∈ (1,∞), T̂ ∈ (0,∞)
∂ĀOut2

1

∂T̂
= S̄

[
β̂ − 2S̄

∂a

∂S̄

]
∂ĀOut2

1

∂S̄
+

[
6

(ln (eβ̂T̂ S̄))2
− 1

4

]
,

(2.143a)

subject to

as S̄ → ∞ ĀOut2
1 (S̄, T̂ ) → 0, (2.143b)

at T̂ = 0 ĀOut1
1 (S̄, 0) = 0. (2.143c)

The problem (2.143a-2.143c) is a linear first order PDE which is amenable to the method of

characteristics, giving the solution

ĀOut2
1 (S̄, T̂ ) = −T̂

 6

(ln (eβ̂T̂ S̄))2
+
COut2

1

(
ln (eβ̂T̂ S̄)/T̂

)
ln (eβ̂T̂ S̄)

+
1

4

 , (2.144)

for some arbitrary function COut2
1

(
eβ̂T̂ ln (S̄)/T̂

)
. We note that the problem for ĀOut1

1 (S̄, T̂ )

yields the same solution as (2.144) up to an arbitrary function COut1
1

(
eβ̂T̂ ln (S̄)/T̂

)
.

We use (2.138) and (2.144) and the fact that ĀOut1
1 (S̄, T̂ ) = ĀOut2

1 (S̄, T̂ ) to write the outer

expressions for S̄ > 1 as

P̄Out2
e (S̄, T̂ ) ∼ 2ϵ3√

π

e−α̂T̂ T̂
3
2

(ln (eβ̂T̂ S̄))2
e−

(
ln (eβ̂T̂ S̄)

)2

4ϵ2T̂ ×(
1− ϵ2T̂

[
6

(ln (eβ̂T̂ S̄))2
+

COut2
1

ln (eβ̂T̂ S̄)
+

1

4

]
+O(ϵ4)

)
as ϵ→ 0 (2.145)

and for S̄ < 1 as

P̄Out1
e (S̄, T̂ ) ∼ e−α̂T̂ − S̄e−(α̂−β̂)T̂ +

2ϵ3√
π

e−α̂T̂ T̂
3
2

(ln (eβ̂T̂ S̄))2
e−

(
ln (eβ̂T̂ S̄)

)2

4ϵ2T̂ ×(
1− ϵ2T̂

[
6

(ln (eβ̂T̂ S̄))2
+

COut1
1

ln (eβ̂T̂ S̄)
+

1

4

]
+O(ϵ4)

)
as ϵ→ 0. (2.146)
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In terms of the intermediate variable, the contribution in the matching region of ĀOut1
1 (S̄, T̂ )

and ĀOut2
1 (S̄, T̂ ), is

ÃOut1
1 = ÃOut2

1 ∼ 1√
π
e−ϵ2(n−1) S̃2

4T̂

(
−ϵ5−4n 12T̂

5
2

S̃4
+ ϵ3−n 3T̂

3
2

S̃
+O(ϵ5−3n, ϵ2n+1)

)
as ϵ→ 0.

(2.147)

We observe that this contributes the term required to match with the inner matching expression

(2.132b) while determination of the arbitrary functions COut2
1 and COut1

1 requires matching at

O(ϵ5−3n) in the intermediate variable which is dominated by the O(ϵ7−6n) term in (2.132b)

which requires additional terms in the outer expansion to match and restricts the validity of

our matching expression to n ∈ ( 23 ,
4
5 ). As with the small-time case, the inability to match

the singular terms using a truncated series prohibits the formation of a non-singular uniform

expression.

We therefore define matching expressions for S̃ > 0 as

P̃Match2
e (S̃, T̂ ) ∼ 1√

π
e−ϵ2(n−1) S̃2

4T̂ ψ̃(S̃, T̂ ) as ϵ→ 0 (2.148)

and for S̃ < 0 as

P̃Match1
e (S̃, T̂ ) ∼ e−α̂T̂ − S̄e−(α̂−β̂)T̂ +

1√
π
e−ϵ2(n−1) S̃2

4T̂ ψ̃(S̃, T̂ ) as ϵ→ 0, (2.149)

where

ψ̃(S̃, T̂ ) ∼ ϵ3−2n 2T̂
3
2

S̃2
+ ϵn+1 T̂

1
2 S̃

2
+ ϵ4n−1 S̃4

16T̂
1
2

− 12ϵ5−4n T̂
5
2

S̃4
as ϵ→ 0, (2.150)

with the relative magnitude of the O(ϵ4n−1) and O(ϵ5n−4) terms depending on whether n is

greater than or less than 3
4 . We note that the transformation used for the small volatility

problem has removed the term at O(ϵ3−n) seen in the small-time problem.

For consistency, we define our final outer 1 and outer 2 expressions as

P̄Out2
e (S̄, T̂ ) ∼ 2ϵ3√

π

e−α̂T̂ T̂
3
2

(ln (eβ̂T̂ S̄))2
e−

(
ln (eβ̂T̂ S̄)

)2

4ϵ2T̂

(
1− ϵ2T̂

6

(ln (eβ̂T̂ S̄))2

)
as ϵ→ 0 (2.151)
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and for S̄ < 1 as

P̄Out1
e (S̄, T̂ ) ∼ e−α̂T̂ − S̄e−(α̂−β̂)T̂

+
2ϵ3√
π

e−α̂T̂ T̂
3
2

(ln (eβ̂T̂ S̄))2
e−

(
ln (eβ̂T̂ S̄)

)2

4ϵ2T̂

(
1− ϵ2T̂

6

(ln (eβ̂T̂ S̄))2

)
as ϵ→ 0, (2.152)

which contain the terms successfully matched with the inner region.

Comparison with the Closed-Form Solution

We can verify that the WKBJ expansion has captured the correct behaviour by looking at the

asymptotic behaviour of the European option price in the inner and outer regions. We can

represent European put option price under our small-volatility scalings as

P̄e(S̄, τ) =
e−α̂T̂

2

(
erfc

(
d̄2√
2

)
− (eβ̂T̂ S̄)erfc

(
d̄1√
2

))
, (2.153)

where

d̄1√
2
=

ln (eβ̂T̂ S̄)

2ϵ
√
T̂

+
ϵ
√
T̂

2
, (2.154a)

d̄2√
2
=

ln (eβ̂T̂ S̄)

2ϵ
√
T̂

− ϵ
√
T̂

2
. (2.154b)

In the outer regions, d̄1√
2
, d̄2√

2
→ −∞ as ϵ→ 0, for S̄ > 1, and d̄1√

2
, d̄2√

2
→ ∞ as ϵ→ 0, for S̄ < 1.

Using (2.43) together with (2.153) we derive the small-time behaviour in the outer regions for

S̄ > 1 as

P̄Out2
e (S̄, T̂ ) ∼ 2√

π

e−α̂T̂ ϵ3T̂
3
2

(ln (eβ̂T̂ S̄))2
e−

(
ln (eβ̂T̂ S̄)

)2

4ϵ2T̂(
1− ϵ2T̂

[
6

(ln (eβ̂T̂ S̄))2
+

1

ln (eβ̂T̂ S̄)
+

1

4

]
+O(ϵ4)

)
as ϵ→ 0 (2.155)

and for S̄ < 1 as

P̄Out1
e (S̄, T̂ ) ∼e−α̂T̂ − S̄e−(α̂−β̂)T̂ +

2√
π

e−α̂T̂ ϵ3T̂
3
2

(ln (eβ̂T̂ S̄))2
e−

(
ln (eβ̂T̂ S̄)

)2

4ϵ2T̂ ×(
1− ϵ2T̂

[
6

(ln (eβ̂T̂ S̄))2
+

1

ln (eβ̂T̂ S̄)
+

1

4

]
+O(ϵ4)

)
as ϵ→ 0, (2.156)
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which we observe are consistent with the outer expansions, and further suggests that we expect

COut1
1 = COut2

1 = 1.

For the inner region, defined by eβ̂T̂ S̄ = 1 + ϵŜ, we have

d̂1√
2
≃ Ŝ

2T̂
1
2

+
ϵ

2

(
Ŝ2

2T̂
1
2

+ T̂
1
2

)
+
ϵ2

6

Ŝ

T̂
1
2

as ϵ→ 0, (2.157a)

d̂2√
2
≃ Ŝ

2T̂
1
2

+
ϵ

2

(
Ŝ2

2T̂
1
2

− T̂
1
2

)
+
ϵ2

6

Ŝ

T̂
1
2

as ϵ→ 0 (2.157b)

and we use the Taylor expansions

erfc

(
d̂1√
2

)
≃ erfc

(
Ŝ

2T̂
1
2

)
+

(
ϵ

2

(
Ŝ2

2T̂
1
2

+ T̂
1
2

)
+

ϵ2

6

Ŝ

T̂
1
2

+ . . .

)
erfc′

(
Ŝ

2T̂
1
2

)
as ϵ → 0, (2.158)

erfc

(
d̂2√
2

)
≃ erfc

(
Ŝ

2T̂
1
2

)
+

(
ϵ

2

(
Ŝ2

2T̂
1
2

− T̂
1
2

)
+

ϵ2

6

Ŝ

T̂
1
2

+ . . .

)
erfc′

(
Ŝ

2T̂
1
2

)
as ϵ → 0, (2.159)

to derive the inner behaviour

P̂ In
e (S̄, τ) ∼ ϵ

2

(
−Ŝerfc

(
Ŝ

2T̂
1
2

)
− T̂

1
2

√
π
e
− Ŝ2

4T̂

)
− ϵ2

2

ŜT̂
1
2

√
π

e
− Ŝ2

4T̂ +O(ϵ4) as ϵ → 0, (2.160)

which can be shown to be equivalent to (2.130) using the substitution ζ = Ŝ

2T̂
1
2
and the results

(2.131a) and (2.131b).

The three term structure for the small-volatility problem is illustrated in Figure 2-3 and a

numerical comparison of the outer (2.145-2.146), inner (2.130) and matching (2.148-2.149) ex-

pressions with the closed-form solution (2.153) are given in Figure 2-4. As with the small-time

case, the Error graphs show that the inner expression goes to zero much faster than the closed-

form solution, whereas the outer expression captures the asymptotic behaviour in this limit.

We could also demonstrate that the assumption made by Widdicks et al. [102] and Firth et

al. [42] that the inner expansion for the European call option captures the correct outer region

behavior, does not hold in the out-of-the-money outer region eβ̂T̂ S̄ < 1. The breakdown of the

outer expansion near S̄ = e−β̂T̂ is also seen.
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S̄ = e−βτ (1 +O(τ
1
2 ))

S̄

P̄ (S̄, τ)

e−ατ

O
(
τ

1
2

)

O
(
τ

1
2

)

Outer 1 Inner Outer 2

Figure 2-3: A schematic showing the small-volatility asymptotic structure of the European
put option. The structure uses an O(

√
τ) inner region about eβτ S̄ = 1 in which the price

is O(
√
τ). For eβτ S̄ < 1 an outer region exists in which the price can be represented by an

algebraic series in powers of τ . For eβτ S̄ > 1 an second outer region exists in which the
price is exponentially small and can be shown to have the leading order asymptotic behaviour

P̄e ∼ 2e−ατ
√
π

τ
3
2 (eβτ S̄)

1
2

(ln (eβτ S̄))
2 e−

(ln (eβτ S̄))
2

4τ .

2.3 Large-Time Behaviour

The large-time behaviour for the European put option is non-trivial with the condition P̄e(S̄, τ) →

e−ατ as S̄ → 0, together with the convexity of the option price, indicating we should expect

exponentially small terms throughout the space domain. Further, in the perpetual limit the

European put option has zero value. This is obvious if we consider that maximum payoff of the

European put option is the strike, the discounted value of which is zero if it occurs at perpetuity.

Nonetheless, for large but finite times, the option will have a positive value and we may use

the approach of the previous section to identify the large-time asymptotic structure.

Introducing the artificial small parameter ϵ into the non-dimensional European put option

problem (2.2a-2.2d) through the time scaling τ = T̂
ϵ2 where T̂ = O(1) gives the large-time

problem

S̄ ∈ (0,∞), T̂ ∈ (0,∞) ϵ2
∂P̄e

∂T̂
= S̄2 ∂

2P̄e

∂S̄2
+ βS̄

∂P̄e

∂S̄
− αP̄e, (2.161a)
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(c) Option Price α = 10, β = 6, τ = 0.01
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Figure 2-4: Comparison of the small-volatility behaviour of the Black-Scholes-Merton price for
the European put option, with the derived inner (2.130), outer (2.151-2.152) and matching
(2.148-2.149) expressions for a range of values of α, β and τ . The prices in Figures 2.4(a),2.4(c)

& 2.4(e) are scaled by the exponential factor exp
((

ln
(
eβτ S̄

))2
/4τ
)
and a change in the asymp-

totic behaviour of the Black-Scholes-Merton price from the inner expression to the outer expres-
sion for large S̄ can be observed. The error plotted in Figures 2.4(b),2.4(d) & 2.4(f) is defined
as the difference between the value of the relevant expression and the Black-Scholes-Merton
price, expressed as a percentage of the Black-Scholes-Merton price.



CHAPTER 2. THE EUROPEAN OPTION PROBLEM 73

subject to

as S̄ → 0 P̄e(S̄, T̂ ) → e−α T̂
ϵ2 , (2.161b)

as S̄ → ∞ P̄e(S̄, T̂ ) → 0. (2.161c)

In comparison to the small-time problem, there seems little intuition over any regions involved

in the large-time solution. We know the solution approaches an exponentially small value in

the limiting case as the stock price approaches zero. We also require the problem to support

decaying solutions to satisfy the boundary condition as S̄ → ∞. A transformation of the form

P̄e(S̄, T̂ ) = e−α T̂
ϵ2 P̂e(X̄, T̂ ) where X̄ = ln

(
e(β−1) T̂

ϵ2 S̄
)
, gives the large-time problem

X̄ ∈ (−∞,∞), T̂ ∈ (0,∞) ϵ2
∂P̂e

∂T̂
=
∂2P̂e

∂X̄2
, (2.162a)

subject to

as X̄ → −∞ P̂e(X̄, T̂ ) → 1, (2.162b)

as X̄ → ∞ P̂e(X̄, T̂ ) → 0. (2.162c)

We further define the variable ζ = ϵX̂

2
√

T̂
, and let P̂e(X̄, T̂ ) = h(ζ, T̂ ), which gives the problem

ζ ∈ (−∞,∞), T̂ ∈ (0,∞) 4T̂
∂h

∂T̂
=
∂2h

∂ζ2
+ 2ζ

∂h

∂ζ
, (2.163a)

subject to

as ζ → −∞ h(ζ, T̂ ) → 1, (2.163b)

as ζ → ∞ h(ζ, T̂ ) → 0. (2.163c)

We note that, to this point, no approximations have been made. The steady state solution to

(2.163a-2.163c) is the similarity solution h(ζ, T̂ ) = hs(ζ) where

ζ ∈ (−∞,∞), T̂ ∈ (0,∞)
∂2hs
∂ζ2

+ 2ζ
∂hs
∂ζ

= 0, (2.164a)
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subject to

as ζ → −∞ hs(ζ) → 1, (2.164b)

as ζ → ∞ hs(ζ) → 0, (2.164c)

which has the solution

hs(ζ) =
1

2
erfc(ζ). (2.165)

We can therefore write the large-time behaviour of European option price in terms ζ as

P̄e(S̄, T̂ ) = P̃e(ζ, T̂ ; ϵ) where

P̃e(ζ, T̂ ; ϵ) =
1

2
e−α T̂

ϵ2 erfc(ζ). (2.166)

Comparison with the Closed-Form Solution

We again have reference to the closed-form solution to the European put option to validate our

expression. In non-dimensional variables, the large-time European put option price in terms of

the complementary error function is

P̄e(S̄, T̂ ; ϵ) =
1

2
e−

αT̂
ϵ2

[
erfc

(
d̄2√
2

)
− S̄e

βT̂

ϵ2 erfc

(
d̄1√
2

)]
, (2.167a)

where

d̄1√
2
=

1

2

(
ϵ ln (S̄)

T̂
1
2

+ (β + 1)ϵ−1T̂
1
2

)
, (2.167b)

d̄2√
2
=

1

2

(
ϵ ln (S̄)

T̂
1
2

+ (β − 1)ϵ−1T̂
1
2

)
, (2.167c)

Making the substitution X̄ = ln
(
e(β−1) T̂

ϵ2 S̄
)
and rearranging (2.88a,2.88b) gives

P̂e(X̄, T̂ ; ϵ) =
1

2
e−

αT̂
ϵ2

[
erfc

(
d̂2√
2

)
− eX̄e

T̂
ϵ2 erfc

(
d̂1√
2

)]
, (2.168a)



CHAPTER 2. THE EUROPEAN OPTION PROBLEM 75

where

d̂1√
2
=

ϵX̄

2T̂
1
2

+ ϵ−1T̂
1
2 , (2.168b)

d̂2√
2
=

ϵX̄

2T̂
1
2

. (2.168c)

Finally we let ζ = ϵX̄

2T̂
1
2
to give

P̂e(ζ, T̂ ; ϵ) =
1

2
e−

αT̂
ϵ2

[
erfc (ζ)− e2ζϵ

−1T̂
1
2 e

T̂
ϵ2 erfc

(
ζ + ϵ−1T̂

1
2

)]
. (2.169)

Using the asymptotic behaviour of the complementary error function given in (2.43), we can

see for −∞ < ζ ≪ −O(ϵ−1) that erfc(ζ) and erfc
(
ζ + ϵ−1T̂

1
2

)
are both O(1), but the term

e2ζϵ
−1T̂

1
2 e

T̂
ϵ2 is exponentially small and therefore the first term dominates. For 0 < ζ ≪

O(ϵ−1) erfc(ζ) remains O(1) and the product e2ζϵ
−1T̂

1
2 e

T̂
ϵ2 erfc

(
ζ + ϵ−1T̂

1
2

)
is exponentially

small, so again the first term dominates. For ζ = O(ϵ−1), both erfc(ζ) and erfc
(
ζ + ϵ−1T̂

1
2

)
are exponentially small, giving the leading order behaviour

P̂e(ζ, T̂ ; ϵ) ∼
1

2
e−

αT̂
ϵ2
e−ζ2

√
π

(
1

ζ
− 1

ζ + ϵ−1T̂
1
2

)
, for ϵ→ 0, ζ ≫ 0. (2.170)

As ζ → O
(
ϵ−1
)
it is clear that we can no longer ignore the second term and the rate at which

the expression approaches infinity is modified in this far-field region. We therefore have the

leading order behaviour of the large-time European put option as ϵ→ 0

P̂e(ζ, T̂ ; ϵ) ∼


1
2e

−αT̂
ϵ2 erfc (ζ) , for ζ ≪ O(ϵ−1),

1
2e

−αT̂
ϵ2

e−ζ2

√
π

ϵ−1T̂
1
2

ζ(ζ+ϵ−1T̂
1
2 )
, for ζ = O

(
ϵ−1
)
,

1
2e

−αT̂
ϵ2

e−ζ2

√
π

ϵ−1T̂
1
2

ζ2 , for ζ ≫ O(ϵ−1).

(2.171)

Comparison with (2.165) indicates that our large-time asymptotic expression breaks down when

ζ = O(ϵ−1) and that a modification is required in the far-field which changes the rate at which

the solution approaches zero. Furthermore, we may no longer expect the solution to be self-

similar in this region.

In the far field, hs(ζ) has the asymptotic behaviour

hs(ζ) ∼
e−ζ2

√
π

(
1

ζ
+ . . .

)
, as ζ → ∞ (2.172)
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we therefore look for the far-field behaviour h(ζ, T̂ ) = h̃(ζ, T̂ ) to have the form

h̃(ζ, T̂ ) =
2√
π
e−ζ2

(
a0(ζ)− a1(ζ, T̂ )

)
(2.173)

where a0 is the solution to

d2a0
dζ2

− 2ζ
da0
dζ

− 2a0 = 0, (2.174)

which yields

a0 ∼ 1

ζ
− 1

2ζ3
+ . . . as ζ → ∞ (2.175)

and a1 is the solution to

∂2a1
∂ζ2

− 2ζ
∂a1
∂ζ

− 2a1 = 4T̂
∂a1

∂T̂
. (2.176)

We expect the location of the far-field to occur for increasingly large S̄ as we approach perpetuity.

We therefore look for a transition region, in which the leading order is modified, through the

scaling Γ = ζ + f(T̂ )
δ(ϵ) where δ(ϵ) ≪ 1 and f(T̂ ) is a function to be determined which provides

the location of the transition region. Letting a1(ζ, T̂ ) = a1(Γ) gives the expression

∂2a1
∂Γ2

− 2ζ
∂a1
∂Γ

− 2a1 =
2

δ(ϵ)

(
2T̂

∂f

∂T̂
− f

)
∂a1
∂Γ

, (2.177)

which has non-trivial solutions for

1

f(T̂ )

∂f

∂T̂
=

1

2T̂
, (2.178)

or

f(T̂ ) = ĈT̂
1
2 , (2.179)

for some arbitrary constant C̃, with the scaling of f(T̂ ) allowing us to specify δ(ϵ) = ϵ. The

governing equation for a1(Γ) is now the same as for a0(ζ) and we therefore expect it to have

the solution

a1 ∼ 1

Γ
− 1

2Γ3
+ . . . (2.180)
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and therefore in the transition region

h̃(ζ, T̂ ) =
2√
π
e−ζ2

((
1

ζ
− 1

2ζ3
+ . . .

)
−
(
1

Γ
− 1

2Γ3
+ . . .

))
, (2.181)

or to leading order, in terms of ζ

h̃(ζ, T̂ ) ∼ 2√
π
e−ζ2

(
1

ζ
− 1

ζ + Ĉϵ−1T̂
1
2

)
, (2.182)

and therefore the leading order expression has the behaviour

h̃(ζ, T̂ ) ∼


2√
π
e−ζ2 1

ζ , for ζ ≪ ϵ−1,

2√
π
e−ζ2 C̃ϵ−1T̂

1
2

ζ(ζ+C̃ϵ−1T̂
1
2 )
, for ζ = O(ϵ−1),

2√
π
e−ζ2 C̃ϵ−1T̂

1
2

ζ2 , for ζ ≫ ϵ−1,

(2.183)

which gives the large-time asymptotic structure of the European put option problem in terms

of our non-dimensional time variable τ and similarity variable ζ

P̃e(ζ, τ) ∼


1
2e

−ατerfc (ζ) , for ζ ≪ O(
√
τ),

1
2e

−ατ e−ζ2

√
π

C̃
√
τ

ζ(ζ+C̃
√
τ)
, for ζ = O (

√
τ),

1
2e

−ατ e−ζ2

√
π

C̃
√
τ

ζ2 , for ζ ≫ O(
√
τ).

(2.184)

We note that this expression captures the required behaviour in the far-field seen in (2.171)

providing C̃ = 1.

A natural question is whether we could have predicted the existence of this far-field behaviour

without recourse to the closed-form expression. A clue to the answer lies in the form of the

solution in the far-field for ζ ≫ O(
√
τ), which we observe has the same form as the asymptotic

behaviour of the solution to the leading order small-time inner problem (2.63a). The far-field

behaviour in the large-time problem is the remnant effect of the smoothing of the option payoff

near expiry and this is the only way in which information from the small-time solution enters

the large-time problem.

A comparison of the large-time approximation with the Black-Scholes-Merton price is shown

in Figure 2-5. We observe that the approximation is indistinguishable from the closed-form

solution for surprisingly small values of τ and even for τ = 5 the approximation is reasonably

accurate. The existence of the transition region for large ζ is shown in Figure 2-6. We observe

that the transition expression in (2.183) captures the correct asymptotic behaviour of the closed-
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form solution (2.169) for large ζ.
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Figure 2-5: Comparison of the large-time behaviour of the Black-Scholes-Merton price for the
European put option (2.167a) with the similarity solution (2.165) for a range of values of τ and
for α = 10

9 .
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Figure 2-6: Comparison of the large-time behaviour of the Black-Scholes-Merton price for
the European put option (2.167a) with the similarity solution (2.165) and transition region
expression (2.182) for large values of the similarity variable ζ

(
= ln (eβτ S̄)/2

√
τ
)
and for the

parameters τ = 25, α = 10
9 . Due to the exponentially small magnitude of the terms involved,

prices have been scaled by the exponential factor
√
πeζ

2

. We observe a change in the asymptotic
behaviour of the Black-Scholes-Merton price from the similarity solution to the transition region
expression, beginning at ζ = O(τ

1
2 ).



Chapter 3

The American Option Problem

Using the framework developed in Chapter 2, we now investigate the asymptotic behaviour of

the American put option problem for small and large times to expiry. Several authors have

investigated the small-time behaviour of the optimal exercise boundary of the American put

option [6, 7, 30, 51, 73, 75, 76, 97], using a variety of techniques, but only Evans et al. [41] look

at all possible configurations of the risk-free rate and dividend yield. The large-time behaviour

has been discussed by Knessl [73], but not derived explicitly.

We move on to extend an analytic approximation developed to MacMillan [79] and Barone-

Adesi & Whaley [10] by posing the problem as a leading order term in a homotopic series, an

approach used recently by Zhu [106] in relation to the full American option problem. This

generalises the work of other authors such as Ju & Zhong [69] in looking for correction terms

to the MBAW approximation.

Non-dimensionalising the problem (1.22a-1.22f) using the same scalings used in Chapter 2 (2.1),

but with the addition of a non-dimensional American option price P̄a(S̄, τ) and optimal exercise

boundary S̄∗(τ) defined through the scalings

S∗(t) = KS̄∗(τ), Pa(S, t) = KP̄a(S̄, τ), (3.1)

gives the non-dimensional American put option problem

S̄ ∈ (S̄∗(τ),∞), τ ∈ (0, T )
∂P̄a

∂τ
= S̄2 ∂

2P̄a

∂S̄2
+ βS̄

∂P̄a

∂S̄
− αP̄a, (3.2a)

80
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subject to

as S̄ → ∞ P̄a(S̄, τ) → 0, (3.2b)

at τ = 0 P̄a(S̄, 0) = max
(
1− S̄, 0

)
, (3.2c)

S̄∗(0) = min (α/(α− β), 1), (3.2d)

at S̄ = S̄∗(τ) P̄a

(
S̄∗, τ

)
=
(
1− S̄∗) , (3.2e)

∂P̄a

∂S̄

∣∣∣∣
S̄∗

= −1. (3.2f)

We note that we may also choose to transform the problem into one with constant coefficients

through the use of the transformation X̄ = ln (S̄), or alternatively transform the problem on a

fixed semi-infinite domain using a Landau transformation of the form X̃ = ln
(
S̄/S̄∗(τ)

)
.

3.1 Small-Time Behaviour

The small-time asymptotic behaviour of the American option has been studied by a number

of authors, in particular Evans et al. [41] who derive the behaviour in the cases β < 0, β = 0

and β > 0 in the presence of dividends using both matched asymptotic expansions and via the

use of integral equations. Also of interest is the work of Knessl who looks at the behaviour in

various parameter limits of the American put in the absence of dividends [73] and the American

call in the presence of dividends [74]. Here we pose the small-time American option problem as

an extension to our work on the European put option in Chapter 2 which allows us to capture

the WKBJ terms in the relevant region. As much of this work is covered in previous papers,

though using different formulations of the problem, we omit some of the detail in the small-time

work.

Using the non-dimensional parameters given in (3.1) and introducing an artificially small pa-

rameter ϵ through the time scaling τ = ϵ2T̂ , where T̂ = O(1), gives the small-time problem

S̄ ∈ (S̄∗(T̂ ),∞), T̂ ∈ (0, T )
1

ϵ2
∂P̄a

∂T̂
= S̄2 ∂

2P̄a

∂S̄2
+ βS̄

∂P̄a

∂S̄
− αP̄a, (3.3a)
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subject to

as S̄ → ∞ P̄a(S̄, T̂ ) → 0, (3.3b)

at T̂ = 0 P̄a(S̄, 0) = max
(
1− S̄, 0

)
, (3.3c)

S̄∗(0) = min (α/(α− β), 1), (3.3d)

at S̄ = S̄∗(T̂ ) P̄a

(
S̄∗, T̂

)
=
(
1− S̄∗) , (3.3e)

∂P̄a

∂S̄

∣∣∣∣
S̄∗

= −1. (3.3f)

The addition of the optimal exercise boundary does not affect the inner (2.32a-2.32b) or outer

2 (2.13a-2.13c) problems derived for the European put option and therefore, for all values of

β, an outer 2 region exists for S̄ > 1 in which the American put option has the leading order

small-time behaviour

P̄Out2
a (S̄, τ) ∼ 2ϵ3√

π

T̂
3
2 S̄

1−β
2(

ln (S̄)
)2 e− (ln (S̄))2

4ϵ2T̂ as ϵ → 0. (3.4)

This has potential relevance in relation to numerical routines for American-style options, which

are typically performed on a truncated domain and required the specification of some behaviour

at the truncated boundary.

Also in common with the small-time European put option problem, an inner region exists for

S̄− 1 = O(ϵ) in terms of a similarity variable ζ =
(S̄−1)

2

2ϵT̂
1
2

which can be written as an expansion

of the form

P̂ In
a (ζ, T̂ ) = ϵT̂

1
2h0 (ζ) + ϵ2T̂ h1 (ζ) + ϵ3T̂

3
2h2 (ζ) +O(ϵ4) as ϵ→ 0, (3.5)

where

h0(ζ) =
1√
π
e−ζ2

− ζerfc(ζ), (3.6a)

h1(ζ) =
ζ√
π
e−ζ2

− β

2
erfc(ζ), (3.6b)

h2(ζ) =
e−ζ2

√
π

(
ζ4 − 1

3
(1 + 3β)ζ2 +

1

4

(
β(β − 1)− 1

3

))
− (α− β)ierfc(ζ). (3.6c)

The region structure for S̄ < 1 depends on the value of the non-dimensional cost of carry β,

which determines the initial position of the optimal exercise boundary as shown in Chapter 1.
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Additional Regions (β ≥ 0)

Other authors have observed that the optimal exercise boundary for the case β ≥ 0 is outside

the inner region for small times. In order to apply the boundary conditions, we look in a small

region about the boundary, which we call the boundary inner region, through the scaling

S̄ = S̄∗(T̂ ) + δ1(ϵ)Š (3.7)

and we pose the boundary expansion in the boundary inner region

S̄∗(T̂ ) = 1 + δ0(ϵ)Š
∗(T̂ ) + o (δ0(ϵ)) , (3.8)

where δ0, δ1 ≪ 1 are to be determined and Š, Š∗(T̂ ) = O(1). We note that knowledge that the

boundary lies outside of the inner region requires δ0 ≫ ϵ.

The boundary inner problem, P̄a(S̄, T̂ ) = P̌BIn
a (Š, T̂ ) becomes

Š ∈ (0,∞), T̂ ∈ (0, T )
1

ϵ2

[
∂P̌BIn

a

∂T̂
− δ0
δ1

dS̄∗

dT̂

∂P̌BIn
a

∂Š

]
=(1 + δ0Š

∗(T̂ ) + δ1Š)
2 1

δ21

∂2P̌BIn
a

∂Š2

+ β(1 + δ0Š
∗(T̂ ) + δ1Š)

1

δ1

∂P̌BIn
a

∂Š

− αP̌BIn
a , (3.9a)

subject to

at Š = 0 P̌BIn
a

(
0, T̂

)
= −δ0Š∗, (3.9b)

∂P̌BIn
a

∂Š

∣∣∣∣
Š=0

= −δ1. (3.9c)

The leading order balance in the governing equation (3.9a) determines δ0δ1 = ϵ2 and, along with

δ0 ≫ ϵ, gives the restriction ϵ2 ≪ δ1 ≪ ϵ. Combined with the boundary conditions (3.9b-3.9c),

this suggests a boundary inner expansion of the form

P̌BIn
a (Š, T̂ ; ϵ) =

ϵ2

δ1(ϵ)
P̌BIn
0 (Š, T̂ ) + δ1(ϵ)P̌

BIn
1 (Š, T̂ ) + δ2(ϵ)P̌

BIn
2 (Š, T̂ ) + o(δ2) (3.10)

where δ2 ≪ δ1, which gives a series of subproblems with the first two solutions

P̌BIn
0 (Š, T̂ ) = −Š∗, (3.11)

P̌BIn
1 (Š, T̂ ) = −Š, (3.12)
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while the next non-zero problem for β > 0 occurs when δ2 = δ21 ≪ ϵ2 and the solution to the

subproblem is

P̌BIn
2 (Š, T̂ ) = β

(
∂Š∗

∂T̂

)−1
(
Š −

(
∂Š∗

∂T̂

)−1 (
1− e−

∂Š∗
∂T̂

Š
))

. (3.13)

From our work on the small-time European problem in Chapter 2, the asymptotic behaviour

of the inner expression as ϵ→ 0 for S̄ < 1 is

P̄ In
a (S̄, T̂ ) ∼1− S̄ − βϵ2T̂ + (α− β)ϵ3T̂ (S̄ − 1) +O(ϵ4)

+
1

2
√
π

ϵ3T̂
3
2

(S̄ − 1)2
e−

(S̄−1)2

4ϵ2T̂ as ϵ→ 0. (3.14)

Writing (3.14) in terms of the boundary inner variable Š and the scaled optimal exercise bound-

ary correction term Š∗ gives

P̌ In
a (Š, T̂ ) ∼− ϵ2

δ1
Š∗ − δ1Š − βϵ2T̂ +

ϵ4

δ1
T̂ (α− β)Š∗ +O(δ1ϵ

4)

+
2√
π

δ21
ϵ

T̂
3
2

(Š∗)2
e−

(
ϵ2

δ1
S̄∗+δ1Š

)2

4ϵ2T̂ as ϵ→ 0. (3.15)

The first two terms in (3.18) match with the first two terms in the boundary inner series (3.11-

3.12), however we have identified that there are no further terms in the boundary inner larger

than O(δ21), where we have previously determined that ϵ2 ≪ δ1 ≪ ϵ. We therefore require

terms in (3.18) larger than O(ϵ4) to cancel, which determines that

2√
π

δ21
ϵ

T̂
3
2

(Š∗)2
e−

(
ϵ2

δ1
S̄∗+δ1Š

)2

4ϵ2T̂ = βϵ2T̂ as ϵ→ 0, (3.16)

and by taking logs and using

(
ϵ2

δ1
S̄∗+δ1Š

)2

4ϵ2T̂
→ ∞ as ϵ→ 0 we find the dominant behaviour

δ0S̄
∗(T̂ ) ∼ −

√
−4ϵ2T̂ ln (2

√
πβϵT̂

1
2 ) as ϵ→ 0. (3.17)

For β = 0 the third term in the boundary inner series occurs at O(δ1ϵ
2) while the inner series
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in the boundary inner variables is

P̌ In
a (Š, T̂ ) ∼− ϵ2

δ1
Š∗ − δ1Š +

ϵ4

δ1
T̂αŠ∗ +O(δ1ϵ

4)

+
2√
π

δ21
ϵ

T̂
3
2

(Š∗)2
e−

(
ϵ2

δ1
S̄∗+δ1Š

)2

4ϵ2T̂ as ϵ→ 0. (3.18)

Comparison of terms in this case requires

2√
π

δ21
ϵ

T̂
3
2

(Š∗)2
e−

(
ϵ2

δ1
S̄∗+δ1Š

)2

4ϵ2T̂ = − ϵ
4

δ1
T̂αŠ∗ as ϵ→ 0 (3.19)

and again taking logs and using

(
ϵ2

δ1
S̄∗+δ1Š

)2

4ϵ2T̂
→ ∞ as ϵ→ 0 gives the dominant behaviour

δ0Š
∗(T̂ ) ∼ −

√
−4ϵ2T̂ ln (4

√
παϵ2T̂ ) as ϵ→ 0. (3.20)

The structure of the problems for β ≥ 0 is shown in Figure 3-1.

Additional Regions (β < 0)

For β < 0 the starting point of the optimal exercise boundary is S̄∗(0) = α
α−β and we expect

an outer 1 region which bridges from the inner region to a region near the boundary. Posing

an expansion in powers of ϵ2

P̄Out1
a (S̄, T̂ ; ϵ) = P̄Out1

0 (S̄, T̂ ) + ϵ2P̄Out1
1 (S̄, T̂ ) + ϵ4P̄Out1

2 (S̄, T̂ ) +O(ϵ6), (3.21)

gives a series of problems with solutions

P̄Out1
0 (S̄, T̂ ) = 1− S̄, (3.22)

P̄Out1
1 (S̄, T̂ ) =

[
(α− β)S̄ − α

]
T̂ , (3.23)

P̄Out1
2 (S̄, T̂ ) =

[
α2 − (α− β)2S̄

] T̂ 2

2
. (3.24)

We note that P̄Out1
0 (S̄, T̂ ) is the intrinsic value of the American option in the outer 1 region

obtainable via early exercise, while the first correction term P̄Out1
1 (S̄, T̂ ) is positive for the case

β < 0 provided S̄ > α
α−β which is consistent with the definition of the outer 1 region.

Though we could investigate the existence of WKBJ terms in a similar vein to our work on the

European problem, these would be dominated by the algebraic terms in the outer 1 region and



CHAPTER 3. THE AMERICAN OPTION PROBLEM 86

S̄

P̄a(S̄, τ)

P̄a = 1

o(τ
1
2 )

O(τ
1
2 (ln τ)

1
2 )

S̄ = 1

O(τ
1
2 )

S̄∗(τ)

Inner

Boundary
Inner

Outer

Figure 3-1: A schematic showing the small-time asymptotic structure of the American put
option for β ≥ 0. The asymptotic structure uses an O(

√
τ) inner layer about S̄ = 1 in which

the price is O(
√
τ). The optimal exercise boundary lies at O(

√
τ ln (τ)) from the initial starting

point, S̄∗(0) = 1, which is outside of the inner region. For S̄ > 1 a second outer region exists in
which the price is exponentially small and can be shown to have the leading order asymptotic

behaviour P̄a ∼ 2e−ατ
√
π

τ
3
2 S̄

1−β
2

(ln (S̄))
2 e−

(ln (S̄))2

4τ

are not required for the determination of the leading order behaviour of the optimal exercise

boundary. Since we do not perform the same matching exercise as in Chapter 2, we omit the

WKBJ terms in this region.

To apply the boundary conditions, we consider a boundary inner region local to the initial

location of the optimal exercise boundary S̄∗(0), via the introduction of a boundary inner

variable Š such that P̌BIn(Š, T̂ ) = P̄ (S̄, T̂ ) with the scalings

S̄ = S̄∗(0)
(
1 + ϵŠ

)
, (3.25)

S̄∗(T̂ ) = S̄∗(0)
(
1 + ϵŠ∗(T̂ )

)
, (3.26)
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which leads to the problem

Š ∈ (Š∗(T̂ ),∞), T̂ ∈ (0, T )
∂P̌BIn

a

∂T̂
=(1 + ϵŠ)2

∂2P̌BIn
a

∂Š2
+ ϵβ(1 + ϵŠ)

∂P̌BIn
a

∂Š
− ϵ2αP̌BIn

a ,

(3.27a)

subject to

at Š = Š∗ P̌BIn
a

(
Š∗, T̂

)
= 1− S̄∗(0)− ϵS̄∗(0)Š∗, (3.27b)

∂P̌BIn
a

∂Š

∣∣∣∣
Š∗

= −ϵS̄∗(0), (3.27c)

as Š → ∞ P̌BIn
a

(
Š, T̂

)
∼ 1− S̄∗(0)− ϵS̄∗(0)Š + ϵ3αŠT̂ , (3.27d)

where the matching condition (3.27d) is derived by writing the terms outer 1 expressions (3.22-

3.24) in terms of the boundary inner variable Š.

Posing an expansion in powers of ϵ

P̌BIn
a (Š, T̂ ; ϵ) = P̌BIn

0 (Š, T̂ ) + ϵP̌BIn
1 (Š, T̂ ) + ϵ2P̌BIn

2 (Š, T̂ ) + ϵ3P̌BIn
3 (Š, T̂ ) +O(ϵ4), (3.28)

gives a series of subproblems with trivial solutions for the first three terms

P̌BIn
0 (Š, T̂ ) = 1− S̄∗(0), (3.29)

P̌BIn
1 (Š, T̂ ) = −S̄∗(0)Š, (3.30)

P̌BIn
2 (Š, T̂ ) = 0, (3.31)

while P̌BIn
3 (Š, T̂ ) is the solution to

Š ∈ (Š∗(T̂ ),∞), T̂ ∈ (0, T )
∂P̌BIn

3

∂T̂
=
∂2P̌BIn

3

∂Š2
+ αŠ, (3.32a)

subject to

at Š = Š∗ P̌BIn
3

(
Š∗, T̂

)
= 0, (3.32b)

∂P̌BIn
3

∂Š
= 0, (3.32c)

as Š → ∞ P̌BIn
3

(
Š, T̂

)
∼ αŠT̂ . (3.32d)
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The problem (3.32a-3.32d) has the similarity solution

P̌BIn
3 = T̂

3
2h3(ζ), ζ =

Š

2T̂
1
2

, (3.33)

where

h3(ζ) = Č30
1

3

(
ζ3 +

3ζ

2

)
+ Č31i

3erfc(ζ) + 2αζ (3.34)

and conditions (3.32b) and (3.32d) require

Č30 = 0, Č31 = − 2αζ∗

i3erfc(ζ∗)
, (3.35)

where ζ∗ =
S̄∗
1

2 , and condition (3.32c) leads to the transcendental expression for ζ∗

2ζ∗ − 1 = 2
√
π(ζ∗)3e(ζ

∗)2erfc(ζ∗), (3.36)

which has the numerical solution ζ∗ = −0.45172.

The small-time asymptotic behaviour of the optimal exercise boundary for β < 0 is therefore

S̄∗(T̂ ) ∼ α

α− β

(
1− 0.90344ϵT̂

1
2

)
as ϵ→ 0. (3.37)

The structure of the problem for β < 0 is shown in Figure 3-2.

Summary of Results

The small-time asymptotics of the American option problem are derived in scaled variables in

(3.17), (3.20) & (3.37) and are summarised below using the non-dimensional variables (3.1) as

τ → 0

S̄∗(τ) ∼


1−

√
−4τ ln (2

√
πβτ

1
2 ) for β > 0,

1−
√

−4τ ln (4
√
π(α− β)τ) for β = 0,

α
α−β

(
1− 0.90344τ

1
2

)
for β < 0,

(3.38)

which are consistent with the work of previous authors.
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S̄

P̄a(S̄, τ)

P̄a = 1

O(τ
1
2 )

S̄ = 1

O(τ
1
2 )

S̄∗(0)

Boundary
Inner

InnerOuter 2 Outer 1

Figure 3-2: A schematic showing the small-time asymptotic structure of the American put
option for β < 0. The asymptotic structure uses an O(

√
τ) inner layer about S̄ = 1 in which

the price is O(
√
τ). The optimal exercise boundary lies at O(

√
τ) from the initial starting

point, S̄∗(0) = α
α−β . For S̄ < 1 an outer region exists which bridges from the inner region to a

region O(
√
τ) about the boundary, in which the price can be represented as an algebraic series

in powers of τ . For S̄ > 1 a second outer region exists in which the price is exponentially small

and can be shown to have the leading order asymptotic behaviour P̄a ∼ 2e−ατ
√
π

τ
3
2 S̄

1−β
2

(ln (S̄))
2 e−

(ln (S̄))2

4τ

3.2 Large-Time Behaviour

Unlike the European option problem, the steady-state solution to the American option is non-

trivial, and is identified by Merton [84] as one of the situations in which American options

have a closed-form solution. To our knowledge, the asymptotic behaviour of the American put

option problem in the approach to perpetuity is not derived in the literature, though Knessl

[73] does show that the difference between the large-time optimal exercise boundary and the

perpetual boundary is at least exponentially small.
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3.2.1 The Perpetual American Put Option

The perpetual American put option problem is the steady-state solution to the problem (3.2a-

3.2f), or

S̄ ∈ (S̄∗
∞,∞) S̄2 ∂

2P̄∞
a

∂S̄2
+ βS̄

∂P̄∞
a

∂S̄
− αP̄∞

a = 0, (3.39a)

subject to

as S̄ → ∞ P̄∞
a (S̄) → 0, (3.39b)

at S̄ = S̄∗
∞ P̄∞

a

(
S̄∗) = (1− S̄∗

∞
)
, (3.39c)

∂P̄∞
a

∂S̄

∣∣∣∣
S̄∗
∞

= −1. (3.39d)

The large S̄ condition (3.39b) requires the decaying solution to the ODE (3.39a)

P̄∞
a (S̄) = Ā∞

0 S̄
λ∞
− , (3.40)

where

λ∞− =
−(β − 1)−

√
(β − 1)2 + 4α

2
, (3.41)

while the early exercise conditions (3.39c) and (3.39d) can be used to find the expressions for

Ā∞
0 and the perpetual optimal exercise boundary S̄∗

∞

Ā∞
0 =

(
1− S̄∗

∞
)

(S̄∗
∞)λ

∞
−
, (3.42)

S̄∗
∞ =

λ∞−
λ∞− − 1

, (3.43)

which leads to the non-dimensional price for a perpetual American option

P̄∞
a (S̄) =

(
1− S̄∗

∞
)( S̄

S̄∗
∞

)λ∞
−

. (3.44)

No-arbitrage requires that P̄∞(S̄) forms an upper bound on P̄a(S̄, T̂ ), while S̄
∗
∞ forms a lower

bound on S̄∗(τ).
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3.2.2 Perturbative Behaviour to the Perpetual Problem

To investigate the perturbative behaviour to the steady-state solution, we introduce the small

parameter 0 < ϵ2 ≪ 1 through the time scaling

τ =
T̂

ϵ2
, (3.45)

where T̂ = O(1). Using the spatial transformation X̄ = ln (S̄) and defining P̄a(S̄, T̂ ) =

P̂a(X̄, T̂ ), leads to the large-time problem

X̄ ∈ (ln (S̄∗(T̂ )),∞), T̂ ∈ (0,∞) ϵ2
∂P̂a

∂T̂
=
∂2P̂a

∂X̄2
+ (β − 1)

∂P̂a

∂X̄
− αP̂a, (3.46a)

subject to

as X̄ → ∞ P̂a

(
X̄, T̂

)
→ 0, (3.46b)

at X̄ = ln (S̄∗(T̂ )) P̂a

(
ln (S̄∗(T̂ )), T̂

)
= 1− S̄∗(T̂ ), (3.46c)

∂P̂a

∂X̄

∣∣∣∣
ln (S̄∗(T̂ ))

= −S̄∗(T̂ ). (3.46d)

Under X̄, the perpetual option solution (3.44-3.43) is P̄∞
a (S̄, T̂ ) = P̂∞

a (X̄, T̂ ) where

P̂∞
a (X̄) =

(
1− S̄∗

∞
)
eλ

∞
− (X̄−ln (S̄∗

∞)). (3.47)

Outer Region

In the outer region, which we define by X̄ − ln (S̄∗
∞) = O(1) and P̂a(X̄, T̂ ) = P̂Out

a (X̄, T̂ ; ϵ), a

regular expansion in powers of ϵ fails to capture the perturbative behaviour to the perpetual

problem, which is consistent with the findings of Knessl [73]. Instead we consider a WKBJ

expansion of the form

P̂Out
a (X̄, T̂ ; ϵ) = P̂∞(X̄) + P̂Out

0 (X̄)e−
λT̂
ϵ2 + o

(
e−

λT̂
ϵ2

)
as ϵ→ 0, (3.48a)

S̄∗(T̂ ) = S̄∗
∞ + S̄∗

0e
−λT̂

ϵ2 + o
(
e−

λT̂
ϵ2

)
as ϵ→ 0, (3.48b)

with the form of the controlling factor obvious from (3.46a). Expanding the boundary conditions

about the perpetual option price and optimal exercise boundary gives the problem for the
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correction terms
(
P̄0, S̄

∗
0

)
X̄ ∈

(
ln (S̄∗

∞),∞
)
, T̂ ∈ (0,∞)

∂2P̂Out
0

∂X̄2
+ (β − 1)

∂P̂Out
0

∂X̄
− (α− λ) P̂Out

0 = 0, (3.49a)

subject to

as X̄ → ∞ P̂Out
0

(
X̄
)
→ 0, (3.49b)

at X̄ = ln (S̄∗
∞) P̂Out

0

(
ln (S̄∗

∞)
)
= 0, (3.49c)

∂P̂Out
0

∂X̄

∣∣∣∣
ln (S̄∗

∞)

= (λ∞− − 1)S̄∗
0 . (3.49d)

The form of the solution to the ODE (3.49a) depends on the magnitude of λ, which determines

the nature of the roots of the characteristic equation. The boundary conditions, together with

the restriction that the correction term should be strictly negative, suggest we look for the

repeated root solution given by

λ =
(β − 1)2

4
+ α, (3.50)

which leads to

P̂Out
0 (X̄) = (λ∞− − 1)S̄∗

0e
− β−1

2 (X̄−ln (S̄∗
∞)) (X̄ − ln (S̄∗

∞)
)
. (3.51)

Thus we have the large-time behaviour in the outer region

P̂Out
a (X̄, T̂ ) ∼

(
1− S̄∗

∞
)
eλ

∞
− (X̄−ln (S̄∗

∞))

+ (λ∞− − 1)S̄∗
0e

−λT̂
ϵ2 e−

β−1
2 (X̄−ln (S̄∗

∞)) (X̄ − ln (S̄∗
∞)
)

as ϵ → 0, (3.52)

where the value of S̄∗
0 is determined by matching back to the optimal exercise boundary at

earlier times, with the constraint S̄∗
0 > 0 required as the steady-state boundary forms a lower

bound on the finite time boundary. This implies (λ∞− − 1)S̄∗
0 < 0, which is consistent with the

requirement that the perpetual option price is an upper bound on the finite time price.

We highlight two areas of concern in relation to the expression derived in (3.52). The first is

that it only satisfies the large-X̄ condition (3.49b) for β > 1. Secondly, the restriction that

the option price must be strictly positive indicates our expansion breaks down if the correction

term is of comparable magnitude to the perpetual option prices. We therefore look to see if

a region containing such behaviour exists, and whether a modification of the problem in this
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region leads to a solution which satisfies (3.49b).

Transition Region

To identify whether the correction term can become of similar magnitude to the perpetual

option price we look for some value Z̄(T̂ ) = X̄ − ln (S̄∗
∞) which satisfies the transcendental

expression

eλ0Z̄(T̂ ) = −kŜ∗
0e

−λT̂
ϵ2 Z̄(T̂ ) as ϵ→ 0, (3.53)

with k as yet undetermined, but restricted to k > 1 in order that P̂Out
a

(
Z̄(T̂ ), T̂

)
is positive,

and where

λ0 = λ∞− +
β − 1

2
, (3.54)

Ŝ∗
0 = (λ∞− − 1)2S̄∗

0 . (3.55)

Noting that λ0 < 0, the location of Z̄(T̂ ) has the asymptotic behaviour

Z̄(T̂ ) ∼− λT̂

λ0ϵ2
+

1

λ0
ln

(
kŜ∗

0

λT̂

λ0ϵ2

)
− ϵ2

λ0λT̂
ln

(
kŜ∗

0

λT̂

λ0ϵ2

)
+O

(
ϵ4
(
ln

(
1

ϵ2

))2
)

as ϵ→ 0.

(3.56)

Locally to Z̄(T̂ ) the expansions (3.48a) and (3.48b) break down and we look for a transition

region by introducing the small parameter 0 < δ(ϵ) ≪ 1 and transition region variable Ȳ

through the scaling

X̄ − ln (S̄∗
∞) = Z̄(T̂ ) + δ(ϵ)Ȳ , (3.57)

where Ȳ = O(1).

In terms of the transition region variable, the outer expression is

P̌Out
a (Ȳ , T̂ ; ϵ) =

Ŝ∗
0

λ0(λ∞
− − 1)

e
−

λλ∞
− T̂

λ0ϵ2

(
kŜ∗

0
λT̂

λ0ϵ2

)− β−1
2λ0

[
(k − 1)

(
λT̂

ϵ2

)
− (k − 1)λ∞

− ln

(
kŜ∗

0
λT̂

λ0ϵ2

)

+ λ

(
kλ∞

− +
β − 1

2

)
Ȳ T̂

(
δ

ϵ2

)
+O

(
ϵ2
(
ln

(
1

ϵ2

))2
)]

as ϵ → 0, (3.58)

where the constraint k > 1 ensures that the price is positive in the transition region. We note
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that the first two terms in the series for Z̄(T̂ ), together with the restriction on k, are required

to produce a positive price in the transition region. This suggests a transition region expression

with the form

P̄a(X̄, T̂ ) =
Ŝ∗
0

λ0(λ∞− − 1)
e
−

λλ∞
− T̂

λ0ϵ2

(
kŜ∗

0

λT̂

λ0ϵ2

)− β−1
2λ0

P̌Tran
a (Ȳ , T̂ ; ϵ) as ϵ→ 0, (3.59)

which, noting that

∂Z̄

∂T̂
∼ − λ

λ0ϵ2
+

1

λ0T̂
+

1

λ0

ϵ2

λT̂ 2
ln

(
kŜ∗

0

λT̂

λ0ϵ2

)
+O

(
ϵ2
)

as ϵ→ 0, (3.60)

gives the transition region problem

Ȳ ∈ (−∞,∞) , T̂ ∈ (0,∞) ϵ2
∂P̌Tran

a

∂T̂
=

1

δ2
∂2P̌Tran

a

∂Ȳ 2
+

1

δ

(
(β − 1)

2
− λ∞− +O(ϵ2)

)
∂P̌Tran

a

∂Ȳ

− β − 1

2

(
λ∞− − ϵ2

λ0T̂

)
P̌Tran
a , (3.61a)

subject to

Ȳ → −∞ P̌Tran
a ∼ P̂Out

a . (3.61b)

Expression (3.58) suggests P̌Tran
a (Ȳ , T̂ ; ϵ) has the form

P̌Tran
a (Ȳ , T̂ ; ϵ) =

1

ϵ2
P̌Tran
0 (Ȳ , T̂ ) + ln

(
kŜ∗

0

λT̂

λ0ϵ2

)
P̌Tran
1 (Ȳ , T̂ ) +

(
δ

ϵ2

)
P̌Trans
2 (Ȳ , T̂ )

+O

(
ϵ2
(
ln

(
1

ϵ2

))2
)

as ϵ→ 0, (3.62)

which leads to subproblems with solutions

P̌Tran
0 (Ȳ , T̂ ) = (k − 1)λT̂ , (3.63a)

P̌Tran
1 (Ȳ , T̂ ) = −(k − 1)λ∞− , (3.63b)

P̌Tran
2 (Ȳ , T̂ ) = λ

(
kλ∞− +

β − 1

2

)
Ȳ T̂ , (3.63c)

where the solution to the problem for P̌Trans
2 requires δ ≪ ϵ.



CHAPTER 3. THE AMERICAN OPTION PROBLEM 95

Far-Field

To complete the structure, we look for a far-field region beyond the transition region, defined

through the scaling X̄− X̄∗
∞ = Z̄(T̂ )+ Ȳ2, where Ȳ2 = O(1), in which the price approaches zero

as Ȳ2 → ∞. Motivated by the transition region expression, we write the far-field expression in

the form

P̄a(X̄, T̂ ) =
Ŝ∗
0

λ0(λ∞− − 1)
e
−

λλ∞
− T̂

λ0ϵ2

(
kŜ∗

0

λT̂

λ0ϵ2

)− β−1
2λ0

P̃Far
a (Ȳ2, T̂ ; ϵ) as ϵ→ 0, (3.64)

for some general series in ϵ, which gives the far-field problem

Ȳ2 ∈ (0,∞) , T̂ ∈ (0,∞) ϵ2
∂P̃Far

a

∂T̂
=
∂2P̃Far

a

∂Ȳ 2
2

+

(
(β − 1)

2
− λ∞− +O(ϵ2)

)
∂P̃Far

a

∂Ȳ2

− β − 1

2

(
λ∞− − ϵ2

λ0T̂

)
P̃Far
a , (3.65a)

subject to

Ȳ2 → ∞ P̃Far
a

(
Ȳ2, T̂

)
→ 0. (3.65b)

The leading-order terms in the transition region expression suggest posing the series

P̃Far
a (Ȳ2, T̂ ; ϵ) =

1

ϵ2
P̃Far
0 (Ȳ2, T̂ ) + ln

(
kŜ∗

0

λT̂

λ0ϵ2

)
P̃Far
1 (Ȳ2, T̂ ) +O

(
ϵ2 ln

(
1

ϵ2

))
as ϵ→ 0,

(3.66)

which leads to the following subproblems: for P̃Far
0 (Ȳ2, T̂ )

Ȳ2 ∈ (0,∞) , T̂ ∈ (0,∞)
∂2P̃Far

0

∂Ȳ 2
2

+

(
(β − 1)

2
− λ∞−

)
∂P̃Far

0

∂Ȳ2
− β − 1

2
λ∞− P̃

Far
0 = 0,

(3.67a)

subject to

Ȳ2 → ∞ P̃Far
0

(
Ȳ2, T̂

)
→ 0; (3.67b)
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and for P̃Far
1 (Ȳ2, T̂ )

Ȳ2 ∈ (0,∞) , T̂ ∈ (0,∞)
∂2P̃Far

1

∂Ȳ 2
2

+

(
(β − 1)

2
− λ∞−

)
∂P̃Far

1

∂Ȳ2
− β − 1

2
λ∞− P̃

Far
1 = 0,

(3.68a)

subject to

Ȳ2 → ∞ P̃Far
1

(
Ȳ2, T̂

)
→ 0. (3.68b)

These problems have the general solutions

P̃Far
0 (Ȳ2, T̂ ) = C̃Far

00 (T̂ )e−
β−1
2 Ȳ2 +

(
C̃Far

01 (T̂ )− C̃Far
00 (T̂ )

)
eλ

∞
− Ȳ2 , (3.69a)

P̃Far
1 (Ȳ2, T̂ ) = C̃Far

10 (T̂ )e−
β−1
2 Ȳ2 +

(
C̃Far

11 (T̂ )− C̃Far
10 (T̂ )

)
eλ

∞
− Ȳ2 , (3.69b)

for undetermined coefficients C̃Far
00 , C̃Far

01 , C̃Far
10 , C̃Far

11 . The large Ȳ2 conditions (3.67b), (3.68b)

do not specify any constraint on the coefficients for β > 1, however for β ≤ 1 we have

C̃Far
00 (T̂ ) = C̃Far

10 (T̂ ) = 0. (3.70)

The remaining coefficients are determined by matching back to the transition region, which we

do by writing Ȳ2 = δȲ in the far-field expression, that is P̃Far
a (Ȳ2, T̂ ) = P̂Far

a (Ȳ , T̂ ) where for

β > 1

P̂Far
a (Ȳ , T̂ ; ϵ) =

1

ϵ2

(
C̃far

01 + δ
(
λ∞− C̃

Far
01 − λ0C̃

Far
00

)
Ȳ + . . .

)
+ ln

(
kŜ∗

0

λT̂

λ0ϵ2

)(
C̃Far

11 + δ
(
λ∞− C̃

Far
11 − λ0C̃

Far
10

)
Ȳ + . . .

)
+O

(
1

ϵ2
ln
(
ϵ2
))

(3.71)

and for β ≤ 1

P̂Far
a (Ȳ , T̂ ) =

1

ϵ2

(
C̃Far

01 + δλ∞− C̃
Far
01 Ȳ + . . .

)
+ ln

(
kŜ∗

0

λT̂

λ0ϵ2

)(
C̃Far

11 + δλ∞− C̃
Far
11 Ȳ + . . .

)
+O

(
ϵ2 ln

(
1

ϵ2

))
. (3.72)
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Matching (3.71) with (3.58) for β > 1 occurs for any 0 < δ ≪ ϵ with

C̃Far
01 (T̂ ) = (k − 1)λT̂ , (3.73a)

C̃Far
00 (T̂ ) = −λT̂ , (3.73b)

C̃Far
11 (T̂ ) = −(k − 1)λ∞− , (3.73c)

while the matching of C̃Far
10 (T̂ ) requires additional terms in the transition region expansions,

but can be shown to be C̃Far
10 (T̂ ) = λ∞− .

Matching (3.72) with (3.58) for β ≤ 1 only occurs for exponentially small δ with

C̃Far
01 (T̂ ) = (k − 1)λT̂ , (3.74a)

C̃Far
00 (T̂ ) = 0, (3.74b)

C̃Far
11 (T̂ ) = −(k − 1)λ∞− , (3.74c)

while the matching of C̃Far
10 (T̂ ) requires additional terms in the transition region expansions,

but can be shown to be C̃Far
10 (T̂ ) = 0.

Specification of the parameter k, which translates the location of the transition region, is

determined by the behaviour of the option price as it approaches from an earlier time.

The large-time asymptotic structure of the American put option problem is shown in Figure 3-3,

while a comparison of the large-time asymptotic expressions for the optimal exercise boundary

with the benchmark MOL numerics are shown in Figure 3-4.

3.3 An Analytic Approximation for the American Put Op-

tion

Having derived the small- and large-time asymptotic behaviour of the American put option we

now look to bridge the gap to include intermediate cases. Our starting point is the uniformly

valid approximation to the full American option problem derived by MacMillan [79] in the

absence of dividends, which was extended to include a general cost-of-carry by Barone-Adesi

& Whaley [10]. We shall call this approach the MBAW approximation, with the associated

boundary and price approximations termed the MBAW boundary and MBAW price.

Attempts have previously been made to extend this work by looking for correction terms to the

MBAW boundary or price, notably Ju & Zhong [69]. As yet no attempt has been made to look

for series solutions to both the price and the boundary using the MBAW boundary and price as
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X̄

P̄a(X̄, τ)

1− S̄∗

O(τ)

O(δ)

ln (S∗
∞) + Z̄(τ)

Outer
Transition
Region Far Field

ln (S̄∗)

O(e−τ )
1− S̄∗

∞

ln (S∗
∞)

P̄∞(X̄)

Figure 3-3: A schematic showing the large-time asymptotic structure of the American put
option. The asymptotic structure has an outer expression which is valid up to X̄ − ln (S̄∗

∞) =
O(τ), where a transition region is required to match into a decaying solution in the far-field. In
order to match with the far-field expression, the width of the transition region is determined to
be o(

√
τ) for β > 1 and is at least exponentially small in the case β ≤ 1. The perturbative terms

to the perpetual option price and optimal exercise boundary are both exponentially small.

a basis, and this is the aim of the work in this section. To derive the subproblems for the terms

in our series, we utilise an approach used by Zhu [106] in developing what he terms a closed-

form solution to the American put option problem, but in practice is an infinite series which

requires truncation to be determined numerically. We first decompose the American put option

price into the equivalent European option price plus a premium which reflects the value of the

holder’s right to exercise early, as discussed in Chapter 1. Using the same time transformation

and assuming the same form for the premium as that used in the MBAW approximation, we

pose the premium as a homotopic series in an artificial parameter p, with the MBAW problem

corresponding to the case p→ 0, and the full American option premium problem corresponding

to the case p→ 1.

3.3.1 The American Option Premium

The difference between the European and American put option price can be thought of as a

premium a holder is prepared to pay for the right to exercise early and receive the intrinsic value.
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Figure 3-4: The large-time asymptotic behavior of the optimal exercise boundary of the Amer-
ican put option obtained from (3.48b). The constant S̄∗

0 is determined by matching back into
the optimal exercise boundary at τ = O(1).

Since the European option forms a lower bound on the American option price, the premium is

always positive for τ > 0. Mathematically, because both the European and American option

prices satisfy the Black-Scholes-Merton PDE in the unexercised region, the American option

premium must also satisfy the same PDE, though subject to different boundary conditions.

This result is adopted in the body of work looking at approximations to the PDE [10, 69, 79]

and also in the integral formulation of this decomposition developed by Kim [72], Jacka [65]

and Carr et al. [28].

We define the non-dimensional American put option premium p̄a(S̄, τ) through

P̄a(S̄, τ) = P̄e(S̄, τ) + p̄a(S̄, τ), (3.75)
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where the premium solves

S̄ ∈ (S̄∗(τ),∞), τ ∈ (0, T )
∂p̄a
∂τ

= S̄2 ∂
2p̄a
∂S̄2

+ βS̄
∂p̄a
∂S̄

− αp̄a, (3.76a)

subject to

as S̄ → ∞ p̄a(S̄, τ) → 0, (3.76b)

at τ = 0 p̄a(S̄, 0) = 0, (3.76c)

S̄∗(0) = min (α/(α− β), 1), (3.76d)

at S̄ = S̄∗(τ) p̄a
(
S̄∗, τ

)
=
(
1− S̄∗)− P̄e

(
S̄∗, τ

)
, (3.76e)

∂p̄a
∂S̄

∣∣∣∣
S̄∗

= −1− ∂P̄e

∂S̄

∣∣∣∣
S̄∗
. (3.76f)

3.3.2 The Approximation of MacMillan and Barone-Adesi & Whaley

To obtain a uniformly valid approximation, MacMillan [79] proposed decomposing the American

option price into the European option price plus an early exercise premium (3.75). A time

transformation h(τ) is introduced, where

h(τ) = 1− e−ατ , (3.77)

while the premium is assumed to have the form

p̄a(S̄, τ) = h(τ)ḡ(S̄, h), (3.78)

which transforms the problem described in (3.76a-3.76d) into

S̄ ∈ (S̄∗(h),∞), h ∈ (0, 1) S̄2 ∂
2ḡ

∂S̄2
+ βS̄

∂ḡ

∂S̄
− α

h

(
ḡ + h(1− h)

∂ḡ

∂h

)
= 0, (3.79a)
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subject to

as S̄ → ∞ ḡ(S̄, h) → 0, (3.79b)

at h = 0 hḡ(S̄, 0) = 0, (3.79c)

S̄∗(0) = min (α/(α− β), 1), (3.79d)

at S̄ = S̄∗(h) hḡ
(
S̄∗, h

)
=
(
1− S̄∗)− P̄e(S̄

∗, h), (3.79e)

h
∂ḡ

∂S̄

∣∣∣∣
S̄∗

= −1− ∂P̄e

∂S̄

∣∣∣∣
S̄∗
. (3.79f)

The key assumption made by MacMillan is that the term ḡ ≪ h(1− h) ∂ḡ∂h , which is motivated

by h being small near expiry, 1−h being small far from expiry and the product h(1−h) having

a maximum value of 1
4 . Neglecting this term, and denoting the price approximation under this

assumption as ḡ0(S̄, h) and the boundary approximation as S̄∗
0 (h), results in the problem

S̄ ∈ (S̄∗
0 (h),∞), h ∈ (0, 1) S̄2 ∂

2ḡ0
∂S̄2

+ βS̄
∂ḡ0
∂S̄

− α

h
ḡ0 = 0, (3.80a)

subject to

as S̄ → ∞ ḡ0(S̄, h) → 0, (3.80b)

at h = 0 hḡ0(S̄, 0) = 0, (3.80c)

S̄∗
0 (0) = min (α/(α− β), 1), (3.80d)

at S̄ = S̄∗
0 (h) hḡ0(S̄

∗
0 , h) =

(
1− S̄∗

0

)
− P̄e(S̄

∗
0 , h), (3.80e)

h
∂ḡ0
∂S̄

∣∣∣∣
S̄∗
0

= −1− ∂P̄e

∂S̄

∣∣∣∣
S̄∗
0

. (3.80f)

The assumption used to generate this approximation has the following implications:

• the governing equation is transformed from a PDE into a second order ODE, with the

time variable h entering the approximation as a parameter in the ODE and via the early

exercise conditions;

• together with the optimal exercise boundary this admits three conditions to be imposed to

fully specify the problem, and therefore the problem for the approximation is overspecified;

and

• the large S̄ (3.80b) and early exercise conditions (3.80e) & (3.80f) may therefore be

imposed upon the solution, but the asymptotic behaviour of the solution will need to be
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checked to confirm whether or not it satisfies the conditions (3.80c) & (3.80d).

The problem (3.80a-3.80f) has solution

ḡ = A00(h)

(
S̄

S̄∗
0

)λ−

, (3.81)

where

λ− =
−(β − 1)−

√
(β − 1)2 + 4α

h

2
, (3.82)

A00(h) =

(
1− S̄∗

0

)
− P̄e(S̄

∗
0 , h)

h
(3.83)

and where the MBAW boundary S̄∗
0 (h) is the solution to the transcendental expression

λ−(h)
(
1− S̄∗

0 − P̄e(S̄
∗
0 , h)

)
= −S̄∗

0 − S̄∗
0

∂P̄e

∂S̄

∣∣∣∣
S̄∗
0

. (3.84)

To investigate whether the asymptotic properties of the boundary approximation are consistent

with those of the full problem (3.38) we look at the corresponding behaviour of (3.84) but, for

ease of comparison, we perform this analysis in the time variable τ .

Small-Time Asymptotics of the MBAW Boundary

To look at the small-time asymptotic behaviour of the MBAW boundary, we again introduce

a small parameter ϵ ≪ 1 via the time scaling τ = ϵ2T̂ where T̂ = O(1), under which the

small-time behaviour of λ−(T̂ ) is simply

λ−(T̂ ) ∼ − 1

ϵT̂
1
2

− β − 1

2
− ϵT̂

1
2

4

(
(β − 1)2

2
− α

)
+O

(
ϵ3
)

as ϵ→ 0, (3.85)

and the European put option evaluated at S̄∗
0 , which we define as P̄e(S̄

∗
0 , T̂ ; ϵ) = P̄ ∗

e , is

P̄ ∗
e =

1

2

(
e−αϵ2T̂ erfc

(
d̄∗2√
2

)
− S̄∗

0e
−(α−β)ϵ2T̂ erfc

(
d̄∗1√
2

))
, (3.86a)

where

d̄∗1√
2
=

ln (S̄∗
0 )

2ϵT̂
1
2

+
(β + 1)

2
ϵT̂

1
2 , (3.86b)

d̄∗2√
2
=

ln (S̄∗
0 )

2ϵT̂
1
2

+
(β − 1)

2
ϵT̂

1
2 (3.86c)
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and from our work on the small-time asymptotics of the European option problem (2.90), if

d̄1√
2
, d̄2√

2
→ −∞ as ϵ→ 0 then (3.86a) has the behaviour

P̄ ∗
e ∼(1− S̄∗

0 ) + ϵ2T̂
(
(α− β)S̄∗

0 − α
)
+
ϵ4T̂ 2

2

(
α2 − (α− β)2S̄∗

0

)
+O(ϵ6)

+
2√
π

ϵ3T̂
3
2

(ln (S̄∗
0 ))

2

e−
(ln (S̄∗

0 ))
2

4ϵ2T̂

(S̄∗
0 )

β−1
2

(
1 +O

(
ϵ2
))

as ϵ→ 0 (3.87)

and therefore

1− S̄∗
0 − P̄ ∗

e ∼− ϵ2T̂
(
(α− β)S̄∗

0 − α
)
− ϵ4T̂ 2

2

(
α2 − (α− β)2S̄∗

0

)
−O(ϵ6)

− 2√
π

ϵ3T̂
3
2

(ln (S̄∗
0 ))

2

e−
(ln (S̄∗

0 ))
2

4ϵ2T̂

(S̄∗
0 )

β−1
2

(
1 +O

(
ϵ2
))

as ϵ→ 0. (3.88)

We define the European put option evaluated at S̄∗
0 as ∂P̄e

∂S̄

∣∣
S̄∗
0
=

∂P̄∗
e

∂S̄
, so

∂P̄ ∗
e

∂S̄
= −1

2
e−(α−β)ϵ2T̂ erfc

(
d̄∗1√
2

)
(3.89a)

and therefore

−S̄∗
0

(
1 +

∂P̄ ∗
e

∂S̄

)
∼− (α− β)S̄∗

0ϵT̂ −O
(
ϵ4
)

as ϵ→ 0, ln (S̄∗
0 ) < 0. (3.89b)

From (3.85), (3.88) and (3.89b), the most obvious leading order behaviour comes at O(ϵ) on

the LHS of (3.84) which requires

S̄∗
0 =

α

α− β
. (3.90)

To find the perturbative behaviour we look for a new solution of the form S̄∗
0 = α

α−β + δ1(ϵ)S̄
∗
1 ,

where δ1(ϵ) ≪ α
α−β and S̄∗

1 = O(1), giving

−S̄∗
0

(
1 +

∂P̄ ∗
e

∂S̄

)
∼− αϵ2T̂ +O

(
ϵ4, δ1ϵ

2
)

as ϵ→ 0 (3.91)

and

1− S̄∗
0 − P̄ ∗

e ∼(α− β)δ1ϵ
2S̄∗

1 T̂ +O(ϵ4) as ϵ→ 0, (3.92)
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from which we identify that the dominant balance occurs at O(ϵ2) provided δ1 = ϵ and

S̄∗
1 = − α

α− β
T̂

1
2 . (3.93)

We can therefore identify a small-time asymptotic solution to (3.84) for ln (S̄∗
0 ) < 0 as

S̄∗
0 =

α

α− β

(
1− ϵT̂

1
2

)
as ϵ→ 0, (3.94)

which holds providing β < 0, which we note is consistent with the corresponding asymptotic

behaviour of the full problem.

As β → 0, α
α−β → 1 and for β ≥ 0 we therefore look for an asymptotic expression of the form

S̄∗
0 = 1 + δ1(ϵ)S̄

∗
1 , where δ1(ϵ) ≪ 1 and S̄∗

1 = O(1). We note that, although ln (S̄∗
0 ) → 0 as

ϵ→ 0, our work on the full problem suggests we should expect the ratio
ln (S̄∗

0 )

4ϵ2T̂
→ −∞ as ϵ→ 0.

The components of our transcendental expression now become

1− S̄∗
0 − P̄ ∗

e ∼ βϵ2T̂ +O(ϵ4, ϵ2δ1)−
2√
π

ϵ3T̂
3
2

(δ1S̄∗
1 )

2
e−

(δ1S̄∗
1 )

2

4ϵ2T̂ as ϵ→ 0 (3.95)

and

−S̄∗
0

(
1 +

∂P̄ ∗
e

∂S̄

)
∼− (α− β)ϵ2T̂ +O(ϵ4, ϵ2δ1) as ϵ→ 0. (3.96)

For β > 0, the dominant balance for S̄∗
1 comes at O(ϵ) from (3.95) and (3.85), requiring

βϵ2T̂ =
2√
π

ϵ3T̂
3
2

(δ1S̄∗
1 )

2
e−

(δ1S̄∗
1 )

2

4ϵ2T̂ , (3.97)

or

δ1S̄
∗
1 = −

√
−4ϵ2T̂ ln

(
2
√
πβϵT̂

1
2

)
(3.98)

and therefore the small-time asymptotic behaviour of the MBAW boundary is

S̄∗
0 ∼ 1−

√
−4ϵ2T̂ ln

(
2
√
πβϵT̂

1
2

)
as ϵ→ 0, (3.99)

which we observe is the same as the asymptotic behaviour of the full problem (3.38).

For β = 0, the dominant balance for S̄∗
1 comes at O(ϵ) from (3.96) with the algebraic terms all



CHAPTER 3. THE AMERICAN OPTION PROBLEM 105

zero. We therefore require

αϵ2T̂ =
2√
π

ϵ2T̂

(δ1S̄∗
1 )

2
e−

(δ1S̄∗
1 )

2

4ϵ2T̂ as ϵ→ 0, (3.100)

or

δ1S̄
∗
1 = −

√
−4ϵ2T̂ ln

(
2
√
πβϵT̂

1
2

)
(3.101)

and therefore the small-time asymptotic behaviour of the MBAW boundary is

S̄∗
0 ∼ 1−

√
−4ϵ2T̂ ln

(
2
√
παϵ2T̂

)
as ϵ→ 0, (3.102)

which we observe is consistent with the asymptotic behaviour of the full problem (3.38) up to

a constant in the logarithmic term. A comparison of the small-time asymptotic behaviour of

the MBAW boundary with that of the full problem is shown in Figure 3-5.

We have determined that the MBAW boundary has the same asymptotic form as that of the full

problem in the small-time limit, and therefore satisfies the condition (3.80d). For the condition

at expiry (3.80c), we observe from the solution (3.81) that hg(S̄, h) → 0 as h → 0, provided

hA00(h) → 0. We observe from the form of A00(h) (3.83) that this is satisfied by the condition

(3.88).

Large-Time Asymptotics of the MBAW Boundary

To investigate the large-time asymptotic behaviour of (3.84), we introduce the small parameter

H = e−ατ under which λ−(H) is

λ(H) ∼ λ∞ − λ1H +O
(
H2
)

as H → 0, (3.103)

where

λ1 =
α√

α+ (β−1)2

4

(3.104)

and the European put option evaluated at S̄∗
0 is

P̄ ∗
e =

H

2

[
erfc

(
d̄∗2√
2

)
−H− β

α S̄∗
0erfc

(
d̄∗1√
2

)]
, (3.105a)
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Figure 3-5: Small-time behaviour of the MBAW Boundary S̄∗
0 (τ). The relevant full problem

asymptotics (3.38) are included together with the small-time asymptotics of S̄∗
0 (τ) derived in

(3.94),(3.99) & (3.102).

where

d̄∗1√
2
=

√
α

2

ln (S̄∗
0 )(

ln
(

1
H

)) 1
2

+
(β + 1)

2
√
α

(
ln

(
1

H

)) 1
2

, (3.105b)

d̄∗2√
2
=

√
α

2

ln (S̄∗
0 )(

ln
(

1
H

)) 1
2

+
(β − 1)

2
√
α

(
ln

(
1

H

)) 1
2

(3.105c)

and the European put option delta evaluated at S̄∗
0 is

∂P̄ ∗
e

∂S̄
= −1

2
H

α−β
α erfc

(
d̄∗1√
2

)
. (3.106)
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Collecting terms in H, the large-time expression for (3.84) becomes

(
λ∞ − (λ∞ − 1)S̄∗

0

)
+

(
λ1(1− S̄∗

0 )−
λ∞
2

erfc

(
d̄∗2√
2

))
H

−(λ∞ − 1)
S̄∗
0

2
erfc

(
d̄∗1√
2

)
H

α−β
α +O

(
H2, HH

α−β
α

)
= 0 as H → 0. (3.107)

We note that, since β ∈ (−∞, α], H
α−β
α dominates H for β > 0 and is O(1) when β = α.

Conversely, H dominates H
α−β
α for β < 0. In looking for the dominant balance however, one

must consider the effect of β on the coefficient at the relevant order. For example, although

on initial inspection it appears that the term at O
(
H

α−β
α

)
contributes at O(1) for β = α,

erfc
(

d̄∗
1√
2

)
is exponentially small and therefore the leading order behaviour is

S̄∗
0 =

λ∞
λ∞ − 1

as H → 0, (3.108)

for all values of β, which we observe, as expected, to be the perpetual boundary S̄∗
∞ (3.43).

Posing S̄∗
0 = S̄∗

∞ + S̄∗
1 (H) and expanding the complementary error functions as

erfc

(
d̄∗1√
2

)
= erfc

(
d̄∗1∞√

2

)
+O

 S̄∗
1(

ln
(

1
H

)) 1
2

 , (3.109)

erfc

(
d̄∗2√
2

)
= erfc

(
d̄∗2∞√

2

)
+O

 S̄∗
1(

ln
(

1
H

)) 1
2

 , (3.110)

where

d̄∗1∞√
2

=

√
α

2

ln (S̄∗
∞)(

ln
(

1
H

)) 1
2

+
(β + 1)

2
√
α

(
ln

(
1

H

)) 1
2

 , (3.111)

d̄∗2∞√
2

=

√
α

2

ln (S̄∗
∞)(

ln
(

1
H

)) 1
2

+
(β − 1)

2
√
α

(
ln

(
1

H

)) 1
2

 , (3.112)

gives

−(λ∞ − 1)S̄∗
1 +

(
λ1

λ∞ − 1
− λ∞

2
erfc

(
d̄∗2∞√

2

))
H

−λ∞
2

erfc

(
d̄∗1∞√

2

)
H

α−β
α +O

(
H2,HH

α−β
α , S̄∗

1H, S̄
∗
1H

α−β
α

)
= 0 as H → 0. (3.113)

As discussed previously, it would appear that dominant balance occurs at O(H) for β ≤ 0 or

O
(
H

α−β
β

)
for β > 0. However, we observe from (3.105b) that

d̄∗
1√
2
→ ∞ for β ≫ −1 and
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therefore erfc
(

d̄∗
1√
2

)
is exponentially small for β > 0. Thus the first correction term to S̄∗

∞ ∀β

is

S̄∗
1 =

1

λ∞ − 1

(
λ1

λ∞ − 1
− λ∞

2
erfc

(
d̄∗2∞√

2

))
H as H → 0 (3.114)

and therefore to one correction term, the large-time asymptotic behaviour of S̄∗
0 is

S̄∗
0 ∼ S̄∗

∞ − 1

λ∞ − 1

(
λ1

λ∞ − 1
− λ∞

2
erfc

(
d̄∗2∞√

2

))
H as H → 0. (3.115)

We observe from Figure (3-6) that the correction term is negative as we approach the perpet-

ual limit which is a violation of no-arbitrage for a put option as it drives the optimal exercise

boundary below the perpetual boundary. Also included in this figure is the asymptotic approx-

imation formed by including the term of O
(
H

α−β
β

)
in (3.113) which we observe captures the

asymptotic behaviour more accurately as we move away from perpetuity.

3.3.3 Ju & Zhong’s Extension

In deriving the MBAW approximation, an assumption is made that a term in the governing

equation is small and can be ignored at leading order. This results in a second order ODE with

a simple closed-form solution. A natural extension seems to be to pose a series in an appropriate

parameter and to look for higher order terms based around the MBAW approximation.

An attempt towards this end was made by Ju & Zhong [69] although they only look for a single

correction term to the MBAW price, with no attempt made to look for a correction to the

MBAW boundary. The mis-specification of the problem is hidden in the boundary conditions,

which are not provided in the paper, and the resulting solution fails to satisfy the high contact

condition of the American option problem. Although the price approximation is typically more

accurate than the MBAW price, particularly for intermediate maturities, it exhibits singular

behaviour at small times as shown in Figure 3-7.

In the following section, we use a homotopic series approach adopted by Zhu [106], to correctly

formulate the correction terms to the MBAW approximation.

3.3.4 An Analytic Approximation for the American Put Option

To extend the MBAW approximation, we look for a suitable expansion of both option price

and optimal exercise boundary, with the MBAW price and MBAW boundary as the leading

order term in the series. One possible method of generating terms in the series is adopted by
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Figure 3-6: Large-time asymptotic behaviour of the MBAW Boundary S̄∗
0 . The 1 and 2-Term

asymptotic results are obtained in (3.115) while the perpetual boundary is derived in (3.43).
We observe that the MBAW Boundary is not monotonic and crosses the perpetual boundary
which is a violation of no-arbitrage.

Zhu [106] who poses the full American option problem as a homotopic series in an artificial

parameter p, which corresponds to the full American option problem when p = 1. Successive

terms in the homotopic series are generated by differentiating the problem the requisite number

of times with respect to p. Zhu claims this leads to a closed-form solution to the American

option problem, though since the exact solution requires the computation of an infinite number

of terms, it is not clear to us that the solution is any more a closed-form than the work of Geske

& Johnson [49].

We are aware of some criticism by practitioners of the ease of numerical implementation of

Zhu’s solution and the time taken to achieve a convergent solution, which Zhu demonstrates

numerically in his paper. However the technique does provide a framework for generating a
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Figure 3-7: Singular behaviour occuring in Ju & Zhong’s extension to the MBAW price approx-
imation (r = 0.05, D = 0.02, σ = 0.3).

series of terms based around the MBAW approximation, and we adopt that approach here.

Starting with the problem (3.80a-3.80f) we use a Landau transformation of the form

X̃ = ln

(
S̄

S̄∗(h)

)
, (3.116)

under which the decomposition of the American option price is

P̃a(X̃, h) = P̄e(S̄, h) + hg̃(X̃, h), (3.117)

where the European option price is written in terms of the spatial variable S̄ as it will afford

some convenience in determining the European option Greeks in our numerical work. Using

Zhu’s approach, we introduce an artificial parameter p into the forcing term of the governing

equation, such that we have the premium corresponding to the full American option problem



CHAPTER 3. THE AMERICAN OPTION PROBLEM 111

for p = 1. The problem becomes

X̃ ∈ (0,∞), h ∈ (0, 1)
∂2g̃

∂X̃2
+ (β − 1)

∂g̃

∂X̃
− α

h
g̃ = pα(1− h)

[
∂g̃

∂h
− 1

S̄∗
dS̄∗

dh

∂g̃

∂X̃

]
,

(3.118a)

subject to

as X̃ → ∞ g̃(X̃, h; p) → 0, (3.118b)

at h = 0 hg̃(X̃, 0; p) = 0, (3.118c)

S̄∗(0; p) = min (α/(α− β), 1), (3.118d)

at X̃ = 0 hg̃(X̃, h; p) =
(
1− S̄∗(h; p)

)
− P̄e(S̄

∗(h; p), h), (3.118e)

h
∂g̃(X̃, h; p)

∂X̃

∣∣∣∣
X̃=0

= −S̄∗(h; p)

(
1 +

∂P̄e

∂S̄

∣∣∣∣
S̄∗(h;p)

)
. (3.118f)

We propose the analytic expansions for g̃(X̃, h; p) and S̄∗(h; p)

g̃(X̃, h; p) =

∞∑
n=0

pn

n!
g̃n(X̃, h), (3.119a)

S̄∗(h; p) =
∞∑

n=0

pn

n!
S̄∗
n(h), (3.119b)

which allows us to derive a sequence for the pairs of problems (g̃n(X̃, h), S̄
∗
n(h)) where

g̃n(X̃, h) =
∂ng̃

∂pn

∣∣∣∣
p=0

, (3.120a)

S̄∗
n(h) =

∂nS̄∗

∂pn

∣∣∣∣
p=0

. (3.120b)

We also introduce a function F̂ (X̃, h; p) given by

F̃ (X̃, h; p) =
∂g̃

∂h
− 1

S̄∗
dS̄∗

dh

∂g̃

∂X̃
(3.121)

so that pα(1− h)F̃ (X̃, h; p) is the forcing term for the base problem.

As with the assumption which gave rise to the MBAW approximation, the problem changes

nature when p = 0, with the time dependence of the solution no longer contained as a variable

with the governing equation, but entering the problem as a parameter in the ODE and the

boundary conditions. After using the conditions (3.118b), (3.118e) & (3.118f) to fully specify
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the leading order problem, we are unable to impose the conditions (3.118c) & (3.118d). We are

limited therefore to verifying that the solution satisfies these conditions after determination,

either analytically or numerically. In the following problems we omit these conditions and

mention them where relevant.

The (g̃n, S̄
∗
n) Problem

The problem for the general nth term in the series can be found by differentiating the problem

(3.118a-3.118f) n times and evaluating at p = 0 to give

X̃ ∈ (0,∞), h ∈ (0, 1)
∂2g̃n

∂X̃2
+ (β − 1)

∂g̃n

∂X̃
− α

h
g̃n = nα(1− h)F̂n−1(X̃, h; 0), (3.122a)

subject to

as X̃ → ∞ g̃n(X̃, h) → 0, (3.122b)

at X̃ = 0 hg̃n(X̃, h) =
(
1− S̄∗

n(h)
)
− ∂nP̄ ∗

e

∂pn

∣∣∣∣
p=0

, (3.122c)

h
∂g̃n

∂X̃

∣∣∣∣
X̃=0

= −S̄∗
n

(
1 +

∂P̄e

∂S̄

∣∣∣∣
S̄∗
0

)
−

n∑
i=1

(
n

i

)
S̄∗
n−i

∂i

∂pi

(
∂P̄e

∂S̄

∣∣∣∣
S̄∗

) ∣∣∣∣
p=0

,

(3.122d)

where for convenience of notation, P̄ ∗
e represents the European option price evaluated at S̄∗(h)

and the subscript in F̂n−1 represents the number of times the derivative of this term is taken

with respect to p before evaluation at p = 0.

Ideally we would like to be able to solve the general expression for the nth term and iterate

between successive terms in our series and investigate the convergence of the series, either

analytically or numerically. The difficulty in this respect is that the number of terms generated

by differentiation of the forcing term and boundary conditions with respect to p increases

exponentially and we have not found a general iterative scheme to cope with this. The steps

we have made so far are included in the Discussion, but this remains further work to be done.

Nonetheless, we can derive the first three terms in our series explicitly and investigate the

performance of the resulting uniform approximation.

For convenience, a summary of the formulae required to calculate each term is included in Table

3.1 at the end of this Chapter, while the relevant Greeks are derived in Appendix A.
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The (g̃0, S̄
∗
0) Problem

Setting p = 0 in (3.118a-3.118f) gives the problem

X̃ ∈ (0,∞), h ∈ (0, 1)
∂2g̃0

∂X̃2
+ (β − 1)

∂g̃0

∂X̃
− α

h
g̃0 = 0, (3.123a)

subject to

as X̃ → ∞ g̃0(X̃, h) → 0, (3.123b)

at X̃ = 0 hg̃0(0, h) =
(
1− S̄∗

0

)
− P̄e(S̄

∗
0 , h), (3.123c)

h
∂g̃0

∂X̃

∣∣∣∣
X̃=0

= −S̄∗
0 − S̄∗

0

∂P̄e

∂S̄

∣∣∣∣
S̄∗
0

. (3.123d)

This problem is identical to that leading to the MBAW approximation and has the solution

g̃0 = A00(h)e
λ−X̃ , (3.124)

where λ−(h) and A00(h) are given by (3.82) and (3.83) respectively and where the leading order

boundary approximation is the solution to the transcendental equation (3.84). Our previous

work in this Chapter has demonstrated that the leading order boundary satisfies the condition

(3.118d) and also exhibits the same small-time asymptotic behaviour of the full problem, though

it is not monotonic and breaches the perpetual option boundary for large times. The leading

order price approximation meanwhile satisfies the condition (3.118c).

The (g̃1, S̄
∗
1) Problem

The problem for the first correction term is

X̃ ∈ (0,∞), h ∈ (0, 1)
∂2g̃1

∂X̃2
+ (β − 1)

∂g̃1

∂X̃
− α

h
g̃1 = α(1− h)F̃0(X̃, h), (3.125a)

subject to

as X̃ → ∞ g̃1(X̃, h) → 0, (3.125b)

at X̃ = 0 hg̃1(0, h) = −S̄∗
1 − ∂P̄ ∗

e

∂p

∣∣∣∣
p=0

, (3.125c)

h
∂g̃1

∂X̃

∣∣∣∣
X̃=0

= −S̄∗
1 − ∂

∂p

(
S̄∗ ∂P̄e

∂S̄

∣∣∣∣
S̄∗

) ∣∣∣∣
p=0

. (3.125d)
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The function F̃0(X̃, h) in the forcing term of (3.125a) is given by

F̃0(X̃, h) =
∂g̃0

∂ĥ
− 1

S̄∗
0

∂S̄∗
0

∂h

∂g̃0

∂X̃
= eλ−X̃

(
B01(h)X̃ +B00(h)

)
(3.126)

and using (3.124) and (3.126) gives the forms for the coefficients of the forcing term

B01 = α(1− h)
∂λ−
∂h

A0, (3.127a)

B00 = α(1− h)

[
∂A0

∂h
− 1

S̄∗
0

∂S̄∗
0

∂h
λ−A0

]
. (3.127b)

The solution to (3.125a-3.125d) is given by

g̃1(X̃, h) = eλ−X̃
2∑

j=0

A1j(h)X̃
j , (3.128)

where the coefficients A1j(h) for j ̸= 0 can be found by substitution into (3.125a), giving

A12 =
B01

2 (2λ− + (β − 1))
, (3.129)

A11 =
1

(2λ− + (β − 1))
[B00 − 2A12] . (3.130)

The coefficient A10 and boundary correction term S̄∗
1 are found through application of the

boundary conditions (3.125c) and (3.125d)

S̄∗
1 =

hA11

(λ− 1)(1 + ∆̄∗)− S̄∗
0 Γ̄

∗ , (3.131)

A10 =
−S̄∗

1 − S̄∗
1∆̄

∗

h
, (3.132)

where the non-dimensional European Greeks ∆̄∗ and Γ̄∗ are derived in Appendix A.

The (g̃2, S̄
∗
2) Problem

The problem for the second correction term is

X̃ ∈ (0,∞), h ∈ (0, 1)
∂2g̃2

∂X̃2
+ (β − 1)

∂g̃2

∂X̃
− α

h
g̃2 = 2α(1− h)F̃1(X̃, h), (3.133a)
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subject to

as X̃ → ∞ g̃2(X̃, h) → 0, (3.133b)

at X̃ = 0 hg̃1(0, h) = −S̄∗
2 − ∂2P̄ ∗

e

∂p2

∣∣∣∣
p=0

, (3.133c)

∂g̃2

∂X̃

∣∣∣∣
X̃=0

= −S̄∗
2 − ∂2

∂p2

(
S̄∗ ∂P̂e

∂S̄

∣∣∣∣
S̄∗

)∣∣∣∣
p=0

. (3.133d)

The function F̃1(X̃, h) in the forcing term of (3.125a) is given by

F̃1(X̃, h) =
∂g̃1

∂ĥ
−
(

1

S̄∗
0

∂S̄∗
1

∂h
− S̄∗

1

(S̄∗
0 )

2

∂S̄∗
0

∂h

)
∂g̃0

∂X̃
− 1

S̄∗
0

∂S̄∗
0

∂h

∂g̃1

∂X̃
= eλ−X̃

j=3∑
j=0

B1j(h)X̃
j (3.134)

and using (3.124), (3.126) and (3.128) gives the forms for the coefficients of the forcing term

B13 = α(1− h)

[
∂λ−
∂h

A12

]
, (3.135)

B12 = α(1− h)

[
∂λ−
∂h

A11 +
∂A12

∂h
− 1

S̄∗
0

∂S̄∗
0

∂h
λ−A12

]
, (3.136)

B11 = α(1− h)

[
∂λ−
∂h

A10 +
∂A11

∂h
− 1

S̄∗
0

∂S̄∗
0

∂h
(λ−A11 + 2A12)

]
, (3.137)

B10 = α(1− h)

[
∂A10

∂h
− 1

S̄∗
0

∂S̄∗
0

∂h
(λ−A10 +A11)−

(
1

S̄∗
0

∂S̄∗
1

∂h
− S̄∗

1

(S̄∗
0 )

2

∂S̄∗
0

∂h

)
λ−A0

]
. (3.138)

The solution to (3.133a-3.133d) is given by

g̃2(X̃, h) = eλ−X̃
4∑

j=0

A2j(h)X̃
j , (3.139)

where the coefficients A2j(h) for j ̸= 0 can be found by substitution into (3.133a), giving

A24 =
B13

4 (2λ− + (β − 1))
, (3.140)

A23 =
1

3 (2λ− + (β − 1))
[B12 − 12A24] , (3.141)

A22 =
1

2 (2λ− + (β − 1))
[B11 − 6A23] , (3.142)

A21 =
1

1 (2λ− + (β − 1))
[B10 − 2A22] . (3.143)

The coefficient A20 and boundary correction term S̄∗
2 are found through application of the
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boundary conditions (3.133c) and (3.133d)

S̄∗
2 =

hA21 −
[
(λ− − 2)Γ̄∗ − S̄∗

0 Γ̄
∗
∆

]
(S̄∗

1 )
2

(λ− − 1)(1 + ∆̄∗)− S̄∗
0 Γ̄

∗ , (3.144)

A20 =
−S̄∗

2 − S̄∗
2∆̄

∗ − (S̄∗
1 )

2Γ̄∗

h
, (3.145)

where the non-dimensional European Greeks ∆̄∗, Γ̄∗ and Γ̄∗
∆ are derived in Appendix A.

Numerical Results

A comparison of the terms of our analytic approximation for the optimal exercise boundary with

the MOL numerics are shown in Figure 3-8. We observe from the relative error Figures 3.8(b),

3.8(d) & 3.8(f) that the two- and three-term boundary approximations provide a significant

improvement over the MBAW boundary with the three-term series better than 1% accurate at

all times.

The improvement in the large- and small-time asymptotic behaviour can be observed in Fig-

ures 3.9(a) & 3.9(f). For the approach to expiry, our MOL numerics were performed on a

truncated domain using X̃max = 5 and with 25, 000 space-steps and 20, 000 time-steps. For

the approach to perpetuity, we ran the MOL numerics out to T − t = 200, with 200, 000 time-

steps. We mention the existence of small differences between the convergence of the large-time

MOL benchmark and the perpetual boundary, which result from discretisation errors in the

calculation of the boundary at small times propagating into the large-time numerics. A sig-

nificant improvement over the MBAW boundary is observed. For the approach to expiry, the

MOL boundary is almost indistinguishable from our three-term expression. For the approach

to perpetuity we note that the boundary remains non-monotonic and breaches the perpetual

boundary, but the effect reduces with successive terms.

The performance of the price approximation in Figures 3-10, 3-11 & 3-12 is less impressive,

typically doing well near the boundary, but with increasingly large percentage errors appearing

as we move deeply out-of-the-money. This is not an unexpected result given the structure of the

additional terms in the series which add increasingly high order powers of X̃, though these are

dominated by an exponentially small term which makes the errors small in absolute terms. We

make the additional observation, that in X̃ it is not clear that the Ju & Zhong approximation

performs much better than even the MBAW approximation.

In summary, our three-term series provides an accurate approximation to the location of the

American option boundary. The procedure is easy to implement, requiring only a single spread-
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sheet and access to an accurate approximation to the cumulative normal distribution function

such as that due to Marsaglia, a routine for which can be found in [50]. As an indication of the

speed of the routine, generating a curve for h ∈ (0, 1) using 1,000 time-steps takes 14 seconds

in Matlab using the built-in normal distribution approximation. The price approximation is

typically only accurate near the boundary, and therefore use of the boundary approximation

together with, for example, the integral formulation of the problem due to Kim [72] and an ap-

propriate quadrature routine may be preferred if more consistently accurate prices are desired.
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Figure 3-8: Comparison of the benchmark MOL boundary with our analytic approximation.
For the MOL Boundary, 200000 time-steps and 25000 spatial points were used with 15000 on
the interval [S̄∞, 1], and 10000 on the interval [1, 50]. The improvement of the 2-term (S̄∗

0 + S̄
∗
1 )

and 3-term (S̄∗
0 + S̄

∗
1 +0.5S̄∗

2 ) boundary approximations versus the MBAW approximation (S̄∗
0 )

is most clearly shown in the error Figures 3.8(b), 3.8(d) & 3.8(f) where the error is defined as
the difference between the relevant boundary approximation and the MOL Boundary, divided
by the MOL boundary and expressed as a percentage.
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Figure 3-9: Asymptotic comparison of the benchmark MOL boundary with the homotopic
series. For the approach to expiry, 20000 time-steps and 25000 spatial points were used with
15000 on the interval [S̄∞, 1], and 10000 on the interval [1, 5]. For the approach to perpetuity,
200000 time steps and 25000 spatial points were used with 15000 on the interval [S̄∞, 1], and
10000 on the interval [1, 50].
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Figure 3-10: A comparison of the MBAW (1-term) and Ju & Zhong price approximations with
the 2-term and 3-term price approximations from the homotopic series for h = 0.005. The errors
are defined as the difference between the relevant approximation and the MOL benchmark price
and expressed as both the actual difference (3.10(b),3.10(d),3.11(f)) or as a percentage of the
MOL benchmark price (3.10(a),3.10(c),3.11(e)). The benchmark was determined using 20000
time-steps and 25000 spatial points with 15000 on the interval [S̄∞, 1], and 10000 on the interval
[1, 5], and transformed onto the fixed domain X̃ = ln

(
S̄/S̄∗(h)

)
using the corresponding MOL

boundary at h = 0.005.
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Figure 3-11: A comparison of the MBAW (1-term) and Ju & Zhong price approximations with
the 2-term and 3-term price approximations from the homotopic series for h = 0.1. The errors
are defined as the difference between the relevant approximation and the MOL benchmark price
and expressed as both the actual difference (3.10(b),3.10(d),3.11(f)) or as a percentage of the
MOL benchmark price (3.10(a),3.10(c),3.11(e)). The benchmark was determined using 20000
time-steps and 25000 spatial points with 15000 on the interval [S̄∞, 1], and 10000 on the interval
[1, 10], and transformed onto the fixed domain X̃ = ln

(
S̄/S̄∗(h)

)
using the corresponding MOL

boundary at h = 0.1.
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Figure 3-12: A comparison of the MBAW (1-term) and Ju & Zhong price approximations with
the 2-term and 3-term price approximations from the homotopic series for h = 0.5. The errors
are defined as the difference between the relevant approximation and the MOL benchmark price
and expressed as both the actual difference (3.10(b),3.10(d),3.11(f)) or as a percentage of the
MOL benchmark price (3.10(a),3.10(c),3.11(e)). The benchmark was determined using 50000
time-steps and 25000 spatial points with 15000 on the interval [S̄∞, 1], and 10000 on the interval
[1, 25], and transformed onto the fixed domain X̃ = ln

(
S̄/S̄∗(h)

)
using the corresponding MOL

boundary at h = 0.5.
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(ḡ
1
,S̄

∗ 1
)
P
ro

b
le
m
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Ā

0
0

∂
h

−
A

0
0
+

∂
S̄
∗ 0

∂
h

+
Θ̄

∗

h

B
0
0
(h
)

α
(1

−
h
)
[ ∂

A
0
0

∂
h

−
λ
−

A
0
0

S̄
∗ 0

∂
S̄

∗ 0

∂
h

]
B

0
1
(h
)

α
(1

−
h
)A

0
0
∂
λ
−

∂
h

A
1
2
(h
)

B
0
1

2
(2

λ
−
+
(β

−
1
))

A
1
1
(h
)

1
(2

λ
−
+
(β

−
1
))
[B

0
0
−

2A
1
2
]

A
1
0
(h
)

−
S̄

∗ 1
−
S̄

∗ 1
∆̄

∗ e

h

S̄
∗ 1
(h
)

h
A

1
1

(λ
−
−
1
)∆̄

∗
−
S̄

∗ 0
Γ̄
∗ e

T
ab

le
3.
1:

F
o
rm

u
la
e
u
se
d
in

th
e
d
er
iv
a
ti
o
n
of

th
e
fi
rs
t
tw

o
te
rm

s
of

th
e
an

al
y
ti
c
ap

p
ro
x
im

at
io
n
fo
r
th
e
A
m
er
ic
an

p
u
t
op

ti
on

.
T
h
e
re
q
u
ir
ed

G
re
ek
s
ar
e
d
er
iv
ed

in
A
p
p
en

d
ix

A
.
T
h
e
st
ar

su
p
er
sc
ri
p
t
d
en

ot
es

th
at

th
e
G
re
ek
s
ar
e
ev
al
u
at
ed

at
th
e
le
ad

in
g
or
d
er

b
o
u
n
d
ar
y
a
p
p
ro
x
im

a
ti
o
n

S̄
∗ 0
.



CHAPTER 3. THE AMERICAN OPTION PROBLEM 124
T
e
rm

F
o
rm

u
la

G
re

e
k
s
R
e
q
u
ir
e
d

(ḡ
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Chapter 4

The American Barrier Option

Problem

Barrier options are path dependent options with a payoff dependent on whether the price of

the underlying reaches a defined level B (the barrier) before expiry. They are among the

most commonly traded non-standard, or exotic, options. A barrier option which is inactive at

inception, but becomes active if the barrier is reached is termed a knock-in option. Conversely,

a barrier option which is active at inception, but becomes inactive if the barrier is reached is

termed a knock-out option. A further level of classification specifies whether the price of the

underlying at inception is above (a down option) or below (an up option) the barrier. Finally,

a specific classification is given to options where the barrier is in-the-money (B > K for a call

option or B < K for a put option) with respect to the strike, in which case we have a reverse

barrier option. As an example, a put option which is active at inception, with a barrier which

is above the strike is termed an up-and-out put option. If the barrier were below the strike, it

would be termed a reverse up-and-out put option.

In theory we therefore have 16 distinct mathematical problems, though in the absence of rebates

two of these problems lead to zero payoff everywhere (the up-and-out call and the down-and-out

put) and two other pairs of problems are the same whether B > K or B < K (the down-and-in

call and the up-and-in put), all of which results in 12 barrier option problems of mathematical

interest. The contracts, along with their payoff functions at expiry are given in Table 4.1.

Barrier options are potentially attractive from an investor’s point of view because they are

cheaper than the corresponding vanilla option. This is true because the existence of the barrier

restricts the optionality of the holder who may find their option knocked-out or never knocked-in

125



CHAPTER 4. THE AMERICAN BARRIER OPTION PROBLEM 126

Option Payoff at Expiry Value at
B < K B > K Barrier

Up-and-Out Call 0 1(Smax<B) (ST −K)
+

0

Up-and-In Call (ST −K)
+

1(Smax>B) (ST −K)
+

Ce(B, t)

Down-and-Out Call 1(Smin>B) (ST −K)
+

1(Smin>B) (ST −K) 0

Down-and-In Call 1(Smin<B) (ST −K)
+

1(Smin<B) (ST −K)
+

Ce(B, t)

Up-and-Out Put 1(Smax<B) (K − ST ) 1(Smax<B) (K − ST )
+

0

Up-and-In Put 1(Smax>B) (K − ST )
+

1(Smax>B) (K − ST )
+

Pe(B, t)

Down-and-Out Put 1(Smin>B) (K − ST )
+

0 0

Down-and-In Put 1(Smin>B) (K − ST )
+

(K − ST )
+

Pe(B, t)

Table 4.1: Payoff functions for European barrier options.

while a vanilla option would continue to exist and potentially provide a non-zero payoff. Thus

an investor with a firm belief over the directionality of the underlying can participate fully in

price movements if they are correct, without paying for the part of the price distribution they

believe will not outturn.

The use of barrier options for risk management is typically restricted to the hedging of exotic

options as they present a more complicated hedging problem than standard options, particularly

in the case of reverse options. Though we do not discuss the reality of hedging of barrier options,

for which the reader is directed to Taleb [98], we do mention the difficulty of identifying the point

at which the underlying reaches the barrier in the presence of discontinuous price movements.

Mathematically, the presence of a barrier separates the pricing problem into two regions, or

more in the case of options with multiple barriers. At inception, one of these regions is active

with the option price obeying the usual Black-Scholes-Merton governing equation whilst the

other is inactive. Thus the PDE formulation of the problem for an European up-and-out put

option with B > K is

S ∈ (0, B), t ∈ (0, T )
∂PUO

e

∂t
+

1

2
σ2S2 ∂

2PUO
e

∂S2
+ (r −D)S

∂PUO
e

∂S
− rPUO

e = 0, (4.1a)

subject to

as S → 0 PUO
e (S, t) → Ke−r(T−t), (4.1b)

at S = B PUO
e (B, t) = 0, (4.1c)

at t = T PUO
e (S, T ) = (K − S)

+
. (4.1d)

Solving the European barrier option problem in closed-form is performed using several tech-



CHAPTER 4. THE AMERICAN BARRIER OPTION PROBLEM 127

niques in the literature: by transformation of the PDE into the heat equation and solving

the resulting semi-infinite problem using the method of images, or directly with the relevant

Green’s function; by expectation pricing [67]; and by use of certain symmetric properties of the

solutions to the Black-Scholes-Merton PDE [26].

Summaries of the solutions to these equations are presented in the literature using either a

consolidated approach based on indicator variables [54] or explicitly in terms of the relevant

cumulative normal distributions [94]. Our preferred representation however is adopted by How-

ison & Steinberg [61] where the barrier option price is represented as the sum of a European

option price less a term which is a function of the barrier. This provides a more intuitive feel to

the sources of value and has the added advantage that the barrier option Greeks can be written

in terms of the equivalent vanilla European Greeks plus a correction term.

Defining the non-dimensional barrier as B = KB̄ gives the non-dimensional form for the up-

and-out put option

P̄UO
e (S̄, τ ; B̄) =


P̄e(S̄, τ)−

(
S̄
B̄

)2a
P̄e

(
B̄2

S̄
, τ
)

for B̄ > 1,

B̄

[
P̄e

(
S̄
B̄
, τ
)
−
(

S̄
B̄

)2a
P̄e

(
B̄
S̄
, τ
)]

−(1− B̄)

[
P̄d

(
S̄
B̄
, τ
)
−
(

S̄
B̄

)2a
P̄d

(
B̄
S̄
, τ
)]

for B̄ ≤ 1,

(4.2)

where 2a = −(β − 1) and P̄d(S̄, τ) is a non-dimensional European digital put option, which

pays unity if S̄ < 1 at expiry and zero otherwise and has value

P̄d(S̄, τ) =
e−ατ

2
erfc

(
d̄2√
2

)
. (4.3)

Although more thinly traded, some barrier option contracts contain a rebate which is paid if

the option is knocked-out or fails to be knocked-in. Since the Black-Scholes-Merton PDE is

linear, the rebate valuation problem can be formulated and solved separately. In substance, a

rebate is simply a pre-agreed value R = KR̄ which is paid if the price of the underlying reaches

the barrier B̄. The valuation problem is a scaling by R̄ of an American digital option which

pays unity if the exercise condition is met. If the barrier is above the underlying at inception,

the contract is an American digital call CAm
d (S, t;B) and if the barrier is below the underlying

at inception, the contract is an American digital put PAm
d (S, t;B). Such options are often

termed one-touch digital options as they would be immediately exercised through no-arbitrage.

The timing of the rebate’s payment has an effect on the valuation problem and for the work

described here we assume the rebate is paid immediately at the time the barrier is reached.
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The non-dimensional American digital option prices are then

C̄Am
d (S̄, τ ; B̄) =

1

2

[(
S̄

B̄

)λ+
∞

erfc

(
− d̄+√

2

)
+

(
S̄

B̄

)λ−
∞

erfc

(
− d̄−√

2

)]
, (4.4a)

P̄Am
d (S̄, τ ; B̄) =

1

2

[(
S̄

B̄

)λ+
∞

erfc

(
d̄+√
2

)
+

(
S̄

B̄

)λ−
∞

erfc

(
d̄−√
2

)]
, (4.4b)

where

λ±∞ =
−(β − 1)±

√
(β − 1)2 + 4α

2
, (4.4c)

d̄± =
ln
(

S̄
B̄

)
± (λ+∞ − λ−∞) τ
√
2τ

. (4.4d)

Table 4.2 contains digital American option contract corresponding to the relevant barrier option

which leads to the non-dimensional rebate valuation for an up-and-out put option

R̄UO(S̄, τ ; B̄, R̄) = R̄

[(
S̄

B̄

)λ+
∞

erfc

(
− d̄+√

2

)
+

(
S̄

B̄

)λ−
∞

erfc

(
− d̄−√

2

)]
. (4.5)

Option Rebate Value

Up-and-Out RCAm
d (S, t;B)

Up-and-In RCAm
d (S, t;B)

Down-and-Out RPAm
d (S, t;B)

Down-and-In RPAm
d (S, t;B)

Table 4.2: Rebate payoffs for European barrier options. Payment of the rebate is assumed to
occurs at the instant the barrier is reached.

The Greeks for the European up-and-out barrier option (4.2) together with the relevant rebate

term (4.5), which will be required in subsequent numerical work, are derived in Appendix A.

4.1 The American Up-and-Out Put Option Problem

In the following work, we consider an American up-and-out put option P̄UO
a (S̄, τ) which knocks

out and pays a rebate R = KR̄ if the stock price reaches the barrier B = KB̄. The impact on

the non-dimensional American option problem discussed in Chapter 3 (3.2a-3.2f) is to change

the domain from semi-infinite to one that is finite, though not fixed. This PDE formulation of



CHAPTER 4. THE AMERICAN BARRIER OPTION PROBLEM 129

the American up-and-out put option problem is

S̄ ∈ (S̄∗(τ), B̄), τ ∈ (0, T )
∂P̄UO

a

∂τ
= S̄2 ∂

2P̄UO
a

∂S̄2
+ βS̄

∂P̄UO
a

∂S̄
− αP̄UO

a , (4.6a)

subject to

at τ = 0 P̄UO
a (S̄, 0) = max

(
1− S̄, 0

)
, (4.6b)

S̄∗(0) = min (α/(α− β), 1), (4.6c)

at S̄ = S̄∗(τ) P̄UO
a

(
S̄∗, τ

)
=
(
1− S̄∗) , (4.6d)

∂P̄UO
a

∂S̄

∣∣∣∣
S̄∗

= −1, (4.6e)

at S̄ = B̄ P̄UO
a (B̄, 0) = R̄. (4.6f)

4.2 Small-Time Behaviour

As in previous chapters, to investigate the small-time behaviour we introduce the time scaling

τ = ϵ2T̂ (0 < ϵ≪ 1, T̂ = O(1)) into the non-dimensional American up-and-out put problem to

give

S̄ ∈ (S̄∗(T̂ ), B̄), T̂ ∈ (0, T )
1

ϵ2
∂P̄UO

a

∂T̂
= S̄2 ∂

2P̄UO
a

∂S̄2
+ βS̄

∂P̄UO
a

∂S̄
− αP̄UO

a , (4.7a)

subject to

at T̂ = 0 P̄UO
a (S̄, 0) = max

(
1− S̄, 0

)
, (4.7b)

S̄∗(0) = min (α/(α− β), 1), (4.7c)

at S̄ = S̄∗(T̂ ) P̄UO
a

(
S̄∗, T̂

)
=
(
1− S̄∗) , (4.7d)

∂P̄UO
a

∂S̄

∣∣∣∣
S̄∗

= −1, (4.7e)

at S̄ = B̄ P̄UO
a (B̄, 0) = R̄. (4.7f)

Out-of-the-Money Barrier (B̄ > 1)

For out-of-the-money barriers, the small-time behaviour of the American up-and-out put option

in the region of the boundary is indistinguishable from the regular American option problem.

The only additional feature is a barrier inner region near S̄ = B̄ which matches into the outer
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2 region seen in the regular American option problem.

We look in a small region S̄ = B̄(1+ ϵŜ) about the barrier where P̄UO
a (S̄, T̂ ) = R̄P̂Bar.In

a (Ŝ, T̂ ),

which gives to the barrier inner problem

Ŝ ∈ (−∞, 0), T̂ ∈ (0, T )
1

ϵ2
∂P̂Bar.In

a

∂T̂
=(1 + ϵŜ)2

1

ϵ2
∂2P̄Bar.In

a

∂Ŝ2
+ β(1 + ϵŜ)

1

ϵ

∂P̄Bar.In
a

∂Ŝ

− αP̄Bar.In
a , (4.8a)

subject to

at T̂ = 0 P̂Bar.In
a (Ŝ, 0) = 0, (4.8b)

at Ŝ = 0 P̂Bar.In
a (0, T̂ ) = 1. (4.8c)

Posing a barrier inner expansion of the form

P̌Bar.In
a (Ŝ, T̂ ; ϵ) = P̂Bar.In

0 (Ŝ, T̂ ) + ϵP̂Bar.In
1 (Ŝ, T̂ ) +O(ϵ2) as ϵ→ 0, (4.9)

gives the following subproblems: for P̂Bar.In
0

Ŝ ∈ (−∞, 0), T̂ ∈ (0, T )
∂P̂Bar.In

0

∂T̂
=
∂2P̄Bar.In

0

∂Ŝ2
, (4.10a)

subject to

at T̂ = 0 P̂Bar.In
0 (Ŝ, 0) = 0, (4.10b)

at Ŝ = 0 P̂Bar.In
0 (0, T̂ ) = 1; (4.10c)

and for P̂Bar.In
1

Ŝ ∈ (−∞, 0), T̂ ∈ (0, T )
∂P̂Bar.In

1

∂T̂
=
∂2P̄Bar.In

1

∂Ŝ2
+ 2Ŝ

∂2P̄Bar.In
0

∂Ŝ2
+ β

∂P̂Bar.In
0

∂Ŝ
, (4.11a)

subject to

at T̂ = 0 P̂Bar.In
1 (Ŝ, 0) = 0, (4.11b)

at Ŝ = 0 P̂Bar.In
1 (0, T̂ ) = 0. (4.11c)
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The problem (4.10a-4.10c) has the similarity solution

P̂BIn
0 = h0(ζ), ζ =

Ŝ

2T̂
1
2

, (4.12)

where h0(ζ) solves

h
′′

0 + 2ζh
′

0 = 0. (4.13)

This has general solution

h0(ζ) = 2Ĉ00 + Ĉ01erfc(ζ) (4.14)

and conditions (4.10b,4.10c) require

Ĉ00 = 1, Ĉ01 = −1, (4.15)

giving

h0(ζ) = 2− erfc(ζ). (4.16)

The problem (4.11a-4.11c) becomes

Ŝ ∈ (−∞, 0), T̂ ∈ (0, T )
∂P̂Bar.In

1

∂T̂
=
∂2P̂Bar.In

1

∂Ŝ2
+ 2Ŝ

∂2P̂Bar.In
0

∂Ŝ2
+ β

∂P̂Bar.In
0

∂Ŝ
, (4.17a)

subject to

at T̂ = 0 P̂Bar.In
1 (Ŝ, 0) = 0, (4.17b)

at Ŝ = 0 P̂Bar.In
1 (0, T̂ ) = 0, (4.17c)

which has the similarity solution

P̂BIn
1 = T̂

1
2h1(ζ), (4.18)

where

h
′′

1 + 2ζh
′

1 − 2h1 = −4ζh
′′

0 − 2βh
′

0. (4.19)
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This has general solution

h1(ζ) = 2Ĉ10ζ + Ĉ11ierfc(ζ)−
2e−ζ2

√
π

(
ζ2 +

1

2
(β + 1)

)
(4.20)

and conditions (4.17b,4.17c) require

Ĉ10 = Ĉ11 = β + 1, (4.21)

giving

h1(ζ) = (β + 1) (2ζ + ierfc(ζ))− 2e−ζ2

√
π

(
ζ2 +

1

2
(β + 1)

)
. (4.22)

Apart from the barrier region, the remainder of this problem, including the transcendental

expression for free boundary, is identical to the standard American option problem. For small

times, the boundary does not feel the effect of the out-of-the-money barrier. The small-time

asymptotic structure of the barrier option problem for out-of-the-money barriers is given in

Figure 4-1.

Reverse Barrier (B̄ < 1)

As the barrier moves near-the-money (B̄ → 1+), the outer 2 region disappears and we may

investigate the possibility that the local presence of the barrier affects the small-time asymptotic

behaviour of the optimal exercise boundary.

We consider a reverse barrier (B̄ < 1) by looking in a small region S̄ = B̄(1 + ϵŜ) about the

barrier where P̄UO
a (S̄, T̂ ) = P̂Bar.In

a (Ŝ, T̂ ), which gives to the barrier inner problem

Ŝ ∈ (−∞, 0), T̂ ∈ (0,∞)
∂P̂Bar.In

a

∂T̂
=(1 + ϵŜ)2

∂2P̄Bar.In
a

∂Ŝ2
+ βϵ(1 + ϵŜ)

∂P̄Bar.In
a

∂Ŝ

− ϵ2αP̄Bar.In
a , (4.23a)

subject to

at T̂ = 0 P̂Bar.In
a (Ŝ, 0) = 1− B̄ − ϵB̄Ŝ, (4.23b)

at Ŝ = 0 P̂Bar.In
a (0, T̂ ) = R̄. (4.23c)



CHAPTER 4. THE AMERICAN BARRIER OPTION PROBLEM 133

B̄
S̄

P̄UO
a (S̄, τ)

O(τ
1
2 )

P̄UO
a = 1

o(τ
1
2 )

O(τ
1
2 (ln τ)

1
2 )

S̄ = 1

O(τ
1
2 )

S̄∗(τ)

P̄UO
a = R̄

Barrier
InnerInner

Boundary
Inner

Outer

(a) Small-time structure (β ≥ 0)

B̄
S̄

P̄UO
a (S̄, τ)

O(τ
1
2 )

P̄UO
a = 1

O(τ
1
2 )

S̄ = 1

O(τ
1
2 )

S̄∗(0)

P̄UO
a = R̄

S̄∗(τ)

Inner

Outer 1Outer 2
Boundary
Inner

Barrier
Inner

(b) Small-time structure (β < 0)

Figure 4-1: A schematic showing the small-time structure for the American up-and-out put
with out-of-the-money barrier (B̄ > 1). The structure differs from the standard American
option problem (Figures 3-1 & 3-2) only via an O(

√
τ) region near the barrier.
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Posing a barrier inner expansion of the form

P̌Bar.In
a (Ŝ, T̂ ; ϵ) = P̂Bar.In

0 (Ŝ, T̂ ) + ϵP̂Bar.In
1 (Ŝ, T̂ ) +O(ϵ2) as ϵ→ 0, (4.24)

gives the following subproblems: for P̂Bar.In
0

Ŝ ∈ (−∞, 0), T̂ ∈ (0,∞)
∂P̂Bar.In

0

∂T̂
=
∂2P̄Bar.In

0

∂Ŝ2
, (4.25a)

subject to

at T̂ = 0 P̂Bar.In
0 (Ŝ, 0) = 1− B̄, (4.25b)

at Ŝ = 0 P̂Bar.In
0 (0, T̂ ) = R̄; (4.25c)

for P̂Bar.In
1

Ŝ ∈ (−∞, 0), T̂ ∈ (0,∞)
∂P̂Bar.In

1

∂T̂
=
∂2P̂Bar.In

1

∂Ŝ2
+ 2Ŝ

∂2P̂Bar.In
0

∂Ŝ2
+ β

∂P̂Bar.In
0

∂Ŝ
, (4.26a)

subject to

at T̂ = 0 P̂Bar.In
1 (Ŝ, 0) = −B̄Ŝ, (4.26b)

at Ŝ = 0 P̂Bar.In
1 (0, T̂ ) = 0; (4.26c)

and for P̂Bar.In
2

Ŝ ∈ (−∞, 0), T̂ ∈ (0,∞)
∂P̂Bar.In

2

∂T̂
=
∂2P̂Bar.In

2

∂Ŝ2
+ 2Ŝ

∂2P̂Bar.In
1

∂Ŝ2
+ β

∂P̂Bar.In
1

∂Ŝ

Ŝ2 ∂
2P̂Bar.In

0

∂Ŝ2
+ βŜ

∂P̂Bar.In
0

∂Ŝ
− αP̂Bar.In

0 , (4.27a)

subject to

at T̂ = 0 P̂Bar.In
2 (Ŝ, 0) = 0, (4.27b)

at Ŝ = 0 P̂Bar.In
2 (0, T̂ ) = 0. (4.27c)

As in previous work, we define the similarity variable ζ = Ŝ

2T̂
1
2
and let

P̂Bar.In
0 = h0(ζ), (4.28)
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which transforms the problem (4.25a-4.25c) into

h
′′

0 + 2ζh
′

0 = 0, (4.29a)

subject to

as ζ → −∞ h0 ∼ 1− B̄, (4.29b)

at ζ = 0 h0 = R̄, (4.29c)

which has the solution

h0(ζ) = (1− B̄) +
(
R̄− (1− B̄)

)
(2− erfc(ζ)) . (4.30)

The problem (4.26a-4.26c) has the similarity solution

P̂Bar.In
1 = T̂

1
2h1(ζ), (4.31)

where

h
′′

1 + 2ζh
′

1 − 2h1 = −4ζh
′′

0 − 2βh
′

0, (4.32a)

subject to

as ζ → −∞ h1 ∼ −2B̄ζ, (4.32b)

at ζ = 0 h1 = 0, (4.32c)

which has the solution

h1(ζ) = −2B̄ζ − (β − 1)
(
R̄− (1− B̄)

)
ζ (2− erfc(ζ))−

(
R̄− (1− B̄)

)
ζ2
e−ζ2

√
π
. (4.33)

The problem (4.27a-4.27c) has the similarity solution

P̂Bar.In
2 = T̂ h2(ζ), (4.34)



CHAPTER 4. THE AMERICAN BARRIER OPTION PROBLEM 136

where

h
′′

2 + 2ζh
′

2 − 2h2 = −4ζh
′′

1 − 2βh
′

1 − 4ζ2h
′′

0 − 4βζh
′

0 + 4αh0, (4.35a)

subject to

as ζ → −∞ h2 ∼ 0, (4.35b)

at ζ = 0 h2 = 0, (4.35c)

which has the solution

h2(ζ) = −2B̄ζ − (β − 1)
(
R̄− (1− B̄)

)
ζ (2− erfc(ζ))−

(
R̄− (1− B̄)

)
ζ2
e−ζ2

√
π
. (4.36)

The asymptotic behaviours of the barrier inner terms (4.30,4.33,4.36) as ζ → −∞ are

h0(ζ) ∼ (1− B̄)−
(
R̄− (1− B̄)

) e−ζ2

√
π

(
1

ζ
+O

(
ζ−3

))
, (4.37)

h1(ζ) ∼ −2B̄ζ −
(
R̄− (1− B̄)

) e−ζ2

√
π

(
2ζ2 +O (1)

)
, (4.38)

h2(ζ) ∼
(
(α− β)B̄ − α

)
−
(
R̄− (1− B̄)

) e−ζ2

√
π

(
2ζ5 +O(ζ3)

)
. (4.39)

Following the method used in the American option case for β ≥ 0, we look for a small boundary

inner region about the optimal exercise boundary through the scaling S̄ = S̄∗(T̂ ) + δ1(ϵ)Š and

expand the boundary about the initial starting point using S̄∗(T̂ ) = B̄+ δ0(ϵ)Š
∗(T̂ )+ o(δ0). In

the boundary inner region, the price has the expansion

P̌B.In
a (Š, T̂ ; ϵ) = 1− B̄ − δ0Š

∗(T̂ )− δ1Š + o(ϵ2) as ϵ→ 0, (4.40)

where the scalings are restricted to δ0δ1 = ϵ2 and ϵ2 ≪ δ1 ≪ ϵ, while writing the inner variable

in terms of the boundary inner variable, ζ = δ0Š
∗+δ1Š

2ϵB̄T̂
1
2

, leads to the asymptotic behaviour of

the terms of the inner series

P̌B.In
a (Š, T̂ ; ϵ) =1− B̄ − δ0Š

∗(T̂ )− δ1Š + ϵ2T̂
(
α− (α− β)B̄

)
−
(
R̄− (1− B̄)

) e− (δ0Š∗+δ1Š)2

4ϵ2B̄2T̂

√
π

(
2ϵB̄T̂

1
2

δ0Š∗ + δ1Š
+ . . .

)
+ o(ϵ2) as ϵ→ 0.

(4.41)
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Comparison of the boundary inner expression (4.40) and the asymptotic behaviour of the inner

expression in the boundary inner variable (4.41) requires

(
R̄− (1− B̄)

) e− (δ0Š∗+δ1Š)2

4ϵ2B̄2T̂

√
π

2ϵB̄T̂
1
2

δ0Š∗ + δ1Š
= ϵ2T̂

(
α− (α− β)B̄

)
as ϵ→ 0. (4.42)

Taking logs and remembering δ0Š
∗+δ1Š

2ϵB̄T̂
1
2

→ −∞ as ϵ→ 0 gives

δ0Š
∗(T̂ ) ∼ B̄ −

√
4ϵ2T̂ B̄2 ln

(
ϵ2T̂

√
π
((α− β)B̄ − α)

(1− B̄)− R̄

)
(4.43)

and therefore the small-time asymptotic behaviour of the reverse American up-and-out option

boundary for β ≥ 0 is

S̄∗(T̂ ) ∼ B̄ −

√
4ϵ2T̂ B̄2 ln

(
ϵ2T̂

√
π
((α− β)B̄ − α)

(1− B̄)− R̄

)
. (4.44)

We note that for β ∈ (0, α), α − β > 0 and therefore
(
α− (α− β)B̄

)
> 0 since B̄ < 1, which

ensures the RHS is positive for the purpose of taking logarithms. Further, (4.44) is only valid

when the rebate is greater than the intrinsic value of the option at the barrier (R̄ > 1− B̄).

We note that the problem for β < 0 will only feel the effect of the barrier when it is local to

α
α−β when the problem becomes identical to the problem for β ≥ 0. Transition regions will

exist for both the β ≥ 0 problem as B̄ → 1+ and the β < 0 problem as B̄ → α
α−β

+ but these

are not derived in this thesis.

The small-time asymptotic structure of the barrier option problem for out-of-the-money barriers

is given in Figure 4-2, while a comparison of the small-time asymptotic expression for the

optimal exercise boundary of reverse American up-and-out put options (4.44) with the barrier

MOL numerics is shown in Figure 4-3.

4.3 Large-Time Behaviour

To our knowledge the large-time asymptotic behaviour of the American barrier option problem

has not been discussed in the literature. The behaviour may be obtained by posing a suitable

perturbation problem. Introducing the small parameter 0 < ϵ≪ 1 through the time scaling

τ =
T̂

ϵ2
, (4.45)
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(a) Small-time structure (β ≥ 0)
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Figure 4-2: A schematic showing the small-time structure of the American up-and-out put with
a reverse barrier (B̄ < 1). For β ≥ 0, the asymptotic structure uses an O(

√
τ) layer near the

barrier while the optimal exercise boundary lies at O(
√
τ ln (τ)) from the barrier, though with

different constant terms to the standard American option problem. For β > 0 the presence of
the barrier does not affect the behaviour of the boundary unless B̄ ≤ S̄∗(0) in which case we
expect the same structure as for the β ≥ 0 problem.
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Figure 4-3: A comparison of the benchmark barrier MOL boundary with the full problem
asymptotics (4.44). Figure 4.3(a) shows a comparison for fixed barrier (B̄ = 0.9) and a range
of rebates. Figure 4.3(b) shows a comparison for fixed rebate (R̄ = 0.8) and a range of barriers.
The equivalent MOL boundary and asymptotics for the standard American option are also
shown. The MOL scheme uses 20000 time steps and 40000 spatial points on the interval
[S̄∗

∞, B̄].
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where T̂ = O(1), leads to the large-time problem for the up-and-out put option which pays a

rebate R̄ at the barrier

S̄ ∈ (S̄∗(T̂ ), B̄), T̂ ∈ (0,∞) ϵ2
∂P̄UO

∂T̂
= S̄2 ∂

2P̄UO

∂S̄2
+ βS̄

∂P̄UO

∂S̄
− αP̄UO, (4.46a)

subject to

at S̄ = B̄ P̄UO
(
B̄, T̂

)
= R̄, (4.46b)

at S̄ = S̄∗(T̂ ) P̄UO
(
S̄∗, T̂

)
= (1− S∗) , (4.46c)

∂P̄UO

∂S̄

∣∣∣∣
S̄∗

= −1. (4.46d)

The Perpetual American Barrier Option

As in the case of the standard American option, the American barrier option problem can be

solved in closed form in the perpetual limit as ϵ → 0. In the non-dimensional setting, the

perpetual up-and-out put price and boundary are the solutions to

S̄ ∈
(
S̄∗
∞, B̄

)
S̄2 ∂

2P̄UO
∞

∂S̄2
+ βS̄

∂P̄UO
∞
∂S̄

− αP̄UO
∞ = 0, (4.47a)

subject to

at S̄ = B̄ P̄UO
∞

(
B̄
)
= R̄, (4.47b)

at S̄ = S̄∗
∞ P̄UO

∞
(
S̄∗
∞
)
= (1− S∗

∞) , (4.47c)

∂P̄UO
∞
∂S̄

∣∣∣∣
S̄∗
∞

= −1. (4.47d)

This second order ODE problem has the solution

P̄UO
∞ (S̄) = A+

∞

(
S̄

S̄∗
∞

)λ∞
+

+A−
∞

(
S̄

S̄∗
∞

)λ∞
−

, (4.48a)
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where

λ∞± =
−(β − 1)±

√
(β − 1)2 + 4α

2
, (4.48b)

A+
∞ =

S̄∗
∞ + λ∞−

(
1− S̄∗

∞
)

λ∞− − λ∞+
, (4.48c)

A−
∞ =

S̄∗
∞ + λ∞+

(
1− S̄∗

∞
)

λ∞+ − λ∞−
(4.48d)

and S̄∗
∞ is the solution to the transcendental expression

A+
∞

(
B̄

S̄∗
∞

)λ∞
+

+A−
∞

(
B̄

S̄∗
∞

)λ∞
−

= R̄. (4.48e)

No-arbitrage requires that P̄UO
∞ (S̄) forms an upper bound on P̄UO

a (S̄, T̂ ), while S̄∗
∞ forms a

lower bound on S̄∗(T̂ ) and that the option price is strictly positive.

We note that in the large barrier limit B̄ → ∞ the transcendental expression is dominated by

the term A+
∞

(
B̄
S̄∗
∞

)λ∞
+

which therefore requires A+
∞ → 0 as B̄ → ∞, or from (4.48c)

S̄∗
∞ ∼

λ∞−
λ∞− − 1

, A−
∞ ∼ 1

1− λ∞−
, as B̄ → ∞ (4.49)

and the limiting perpetual barrier option price is

P̄UO
∞ (S̄) ∼ A−

∞

(
S̄

S̄∗
∞

)λ∞
−

as B̄ → ∞, (4.50)

all of which is consistent with the standard perpetual American put option. The approach of

the perpetual boundary of the American up-and-out put option to the corresponding boundary

of the standard problem is shown in Figure 4-4.

Perturbative Terms

To capture the perturbative behaviour to the perpetual barrier problem we consider a WKBJ

expansion of the form

P̄UO(S̄, T̂ ) = P̄UO
∞ (S̄) + P̄UO

0 (S̄)e−
λT̂
ϵ2 + o

(
e−

λT̂
ϵ2

)
as ϵ→ 0, (4.51a)

S̄∗(T̂ ) = S̄∗
∞ + S̄∗

0e
−λT̂

ϵ2 + o
(
e−

λT̂
ϵ2

)
as ϵ→ 0. (4.51b)
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Figure 4-4: The perpetual American up-and-out put boundary S̄∗
∞ obtained from (4.48e). Both

standard (B̄ ≥ 1) and reverse (B̄ < 1) barriers are considered together with a range of rebates
(R̄ = 0, 0.25, 0.5, 0.75, 1.0). Convergence towards the standard American perpetual boundary
is observed for B̄ ≫ 1, with convergence strongest for β < 0. Roots of (4.48e) only exist for
B̄ > 1− R̄ which is consistent with our small-time asymptotic findings.

Expanding the boundary conditions about the perpetual solution gives the problem for
(
P̄UO
0 , S̄∗

0

)
S̄ ∈

(
S̄∗, B̄

)
, T̂ ∈ (0,∞) S̄2 ∂

2P̄UO
0

∂S̄2
+ βS̄

∂P̄UO
0

∂S̄
− (α− λ) P̄UO

0 = 0, (4.52a)

subject to

at S̄ = B̄ P̄UO
0

(
B̄, T̂

)
= 0, (4.52b)

at S̄ = S̄∗
∞ P̄UO

0

(
S̄∗
∞, T̂

)
= 0, (4.52c)

∂P̄UO
0

∂S̄

∣∣∣∣
S̄∗
∞

= −S̄∗
0

∂2P̄UO
∞

∂S̄2

∣∣∣∣
S̄∗
∞

. (4.52d)

Conditions (4.52b) and (4.52c) are satisfied by the solution corresponding to complex roots of
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the characteristic equation. After application of the boundary conditions (4.52c) & (4.52d),

this is

P̄UO
0 (S̄) = − S̄

∗
0 S̄

∗
∞

k

∂2P̄UO
∞

∂S̄2

∣∣∣∣
S̄∗
∞

(
S̄

S̄∗
∞

)− β−1
2

sin

(
k ln

(
S̄

S̄∗
∞

))
, (4.53)

where

k =

√
(λ− α)− (β − 1)2

4
(4.54)

and λ is constrained by

λ >
(β − 1)2

4
+ α. (4.55)

Application of the barrier condition (4.52b) specifies

k ln
(
B̄/S̄∗

∞
)
= nπ, (4.56)

but the no-arbitrage condition which requires P̄UO
∞ to be an upper bound on P̄UO

a , restricts

P̄UO
0 to be strictly negative which is only true if n = 1. This pins λ to be

λ =
(β − 1)2

4
+ α+

(
π

ln
(
B̄/S̄∗

∞
))2

(4.57)

and we therefore have the large-time asymptotic behaviour of the American up-and-out put

option

P̄UO
a (S̄, T̂ ) ∼ P̄UO

∞ (S̄)− S̄∗
0 S̄

∗
∞

k

∂2P̄UO
∞

∂S̄2

∣∣∣∣
S̄∗
∞

e−
λT̂
ϵ2

(
S̄

S̄∗
∞

)− β−1
2

sin

(
k ln

(
S̄

S̄∗
∞

))
as ϵ → 0,

(4.58)

with the optimal exercise boundary S̄∗(T̂ )

S̄∗(T̂ ) ∼ S̄∗
∞ + S̄∗

0e
−λT̂

ϵ2 as ϵ → 0. (4.59)

We note that the value of S̄∗
0 is determined by matching back to the solution in τ = O(1)

and that we expect S̄∗
0 > 0 in order to satisfy the no-arbitrage requirement that S̄∗

∞ forms a

lower bound on Ŝ∗(T̂ ). Further, we mention that in the limiting case of an American barrier
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option with a barrier approaching infinity, we expect to recover the standard American option

behaviour. We observe that, in this limit, the controlling factor λ approaches that value which

gives rise to the coincident root solution which is consistent with our findings in Chapter 3.

0 0.2 0.4 0.6 0.8 1
0.3

0.35

0.4

0.45

0.5

0.55

0.6

Time (τ)

S* (τ
)

 

 
MOL Boundary
Large Time Asymptotics

(a) α = 10
9
, β = 2

3
, B̄ = 1.5, R̄ = 1.0

0 0.2 0.4 0.6 0.8 1
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

Time (τ)

S* (τ
)

 

 
MOL Boundary
Large Time Asymptotics

(b) α = 10
9
, β = 0, B̄ = 1.0, R̄ = 0.25

0 0.2 0.4 0.6 0.8 1
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Time (τ)

S* (τ
)

 

 
MOL Boundary
Large Time Asymptotics

(c) α = 10
9
, β = − 2

3
, B̄ = 0.8, R̄ = 0.3

Figure 4-5: Comparison of the large-time asymptotic behaviour of the optimal exercise bound-
ary of the American up-and-out put option obtained from (4.51b) with the benchmark barrier
MOL numerics. The constant S̄∗

0 is determined by matching back into the optimal exercise
boundary at τ = O(1).

4.4 An Analytic Approximation for the American Up-

and-Out Put Option

Following the methodology used in Chapter 3, we look for a decomposition of the American

up-and-out put option of the form

P̄UO
a (S̄, h) = P̄UO

e (S̄, h) + hg̃UO(X̃, h), (4.60)
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where P̄UO
e (S̄, h) is the equivalent European up-and-out put option and hg̃UO(X̃, h) represents

the American barrier option premium. This leads to the problem

X̃ ∈ (0, ln
(
B̄/S̄∗)), h ∈ (0, 1)

∂2g̃UO

∂X̃2
+ (β − 1)

∂g̃UO

∂X̃
− α

h
g̃UO

= pα(1− h)

[
∂g̃UO

∂h
− 1

S̄∗
dS̄∗

dh

∂g̃UO

∂X̃

]
, (4.61a)

subject to the boundary conditions

at X̃ = ln

(
B̄

S̄∗

)
hg̃UO(X̃, h; p) = R̄− P̄UO

e (B̄, h) = 0, (4.61b)

at h = 0 hg̃UO(X̃, 0; p) = 0, (4.61c)

S̄∗(0; p) = min
(
α/(α− β), 1, B̄

)
, (4.61d)

at X̃ = 0 hg̃UO(X̃, h; p) =
(
1− S̄∗(h; p)

)
− P̄UO

e (S̄∗(h; p), h), (4.61e)

h
∂g̃UO(X̃, h; p)

∂X̃

∣∣∣∣
X̃=0

= −S̄∗(h; p)

(
1 +

∂P̄UO
e

∂S̄

∣∣∣∣
S̄∗(h;p)

)
. (4.61f)

We propose the analytical expansions for g̃UO(X̃, h; p) and S̄∗(h; p)

g̃UO(X̃, h; p) =

∞∑
n=0

pn

n!
g̃n(X̃, h), (4.62a)

S̄∗(h; p) =
∞∑

n=0

pn

n!
S̄∗
n(h), (4.62b)

which allows us to derive a sequence for the pairs of problems (g̃UO
n (X̃, h), S̄∗

n(h)) where

g̃UO
n (X̃, h) =

∂ng̃UO

∂pn

∣∣∣∣
p=0

, (4.63a)

S̄∗
n(h) =

∂nS̄∗

∂pn

∣∣∣∣
p=0

. (4.63b)

We also introduce a function F̂UO(X̃, h; p) given by

F̂UO(X̃, h; p) =
∂g̃UO

∂h
− 1

S̄∗
dS̄∗

dh

∂g̃UO

∂X̃
, (4.64)

so that pα(1− h)F̂ (X̃, h; p) is the forcing term for the base problem.

Note that unlike the vanilla American option problem, the use of the Landau transformation

does not result in a fixed domain problem due to the finite domain imposed by the barrier.

Although we could choose to normalise the stock price by the barrier it would make taking
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the limiting case of the infinite barrier, which allows us to recover the behaviour of the vanilla

American option, more onerous.

The
(
g̃UO
0 , S̄∗

0

)
Problem

Setting p = 0 in (4.61a-4.61f) gives the problem

X̃ ∈ (0, ln
(
B̄/S̄∗

0

)
), h ∈ (0, 1)

∂2g̃UO
0

∂X̃2
+ (β − 1)

∂g̃UO
0

∂X̃
− α

h
g̃UO
0 = 0, (4.65a)

subject to the boundary conditions

at X̃ = ln
(
B̄/S̄∗

0

)
hg̃UO

0 (X̃, h) = R̄− P̄UO
e (R̄, h), (4.65b)

at h = 0 hg̃UO
0 (X̃, 0) = 0, (4.65c)

S̄∗
0 (0) = min

(
α/(α− β), 1, B̄

)
, (4.65d)

at X̃ = 0 hg̃UO
0 (X̃, h) =

(
1− S̄∗

0 (h)
)
− P̄UO

e (S̄∗
0 , h), (4.65e)

h
∂g̃UO

0 (X̃, h)

∂X̃

∣∣∣∣
X̃=0

= −S̄∗
0

(
1 +

∂P̄UO
e

∂S̄

∣∣∣∣
S̄∗
0

)
. (4.65f)

This problem has been posed by Aitsahlia & Lai [3] as an extension to the MBAW price for

the standard American option problem, with solution

ḡUO
0 (X̃, h) = A+

00(h)e
λ+X̃ +A−

00(h)e
λ−X̃ , (4.66a)

where

λ±(h) =
−(β − 1)±

√
(β − 1)2 + 4α

h

2
, (4.66b)

A+
00(h) =

λ−
(
1− S̄∗

0 − P̄UO
e (S̄∗

0 , h)
)
+ S̄∗

0

(
1 +

∂P̄UO
e

∂S̄

∣∣
S̄∗
0

)
h (λ− − λ+)

, (4.66c)

A−
00(h) =

λ+
(
1− S̄∗

0 − P̄UO
e (S̄∗

0 , h)
)
+ S̄∗

0

(
1 +

∂P̄UO
e

∂S̄

∣∣
S̄∗
0

)
h (λ+ − λ−)

, (4.66d)

where P̄UO
e (S̄∗

0 , h) and
∂P̄UO

e

∂S̄

∣∣∣∣
S̄∗
0

are the non-dimensional European up-and-out put option price

and its delta, evaluated at the leading order boundary, S̄∗
0 , which is given by the solution to
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the transcendental expression

h

(
A+

00(h)

(
B̄

S̄∗
0

)λ+

+A−
00(h)

(
B̄

S̄∗
0

)λ−
)

= R̄− P̄UO
e (B̄, h). (4.67)

We observe that in the limit B̄ → ∞, with R̄ → 0, the dominant term is the A+
00(h)

(
B̄
S̄∗
0

)λ+

term on the LHS. Thus in the limit we require A+
00(h) = 0 which, from (4.66c), leads to

λ−
(
1− S̄∗

0 − P̄UO
e (S̄∗

0 , h)
)
= −S̄∗

0

(
1 +

∂P̄UO
e

∂S̄

∣∣
S̄∗
0

)
, (4.68)

which we note is the equation for the MBAW approximation to the standard American option

boundary as expected.

The (g̃UO
1 , S̄∗

1) Problem

The problem for the first correction term is

X̃ ∈ (0, ln
(
B̄/S̄∗

0

)
), h ∈ (0, 1)

∂2g̃UO
1

∂X̃2
+ (β − 1)

∂g̃UO
1

∂X̃
− α

h
g̃UO
1 = α(1− h)F̂UO

0 (X̃, h),

(4.69a)

subject to the boundary conditions

at X̃ = ln
(
B̄/S̄∗

0

)
g̃UO
1 (X̃, h) =

S̄∗
1

S̄∗
0

∂g̃UO
0

∂X̃
, (4.69b)

at X̃ = 0 hg̃UO
1 (0, h) = −S̄∗

1 − ∂P̄UO∗
e

∂p

∣∣∣∣
p=0

, (4.69c)

h
∂g̃UO

1

∂X̃

∣∣∣∣
X̃=0

= −S̄∗
1 − ∂

∂p

(
S̄∗ ∂P̄

UO
e

∂S̄

∣∣∣∣
S̄∗

) ∣∣∣∣
p=0

. (4.69d)

The function F̂UO
0 (X̃, h) in the forcing term of (4.69a) is given by

F̂0(X̃, h) =
∂g̃UO

0

∂ĥ
− 1

S̄∗
0

∂S̄∗
0

∂h

∂g̃UO
0

∂X̃
=eλ+X̃

(
B+

01X̃ +B+
00(h)

)
+ eλ−X̃

(
B−

01(h)X̃ +B−
00(h)

)
(4.70)
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and using (4.66a) and (4.70) gives the forms for the coefficients of the forcing term

B+
01 = α(1− h)

∂λ+
∂h

A+
0 , (4.71a)

B+
00 = α(1− h)

[
∂A+

0

∂h
− 1

S̄∗
0

∂S̄∗
0

∂h
λ+A

+
0

]
, (4.71b)

B−
01 = α(1− h)

∂λ−
∂h

A−
0 , (4.71c)

B−
00 = α(1− h)

[
∂A−

0

∂h
− 1

S̄∗
0

∂S̄∗
0

∂h
λ−A

−
0

]
. (4.71d)

The solution to (4.69a-4.69d) is given by

g̃UO
1 (X̃, h) = eλ+X̃

2∑
j=0

A+
1j(h)X̃

j + eλ−X̃
2∑

j=0

A−
1j(h)X̃

j , (4.72)

where the coefficients A+
1j(h),A

−
1j(h) for j ̸= 0 can be found by substitution into (4.69a), giving

A+
12 =

B+
01

2 (2λ+ + (β − 1))
, (4.73)

A+
11 =

1

(2λ+ + (β − 1))

[
B+

00 − 2A+
12

]
, (4.74)

A−
12 =

B−
01

2 (2λ− + (β − 1))
, (4.75)

A−
11 =

1

(2λ− + (β − 1))

[
B−

00 − 2A−
12

]
. (4.76)

The coefficients A−
10,A

+
10 are found through application of the boundary conditions (4.69c) and

(4.69d)

A+
10 = S̄∗

1

(λ+ − 1)(1 + ∆̄UO∗)− S̄∗
0 Γ̄

UO∗

h(λ− − λ+)
− A+

11 +A−
11

λ− − λ+
, (4.77)

A−
10 = S̄∗

1

(λ− − 1)(1 + ∆̄UO∗)− S̄∗
0 Γ̄

UO∗

h(λ+ − λ−)
− A+

11 +A−
11

λ+ − λ−
(4.78)

and the boundary correction term S̄∗
1 is found using (4.69b)

S̄∗
1 = S̄∗

0

(
B̄
S̄∗
0

)λ+
(
A+

12

(
ln
(

B̄
S̄∗
0

)2)
+A+

11 ln
(

B̄
S̄∗
0

))
+
(

B̄
S̄∗
0

)λ−
(
A−

12

(
ln
(

B̄
S̄∗
0

)2)
+A−

11 ln
(

B̄
S̄∗
0

))
(λ− − 1)(1 + ∆̄UO∗)− S̄∗

0 Γ̄
UO∗ ,

(4.79)

where the European Greeks ∆̄UO∗ and Γ̄UO∗ are derived in Appendix A. A summary of the

formulae required to determine the analytic approximation is provided in Table 4.3.
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Numerical Results

The behaviour of the leading order term of the analytic approximation S̄UO∗
0 due to AitSahlia

and Lai [3] is shown in Figure 4-6 for a range of rebates and barriers. We observe that S̄UO∗
0 →

S̄∗
0 as B̄ → ∞ as expected.

A comparison of the two-term analytic approximation for the optimal exercise boundary of

the American up-and-out put option with the barrier MOL numerics is shown in Figure 4-7.

We observe from the relative error Figures 4.7(b), 4.7(d) & 4.7(f) that the two-term boundary

approximations provide a significant improvement over the AitSahlia & Lai boundary. An

improvement in the large- and small-time asymptotic behaviour can be observed in Figure 4-8.

Moreover, unlike our standard American option approximation, the performance of our two-

term price approximation for the up-and-out barrier improves greatly on the leading order term,

as can be seen in Figure 4-9. It appears that the presence of barriers which are near-the-money

minimises the impact of higher order terms in ln (S̄/S̄∗
0 ) and therefore we may expect the barrier

option approximation to perform less well in cases where the barrier is deeply out-of-the-money.

In summary, our two-term series provides an accurate approximation to the location of the

American option boundary. The procedure benefits from the same ease to determine as the

standard American option approximation, however the increased complexity of the calculation

of European up-and-out put option together with the rebate and the corresponding Greeks

leads to an additional computational overhead with a curve for h ∈ [0, 1] using 1000 time-steps

taking 48 seconds in Matlab using the built-in normal distribution approximation.
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Figure 4-6: The leading order term in the American up-and-out put boundary approximation
due to AitSahlia & Lai [3] (4.67) for h = 0.05. Both standard (B̄ ≥ 1) and reverse (B̄ < 1)
barriers are considered together with a range of rebates (R̄ = 0, 0.25, 0.5, 0.75, 1.0, 2.0). Con-
vergence towards the MBAW approximation S̄∗

0 is observed for B̄ ≫ 1. Consistent with work
in the previous sections, the location of S̄UO∗

0 is only defined when B̄ > 1− R̄.
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(d) Boundary Error vs MOL (α = 10
9
, β = − 2

3
,

B̄ = 1.2, R̄ = 0.5)
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9
, β = 0, B̄ =

1.0, R̄ = 0.25)

Figure 4-7: A comparison of the benchmark barrier MOL boundary with the two-term analytic
approximation. For the MOL Boundary, 200000 time-steps and 50000 spatial points. The
improvement over the leading order (S̄∗

0 + S̄∗
1 ) approximation due to AitSahlia & Lai [3] (S̄∗

0 )
is most clearly shown in the error Figures 4.7(b), 4.7(d) & 4.7(f) where the error is defined as
the difference between the relevant boundary approximation and the barrier MOL boundary,
divided by the barrier MOL boundary and expressed as a percentage.
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Figure 4-8: A comparison of asymptotic behaviour of the benchmark barrier MOL boundary
with the two-term analytic approximation. For the approach to expiry, 20000 time-steps and
25000 spatial points were used. For the approach to perpetuity, 200000 time-steps and 50000
spatial points were used.
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Figure 4-9: A comparison of the leading order approximation due to Aitsahlia & Lai [3] the
two-term analytic approximations for a selection of parameters and times to expiry. The error
is defined as the difference between the relevant approximation and the MOL benchmark price
and expressed as both the actual difference (4.9(a), 4.9(c) & 4.9(e)) or as a percentage of the
MOL benchmark price (4.9(b), 4.9(d) & 4.9(f)). The benchmark was determined using 20000
time-steps and 25000 spatial points, and transformed onto the fixed domain X̃ = ln

(
S̄/S̄∗(h)

)
using the corresponding MOL boundary.
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Chapter 5

Discussion

The main aims of this thesis were twofold. The first was to add to the body of work looking at the

asymptotic behaviour of option pricing problems under the Black-Scholes-Merton assumptions.

The second was to develop an analytic approximation to the American option problem based

around the popular work of MacMillan [79] and Barone-Adesi & Whaley [10], in order to bridge

the gap between the small- and large-time asymptotic limits. This work is of relevance in cases

where there is no known closed-form solution to a particular option pricing problem, such as the

American option problem. In this case, analytic expressions which are asymptotically correct

in certain limits, or provide accurate and easy to determine approximations, are of use as a

basis for valuation or to validate more computationally intensive numerical approaches. The

extent to which these aims have been achieved and where further work may be focussed, are

discussed in the following sections.

5.1 Conclusions and Further Work

5.1.1 Asymptotic Analysis

In our asymptotic analysis of the small-time European put option problem we have derived

exponentially small leading order behaviour in the out-of-the-money outer region. Despite these

terms having been identified by Addison et al. [2] in relation to the Stefan problem, authors

have attributed the behaviour in this region to the inner series; however, this only captures

the behaviour seen in the closed form up to algebraic terms. This result is also applicable

in the corresponding region of the American put option problem. The solution is derived

using a WKBJ-type expansion with the resulting leading order problem requiring knowledge of
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singular solutions to differential equations. Despite displaying the correct asymptotic behaviour

as S̄ → ∞, the outer expression is singular at S̄ = 1 and we have be unable to perform matching

with the inner expansion using an intermediate variable approach and a finite number of terms.

This prevents the formation of a uniform expression and this remains an open issue to be

resolved.

To complete the temporal asymptotic analysis of the European put option problem, we derive

the large-time asymptotic behaviour not previously discussed in the literature. This results in

a similarity solution which is accurate surprisingly far from perpetuity, while a far-field region

is also identified where we observe the remnant effect of smoothing the payoff function near

expiry.

The standard American put option and American up-and-out put option problems are posed

as an extension to the European option framework and the small and large-time asymptotic

behaviour of the price and optimal exercise boundary are derived. Notwithstanding our identi-

fication of the additional out-of-the-money outer region behaviour, the small-time work of the

standard American option is shown to be consistent with that of previous authors. Knowledge

of the correct asymptotic form as S̄ → ∞ may be of interest in the implementation of grid-based

numerical routines, where an assumption has to be made over how to specify the problem at

the edge of the truncated domain. The extension to include the small-time behaviour of the

American barrier option is new and of particular interest in the case of reverse barriers, where

the presence of the barrier changes the small-time asymptotic behaviour of the optimal exercise

boundary. Though transition region behaviour will exist as the normalised barrier approaches

unity for β ≥ 0 and as the barrier approaches the initial position of the boundary for β < 0, this

has not been derived in this thesis. The large-time perturbative behaviour to the well-known

perpetual solutions of both of these American-style problems are also derived. Knowledge of

this behaviour may be of value as numerical routines require a large amount of time to accu-

rately determine the large-time behaviour, with errors resulting from earlier times propagating

into the large-time problem.

5.1.2 Analytic Approximations

The application of the homotopic series approach adopted by Zhu [106] has allowed us to

extend the popular analytic approximation of MacMillan [79] and Barone-Adesi & Whaley [10]

to derive a three-term analytic approximation to the price and optimal exercise boundary of the

American put option problem. The terms in the series can be determined in a single spreadsheet

if desired, requiring only access to an accurate method for the calculation of the cumulative
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normal distribution. The results for a single point in time are almost instantaneous and the

resulting boundary is better than 1% accurate across the whole time domain for our parameters

when compared to our benchmark MOL scheme, representing a significant improvement on the

equivalent MBAW boundary with negligible additional overhead. The price approximation

improves upon the corresponding MBAW approximation near the boundary, but breaks down

as the underlying moves out-of-the-money due to the introduction of increasingly large powers

of ln (S̄/S̄∗) by higher order terms in the series. This effect is of reduced importance if one

considers that the expression is dominated by an exponentially small multiplicative term as S̄

becomes large, and that the solution tends to zero in the limit S̄ → ∞. Nevertheless, we expect

the boundary approximation is more likely to be of practical use in driving a numerical scheme,

such as a quadrature scheme based around the integral equation due to Kim [72], however the

accuracy of such an approach has not been investigated here.

The approach adopted lends itself to extension to other American-style option problems. The

approach uses the following general steps:

1. Decomposition of the American-style option into an equivalent European option plus an

expression capturing the premium attributable to the right to exercise early;

2. Use of MacMillan’s time transformation and identification of a term in the governing

equation which can be assumed to be negligible to give a closed-form leading order ap-

proximation;

3. Formation of a homotopic series in a parameter p, with the leading order approximation

corresponding to p = 0 and the full solution corresponding to p = 1. The problems for

successive terms in the series are derived via repeated differentiation of the problem with

respect to p; and

4. The solution of the resulting problems, which depend upon previously derived terms along

with the Greeks of the equivalent European-style option.

The ease to which the final step may be implemented for successive problems depends upon the

complexity of the leading order term and its derivatives, along with the existence of a closed-

form solution for the European-style option and the capability to determine the corresponding

Greeks. This limitation is demonstrated by application of the approach to the American up-

and-out put option problem, for which a fully analytical approximation beyond two terms is

onerous due to the increased complexity of the leading order approximation, originally derived

by AitSahlia & Lai [3]. However, the significant improvement in accuracy of the two-term series

versus the leading order term highlights the potential gain to be made.
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Further potential complexity issues are highlighted through the formulation of the American

option problem under the CEV model for the underlying, where the determination of the leading

order term requires the availability of a routine to determine the confluent hypergeometric

function, while determination of additional terms will almost surely require a numerical scheme.

We furnish some of the details of this possible direction of work in subsection 5.2.2.

As a further limitation on our analysis, we have not found a suitable way of iterating between

successive terms in the series, either analytically or numerically, and therefore we have been

unable to investigate the convergence properties of this series, even in the standard American

option case. Our work towards this end is included in subsection 5.2.1.

5.2 Further Work

Here we add further detail to two of the possible directions in which we would propose to take

the work contained in this thesis, but which remain unfinished as of the time of writing.

5.2.1 Towards a General Analytic Expression

Finding a general analytic solution to the problem for the general n + 1th term in the series

(3.122a-3.122d) requires the derivation of a general expression for the forcing term, the solu-

tion of the resulting governing equation and the specification and application of the boundary

conditions.

The forcing term for the n + 1th problem, is found via differentiation with respect to p of the

term (3.121) n times, with evaluation at p = 0. This yields the expression for the forcing term

of the problem (g̃n+1, S̄
∗
n+1)

(n+ 1)α(1− h)F̃n(X̃, h) = (n+ 1)α(1− h)

[
∂g̃n
∂h

+

n∑
m=0

(
n

m

)
∂n−m

∂pn−m

(
1

S̄∗
∂S̄∗

∂h

) ∣∣∣∣
p=0

∂g̃m

∂X̃

]
.

(5.1)

In order to determine a general form for the forcing term, we need an expression for the general

derivative with respect to p of the boundary term, which entered the governing equation by

virtue of the Landau transformation, or

∂n−m

∂pn−m

(
1

S̄∗
∂S̄∗

∂h

) ∣∣∣∣
p=0

=

j=n−m∑
j=0

(
n−m

j

)
Yj
∂S̄∗

n−m−j

∂h
, (5.2)
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where Yj(h) =
∂j

∂pj

(
1
S̄∗

) ∣∣
p=0

. This can be written recursively as

Yj(h) =


1
S̄∗
0

j = 0,

−
∑k=j−1

k=0

(
j−1
k

)(∑l=k
l=0

(
k
l

)
YlYk−l

)
S̄∗
j−k if j = 1, 2, . . .m,

(5.3)

and therefore the forcing term becomes

(n+ 1)α(1− h)F̃n+1(X̃, h) = (n+ 1)α(1− h)

[
∂g̃n
∂h

+

n∑
m=0

(
n

m

)
∂g̃m

∂X̃

j=n−m∑
j=0

(
n−m

j

)
Yj

∂S̄∗
n−m−j

∂h

]
.

(5.4)

Further, we can show that if g̃n has the form

g̃n(X̃, h) = eλ−X̃

j=Φ(n)∑
j=0

Anj(h)X̃
j , (5.5)

for some integer Φ(n), then the forcing term for the (g̃n+1, S̃
∗
n+1) problem has the form

eλ−X̃
∑j=Φ(n)+1

j=0 Bnj(h)X̃
j . Given this form for the forcing term, we can show that general

solution to the governing equation for ĝn+1 has the form

g̃n+1(X̃, h) = eλ−X̃

j=Φ(n)+2∑
j=0

A(n+1)j(h)X̃
j . (5.6)

We know that the leading order expression has the form g̃0(X̃, h) = A00(h)e
λ−X̃ and therefore

Φ(0) = 0 which requires g̃n+1(X̃, h) to have the general form

ĝn+1(X̃, h) = eλ−X̃
2n+2∑
j=0

A(n+1)j(h)X̃
j . (5.7)

The development of an analytical expression therefore reduces to finding a recurrence relation

between the coefficients A(n)j and A(n+1)j which will determine A(n+1)(2n+2), . . . , A(n+1)1, while

the boundary conditions will determine A(n+1)0 and S̄∗
n+1.

Determination of the coefficients Bnj(h) can be achieved through the relationships

∂g̃m

∂X̃
=

e
λ−X̃λ−A00 if m = 0,

eλ−X̃
[∑2m−1

j=0

(
(j + 1)Am(j+1) + λ−A(mj)

)
X̃j + λ−Am(2m)X̃

2m
]

if m > 0

(5.8)
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and

∂g̃n
∂h

=

e
λ−X̃

[
∂A00

∂h + ∂λ−
∂h A00X̃

]
if n = 0,

eλ−X̃
[
∂An0

∂h +
∑2n

j=1

(
∂λ−
∂h An(j−1) +

∂Anj

∂h

)
X̃j + ∂λ−

∂h An(2n)X̃
2n+1

]
if n > 0

(5.9)

and these can be related to the coefficients A(n+1)j for j ̸= 0 by substituting the general form

(5.7) in the governing equation (3.122a) and comparing powers of X̃.

Expressions for A(n+1)0 and S̄∗
n+1 are found through application of the boundary conditions

(3.122c-3.122d) which yield

hA(n+1)0 = −S̄∗
n+1 −

∂n+1P̂ ∗
e

∂pn+1

∣∣∣∣
p=0

, (5.10)

where

S̄∗
n+1 =

hA(n+1)1 +
∑n

k=0 S̄
∗
k

∂n+1−k

∂pn+1−k

(
∂P̂∗

e

∂S̄

) ∣∣∣∣
p=0

(λ− − 1)− ∂P̂e

∂S̄

∣∣
S̄∗
0

. (5.11)

Though the expressions relating successive terms in the series look relatively benign, there are

some difficulties moving along the series in practice. The h-derivatives in forcing term (5.4)

together with the p-derivatives of the put option price and its delta (5.10-5.11) produce ever

larger numbers of terms which are onerous to determine analytically and we have not found an

iterative method for their determination. The development of a numerical routine which may

facilitate the investigation of convergence of the optimal exercise boundary approximation is

therefore an area of further work.

5.2.2 An Analytical Approximation Under the CEV Model

One possible extension of our anaytical approximation for American-style options is application

to option pricing under a general constant elasticity of variance or CEV, process which was

first proposed by Cox [32]. This model aims to reproduce the observation that implied option

volatility varies with the strike price, in an effect typically referred to as the volatility smile.

Under the CEV model, a dividend paying underlying satisfies the SDE

dS = (r −D)Sdt+ σSn+1dW, (5.12)

under the risk neutral measure, where n represents the sensitivity of the variance to the value
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of the underlying.

For n = 1, we have geometric Brownian motion and return to the Black-Scholes-Merton model

and the results derived therein. For n < 1 the volatility decreases/increases relative to GBM

as the value of the underlying increases/decreases. This shifts the weight of probability distri-

bution to the left, and makes large positive returns less easily attainable than large negative

returns. This behaviour is typically seen in the equity market. For n > 1 the volatility in-

creases/decreases relative to GBM as the value of the underlying increases/decreases. This

shifts the weight of probability distribution to the right, and makes higher returns more easily

attainable. This behaviour is typically seen in the market for options on futures. It is worth

mentioning that none of these cases represent a symmetrical smile as observed in the foreign

exchange market.

The American put option problem under the CEV model is given by

S ∈ (S∗(t),∞), t ∈ (0, T )
∂PCEV

a

∂t
+

1

2
σ2S2S2n ∂

2PCEV
a

∂S2
+ (r −D)S

∂PCEV
a

∂S
− rPCEV

a = 0,

(5.13a)

subject to

as S → ∞ PCEV
a (S, t) → 0, (5.13b)

at t = T PCEV
a = (K − S)+, (5.13c)

at S = S∗(t) PCEV
a (S∗(t), t) = 1− S∗(t), (5.13d)

∂PCEV
a

∂S
= −1. (5.13e)

Introducing the scalings

S = KS̄, PCEV
a = KP̄CEV

a , σ̃2 = K2nσ2, α̃ =
2r

σ̃2
,

β̃ =
2(r −D)

σ̃2
, τ̃ =

σ̃2(T − t)

2
, (5.14)

together with the MacMillan transformation h̃(τ̃) = 1−e−α̃τ̃ , the decomposition P̄CEV
a (S̄, τ̃) =

P̄CEV
e (S̄, τ̃) + h̃g(S̄, h) and the analytic expansions in a parameter p ∈ [0, 1]

ḡCEV (S̄, h̃; p) =

∞∑
i=0

pi

i!
ḡCEV
i (S̄, h̃), (5.15)

S̄∗(h̃; p) =
∞∑
i=0

pi

i!
S̄∗
i (h̃), (5.16)
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gives the problem

S̄ ∈ (S̄∗(h̃),∞), h̃ ∈ (0, 1) S̄2S̄2n ∂
2ḡCEV

∂S̄2
+ β̃S̄

∂ḡCEV

∂S̄
− α̃

h̃
ḡCEV = pα̃(1− h̃)

∂ḡCEV

∂h̃
,

(5.17a)

subject to

as S̄ → ∞ ḡCEV (S̄, h̃) → 0, (5.17b)

at h̃ = 0 h̃ḡCEV (S̄, 0) = 0, (5.17c)

at S̄ = S̄∗(h̃) h̃ḡCEV (S̄∗(h̃), h̃) = 1− S̄∗(h̃)− P̄CEV
e (S̄∗(h̃), h̃), (5.17d)

h̃
∂ḡCEV

∂S̄
= −1− ∂P̄CEV

e

∂S̄

∣∣∣∣
S̄∗
, (5.17e)

where the parameter p ∈ [0, 1] is also introduced into the forcing term of the governing equation.

Following the same approach as in Chapters 3 & 4, we differentiate the problem (5.17a-5.17e)

wrt p and evaluate at p = 0 to give the following problems for the first two terms in the series:

for (ḡCEV
0 , S̄∗

0 )

S̄ ∈ (S̄∗
0 (h̃),∞), h̃ ∈ (0, 1) S̄2S̄2n ∂

2ḡCEV
0

∂S̄2
+ β̃S̄

∂ḡCEV
0

∂S̄
− α̃

h̃
ḡCEV
0 = 0, (5.18a)

subject to

as S̄ → ∞ ḡCEV
0 (S̄, h̃) → 0, (5.18b)

at h̃ = 0 h̃ḡCEV
0 (S̄, 0) = 0, (5.18c)

at S̄ = S̄∗
0 h̃ḡCEV

0 = 1− S̄∗
0 − P̄CEV

e (S̄∗
0 (h̃), h̃), (5.18d)

h̃
∂ḡCEV

0

∂S̄
= −1− ∂P̄CEV

e

∂S̄
, (5.18e)

and for (ḡCEV
1 , S̄∗

1 )

S̄ ∈ (S̄∗
0 (h̃),∞), h̃ ∈ (0, 1) S̄2S̄2n ∂

2ḡCEV
1

∂S̄2
+ β̃S̄

∂ḡCEV
1

∂S̄
− α̃

h̃
ḡCEV
1 = α̃(1− h̃)

∂ḡCEV
0

∂h̃
,

(5.19a)
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subject to

as S̄ → ∞ ḡCEV
1 (S̄, h̃) → 0, (5.19b)

at h̃ = 0 h̃ḡCEV
1 (S̄, 0) = 0, (5.19c)

at S̄ = S̄∗
0 (h̃) h̃ḡCEV

1 = 0, (5.19d)

h̃
∂ḡCEV

1

∂S̄
= −S̄∗

1

[
∂2P̄CEV

e

∂S̄2
+ h̃

∂2ḡCEV
0

∂S̄2

]
. (5.19e)

Davydov and Linetsky [37] give the following general solutions to the ODE (5.18a), where in

each case C+
0 (h̃) is the unknown coefficient of an increasing function in S̄ and C−

0 (h̃) is the

unknown coefficient of a decreasing function in S̄.

For n > 0

ḡCEV
0 (S̄, h̃) =


S̄n+ 1

2 e
β̃
2n

S̄−2n
[
C+

0 (h̃)Wk,m

(
β̃
n
S̄−2n

)
+ C−

0 (h̃)Mk,m

(
β̃
n
S̄−2n

)]
, for β̃ > 0

S̄n+ 1
2 e

β̃
2n

S̄−2n
[
C+

0 (h̃)W−k,m

(
− β̃

n
S̄−2n

)
+ C−

0 (h̃)M−k,m

(
− β̃

n
S̄−2n

)]
, for β̃ < 0

S̄
1
2

[
C+

0 (h̃)Kν

(√
2α̃ S̄−n

n

)
+ C−

0 (h̃)Iν
(√

2α̃ S̄−n

n

)]
, for β̃ = 0,

(5.20)

and for n < 0

ḡCEV
0 (S̄, h̃) =


S̄n+ 1

2 e
β̃
2n

S̄−2n
[
C−

0 (h̃)W−k,−m

(
− β̃

n
S̄−2n

)
+ C+

0 (h̃)M−k,−m

(
− β̃

n
S̄−2n

)]
, for β̃ > 0

S̄n+ 1
2 e

β̃
2n

S̄−2n
[
C−

0 (h̃)Wk,−m

(
β̃
n
S̄−2n

)
+ C+

0 (h̃)Mk,−m

(
β̃
n
S̄−2n

)]
, for β̃ < 0

S̄
1
2

[
C−

0 (h̃)K−ν

(
−
√
2α̃ S̄−n

n

)
+ C+

0 (h̃)I−ν

(
−
√
2α̃ S̄−n

n

)]
, for β̃ = 0.

(5.21)

whereWk,m(x) andMk,m(x) are the Whittaker functions and Kν(x) and Iν(x) are the modified

Bessel functions, which can all be written in terms of the confluent hypergeometric functions

U(a, b;x) and M(a, b;x) [1]

Wk,m(x) = e−
x
2 xm+ 1

2U

(
1

2
+m− k, 1 + 2m;x

)
, (5.22)

Mk,m(x) = e−
x
2 xm+ 1

2M

(
1

2
+m− k, 1 + 2m;x

)
, (5.23)

Kν(x) =
(x
2

)ν e−x

Γ (ν + 1)
M

(
1

2
+ ν, 1 + 2ν; 2x

)
, (5.24)

Iν(x) = π
1
2 (2x)

ν
e−xU

(
1

2
+ ν, 1 + 2ν; 2x

)
, (5.25)
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where U(a, b;x) and M(a, b;x) have the integral representations

U(a, b;x) =
ex

Γ (a)

∫ ∞

1

e−xttb−a−1 (1− t)
a−1

dt, (5.26)

M(a, b;x) =
Γ(b)

Γ(b− a)Γ(a)

∫ 1

0

eztta−1(1− t)b−a−1dt. (5.27)

Writing them in this form has the advantage that derivatives with respect to the independent

variable x have well known forms [1]

∂U

∂x
(a, b;x) = −aU(a+ 1, b+ 1;x), (5.28)

∂M

∂x
(a, b;x) =

a

b
M(a+ 1, b+ 1;x), (5.29)

which makes the representation of derivatives of ḡ0 more compact.

For the American put option problem, we need decreasing solutions in order to satisfy the large

S̄ constraint and therefore we require C+
0 = 0 in (5.20,5.21), leading to the form for ḡCEV

0 for

n > 0

ḡCEV
0 (S̄, h̃) =


C−

0 (h̃)
(

β̃
n

) 1
2 (1+

1
2n )

M
(

α̃

2β̃n
, 1 + 1

2n
; β̃
n
S̄−2n

)
, for β̃ > 0,

C−
0 (h̃)

(
− β̃

n

) 1
2 (1+

1
2n )

e
β̃
2n

S̄−2n

M
(
1 + 1

2n
− α̃

2β̃n
, 1 + 1

2n
;− β̃

n
S̄−2n

)
, for β̃ < 0,

C−
0 (h̃)

(√
2α̃
2n

) 1
2n

e−
√

2α̃
n

S̄−n

M
(

1
2
+ 1

2n
, 1 + 1

n
; 2

√
2α̃
n

S̄−n
)
, for β̃ = 0,

(5.30)

and for n < 0

ḡCEV
0 (S̄, h̃) =


C−

0 (h̃)
(
− β̃

n

) 1
2 (1−

1
2n )

S̄e
β̃
2n

S̄−2n

U
(
1− α̃

2β̃n
, 1− 1

2n
;− β̃

n
S̄−2n

)
, for β̃ > 0,

C−
0 (h̃)

(
β̃
n

) 1
2 (1−

1
2n )

S̄U
(

α̃

2β̃n
− 1

2n
, 1− 1

2n
; β̃
n
S̄−2n

)
, for β̃ < 0,

C−
0 (h̃)π

1
2

(
− 2

√
2α̃
n

)− 1
2n

S̄e
√

2α̃
n

S̄−n

U
(

1
2
− 1

2n
, 1− 1

n
;− 2

√
2α̃
n

S̄−n
)
, for β̃ = 0.

(5.31)

Determination of S̄∗
0(h̃)

From conditions (5.18d-5.18e), S̄∗
0 solves the transcendental expression

ḡCEV
0 (S̄, h̃) = −∂ḡ

CEV
0

∂S̄

∣∣∣∣
S̄∗
0

1− S̄∗
0 − P̄CEV ∗

e

1 + ∆̄CEV ∗ , (5.32)

where P̄CEV ∗
e and ∆̄CEV ∗ respectively represent the European put option price and its Delta
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under the CEV model evaluated at S̄∗
0 . To solve this expression we need the form for

∂ḡCEV
0

∂S̄

which is for n > 0

∂ḡCEV
0

∂S̄
=



α̃C−
0

2n+1

(
β̃
n

) 1
2 (1+

1
2n )

S̄−2n−1M
(
1 + α̃

2β̃n
, 2 + 1

2n
; β̃
n
S̄−2n

)
, for β̃ > 0,

β̃C−
0

(
− β̃

n

) 1
2 (1+

1
2n )

S̄−2n−1e
β̃
2n

S̄−2n

× . . .[(
1− α̃

β̃(2n+1)

)
M
(
2 + 1

2n
α̃

2β̃n
, 2 + 1

2n
− β̃

n
S̄−2n

)
. . .−M

(
1 + 1

2n
− α̃

2β̃n
, 1 + 1

2n
;− β̃

n
S̄−2n

)]
, for β̃ < 0,

√
2α̃C−

0

(√
2α̃
2n

) 1
2n

S̄−n−1e−
√

2α̃
n

S̄−n

[
M
(

1
2
+ 1

2n
, 1 + 1

n
; 2

√
2α̃
n

S̄−n
)

. . .−M
(

3
2
+ 1

2n
, 2 + 1

n
; 2

√
2α̃
n

S̄−n
)]

, for β̃ = 0

(5.33)

and for n < 0

∂ḡCEV
0

∂S̄
=



C−
0

(
− β̃

n

) 1
2 (1−

1
2n )

e
β̃
2n

S̄−2n

[(
1− β̃S̄−2n

)
U
(
1− α̃

2β̃n
, 1− 1

2n
;− β̃

n
S̄−2n

)
. . .+

(
α̃
n
− 2β̃

)
S̄−2nU

(
2− α̃

2β̃n
, 2− 1

2n
;− β̃

n
S̄−2n

)]
, for β̃ > 0,

C−
0

(
β̃
n

) 1
2 (1−

1
2n )

[
U
(

α̃

2β̃n
= 1

2n
, 1− 1

2n
; β̃
n
S̄−2n

)
. . .+

(
α̃− β̃

)
S̄−2n

n
U
(
1 + α̃

2β̃n
− 1

2n
, 2− 1

2n
; β̃
n
S̄−2n

)]
, for β̃ > 0,

C−
0 π

1
2

(√
2α̃
2n

) 1
2n

e−
√

2α̃
n

S̄−n

[(
1−

√
2α̃S̄−n

)
U
(

1
2
− 1

2n
, 1− 1

n
;− 2

√
2α̃
n

S̄−n
)

. . .−
√
2α̃
(
1− 1

n

)
S̄−nU

(
3
2
− 1

2n
, 2− 1

n
;− 2

√
2α̃
n

S̄−n
)]

, for β̃ = 0,

(5.34)

while the European put option under the CEV model [33] is given by

P̄CEV
e (S̄, t) =

e
−α̃τ̃

(
1− χ2(c, b, a)

)
− S̄e−β̃τ̃χ2(a, b+ 2, c) for n < 0,

e−α̃τ̃
(
1− χ2(a, 2− b, c)

)
− S̄e−β̃τ̃χ2(c,−b, a) for n > 0,

(5.35)

where

a =

(
e−β̃τ̃

)−2n

n2m
, b = − 1

n
, c =

S̄−2n

n2m
, m = − 1

2β̃n
e−2nβ̃τ̃−1 (5.36a)

and χ2(z, k, w) is the cumulative distribution function of the non-central chi-squared distribu-

tion with k degrees of freedom and non-centrality parameter w. We note that only c depends

on the underlying and therefore will be the only contribution to the delta from the chi-squared
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distribution.

∆̄CEV
e (S̄, τ̃) =

−e−β̃τ̃χ2(a, b+ 2, c)− ∂c
∂S̄

[
e−α̃τ̃ ∂

∂c
χ2(c, b, a) + S̄e−β̃τ̃ ∂

∂c
χ2(a, b+ 2, c)

]
for n < 0,

−e−β̃τ̃χ2(c,−b, a)− ∂c
∂S̄

[
e−α̃τ̃ ∂

∂c
χ2(a, 2− b, c) + S̄e−β̃τ̃ ∂

∂c
χ2(c,−b, a)

]
for n > 0.

(5.37)

The numerical solution to the transcendental expression for S̄∗
0 for the general CEV model thus

requires evaluation of the non-centralised chi-squared distribution together with its derivatives

with respect to its argument and the non-centrality parameter. A further requirement is a

robust routine for the evaluation of the confluent hypergeometric functions. This remains work

to be completed.

An analytical solution to the problem for (gCEV
1 , S̄∗

1 ) (5.19a-5.19e) requires an expression for

the forcing term in the ODE, which depends on the term
∂C−

0

∂h and in turn on the term
∂S̄∗

0

∂h .

Deriving analytical forms for these terms will probably be onerous and one may therefore prefer

to use a numerical approximation for the forcing term and seek to solve the ODE problem for ḡ1

numerically, though naturally at the likely expense of computational time versus an analytical

expression.



Appendix A

Greeks

In order to calculate the analytical approximations derived for the standard American put

option and American up-and-out put option in Chapter’s 3 & 4, we require derivatives of the

equivalent European-style options with respect to model variables. In finance these sensitivities

are termed Greeks.

Discussions regarding some of the lower order vanilla European Greeks can be found in most

financial mathematics texts (eg. Hull [62]) while some higher order vanilla European Greeks

are discussed by Garman [46]. Good technical discussions of the role of Greeks in finance from

the point of view of practitioners can be found in Haug [55, 56] and Taleb [98].

We shall derive the European Greeks for the non-dimensional prices P̄e(S̄, τ) (2.3) and P̄
UO
e (S̄, τ)

(4.2) based on the non-dimensional parameters α & β (2.1), with the Greeks for vanilla Eu-

ropean options notated using a bar (ie ∆̄,Γ̄,Θ̄,...) and a similar notation used for European

barrier option Greeks but with a superscript denoting the type of barrier (ie ∆̄UO,Γ̄UO,Θ̄UO,...).

The Greeks evaluated at the leading or order boundary term in the analytic approximations,

are notated by a superscript star (ie ∆̄∗, Γ̄∗,Θ̄∗,... or ∆̄UO∗, Γ̄UO∗,Θ̄UO∗,...).

Since we use MacMillan’s time-transformation in deriving our series approximations, we derive

the time related Greeks under h = 1− e−ατ , which can be recovered for the τ -derivatives using

∂

∂h
=

1

α(1− h)

∂

∂τ
. (A.1)

167
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A.1 European Put Option Greeks

The non-dimensional Black-Scholes-Merton equation for a European put option on a dividend

paying asset was given in (2.3) as

P̄e(S̄, τ) =
e−ατ

2

[
erfc

(
d̄2√
2

)
− eβτ S̄erfc

(
d̄1√
2

)]
,

where

d̄1√
2
=

1

2

[
ln (S̄)

τ
1
2

+ (β + 1)τ
1
2

]
,

d̄2√
2
=

1

2

[
ln (S̄)

τ
1
2

+ (β − 1)τ
1
2

]

and erfc(ζ) is the complementary error function

erfc(ζ) =
2√
π

∫ ∞

ζ

e−s2ds. (A.2)

In deriving the Greeks, we use the relationships

erfc(−ζ) = 2− erfc(ζ), (A.3)

erfc′(ζ) =
d (erfc(ζ))

dζ
= − 2√

π
e−ζ2

, (A.4)

the derivatives of (2.4a) and (2.4b) with respect to S̄ and τ

∂

∂S̄

(
d̄1√
2

)
=
∂

∂S̄

(
d̄2√
2

)
=

1√
2S̄(d̄1 − d̄2)

, (A.5a)

∂

∂τ

(
d̄1√
2

)
=

1√
2(d̄1 − d̄2)

[
(β + 1)− d̄1

d̄1 − d̄2

]
, (A.5b)

∂

∂τ

(
d̄2√
2

)
=

1√
2(d̄1 − d̄2)

[
(β − 1)− d̄2

d̄1 − d̄2

]
(A.5c)

and the relation

erfc′
(
d̄2√
2

)
− eβτ S̄erfc′

(
d̄1√
2

)
= 0. (A.6)
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Delta

The Delta of the European put option is the first derivative with respect to the option price

∆̄ =
∂P̄e

∂S̄
=
e−ατ

2

[
erfc′

(
d̄2√
2

)
∂

∂S̄

(
d̄2√
2

)
− eβτ S̄erfc′

(
d̄1√
2

)
∂

∂S̄

(
d̄1√
2

)
− eβτerfc

(
d̄1√
2

)]
= −e

−(α−β)τ

2
erfc

(
d̄1√
2

)
= − (1− h)

α−β
α

2
erfc

(
d̄1√
2

)
(A.7)

,

using (A.6) and (A.5a).

Gamma

The Gamma of the European put option is the second derivative with respect to the option

price

Γ̄ =
∂2P̄e

∂S̄2
= − (1− h)

α−β
α

2
erfc′

(
d̄1√
2

)
∂

∂S̄

(
d̄2√
2

)
= (1− h)

α−β
α
e−

d̄21
2

√
2π

1

S̄(d̄1 − d̄2)
. (A.8)

Speed

The third derivative of the option price with respect to the underlying is given the term Speed

by Garman [46] and we notate it as Γ̄∆. Differentiating (A.8) with respect to S̄ gives

Γ̄∆̄ =
∂3P̄e

∂S̄3
= − Γ̄

S̄

[
d̄1

d̄1 − d̄2
+ 1

]
. (A.9)

Theta

The Theta of an option is its first derivative with respect time, or for the purpose of analytic

approximation the transformed time variable h. We use the Black-Scholes PDE to write Theta

in terms of Delta (A.7), Gamma (A.8) and the European put option price (2.3)

Θ̄ =
1

α(1− h)

[
S̄2Γ̄ + βS̄∆̄− αP̄e

]
. (A.10)
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Charm/Delta Bleed

The decay in Delta with time is given the term Charm by Garman and Delta Bleed by Taleb

and we shall notate it as ∆̄Θ. Differentiating (A.10) with respect to S̄ gives

∆̄Θ̄ =
1

α(1− h)

[
S̄2Γ̄∆ + (β + 2)S̄Γ̄− (α− β)∆̄

]
. (A.11)

Colour/Gamma Bleed

The decay in Gamma with time is given the term Colour by Garman and Gamma Bleed by

Taleb and we notate it as Γ̄Θ. Differentiating (A.11) with respect to S̄ gives

Γ̄Θ̄ =
1

α(1− h)

[
S̄2Γ̄Γ + (β + 4)S̄Γ̄∆ − (α− 2β − 2)Γ̄

]
. (A.12)

Higher Order Greeks

The Greeks of higher order than previously derived are not typically discussed in the litera-

ture. We derive the results needed for the purpose of determining the terms in our analytic

approximation here.

Differentiating (A.9) with respect to S̄ gives

Γ̄Γ̄ =
∂4P̄e

∂Ŝ4
= − Γ̄∆

S̄

[
2 +

d̄1
d̄1 − d̄2

]
− Γ̄

S̄2

1

(d̄1 − d̄2)2
. (A.13)

Differentiating (A.11) with respect to h gives

Θ̄Θ̄ =
∂2P̄e

∂h2
=

Θ

(1− h)
+

1

α(1− h)

[
S̄2Γ̄Θ + βS̄∆̄Θ − αΘ

]
=

1

α(1− h)

[
S̄2Γ̄Θ + βS̄∆̄Θ

]
. (A.14)

Differentiating (A.14) with respect to S̄ gives

∆̄ΘΘ =
∂3P̄e

∂S̄∂h2
=

1

α(1− h)

[
2S̄Γ̄Θ + S̄2Γ̄∆Θ + β∆̄Θ + βS̄Γ̄Θ

]
. (A.15)

Differentiating (A.9) with respect to h gives

Γ̄∆Θ =
∂4P̄e

∂S̄3∂h
= −Γ̄Θ

[
d̄1 +

1

S̄

]
− Γ̄

α(1− h)(d̄1 − d̄2)

[
(β + 1)− d̄1

d̄1 − d̄2

]
. (A.16)
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A.2 European Up-and-Out Put Option Greeks

Choosing to represent the European barrier option price in terms of vanilla European option

greatly simplifies the calculation of the equivalent Greeks. From (4.2) the price of a European

up-and-out put option is given by

P̄UO(S̄, τ ; B̄) =


P̄e(S̄)−

(
S̄
B̄

)2a
P̄e

(
B̄2

S̄

)
for B̄ > 1,

B̄

[
P̄e

(
S̄
B̄

)
−
(

S̄
B̄

)2a
P̄e

(
B̄
S̄

)]
− (1− B̄)

[
P̄d

(
S̄
B̄

)
−
(

S̄
B̄

)2a
P̄d

(
B̄
S̄

)]
for B̄ ≤ 1,

(A.17)

where 2a = −(β− 1) and the time dependence of the European put option terms is omitted for

clarity. P̄d is a European digital put option given by

P̄d(S̄, τ) =
e−ατ

2
erfc

(
d̄2√
2

)
. (A.18)

For an up-and-out put option, the rebate is given by an American digital call option struck at

the barrier and scaled by the rebate, or

R̄C̄Am
d (S̄, τ ; B̄) =

R̄

2

[(
S̄

B̄

)λ+
∞

erfc

(
− d̄+√

2

)
+

(
S̄

B̄

)λ−
∞

erfc

(
− d̄−√

2

)]
, (A.19)

where

λ∞± =
−(β − 1)±

√
(β − 1)2 + 4α

2
, (A.20)

d̄± =
ln
(

S̄
B̄

)
±
(
λ∞+ − λ∞−

)
τ

√
2τ

. (A.21)

We will therefore also require the Greeks of European and American digital options for our

analytical approximation for the American barrier option. These are derives in subsections

(A.2.3) and (A.2.4) respectively.

A.2.1 Greeks for Regular Barrier Options (B̄ ≥ 1)

Using (4.2) the following Greeks can be derived for the regular European up-an-out put option,

with the European digital put option Greeks derived in subsection (A.2.3)
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Delta

∆̄UO
e = ∆̄(S̄)− 2a

S̄

(
S̄

B̄

)2a

P̄e

(
B̄2

S̄

)
+

(
S̄

B̄

)2a−2

∆̄

(
B̄2

S̄

)
. (A.22)

Gamma

Γ̄UO
e = Γ̄(S̄) +

2a− 4a2

S̄2

(
S̄

B̄

)2a

P̄e

(
B̄2

S̄

)
+

4a− 2

S̄

(
S̄

B̄

)2a−2

∆̄

(
B̄2

S̄

)
−
(
S̄

B̄

)2a−4

Γ̄

(
B̄2

S̄

)
.

(A.23)

Theta

Θ̄UO
e =

1

α(1− h)

(
S̄2Γ̄UO

e + βS̄∆̄UO
e − αP̄UO

e

)
. (A.24)

Delta Bleed

∆̄UO
Θ = ∆̄Θ(S̄)−

2a

S̄

(
S̄

B̄

)2a

Θ̄

(
B̄2

S̄

)
+

(
S̄

B̄

)2a−2

∆̄Θ

(
B̄2

S̄

)
. (A.25)

A.2.2 Greeks for Reverse Barrier Options (B̄ < 1)

Using (4.2) the following Greeks can be derived for the regular European up-an-out put option,

with the European digital put option Greeks derived in subsection (A.2.3).

Delta

∆̄UOR
e =

[
∆̄

(
S̄

B̄

)
− 2a

(
S̄

B̄

)2a−1

P̄e

(
B̄

S̄

)
+

(
S̄

B̄

)2a−2

∆̄

(
B̄

S̄

)]

− (1− B̄)

B̄

[
∆̄d

(
S̄

B̄

)
− 2a

(
S̄

B̄

)2a−1

P̄d

(
B̄

S̄

)
+

(
S̄

B̄

)2a−2

∆̄d

(
B̄

S̄

)]
. (A.26)
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Gamma

Γ̄UOR
e =

1

B̄

[
Γ̄

(
S̄

B̄

)
− 2a(2a− 1)

(
S̄

B̄

)2a−2

P̄e

(
B̄

S̄

)
+ (4a− 2)

(
S̄

B̄

)2a−3

∆̄

(
B̄

S̄

)
−
(
S̄

B̄

)2a−4

Γ̄

(
B̄

S̄

)]
− (1− B̄)

B̄2

[
Γ̄d

(
S̄

B̄

)
− 2a(2a− 1)

(
S̄

B̄

)2a−2

P̄d

(
B̄

S̄

)
+ (4a− 2)

(
S̄

B̄

)2a−3

∆̄d

(
B̄

S̄

)
−
(
S̄

B̄

)2a−4

Γ̄d

(
B̄

S̄

)]
. (A.27)

Theta

Θ̄UOR
e =

1

α(1− h)

(
S̄2Γ̄UOR

e + βS̄∆̄UOR
e − αP̄UOR

e

)
. (A.28)

Delta Bleed

∆̄UOR
Θe =

[
∆̄Θ

(
S̄

B̄

)
− 2a

(
S̄

B̄

)2a−1

Θ̄

(
B̄

S̄

)
+

(
S̄

B̄

)2a−2

∆̄Θ

(
B̄

S̄

)]

− (1− B̄)

B̄

[
∆̄Θd

(
S̄

B̄

)
− 2a

(
S̄

B̄

)2a−1

Θ̄d

(
B̄

S̄

)
+

(
S̄

B̄

)2a−2

∆̄Θd

(
B̄

S̄

)]
. (A.29)

A.2.3 European Digital Put Option Greeks

For the purpose of determining the European digital put option Greeks, we can rewrite (A.18)

using (2.3) and (A.7) as

P̄d(S̄, τ) = P̄e(S̄, τ)− S̄∆̄e(S̄, τ), (A.30)

which allows us to trivially derive

∆̄d = −S̄Γ̄, (A.31)

Γ̄d = −Γ̄− S̄Γ̄∆, (A.32)

Θ̄d =
1

α(1− h)

(
S̄2Γ̄d + βS̄∆̄d − αP̄d

)
, (A.33)

∆̄Θd = −S̄Γ̄Θ. (A.34)
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A.2.4 American Digital Call Option Greeks

To determine the Greeks of the rebate term (A.19), we need the Greeks of the American digital

call option, struck at the barrier.

Delta

∆̄Am
d =

1

2

[
λ+∞
S̄

(
S̄

B̄

)λ+
∞

erfc

(
− d̄+√

2

)
+
λ−∞
S̄

(
S̄

B̄

)λ−
∞

erfc

(
− d̄−√

2

)
+

1
√
πS̄τ

1
2

(
S̄

B̄

)λ+
∞

e−
(d̄+)2

2 +
1

√
πS̄τ

1
2

(
S̄

B̄

)λ−
∞

e−
(d̄−)2

2

]
. (A.35)

Gamma

Γ̄Am
d =

1

2

[
λ+∞(λ+∞ − 1)

S̄2

(
S̄

B̄

)λ+
∞

erfc

(
− d̄+√

2

)
+
λ−∞(λ−∞ − 1)

S̄2

(
S̄

B̄

)λ−
∞

erfc

(
− d̄−√

2

)
+

1
√
πS̄2τ

1
2

(
S̄

B̄

)λ+
∞

e−
(d̄+)2

2

(
2λ+∞ − 1 +

d̄+√
2τ

1
2

)

+
1

√
πS̄2τ

1
2

(
S̄

B̄

)λ−
∞

e−
(d̄−)2

2

(
2λ−∞ − 1 +

d̄−√
2τ

1
2

)]
. (A.36)

Theta

Θ̄Am
d =

1

α(1− h)

(
S̄2Γ̄Am

d + βS̄∆̄Am
d − αP̄Am

d

)
. (A.37)

Delta Bleed

∆̄Am
Θd =

1

2α(1− h)

[
1√
πS̄

(
S̄

B̄

)λ+
∞

e−
(d̄+)2

2

((
d̄+

2τ
1
2

− λ+∞

)(
d̄+√
2τ

−
λ∞+ − λ∞−

τ
1
2

)
− 1

2τ
3
2

)
+

1√
πS̄

(
S̄

B̄

)λ−
∞

e−
(d̄−)2

2

((
d̄−

τ
1
2

− λ−∞

)(
d̄−√
2τ

+
λ∞+ − λ∞−

τ
1
2

)
− 1

2τ
3
2

)]
. (A.38)
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