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Summary

We consider the planar flow of Oldroyd-B fluids around sharp corners. Two distinct

cases arise for the corner geometry, where the corner angle is denoted by π/α. For

1/2 ≤ α < 1 we have a re-entrant corner, whilst for 1 < α < ∞ a so called salient

corner occurs. These two regimes have markedly different flow behaviour. The flow

situation assumes complete flow around the corner with the absence of a lip vortex.

For the re-entrant corner problem a class of self-similar solutions has been identified

with stress singularities of O(r−2(1−α)) and stream function behaviour O(r(1+α)α) (r

being the radial distance from the corner). These behaviours arise in a core flow region

away from the walls and are shown to be solutions of the incompressible Euler equations.

This region is reconciled with elastic boundary layers at the upstream and downstream

walls using the method of matched asymptotic expansions. The analysis benefits from

the representation of the stress in both Cartesian and natural stress formulations, and

is performed when the Weissenberg number (the dimensionless relaxation time) is O(1).

These results hold for all values of the retardation parameter β ∈ [0, 1), but breakdown

in the Newtonian limit β → 1−. This later singular limit is considered along with the

other singular regimes of low and high Weissenberg number, in order to extend the

parameter dependence of the solution.

For the salient corner case the mathematically simpler Newtonian balance for the

flow and stress fields are shown to dominate away from the walls. This gives a stream

function behaviour of O(r1+λ0) and stress behaviour O(rλ0−1), where λ0 is the Newto-

nian problem eigenvalue. This behaviour is again reconciled with boundary layers at

the walls which recover viscometric behaviour. These boundary layers are markedly

different from those of the re-entrant corner case.
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Chapter 1

Introduction

This thesis studies viscoelastic flows of Oldroyd-B type fluids in simple corner geome-

tries. To introduce the subject, this chapter discusses the rheology behind viscometric

materials, derivations of constitutive models leading up to Oldroyd-B type and a lit-

erature review of previous work undertaken in the field. To put this work into an

industrial context, some relevant applications of Oldroyd-B type fluids are discussed.

We begin with an introduction to basic rheological phenomena before going into detail

on rheological concepts.

1.1 Introduction

Conservation laws for fluids state that particular measurable properties of an isolated

physical system do not change as the system evolves. For example the Continuity Equa-

tion is a statement that mass is conserved within a system, whilst the Conservation

of Linear and Angular Momentum states that the total linear and angular momentum

respectively of a closed system of objects is constant. Similarly the Conservation of

Energy states that the total amount of energy, again in an closed system, remains con-

stant. However, there are generally more unknowns than equations requiring additional

relations to be found in order to solve the systems. These additional relations are called

constitutive equations and for fluids relate the motion of the fluid to the stresses present.

An important class of fluid flow is Newtonian flow in which the extra stress tensor is

proportional to the deformation tensor, with the proportionality being the viscosity of

the fluid in question. Examples of materials which can be well described by Newtonian

flow are water and air. Experimental data is well known to be modelled accurately by

Newtonian flow theory for fluids which exhibit Newtonian flow characteristics.

However, many fluids show additional properties which are not modelled by Newto-
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nian flow, for example paints can exhibit the shear-thinning effect, where the viscosity

decreases with increasing shear rate. To explain this feature, imagine a polymer solu-

tion at rest with the molecules distributed at random. Any fluid trying to flow through

this polymer will have to expend a lot of effort in order to make progress. In a simple

shear flow, the molecules will align themselves with the fluid flow direction thus mak-

ing it easier for the surrounding fluid molecules to flow past each other. This heuristic

explanation of ’shear-thinning’ explains why such fluids are very viscous at rest but

flow easier when a stress is applied. Paint utilises this behaviour as one would like a

less viscous substance while painting, but for it to be more viscous at rest to prevent

dripping. A further example of Non-Newtonian behaviour would be the presence of a

yield stress. In this case, the stress upon a system has to pass a threshold before which

the fluid does not flow. Particularly viscous materials such as toothpaste and ketchup

are good examples where a yield-stress is present; fluids of this type are termed vis-

coplastic fluids. Fluids exhibiting this behaviour will not be discussed in this thesis but

these examples serve to illustrate the many fluids which have a viscosity rate depending

on shear rate. The need is clear for more complicated constitutive relations which can

incorporate differing rheological qualia.

The development of constitutive equations and investigations into varying fluid

behaviour is generally termed ’rheology’. A large difference between Newtonian and

non-Newtonian mechanics is that the latter has to take into account the microstructure

of the polymer in order to describe the observed effects. The varying size, shape

and density of molecules that make up different polymer solutions can all give rise to

differing rheolgical properties. Thus one can derive constitutive models by looking at

the microstructure.

1.2 Viscoelasticity

Continuum mechanics provides the physical laws that materials obey and imparts re-

quirements for the constitutive laws. There isn’t a distinction in a continuum mechani-

cal sense between solids and fluids though instinctively the difference is obvious: fluids

’flow’ whereas solids do not. Alternatively, one can say that a solid is elastic, that is

if a force is applied upon it the solid deforms, with the work stored as elastic energy.

A fluid is viscous and transforms its work into heat. When the force is removed the

solid returns to its original state (if it is a purely elastic material) but the fluid ‘forgets’

it’s original configuration. Viscoelastic materials lie somewhere in between the purely

elastic and Newtonian flow characteristics. Some of the applied work done is stored as

elastic energy with the rest transformed into heat. At a characteristic time λ say, the

12



material forgets its initial form after unloading some of it’s elastic energy into kinetic

energy. For purely elastic materials λ = ∞, i.e. the material doesn’t forget its original

state and for purely viscous materials λ = 0. For materials which show both viscous

and elastic properties, λ lies within these ranges and is termed a ’viscoelastic’ material.

It should be said that just knowing the characteristic time isn’t generally that useful

unless it is compared against the timescale of the flow (if the history of deformation is

important). Having a characteristic time of a ratio between characteristic velocity and

length scales respectively introduces a dimensionless number called the ‘Deborah num-

ber’ De. This way of characterising materials by the time it remembers its deformation

history motivates calculating the total stress in a system over all past deformations,

thus taking into account the memory of the fluid when calculating stress. We can

formulate this by defining the total stress σ(t) at a time t to be

σ(t) = −pI+ Ft′=∞
t′=−∞

(
C(t′)

)
, (1.1)

where p is the pressure, σ(t) is decomposed into an isotropic part and the extra-stress

tensor with C a suitable strain tensor. The functional F weights the past deformations

less than the most recent ones. As an initial attempt this is too general an approach to

model many viscoelastic fluids, a better way to do it is to represent the functional F as

an integral with a weighting function in it, the weighting function chosen to calibrate

with real data (such as the measured viscosity).

As mentioned later in this introduction, the continuum approach to modelling vis-

coelastic fluids is limited and one is better served looking at the microstructure of fluids

and building up constitutive models this way. The Oldroyd-B fluid is derived this way

later from the properties of polymer molecules in such a fluid type.

1.3 Development of Viscoelastic Theory

The development and application of viscoelastic theory has arisen from the wide de-

velopment of polymeric materials in industry. These materials display characteristics

that cannot be adequately explained by the classical theories of elasticity or viscosity.

Such studies lead to the need for a more general theory encompassing both fields. One

way to characterise such materials, is to measure their response to a uniform stress. A

standard elastic material when subject to such a stress, will respond instantaneously

with a constant rate of deformation. However, materials exist for which such a stress

will induce an instant deformation that is not constant, i.e. some flow process will

subsequently happen. This flow process may not be linear and may change with mag-

nitude or form as time evolves. Materials which exhibit this are said to show creep
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characteristics and cannot be fully described by either elasticity or viscosity theory.

Further complications arise when the materials show memory properties. Applica-

tion of a stress can produce an instantaneous deformation that in turn responds in a

time-dependant manner to the first applied stress. An elastic material does not show

this property: responses are governed at a particular time only by the total stress

levels at that given moment. This property of ‘memory’ is of fundamental impor-

tance to viscoelastic fluids. It should be noted, that memory in viscoelastic theory is

time-dependent, contrasting with other theories such as Plasticity theory
pt
[34].

Viscoelastic fluids retain many of the properties associated with Newtonian Fluids;

namely that stresses depends upon the current motion of the fluid, along with the prop-

erty that stresses are dependent upon the history of its motion. Viscoelastic properties

are usually measured as responses to an instantaneously applied/removed constant or

dynamic stress or strain. The fluid can therefore be thought of as having both a viscous

and an elastic element. The Oldroyd-B model includes both Newtonian and Maxwell

models, allowing it to model, for example, the case where an elastic fluid obeying the

Maxwell relation is mixed with a fluid governed by a Newtonian Law. Various fluid

models exhibit viscoelastic behaviour and the reader is referred to
MOVF
[55] for examples of

other constitutive models.

1.3.1 Balance Laws

Before deriving constitutive models, a more general discussion of the governing equa-

tions of many viscoelastic flows is useful. All fluid motion is governed by the balance

laws of conservation of mass and of linear and angular momentum. If considering

thermal effects, consideration of the energy balance is needed as well. For all models

discussed here, thermal effects are not considered along with the added restriction that

incompressible fluids are considered. These fluids are generally liquid at the temper-

atures used, hence this assumption has physical relevance. For incompressible fluids,

the conservation of mass is

∇ · v = 0, (1.2)

where v is the velocity field of the fluid. Balance of linear momentum gives

ρ

(
∂v

∂t
+ (v · ∇)

)
= −∇p+∇ ·T, (1.3)

where ρ is the density, T the extra stress tensor and p the pressure. The terms on

the left are referred to as the inertial terms (representing the force of inertia) which in
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the majority of this thesis are found to be negligible. T represents the stress the fluid

develops in response to the deformation. We define the total stress tensor σ to be

σ = −pI+T, with σ = σT . (1.4)

The conservation equations are not enough in order to determine the characteristics of

the flow, motivating the need for constitutive equations relating the motion of the fluid

to the stresses present.

1.3.2 Newtonian Fluids

An important class of fluid flow is Newtonian flow. This is a well known and widely dis-

cussed fluid flow type. For an incompressible Newtonian viscous fluid, the constitutive

relation relating stresses to motion is known to be

T = 2ηD, (1.5) eq:sigmastress

where η is the viscocity and D the rate-of-strain (or deformation) tensor. The defor-

mation tensor is related to the fluid motion, specifically it is the symmetric part of the

velocity gradient tensor and written as

D =
1

2
(∇v + (∇v)T ). (1.6) eq:D

Newtonian flow can describe some aspects of viscoelastic flow, which as we will see,

the Oldroyd-B model incorporates. For more complicated behaviour where the stresses

are dependant upon their history, or where solvent and polymer stresses are present

a more complicated set of equations is needed to model this behaviour. Fluids which

incorporate Maxwell effects as well as classical Newtonian qualities are ill-described by

simple Newtonian flow.

1.3.3 Spring Dashpot derivation

There are several ways to derive models, one of which is to approach it via a mechanical

analogy where springs and dashpots are considered in combination. Since viscoelastic

fluids can consist of elastic and viscous elements, we can use the springs to represent

elastic elements of the fluids and dashpots as viscous elements, see figure
fig:spdh
1-1. We

can derive Maxwell’s one-dimensional linear model considering a spring and dashpot

in series as in (A) of figure
fig:spdh
1-1. Relating the elastic strain γe and elastic stress σe (the

subscript e referencing the elastic element) via Hooke’s Law
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Figure 1-1: The spring and dashpot elements are shown in two possible configurations.
(A) shows spring and dashpot elements arranged in a series to give a Maxwell element,
and (B) in parallel to give a Kelvin-Voigt element. fig:spdh

σe = kγe, (1.7)

with spring constant k. The dashpot as a viscous element with associated viscosity η,

extends at a rate proportional to the force applied on it

σv = ηγ̇v. (1.8)

The total strain is the sum of the individual strains since the elements are in series, i.e.

γ = γe + γv. (1.9)

Differentiating with respect to time the individual elements and noting that the stresses

will be equal (σ = σe = σv) since the elements are connected in series, we obtain

σ +
η

k
σ̇ = ηγ̇, (1.10)

where η
k represents a relaxation time: a measure of the time for which the fluid remem-

bers the flow history. Choosing to arrange the elements in parallel, see (B) of
fig:spdh
1-1 gives

the Kelvin-Voigt model. The derivation is similar to the one just performed, but since

the elements are now connected in parallel, the total stress is the sum of individual
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stresses (σ = σe + σv) and the strains are equal (γ = γe = γv), giving

σ = kγ + ηγ̇. (1.11)

We can note that (
eq:sigmastress
1.5) implies σ is a symmetric tensor field and that we can represent

γ̇ with the rate of deformation tensor 2D. The one-dimensional Maxwell constitutive

model can be generalised and written in tensor form as

T+
η

k

∂T

∂t
= 2ηD. (1.12) eqn:linmax

1.4 Nonlinear Maxwell models

A natural extension to this is to consider nonlinear behaviour models for models to

be applied to real fluids. In order to see why (
eqn:linmax
1.12) is not sufficient to describe non-

Newtonian fluids, we need to consider the work of Oldroyd in the 1950 paper
Old50
[37], in

which the principles that a constitutive equation must be based upon were laid out. A

summary of Oldroyd’s work is presented in
Davidson08
[12].

Firstly, constitutive variables such as stress and strain, rates and gradients of these

quantities are expressed in terms of their components in some co-ordinate system. To

ensure that these variables are expressed in a form that does not limit them to a

particular co-ordinate type, such as Cartesian, the variables are expressed as tensors.

There are many ways of expressing tensors, what is important is that constitutive

equations express the same relationship in all coordinate systems. This is what is

termed the Principle of coordinates invariance.

Related to this principle is the Principle of invariance. Consider for example, the

choice of a co-ordinate system in which some constitutive property of a fluid is to

be measured. The principle of coordinate invariance means we need to formulate the

constitutive equation so that we can express it in different co-ordinate systems. The

natural question arises when a suitable system is chosen, how can we ensure that the

constitutive equations are invariant to this choice? Important is the invariance of both

the orientation of the co-ordinate system and its scale.

Therefore for constitutive equations to be invariant under a change of spatial frame,

the so called Principle of Objectivity (a natural extension to the invariance property),

wherein the deformation of a material is not affected by any rotation it may undergo.

If the constitutive equation is satisfied for a motion, then the stresses within the fluid

as a result are invariant spatially (i.e. they aren’t influenced by the observer, only by

the deformation itself). This principle is one that all linear constitutive models violate

apart from Newtonian Flow, so a modification to the linear Maxwell model is needed.
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One way to approach this is to replace the time derivative with an invariant one: the

Gordon-Schowalter convected derivative

DT

Dt
=
∂T

∂t
+

�
T, (1.13) eq:gordsc

where

�
T= TW −WT− a (TD+DT) , W =

1

2

(
∇v − (∇v)T

)
. (1.14)

Here we have the parameter a ∈ [−1, 1]) and W is the vorticity tensor. This is the most

general derivative used to describe viscometric behaviour. There are several Maxwell

models which are specific cases of (
eq:gordsc
1.13) (chosen to model specific viscometric be-

haviour). For a = 1, replacing the time derivative in (
eqn:linmax
1.12) with the Gordon-Schowalter

convected derivative we get the Upper Convected Maxwell (UCM) model

T+
η

k

(
∂T

∂t
+

▽

T

)
= 2ηD, (1.15)

and with a = −1, the Lower Convected Maxwell (LCM) model,

T+
η

k

(
∂T

∂t
+

△

T

)
= 2ηD. (1.16)

The symbols △ and ▽ stand for the upper and lower convected derivates respectively

and are defined as

▽

T= (v · ∇)T− (∇v)T−T(∇v)T ,
△

T= (v · ∇)T+ (∇v)TT+T(∇v). (1.17) eq:ucdrel

The UCM model is one of the most popular Maxwell models, being a simplified case of

the Phan-Thien-Tanner (PTT)
PTT
[41], Oldroyd-B and FENE-P models amongst others.

It gives reasonably accurate modelling of the normal stress differences as well as pre-

dictions for the ratio of second normal stress difference to first normal stress difference.

However it does have deficiencies which are described later.

1.4.1 Other constitutive equations and limitations of the Oldroyd-B

model

Newtonian fluids are characterised by the assumption that the extra-stress tensor is

a linear isotropic function of the velocity gradient. Such models cannot describe the

shear thinning behaviour many polymer fluids exhibit. If the component of the extra

stress tensor T = σ + pI are assumed to depend only on the velocity, acceleration and
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higher order time derivatives, a set of constitutive models called the Order models can

be developed. This can be seen as a first attempt at modelling viscometric fluids and

polymers. Given the initial assumptions on the extra stress tensor, a polynomial in T

exists as well as the Rivlin-Ericksen tensors {Ak} given by

{Ak}(x, t) =
∂k

∂t′k
C(x, t, t′)t=t′ , (1.18)

where the derivative follows the fluid particles and C(x, t, t′) is the Cauchy-Green strain

tensor. For k = 1 (or defined as first order), we have

{A1}(x, t) = ∇v + (∇v)T (1.19)

Using identities in
OwPh
[39], pg.29 , we can deduce recurrance relations for arbitrary powers

of kth order

{Ak+1}(x, t) =
DAk

Dt
+ (∇v)Ak +Ak(∇v)T , k = 1, 2, 3, . . . . (1.20)

For constitutive relations that are polynomial functions of the first N Rivlin-Ericksen

tensors, T = f(A1,A2, · · · ,AN ), the first three order fluids are given by

T1 = a1A1

T2 = a1A1 + a2A2 + a11A
2
1

T3 = (a1 + a1:11tr(A
2
1))A1 + a2A2 + a11A

2
1 + a3A3 + a12(A1A2 +A2A1),

where the ai’s, a11, a12, a1:11 are constant coefficients. The first order fluid is simply

the Newtonian case, the second order fluid now has a normal stress difference through

the existence of A1 and A2, and some viscoelastic properties (through A2). For simple

steady shear flow, a constant viscosity is found which is suitable for many real world

polymers flows subjected to shear, for example suitable for the class of Boger fluids.

The third order fluid with suitable coefficients gives a viscosity decreasing with shear

rate, though fails to allow for situations where strong shear rates are observed. Thus

‘fast’ flows or ones in which the tensors Ak vary rapidly, fail to be suitably modelled.

In order to describe the behaviour of dilute polymer fluids, various models such as

Oldroyd-B, PTT and FENE-type are appropriate. Simple steady shear flow considered

in section
subsec:ssf
2.3.1 gives a quadratic first normal stress difference, zero second normal stress

difference and constant viscosity. Such characteristics can accurately model Boger fluids

(see, for example,
ER
[53] and

OwPh
[39]), which have the defining features of a constant viscosity

and a quadratic first normal stress difference. The limitations of the Oldroyd-B model
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are that fluids with varying viscosity are ill-suited to this model as well as problems

measuring extensional flow. As an example, for the extensional flow

v =

(
ϵ̇x,− ϵ̇

2
y,− ϵ̇

2
z

)
, (1.21)

with constant extensional rate ϵ̇, the Oldroyd-B model has an extensional viscosity ηe

given by (see, e.g.
OwPh
[39])

ηϵ =
3η(1− λ2ϵ̇− 2λ1λ2ϵ̇

2)

(1− 2λ1ϵ̇)(1 + λ1ϵ̇)
. (1.22)

Here the constants λ1 and λ2 are characteristic relaxation and retardation times respec-

tively (and defined below in section
sec:OBderiv
1.4.2) and η is the total shear viscosity. Thus the

extensional viscosity blows up at finite extensional rate ϵ̇ = 1
2λ1

. The elements in the

dumbell model used to derive the Oldroyd-B constitutive model are infinitely extensible

and hence become infinitely extended in the flow at the critical value ϵ̇ = 1
2λ1

. In other

words, the properties of constant viscosity and infinite extensibility of the Hookean

connecting springs give extensional viscosity that blows up at finite extensional rates.

When trying to model real world fluids subjected to extensional strain, this problem of

non bounded extensional viscosity has lead to the development of a model based upon

finitely-extended dumbells, known as the FENE-P model. This retains the constant

shear viscosity of Boger fluids but with bounded extensional viscosities.

1.4.2 Derivation of the Oldroyd-B model
sec:OBderiv

Classically, constitutive models were derived through continuum mechanics
Old
[36]. Re-

cently, the basis of constitutive modelling has moved onto considering the microscopic

properties of fluids, since, as said earlier the molecular composition has an important

role to play in the macroscopic behaviour exhibited. This can be termed kinetic the-

ory in which a mechanical model for the basic constituent of the molecules forming a

non-Newtonian liquid is used. The main forces acting on these molecules are consid-

ered that define its motion, then these effects are averaged out over a large number of

possible configurations that form the basic structure of the polymer. Thus this allows

us to construct a model that has the relevant macroscopic properties from microscopic

considerations.

For the Oldroyd-B model, kinetic theory can be used by consideration of a molecule

being a pair of spheres connected by an Hookean spring; the dumbell model. The

following is a summary of one way in which this can be derived. The reader is referred

to
Oli
[38] and

OwPh
[39] for a more detailed treatment of this subject. Modelling polymers at
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the macroscopic level allows us to derive a set of equations known as the Oldroyd-B

model. The incompressible Navier Stokes equations are

∇ · v = 0, ρ
Dv

Dt
= ∇ · σ, (1.23)

with the associated constitutive equation

σ = −pI+ µ(∇v + (∇v)T ). (1.24)

Here D
Dt is the total time derivative, σ the stress tensor, ρ the density, µ the Newtonian

viscosity and p pressure. At the microscopic level inertial forces are small compared to

viscous forces, and thus the incompressible Navier stokes equations simplify down to

∇ · v = 0, µ∇2v = ∇p. (1.25)

Consider now the flow of a small solid sphere in a Newtonian fluid. A sphere of radius

a, moving with constant velocity U experiences a drag force F = −6πµaU. To model a

polymer, a device is needed that remembers the flow history of an object. The simplest

deformable object of this nature is to take two spherical beads and connect with a

linear spring to form a dumbbell. There are three effects acting on each bead

� The spring force;

� The Stoke’s drag force from the solvent viscosity the dumbbell is suspended in,

if moving relative to the fluid around it;

� Brownian motion at small enough scales.

Considering the spring force first, we have one bead of radius a at a position x, with

another bead at x+r under the action of fluid flow, only taking into account the spring

force. The size of the beads are small, hence inertial forces are assumed zero and the

total force on the bead is zero. We denote the spring force as λr with λ the spring

constant. The velocity U of a bead, in a fluid with velocity v(x) experiences a drag

force of

6πµa(v(x)−U). (1.26)

The total force is therefore

λr+ 6πµa(v(x)−U) = 0. (1.27)
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Estimating the spring constant λ = 3kT/a2 from thermal forces, the velocity of the

bead is

U =
kT

2πµa3
r+ v(x). (1.28)

Calculating a similar velocity for the other bead at x+r, we can determine the evolution

of r to be

dr

dt
= − kT

πµa3
r+ r∇v. (1.29)

We denote 2kT
πµa3

= 1
τ as the relaxation time for the dumbbell following distortion caused

by the flow. A suspension with a total m such small dumbbells will contribute extra

stress. Furthermore, the fluid they are suspended in will contribute a Newtonian stress.

In this case we are trying to find the polymer stress σp. We consider a small surface

element area δS and a unit normal n. The force associated with a dumbbell that crosses

the surface is λr, dumbbells are more likely to cross the surface aligned with n. Given

m dumbbells per unit volume, we expect the number crossing the surface element to

be mr · nδS. From this, the extra stress exerted by the dumbbells is found as

σp = Gr · r, G =
3πµam

2τ
. (1.30)

Finally, Brownian motion needs to be considered to complete the model. Adding a

standard three dimensional Brownian motion to the evolution of the vector r:

dr = (− 1

2τ
r+ r · ∇v)dt+ τ−1/2dBt. (1.31)

Introducing the conformation tensor A used to describe the macroscopic polymer be-

haviour, consider the movement from position x of the dumbbell in a time dt, i.e. the

movement is given by

x+ dx = x+ v(x)dt. (1.32)

As we take a time step dt we get

A(x+ vdt, t+ dt) =< (r+ dr), (r+ dr) > . (1.33)

Evaluating these expressions, we obtain

∂A

∂t
+ (v · ∇)A−A · ∇v − (∇v)T ·A = −1

τ
(A− I), (1.34)
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with polymer stress σp = GA. The conformation tensor A is a positive definite, second

order tensor that describes the microstructure of the polymer molecules at a continuum

level. Putting these equations together gives

∇ · v = 0, ρ
Dv

Dt
= ∇ · σ, σ = −pI+ µ(∇v + (∇v)T ) +GA, (1.35)

∂A

∂t
+ (v · ∇)A−A · ∇v − (∇v)T ·A = −1

τ
(A− I). (1.36)

We may recast these equations using alternative notation. The total viscosity η of the

suspension is comprised of Newtonian ηs = µ and polymer ηp = Gτ components,

η = µ+Gτ = ηs + ηp. (1.37)

The relaxation time λ1 = τ measures the transition from elastic to viscous behaviour.

We introduce the retardation time λ2 of the fluid, which characterises the response of a

viscoelastic material to the instantaneous application of a constant stress. It is related

to the relaxation time via

λ2 =
τµ

µ+Gτ
=
ηs
η
λ1. (1.38)

Finally we introduce the polymer stress Tp,

Tp = G(A− I) = T− 2ηsD, (1.39)

with the deformation tensor defined in (
eq:D
1.6). Then the dimensional governing equations

can alternatively be written as

∇ · v = 0, ρ

(
∂v

∂t
+ (v · ∇v)

)
= −∇p+∇ ·Tp + ηs∇2v,

Tp + λ1
▽

Tp= 2ηpD, (1.40) eqn:dimgov

with the upper convected derivative of the extra stress tensor as given in (
eq:ucdrel
1.17) and

ηp = η − ηs = η(1− λ2
λ1

).

Inertial terms will turn out to be negligible for flows considered in this thesis.

In
APO04
[6], a 4-1 contraction flow was simulated for a viscoelastic polymer solution.

Two Boger fluids PA100 and PA300 were examined: prepared by dissolving differing

amounts of polyacrylamnide in a Newtonian solvent N91. Oldroyd-B type properties
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Parameter values

PA100 PA300 PP

η 0.52 0.74 0.74
ηs 0.4 0.37 0.34
ηp 0.12 0.4 0.4
λ1 1.947 1.942 1.947
λ2 1.50 0.53 0.53

Table 1.1: Table showing parameter values for three Oldroyd-B type fluids. The vis-
cosity η is split up into a solvent part ηs and a polymer part ηp. The third fluid type
PP is a polyisobutylene-polybutene fluid. Viscosities are given in units Pa.s and relax-
ation/retardation times in s. Reynolds numbers for all three fluids types were assumed
small with Weissenberg numbers dependent upon the geometries used (not specifically
given in the citations) tab:values

such as low shear thinning and very small second normal stress differences were re-

tained. A three mode Oldroyd-B model was fitted to experimental data. In
Bo1985
[10], a

polyisobutylene-polybutene solution is considered. Parameter values for these three

polymer solutions (once changed to our notation) are given in table
tab:values
1.1.

1.4.3 Nondimensionalisation

The Oldroyd-B model includes solvent stresses as well as polymeric stresses considered

in the UCM model. It thus adds a Newtonian stress contribution to the UCM stresses.

These two stresses can be written as Tp for the polymer stress and Ts for the solvent

stress, with the total stress T being the sum of these individual stresses. This allows

us to express the governing equations in two ways, one involving separate equations for

the solvent and polymer stresses, and one involving the total stress only (eliminating

explicit reference to the solvent and polymer stresses). The former statement is the

one adopted in this thesis as in (
eqn:dimgov
1.40), which can be written as

∇ · v = 0, ρ

(
∂v

∂t
+ (v · ∇v)

)
= −∇p+∇ ·T, (1.41) eq:d1

T = Tp +Ts, Ts = 2ηsD, Tp + λ1

(
∂Tp

∂t
+

▽

Tp

)
= 2η(1− λ2

λ1
)D. (1.42) eq:d2

We have defined λ1 and λ2 to be the characteristic relaxation and retardation times for

the fluid, respectively. The relaxation time λ1 measures the transition from elastic to

viscous behaviour, whilst the retardation time λ2 is a time characterising the response

of a viscoelastic material to the instantaneous application of a constant stress. To

nondimensionalise, we introduce a characteristic velocity scale U and length scale L.
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We then scale our variables as follows

x = Lx∗, t =
L

U
t∗, v = Uv∗, p =

Uη

L
p∗, Tp =

Uη

L
Tp∗, Ts =

Uη

L
Ts∗,

(1.43)

where * denotes the dimensionless variables. We introduce these into the dimensional

equations (
eq:d1
1.41)-(

eq:d2
1.42) which, after dropping ∗’s, give the dimensionless governing equa-

tions as

∇ · v = 0, Re

(
∂v

∂t
+ (v · ∇v)

)
= −∇p+∇ ·T,

T = Tp +Ts, Ts = 2βD, Tp +We

(
∂Tp

∂t
+

▽

Tp

)
= 2(1− β)D, (1.44) eq:ndge

with dimensionless parameters

Re =
ρUL

η
, We =

λ1U

L
, β =

λ2
λ1

=
ηs
η
. (1.45)

These dimensionless parameters are the Reynolds number Re ≥ 0, the Weissenberg

number We ≥ 0 (the dimensionless relaxation time) and the retardation parameter

β ∈ [0, 1] (or dimensionless solvent viscosity).

We consider steady flow only for the problems addressed in this thesis, so that

(
eq:ndge
1.44) reduce to

∇ · v = 0, Re(v · ∇v) = −∇p+∇ ·T,

T = Tp +Ts, Ts = 2βD, Tp +We
▽

Tp= 2(1− β)D, (1.46) eq:ndgeform1

which will be the governing equations of interest. On occasion we will include the

solvent stress explicitly in the momentum equation, so that the form

∇ · v = 0, Re(v · ∇v) = −∇p+∇ ·Tp + β∇2v,

Tp +We
▽

Tp= 2(1− β)D, (1.47) eq:ndgeform2

will be interchangeably used with (
eq:ndgeform1
1.46).

1.5 Literature Review

The main problem addressed in this thesis is flow at a re-entrant corner. These are

corners whose angles are greater than 180o and arise in many practical applications
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such as extrusion flows. It is listed as a benchmark problem in the field of Rheology

and has received a lot attention due to the challenges and difficulties encountered in

determining admissible asymptotic and numerical behaviours for certain viscoelastic

differential constitutive models. In this respect, the Oldroyd-B (and Upper Convected

Maxwell (UCM)) models have been particularly troublesome. The initial results of

Hinch
hnold
[29] for Oldroyd-B models generated a class of similarity solutions holding in

a region local to the corner but away from the walls (a so called outer or core flow

region). In this region, the upper convected stress derivative was assumed to dominate

in the polymer constitutive equation and a stretching solution for the polymer stresses

in the form

Tp = λ(ψ)vvT , (1.48) eq:stretch

was identified. The similarity solutions predicted a stress singularity of O(r−2(1−α))

and stream function behaviour O(rα(3−α)), where r is the radial distance to the corner

and α ∈ [1/2, 1) the corner angle parameter (defined in chapter
chapter:reentrantcornerflow
3). This behaviour has

subsequently been confirmed numerically for the benchmark corner angle of 270o (α =

2/3) by Singh and Leal
sl
[51], Baaijens

Ba98
[8], Xue et al.

XPT98
[54], Phillips and Williams

PW99
[42],

Alves et al.
APO00
[4], Aboubacar and Webster

AW01
[2], Aboubacar et al.

AMW02
[1] and Alves et al.

AOP03
[5]

amongst others, despite initial setbacks (see, for example, Lipscomb et al.
Lip
[33], Coates

et al.
Coates
[11]). The asymptotic solution has been completed with the determination of

elastic wall boundary layers, the upstream case being first determined by Renardy
Re95
[47],

whilst the downstream case was considered by Rallison and Hinch
rhold
[43] (see also Evans

ev1,EvOB
[16, 17]). These authors demonstrated matching between the respective boundary layers

and Hinch’s outer similarity solution, the analysis of
Re95
[47] proceeding in a Cartesian

formulation, whilst
rhold
[43] used the natural stress formulation originally introduced in

rucm
[45].

The essential features of the analysis in
rhold
[43] was to demonstrate how the natural

stress variables communicated the required information from the upstream boundary

layer, through the outer region and into the downstream boundary layer. Further, it

was identified that the downstream layer equations possessed an essential singularity

(with one set of exponentially small terms explicitly identified, with the further two

for Oldroyd-B given in Evans
EvOB
[17]). However, one noticeable failure of the analysis

was the lack of convergence of a numerical solution to the downstream layer equations

in the UCM case. The UCM case has subsequently been considered in
evcartucm
[19] and

evnsucm
[20],

where the method of matched asymptotic expansions for the problem was set in a more

systematic framework than that adopted in
rhold
[43]. This setting afforded a consistent

comparison between terms arising in the flow equations, so that they could be genuinely

compared. Detailed analysis of the boundary layer equations was also given, where the
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solution was shown to possess two sets of exponentially small terms at the downstream

wall (these being associated with the essential singularity). Further it was shown how

the complete local asymptotic solution could be expressed in terms of an upstream

similarity parameter involving the upstream wall shear rate and pressure coefficients.

Our main intention in this thesis is to further the results of
rhold
[43] for Oldroyd-B in

the natural stress formulation. The approach adopted extends the matched asymptotic

analysis framework used for the UCM case in
evcartucm
[19] and

evnsucm
[20].

Much of the early work on re-entrant corner flow started with investigation of

UCM and Oldroyd-B type fluids, with results for the more complicated constitutive

models such as PTT and Giesekus fluids following later. For a Newtonian fluid the

stresses were known to grow very large as one approached a re-entrant corner and this

was also expected for UCM type fluids. Preliminary investigations on the problem

include Renardy
rstress
[44], who considered the stresses in the UCM model for a 270o corner

when the velocity field is taken to be Newtonian. It was known that assuming a

Newtonian velocity field was questionable but it allowed the main features of the flow to

be considered. It was found that the convected derivative dominates at the corner away

from the walls, with solution found to be proportional to vvT along streamlines and

which was confirmed by numerical results. However, this core flow solution could not

attain viscometric behaviour at the walls, thus determining the presence of boundary

layers. The thickness of the boundary layers was found to be θ ∼ r1−λ0 (with r

the radial distance away from the corner, θ the angle with the upstream wall and λ0

a constant (the Newtonian flow eigenvalue), found to be λ0 ∼ 0.54 for a 270◦ corner

angle). The Newtonian velocity field behaves as ψ ∼ r1+λ0 , the polymer stresses behave

as r−0.74 in the core and as r−0.91 near the walls (the square of the velocity gradient).

The early work of both Hinch and Renardy was performed in the Cartesian stress

basis. The discovery of Renardy that the stress close to the corner ‘follows’ the stream-

line coupled with the fact it becomes singular at the corner itself is the reason why

numerical implementation is so difficult. Information from the stresses carry on down-

steam past the corner; a Cartesian co-ordinate system has problems with the extreme

accuracy required to calculate successful numerical results. Renardy in
rucm
[45] builds upon

the work in
rstress
[44] which found that the upper convected derivative dominates in a core

region, and is zero close to the corner. With the stresses of the form (
eq:stretch
1.48) it makes

sense to introduce a ’natural-stress’ basis where vvT is one of the basis functions. In

numerics, transforming tensor components to a basis aligned with streamlines was pre-

viously used in numerical work by Dupont et al.
dmc85
[15] and Keiller

kei92
[32] but not in analysis

pertaining to this problem. Davies and Devlin
DaDe
[13] approached the analysis of this prob-

lem in a different manner, looking at series expansions of the Oldroyd-B equations but

27



formulated in terms of an Airy stress function and a stream function. They managed

to find a set of eigenfunctions with associated eigenvalue problems, following the work

of Dean and Montagon
demo49
[14] where a similar method was applied to simple Newtonian

flow. Their work is considered later in chapter
chapter:Salientcornerflow
5, but in the context of Salient corner

flow. Davis and Devlin showed that there existed two types of solutions, asymptotic

Newtonian flow away from the walls and other UCM-like asymptotics. Though this

approach is not employed in this thesis, the solutions found alternatively can be seen by

balancing differing terms in the Oldroyd-B constitutive equations. A fuller discussion

on the relationships between
DaDe
[13] and chapter

chapter:reentrantcornerflow
3 in this thesis can be found in

EvOB
[17]. The

contrasting approach by Hinch and Renardy of matched asymptotics is used instead

here.

Additional work by Renardy in
rhighweiss
[48] and

rwei
[46], examined the boundary layers present

in high Weissenberg number flow. The context was general with no specific geometry

selected other than being close to solid boundaries. However, the resulting equations are

similar. In high Weissenberg flow, the upper convected derivatives in the constitutive

equations dominate in regions away from solid boundaries. The equations governing

UCM type flow can then be reduced to the compressible Euler equations; an important

class of solutions to these being generated by potential flow. Near the walls, viscometric

stress behaviour is recovered in elastic boundary layers. These high Weissenberg elastic

boundary layer equations are the same as the wall boundary layer equations that occur

near the re-entrant corner in Weissenberg order one flows. Thus the corner stress

singularity seems in invoke the high Weissenberg behaviour even when Weissenberg is

order one. The high Weissenberg analysis is thus relevant to corner flow, and aspects

of it will be found in chapters
chap:prelim
2 and

chapter:reentrantcornerflow
3. Since the elastic stress dominates the solvent

stress (which is present in Oldroyd-B formulations), the results and analysis are very

similar to those obtained with UCM flow. Renardy
Re95
[47] showed that the boundary

layer equations were little changed via the addition of a solvent stress.

Salient corners occur for angles less than 180o and is another situation considered

here. No analytical work has been done for flows at such corners for viscoelastic fluid

models such as UCM and Oldroyd-B. There is a remark by Renardy
rechar
[50] that the

situation should be Newtonian dominated. Newtonian flows were considered first by

Dean and Montagnon
demo49
[14] and their analysis then extended by Moffatt

moff64
[35], where a

class of separable similarity solutions were discussed.
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1.6 Structure of thesis

Chapter 1 has given an introduction to rheology and discussed the derivations of the

Oldroyd-B fluid as well as a literature review. The non-dimensionalised equations for

the Oldroyd-B have been stated, which are the equations that we wish to investigate

for re-entrant and salient corner flow. Our study of these equations begins with a

preliminary analysis in chapter
chap:prelim
2, where we classify their type and give their 2-D com-

ponent formulations in Cartesian and natural stress (see Renardy
rucm
[45]) form. Extensive

use of both of these formulations will be made in subsequent chapters, where steady

planar flow only is considered. Also given are the solutions for steady simple shear and

elongational flows, which are useful to reference.

Chapter
chapter:reentrantcornerflow
3 considers the re-entrant corner problem for parameter values We = 1 and

0 < β < 1. The method of matched asymptotic expansions is used to identify a three

region asymptotic structure local to the corner as well as to derive equations within

them. The asymptotic regions comprise an outer (core flow) region away from the

walls at which there are boundary layers. Self-similar solutions are identified and used

to construct solutions. The upstream and downstream boundary layer equations are

solved numerically. The derivation in this chapter using an artificial small parameter

(introduced through a length scaling) for the asymptotic expansions, puts the work of

Hinch
hnold
[29], Renardy

Re95
[47] and Rallison and Hinch

rhold
[43] on a firmer footing.

Chapter
chapter:paremterregimes
4 extends the solution of chapter

chapter:reentrantcornerflow
3 to other parameter regimes. Specifically

(i) the low and high Weissenberg limits with β ∈ (0, 1) kept fixed and (ii) the limits

of β approaching 0 and 1 with now We held fixed and order one. The Weissenberg

limits and the Newtonian limit of β → 1− are singular and the goal is to identify their

asymptotic structures.

In chapter
chapter:Salientcornerflow
5, the salient corner is discussed. Crucially important to the understand-

ing of which is Newtonian flow. The chapter thus begins with an analysis of Newtonian

flow following the work of Dean and Montagnon
demo49
[14] and Moffatt

moff64
[35]. These solutions

are then matched to wall boundary layers which recover viscometric behaviour for the

Oldroyd-B fluid. The Newtonian solution also extends to re-entrant corner angles and

is used in the low Weissenberg limit in chapter
chapter:paremterregimes
4.

Finally in chapter
chapdisc
6, an overview of the results is presented, as well as possible

extensions and open questions posed by this work.
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Chapter 2

Preliminary analysis

chap:prelim

This chapter introduces the main formulations and some preliminary results to be used

later. We begin with analysis on the classification of the Oldroyd-B equations thus

investigating questions of well-posedness and uniqueness. The Cartesian and natural

stress formulations will be presented along with consideration of some simple flow types.

The later can aid boundary layer considerations that we encounter in later chapters.

2.1 Classification of type
sec:class

The dimensionless governing equations of the Oldroyd-B model for steady incompress-

ible planar flow may be written as

∇.v = 0, Re (v.∇)v = −∇p+∇.Tp + β∇2v, (2.1) eq:oldbforclassmom

Tp +We
▽

Tp= 2(1− β)D. (2.2) eq:oldbforclass

Rewriting in Cartesian component form, with velocity field

v = (u(x, y), v(x, y)),

the momentum and constitutive equations are given by

Re v · ∇u = −∂p
∂x

+
∂T p

11

∂x
+
∂T p

12

∂y
+ β

(
∂2u

∂x2
+
∂2u

∂y2

)
, (2.3) cartmmnns1

Re v · ∇v = −∂p
∂y

+
∂T p

12

∂x
+
∂T p

22

∂y
+ β

(
∂2v

∂x2
+
∂2v

∂y2

)
, (2.4) cartmmnns2
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and

T p
11 +We

(
u
∂T p

11

∂x
+ v

∂T p
11

∂y
− 2

∂u

∂y
T p
12 − 2

∂u

∂x
T p
11

)
= 2 (1− β)

∂u

∂x
, (2.5) cartconns1

T p
12 +We

(
u
∂T p

12

∂x
+ v

∂T p
12

∂y
− ∂v

∂x
T p
11 −

∂u

∂y
T p
22

)
= (1− β)

(
∂u

∂y
+
∂v

∂x

)
, (2.6) cartconns2

T p
22 +We

(
u
∂T p

22

∂x
+ v

∂T p
22

∂y
− 2

∂v

∂x
T p
12 − 2

∂v

∂y
T p
22

)
= 2 (1− β)

∂v

∂y
. (2.7) cartconns3

Classification of the Oldroyd-B model is important to gain information about the exis-

tence of solutions and well-posedness of problems. Work in this chapter follows
gephchar
[27] and

gephflow
[28], which use the methods of discontinuous derivatives and stability of short waves.

More general information on the classification of PDEs can be found in
josfd
[30],

rechar
[50] and the

reader is referred to these texts for a detailed treatment. Analysis for the UCM model

has been done in
gephchar
[27],

gephflow
[28] already; extending this to the Oldroyd-B model is possible

since the presence of a Laplacian operator in the momentum equations (
eq:oldbforclassmom
2.1) increases

the order of the system, but does not significantly change the results already obtained.

Following these two papers, the idea is to calculate the symbol of the differential oper-

ator for the model, then take the determinant and determine the principal part of the

resulting polynomial. This is sufficient to classify the equations. A natural extension

would be to determine the characteristic variables and compatibility equations but is

not presented here.

As previously said, the Laplacian operator in the momentum equations requires the

analysis in
gephchar
[27],

gephflow
[28] and

jrs
[31] to be extended. The constitutive models considered, such

as UCM and Johnson-Segalman, do not include a solvent viscosity and thus do not have

any second derivatives of the velocity field. Initially (although the system is written

as a first-order system later on in this section), we leave the system as second-order,

writing the governing equations in the form

Lq = A1
∂q

∂x
+A2

∂q

∂y
+B1

∂2q

∂x2
+B2

∂2q

∂y2
+ Sq = 0, (2.8) eq:oldblqform

where L is an operator acting on a vector q = (p, u, v, T p
11, T

p
12, T

p
22)

T . We define p, u,

and v to be the pressure and velocity components in the x and y Cartesian directions

respectively. The stress components T p
11 and T p

22 are the normal stresses in the x and
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y directions respectively, and T p
12 is the shear stress. The matrices in (

eq:oldblqform
2.8) are

A1 =



0 1 0 0 0 0

1 Re u 0 −1 0 0

0 0 Re u 0 −1 0

0 −2We T p
11 − 2(1− β) 0 We u 0 0

0 0 −2We T p
12 0 0 We u

0 0 −We T p
11 − (1− β) 0 We u 0


,

A2 =



0 0 1 0 0 0

0 Re v 0 0 −1 0

1 0 Re v 0 0 −1

0 −2We T p
12 0 We v 0 0

0 0 −2We T p
22 − 2(1− β) 0 0 We v

0 −We T p
22 − (1− β) 0 0 We v 0


,

S =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 1 0


, B1 = B2 = β



0 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


. (2.9)

The matrices B1 and B2 are not present in
gephchar
[27], which arise from the extra momentum

term. The UCMmodel in
gephchar
[27] considered unsteady planar flow, where the characteristic

curves depended upon time. Our equations for Oldroyd-B are written in dimensionless

form and consider steady flow only simplyfing the analysis. Firstly, the linear opera-

tor we have chosen to look at contains the space co-ordinates x = (x, y) and partial

derivatives. Choosing to represent ∂
∂x by iξ1 and ∂

∂y by iξ2, the higher order derivatives

follow from this. The transformation of derivatives is therefore(
x,

∂

∂x
,
∂2

∂x2
,
∂

∂y
,
∂2

∂y2

)
→
(
x, iξ1,−ξ21 , iξ2,−ξ22

)
. (2.10)

Considering the stability of short waves solutions, we can consider a plane wave solution

of (
eq:oldblqform
2.8) propagating in the ξξξ-direction of the form

q(x) = q0e
iξξξ.x, (2.11) eq:plwvsol

where ξξξ = ξ1ex + ξ2ey is a wave vector, ex, ey are the unit vectors in the x and y

directions respectively, with wave numbers ξ1 and ξ2 and the norm |ξξξ| =
√
ξ21 + ξ22 .
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Substituting into our governing equations (
eq:oldblqform
2.8) yields

i(ξ1A1 + ξ2A2)q0 + (S− ξ21B1 − ξ22B2)q0 = 0, (2.12) ch27

which will have a non-trivial solution for q0 if the determinant of (
ch27
2.12) is zero,

det
(
ξ1A1 + ξ2A2 − i(S− ξ21B1 − ξ22B2)

)
= 0. (2.13)

Following
gephchar
[27], the symbol of the differential operator defined by (

eq:oldblqform
2.8) is the response

of the system to a solution of the form (
eq:plwvsol
2.11). Therefore the symbol, denoted P (q, i, ξξξ)

for the Oldroyd-B model is

P (q, i, ξξξ) = i(ξ1A1 + ξ2A2 − i(S− ξ21B1 − ξ22B2)). (2.14)

The requirement that detP (q, i, ξξξ) = 0, leads to the polynomial equation

(ξ21 + ξ22)W̄
2
(
ξξξT (We Tp + I)ξξξ − iβ

(
ξ21 + ξ22

) (
W̄ − i

)
− Re (v.ξξξ) W̄

)
= 0, (2.15) eq:beforeprincpart

where W̄ = (We (v.ξξξ)− i) has been introduced for convenience. This polynomial equa-

tion in ξ1 and ξ2 is analogous to the result in
gephchar
[27] for the UCM model - setting β = 0

the two equations are the same (allowing for the difference in notation). The principal

part of this polynomial are the terms of highest degree in ξ. The principal part of W̄

is simply We (v.ξξξ) and thus the principal part of (
eq:beforeprincpart
2.15) after some simplification is

−iβWe3(ξ21 + ξ22)
2 (v.ξξξ)3 . (2.16) eq:prinoldb

The real characteristics are associated with the real zeros of this expression, i.e.

(v.ξξξ)3 = 0, =⇒ (v.ξξξ) = 0 (three times). (2.17)

With reference to
gephchar
[27],

gephflow
[28] and

jrs
[31] we can conclude for (

eq:prinoldb
2.16) for the Oldroyd-B

symbol:

� The factor (ξ21 + ξ22) corresponds to the symbol of the Laplace operator. This

operator appears in the governing equations twice - once from the divergence of

the velocity field and pressure gradient and secondly from the solvent viscosity.

This former part associated with the velocity field is always elliptic, irrespective

of whether the flow is steady or unsteady. The factor associated with the solvent

viscosity however can alternatively be associated with the principle part of the

vorticity equation which is parabolic for time dependent flows, but elliptic for
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steady flows. For time dependent flow then, the Oldroyd-B model has both a

elliptic and a parabolic part from this factor. For steady flow as considered here

only the elliptic part is present.

� The other factor (v.ξξξ)3 demonstrates that there are three real characteristics

(v.ξξξ) = 0. As such the system always has at least three linearly independent

real eigenvectors associated with this factor. This gives the system a hyperbolic

character. The Oldroyd-B model transfers an extra piece of information along the

streamlines of the flow compared to UCM. It is noted in
OwPh
[39] that the contribution

to the principal part of the symbol isn’t strictly hyperbolic since the multiplicity

is of order three, for practical purposes however the solutions behave as if they

are hyperbolic.

� For comparison, we note that the UCM principal part of the symbol contained

the factor

ξξξT (We Tp + I)ξξξ − Re (v.ξξξ)2 ,

which is associated with the vorticity equation. Looking at (
eq:beforeprincpart
2.15) we see that

whilst this term is retained when β = 0, is it of a lower order in ξξξ than the terms

multiplied by β.

From this we conclude that the system of partial differential equations for the steady

Oldroyd-B model is of mixed elliptic-hyperbolic type, the elliptic nature coming from

the presence of the Laplacian operator in the momentum equations and the hyper-

bolic nature coming from finding linearly independent real eigenvectors. A natural

extension to this problem would be to determine the characteristic variables and the

corresponding compatibility equations. Usually, finding the characteristic variables is

of vital importance to prescribing the correct boundary conditions for numerical im-

plementation as well as discretization, see
ER
[53]. The characteristic variables tell us the

information that is being transmitted along streamlines. Finding the characteristics

would be an interesting problem to persue to check that the boundary conditions pre-

scribed by them are indeed the same as found later on in Chapter
chapter:reentrantcornerflow
3 from the method of

eigenmodes in the boundary layer analysis. The reader is referred to
gephflow
[28] for a detailed

treatment of the UCM model, where similarities to the Oldroyd-B model are expected

due to it being of a similar classification type.

In
gephchar
[27], it is noted that the system of equations can be written as first-order by

introducing the gradients of the velocity components as new variables. This would be

of use if one wanted to use the method of discontinuous derivatives in order to classify

the system. In the two dimensional case these are surfaces ϕ(x, y) = 0 across which
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the vector q is continuous with bounded jumps in the first derivative. For studying the

stability of short wave solutions, writing the system as first-order does not change the

result. For completeness we record this system firstly by defining

ux =
∂u

∂x
, uy =

∂u

∂y
, vx =

∂v

∂x
, vy =

∂v

∂y
, (2.18)

we don’t need the matrices B1, B2 in (
eq:oldblqform
2.8) and instead have a ten-by-ten order system.

Introducing a modified q vector as q̂ = (p, T p
11, T

p
12, T

p
22, ux, uy, vx, vy, u, v)

T , where p,

u, and v are again the pressure and velocity components in the x and y Cartesian

directions, T p
11 and T p

22 the normal stresses in the x and y directions respectively, and

T p
12 is the shear stress. The four extra components come from writing the velocity

gradients as first order variables as above. The new matrices resulting from

Lq̂ = Â1
∂q̂

∂x
+ Â2

∂q̂

∂y
+ Ŝq̂ = 0 (2.19) eq:oldblqform2

in (
eq:oldblqform2
2.19) are thus

Â1 =



0 1 0 0 0 0 0 0 0 0

1 −1 0 0 β 0 0 0 0 0

0 0 −1 0 0 0 β 0 0 0

0 We u 0 0 0 0 0 0 0 0

0 0 0 We u 0 0 0 0 0 0

0 0 We u 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0



,

35



Â2 =



0 0 0 0 0 0 0 0 0 0

0 0 −1 0 0 β 0 0 0 0

1 0 0 −1 0 0 0 β 0 0

0 We v 0 0 0 0 0 0 0 0

0 0 0 We v 0 0 0 0 0 0

0 0 We v 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 1



,

Ŝ =



0 0 0 0 1 0 0 1 0 0

0 0 0 0 Re u Re v 0 0 0 0

0 0 0 0 0 0 Re u Re v 0 0

0 1 0 0 γ1 −2We T p
12 0 0 0 0

0 0 0 1 0 0 −We T p
12 γ2 0 0

0 0 1 0 0 γ3 γ4 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0



,

where we introduce

γ1 = −2We T p
11 − 2 + 2β, γ2 = −2We T p

22 − 2 + 2β, (2.20)

γ3 = −We T p
22 − 1 + β, γ4 = −We T p

11 − 1 + β.

To show that this does not differ from the second-order system, here we are determining

the stability of a short wave solution to (
eq:oldblqform2
2.19) in the form

q̂(x) = q̂0e
iξξξ.x, (2.21) eq:plwvsol2

with a modified q̂0. This has a non trivial solution for q̂0 if

det
(
ξ1Â1 + ξ2Â2 − iŜ

)
= 0. (2.22)

Evaluating this gives the same polynomial equation as in (
eq:beforeprincpart
2.15).
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2.2 Formulations of the governing equations

After the previous section which was concerned with classifying the Oldroyd-B model,

we now state the problem in two different basis. One in the Cartesian basis and

another using the natural stress basis where we express the stress tensor in a basis

spanned by the velocity field and its orthogonal component. Noted also is a determinant

relationship that links these two differing formulations.

2.2.1 Cartesian Formulation

The governing momentum and constitutive equations for Oldroyd-B type fluids are

given in (
cartmmnns1
2.3)-(

cartconns3
2.7). Since flow is two-dimensional, the velocity field v is given by

v = (u, v) =

(
∂ψ

∂y
,−∂ψ

∂x

)
,

with ψ the stream function for the flow. We can write the governing equations in terms

of the stream function, which for reference are

Re

(
∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2

)
= −∂p

∂x
+
∂T p

11

∂x
+
∂T p

12

∂y
+ β

(
∂3ψ

∂x2∂y
+
∂3ψ

∂y3

)
, (2.23) gvnmtmstfun

Re

(
−∂ψ
∂y

∂2ψ

∂x2
+
∂ψ

∂x

∂2ψ

∂x∂y

)
= −∂p

∂y
+
∂T p

12

∂x
+
∂T p

22

∂y
+ β

(
∂3ψ

∂x3
+

∂3ψ

∂x∂y2

)
, (2.24)

and

T p
11 +We

(
∂ψ

∂y

∂T p
11

∂x
− ∂ψ

∂x

∂T p
11

∂y
− 2

∂2ψ

∂y2
T p
12 − 2

∂2ψ

∂x∂y
T p
11

)
= 2 (1− β)

∂2ψ

∂x∂y
, (2.25) gvnconmstfun1

T p
12 +We

(
∂ψ

∂y

∂T p
12

∂x
− ∂ψ

∂x

∂T p
12

∂y
+
∂ψ

∂x2
T p
11 −

∂2ψ

∂y2
T p
22

)
= (1− β)

(
∂2ψ

∂y2
− ∂2ψ

∂x2

)
,

(2.26)

T p
22 +We

(
∂ψ

∂y

∂T p
22

∂x
− ∂ψ

∂x

∂T p
22

∂y
+ 2

∂2ψ

∂x2
T p
12 + 2

∂2ψ

∂x∂y
T p
22

)
= −2 (1− β)

∂2ψ

∂x∂y
. (2.27) gvnconmstfun3

This is a system of 5 coupled, non-linear, partial differential equations. The polymer

stress tensor Tp satisfies the following relation found by Renardy in
rwei
[46] for the UCM

constitutive model

(v · ∇)(det(WeTp + I)) = −(det(WeTp + I))tr
(
(WeTp + I)−1Tp

)
, (2.28)
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or alternatively

(v · ∇)(det(WeTp + I)) = −2(det(WeTp + I)) + tr(WeTp + I)). (2.29) eq:ReDetExp

For Oldroyd-B type fluids the analysis is similar, but here we relate the slightly modified

determinant, det(WeTp + I(1 − β)) with the stream function ψ. To this end, we can

write the symmetric matrix WeTp + I(1− β)) given by(
WeT p

11 + (1− β) WeT p
12

WeT p
12 WeT p

22 + (1− β)

)
,

so the expressions det(WeTp + I(1− β)) and tr(Tp + I(1− β)) are

det(WeTp + I(1− β)) = (WeT p
11 + (1− β))(WeT p

22 + (1− β))− (WeT p
12)

2
, (2.30)

tr(WeTp + I(1− β)) = WeT p
11 +WeT p

22 + 2(1− β). (2.31)

Rearranging the constitutive model (
eq:oldbforclass
2.2), writing out the upper convected derivative

and expressing D in terms of velocity components gives us

We (v · ∇)Tp = (∇v)(WeTp + I(1− β)) + (WeTp + I(1− β))(∇v)T −Tp. (2.32) detcomp

In component form using the incompressibility condition (ux + vy) = 0 (the subscripts

x, y mean differentiation with respect to x and y as usual) where needed, (
detcomp
2.32) can

be written as

We(v · ∇)T p
11 = 2ux (WeT p

11 + (1− β)) + 2WeuyT
p
12 − T p

11, (2.33) detcompcomp1

We(v · ∇)T p
12 = vx (WeT p

11 + (1− β)) + uy (WeT p
22 + (1− β))− T p

12, (2.34)

We(v · ∇)T p
22 = 2vy (WeT p

22 + (1− β)) + 2WevxT
p
12 − T p

22. (2.35) detcompcomp3

Using (
detcompcomp1
2.33)-(

detcompcomp3
2.35) along with the expressions for the determinant and the trace gives

after rearranging

(v · ∇)det(WeTp + I(1− β)) = v · ∇ (We(T p
11 + (1− β))(WeT p

22 + (1− β))−(WeT p
12

)
2
)

(2.36)

= −2det(WeTp + I(1− β)) + (1− β)tr(WeTp + I(1− β)),

(2.37)

which recovers (
eq:ReDetExp
2.29) when β = 0.
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2.2.2 The natural stress basis formulation

For UCM and Oldroyd-B type fluids, it is well known that integrating the stresses close

to a corner presents a serious numerical challenge. One of the first attempts to resolve

this was by Dapont, Marchel and Crochet in
dmc85
[15] who used a curvilinear co-ordinate

system to calculate stresses along streamlines by a finite-element method. This idea

was extended by Keiller,
kei92
[32] when investigating the efficacy of numerical techniques for

flow around a corner. It was known at the time that simple explicit integration schemes

produced poor stress approximations near curved boundaries - with this problem being

particularly acute for Oldroyd-B fluids due to large normal stresses in shear flow. By

aligning the polymer stress tensor Tp with the streamlines, the components of Tp and

the velocity field are rotated and stretched with exactly the same deformations. This

solved the previous problem of the rotational component of the velocity field being

over-estimated for high Weissenberg flow.

Renardy in
rucm
[45] used this information to motivate aligning the stress tensor along

streamlines. Since the stresses act like vvT , it is used as one of the basis functions

in a natural stress formulation. The way to do this is to express the stress tensor

with respect to a natural stress basis spanned by the velocity field and its orthogonal

component. Specifically, by introducing the vector

w =

(
− v

u2 + v2
,

u

u2 + v2

)
, (2.38)

orthogonal to v = (u, v) and satisfying |v ×w| = 1. Then Tp can be represented in a

basis formed with the dyadic (or outer) products of v and w as

Tp =
−(1− β)

We
I+ λvvT + µ(vwT +wvT ) + νwwT , (2.39) eq:dyadic

for variables λ, µ and ν. Written in component form, the Cartesian and natural stress

basis are related through

T p
11 =

−(1− β)

We
+ λu2 − 2µuv

u2 + v2
+

νv2

(u2 + v2)2
, (2.40) conn1

T p
12 = λuv +

µ(u2 − v2)

u2 + v2
− νuv

(u2 + v2)2
, (2.41) conn2

T p
22 =

−(1− β)

We
+ λv2 +

2µuv

u2 + v2
+

νu2

(u2 + v2)2
. (2.42) conn3

The variables λ(x, y), µ(x, y) and ν(x, y) are aligned along streamlines and are termed

the natural stress variables: λ the normal stress along a streamline, ν perpendicular
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normal stress and µ represents a shear stress. The transformation from natural stress

to Cartesian variables are recorded as well as

λ = (1− β)
1

We (u2 + v2)
+

u2

(u2 + v2)2
T p
11 +

2uv

(u2 + v2)2
T p
12 +

v2

(u2 + v2)2
T p
22, (2.43) eq:nscarttrans1

µ = − uv

(u2 + v2)
T p
11 +

uv

(u2 + v2)
T p
22 +

(u2 − v2)

(u2 + v2)
T p
12, (2.44)

ν =
(1− β)

We
(u2 + v2) + u2T p

22 + v2T p
11 − 2uvT p

12. (2.45) eq:nscarttrans3

The vectors v and w are given in figure (
fig:nsvw
2-1). We can now transform the momentum

Figure 2-1: A representation of the velocity field v and vector w along a typical stream-
line, where v ⊥ w. fig:nsvw

equations into the natural stress variables using the above relations (
gvnconmstfun1
2.25)- (

gvnconmstfun3
2.27),

Re (v · ∇u) = −∂p
∂x

+ v · ∇(λu) +∇ ·
(
µuw − (µv + νw)

v

u2 + v2

)
+ β

(
∂3ψ

∂x2∂y
+
∂3ψ

∂y3

)
, (2.46)

Re (v · ∇v) = −∂p
∂y

+ v · ∇(λv) +∇ ·
(
µuw − (µv + νw)

u

u2 + v2

)
+ β

(
∂3ψ

∂x3
+

∂3ψ

∂x∂y2

)
(2.47)

and the constitutive equations from (
gvnconmstfun1
2.25)- (

gvnconmstfun3
2.27),

λ+We (v · ∇λ+ 2µ∇ ·w) =
(1− β)

We (u2 + v2)
, (2.48) eq:nsconstit1

µ+We (v · ∇µ+ ν∇ ·w) = 0, (2.49)

ν +We (v · ∇ν) = (1− β)

We
(u2 + v2). (2.50) eq:nsconstit3
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The divergence of w here is

∇ ·w =
1

(u2 + v2)2

(
(v2 − u2)

(
∂v

∂x
+
∂u

∂y

)
+ 4uv

∂u

∂x

)
.

It is noteworthy the significant decoupling that has taken place in the constitutive

equations, although the momentum equations are now more complicated.

2.3 Simple flow types

Finally, this section investigates simple flow types - namely simple shear or viscometric

flow and steady elongational flows. From these, we can deduce what terms are impor-

tant as solid boundaries are approached. This gives us useful information on terms to

be retained in the boundary layer equations. The second flow type discussed is steady

elongational flows which highlights some limitations of the Oldroyd-B model.

2.3.1 Simple Shear Flow
subsec:ssf

There are several flows that can be considered for viscoelastic fluids that illustrate

properties of the Oldroyd-B fluid as well as its limitations as a constitutive model.

The first one is steady simple shear flow which introduces the rheological notion of

viscosity. The viscosity can be defined as the ratio between the shear stress and shear

rate in a simple shear flow. For a Newtonian flow this is constant - one of the defining

features of this type of flow. For non-Newtonian flows, this ratio might vary with the

shear rate, shear-thinning behaviour being one example of this phenomena. Indeed,

for flows considered in this thesis, viscosity refers to shear-rate dependent viscosity.

Renardy in
rechar
[50] discusses steady simple shear flow for the UCM, PTT, Giesekus and

Johnson-Segalman constitutive models. Results are given here for Oldroyd-B fluids

and references given to the other non-Newtonian models where appropriate. For steady

simple shear flow, the flow is two-dimensional with the velocity uni-directional along

the x-axis only: v = (γ̇y, 0, 0) where γ̇ is a constant shear rate. The velocity gradient

is the matrix  0 γ̇ 0

0 0 0

0 0 0

 (2.51)
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and the stream function takes the form

ψ =
1

2
γ̇y2. (2.52) vsf

Moreover, the total extra stress tensor takes the form T11 T12 0

T12 T22 0

0 0 T33

 , (2.53)

where invariance under rotations suggests T13 = T23 = 0. Substituting the stream

function form (
vsf
2.52) into the constitutive equations (

gvnconmstfun1
2.25)-(

gvnconmstfun3
2.27) gives

T p
11 +We

(
−2

∂2Ψ

∂y2
T p
12

)
= 0,

T p
12 +We

(
− ∂Ψ

∂y2
T p
22

)
= (1− β)

∂2Ψ

∂y2
,

T p
22 = 0, (2.54) eq:vmbal

which simplifies to

T p
11 = 2(1− β)γ̇2, T p

12 = (1− β) γ̇, T p
22 = 0.

Further, we have that T p
33 = 0. Here we have found that there are contributions from

the terms Tp,
▽

Tp and D. This indicates that these terms (or at least the corresponding

components within them as shown in (
eq:vmbal
2.54)) need to be retained in any boundary layer

analysis. In other words, when considering viscometric behaviour at the wall as a

boundary condition imposed on the system, the leading order behaviour described by

the above equations will be required. Non-Newtonian flows with varying viscosities will

have non-zero first and second normal stress differences, denotedN1 andN2 respectively

N1 = T11 − T22, N2 = T22 − T33. (2.55) 12stress

These, together with the viscosity function η = T12/γ̇ define three viscometric functions

involving the total extra stress T = Tp +Ts. For Oldroyd-B, we have

T11 = 2(1− β)γ̇2, T22 = 0, T33 = 0, T12 = γ̇,

42



where T s
12 = βγ̇ is the only non-zero component of the solvent extra stress. We can

calculate the first and second normal stress differences from (
12stress
2.55) to be

N1 = 2γ̇2(1− β), N2 = 0, (2.56)

whilst the viscosity function (dimensionless) here is a constant 1. The first normal stress

difference tends to zero in the Newtonian limit β → 1 as expected. Thus Oldroyd-B

has a first normal stress difference that varies quadratically with the shear rate, whilst

exhibiting a constant viscosity. As such it may be used to represent Boger fluids that

exhibit this type of behaviour. However, in some fluids it is found as γ̇ increases,

η decreases which is so called ‘shear thinning’. Also, N1 may grow quadratically at

low shear rates but then more slowly as γ̇ increases further. This is not captured

by Oldroyd-B and requires a more complicated non-Newtonian model such as PTT.

Further, having a zero second normal stress difference isn’t always found in some fluids

which again can be picked up by the Johnson-Segalman model for example.

2.3.2 Steady Elongational Flows

Contrasting with shear flows, which include simple shear discussed in the previous

section are flows that include non-zero off diagonal components to the rate of strain

and stress tensors. Elongational flows are shear-free flows that have zero off diagonal

components in the just mentioned tensors. The diagonal components are called normal

stresses since the component stresses act perpendicularly to a surface. The off diagonal

components are called the ‘shear components’. They undergo a stretching motion when

stresses are applied upon it and is a crucial property to be able to measure in rheological

terms (especially for polymer melts relating to the paint industry). We can distinguish

three types of elongational flows as follows

Uniaxial elongational flow , v = (ϵ̇x,−ϵ̇y/2,−ϵ̇z/2) , (2.57)

Planar elongational flow , v = (ϵ̇x,−ϵ̇y, 0) , (2.58)

Biaxial stretching flow , v = (−ϵ̇x, ϵ̇y/2, ϵ̇z/2) . (2.59)

The function ϵ̇ is called the elongational rate, usually a function of time but for steady

flow is a constant.

Planar flow has no stretching in the z direction (and we can think of it as stretching

a rectangle out).

Bi-axial flow has the same velocity profile form as for Uniaxial, but ϵ̇ has the opposite

sign here. Examples of geometries that can produce bi-axial flow include film inflation
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and lubricated squeeze film where a lubricant is squeezed between two opposing plates.

For Uniaxial flow ϵ̇ is positive and has strong stretching in the x direction with

weaker contraction occuring in the y and z directions. This type of flow can be induced

in filament stretching geometries found in ink printer rheology, or opposed-nozzle suc-

tion devices. Uniaxial flow is more complicated than shear flow since the velocity

components are non zero in all directions at points not on the co-ordinate axes. This

contrasts with simple shear flow being uni-directional in the x direction only. All

three velocity components are position dependent even for steady flows. The velocity

gradient for this flow type is  ϵ̇ 0 0

0 −ϵ̇/2 0

0 0 −ϵ̇/2

 . (2.60)

From the constitutive equations we can determine the polymer stress components to

be

T p
11 =

2(1− β)

1− 2We ϵ̇
, T p

12 = 0, T p
22 =

−(1− β)

1 +We ϵ̇
. (2.61)

The quantity T p
11 − T p

22 is therefore

T p
11 − T p

22 =
3(1− β)ϵ̇

(1− 2We ϵ̇) (1 +We ϵ̇)
. (2.62)

The viscosity diverges at a strain rate of ϵ̇ = 1/2We, and for strain rates slightly

larger than this value, the viscosity value is negative. This consequence that we can

have negative viscosities at small elongation rates is unphysical. This is due to the fact

that the Oldroyd-B model is derived from Hooke’s Law springs which are infinitely ex-

tensible. Linear springs are fine for shear flows with moderate stretching. For strongly

stretching flows however, a linear spring can stretch indefinitely hence giving infinite

forces. This motivates the derivation of a model which has finitely extensible springs,

termed the FENE model discussed in the introduction.

A further issue is that at specific elongation rates ϵ̇ = 1/(2We) the elongation

viscosity is infinite. This is a well known problem with the Oldroyd-B model and

thus is ill-suited to modelling fluids with steady elongational flows and large elongation

rates. Polymeric fluids do show an increase in elongational viscosity with elongation

rate, however the rate of increase can range from one order of magnitude to several.

The prediction of a limiting elongational rate where the elongational viscosity becomes

infinite can be reasonable for some fluids but not all. For reference, we determine
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the stresses and T p
11 − T p

22 for the remaining two elongational flow types. For planar

extension, we have

T p
11 =

2(1− β)

1− 2We ϵ̇
, T p

12 = 0, T p
22 =

−2(1− β)

1 + 2We ϵ̇
, (2.63)

with the quantity T p
11 − T p

22

T p
11 − T p

22 =
4(1− β)ϵ̇

(1− 2We ϵ̇) (1 + 2We ϵ̇)
. (2.64)

Finally for biaxial extension,

T p
11 =

−2(1− β)

1 + 2We ϵ̇
, T p

12 = 0, T p
22 =

(1− β)

1−We ϵ̇
, (2.65)

where

T p
11 − T p

22 =
−3(1− β)ϵ̇

(1 + 2We ϵ̇) (1−We ϵ̇)
. (2.66)

Finding flow rates is important in industry, especially chemical engineering, where a

certain type of flow (the ones mentioned here are idealised flows so can only be approx-

imated by certain geometries) can be induced by a rheometer and the elongational and

shear viscosity measured.
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Chapter 3

Re-entrant Corner Flow

We = O(1), 0 < β < 1

chapter:reentrantcornerflow

3.1 Introduction
sec:cp3intro

In this chapter we consider the asymptotics of fluid flow around a sharp corner (a

corner angle greater than 180◦) or so called re-entrant corner. This is contrasted with

salient corner flow where the corner angle is less than 180◦, this latter flow geometry is

considered in Chapter 5. Re-entrant corner flows appear naturally in contraction flows:

where fluid flows between two joined pipes of differing diameters. It is well known that

there are stress singularities at the corner making numerical simulation difficult, see
rhold
[43],

AGA1996
[7],

Bo1987
[9]. An asymptotic approach is used to investigate two-dimensional planar flows,

which have direct applications to contraction and extrusion flows that are benchmark

problems for numerical schemes. This will allow us to investigate how the stresses

behave close to the corner both in the upstream and the downstream flow regions.

Figure
fig:corner
3-1 shows the re-entrant corner geometry. Using polar coordinates (r, θ)

(centered on the corner itself), r is the distance away from the corner and θ the angle

from the upstream wall. The domain is 0 < r < ∞, θ ∈ [0, π/α], where θ = 0 is the

upstream wall and θ = π/α the downstream wall. The corner angle parameter satisfies

1/2 ≤ α < 1 for re-entrant corners. The Cartesian axes (x, y) are aligned along the

walls, with x aligned along the upstream wall and y at θ = π/2. On both walls we

prescribe no-slip and no normal velocity boundary conditions. In terms of the stream

function, we can write these as

ψ =
∂ψ

∂θ
= 0, on θ = 0, π/α. (3.1) eq:magest
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Initially, we consider flow away from the walls in an outer (core) flow region and look

to find a dominant balance in the constitutive equations (
eq:oldbforclass
2.2). As a note, in any subse-

quent derivation using the Cartesian form, only the alignment with the upstream wall

is necessary, with the downstream formulation obtained through a suitable transfor-

mation which is described later.

Figure 3-1: Diagram showing the local re-entrant corner geometry for Oldroyd-B fluids.
Distances to and from the corner are assumed small. The Cartesian axes alignments
are given and the direction of flow from upstream to downstream (from right to left)
is indicated. fig:corner

3.1.1 Weissenberg scalings

For this geometry there is no natural length scale and thus we may scale our variables

as follows

r 7→ r

We1/2
, v 7→ We1/2v, Tp 7→ WeTp, p 7→ We p. (3.2) eq:Wescale

This has the effect of removing We from the equations (
eq:oldbforclassmom
2.1)–(

eq:oldbforclass
2.2). Thus in this chapter

we set We = 1 throughout.

3.1.2 Core Balance

Intuitively, considering solutions in an outer region, as r → 0 for some k and m, we

expect for the stream function ψ, and the extra polymer stress tensor Tp to behave
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like

ψ ∼ O(rk), Tp ∼ O(r−m). (3.3)

Here we assume a stress singularity at the corner as r → 0, anticipating m to be

positive. These scalings allow us to consider the relative sizes of terms in (
gvnconmstfun1
2.25)- (

gvnconmstfun3
2.27)

as

Tp ∼ O(r−m), D ∼ O(rk−2),
▽

Tp∼ O(rk−2−m). (3.4)

The upper convected derivative will dominate the rate of strain terms D in the consti-

tutive equations provided m > 0 (as already stated if a stress singularity is expected

as r → 0). As the re-entrant corner is approached, the stream function vanishes and

is non-singular, thus k > 0. For an upper bound on k, the stream function away from

the walls would not be expected to disappear as quickly as it does for simple shear flow

where ψ ∼ O(r2), hence k < 2. With these assumptions in place, the upper convected

derivative is expected to dominate in the outer region, i.e.

▽

Tp +o(1) = 0, r → 0. (3.5) eq:dombal

This analysis to follow is similar to that done by Renardy,
rwei
[46] where the core balance

considered above is the same as for the UCM model and the reader is referred to

Renardy for a more detailed treatment if inertial effects or time dependent flows are

considered. Other core balances can hold in differing geometries or constitutive models.

For example in chapter 4, the β → 1 limiting case has the upper convected derivative

terms subdominant in a outer core region and is discussed later.

3.1.3 Core Solution
subs:coresolution

In the core region away from the boundaries, we expect the upper convected derivative

to dominate as in (
eq:dombal
3.5), along with the momentum and constitutive equations. Together

with (
gvnmtmstfun
2.23), there exists a potential flow solution ψ, where ψ is a stream function

associated with the velocity field, and a solution for Tp given by

ψ = c0r
αn sinn(αθ), Tp = λ(ψ)vvT , as r → 0, (3.6) cartofs

for some function λ = λ(ψ), constant c0 and parameter n. This solution form is

physically relevant since we expect the fluid to advect and deform affinely (no polymer

slip), hence stresses occur along streamlines. This balance is advantageous to use
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since from the natural stress formulation presented later we will show that the natural

stress variables are constant along streamlines, as opposed to the Cartesian basis with

arbitrarily chosen axes. To show that (
cartofs
3.6) is a solution, we write the momentum

equations in component form as

Re vk
∂

∂xk
vi = − ∂p

∂xi
+
∂Tik
∂xk

. (3.7)

Substituting in the solution form for Tp from (
cartofs
3.6) gives after differentiation

Re vk
∂

∂xk
vi = − ∂p

∂xi
+ vivk

∂λ(ψ)

∂xk
+ λ(ψ)vk

∂vi
∂xk

+ λ(ψ)
∂vk
∂xk

, (3.8)

then collecting terms

(Re− λ(ψ))v · ∇vi = − ∂p

∂xi
, (3.9)

which is a particular form of the Euler equations. Assuming the inertial terms are

subdominant to the pressure and velocity terms in the momentum equations in (
eq:oldbforclassmom
2.1),

λ(ψ) ≫ Re, after dropping subscripts we have

−v · ∇(λv) = −∇p. (3.10) asst1

Introducing the vector u = λ1/2v, (
asst1
3.10) becomes

u · ∇u = ∇p. (3.11) eq:umom

This vector satisfies the continuity equation automatically

∇ · u = ∇ ·
(
λ1/2v

)
= v · ∇

(
λ1/2

)
+ λ1/2∇ · v = 0. (3.12)

Also,

∇p = u · ∇u = (∇× u)× u+∇
(
1

2
|u|2

)
, (3.13) eq:umom1

where ∇×u is the associated vorticity Ω. Taking the curl of both sides of (
eq:umom1
3.13) then,

we have

0 = ∇× (Ω× u) , (3.14) eq:umom2
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which after some simplification yields

0 = ∇× (Ω× u) = (u · ∇)Ω + (∇ · u)Ω− (∇ · Ω)u− (Ω · ∇)u

= (u · ∇)Ω. (3.15) eq:umom3

The vorticity direction k is orthogonal to the plane of flow. In component form,

Ωk =

(
∂v̂

∂x
− ∂û

∂y

)
k = −∇2ψ̂k, (3.16) eq:umom4

where u = (û, v̂) and ψ̂ is the associated stream function. Solving (
eq:umom3
3.15) is then

equivalent to solving the Poisson equation

∇2ψ̂ = f(ψ̂), (3.17) eq:umom5

where f is an arbitrary function of ψ̂. In the literature,
hnold
[29],

rstress
[44], f(ψ̂) has been taken to

be zero giving Laplace’s equation. To recap, our momentum equations can be written

in the form (
eq:umom
3.11) for a modified vector u. This has a potential flow solution ∇2ψ̂ = 0:

Laplace’s equation. This is related to the velocity field v through u = λ1/2v, the fields

being parallel and hence have the same streamlines. A particular solution form for ψ̂

is

ψ̂ = ĉ0r
α sin(αθ), ψ̂ = 0 on θ = 0, π/α, (3.18)

for some real constant ĉ0. The stream function we are interested in, ψ, due to the above

arguments, will be a function of ψ̂ (sharing the same streamlines). Mathematically we

can write this as, ψ = h(ψ̂), for some unknown function h. Making the assumption

that

ψ = h(ψ̂) = ĉ1ψ̂
n, (3.19) plfpsipsihat

for some constant ĉ1, ψ is of power law form. Differentiating with respect to y and

using the chain rule, we can re-arrange for λ as

λ1/2 = (ĉ1nψ̂
n−1)−1. (3.20)

Therefore we obtain

λ(ψ) = c1

(
ψ

c0αn

)2/n−2

, ψ = c0r
αn sinn(αθ), (3.21) eq:lapsi
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where c0 and c1 are constants (combinations of ĉ0, ĉ1 and n), n an unknown exponent

to be found. For the first equation in (
eq:lapsi
3.21), ψ has been divided through by c0α

n for

later convenience.

After having found a solution for ψ, it is instructive to go back to (
asst1
3.10) and solve for

the pressure gradient. Combining the gradients in (
eq:umom1
3.13) then taking the dot product

with u on both sides gives

u · ∇
(
∇p− 1

2
|u|2

)
= 0, =⇒ p = P0(ψ) +

1

2
λ|v|2, (3.22)

where P0 is an arbitrary function of ψ resulting from the integration. Writing |v|2 in

polar co-ordinates, |v|2 =
(
1
rψθ

)2
+ (ψr)

2 along with (
eq:lapsi
3.21) means we can write the

pressure in terms of r, this being after some simplification

p = P0(ψ) +
1

2
p0r

−2(1−α), (3.23) eq:cspexpress

where p0 = c1c
2
0n

2α2n.

The core flow has thus been determined subject to the constants c0, p0 (c1 is a

combination of these two and is thus dependent) and the undetermined exponent n.

This exponent will be determined by matching to the wall boundary layers. Using our

assumed solution form for ψ and Tp in (
eq:lapsi
3.21) along with our intuitive expectations of

how these functions behave in the limit r → 0, this class of self-similar solutions for

the flow and stress fields gives

ψ = O(rnα), Tp = O(r−2(1−α)), D = O(rnα−2),
▽

Tp= O(rα(2+n)−4), (3.24) sssolution

holding in the core outer region away from the walls. It is notable that the polymer

extra stress behaviour is independent of n, unlike the stream function.

3.2 Asymptotic Analysis

The results in the previous section
sec:cp3intro
3.1 allow us to approach the re-entrant corner prob-

lem, where we begin by determining the main asymptotic regions and corresponding

solution structures in each of them. We have introduced the Cartesian and natural

stress formulations in chapter 2, the results here are presented in both bases concur-

rently. Relevant highlights or differences between the two are commented on where

appropriate.

The main asymptotic regions that need to be considered are more easily seen with

the Cartesian formulation than natural stress. It is therefore ideal to consider Cartesian

51



as an introductory basis used as a preliminary aid to investigate the results. However,

the natural stress basis is required later on for the complete downstream solution when

transitioning from the upstream to downstream boundary layers. This is because for the

Cartesian basis, key pieces of information are required at higher orders in an asymptotic

expansion of the core behaviour and thus is subject to large numerical instability. The

natural stress has the main advantage of keeping the necessary information at leading

order.

To make clear the size of the terms in the governing equations and to formulate

a singular perturbation problem, a small parameter ϵ, 0 < ϵ ≪ 1 is introduced for

the length scales. The three main asymptotic regions local to the corner are presented

in figure
fig:coreblfull
3-2 compromising the outer (core) flow away from the boundaries and the

boundary layers at the upstream and downstream walls. The analysis will proceed as

Figure 3-2: Illustration of the main asymptotic regions close to the corner for Oldroyd-
B fluids with We = O(1). Distances to the coner are assumed to be small of O(ϵ). In
the core region the upper convected derivative dominates, self-similar solutions of the
form (

cartofs
3.6) can be matched to upstream and downstream boundary layers at the walls.

The fluid flows completely around the corner, so lip vortices are assumed not to be
present. The leading order core and boundary layer equations are shown in the natural
stress formulation. The boundary layer has a thickness of O(ϵ2−α). fig:coreblfull

follows. In section
sec:ocr
3.2.1 the core balance assumed in (

eq:dombal
3.5) will be verified, motivating

core scalings for the variables. In order to satisfy viscometric behaviour at the walls, the

core solution is matched into boundary layers in
sec:wbla
3.2.2. The boundary layer equations

admit a similarity solution which is to be solved numerically. To do this, the wall

behaviour of both formulations is examined in
sec:wbea
3.2.4 and far-field behaviour in

sec:ffb
3.2.5.
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This determines that the upstream system can be solved as an IVP shooting from the

wall into the far-field using the upstream wall shear rate coefficient. The downstream

system can then be solved as a boundary value problem giving the downstream wall

rate.

3.2.1 The outer (core) region
sec:ocr

The analysis of the re-entrant corner takes place in a region close to the corner. We

scale distances with an artificially small parameter ϵ. With reference to the order

magnitude assumptions in (
sssolution
3.24), suggested scalings for the stream function, velocity

and stresses are

r = ϵR∗, x = ϵX∗, y = ϵY ∗, ψ = ϵnαΨ∗, v = ϵαn−1v∗, w = ϵ1−nαw∗,

Tp = ϵ−2(1−α)Tp∗, p = ϵ−2(1−α)p∗, λ = ϵ−2α(n−1)λ∗, µ = γ2µ
∗, ν = γ3ν

∗.

The scaling for the natural stress variable, λ, comes naturally from (
eq:lapsi
3.21). For µ and

ν the scalings are initially left unknown, determined by the small gauges γ2(ϵ), γ3(ϵ).

These are found along with the exponent n when matching into the boundary layer

later on. The scaling for the pressure gradient has been chosen so as to retain it at

leading order within the momentum equation. Since we are away from the walls, the

region considered is one for which X∗ = O(1), Y ∗ = O(1).

The momentum equations in Cartesian become in component form,

Re ϵ2α(n−1)v∗ · ∇∗u∗ = − ∂p∗

∂X∗ +
∂T p∗

11

∂X∗ +
∂T p∗

12

∂Y ∗ + ϵα(n−2)β

(
∂2u∗

∂X∗2 +
∂2u∗

∂Y ∗2

)
, (3.25) eq:cmc1

Re ϵ2α(n−1)v∗ · ∇∗v∗ = − ∂p∗

∂Y ∗ +
∂T p∗

12

∂X∗ +
∂T p∗

22

∂Y ∗ + ϵα(n−2)β

(
∂2v∗

∂X∗2 +
∂2v∗

∂Y ∗2

)
. (3.26) eq:cmc2

In the natural stress basis these are

Re ϵ2α(n−1)v∗ · ∇∗u∗ = − ∂p∗

∂X∗ + v∗ · ∇∗(λ∗u∗) + δ1∇∗ ·
(
µ∗u∗w∗ − µ∗v∗ v∗

u∗2 + v∗2

)
− δ2∇∗ ·

(
ν∗w∗ v∗

u∗2 + v∗2

)
+ βϵα(n−2)

(
2
∂2u∗

∂X∗2 +
∂2u∗

∂Y ∗2 +
∂2v∗

∂X∗∂Y ∗

)
, (3.27) eq:nmc1

Re ϵ2α(n−1)v∗ · ∇∗v∗ = − ∂p∗

∂Y ∗ + v∗ · ∇∗(λ∗v∗) + δ1∇∗ ·
(
µ∗v∗w∗ − µ∗v∗ u∗

u∗2 + v∗2

)
+ δ2∇∗ ·

(
ν∗w∗ u∗

u∗2 + v∗2

)
+ βϵα(n−2)

(
∂2u∗

∂X∗∂Y ∗ +
∂2v∗

∂X∗2 + 2
∂2v∗

∂Y ∗2

)
, (3.28) eq:nmc2
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where we have set

δ1 = γ2ϵ
2(1−α), δ2 = γ3ϵ

4−2nα−2α, (3.29)

for convenience. For the inertial terms to be subdominant in either formulation, we

require n > 1 to hold (since α is positive). The constitutive equations with these

scalings in component form are

ϵ2−nαT p∗
11 +

(
u∗
∂T p∗

11

∂X∗ + v∗
∂T p∗

11

∂Y ∗ − 2
∂u∗

∂Y ∗T
p∗
12 − 2

∂u∗

∂X∗T
p∗
11

)
= 2ϵ2(1−α)

(
1− β

) ∂u∗
∂X∗ , (3.30) eq:ccc1

ϵ2−nαT p∗
12 +

(
u∗
∂T p∗

12

∂X∗ + v∗
∂T p∗

12

∂Y ∗ − ∂v∗

∂X∗T
p∗
11 − ∂u∗

∂Y ∗T
p∗
22

)
= ϵ2(1−α)

(
1− β

)( ∂u∗
∂Y ∗ +

∂v∗

∂X∗

)
, (3.31) eq:ccc2

ϵ2−nαT p∗
22 +

(
u∗
∂T p∗

22

∂X∗ + v∗
∂T p∗

22

∂Y ∗ − 2
∂v∗

∂X∗T
p∗
12 − 2

∂v∗

∂Y ∗T
p∗
22

)
= 2ϵ2(1−α)

(
1− β

) ∂v∗
∂Y ∗ . (3.32) eq:ccc3

For the upper convected derivative to dominate at leading order in the constitutive

equations we require

ϵ2−nα ≪ 1, ϵ2(1−α) ≪ 1. (3.33) eq:requcd

The first of these in (
eq:requcd
3.33) implies n < 2/α, the second α < 1. For the inertial terms

to be subdominant as already discussed, n > 1. The geometry of the re-entrant corner

restricts the values of alpha to be α ∈ [1/2, 1), and we have a lower and upper bound

on the value of n

1 < n < 2/α. (3.34)

For reference, we can express these equations in full form in the Cartesian basis as

Re ϵ2α(n−1)αv∗ · ∇∗v∗ = −∇p∗ +∇∗ ·Tp∗ + 2ϵα(n−2)β∇∗ ·D∗, (3.35)

ϵ2−nαTp∗+
▽

Tp∗ = 2(1− β)ϵ2(1−α)D∗. (3.36)
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In natural stress, the constitutive equations are

ϵ2−αnλ∗ + v∗ · ∇∗λ∗ + 2γ2ϵ
2−2αµ∗∇∗ ·w∗ = ϵ4−2α−nα(1− β)

1

(u∗2 + v∗2)
, (3.37) cns1

ϵ2−αnν∗ + v∗ · ∇∗ν∗ =
1

γ3
ϵnα(1− β)(u∗2 + v∗2), (3.38) cns2

ϵ2−nαµ∗ + v∗ · ∇∗µ∗ +
γ3
γ2
ϵ2−2nαν∗∇∗ ·w∗ = 0. (3.39) cns3

The two formulations can be related, by writing (
conn1
2.40)-(

conn3
2.42) in outer variables

T p∗
11 = −(1− β)ϵ2(1−α) + λ∗u∗2 − γ2ϵ

2(1−α) 2µ∗u∗v∗

(u∗2 + v∗2)
+ γ3ϵ

4−2nα−α ν∗v∗2

(u∗2 + v∗2)2
,

(3.40)

T p∗
12 = λ∗u∗v∗ + γ2ϵ

2(1−α)µ
∗(u∗2 − v∗2)

(u∗2 + v∗2)
− γ3ϵ

4−2nα−α ν∗u∗v∗

(u∗2 + v∗2)2
, (3.41)

T p∗
22 = −(1− β)ϵ2(1−α) + λ∗v∗2 − γ2ϵ

2(1−α) 2µ∗u∗v∗

(u∗2 + v∗2)
+ γ3ϵ

4−2nα−α ν∗u∗2

(u∗2 + v∗2)2
.

(3.42)

Posing the expansions

Ψ∗ = Ψ∗(0) + o(1), Tp∗ = Tp∗(0) + o(1), p∗ = p∗(0) + o(1),

λ∗ = λ∗(0) + o(1), µ∗ = µ∗(0) + o(1), ν∗ = ν∗(0) + o(1), as ϵ→ 0, (3.43)

we look for the leading order behaviours as ϵ → 0. In order to progress, assumptions

about the size of various terms for the natural stress formulation will have to be made

along with (
eq:requcd
3.33). The validity of these will be verified retrospectively once the values

of n, γ2, γ3 have been determined. So, assuming that

γ2ϵ
2(1−α) ≪ 1,

γ3
γ2
ϵ2(1−nα) ≪ 1,

1

γ3
ϵnα ≪ 1, γ3ϵ

4−2nα−2α ≪ 1, (3.44) nsassumptions

the leading order momentum and constitutive equations in the core region are

0 = −∇∗p∗(0) +∇∗ ·Tp∗(0),

▽

Tp∗(0)= 0, (3.45)

v∗(0) · ∇∗λ∗(0) = 0, v∗(0) · ∇∗µ∗(0) = 0, v∗(0) · ∇∗ν∗(0) = 0. (3.46) nscorelo
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In starred outer variables, these equations have solutions

Ψ∗(0) = c0R
∗nα sinn(αθ), λ∗(0) = c1

(
Ψ∗(0)

c0αn

)2/n−2

, p∗(0) = p0R
∗−2(1−α), (3.47) sf

which satisfy no normal velocity on the wall, Ψ∗(0) = 0 on θ = 0 and θ = π/α. We

have an assumed the solution form for T∗p(0) from (
cartofs
3.6), so we can use the stream

function form in (
sf
3.47) to express the core extra stress components in terms of this

stream function as

T
p∗(0)
11 = c1

(
Ψ∗(0)

c0αn

) 2
n
−2(

∂Ψ∗(0)

∂Y ∗

)2

, (3.48) traccart

T
p∗(0)
12 = −c1

(
Ψ∗(0)

c0αn

) 2
n
−2(

∂Ψ∗(0)

∂X∗
∂Ψ∗(0)

∂Y ∗

)
, (3.49)

T
p∗(0)
22 = c1

(
Ψ∗(0)

c0αn

) 2
n
−2(

∂Ψ∗(0)

∂X∗

)2

. (3.50) traccart3

Mathematically, (
nscorelo
3.46) this tells us that the leading order natural stress variables,

λ∗(0), µ∗(0) and ν∗(0) are constant along streamlines. Thus any information contained

within them remains unchanged as the core outer region is traversed from upstream to

downstream. Equivalently, we can say that λ∗(0), µ∗(0) and ν∗(0) are functions of Ψ∗(0)

and are anticipated to be of a power law form as with the Cartesian formulation. We

thus consider power-law form solutions

λ∗(0) = d1

(
Ψ∗(0)

c0αn

)n1

, µ∗(0) = d2

(
Ψ∗(0)

c0αn

)n2

, ν∗(0) = d3

(
Ψ∗(0)

c0αn

)n3

, (3.51) nsvarpower

for undetermined constants d1, d2, d3, c0 and exponents n1, n2, n3. To match with the

upstream boundary layer we consider the behaviour as Y ∗ → 0, which corresponds to

θ → 0. Noting that for small θ, R∗ ∼ X∗, θ∗ ∼ Y ∗/X∗, our scalings for the stream

function and extra polymer stress components become

Ψ∗(0) ∼ C0X
∗n(α−1)Y ∗n, T

p∗(0)
11 ∼ C1X

∗(2α−2), (3.52) eq:matcartcore

T
p∗(0)
12 ∼ C1(1− α)X(2α−3)Y ∗, T

p∗(0)
22 ∼ C1(1− α)2X∗(2α−4)Y ∗2, (3.53)

where C0 = c0α
n. The pressure balance comes from the momentum equation, and is
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given by

p∗(0) ∼ p0X
∗2α−2. (3.54)

In natural stress the corresponding limiting behaviour is

λ∗(0) ∼ d1X
∗2(n−1)(1−α)Y ∗2(1−n), (3.55) eq:matns

µ∗(0) ∼ d2X
∗n(α−1)n2Y ∗nn2 , (3.56)

ν∗(0) ∼ d3X
∗n(α−1)n3Y ∗nn3 , (3.57)

where the constants C0, C1, p0 and hence d1 (which is found by comparing with (
sf
3.47))

are given by

d1 = c1, C0 = c0α
n, C1 = c1n

2C2
0 , p0 =

1

2
C1, (3.58) eq:coc1relation

The stream function in (
sf
3.47) and extra stresses (

traccart
3.48)-(

traccart3
3.50) do not give viscometric

flow behaviour near the walls found in
subsec:ssf
2.3.1. This motivates the consideration of

boundary layers.

3.2.2 The upstream wall boundary layer analysis
sec:wbla

To start the boundary layer analysis, we need to scale into the walls. Terming this the

‘inner’ solution, we define inner barred variables as

X∗ = X̄, Y ∗ = δȲ , Ψ∗ = δnΨ̄, p∗ = p̄,

T p∗
11 = T̄ p

11, T p∗
12 = δT̄ p

12, T p∗
22 = δ2T̄ p

22, u∗ = δn−1ū, v∗ = δnv̄,

λ∗ = δ2(1−n)λ̄, µ∗ = δnn2 µ̄, ν∗ = δnn3 ν̄. (3.59)

We scale with δ in the Y ∗ variable only, where necessarily, δ ≪ 1, with δ = δ(ϵ). The

boundary layer region is thus X̄ = O(1), Ȳ = O(1). In the Cartesian stress basis the
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constitutive equations are

ϵ2−nαδ1−nT̄ p
11 +

(
ū
∂T̄ p

11

∂X̄
+ v̄

∂T̄ p
11

∂Ȳ
− 2

∂ū

∂Ȳ
T̄ p
12 − 2

∂ū

∂X̄
T̄ p
11

)
= 2ϵ2(1−α) (1− β)

∂ū

∂X̄
, (3.60) blcon1

ϵ2−nαδ1−nT̄ p
12 +

(
ū
∂T̄ p

12

∂X̄
+ v̄

∂T̄ p
12

∂Ȳ
− ∂v̄

∂X̄
T̄ p
11 −

∂ū

∂Ȳ
T̄ p
22

)
=

1

δ2
ϵ2(1−α) (1− β)

(
∂ū

∂Ȳ
+ δ2

∂v̄

∂X̄

)
, (3.61) blcon2

ϵ2−nαδ1−nT̄ p
22 +

(
ū
∂T̄ p

22

∂X̄
+ v̄

∂T̄ p
22

∂Ȳ
− 2

∂v̄

∂X̄
T̄ p
12 − 2

∂v̄

∂Ȳ
T̄ p
22

)
= 2

1

δ2
ϵ2(1−α) (1− β)

∂v̄

∂Ȳ
, (3.62) blcon3

and in the natural stress

ϵ2−αnδ1−nλ̄+ v̄ · ∇̄λ̄+ 2γ2ϵ
2−2αδnn2−1µ̄∇̄ · w̄ = ϵ4−2α−nαδ1−n(1− β)

1

ū2 + δ2v̄2
,

(3.63) eq:reblns1con1

ϵ2−αnδ1−nν̄ + v̄ · ∇̄ν̄ =
ϵnαδn−1−nn3

γ3
(1− β)(ū2 + δ2v̄2),

(3.64) eq:reblns1con2

ϵ2−nαδ1−nµ̄+ v̄ · ∇̄µ̄+
γ3
γ2
ϵ2−2nα δnn3

δnn2+2n−1
ν̄∇̄ · w̄ = 0, (3.65) eq:reblns1con3

where

∇̄ · w̄ =
∂

∂Ȳ

(
ū

ū2 + δ2v̄2

)
− δ2

∂

∂X̄

(
v̄

ū2 + δ2v̄2

)
=

∂

∂Ȳ

(
1

ū

)
+O(δ2). (3.66)

The momentum equations in Cartesian form are

Re ϵ2α(n−1)δ2n−2v̄ · ¯̂∇ū = − ∂p̄

∂X̄
+
∂T̄ p

11

∂X̄
+
∂T̄ p

12

∂Ȳ
+ ϵα(n−2)δn−3β

(
δ2
∂2ū

∂X̄
+
∂2ū

∂Ȳ 2

)
,

(3.67)

Re ϵ2α(n−1)δ2nv̄ · ¯̂∇v̄ = − ∂p̄

∂Ȳ
+ δ2

(
∂T̄ p

12

∂X̄
+
∂T̄ p

22

∂Ȳ

)
+ ϵα(n−2)δn−1β

(
δ2
∂2v̄

∂X̄
+
∂2v̄

∂Ȳ 2

)
,

(3.68)
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and in natural stress

Re ϵ2(2−α)v̄ · ∇̄ū = − ∂p̄

∂X̄
+ v̄ · ∇̄(λ̄ū) +

∂

∂Ȳ

(
µ̄
ū2 − δ2v̄2

ū2 + δ2v̄2

)
− δ2

∂

∂X̄

(
2µ̄ūv̄

ū2 + δ2v̄2

)
− δ2

(
∂

∂Ȳ

(
ν̄ūv̄

(ū2 + δ2v̄2)2

)
− δ2

∂

∂X̄

(
ν̄v̄2

(ū2 + δ2v̄2)2

))
+ β

(
δ22

∂2ū

∂X̄2
+
∂2ū

∂Ȳ 2
+ δ2

∂2v̄

∂X̄∂Ȳ

)
, (3.69)

Re ϵ2(2−α)δ2v̄ · ∇̄v̄ = − ∂p̄

∂Ȳ
+ δ2v̄ · ∇̄(λ̄v̄) + δ2

∂

∂X̄

(
µ̄
ū2 − δ2v̄2

ū2 + δ2v̄2

)
+ δ2

∂

∂Ȳ

(
2µ̄ūv̄

ū2 + δ2v̄2

)
+ δ2

(
−δ2 ∂

∂X̄

(
ν̄ūv̄

(ū2 + δ2v̄2)2

)
+

∂

∂Ȳ

(
ν̄ū2

(ū2 + δ2v̄2)2

))
+ βδ2

(
δ2
∂2v̄

∂X̄2
+ 2

∂2v̄

∂Ȳ 2
+

1

δ

∂2ū

∂X̄∂Ȳ

)
. (3.70)

Next we seek expressions for the exponent n of the stream function and δ (which

allows us to determine the boundary layer thickness). To this end we attempt to keep

the maximum number of terms in (
blcon1
3.60)-(

blcon3
3.62) and (

eq:reblns1con1
3.63)-(

eq:reblns1con3
3.65) as possible. Fullest

balance is obtained when

ϵ2−αnδ1−n = 1, γ2ϵ
2(1−α)δnn2−1 = 1,

γ3
γ2δnn2

ϵ2(1−nα)δnn3+1−2n = 1,

ϵnαδn−1

γ3δnn3
= 1,

1

δ2
ϵ2(1−α) = 1, (3.71) rel41

where we retain the linear stress and rate of strain terms. This determines n and δ to

be

δ = ϵ1−α, n = 3− α (3.72)

and also

γ2δ
nn2 = ϵα−1, γ3δ

nn3 = ϵ2. (3.73)

The boundary layer thickness is thus δϵ = ϵ2−α. The leading order boundary layer

momentum equations are

0 = − ∂p̄

∂X̄
+
∂T̄ p

11

∂X̄
+
∂T̄ p

12

∂Ȳ
+ β

∂3Ψ̄

∂Ȳ 3
, (3.74) eq:blme1

0 = − ∂p̄

∂Ȳ
, (3.75)
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from which it is clear the pressure is a function of X̄ only. The leading order constitutive

equations in the boundary layer are

T̄ p
11 +

(
∂Ψ̄

∂Ȳ

∂T̄ p
11

∂X̄
− ∂Ψ̄

∂X̄

∂T̄ p
11

∂Ȳ
− 2

∂2Ψ̄

∂Ȳ 2
T̄ p
12 − 2

∂2Ψ̄

∂X̄∂Ȳ
T̄ p
11

)
= 0, (3.76) eq:blce1

T̄ p
12 +

(
∂Ψ̄

∂Ȳ

∂T̄ p
12

∂X̄
− ∂Ψ̄

∂X̄

∂T̄ p
12

∂Ȳ
+
∂2Ψ̄

∂X̄2
T̄ p
11 −

∂2Ψ̄

∂Ȳ 2
T̄ p
22

)
= (1− β)

∂2Ψ̄

∂Ȳ 2
, (3.77)

T̄ p
22 +

(
∂Ψ̄

∂Ȳ

∂T̄ p
22

∂X̄
− ∂Ψ̄

∂X̄

∂T̄ p
22

∂Ȳ
+ 2

∂2Ψ̄

∂X̄2
T̄ p
12 + 2

∂2Ψ̄

∂Ȳ ∂X̄
T̄ p
22

)
= −2 (1− β)

∂2Ψ̄

∂Ȳ ∂X̄
. (3.78) eq:blce3

In the natural stress basis, the leading order momentum equations are

0 = − ∂p̄

∂X̄
+ v̄ · ∇̄(λū) +

∂µ̄

∂Ȳ
+ β

∂2ū

∂Ȳ 2
, (3.79) eq:nslobmom1

0 = − ∂p̄

∂Ȳ
, (3.80) eq:nslobmom2

agreeing with the Cartesian formulation that the pressure is a function of X̄ only. The

leading order constitutive equations are

λ̄+ v̄ · ∇̄λ̄+ 2µ̄∇̄ · w̄ = 0, (3.81) eq:nslobl1

µ̄+ v̄ · ∇̄µ̄+ ν̄∇̄ · w̄ = 0, (3.82)

ν̄ + v̄ · ∇̄ν̄ = (1− β)u2. (3.83) eq:nslobl3

The two formulations are linked (at leading order) in the boundary layer through the

transformations

T̄ p
11 = λ̄ū2, T̄ p

12 = λ̄ūv̄ + µ̄, T̄ p
22 = −(1− β) + λ̄v̄2 +

(
2µ̄v̄

ū

)
+
( ν̄
ū2

)
, (3.84) eq:reentblrel

or equivalently the inverse relationships

λ̄ =
T̄ p
11

ū2
, µ̄ = T̄ p

12 −
T̄ p
11v̄

ū
, ν̄ = µ̄2(1− β) + ū2T̄ p

22 + v̄2T̄ p
11 − 2ūv̄T̄ p

12. (3.85)

These relations are the same as derived by Renardy in (
rhighweiss
[48]) for the high Weissenberg

UCM boundary layer fluid. Alternatively, the leading order boundary layer equations
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(
eq:nslobmom1
3.79)-(

eq:nslobl3
3.83) can be expressed in terms of the stream function as

0 = − dp̄

dX̄
+

(
∂Ψ̄

∂Ȳ

)
∂

∂X̄

(
λ̄
∂Ψ̄

∂Ȳ

)
−
(
∂Ψ̄

∂X̄

)
∂

∂Ȳ

(
λ̄
∂Ψ̄

∂Ȳ

)
+
∂µ̄

∂Ȳ
+ β

∂2

∂Ȳ 2

(
∂Ψ̄

∂Ȳ

)
,

(3.86) constream1

0 =

(
∂Ψ̄

∂Ȳ

)2(
∂Ψ̄

∂Ȳ

∂λ̄

∂X̄
− ∂Ψ̄

∂X̄

∂λ̄

∂Ȳ
+ λ̄

)
− 2

∂2Ψ̄

∂Ȳ 2
µ̄, (3.87) constream2

0 =

(
∂Ψ̄

∂Ȳ

)2(
∂Ψ̄

∂Ȳ

∂µ̄

∂X̄
− ∂Ψ̄

∂X̄

∂µ̄

∂Ȳ
+ µ̄

)
− ∂2Ψ̄

∂Ȳ 2
ν̄ − β

(
∂Ψ̄

∂Ȳ

)2
∂2Ψ̄

∂Ȳ 2
, (3.88) constream3

0 =

(
∂Ψ̄

∂Ȳ

∂ν̄

∂X̄
− ∂Ψ̄

∂X̄

∂ν̄

∂Ȳ

)
+ ν̄ − (1− β)

(
∂Ψ̄

∂Ȳ

)2

. (3.89) constream4

This system is completed with the solid boundary and no-slip condition at the wall

on Ȳ = 0, Ψ =
∂Ψ

∂Ȳ
= 0, (3.90)

along with the matching conditions as Ȳ → ∞

Ψ̄ ∼ C0X̄
(α−1)nȲ n, T̄ p

11 ∼ C1X̄
2α−2, T̄ p

12 ∼ C1(1− α)X̄2α−3Ȳ ,

T̄ p
22 ∼ C1(1− α)2X̄2α−4Ȳ 2, p̄ ∼ p0X̄

−2(1−α),

λ̄ ∼ d1X̄
2(n−1)(1−α)Ȳ 2(1−n), µ̄ ∼ d2X̄

n(α−1)n2 Ȳ nn2 , ν̄ ∼ d3X̄
nn3(α−1)Ȳ nn3 , (3.91) eq:matcart

with the exponents n2, n3 currently unknown. We next seek a self-similar solution to

these equations. To this end, we look for invariance under a one parameter scaling

group. Rescaling the barred (inner) variables gives a one parameter scaling group in γ

say, as

X̄ = γX̂, Ȳ = γ2−αŶ , Ψ̄ = γ3−αΨ̂, p̄ = γ2(α−1)p̂,

T̄ p
11 = γ2(α−1)T̂ p

11, T̄ p
12 = γα−1T̂ p

12, T̄ p
22 = T̂ p

22,

λ̄ = γ−2(2−α)λ̂, µ̄ = γα−1µ̂, ν̄ = γ2ν̂. (3.92)

This allows us to determine the exponents n2 and n3 to be

n2 = −(1− α)

3− α
, n3 =

2

n
, (3.93)
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which determines the remaining exponents in the leading order core behaviour. From

this it is possible to determine the gauges γ2 and γ3 as

γ2 = ϵ−α(1−α), γ3 = ϵ−2(α2−3α+1), (3.94)

This allows us to verify that the assumptions made in (
nsassumptions
3.44) were valid, namely

γ2ϵ
2(1−α) = ϵ(2−α)(1−α) ≪ 1,

γ3
γ2
ϵ2(1−nα) = ϵα(1−α) ≪ 1,

1

γ3
ϵnα = ϵ(2−α)(1−α) ≪ 1, γ3ϵ

4−2nα−2α = ϵ2(1−α) ≪ 1. (3.95)

The above scaling group suggests a similarity solution, which we can also use to to

scale p0 out of the governing equations. The similarity solution is

ξ = p
1
2
0

Ȳ

X̄2−α
, Ψ̄ = X̄3−αp

− 1
2

0 f(ξ), p̄ = p0X̄
−2(1−α),

T̄11 = p0X̄
2α−2t11(ξ), T̄12 = p

1
2
0 X̄

α−1t12(ξ), T̄22 = t22(ξ),

λ̄ = p0X̄
−2(2−α)λ̃(ξ), µ̄ = p

1
2
0 X̄

α−1µ̃(ξ), ν̄ = X̄2ν̃(ξ). (3.96) eq:relsimsol

The leading order Cartesian statement of the boundary layer equations are

2(α− 1)(tp11 − 1)− (2− α)ξtp
′

11 + tp
′

12 + βf ′′′ = 0, (3.97) eq:Cartsim1

tp11 +
(
−(3− α)ftp

′

11 + 2(α− 2)tp11(f
′ − f ′′ξ)− 2f ′′tp12

)
= 0, (3.98)

tp22 +

(
− (3− α)ftp

′

22 + 2(2− α)
(
(3− α)f − (3− α)ξf ′ + (2− α)ξ2f ′′

)
tp12

+ 2tp22
(
f ′ − (2− α)ξf ′′

))
= −2 (1− β)

(
f ′ − (2− α)ξf ′′

)
, (3.99)

tp12 +

(
− (3− α)ftp

′

12 + (α− 1)f ′tp12 + (2− α)
(
(3− α)(f − ξf ′) + (2− α)ξ2f ′′

)
tp11

− tp22f
′′
)

= (1− β) f ′′, (3.100) eq:Cartsim4
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where the ′ denotes differentiation with respect to ξ. In the natural stress formulation

this becomes

µ̃′ + 2(1− α) +
2f ′′

f ′
µ̃− (f ′(1− f ′) + (3− α)ff ′′)λ̃+ βf ′′′ = 0, (3.101) simsol1

(3− α)fλ̃′ + (2(2− α)f ′ − 1)λ̃+
2f ′′

(f ′)2
µ̃ = 0, (3.102) simsol2

(3− α)fµ̃′ + µ̃((1− α)f ′ − 1) + ν̃
f ′′

(f ′)2
= 0, (3.103) simsol3

(3− α)fν̃ ′ − (1 + 2f ′)ν̃ + (1− β)(f ′)2 = 0. (3.104) simsol4

The systems are completed with the wall and far-field behaviours

at ξ = 0, f ′′ ∼ asp

2
ξ2 (3.105) eq:aswall

as ξ → ∞, f ∼ Csp
0 ξ

3−α, tp11 ∼ Csp
1 , tp12 ∼ Csp

1 (1− α)ξ, tp22 ∼ Csp
1 (1− α)2ξ2

(3.106) eq:cartffivp

λ̃ ∼ dsp1 ξ
−2(2−α), µ̃ ∼ dsp2 ξ

−1+α, ν̃ ∼ dsp3 ξ
2. (3.107) eq:nsffivp

The similarity parameters asp, Csp
0 , Csp

1 , dsp1 , dsp2 and dsp3 are defined by

asp =
a

p
1/2
0

, Csp
0 =

C0

p
1−α

2
0

, Csp
1 =

C1

p0
= 2, dsp1 =

d1

p−1+α
0

, dsp2 =
d2
pα0

dsp3 =
d3
p0
,

(3.108)

where the parameter a arises in the wall behaviour

as Ȳ → 0, Ψ̄ ∼ 1

2
aX̄α−1Ȳ 2, (3.109)

corresponding to (
eq:aswall
3.105). As is seen, the extra stress equations in component form, now

readily agree with the UCM model, while the momentum equation is changed with the

presence of a higher order retardation term. The two points ξ = 0, ξ = ∞ are singular

points for the system, so further analysis is required to investigate local behaviours.

3.2.3 The downstream wall boundary layer
sec:dswbl

For the downstream layer, Cartesian axes are taken with the x axis along the down-

stream wall θ = π/α and y orthogonal to the wall along θ = π/α + π/2, preserving

the orientation relative to the upstream axes. In terms of polar co-ordinates we have
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x = r cos (π/α− θ), y = −r sin (π/α− θ). The domain is now

x ≥ 0, y ≤ 0. (3.110) dbldomain

In outer variables, R∗ ∼ X∗ as usual, but (π/α− θ) ∼ −Y ∗/X∗ as the downstream

wall is approached. In the core region, the solution form for Ψ∗(0) in (
sf
3.47) as the

downstream wall is approached behaves like

Ψ∗(0) = c0R
∗nα sinn(αθ) ∼ C0R

∗nα
(
−Y ∗

X∗

)n

= C0X
∗n(α−1)(−Y ∗)n. (3.111)

Similarly the limiting behaviours of the other variables are

Ψ∗(0) ∼ C0X
∗n(α−1)(−Y ∗)n, T

p∗(0)
11 ∼ C1X

∗(2α−2),

T
p∗(0)
12 ∼ C1(1− α)X(2α−3)(−Y ∗), T

p∗(0)
22 ∼ C1(1− α)2X∗(2α−4)(−Y ∗)2,

λ∗(0) ∼ d1X
∗2(n−1)(1−α)(−Y ∗)2(α−2), µ∗(0) ∼ d2X

∗n(α−1)n2(−Y ∗)α−1,

ν∗(0) ∼ d3X
∗n(α−1)n3(−Y ∗)2. (3.112)

Similarly for the boundary layer matching conditions, (
eq:matcart
3.91), the sign of d2 will also

change with the other polymer stress components and natural stress variables remain-

ing unchanged. We note that changing the sign of the following variables leaves the

governing equations unchanged and changes the sign of C0 and d2 only.

Ψ̄ 7→ −Ψ̄, Ȳ 7→ −Ȳ , T̄ p
12 7→ −T̄ p

12, µ̄ 7→ −µ̄. (3.113) eq:nctrans

Consequently the matching conditions (
eq:matcart
3.91) remain the same with the signs of C0,

d2 and asp reversed. The similarity solution and matching conditions found for the

upstream region are therefore valid for the downstream region with the above trans-

formations. Figure
fig:blds
3-3 shows the downstream axes alignment.

3.2.4 Behaviour at the wall and Eigenmode analysis
sec:wbea

The system under consideration in both stress basis is a 6th order system: the depen-

dent variables in the Cartesian statement are (f ,f ′,f ′′,tp11,t
p
12,t

p
22) and in the natural

stress statement (f ,f ′,f ′′,λ,µ,ν). We are interested in viscometric behaviour at the

walls. Performing a local analysis in Cartesian firstly for (
eq:Cartsim1
3.97)-(

eq:Cartsim4
3.100) at ξ = 0 and
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Figure 3-3: Re-entrant corner geometry, with the downstream axes alignment shown.
The normals n are given on both upstream and downstream walls, along with the (x, y)
alignment shown for the downstream wall. The domain (

dbldomain
3.110) is given, where y is now

aligned into the wall rather than out from it as in the upstream case. The co-ordinate
transformations from Cartesian to polars are given, with the relevant angles indicated
on the corner. fig:blds

assuming a regular power series expansion for f(ξ), tp11(ξ), t
p
12(ξ), t

p
22(ξ), i.e.

f(ξ) =

∞∑
i=2

fiξ
i

i!
, tpij =

∞∑
i=0

aijξ
i, (3.114)

we obtain the two-term solution as

f(ξ) =
asp

2
ξ2 +

bsp

6
ξ3 +O(ξ4), (3.115) eq:cartvwb1

tp11(ξ) = 2 (asp)2 (1− β)− 6(1− β)asp
(
(asp)2 (α− 1)− 2

3
bsp)

)
ξ +O(ξ2), (3.116)

tp12(ξ) = (1− β)asp + (1− β)(3 (asp)2 (1− α) + bsp)ξ +O(ξ2), (3.117)

tp22(ξ) = −2(1− β)(1− α)aspξ + 4(1− β)

(
(asp)2

(
α− 5

4

)
(α− 1)− 1

2
bspα+

3

4
bsp
)
ξ2

+O(ξ3). (3.118) eq:cartvwb4
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In the natural stress basis this is

λ̃(ξ) = 2(1− β)
1

ξ2
− 2(1− β)(−3 (asp)2 − bsp + 3α (asp)2)

asp
1

ξ
+O(1), (3.119) eq:nsvwb1

µ̃(ξ) = (1− β)asp − (1− β)(−bsp + 2 (asp)2 + 2α (asp)2)ξ +O(ξ2), (3.120)

ν̃(ξ) = (1− β) (asp)2 ξ2 − (1− β)
(
(α− 1) (asp)2 − bsp

)
ξ3 +O(ξ4), (3.121) eq:nsvwb4

where asp = f ′′(0) is free whilst bsp = f ′′′(0) satisfies

bsp = (1− α)
(
(1− β) (asp)2 − 2

)
. (3.122) relpab

Setting β = 0 recovers the UCM solution in
evcartucm
[19] as expected. To determine the number

of degrees of freedom contained in this asymptotic behaviour at the wall, an eigenmode

analysis is necessary. The analysis is presented separately for each stress basis.

Cartesian wall analysis

To do an eigenmode analysis, we consider the perturbation

f(ξ) ∼ f (0)(ξ) + δ̄f̄(ξ), tpij(ξ) ∼ t
p(0)
ij (ξ) + δ̄t̄pij(ξ), (3.123)

where δ̄ ≪ 1, and f (0)(ξ) and t
p(0)
ij (ξ) represent the regular power series expansion. The

perturbed terms are f̄(ξ) and t̄pij . Linearizing by keeping terms of O(δ̄) and neglecting

the forcing terms gives a sixth-order homogeneous linear ode (obtained using Maple

and not recorded for brevity) to determine the perturbed terms. The six linearly

independent solutions are the eigenmodes, which to leading order are

f̄(ξ) ∼ 1

t̄p11 ∼ −2asp(3− α)(4α(asp)2 − 3bsp)(1− β)

t̄p12 ∼ −(3− α)((asp)2(α+ 3)− bsp)(1− β)

t̄p22 ∼ −2asp(3− α)(1− β)

 ,

f̄(ξ) ∼ ξ

t̄p11 ∼ 6(asp)2(1− β)(1− α)

t̄p12 ∼ −asp(1− β)(1 + α)

t̄p22 ∼ −2(1− β)

 ,

(3.124)
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f̄(ξ) ∼ ξ2

t̄p11 ∼ 8asp(1− β)

t̄p12 ∼ 2(1− β)

t̄p22 ∼ 4(1− β)(1− α)ξ

 ,

f̄(ξ) ∼ ξm1 exp
( −2

aspβ(3− α)ξ

)
t̄p11 ∼ − 8(1− 2β)

aspβ(3− α)2(1− β)
ξm1−4 exp

( −2

aspβ(3− α)ξ

)
t̄p12 ∼

−4

(asp)2β(3− α)2
ξm1−4 exp

( −2

aspβ(3− α)ξ

)
t̄p22 ∼

−8(2− α)

(asp)2β(3− α)2
ξm1−3 exp

( −2

aspβ(3− α)ξ

)


,

(3.125)

f̄(ξ) ∼ ξm2 exp
( −2

asp(3− α)ξ
± 4

((3− α)aspξ)1/2
)

t̄p11 ∼ ∓ 8(1− 2β)

a(1− β)(3− α)2β
ξm2−4 exp

( −2

asp(3− α)ξ
± 4

((3− α)aspξ)1/2
)

t̄p12 ∼ − 4

(asp)2β(3− α)2
ξm2−4 exp

( −2

asp(3− α)ξ
± 4

((3−α)aspξ)1/2

)
t̄p22 ∼ ∓ 8(2− α)

(asp)2β(3− α)2
ξm2−3 exp

( −2

asp(3− α)ξ
± 4

((3− α)aspξ)1/2
)


. (3.126)

The constants m1 and m2 are defined as

m1 =
−β(asp)2(3− α) + β(11− 5α) + 2(α− 2)

β(1− β)(3− α)
,

m2 =
β3(3α− 9) + β(asp)2(12− 4α) + β(5α− 11)− (2α− 4)

β(3− α)(1− β)
.

Thus the sixth order homogeneous equation for the perturbed terms have six leading

order asymptotic behaviours. We can deduce the following:

� In the case asp < 0 relevant to the upstream boundary layer, only the third

mode is consistent with the viscometric wall expansion. This implies that it

has one degree of freedom associated with the free constant asp. As expected

the parameter bsp is not free but determined through (
relpab
3.122). The local wall

expansion will be analytic in this case.

� For the downstream case, asp > 0, all of the exponential behaviours are consistent,

along with the third mode, giving four degrees of freedom. The constant asp

is associated with one degree of freedom, the remaining three associated with

the exponential modes. Therefore, the wall expansion isn’t analytic, with the

exponential modes needing to be included in a full wall expansion. These occur

as smaller terms in the expansion, their derivation being equivalent to a WKBJ-
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type expansion. Associating the constants K1, K2, K3 with the three exponential

terms, the full wall expansion downstream takes the form

f(ξ) =
asp

2
ξ2 +

bsp

6
ξ3 +O(ξ4) +K1ξ

m exp

(
−2

aspβ(3− α)ξ

)
(1 +O(ξ))

+K2ξ
m2 exp

(
−2

asp(3− α)ξ
+

4

((3− α)aspξ)1/2

)
(1 +O(ξ))

+K3ξ
m2 exp

(
−2

asp(3− α)ξ
− 4

((3− α)aspξ)1/2

)
(1 +O(ξ)), (3.127)

tp11(ξ) = 2(asp)2(1− β) +O(ξ)

+K1
−8(1− 2β)

asp(1− β)(3− α)2
ξm1−4 exp

(
−2

aspβ(3− α)ξ

)
(1 +O(ξ))

+K2
−8(1− 2β)

asp(1− β)(3− α)2
ξm1−4 exp

(
−2

asp(3− α)ξ
+

4

((3− α)aspξ)1/2

)
(1 +O(ξ))

+K3
−8(1− 2β)

asp(1− β)(3− α)2
ξm2−4 exp

(
−2

asp(3− α)ξ
− 4

((3− α)aspξ)1/2

)
(1 +O(ξ)),

(3.128)

tp12(ξ) = (1− β)asp +O(ξ)

+K1
−4

(asp)2β(3− α)2
ξm1−4 exp

(
−2

aspβ(3− α)ξ

)
(1 +O(ξ))

+K2
−4

(asp)2β(3− α)2
ξm1−4 exp

(
−2

asp(3− α)ξ
+

4

((3− α)aspξ)1/2

)
(1 +O(ξ))

+K3
−4

(asp)2β(3− α)2
ξm2−4 exp

(
−2

asp(3− α)ξ
− 4

((3− α)aspξ)1/2

)
(1 +O(ξ)),

(3.129)

tp22(ξ) = −2(1− β)(1− α)aspξ +O(ξ2)

+K1
−8(2− α)

(asp)2β(3− α)2
ξm1−3 exp

(
−2

aspβ(3− α)ξ

)
(1 +O(ξ))

+K2
−8(2− α)

(asp)2β(3− α)2
ξm1−3 exp

(
−2

asp(3− α)ξ
+

4

((3− α)aspξ)1/2

)
(1 +O(ξ))

+K3
8(2− α)

(asp)2β(3− α)2
ξm2−3 exp

(
−2

asp(3− α)ξ
− 4

((3− α)aspξ)1/2

)
(1 +O(ξ)).

(3.130)

These local wall expansions can be viewed as composed of an analytical part (the

power series terms in regular powers of ξ) and a non-analytical part consisting of three

exponentially small terms, for the case asp > 0.
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Natural stress wall analysis

As for the Cartesian formulation, we aim to determine the degrees of freedom in the

natural stress wall asymptotic behaviour. We consider a perturbation of the form, (as

ξ → 0)(
f(ξ), λ̃(ξ), µ̃(ξ), ν̃(ξ)

)
=
(
f0(ξ), λ̃0(ξ), µ̃0(ξ), ν̃0(ξ)

)
+ δ̂

(
f̂(ξ), λ̂(ξ), µ̂(ξ), ν̂(ξ)

)
.

(3.131)

We again linearise with the parameter δ̂ to obtain at O(δ̂) a homogeneous sixth or-

der system of equations to determine the eigenmodes (obtained using Maple and not

recorded for brevity). Three are algebraic and three exponential, namely

f(ξ) ∼ 1

λ̃(ξ) ∼ −2(−3 + α)(4α(asp)2 − 3bsp)(−1 + β)

asp
1

ξ2

µ̃(ξ) ∼ 2asp(−1 + β)(−3 + α)
1

ξ
ν̃(ξ) ∼ 2(asp)2(−1 + β)(−3 + α)ξ


, (3.132)

f(ξ) ∼ ξ

λ̃(ξ) ∼ −4(1− β)

asp
1

ξ3

µ̃(ξ) ∼ −(−3 + α)(7α(asp)2 − 3asp − 4bsp)(−1 + β)

ν̃(ξ) ∼ 2asp(1− β)ξ


,

f(ξ) ∼ ξ2

λ̃(ξ) ∼ 2(1− β)

asp
1

ξ2

µ̃(ξ) ∼ 2(1− β)

ν̃(ξ) ∼ 4asp(1− β)ξ2


,

(3.133)

f(ξ) ∼ ξq1 exp

(
−2

aspβ(3− α)ξ

)
λ̃(ξ) ∼ − 8(1− 2β)

β(asp)3(3− α)2(1− β)
ξq1−6 exp

(
−2

aspβ(3− α)ξ

)
µ̃(ξ) ∼ −4

(asp)2β(3− α)2
ξq1−4 exp

(
−2

aβ(3− α)ξ

)
ν̃(ξ) ∼ −4

(3− α)
ξq1−1 exp

(
−2

aspβ(3− α)ξ

)


, (3.134)

69



f(ξ) ∼ exp

(
−2

asp(3− α)ξ
± 4

((3− α)aspξ)
1
2

)

λ̃(ξ) ∼ − 8(1− 2β)

β(asp)3(3− α)2(1− β)
ξq1−6 exp

(
−2

asp(3− α)ξ
± 4

((3− α)aspξ)
1
2

)

µ̃(ξ) ∼ −4

(asp)2β(3− α)2
ξq1−4 exp

(
−2

asp(3− α)ξ
± 4

((3− α)aspξ)
1
2

)

ν̃(ξ) ∼ −4

(3− α)
ξq1−1

(
−2

asp(3− α)ξ
± 4

((3− α)aspξ)
1
2

)



,

(3.135)

where

q1 =
3− β

1− β
− 1

β(1− β)
. (3.136)

The conclusions are similar to the Cartesian statement. The wall behaviour analysis

has allowed us determine the conditions imposed upon the system by specifying the

asymptotic behaviour (
eq:aswall
3.105) as ξ → 0. A similar analysis is now done for the far-field

behaviour.

3.2.5 Far-field behaviour
sec:ffb

Cartesian analysis

Here we consider the degrees of freedom exhibited by the far-field behaviour. We pose

f ∼ Csp
0 ξ

3−α
(
1 + δ̂f̂(ξ)

)
, tp11 ∼ Csp

1

(
1 + δ̂t̂p11(ξ)

)
,

tp12 ∼ Csp
1 (1− α)ξ

(
1 + δ̂t̂p12(ξ)

)
, tp22 ∼ Csp

1 (1− α)2ξ2
(
1 + δ̂t̂p22(ξ)

)
, (3.137)

then linearise using the parameter δ̂, where δ̂ is assumed small. We assume power law

behaviours in the expansion for f̂ and the perturbed extra polymer stresses as

f̂(ξ) = ξm, t̂p11 = A11ξ
m, t̂p12 = A12ξ

m, t̂p22 = A22ξ
m, (3.138)
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aiming to find expressions for m and the Aij . Substituting for these expressions, we

obtain five algebraic asymptotic behaviours whilst the remaining one is exponential.

f̂ = 1

t̂p11 = 0

t̂p12 = 0

t̂p22 = 0

 ,

f̂ = ξ2(α−2)

t̂p11 = −2(2α+ 1)

α

t̂p12 =
−4(α2 − 3α− 3)

α(α− 3)

t̂p22 =
−2(2α4 − 11α3 + 25α2 − 27α+ 12)

α(α− 3)(α− 1)2
,


,

f̂ = ξ−1

t̂p11 = 0

t̂p12 = − 1

(α− 1)(−3 + α)
ξ−1

t̂p22 = − 2

3 + α2 − 4α
ξ−1


,

f̂ = ξα−2

t̂p11 =
−2(α− 1)

(α+ 1)(α− 3)

t̂p12 =
−2(α2 − 2α+ 2)

(α2 − 1)(α− 3)

t̂p22 =
−2

α− 1


, (3.139)

f̂ = ξ2(α−1)

t̂p11 = −2(2α− 1)

α− 3

t̂p12 = −4(α− 1)

α− 3

t̂p22 = −2(2α− 3)

α− 3


,

f̂ = ξ1−α exp

(
Csp
1

βCsp
0 (3− α)α

ξα
)

t̂p11 =
2Csp

1

βCsp
0 (3− α)2

exp

(
Csp
1

βCsp
0 (3− α)α

ξα
)

t̂p12 =
((3− 2α))Csp

1

(1− α)(3− α)2Csp
0 β

exp

(
Csp
1

βCsp
0 (3− α)α

ξα
)

t̂p22 =
2Csp

1 (2− α)

Csp
0 β(1− α)(3− α)2

exp

(
Csp
1

βCsp
0 (3− α)α

ξα
)


.

(3.140)

The above eigenmodes are all consistent with the far-field behaviour (
eq:cartffivp
3.106)-(

eq:nsffivp
3.107).

As such they identify the homogeneous terms in the full far-field expansion, which

is expected to contain the five free constants Csp
0 , C2, C3, C4, C5. These constants

are associated with each of the above five modes. Inhomogeneous or forcing terms

are also expected to be present in the full far-field expansion which are lost during

the linearisation (and admission of the forcing terms). It is noted that there is no

mode associated with the parameter Csp
1 . Proceeding systematically, we identify and
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determine successive terms in the expansion as

f(ξ) ∼ Csp
0 ξ

3−α

(
1 + F1ξ

−α + C2ξ
2α−2 + F2ξ

−2α + C3ξ
−1 +

(
C4 −

1

2Csp
0 (α− 2)

)
ξα−2

+ F3ξ
−2 + F4ξ

−3α + F5ξ
−4α + F6ξ

−2−α + C5ξ
−4+2α

)
, (3.141) cff1

tp11(ξ) ∼ Csp
1

(
1 +A1ξ

−α − 2C2(2α− 1)

α− 3
ξ2α−2 +A2ξ

−2α − 2(α− 1)C4

(α+ 1)(α− 3)
ξα−2

+A3ξ
−2 +A4ξ

−3α +A5ξ
−4α +A6ξ

−2−α −A7ξ
−4+2α

)
, (3.142) cff2

tp12(ξ) ∼ Csp
1 (1− α)ξ

(
1 +B1ξ

−α − 4C2(α− 1)

α− 3
ξ2α−2 +B2ξ

−2α − C3

(α− 1)(α− 3)
ξ−1

− 2C4(α
2 − 2α+ 2)

(α+ 1)(α− 3)(α− 1)
ξα−2 −B3ξ

−2 +B4ξ
−3α +B5ξ

−4α +B6ξ
−2−α −B7ξ

−4+2α

)
,

(3.143) cff3

tp22(ξ) ∼ Csp
1 (1− α)2ξ2

(
1 +D1ξ

−α − 2C2(−3 + 2α)

α− 3
ξ2α−2 +D2ξ

−2α

− 2C4(α
2 − 2α+ 3)

(α− 1)(α− 3)(α+ 1)
ξα−2 −D3ξ

−2 +D4ξ
−3α +D5ξ

−4α +D6ξ
−2−α −D7ξ

−4+2α

)
,

(3.144) cff4

where the constants Fi, Ai, Bi, Di, are given in Appendix
ffcoef
A. Noteworthy are the

following:

� The above expansions are found with C2, C3 set to zero. The terms in which

they first arise have been included (modes two and three) but subsequent forcing

terms including them have been omitted. This is done under the assumption

that C2, C3 do not contribute towards determining parameters associated with

the natural stress formulation, verified in the natural stress analysis performed

in the next section.

� The expansions are not uniform in α. The terms associated with the eigenmodes

keep their positioning in the expansion relative to each other. However, the

forcing terms change their relative ordering. This is seen with the UCM model by

Evans,
evcartucm
[19], where with C2 ̸= 0, additional terms of order O(ξ−4+4α), O(ξ−6+6α)

are included. As α → 1−, an ever-increasing number of like terms will enter the

expansion.
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� The coefficients of the forcing terms in this expansion are singular at α = 2/3.

This suggests that the expansion needs to be modified to accommodate this.

Following Sibley
sib
[52], we look for behaviour of the form (ln(ξ)ξ−α) instead of ξ−α

for example. The expansion at the singular point α = 2/3 is included in appendix
app:logff
B.

Natural stress analysis

Here, we consider the asymptotic far-field behaviourin the natural stress formulation.

Linearising by using the small parameter δ̂ via

f̃ ∼ Csp
0 ξ

3−α
(
1 + δ̂f̂(ξ)

)
, λ̃ ∼ dsp1 ξ

−4+2α
(
1 + δ̂λ̂(ξ)

)
,

µ̃ ∼ dsp2 ξ
−1+α

(
1 + δ̂µ̂(ξ)

)
, ν̃ ∼ dsp3 ξ

2
(
1 + δ̂ν̂(ξ)

)
, (3.145) ffexp

we keep terms of O(δ) and ignore the forcing terms. We thus again obtain a sixth order

homogeneous linearised system to determine the eigenmodes. These are found (using

Maple) to be:

f̂ = 1

λ̂ = −2

µ̂ = 0

ν̂ = 0

 ,

f̂ = 0

λ̂ = 0

µ̂ = 1

ν̂ = 0

 ,

f̂ = 0

λ̂ = 0

µ̂ = 0

ν̂ = 1

 ,

f̂ = ξ−2+2α

λ̂ = −2
(2− α)

3− α
ξ−2+2α

µ̂ = −(1− α)

3− α
ξ−2+2α

ν̂ =
2

3− α
ξ−2+2α


, (3.146) ffns

f̂ = ξ−1

λ̂ = −2
(2− α)

3− α
ξ−1

µ̂ = −(1− α)

3− α
ξ−1

ν̂ =
2

3− α
ξ−1


,

f̂ = ξ−3−α exp

(
2

βα(3− α)Csp
0

ξα
)

λ̂ = −2
(2− α)

3− α
exp

(
2

βα(3− α)Csp
0

ξα
)

µ̂ = −(1− α)

3− α
ξ−3−α exp

(
2

βα(3− α)Csp
0

ξα
)

ν̂ =
2

3− α
ξ−3−α exp

(
2

βα(3− α)Csp
0

ξα
)


,

(3.147)

that correspond to the linearly independent solutions. The first eigenmode emphasises

that dsp1 is related to Csp
0 , see (

eq:coc1relation
3.58) and is consistent with the far-field behaviour

(
eq:nsffivp
3.107). Further the first mode corresponds to small changes in Csp

0 , similarly the

second mode corresponds to changes in dsp2 and the third mode with dsp3 . The fourth

and fifth modes are associated with two further free parameters in the system, which
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were denoted C2, C3 in the Cartesian full far-field. Since the system is sixth-order

we expect six eigenmodes. The final eigenmode is exponentially small when Csp
0 <

0intheupstreamcase. An expansion of the type (
ffexp
3.145) will not be analytic due to the

existence of this eigenmode. Further, we can now determine the constants dsp1 , dsp2 , dsp3
in terms of the Ci’s, i = 1, .., 5. Expressions for dsp1 , dsp2 and dsp3 are found to be as

follows

dsp1 =
Csp
1

(3− α)2(Csp
0 )2

, dsp2 =
Csp
1

2(3− α)Csp
0

(
1 +

2α(1− α)Csp
0 C4

(1 + α)

)
, (3.148)

dsp3 =
Csp
1

4
+

2Csp
1 (Csp

0 )2C5(3− α)(3− 2α)

α
+

(2α4 − 5α3 − α2 + 9α− 9)Csp
1 C

sp
0 C4

2α(1 + α)(2− α)

(3.149)

+
(α3 − 3α2 + 4α− 3)Csp

1 (Csp
0 )2C2

4

α
. (3.150)

In the particular case C4 = 0, the expressions are

dsp1 =
Csp
1

(3− α)2(Csp
0 )2

, dsp2 =
Csp
1

2(3− α)Csp
0

, dsp3 =
Csp
1

4
+

2Csp
1 (Csp

0 )2C5(3− α)(3− 2α)

α
,

(3.151)

which are the same expressions for UCM-type fluids given in
evnsucm
[20].

3.2.6 Boundary Layer analysis summary

Summarising the results from the wall and far field analysis of sections
sec:wbea
3.2.4 and

sec:ffb
3.2.5:

� The upstream boundary layer is the case for which asp < 0. The Cartesian wall

system (
eq:Cartsim1
3.97)-(

eq:Cartsim4
3.100) or natural stress wall system ((

simsol1
3.101))-(

simsol4
3.104) with the

appropriate wall behaviours (
eq:cartvwb1
3.115)-(

eq:cartvwb4
3.118), (

eq:nsvwb1
3.119)-(

eq:nsvwb4
3.121) respectively can be

used as a IVP in order to arrive at the far-field behaviours (
eq:cartffivp
3.106)-(

eq:nsffivp
3.107). The

parameters a and p0 are related through the similarity parameter asp in (
eq:aswall
3.105).

� The downstream case is a two point boundary value problem. Imposing the wall

behaviour with asp unspecified gives two conditions only, with the remaining four

from prescribing Csp
0 , dsp2 , dsp3 in the natural stress formulation, or Csp

0 with any

two from (C2,C3,C4,C5) in the Cartesian basis. Consistency with the natural

stress formulation suggests the choice of C4, C5. The wall shear rate coefficient

asp < 0 is to be determined.
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3.3 Numerical Analysis

For numerical implementation the system is re-arranged to form an explicit system

with the highest derivative of f isolated. Here the Cartesian basis is examined first,

with some numerical difficulties associated with it highlighted. The natural stress

formulation is then used, since it is able to connect efficiently the information from the

upstream and downstream boundary layers.

3.3.1 Cartesian upstream problem

Firstly we consider the upstream boundary layer case. We are interested in solving

the sixth order system (
eq:Cartsim1
3.97)-(

eq:Cartsim4
3.100) subject to asymptotic behaviour both at the wall

(
eq:cartvwb1
3.115)-(

eq:cartvwb4
3.118), and the far-field (

eq:cartffivp
3.106). Imposing the wall behaviour with asp specified

gives 6 boundary conditions for the sixth order system. For a chosen α, the IVP has

one free parameter, asp, with bsp fixed through (
relpab
3.122), giving us a one-dimensional

parameter space to classify solutions. The far-field behaviour (
cff1
3.141)-(

cff4
3.144) involves

the five free constants (Csp
0 , C2, C3, C4, C5) which can be numerically determined, with

the constant Csp
1 = 2. In order to distinguish between the upstream and downstream

cases, we introduce the index u to the upstream constants. Introducing

(asp, bsp, Csp
0 , C2, C3, C4, C5) = (aspu , b

sp
u , C

sp
0u, C2u, C3u, C4u, C5u), (3.152)

we can write an expression for bu in terms of aspu as

bspu = 2(1− α)(
(1− β)(aspu )2

2
− 1). (3.153)

The process for numerically solving these systems of equations starts by treating the

upstream as an initial-value problem using MATLAB’s stiff ode15s solver. To make

the system explicit, we can re-arrange (
eq:Cartsim1
3.97)-(

eq:Cartsim4
3.100) for f ′′′(ξ) as

f ′′′ =
−1

fβ(3− α)

(
f ′′
(
4ξ2tp11(α(α− 1) + 1) + tp12(2ξ(α− 2) + 1) + (1− β)

)
+ f ′ (−ξtp11(2− α)(1− α) + tp12(1− α))

+ f (αtp11(3− α)− 2(3− α)(1− α)) + ξtp11(2− α)− tp12

)
, (3.154)

therefore allowing us to write the system as a set of first order equations involving

(f, f ′, f ′′, tp11, t
p
12, t

p
22). Tolerances AbsTol = 10−13 and RelTol = 10−13 were used on

the domain [ξ0, ξ∞] where ξ0 is taken suitably small and ξ∞ large. The figures in
fig:cartupstream
3-4 show the upstream solutions for a re-entrant corner with ξ0 = 10−6, ξ∞ = 1010,
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aspu = −1, α = 0.66

Csp
0u

ξ0/ξ∞ 102 103 104 105 106

10−2 -0.419335 -0.426934 -0.429564 -0.430536 -0.430803
10−3 -0.419631 -0.426860 -0.430010 -0.430990 -0.431258
10−4 -0.419660 -0.426891 0.430054 -0.431034 -0.431303
10−5 -0.419663 -0.426895 -0.430059 -0.431039 -0.431308
10−6 -0.419662 -0.426894 -0.430057 -0.431037 -0.431306

Table 3.1: Table showing convergence of Csp
0u for decreasing ξ0 and increasing ξ∞ tab:varyxi0xiinf

aspu = −1, α = 0.66, β = 0.1, as well as the stream function and stresses scaled with

their far-field behaviours to show convergence. At ξ∞ = 1030, estimates for Csp
0u and

Csp
1 are

f

ξ3−α
≈ Csp

0u = −0.43318500489 (3.155)

tp11 ≈ 1.999999999984978, tp11 = Csp
1 = 2, (3.156)

tp12
ξ∞

≈ 0.666666666656527,
tp12
ξ∞

= Csp
1 (1− α) = 0.6̇, (3.157)

tp22
ξ2∞

≈ 0.222222222217130,
tp22
ξ∞

= Csp
1 (1− α)2 = 0.2̇, (3.158)

giving agreement to 10 decimal places. Convergence to this amount of significant figures

requires very large ξ∞ values for close approximation. To illustrate, table
tab:varyxi0xiinf
3.1 shows

convergence of Csp
0u for varying domains [ξ0, ξ∞]. To complete the solution, we need the

value of at least three of Csp
0u, C2, C3, C4, C5 so the downstream problem can be well

posed. The value of Csp
0u we have at leading order (calculating f/ξ3−α at the far-field)

but two more are needed. To illustrate the difficulties this can cause in the numerical

stability of the solution we go back to the far-field analysis. We look at the first few

terms in (
cff1
3.141)-(

cff4
3.144) in order to see how C2 would be determined. Taking the first

three terms in each of the far-field expansions, four possible approximations to C2 (the

superscripts relate to which of the far-field expansions the estimate for C2 comes from)
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Figure 3-4: Solution profiles in the Cartesian formulation of the IVP for the upstream
boundary layer. Scheme parameters used were aspu = −1, α = 0.66, β = 0.1, with
ξ0 = 10−6, ξ∞ = 1010. The polymer stress components tp11, t

p
12, t

p
22 and f are shown in

(A) and scaled with their far-field behaviours in (B) where we expect convergence for
large ξ.fig:cartupstream
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would be,

Cf
2 =

(
f

Csp
0uξ

3−α
∞

− 1− βCsp
0u(α− 2)(α− 3)2

Csp
1 (3α− 2)

ξ−α
∞

)
ξ2−2α
∞ , (3.159)

C
tp11
2 =

(α− 3)

(2α− 1)

(
− tp11
Csp
1

+ 1− 2βCsp
0u(α− 1)(α− 2)(α− 3)

Csp
1 (3α− 2)

ξ−α
∞

)
ξ2−2α
∞ , (3.160)

C
tp12
2 = − (α− 3)

4(α− 1)

(
tp12

Csp
1 (1− α)ξ∞

− 1− βCsp
0u(2α− 1)(α− 3)(α− 2)2

Csp
1 (3α− 2)(α− 1)

ξ−α
∞

)
ξ2−2α
∞ ,

(3.161)

C
tp22
2 = − (α− 3)

2(−3 + 2α)

(
tp22

Csp
1 (1− α)2ξ2∞

− 1− 2βCsp
0u(α− 2)(α− 3)(α2 − 3α+ 1)

Csp
1 (3α− 2)(α− 1)

ξ−α
∞

)
ξ2−2α
∞ .

(3.162)

To make this easier, we restrict the alpha range α > 2/3 so that the first forcing terms

are subdominant, the above expressions are

Cf
2 =

(
f

Csp
0uξ

3−α
∞

− 1

)
ξ2−2α
∞ , (3.163) eq:c2est1

C
tp11
2 =

(α− 3)

2(2α− 1)

(
1− tp11

Csp
1

)
ξ2−2α
∞ , (3.164)

C
tp12
2 = − (α− 3)

4(α− 1)

(
tp12

Csp
1 (1− α)ξ∞

− 1

)
ξ2−2α
∞ , (3.165)

C
tp22
2 = − (α− 3)

2(−3 + 2α)

(
tp22

Csp
1 (1− α)ξ2∞

− 1

)
ξ2−2α
∞ . (3.166) eq:c2est4

For large values of ξ∞ there is a large amount of numerical instability in determining

C2. This is probably due to the bracketed expressions in each approximation tending

to 0 as ξ∞ increases. Since these are multiplied by ξ2−2α
∞ in each case, which grows

extremely large, any small numerical errors in determining Csp
0u or Csp

1 are multiplied

to the point where for sufficiently large ξ∞ the numerical approximations break down.

Figure
fig:c2est
3-5 shows the numerical instability discussed, where all four approximations

converge slowly for a moderately large ξ∞, after which they break down. In order to

determine other constants further down in the full far-field, these numerical instabilities

will grow and make it extremely difficult to accurately determine any further constants.

A downstream numerical scheme cannot therefore be accurately implemented for the

Cartesian basis. The information required to transition to downstream in the natural

stress basis is all contained at leading order in the upstream, eliminating the problem

that the Cartesian basis has.
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Figure 3-5: Diagram showing approximations for C2 from (
eq:c2est1
3.163)-(

eq:c2est4
3.166), convergence

is seen at around ξ∞ ∼ 1015, after which divergence happens for increasing ξ∞. Pa-
rameter values are aspu = −1, α = 0.75, β = 0.1, ξ0 = 10−6, ξ∞ = 1030 fig:c2est

3.3.2 Natural stress upstream problem

Firstly we consider the upstream boundary layer case. We are interested in solving the

system (
simsol1
3.101)-(

simsol4
3.104) subject to asymptotic behaviour both at the wall (

eq:nsvwb1
3.119)-(

eq:nsvwb4
3.121)

and far-field (
eq:nsffivp
3.107). Imposing the wall behaviour with asp specified gives 6 boundary

conditions for the sixth order system. For a chosen α, the IVP has one free parameter,

asp, with bsp fixed through (
relpab
3.122), giving us a one-dimensional parameter space to

classify solutions. The far field parameters are related to the Cartesian formulation

through

dsp1u =
Csp
1u

(3− α)2(Csp
0u)

2
, dsp2u =

Csp
1u

2(3− α)Csp
0u

(
1 +

2α(1− α)Csp
0uC4u

(1 + α)

)
, (3.167) eq:cartnsrelations1

dsp3u =
Csp
1u

4
+

2Csp
1u(C

sp
0u)

2C5u(3− α)(3− 2α)

α

+
(2α4 − 5α3 − α2 + 9α− 9)Csp

1uC
sp
0uC4u

2α(1 + α)(2− α)
. (3.168) eq:cartnsrelations2

Since ξ = 0 is a singular point for the system, we use the wall asymptotic behaviour

at the point ξ = ξ0 > 0, where ξ0 is necessarily very small. As for the Cartesian

formulation, the system is solved on a finite domain [ξ0, ξ∞]. Our initial conditions at
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ξ0 are the leading-order wall behaviours. The two-term wall behaviours for the natural

stress formulation in terms of the similarity parameter aspu are

f =
1

2
aspu ξ

2
0 +

1

3!
bspu ξ

3
0 , (3.169)

λ̃ = 2(1− β)
1

ξ20
− 2(1− β)(−3(aspu )2 − bspu + 3α(aspu )2

aspu

1

ξ0
, (3.170)

µ̃ = (1− β)aspu − (1− β)(−bspu + 2(aspu )2 + 2α(aspu )2)ξ0, (3.171)

ν̃ = (1− β)(aspu )2ξ20 − (1− β)(−(aspu )2 + α(aspu )2 − bspu )ξ30 . (3.172)

For numerical implementation, the following rescaling is introduced

l(ξ) = f ′(ξ)2λ̃(ξ), m(ξ) = µ̃(ξ), n(ξ) = f ′(ξ)−2ν̃(ξ), (3.173) scaledns

so that the wall behaviours are of O(1). For implementation purposes, we use the

leading order wall behaviour, in terms of our rescaled variables the initial conditions

are

at ξ = ξ0, f =
1

2
aspu ξ

2
0 , l = 2(1− β)(aspu )2, m = (1− β)aspu , n = (1− β).

(3.174) eq:reswic

For the far-field conditions, as ξ → ∞, f ∼ Csp
0uξ

3−α. Substituting this into (
eq:nsffivp
3.107)

with the scaled variables (
scaledns
3.173),

at ξ = ξ∞, f = Csp
0uξ

3−α
∞ , l = 2, m = dsp2uξ

α−1, n =
dsp3u

(3− α)2(Csp
0u)

2
ξ2(α−1),

(3.175) eq:reswff

where

dsp1u =
2

(3− α)2(Csp
0u)

2
. (3.176)
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The rescaled similarity solution is now

2(1− α)f ′ + 2f ′′m+ f ′m′ + βf ′f ′′′ − l

(
1− f ′ + (3− α)

ff ′′

f ′

)
= 0, (3.177) ssres1

(3− α)fl′ − 2(3− α)
ff ′′

f ′
l′ + (2(2− α)f ′ − 1)l + 2f ′′m = 0, (3.178)

(3− α)fm′ +m((1− α)f ′ − 1) + nf ′′ = 0, (3.179)

(3− α)fn′ − (1 + 2f ′)n+ (1− β) + 2(3− α)n
ff ′′

f ′
= 0. (3.180) ssres4

Rearranging to form an explicit system, we may obtain for f ′′′ the expression

f ′′′ =
2(α− 1)

β
+
f ′′

β

(
n

(3− α)f
− 2m

f ′
+

(3− α)fl

(f ′)2

)
+
l

β

(
1− f ′

f ′

)
+m((1− α)f ′ − 1)

1

β(3− α)f
. (3.181) eq:explf

As a result, (
eq:explf
3.181) allows an explicit statement of the system involving f, f ′, f ′′, l,m, n.

The IVP is solved using MATLAB ode15s, the upstream numerical results are

now presented. Solution profiles are given with aspu = −1, α = 0.66 with ξ0 = 10−6,

ξ∞ = 108. Estimates of the far-field constants Csp
0u, d

sp
1u, d

sp
2u, d

sp
3u for specified α, aspu can

be plotted and are given in
fig:beta08
3-6. For large upstream wall shear coefficients, larger ξ∞

values are needed for convergence. For the upstream case we can also vary β for fixed

aspu , starting to investigating the limits β → 0 and β → 1. This is plotted in
fig:ffcons1
3-7 and

fig:ffcons10
3-8

for varying aspu . A surface plot of Csp
0u for varying small −aspu and β for fixed α is given

in
fig:3dvaryabeta1
3-9. We can test convergence of dspi and Csp

0 for particular values of α and aspu . The

far-field behaviour is used to provide estimates for the constants Csp
0u, d

sp
1u, d

sp
2u, d

sp
3u by

evaluating the functions at selected ξ∞ values. Table 3.2(a) shows convergence as ξ∞

increases for these constants. Convergence as ξ0 becomes increasingly small is shown

in table 3.2(b) to show convergence in both limits. Also for the upstream wall, we can

fix β and vary aspu between small and large wall shear rates for selected corner angles

α. Numerical instability is apparent for large wall shear rates as the corner angle tends

to 180◦. Solution profiles for β = 0.1, β = 0.4 and β = 0.8 are shown in figures
fig:beta012
3-10,

fig:beta082
3-11 and

fig:beta084
3-12 respectively.

3.3.3 Natural stress downstream boundary layer

For the downstream problem, flow is away from the corner with aspu > 0. We solve the

re-scaled system (
ssres1
3.177)-(

ssres4
3.180) with the explicit f ′′′ as in (

eq:explf
3.181). The wall conditions

(
eq:reswic
3.174) give us two conditions when aspu is unspecified, with the far-field behaviour
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Figure 3-6: Solution profiles in the natural stress formulation of the IVP for the up-
stream boundary layer. Scheme parameters used were aspu = −1, α = 0.66 with
ξ0 = 10−6, ξ∞ = 108. The related natural stress variables l,m, n defined in

scaledns
3.173

are shown in (A) and scaled with their far-field behaviours in (B) where we expect
convergence for large ξ.fig:beta08
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(
eq:reswff
3.175) providing the remaining four. The system is solved on a restricted domain

[ξ0, ξ∞] with (
eq:reswic
3.174) imposed at ξ0 and (

eq:reswff
3.175) at ξ∞ - the domain end points. In-

troducing the subscript d to refer to downstream parameters, the upstream and down-

stream constants are linked through the axis transformation (
eq:nctrans
3.113), hence the required

transformations needed are

Csp
0d = −Csp

0u, dsp2d = −dsp2u, dsp3d = dsp3u. (3.182) eq:dsrelco

The upstream solutions gives us Csp
0u, d

sp
2u, d

sp
3u which can used for the downstream

problem via the above transformations. The downstream numerical solution is a sig-

nificantly harder problem than the upstream, the steps taken to solve this are given

below.

� The upstream problem is solved as an IVP on [ξ0 = 10−5, ξ∞ = 1010] to obtain

estimates for Csp
0u, d

sp
2u, d

sp
3u. Using (

eq:dsrelco
3.182), the downstream version of these

constants is obtained. The sign of the upstream f profile is changed, then put

into (
ssres1
3.177)-(

ssres4
3.180). These constitutive equations are then rearranged for l, m

and n and solved as an IVP from the far-field into the wall. This is done on a

reduced domain [ξ∞ = 106, ξ0 = 10−5].

� The data points obtained from the above procedure are interpolated on [ξ0 =

10−5, ξ∞ = 106]. A mesh is created on the restricted domain [ξ0 = 10−2.5, ξ∞ =

103] and the interpolated solution obtained is used as an initial guess for the

Matlab boundary value problem solver bvp4c on loose tolerances RelTol = 10−5,

AbsTol = 10−5.

� The domain is then extended towards the corner for as far as possible. The initial

solution obtained from the previous step is used as a guess on a slightly extended

domain. Using bvp4c with the above tolerances, the largest extended domain

achieved was [ξ0 = 1.7× 10−4, ξ∞ = 103].

� When varying aspu , the above steps are repeated for each aspu . Taking small aspu

values first, aspu is initially solved with aspu = −1, then increased by 0.01 until

aspu = −0.01 is reached.

� Then increasing −aspu is examined. Care has to be taken since upstream conver-

gence for far-field parameters is sensitive to the initial ξ0 that the IVP shoots

from. Therefore, for −aspu = O(102) the upstream ξ0 should be taken smaller

to around 10−7 to ensure convergence for Csp
0u, d

sp
2u and dsp3u. This substantially

increases computational time so is only used when −aspu > 10.
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� The data for small and large −aspu is combined for plotting
fig:auvad
3-14.

3.3.4 Discussion

A class of self-similar solutions for the Oldroyd-B model at a re-entrant corner has been

described that are associated with the upper convected stress derivative dominating

in a core flow region near to the corner (but away from the walls). These give a

polymer stress singularity of O(r−2(1−α)). The stream function behaves as O(rnα),

with n = 3−α determined by matching into wall boundary layers which are needed to

recover viscometric behaviour at the wall. Consequently the solvent stresses are weaker

and O(rnα−2). In summary we have

Tp = O(r−2(1−α)), Ts = O(r−(2−α)(1−α)), v = O(r(3−α)α−1) as r → 0.

The solution structure has wall boundary layers in addition to the outer core region.

The complete solution depends upon two parameters, the pressure coefficient p0 and

the wall shear rate coeficient a (or equivalently p0 and the coefficient of the core stream

function C0). One of these parameters can however be scaled out in the similarity solu-

tion reducing the parameter space of solutions for classification by one, the choice here

taken was to scale p0 out. This is equivalent to introducing the similarity combination

a/p
1/2
0 , which can be used to determine the other parameters arising in the upstream

far-field behaviour and downstream wall beahviour.

The stress singularity, stream function behaviour and boundary layer thickness are

found to be the same as the UCM model. The difference with the Oldroyd-B model is

the inclusion of the retardation parameter β. Setting β = 0 recovers the UCM results

in the similarity solution. The similarity equations reduce now from an explicit sixth-

order system to an implicit fifth-order system. We loose an exponential eigenmode

in the wall and far-field asymptotic behaviours. Accordingly, the numerical scheme

presented here needs modification to solve the UCM fifth-order system.
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Figure 3-7: Estimates of the far-field constants Csp
0u, d

sp
1u, d

sp
2u, d

sp
3u for fixed aspu and α.

The IVP was solved with ξ0 = 10−10, ξ∞ = 1040, the large domain needed for parameter
convergence as β → 1. As β → 1, Csp

0u takes large negative values and Matlab exhibits
numerical instabilties as this limit is approached.fig:ffcons1
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aspu = −10 and α = 0.75. The IVP was solved with ξ0 = 10−7, ξ∞ = 1035, the large
values of ξ∞ required as β → 1. As −aspu increases in size past O(10) the value of dsp1u
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The IVP was solved with ξ0 = 10−7, ξ∞ = 1035. A surface plot is given with −aspu
varying between [−0.01,−0.09] and β in [0.02, 0.95]. fig:3dvaryabeta1
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(a) Convergence for fixed ξ0 and increasing ξ∞ for the natural stress upstream constants tab:ininftyns

aspu = −1, α = 2/3, β = 1/9 ξ0 = 10−7

Csp
0u estimates dsp1u estimates dsp2u estimates dsp3u estimates

ξ∞ fξα−3 2
(3−α)2(Csp

0u)
2 mξ1−α Csp

1u

2(3−α)Csp
0u

(3− α)2(Csp
0u)

2nξ2−2α

102 -0.425227 2.031588 -0.979751 -1.007866 1.314828
103 -0.433632 1.953588 -0.978294 -0.988329 1.389040
104 -0.437245 1.921437 -0.977196 -0.980163 1.414183
105 -0.438371 1.911579 -0.976840 -0.977645 1.421291
106 -0.438683 1.908859 -0.976741 -0.976950 1.423152
107 -0.438765 1.908148 -0.976715 -0.976767 1.423621

(b) Convergence for fixed ξ∞ and decreasing ξ∞ for the natural stress upstream constants tab:in0ns

aspu = −1, α = 2/3, β = 1/9 ξ∞ = 107

Csp
0u estimates dsp1u estimates dsp2u estimates dsp3u estimates

ξ0 fξα−3 2
(3−α)2(Csp

0u)
2 mξ1−α Csp

1u

2(3−α)Csp
0u

(3− α)2(Csp
0u)

2nξ2−2α

10−2 -0.438279 1.912381 -0.977798 -0.977850 1.422963
10−3 -0.438717 1.908564 -0.976821 -0.976874 1.423556
10−4 -0.438760 1.908191 -0.976726 -0.976778 1.423615
10−5 -0.438765 1.908153 -0.976716 -0.976769 1.423620
10−6 -0.438765 1.908148 -0.976715 -0.976767 1.423621
10−7 -0.438765 1.908148 -0.976715 -0.976767 1.423621

Table 3.2: Table showing convergence for Natural stress constants Csp
0u, d

sp
1u, d

sp
2u and

dsp3u to six decimal places. For (a), ξ0 is fixed with varying ξ∞. Estimates for dsp3u and
dsp1u converge slower than Csp

0u and dsp2u for smaller values of ξ∞. The second table (b)
fixes ξ∞ for varying ξ0. Convergence for all four constants is accurate to six decimal
places when ξ0 = 10−6 with the value of ξ∞ being more important. The estimates for
dsp1u and dsp2u (with C4u = 0) are found from (

eq:cartnsrelations1
3.167), with an additional check on dsp2u

from (
eq:reswff
3.175). Estimating dsp3u from (

eq:cartnsrelations1
3.167) is complicated since determining C5u from

the Cartesian formulation is fraught with numerical difficulty as discussed earlier, the
estimate for this constant again comes from rearranging the last expression in (

eq:reswff
3.175). tab:chapter4:1
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Figure 3-10: Solution profiles for β = 0.1. Estimates of the upstream far-field similarity
parameters, varying the wall similarity parameter aspu for selected corner angle values
α. The IVP was solved with ξ0 = 10−6, ξ∞ = 1035. Numerical instability is seen for
when −aspu is O(102) for large values of α, especially for dsp3u. fig:beta012
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Figure 3-11: Solution profiles for β = 0.4. Estimates of the upstream far-field similarity
parameters, varying the wall similarity parameter aspu for selected corner angle values
α. The IVP was solved with ξ0 = 10−8, ξ∞ = 1035. Numerical instability is seen for
when −aspu is O(102) for large values of α, especially for dsp3u. fig:beta082
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Figure 3-12: Solution profiles for β = 0.8. Estimates of the upstream far-field similarity
parameters, varying the wall similarity parameter aspu for selected corner angle values
α. The IVP was solved with ξ0 = 10−9, ξ∞ = 1040. Numerical instability is seen for
when −aspu is O(102) for large values of α, especially for dsp3u. fig:beta084
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Figure 3-13: Downstream solutions on a restricted domain with aspu = −1, α = 2/3,
β = 1/9. Residual errors were 9.956 × 10−4 for the BVP with ξ0 = 1.65 × 10−4,
ξ∞ = 103. Figure

fig:solprof1
3-13(a) shows solution profiles,

fig:solprof2
3-13(b) the behaviour scaled with ξ0.

All three approximations give estimates for aspd ∼ 1.803130515942835 that agree to 15
d.p.fig:solprof3
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Chapter 4

Re-entrant corner flow:

parameter regimes

chapter:paremterregimes

The previous chapter has described a similarity solution for the Oldroyd-B fluid at a

re-entrant corner where the Weissenberg number has been O(1). Here we investigate

the flow in the limits of low and high Weissenberg number limits, where the scalings

(
eq:Wescale
3.2) break down. The re-entrant corner UCM flow has been considered in the high and

low Weissenberg limiting cases by Evans
reentJD
[18]. The work here is based on that analysis,

and is extended here to the Oldroyd-B model (where the natural stress formulation of

which is also provided). We also consider the Newtonian limit β → 1 (with We=O(1))

which is singular. At the end of chapter we briefly remark as well on the UCM limit

β → 0.

4.1 The low Weissenberg limit: We ≪ 1, (1− β) ∈ [0, 1)
sec:lowweiss

4.1.1 Introduction to the problem

We are interested in the asymptotic structure of the equations

∇.v = 0, Re (v.∇)v = −∇p+∇.T,

Tp +We
▽

Tp= 2(1− β)D, Ts = 2βD, T = Tp +Ts, (4.1) eq:polysolv

where we have written the stress tensor T to be a combination of the polymer stress

Tp and solvent stress Ts. This is useful for when considering the limiting case β → 1,

so this formulation is retained for the Weissenberg limiting cases as well. The inertial

terms in the momentum equation are found to be subdominant for all asymptotic

regions close to the corner, so are omitted. The x, y axes are aligned along the walls
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with usual no-slip and no normal velocity boundary conditions at the walls prescribed.

The problem setup is similar to the previous chapter, which is referred back to when

appropriate. To begin the analysis, we consider the set of equations (
eq:polysolv
4.1) and can

naively set We = 0 to see what kind of flow we expect. Our stress equations become

Tp = 2(1− β)D, Ts = 2βD, T = Tp +Ts = 2D. (4.2)

At distances away from the corner we can expect Newtonian flow to dominate. This

is discussed in greater detail in section
sec:newflow
5.1. This Newtonian solution behaviour is

expected to hold until the point at which the Weissenberg number interacts with the

length scale away from the corner where a fuller balance in the governing equations

will result. We expect the interaction to give three sets of core and boundary regions

represented in figure
fig:lowwe
4-1. The exterior region gives Newtonian flow, close to the corner

we expect Oldroyd-B flow We = O(1) of chapter
chapter:reentrantcornerflow
3 to dominate, with an intermediate

region occuring where a fuller balance of terms is needed due to the upper convected

derivative becoming important.

4.1.2 The exterior regions: We
1

1−λ0 ≪ r ≪ 1

Discussed in the introduction of the problem, the exterior regions at leading order

recover Newtonian flow behaviour for the radial distance r = O(1). The Newtonian

solution given in section (
chapter:Salientcornerflow
5) will apply here when r ≪ 1 (but obviously still big enough

to be in the exterior region) with important results

as r → 0, ψ = c0r
1+λ0f0(θ), T = 2D, (4.3)

where the exponent λ0 satisfies equation (
eq:translam
5.11) (a numerical plot is in figure (

fig:lamalpha
5-2))

and the function f0(θ) is found in (
salf0fin2
5.14). The pressure is given in equation (

salptermsf0
5.19).

Critically, for re-entrant corner flow λ0 < 1, and from these solutions we may obtain

the order of magnitude estimates for the exterior core region as

for r = O(1) : ψ = O(1), T = O(1),

as r → 0 : ψ = O(r1+λ0), T = O(r−1+λ0).
(4.4)

Scaling into the core region with the parameter ϵ̂, Wea ≪ ϵ̂ ≪ 1 with a to be deter-

mined, the distance r scales like r = ϵ̂R̂∗ with the remaining scalings being

ψ = ϵ̂1+λ0ψ̂∗, Tp = ϵ̂−1+λ0T̂p∗, Ts = ϵ̂−1+λ0T̂s∗, p = ϵ̂−1+λ0 p̂∗, v = ϵ̂λ0 v̂∗.

(4.5)
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Figure 4-1: Illustration of the main asymptotic regions near to the re-entrant corner
in the limit We → 0. Shown are the dominant balances in the constitutive equations
for the three core regions. Boundary region 3 is needed due to core region 3 not giving
viscometric behaviour at the wall, similarly with the core and boundary layer regions
1. The intermediate region holds up to the walls, hence any boundary layer region in
between the two mentioned above would be arbitrary. The exterior regions occur for

We
1

1−λ0 ≪ r ≪ 1 where Newtonian flow is found. The intermediate region occur on

the length scale r = We
1

1−λ0 where the upper convected derivative is retrieved. For

the inner regions we have r ≪ We
1

1−λ0 , in which we expect Oldroyd-B, We = O(1)
behaviour to hold (the linear stress terms and deformation tensor components become
subdominant). fig:lowwe

The governing equations are

Re ϵ̂2λ0v̂∗ · ∇̂∗v̂∗ = −ϵ̂−1+λ0∇̂∗p∗ + ϵ̂−1+λ0∇̂∗ ·
(
T̂p∗ + T̂s∗

)
, ∇̂∗ · v̂∗ = 0,

ψ̂∗ = c0R̂
∗(1+λ0)f0(θ), T̂p∗ +We ϵ̂−1+λ0

▽

T̂p∗= 2(1− β)D̂∗, T̂s∗ = 2βD̂∗. (4.6)
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As θ → 0, fixing f0(0) = 2, the behaviours of the stream function and stresses as the

wall is approached are

ψ̂∗ = c0X̂
∗(λ0−1)Ŷ ∗2, p̂∗ = p0X̂

∗(λ0−1), (4.7) eq:blmatch1

T̂s∗
11 = 4βc0(λ0 − 1)X̂∗(λ0−2)Ŷ ∗, T̂s∗

12 = 2βc0X̂
∗(λ0−1), T̂s∗

22 = −T̂s∗
11, (4.8)

T̂p∗
11 = 4(1− β)c0(λ0 − 1)X̂∗(λ0−2)Ŷ ∗, T̂p∗

12 = 2(1− β)c0X̂
∗(λ0−1), T̂p∗

22 = −T̂p∗
11.

(4.9) eq:blmatch3

Viscometric behaviour isn’t recovered in this limit, the boundary layer scalings are

X̂∗ = X̂, Ŷ ∗ = δ̂Ŷ , ψ̂∗ = δ̂2Ψ̂, p̂∗ = p̂,

T̂ s∗
11 = δ̂T̂ s

11, T̂ s∗
12 = T̂ s

12, T̂ s∗
22 = δ̂T̂ s

22,

T̂ p∗
11 = δ̂T̂ p

11, T̂ p∗
12 = T̂ p

12, T̂ p∗
22 = δ̂T̂ p

22. (4.10)

With these scalings the governing momentum equations and solvent stresses are

Re ϵ̂1−λ0δ2v̂ · ∇̂û = − ∂p̂

∂X̂
+

∂

∂X̂

(
δT̂ p

11 + δT̂ p
11

)
+

1

δ

∂

∂Ŷ

(
T̂ p
12 + T̂ s

12

)
, (4.11)

Re ϵ̂1−λ0δ3v̂ · ∇̂v̂ = −1

δ

∂p̂

∂Ŷ
+

∂

∂X̂

(
T̂ p
12 + δT̂ s

12

)
+

∂

∂Ŷ

(
T̂ p
22 + T̂ s

22

)
, (4.12)

T̂ s
11 = 2β

∂2Ψ̂

∂X̂∂Ŷ
, T̂ s

12 = β

(
∂2Ψ̂

∂Ŷ 2
− δ̂2

∂2Ψ̂

∂X̂2

)
, T̂ s

22 = −2β
∂2Ψ̂

∂X̂∂Ŷ
, (4.13)

and constitutive equations

T̂ p
11 +We δ̂ϵ̂λ0−1

(
∂Ψ̂

∂Ŷ

∂T̂ p
11

∂X̂
− ∂Ψ̂

∂X̂

∂T̂ p
11

∂Ŷ
− 2

δ̂2
∂2Ψ̂

∂Ŷ 2
T̂ p
12 − 2

∂2Ψ̂

∂X̂∂Ŷ
T̂ p
11

)

= 2(1− β)
∂2Ψ̂

∂X̂∂Ŷ
, (4.14)

T̂ p
22 +We δ̂ϵ̂λ0−1

(
∂Ψ̂

∂Ŷ

∂T̂ p
22

∂X̂
− ∂Ψ̂

∂X̂

∂T̂ p
22

∂Ŷ
+ 2

∂2Ψ̂

∂X̂2
T̂ p
12 + 2

∂2Ψ̂

∂X̂∂Ŷ
T̂ p
22

)
=

−2(1− β)
∂2Ψ̂

∂X̂∂Ŷ
, (4.15)

T̂ p
12 +We δ̂ϵ̂λ0−1

(
∂Ψ̂

∂Ŷ

∂T̂ p
12

∂X̂
− ∂Ψ̂

∂X̂

∂T̂ p
12

∂Ŷ
+ δ̂2

∂2Ψ̂

∂X̂2
T̂ p
11 −

∂2Ψ̂

∂Ŷ 2
T̂ p
22

)
=

(1− β)

(
∂2Ψ̂

∂Ŷ 2
− δ̂2

∂2Ψ̂

∂X̂2

)
. (4.16)
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The only term we may recover from the upper convected derivative whilst still having

a thin boundary layer is in the T̂ p
11 equation, and sets δ̂ = We ϵ̂λ0−1. At leading order

then we obtain

T̂ s
11 = 2β

∂2Ψ̂

∂X̂∂Ŷ
, T̂ s

12 = β

(
∂2Ψ̂

∂Ŷ 2

)
, T̂ s

22 = −2β
∂2Ψ̂

∂X̂∂Ŷ
, (4.17) eq:we0exbl2

T̂ p
11 − 2

∂2Ψ̂

∂Ŷ 2
T̂ p
12 = 2(1− β)

∂2Ψ̂

∂X̂∂Ŷ
, T̂ p

22 = −2(1− β)
∂2Ψ̂

∂X̂∂Ŷ
, T̂ p

12 = (1− β)
∂2Ψ̂

∂Ŷ 2
,

(4.18)

0 =
∂p̂

∂Ŷ
,

∂

∂Ŷ

(
T̂ p
12 + T̂ s

12

)
= 0. (4.19) eq:we0exbl

Solving the last equation in (
eq:we0exbl
4.19) for Ψ̂ determines Ψ̂ = 1

2a(X̂)Ŷ 2 where a(X̂) a

function arising from the integration (no O(Ŷ 1) or O(Ŷ 0) terms due to the boundary

conditions). Matching with the core solution (
eq:blmatch1
4.7)–(

eq:blmatch3
4.9) determines a(X̂) = 2c0X̂

λ0−1.

Hence

Ψ̂ = c0X̂
λ0−1Ŷ 2, (4.20) eq:psiholbl1bl2

holds throughout boundary layer one. As a note, for the boundary layer to be small

δ̂ = We ϵ̂λ0−1 ≪ 1 =⇒ ϵ̂≫ We
1

1−λ0 , (4.21)

giving a lower bound on ϵ̂ where core and boundary layer regions one are applicable.

The exterior regions: natural stress basis

We can also formulate the problem in the natural stress variables. From (
eq:nscarttrans1
2.43)–(

eq:nscarttrans3
2.45),

we have

λ = (1− β)
1

We (u2 + v2)
+

u2

(u2 + v2)2
T p
11 +

2uv

(u2 + v2)2
T p
12 +

v2

(u2 + v2)2
T p
22, (4.22) eq:nscarttrans14

µ = − uv

(u2 + v2)
T p
11 +

uv

(u2 + v2)
T p
22 +

(u2 − v2)

(u2 + v2)
T p
12, (4.23)

ν =
(1− β)

We
(u2 + v2) + u2T p

22 + v2T p
11 − 2uvT p

12. (4.24) eq:nscarttrans34

For small Weissenberg, the first terms of λ and ν dominate where µ retains all the

terms. In (
eq:nsconstit1
2.48)-(

eq:nsconstit3
2.50), in the second constitutive equation for µ we therefore pull

back the term involving w. The balance Tp = 2(1 − β)D holds in the core region in

Cartesian variables, substitution of this into (
eq:nscarttrans14
4.22)-(

eq:nscarttrans34
4.24) will give us the core equations
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in natural stress. To this end we find

λ = (1− β)
1

We (u2 + v2)
+

(1− β)

(u2 + v2)4
v · ∇(u2 + v2), (4.25) corenslowweis1

µ = −(1− β)(u2 + v2)∇ ·w, (4.26)

ν =
(1− β)

We
(u2 + v2)− (1− β)v · ∇(u2 + v2). (4.27) corenslowweis3

Since We is small, at leading order in We,

λ ∼ (1− β)
1

We (u2 + v2)
, µ ∼ −(1− β)(u2 + v2)∇ ·w, ν ∼ (1− β)

We
(u2 + v2).

(4.28) eq:nscoreasybeh

We may also obtain (
corenslowweis1
4.25)–(

corenslowweis3
4.27) by substituting the behvaiours (

eq:nscoreasybeh
4.28) into the gov-

erning equations (
eq:nsconstit1
2.48)-(

eq:nsconstit3
2.50).

Scaling into the boundary layer with

x = X̂, y = δ̂Ŷ , ψ = δ̂2Ψ̂, u = δ̂û, v = δ̂2v̂,

λ = δ̂−2λ̂, µ = µ̂, ν = δ̂2ν̂, (4.29) eq:blscalnslowweis5

the governing equations become

λ̂+Weδ̂
(
v̂ · ∇̂λ̂+ 2δ̂−1µ̂∇ · ŵ

)
=

(1− β)

We
(
δ̂2û2 + δ̂4v̂2

) , (4.30) eq:blfullnslowext1

µ̂+Weδ̂
(
v̂ · ∇̂µ̂+ ν̂∇̂ · ŵ

)
= 0, (4.31) eq:blfullnslowext2

ν̂ +We
(
v̂ · ∇̂ν̂

)
=

(1− β)

We
(δ̂2û2 + δ̂4v̂2). (4.32) eq:blfullnslowext3

From this, we can rearrange the boundary layer equation (
eq:blfullnslowext3
4.32) for ν̂, then substitute

into (
eq:blfullnslowext2
4.31) for µ̂, giving us an expansion again in terms of We. At leading order,

µ̂ = −(1− β)
∂

∂Ŷ

(
1

û

)
û2 = (1− β)ûŶ +O(We2). (4.33)

Similarly for λ̂, the two term boundary layer expansion is

λ̂ =
(1− β)

Weû2
− δ̂(1− β)v̂ · ∇

(
1

û2

)
− 2Weµ̂∇ · ŵ +O(We3), (4.34)
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and finally for ν̂,

ν̂ = (1− β)
1

We
û2 − (1− β)v̂ · ∇

(
û2
)
+O(We). (4.35)

The boundary layer expansions are after substituting in for δ̂,

µ̂ = (1− β)ûŶ +O(We2), (4.36) eq:nswe0nsext1

λ̂ = (1− β)
1

We (û2)
+ 2We(1− β)

(
ûX̂
û2

+
v̂ûŶ
û3

)
− 2We(1− β)

û2
Ŷ

û2
+O(We3), (4.37)

ν̂ = (1− β)
1

We
û2 − 2(1− β)û

(
ûûX̂ + v̂v̂Ŷ

)
+O(We) (4.38) eq:nswe0nsext3

and at leading order,

λ̂ ∼ (1− β)
1

We û2
, µ̂ ∼ (1− β)ûŶ , ν̂ ∼ (1− β)

We
û2. (4.39) eq:blnslowweisfinis

We can verify this, by writing (
eq:nscarttrans1
2.43)-(

eq:nscarttrans3
2.45) in terms of boundary layer variables. Then

we have

λ̂ =
(1− β)

We
(
û2 + δ̂2v̂2

) + δ̂
û2(

û2 + δ̂2v̂2
)2 T̂ p

11 +
2δ̂ûv̂(

û2 + δ̂2v̂2
)2 T̂ p

12 +
v̂2δ̂3(

û2 + δ̂2v̂2
)2 T̂ p

22,

(4.40) eq:nstrans1

µ̂ = − δ̂2ûv̂(
û2 + δ̂2v̂2

) T̂ p
11 +

δ̂2ûv̂(
û2 + δ̂2v̂2

) T̂ p
22 +

(û2 − δ̂2v̂2)(
û2 + δ̂2v̂2

) T̂ p
12,

(4.41)

ν̂ =
(1− β)

We
(û2 + δ̂2v̂2) + δ̂û2T̂ p

22 + δ̂3v̂2T̂ p
11 − 2δ̂ûv̂T̂ p

12.

(4.42) eq:nstrans3

Reordering these equations in terms of a expansion in δ̂,

λ̂ = (1− β)
1

We (û2)
+ δ̂

(
1

û2
T̂ p
11 +

2v̂

û
T̂ p
12

)
+O(δ̂3), (4.43) eq:nstrans11

µ̂ =
(û2 − δ̂2v̂2)(
û2 + δ̂2v̂2

) T̂ p
12 +O(δ̂2), (4.44)

ν̂ =
(1− β)

We
û2 + δ̂

(
û2T̂ p

22 − 2ûv̂T̂ p
12

)
+O(δ̂3), (4.45) eq:nstrans33

and substituting in the boundary layer equations from the Cartesian variables which
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are

T̂ p
11 − 2

∂2Ψ̂

∂Ŷ 2
T̂ p
12 = 2(1− β)

∂2Ψ̂

∂X̂∂Ŷ
, T̂ p

22 = −2(1− β)
∂2Ψ̂

∂X̂∂Ŷ
, T̂ p

12 = (1− β)
∂2Ψ̂

∂Ŷ 2
,

(4.46)

into (
eq:nstrans1
4.40)–(

eq:nstrans3
4.42) agrees with (

eq:nswe0nsext1
4.36)–(

eq:nswe0nsext1
4.36).

We can see that λ̂ goes very large as We → 0 , µ̂ is a constant in this limit

throughout the core region and ν̂ goes to zero. This is viscometric behaviour in natural

stress variables hence the exterior region analysis is complete. We know from the

Newtonian Cartesian analysis that the solvent stress dominates the polymer stress for

the exterior region. The natural stress basis describes the polymer stress and so it is

more instructive to consider this basis for the intermediate and interior regions where

the polymer stress components are important.

4.1.3 The main length scale: r = O
(
We

1
1−λ0

)
We now determine the length scale at which the Newtonian solution no longer persists,

and the fullest balance in the constitutive equations is obtained. Considering distances

from the corner of O(ϵ), with the gauge ϵ = ϵ(We) being a small parameter whose

dependency on We is to be found. Initially, we consider an outer region away from the

walls via the scalings

r = ϵR∗, ψ = γΨ∗, Ts =
γ

ϵ2
T∗, Tp =

γ

ϵ2
Tp∗, p =

γ

ϵ2
p∗, (4.47) eq:mls

this intermediate core region holding for R∗ = O(1) and γ another gauge. The pressure

scaling is determined to be equal to the total stress tensor scaling to achieve balance

in the momentum equations. The governing equations in this region are

Re γv∗ · ∇∗v∗ = −∇∗p∗ +∇∗ · (Tp∗ +Ts∗) (4.48) eq:lowwemidcart1

Tp∗ +
We γ

ϵ2

▽

Tp∗= 2(1− β)D∗, Ts∗ = 2βD∗. (4.49) eq:lowwemidcart2

Matching with core region one determines γ = ϵ1+λ0 . Retaining all terms in the

constitutive equations implies We γ = ϵ2 and hence ϵ = We 1/(1−λ0): the key length

scale is determined. Three critical length scales are now apparent resulting from the

interaction between ϵ and Wes:

� r = O
(
We1/(1−λ0)

)
: The fullest balance is able to retain all terms in (

eq:lowwemidcart1
4.48) -

(
eq:lowwemidcart2
4.49).
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� r ≫ O
(
We1/(1−λ0)

)
: The linear stress terms dominate over the upper convected

derivative leaving the Newtonian balance. This is the exterior region already

considered.

� r ≪ O
(
We1/(1−λ0)

)
: The upper convected stress derivative now dominates over

the linear stress terms, and the Oldroyd-B We = O(1) problem is expected to be

recovered.

For the boundary layer in this region, the scalings are

X∗ = X, Y ∗ = δY, ψ∗ = δ2Ψ, p∗ = p,

T s∗
11 = δT s

11, T s∗
12 = T s

12, T s∗
22 = δT s

22,

T p∗
11 = δT p

11, T p∗
12 = T p

12, T p∗
22 = δT p

22. (4.50)

However since full balance is retained in (
eq:lowwemidcart1
4.48) - (

eq:lowwemidcart2
4.49), δ would not be determined in

the resulting equations. This gives an artificial region and so any boundary layer would

be passive. Local wall asymptotic behaviour in (
eq:psiholbl1bl2
4.20) holds, matching with the leading

order boundary layer equations in region 1 (
eq:we0exbl2
4.17)-(

eq:we0exbl
4.19). For natural stress variables,

the scalings (
eq:mls
4.47) are used, along with the natural stress variable scalings of (found

from balancing terms in (
conn1
2.40)–(

conn3
2.42) with each other)

λ = ϵ−1−λ0λ∗, µ = ϵλ0−1µ∗, ν = ϵ3λ0−1ν∗. (4.51)

Substituting this into the governing equations using We = ϵ1−λ0 yields

λ∗ + v∗ · ∇λ∗ + 2µ∗∇ ·w∗ = (1− β)
1

(u∗2 + v∗2)
, (4.52) eq:extpolyms1

µ∗ + v∗ · ∇µ∗ + ν∗∇ ·w∗ = 0, (4.53)

ν∗ + v∗ · ∇ν∗ = (1− β)(u∗2 + v∗2), (4.54) eq:extpolyms3

and so fullest balance is attained on the same length scale as found with the Cartesian

basis. Again there is no need for a boundary layer for the natural stress since all terms

that may contribute to viscometric behaviour are automatically included.

4.1.4 The interior regions: r ≪ We
1

1−λ0

The final regions to consider are the interior regions closest to the corner, where we

expect to recover the Oldroyd-B We = O(1) problem due to the upper convected
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derivative dominating in the core. We introduce the rescaled variables

r = ϵ̃R̃∗, x = ϵ̃X̃∗, y = ϵ̃Ỹ ∗.

Assuming Oldroyd-B behaviour, the stream function has the form ψ ∼ r̃nα. Care is

needed when scaling into the inner region since we need to consider what happens in

the intermediate region also (i.e. we scale through the intermediate into the interior

region). We have in the intermediate region

r = ϵR∗, ψ = ϵ1+λ0ψ∗, (4.55)

In the interior region, scaling with ϵ̃ we have

r = ϵ̃R̃∗, (4.56)

Hence our scalings for the stream function and velocity vector (where we have essentially

scaled through through the intermediate and interior regions in one go) are

ψ = ϵ1+λ0−nαϵ̃nαψ̃∗, v = ϵ1+λ0−nαϵ̃nα−1ṽ∗. (4.57)

With the upper convected derivative dominating in this region, we can take the self

similar solution found in chapter 3,

ψ = C̃0r
nα sinn(αθ), Tp = λ(ψ)vvT , λ(ψ) = C̃1

(
ψ

C̃0

) 2
n
(1−n)

, (4.58) eqn:intersol

with n = 3−α, which allows us to get the scalings for the pressure, stresses and natural

stress variables as

Tp = ϵ(1+λ0−2α)ϵ̃2α−2T̃∗p, T = ϵ(1+λ0−2α)ϵ̃2α−2T̃∗, (4.59)

Ts = ϵ(1+λ0−nα)ϵ̃nα−2T̃∗s, p = ϵ(1+λ0−2α)ϵ̃2α−2p̃∗, (4.60)

λ = ϵ−1−λ0+2α(n−1)ϵ̃−2α(n−1)λ̃∗, µ = ϵλ0−1+α(1α)ϵ̃−α(1−α)µ̃∗, (4.61)

ν = ϵ3λ0−1−2αϵ̃2αν̃∗, w = ϵ−λ0−1+nαϵ̃−nαw̃∗, (4.62)
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where ϵ = We
1

1−λ0 . Our inner core region equations using the above substitutions are

T̃∗ = T̃∗p +
( ϵ̃
ϵ

)α(n−2)
T̃∗s, T̃∗s = 2βD̃∗, (4.63)

0 = −∇̃p̃∗ + ∇̃ · T̃∗p +

(
ϵ̃

ϵ

)α(n−2)

β∇̃2 · ṽ∗, (4.64)(
ϵ̃

ϵ

)2−nα

T̃∗p+

▽

T̃∗p= 2(1− β)

(
ϵ̃

ϵ

)2−2α

D̃∗, (4.65)

and in natural stress.(
ϵ̃

ϵ

)(2−nα)

λ̃∗ + ṽ∗ · ∇̃λ̃∗ + 2

(
ϵ̃

ϵ

)(2−α)(1−α)

µ̃∗∇ · w̃∗ = (1− β)

(
ϵ̃

ϵ

)4−nα−2α 1

(ũ∗2 + ṽ∗2)
,

(4.66) eq:extpolyir1(
ϵ̃

ϵ

)(2−nα)

µ̃∗ + ṽ∗ · ∇̃µ̃∗ +
(
ϵ̃

ϵ

)(2−α)(1−α)

ν̃∗∇ · w̃∗ = 0, (4.67)(
ϵ̃

ϵ

)(2−nα)

ν̃∗ + ṽ∗ · ∇̃ν̃∗ = (1− β)

(
ϵ̃

ϵ

)α(n−2)

(ũ∗2 + ṽ∗2). (4.68) eq:extpolyir3

neglecting the inertia terms (always subdominant throughout region 3). Using (
eqn:intersol
4.58) to

determine the matching behaviour as we approach the wall, i.e. in the limit as Ỹ ∗ → 0,

(θ → 0)

ψ̃∗ ∼ C̃0X̃
∗n(α−1)Ỹ ∗n, p̃∗ ∼ 1

2
C̃1X̃

∗2(α−1), T̃ ∗p
11 ∼ C̃1X̃

∗2(α−1) (4.69) eq:wallbehinter

T̃ ∗p
12 ∼ C̃1(1− α)X̃∗(2α−3)Ỹ ∗, T̃ ∗p

22 ∼ C̃1(1− α)2X̃∗(2α−4)Ỹ ∗2, (4.70)

λ̃∗ ∼ d1X
∗2(n−1)(1−α)Ỹ ∗2(1−n), µ̃∗ ∼ d2X̃

∗n(α−1)n2 Ỹ ∗nn2 , (4.71)

ν̃∗ ∼ d3X̃
∗n(α−1)n3 Ỹ ∗nn3 , (4.72)

where

C̃0 = c̃0α
n, C̃1 = c̃

2
n
0 α

2n2, nn2 = α− 1, nn3 = 2, (4.73)
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hold. The pressure is retained at leading order in the momentum equation. The

boundary layer scalings are

X̃∗ = X̃, Ỹ ∗ = δ̃Ỹ , ψ̃∗ = δ̃nψ̃, p̃∗ = p̃,

T̃ ∗p
11 = T̃ p

11, T̃ ∗p
12 = δ̃T̃ p

12, T̃ ∗p
22 = δ̃2T̃ p

22,

T̃ ∗s
11 = δ̃n−1T̃ s

11, T̃ ∗s
12 = δ̃n−2T̃ s

12, T̃ ∗s
22 = δ̃n−1T̃ s

22, (4.74)

λ̃∗ = δ̃2(1−n)λ̃, µ̃∗ = δ̃nn2 µ̃, ν̃∗ = δ̃nn3 ν̃, ∇ · w̃∗ = δ̃−nw̃, (4.75)

and allow us to retain the fullest balance in the constitutive equations. The gauge δ̃ is

found by considering fullest balance. Substituting into the full equations gives us the

constitutive equations

( ϵ̃
ϵ

)2−nα
T̃ p
11 + δ̃n−1

(
∂Ψ̃

∂Ỹ

∂T̃ p
11

∂X̃
− ∂Ψ̃

∂X̃

∂T̃ p
11

∂Ỹ
− 2

∂2Ψ̃

∂X̃∂Ỹ
T̃ p
11 − 2

∂2Ψ̃

∂Ỹ 2
T̃ p
12

)

= 2(1− β)
( ϵ̃
ϵ

)2−2α
δ̃n−1 ∂2Ψ̃

∂X̃∂Ỹ
, (4.76)( ϵ̃

ϵ

)2−nα
δ̃2T̃ p

22 + δ̃n+1

(
∂Ψ̃

∂Ỹ

∂T̃ p
22

∂X̃
− ∂Ψ̃

∂X̃

∂T̃ p
22

∂Ỹ
+ 2

∂2Ψ̃

∂X̃2
T̃ p
12 + 2

∂2Ψ̃

∂X̃∂Ỹ
T̃ p
22

)

= −2(1− β)
( ϵ̃
ϵ

)2−2α
δ̃n−1 ∂2Ψ̃

∂X̃∂Ỹ
, (4.77)( ϵ̃

ϵ

)2−nα
δ̃T̃ p

12 + δ̃n

(
∂Ψ̃

∂Ỹ

∂T̃ p
12

∂X̃
− ∂Ψ̃

∂X̃

∂T̃ p
12

∂Ỹ
− ∂2Ψ̃

∂Ỹ 2
T̃ p
22 +

∂2Ψ̃

∂X̃2
T̃ p
11

)

= (1− β)
( ϵ̃
ϵ

)2−2α
δ̃n−2

(
∂2Ψ̃

∂Ỹ 2
− δ2

∂2Ψ̃

∂X̃2

)
, (4.78)

and the momentum equations

0 =− ∂p̃

∂X̃
+
∂T̃ p

11

∂X̃
+
∂T̃ p

12

∂Ỹ
+
( ϵ̃
ϵ

)α(n−2)
δ̃n−3β

(
δ̃2

∂3Ψ̃

∂X̃2∂Ỹ
+
∂3Ψ̃

∂Ỹ 3

)
, (4.79)

0 =− ∂p̃

∂Ỹ
+ δ̃2

(
∂T̃ p

12

∂X̃
+
∂T̃ p

22

∂Ỹ

)
+
( ϵ̃
ϵ

)α(n−2)
δ̃n−1β

(
δ̃2
∂3Ψ̃

∂X̃3
+

∂3Ψ̃

∂X̃∂Ỹ 2

)
. (4.80)
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The corresponding natural stress constitutive equations are(
ϵ̃

ϵ

)(2−nα)

δ̃1−nλ̃+ ṽ · ∇̃λ̃+ 2

(
ϵ̃

ϵ

)(2−α)(1−α)

δ̃nn2−1−4nµ̃∇̃ · w̃

= (1− β)

(
ϵ̃

ϵ

)4−nα−2α

δ̃1−n 1

(ũ2)
, (4.81) eq:nsblweis1(

ϵ̃

ϵ

)(2−nα)

δ̃1−nµ̃+ ṽ · ∇̃µ̃+

(
ϵ̃

ϵ

)(2−α)(1−α)

δ̃nn3−nn2+1−2nν̃∇̃ · w̃ = 0, (4.82)(
ϵ̃

ϵ

)(2−nα)

δ̃1−nν̃ + ṽ · ∇̃ν̃ = (1− β)

(
ϵ̃

ϵ

)α(n−2)

δ̃n−1−nn3(ũ2). (4.83) eq:nsblweis3

We can determine from this

δ̃ =
( ϵ̃
ϵ

)1−α
, n = 3− α, (4.84)

which is consistent with both formulations. Necessarily ϵ̃ ≪ ϵ, and so δ̃ is small as

required. Thus the boundary layer thickness is determined to be for the inner region

ϵ̃
( ϵ̃

We1/(1−λ0)

)1−α
. (4.85)

The boundary layer equations can now be given and agree with the Oldroyd-B We =

O(1) case

0 =− ∂p̃

∂X̃
+
∂T̃ p

11

∂X̃
+
∂T̃ p

12

∂Ỹ
+ β

∂3Ψ̃

∂Ỹ 3
, (4.86) blweis0inter1

T̃ p
11 +

(
∂Ψ̃

∂Ỹ

∂T̃ p
11

∂X̃
− ∂Ψ̃

∂X̃

∂T̃ p
11

∂Ỹ
− 2

∂2Ψ̃

∂X̃∂Ỹ
T̃ p
11 − 2

∂2Ψ̃

∂Ỹ 2
T̃ p
12

)
= 0, (4.87)

T̃ p
22 +

(
∂Ψ̃

∂Ỹ

∂T̃ p
22

∂X̃
− ∂Ψ̃

∂X̃

∂T̃ p
22

∂Ỹ
+ 2

∂2Ψ̃

∂X̃2
T̃ p
12 + 2

∂2Ψ̃

∂X̃∂Ỹ
T̃ p
22

)
= −2(1− β)

∂2Ψ̃

∂X̃∂Ỹ
, (4.88)

T̃ p
12 +

(
∂Ψ̃

∂Ỹ

∂T̃ p
12

∂X̃
− ∂Ψ̃

∂X̃

∂T̃ p
12

∂Ỹ
− ∂2Ψ̃

∂Ỹ 2
T̃ p
22 +

∂2Ψ̃

∂X̃2
T̃ p
11

)
= (1− β)

∂2Ψ̃

∂Ỹ 2
. (4.89) blweis0inter3

The leading order equations in natural stress are found to be

λ̃+ ṽ · ∇̃λ̃+ 2µ̃∇̃ · w̃ = 0, (4.90)

µ̃+ ṽ · ∇̃µ̃+ ν̃∇̃ · w̃ = 0, (4.91)

ν̃ + ṽ · ∇̃ν̃ = (1− β)ũ2, (4.92)

0 = −p̃X̃ + ṽ · ∇(λ̃µ̃) + µ̃Ỹ . (4.93)
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Core and boundary layer region three are artificial regions, holding where ϵ̃
ϵ ≪ 1. They

occur for r ≪ We
1

1−λ0 but as R∗ → 0 there isn’t a We length scale to determine ϵ̃

explicitly. The structure for low We re-entrant corner flow has found three asymptotic

regions, an exterior region where Newtonian flow is found and an interior region where

Oldroyd-BWe = O(1) flow holds. An intermediate region is found to transition between

these different flow states. The critical length scale We
1

1−λ0 was found that determines

where these flow structures occur, along with core and boundary layer regions for each

determined.

4.2 The large Weissenberg limit: We ≫ 1, (1− β) ∈ [0, 1)
sec:highweiss

4.2.1 Introduction to the problem

We now consider the limit We → ∞ for high Weissenberg number flows. A similar

analysis is used to the low limiting case, the main difference requiring an intermediate

boundary layer (which was arbitrary in the low We case). To restate, we are interested

in the asymptotic structure of the system of governing equations

∇.v = 0, 0 = −∇p+∇.T,

Tp +We
▽

Tp= 2(1− β)D, Ts = 2βD, T = Tp +Ts. (4.94) eq:polysolvhw

As for low Weissenberg flow, the inertia terms in the momentum equation are found

to be subdominant for all asymptotic regions close to the corner and thus neglected

from the start. To begin the analysis, we consider the set of equations (
eq:polysolvhw
4.94) setting

We = ∞ means the upper convected polymer stress derivative dominates in the con-

stitutive equations. Close to the corner we expect Weissenberg O(1) flow, motivating

consideration initially of a 4 region structure. The analysis for the high We limit is

complicated since it is possible to decompose the eventual exterior solution into in-

termediate and exterior regions if a ‘stretching’ similarity solution is picked up as the

corner is approached. The analysis will proceed as follows for this limit

� The interior regions close to the corner will be picked up first along with the

boundary layer thickness. These results are presented separately for Cartesian

and natural stress bases.

� The boundary layer thickness is found to be arbitrary to within a constant, fixing

this constant to match with the high We boundary layer. A stretching similarity

solution is found for n = 3 which may or may not be picked up.
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Figure 4-2: Illustration of the main asymptotic regions near to the re-entrant corner in
the limit We → ∞. We have the interior regions r = O(ϵ̂) ≪ 1 and the exterior regions
for r = O(1). The interior regions are artificial and are those of the Oldroyd-B model
We = 1 in chapter 3. They have a core flow region 3 with boundary layers 3 at the
upstream and downstream walls. The exterior regions again have a core region 1 with
boundary layers 1 at the walls. fig:highwe

4.2.2 The interior regions

We scale close into the corner with a small parameter ϵ̃ as

r = ϵ̃R̃∗, ψ = δ0ϵ̃
n1αΨ̃∗, Tp = aϵ̃2(α−1)T̃p∗, Ts = δ0ϵ̃

n1α−2)T̃s∗, v = δ0ϵ̃
n1α−1ṽ∗,

(4.95)

λ = âϵ̃2α(1−n1)λ̃∗, µ = b̂ϵ̃n2αµ̃∗, ν = ĉϵ̃n3αν̃∗, w =
1

δ0
ϵ̃1−n1αw̃∗,

(4.96)

where δ0 = δ0(We), a = a(We) are needed for balancing terms later on in the boundary

layer. The natural stress variables are scaled with unknown gauges â, b̂, ĉ. We may

use the outer core solution of chapter 3,

ψ = C̃0r
n1α sinn1(αθ), Tp = λ(ψ)vvT , λ(ψ) = C̃1

(
ψ

C̃0

) 2
n1

(1−n1)

. (4.97) eqn:intersolhw
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The gauge â can be determined by writing the second expression in (
eqn:intersolhw
4.97) in core

variables

aϵ̃2(α−1)T̃∗p = âδ20 ϵ̃
2α(1−n1)λ̃∗ϵ̃2n1α−2ṽ∗ṽ∗T , (4.98)

=⇒ â =
a

δ20
. (4.99)

In the governing equations,

0 = −ϵ̃2(α−1)a∇̃∗p̃∗ + ∇̃∗ ·
(
aϵ̃2(α−1)T̃p∗ + δ0ϵ̃

n1α−2)T̃s∗
)
, (4.100)

0 = −a∇̃∗p̃∗ + ∇̃∗ ·
(
aT̃p∗ + δ0ϵ̃

α(n1−2)T̃s∗
)
, (4.101)

ϵ̃2−n1α

δ0We
T̃p∗+

▽

T̃p∗= 2(1− β)
ϵ̃2(1−α)

aWe
D̃∗, T̃s∗ = 2βD̃∗, (4.102)

and in the natural stress formulation

0 = −∇̃∗p̃∗ +
âδ20
a

ṽ∗ · ∇̃∗
(
λ̃∗ũ∗

)
+O

(
b̂

a
ϵ̃n2α+2−2α

)
+O

(
ĉ

aδ20
ϵ̃4−2α−2n1α+n3α

)
,

(4.103) eq:lweintnscr1

0 = −∇̃∗p̃∗ +
âδ20
a

ṽ∗ · ∇̃∗
(
λ̃∗ṽ∗

)
+O

(
b̂

a
ϵ̃n2α+2−2α

)
+O

(
ĉ

aδ20
ϵ̃4−2α−2n1α+n3α

)
,

(4.104)(
ϵ̃2−n1α

δ0We

)
λ̃∗ + ṽ∗ · ∇̃∗λ̃∗ + 2

(
b̂ϵ̃n2α+2−2α

δ20 â

)
µ̃∗∇̃∗ · w̃∗ = (1− β)

(
ϵ̃4−2α−n1α

δ30 âWe2

)
1

|v∗|2
,

(4.105)(
ϵ̃2−n1α

δ0We

)
µ̃∗ + ṽ∗ · ∇̃∗µ̃∗ +

(
ĉϵ̃n3α−n2α+2−2n1α

δ20 b̂

)
ν̃∗∇̃∗ · w̃∗ = 0,

(4.106)(
ϵ̃2−n1α

δ0We

)
ν̃∗ + ṽ∗ · ∇̃∗ν̃∗ = (1− β)

(
δ0ϵ̃

n1α−n3α

ĉWe2

)
|v∗|2.

(4.107) eq:lweintnscr3

In the natural stress momentum equations, the first two terms are of equal order, the

remaining expressions are of the two orders indicated and are eventually found to be

subdominant. Under the assumptions

ϵ̃2−n1α

δ0We
≪ 1,

ϵ̃2(1−α)

aWe
≪ 1, (4.108)
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the upper convected derivative will dominate at leading order. The particular solution

form will then be as in (
eqn:intersolhw
4.97),

Ψ̃∗ = C̃0R̃
∗n1α sinn1(αθ), T̃p∗ = λ̃∗(Ψ̃∗)ṽ∗ṽ∗T , λ̃∗ = C̃1

(
Ψ̃∗

C̃0

) 2(1−n1)
n1

. (4.109)

In component form, the extra stress tensor will be

T̃ p∗
11 = λ̃∗

(
∂Ψ̃∗

∂Ỹ ∗

)2

, T̃ p∗
12 = −λ̃∗ ∂Ψ̃

∗

∂Ỹ ∗
∂Ψ̃∗

∂X̃∗
, T̃ p∗

22 = λ̃∗

(
∂Ψ̃∗

∂X̃∗

)2

. (4.110)

As the upstream wall is approached, Ỹ ∗ → 0, the core matching conditions are therefore

Ψ̃∗ = C̃0X̃
∗n1(α−1)Ỹ ∗n1 , (4.111)

T̃ p∗
11 = C̃2

0 C̃1n
2
1X̃

∗2(α−1), (4.112)

T̃ p∗
12 = −C̃2

0 C̃1n
2
1(α− 1)X̃∗2(α−1)−1Ỹ , (4.113)

T̃ p∗
22 = C̃2

0 C̃1n
2
1(α− 1)2X̃∗2(α−1)−2Ỹ 2. (4.114)

The boundary layer scalings are

X̃∗ = X̃, Ỹ ∗ = δỸ , ψ̃∗ = δ̃n1Ψ̃, p̃∗ = p̃, (4.115)

T̃ s∗
11 = δ̃n1−1T̃ s

11, T̃ s∗
12 = δ̃n1−2T̃ s

12, T̃ s∗
22 = δ̃n1−1T̃ s

22, (4.116)

T̃ p∗
11 = T̃ p

11, T̃ p∗
12 = δ̃T̃ p

12, T̃ p∗
22 = δ̃2T̃ p

22, (4.117)

λ̃∗ = δ̃2(1−n1)λ̃, µ̃∗ = δ̃n2 µ̃, ν̃∗ = δ̃n3 ν̃, (4.118)

ṽ∗ · ∇ = δ̃n1−1ṽ · ∇, ∇ · w̃∗ = δ̃−n1
∂

∂Ỹ

(
1

ũ

)
. (4.119)
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Substitution into the momentum and constitutive equations then leaves

0 = − ∂p̃

∂X̃
+
∂T̃ p

11

∂X̃
+
∂T̃ p

12

∂Ỹ
+
δ0ϵ̃

(n1−2)α

a

(
δ̃n1−1∂T̃

s
11

∂X̃
+ δ̃n1−3∂T̃

s
12

∂Ỹ

)
, (4.120)

0 = − ∂p̃

∂Ỹ
+ δ̃

(
δ̃
∂T̃ p

12

∂X̃
+ δ̃

∂T̃ p
22

∂Ỹ
+
δ0ϵ̃

(n1−2)α

a

(
δ̃n1−2∂T̃

s
12

∂X̃
+ δ̃n1−2∂T̃

s
22

∂Ỹ

))
, (4.121)

ϵ̃2−n1α

δ0We
T̃ p
11 + δ̃n1−1

(
∂Ψ̃

∂Ỹ

∂T̃ p
11

∂X̃
− ∂Ψ̃

∂X̃

∂T̃ p
11

∂Ỹ
− 2

∂2Ψ̃

∂Ỹ 2
T̃ p
12 − 2

∂2Ψ̃

∂X̃∂Ỹ
T̃ p
11

)
=

2(1− β)
ϵ̃2(1−α)δ̃n1−1

aWe

∂2Ψ̃

∂X̃∂Ỹ
, (4.122)

ϵ̃2−n1αδ̃2

δ0We
T̃ p
22 + δ̃n1+1

(
∂Ψ̃

∂Ỹ

∂T̃ p
22

∂X̃
− ∂Ψ̃

∂X̃

∂T̃ p
22

∂Ỹ
+ 2

∂2Ψ̃

∂X̃2
T̃ p
12 + 2

∂2Ψ̃

∂X̃∂Ỹ
T̃ p
22

)
=

− 2(1− β)
ϵ̃2(1−α)δ̃n1−1

aWe

∂2Ψ̃

∂X̃∂Ỹ
, (4.123)

ϵ̃2−n1αδ̃

δ0We
T̃ p
12 + δ̃n1

(
∂Ψ̃

∂Ỹ

∂T̃ p
12

∂X̃
− ∂Ψ̃

∂X̃

∂T̃ p
12

∂Ỹ
+
∂2Ψ̃

∂X̃2
T̃ p
11 −

∂2Ψ̃

∂Ỹ 2
T̃ p
22

)
=

(1− β)
ϵ̃2(1−α)δ̃n1−2

aWe

(
∂2Ψ̃

∂Ỹ 2
− δ̃2

∂2Ψ̃

∂X̃2

)
,

(4.124) eq:hwc4

with the corresponding natural stress formulation being

0 = −∇̃p+ âδ20
a

ṽ · ∇̃
(
λ̃ũ
)
+O

(
b̂

a
ϵ̃n2α+2−2α

)
+O

(
ĉ

aδ20
ϵ̃4−2α−2n1α+n3α

)
, (4.125)

0 = −∇̃p+ âδ20
a

ṽ · ∇̃
(
λ̃ṽ
)
+O

(
b̂

a
ϵ̃n2α+2−2α

)
+O

(
ĉ

aδ20
ϵ̃4−2α−2n1α+n3α

)
, (4.126)

(
ϵ̃2−n1α

δ0We

)
λ̃+ δ̃n1−1ṽ · ∇̃λ̃+ 2

(
b̂ϵ̃n2α+2−2αδ̃n2−n1

δ20 âδ̃
2−2n1

)
µ̃∇̃ · w̃ = (1− β)

(
ϵ̃4−2α−n1α

δ30 âWe2

)
1

ũ2
,

(4.127) eq:lweintnscr11(
ϵ̃2−n1α

δ0We

)
µ̃+ δ̃n1−1ṽ · ∇̃µ̃+

(
ĉϵ̃n3α−n2α+2−2n1αδ̃n3−n1

δ20 b̂δ̃
n2

)
ν̃∇̃ · w̃ = 0, (4.128)

(
ϵ̃2−n1α

δ0We

)
ν̃ + δ̃n1−1ṽ · ∇̃ν̃ = (1− β)

(
δ0δ̃

2(n1−1)ϵ̃n1α−n3α

ĉWe2δ̃n3

)
ũ2. (4.129)

Balancing the linear with the upper convected stress terms and the leading order term
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on the right hand side of (
eq:hwc4
4.124) gives

ϵ̃2−n1α

δ0We
= δ̃n1−1, δ̃2 =

ϵ̃2(1−α)

aWe
(4.130)

=⇒ δ̃ =
ϵ̃1−α

(aWe)1/2
, n1 = 3− α. (4.131) eq:highwedeltan

Furthermore, the dominant balances in the natural stress constitutive equations are(
ϵ̃2−n1α

δ0We

)
= δ̃n1−1,

b̂ϵ̃n2α+2−2αδ̃n2−n1

δ20 âδ̃
2−2n1

= δ̃n1−1,

ĉϵ̃n3α−n2α+2−2n1αδ̃n3−n1

δ20 b̂δ̃
n2

= δ̃n1−1,
δ0δ̃

2(n1−1)ϵ̃n1α−n3α

ĉWe2δ̃n3
= δ̃n1−1. (4.132) eq:highweexnsdom

Equating the terms on the left hand side in (
eq:lweintnscr11
4.127) gives the same results as in (

eq:highwedeltan
4.131).

Working systematically through the expressions in (
eq:highweexnsdom
4.132): equating the powers of ϵ̃

gives

â = δ
2

2−α

0 We
α

2−α , n1 = 3− α, (4.133)

b̂ = δ
α

2−α

0 We
2α−2
2−α , n2 = α− 1, (4.134)

ĉ = δ
2

2−α

0 We
3α−4
2−α , n3 = 2, (4.135)

thus determining the natural stress core and boundary layer region scalings. With

these scalings in mind, at leading order the boundary layer equations are

0 = − ∂p̃

∂X̃
+
∂T̃ p

11

∂X̃
+
∂T̃ p

12

∂Ỹ
+
∂T̃ s

12

∂Ỹ
, 0 = − ∂p̃

∂Ỹ
, (4.136)

T̃ p
11 +

(
∂Ψ̃

∂Ỹ

∂T̃ p
11

∂X̃
− ∂Ψ̃

∂X̃

∂T̃ p
11

∂Ỹ
− 2

∂2Ψ̃

∂Ỹ 2
T̃ p
12 − 2

∂2Ψ̃

∂X̃∂Ỹ
T̃ p
11

)
= 0, (4.137)

T̃ p
22 +

(
∂Ψ̃

∂Ỹ

∂T̃ p
22

∂X̃
− ∂Ψ̃

∂X̃

∂T̃ p
22

∂Ỹ
+ 2

∂2Ψ̃

∂X̃2
T̃ p
12 + 2

∂2Ψ̃

∂X̃∂Ỹ
T̃ p
22

)
= −2(1− β)

∂2Ψ̃

∂X̃∂Ỹ
,

(4.138)

T̃ p
12 +

(
∂Ψ̃

∂Ỹ

∂T̃ p
12

∂X̃
− ∂Ψ̃

∂X̃

∂T̃ p
12

∂Ỹ
+
∂2Ψ̃

∂X̃2
T̃ p
11 −

∂2Ψ̃

∂Ỹ 2
T̃ p
22

)
= (1− β)

∂2Ψ̃

∂Ỹ 2
. (4.139)

The natural stress counterpart also determines the pressure to be a function of X̃ only
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as expected, the pressure related to the velocity via

0 = − ∂p̃

∂X̃
+ ṽ · ∇̃

(
λ̃ũ
)
+
∂ũ

∂Ỹ
, (4.140)

retaining ṽ · ∇̃
(
λ̃ũ
)
with the Ỹ pressure derivative and also pulling back an additional

velocity derivative term. The leading order constitutive equations are

λ̃+ ṽ · ∇̃λ̃+ 2µ̃
∂

∂Ỹ

(
1

ũ

)
= 0, (4.141)

µ̃+ ṽ · ∇̃µ̃+ ν̃
∂

∂Ỹ

(
1

ũ

)
= 0, (4.142)

ν̃ + ṽ · ∇̃ν̃ = (1− β)ũ2. (4.143)

For reference, the relations linking the two different formulations in the boundary layer

variables at leading order are given by

T̃11 = λ̃ũ2, T̃12 = λ̃ũṽ + µ̃, T̃22 = −(1− β) + λ̃ṽ2 +

(
2µ̃ṽ

ũ

)
+

(
ν̃

ũ2

)
, (4.144)

which are the same as found in (
eq:reentblrel
3.84). To recap, in the interior core region, the scalings

for the stream function and polymer stress were found to be

ψ = δ0ϵ̃
n1αΨ̃∗, Tp = aϵ̃2(α−1)T̃p∗, (4.145)

with the parameter δ̃ in the boundary layer

δ̃ =
ϵ̃1−α

(aWe)1/2
, (4.146) eq:tildedelta

where the value of a is undetermined currently, needing to be matched to the exterior

region boundary layer. This region is considered next.

4.2.3 The exterior regions: r = O(1)

For this region, r = O(1) so no scaling with ϵ is required for the core region. Following

on from the interior region, it is unclear whether the stream function and polymer

stresses are scaled with We in the form

ψ = A(We)Ψ∗, Tp = B(We)Tp∗. (4.147)
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For high We flow, the upper convected derivative is expected to dominate in the

core region, implying that We.A.B ≫ B and We.A.B ≫ A holds, or alternatively

We.A,We.B ≫ 1. For the natural stress basis, the leading order core equations will be

v̂∗ · ∇∗λ̂∗ + 2µ̂∗∇∗ · ŵ∗ = 0, (4.148) eq:hewiextnscon1

v̂∗ · ∇∗µ̂∗ + ν̂∗∇∗ · ŵ∗ = 0, (4.149)

v̂∗ · ∇∗ν̂∗ = 0. (4.150) eq:hewiextnscon3

The extra retention of terms in the constitutive equations means that the natural stress

variables are unlikely to be of power law form, hence scaling into the boundary layer

with δ as

x = X̂, y = δŶ , ψ = AδnΨ̂, p = Bp̂,

T p
11 = BT̂ p

11, T12 = BδT̂ p
12, T p

22 = Bδ2T̂ p
22, (4.151)

λ = θ1λ̂, µ = θ2µ̂, ν = θ3ν̂, (4.152) eq:exthighwe5

for gauges θ1, θ2, θ3, the constitutive equations in Cartesian become

1

Aδn−1We
T̂ p
11 +

(
∂Ψ̂

∂Ŷ

∂T̂ p
11

∂X̂
− ∂Ψ̂

∂X̂

∂T̂ p
11

∂Ŷ
− 2

∂2Ψ̂

∂Ŷ 2
T̂ p
12 − 2

∂2Ψ̂

∂X̂∂Ŷ
T̂ p
11

)

= 2(1− β)
δ

BWe

∂2Ψ̂

∂X̂∂Ŷ
, (4.153)

1

Aδn−1We
T̂ p
22 +

(
∂Ψ̂

∂Ŷ

∂T̂ p
22

∂X̂
− ∂Ψ̂

∂X̂

∂T̂ p
22

∂Ŷ
+ 2

∂2Ψ̂

∂X̂2
T̂ p
12 + 2

∂2Ψ̂

∂X̂∂Ŷ
T̂ p
22

)

= −2(1− β)
1

Bδ2We

∂2Ψ̂

∂X̂∂Ŷ
, (4.154)

1

Aδn−1We
T̂ p
12 +

(
∂Ψ̂

∂Ŷ

∂T̂ p
12

∂X̂
− ∂Ψ̂

∂X̂

∂T̂ p
12

∂Ŷ
+
∂2Ψ̂

∂X̂2
T̂ p
11 −

∂2Ψ̂

∂Ŷ 2
T̂ p
22

)

= (1− β)
1

Bδ2We

(
∂2Ψ̂

∂Ŷ 2
− δ2

∂2Ψ̂

∂X̂2

)
. (4.155)

Trying to retain as many terms as possible in the above equations gives the following

three relations between A, B, δ and n

1 = Weδn−1A, B = Aδn−3, Weδ2B = 1. (4.156)

The natural choice is to fix A = 1 and B = 1, since the interior region is anticipated

to be artificial (i.e. the gauge ϵ̃ is artificial and not dependent on We) and variables
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should be O(1). Thus,

n = 3, δ = We−1/2 (4.157) eq:highextblthick

which satisfies the inequalities required at the start of this section. For the natural

stress formulation, the leading order relations between the two formulations are given

in (
eq:reentblrel
3.84) (with bars changed to hats). The first relation T̂ p

11 = λ̂û2 fixes θ1 = δ−4.

Similarly the relation for T̂ p
12 fixes θ2 = δ. Having found the scaling for µ the final

scaling θ3 is determined to be θ3 = δ6. The equivalent constitutive equations for

natural stress with δ given in (
eq:highextblthick
4.157) are

λ̂+ v̂ · ∇̂λ̂+ 2µ̂
∂

∂Ŷ

(
1

û

)
= 0, (4.158) eq:lweintnscr111

µ̂+ v̂ · ∇̂µ̂+ ν̂
∂

∂Ŷ

(
1

û

)
= 0, (4.159)

ν̂ + v̂ · ∇̂ν̂ = (1− β)û2, (4.160) eq:lweintnscr333

and the momentum equations

0 = − ∂p̂

∂X̂
+ v̂ · ∇̂

(
λ̂û
)
+
∂û

∂Ŷ
, 0 = − ∂p̂

∂Ŷ
, (4.161) eq:hiwemomextns

where the terms missing in the core natural stress constitutive equations have been

recovered. We are now in a position to determine a. The high We boundary layer

thickness in region one was found to be δ = We−1/2. Recall the interior boundary layer

thickness was

δ̃ =
ϵ̃1−α

(aWe)1/2
, (4.162)

where ϵ̃ is an artificially small parameter. This suggests taking a = 1 so as to retain

the artificial nature and also match with the high We boundary layer. If we take a to

be this value, then

δ0 = We−
α
2 , â = Wea, b̂ = We

α
2
−1, ĉ = We−2, (4.163)

are fixed.

This completes the structure for the high Weissenberg number limit, which is sum-

marised in figure
fig:highwe
4-2
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4.3 The Newtonian limit β → 1,We = O(1)

In the Newtonian limit β → 1 we would expect to pick up the Newtonian solution

in a core region away from the walls. As this is a very different solution from the

potential flow solution in the core given in chapter 3, we would expect a transition

structure between the two behaviours in this limit. We keep the Weissenberg number

O(1) throughout this section and thus set it to unity.

4.3.1 Introduction to the problem

As usual we consider the asymptotic structure of the governing equations

∇.v = 0, 0 = −∇p+∇.Tp +∇.Ts,

Ts = 2βD, Tp+
▽

Tp= 2(1− β)D, (4.164) eq:polysolvbeta1

where the inertia terms are anticipated to be negligible as usual and set to zero. To

begin the analysis, we consider the set of equations (
eq:polysolvbeta1
4.164) with β = 1. Then Tp = 0

and we have the Newtonian similarity solution of chapter 5 holding on small length

scales. For β close to 1, we would expect this Newtonian solution to hold in a core

region away from the corner and walls, with the solvent stresses Ts dominating the

polymer stresses Tp, i.e. Tp ≪ Ts. Boundary layers will turn out to be needed to

recover viscometric behaviour for the polymer stresses. These core and boundary layer

regions give the exterior regions.

4.3.2 The exterior regions: (1− β)(3−λ0)/(1−λ2
0) ≪ r ≪ 1

Core region 1 is were we get Newtonian dominated flow. We anticipate the balances

0 = −∇p+∇.Ts, Ts = 2D,
▽

Tp= 0, (4.165)

for r ≪ 1 in the governing equations. We then have a separable Newtonian stream

function solution of the form,

ψ ∼ Ĉ0r
1+λ0f0(θ) for r ≪ 1 , (4.166) eq:core1sol1
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with constant Ĉ0, eigenvalue λ0 and eigenfunction f0(θ) as defined in section 5.1. For

the polymer extra stress we take the stretching solution

Tp ∼ λ(ψ)vvT , λ(ψ) = (1− β)Ĉ1

(
ψ

Ĉ0

)n1

, (4.167) eq:core1sol2

with constant Ĉ1 and exponent n1 to be found. The factor (1−β) has been introduced

for convenience and is suggested by the constitutive equation. We thus scale in core 1

with

r = ϵ̂R̂∗, x = ϵ̂X̂∗, y = ϵ̂Ŷ ∗, ψ = ϵ̂1+λ0Ψ̂∗, v = ϵ̂λ0 v̂∗, (4.168)

Ts = ϵ̂λ0−1T̂s∗, Tp = (1− β)ϵ̂n1(1+λ0)+2λ0T̂p∗, p = ϵ̂λ0−1p̂∗, (4.169)

with ϵ̂≪ 1 artificial. The governing equations become

0 = −∇̂p̂∗ + ∇̂ · T̂s∗ + (1− β)ϵ̂(1+n1)(1+λ0)∇̂ · T̂p∗, (4.170)

Ts∗ = 2(1− (1− β))D̂∗, ϵ̂1−λ0T̂p∗+

▽

T̂p∗= 2ϵ̂−2λ0−n1(1+λ0)D̂∗. (4.171)

Thus we obtain

0 = −∇̂p̂∗ + β∇̂∗2v̂∗, T̂s∗ = 2D̂∗,

▽

T̂p∗= 0, (4.172)

at leading order since 1/2 ≤ λ0 < 1 and provided

(1− β)ϵ̂(1+n1)(1+λ0) ≪ 1, ϵ̂−2λ0−n1(1+λ0) ≪ 1. (4.173) eq:core1valid

Using (
eq:core1sol1
4.166)–(

eq:core1sol2
4.167) we thus have the core 1 solution

ψ̂∗ ∼ Ĉ0R
∗1+λ0f0(θ), T̂s∗ = 2D̂∗, (4.174)

T̂p∗ ∼ λ̂∗(Ψ̂∗)v̂∗v̂∗T , λ̂∗(Ψ̂∗) = (1− β)Ĉ1

(
Ψ̂∗

Ĉ0

)n1

. (4.175)
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The behaviour as the upstream wall is approached as Ŷ → 0 is

Ψ̂∗ ∼ Ĉ0X̂
∗λ0−1Ŷ ∗2, p̂∗ ∼ p0X̂

∗λ0−1 (4.176) eq:core1wall1

T̂ p∗
11 ∼ 4Ĉ2

0 Ĉ1X̂
∗n1(λ0−1)+2(λ0−1)Ŷ ∗2(1+n1), (4.177)

T̂ p∗
12 ∼ 2Ĉ2

0 Ĉ1(λ0 − 1)X̂∗n1(λ0−1)+2(λ0−1)−1Ŷ ∗2(1+n1)+1, (4.178)

T̂ p∗
22 ∼ Ĉ2

0 Ĉ1(λ0 − 1)2X̂∗n1(λ0−1)+2(λ0−1)2Ŷ ∗2(1+n1)+2, (4.179)

T̂ s∗
11 ∼ 4βĈ0(λ0 − 1)X̂∗λ0−2Ŷ ∗, T̂ s∗

12 ∼ 2βĈ0X̂
∗λ0−1, T̂ s∗

22 ∼ 4βĈ0(1− λ0)X̂
∗λ0−2Ŷ ∗.

(4.180) eq:core1wall2

Scaling into the wall with a small parameter δ̂, the wall behaviour (
eq:core1wall1
4.176)–(

eq:core1wall2
4.180)

suggest the boundary layer scalings

X̂∗ = X̂, Ŷ ∗ = δ̂Ŷ , Ψ̂∗ = δ̂2Ψ̂, p̂∗ = p̂,

T̂ ∗s
11 = δ̂T̂ s

11, T̂ s
12 = T̂ s

12, T̂ ∗s
22 = δ̂T̂ s

22,

T̂ ∗p
11 = δ̂2(1+n1)T̂ p

11, T̂ p
12 = δ̂2(1+n1)+1T̂ p

12, T̂ ∗p
22 = δ̂2(1+n1)+2T̂ p

22. (4.181)

The governing equations become

0 = − ∂p̂

∂X̂
+
∂T̂ s

11

∂X̂
+

1

δ̂

∂T̂ s
12

∂Ŷ
+ (1− β)ϵ̂(1+n1)(1+λ0)δ̂2(1+n1)

(
∂T̂ p

11

∂X̂
+
∂T̂ p

12

∂Ŷ

)
, (4.182)

0 = −1

δ̂

∂p̂

∂Ŷ
+
∂T̂ p

12

∂X̂
+
∂T̂ p

22

∂Ŷ
+ (1− β)ϵ̂(1+n1)(1+λ0)δ̂2(1+n1)+1

(
∂T̂ p

12

∂X̂
+
∂T̂ p

22

∂Ŷ

)
,

(4.183)

ϵ̂1−λ0

δ̂
T̂ p
11 +

(
∂Ψ̂

∂Ŷ

∂T̂ p
11

∂X̂
− ∂Ψ̂

∂X̂

∂T̂ p
11

∂Ŷ
− 2

∂2Ψ̂

∂Ŷ 2
T̂ p
12 − 2

∂2Ψ̂

∂X̂∂Ŷ
T̂ p
11

)
= 2δ̂2θ̂

∂2Ψ̂

∂X̂∂Ŷ
,

(4.184) eq:T11b1

ϵ̂1−λ0

δ̂
T̂ p
22 +

(
∂Ψ̂

∂Ŷ

∂T̂ p
22

∂X̂
− ∂Ψ̂

∂X̂

∂T̂ p
22

∂Ŷ
+ 2

∂2Ψ̂

∂X̂2
T̂ p
12 + 2

∂2Ψ̂

∂X̂∂Ŷ
T̂ p
22

)
= −2θ̂

∂2Ψ̂

∂X̂∂Ŷ
,

(4.185)

ϵ̂1−λ0

δ̂
T̂ p
12 +

(
∂Ψ̂

∂Ŷ

∂T̂ p
12

∂X̂
− ∂Ψ̂

∂X̂

∂T̂ p
12

∂Ŷ
+
∂2Ψ̂

∂X̂2
T̂ p
11 −

∂2Ψ̂

∂Ŷ 2
T̂ p
22

)
= θ̂

(
∂2Ψ̂

∂Ŷ 2
− δ̂2

∂2Ψ̂

∂X̂2

)
,

(4.186) eq:T12b1

where

θ̂ =
ϵ̂−2λ0−n1(1+λ0)

δ̂2(1+n1)+2
. (4.187)
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Balancing in the constitutive equations (
eq:T11b1
4.184)–(

eq:T12b1
4.186) determines δ̂ and θ̂ to be

δ̂ = ϵ̂1−λ0 , θ̂ = 1, (4.188)

and hence

n1 =
2(λ0 − 2)

3− λ0
. (4.189)

This gives the leading order momentum equations to be

∂T̂ s
12

∂Ŷ
= 0,

∂p̂

∂Ŷ
= 0, (4.190) eq:bl3beta1

hence

T̂ s
12 = 2βĈ0X̂

λ0−1, p̂ = p0X̂
λ0−1, (4.191)

holds throughout boundary layer 1, after matching with T̂ s
12 and p̂ in (

eq:core1wall1
4.176) and

(
eq:core1wall2
4.180). Since

T̂ s
12 = β

∂2Ψ̂

∂Ŷ 2
(4.192)

in the boundary layer, we may integrate twice and using no slip and normal velocity

at the walls determines Ψ̂ as

Ψ̂ = Ĉ0X̂
λ0−1Ŷ 2. (4.193)

This matches with the stream function behaviour in (
eq:core1wall1
4.176) from core 1. Hence the

solvent stresses, pressure and stream function are unchanged at leading order through

the boundary layer with explicit solutions

Ψ̂ = Ĉ0X̂
λ0−1Ŷ 2, p̂ = p̂0X̂

λ0−1,

T̂ s
11 ∼ 4βĈ0(λ0 − 1)X̂λ0−2Ŷ , T̂ s

12 ∼ 2βĈ0X̂
λ0−2, T̂ s

22 ∼ 4βĈ0(λ0 − 1)X̂λ0−2Ŷ .

(4.194)
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The polymer stresses do change throughout the boundary layer which we will describe

next. The leading order constitutive equations are

T̂ p
11 +

(
∂Ψ̂

∂Ŷ

∂T̂ p
11

∂X̂
− ∂Ψ̂

∂X̂

∂T̂ p
11

∂Ŷ
− 2

∂2Ψ̂

∂Ŷ 2
T̂ p
12 − 2

∂2Ψ̂

∂X̂∂Ŷ
T̂ p
11

)
= 0,

T̂ p
22 +

(
∂Ψ̂

∂Ŷ

∂T̂ p
22

∂X̂
− ∂Ψ̂

∂X̂

∂T̂ p
22

∂Ŷ
+ 2

∂2Ψ̂

∂X̂2
T̂ p
12 + 2

∂2Ψ̂

∂X̂∂Ŷ
T̂ p
22

)
= −2(1− β)

∂2Ψ̂

∂X̂∂Ŷ
,

T̂ p
12 +

(
∂Ψ̂

∂Ŷ

∂T̂ p
12

∂X̂
− ∂Ψ̂

∂X̂

∂T̂ p
12

∂Ŷ
+
∂2Ψ̂

∂X̂2
T̂ p
11 −

∂2Ψ̂

∂Ŷ 2
T̂ p
22

)
= (1− β)

∂2Ψ̂

∂Ŷ 2
. (4.195)

This is invariant under the one parameter scaling group

X̂ = γX, Ŷ = γ2−λ0Y, Ψ̂ = γ3−λ0Ψ, (4.196)

T̂ p
11 = γ2(λ0−1)T p

11 T̂ p
12 = γλ0−1T p

12 T̂ p
22 = γT p

22, (4.197)

which suggests the similarity solution

ξ =
Ŷ

X̂2−λ0
, Ψ̂ = X̂3−λ0ξ2, (4.198)

T̂ p
11 = X̂2(λ0−1)tp11, T̂ p

12 = X̂λ0−1tp12 T̂ p
22 = tp22. (4.199)

Putting these scalings into the constitutive equations gives

− Ĉ0ξ
2(−3 + λ0)t

p′

11 + 4Ĉ0t
p
12 − tp11 = 0, (4.200) ssbeta1

ξ2Ĉ0(−3 + λ0)t
p′

22 +
(
1 +

(
−4 + 4λ0ξĈ0

))
tp22

+ 2 (2 + ξ (−2 + λ0) t
p
12) ξĈ0(λ0 − 1) = 0, (4.201)

ξ2Ĉ0(−3 + λ0)t
p′

12 +
(
1 + (2λ0 − 2) ξĈ0

)
tp12 + ξ2Ĉ0(λ0 − 1)(−2 + λ0)t

p
11

− 2Ĉ0(t
p
22 + 1) = 0, (4.202) ssbeta3

where ′ denotes derivatives with respect to ξ. At the wall we have the leading order

behaviour as ξ → 0

tp11 ∼ 8Ĉ2
0 , (4.203) wbbeta1

tp12 ∼ 2Ĉ0, (4.204)

tp22 ∼ 4(1− λ0)Ĉ0ξ. (4.205)

119



In the far field we have the matching conditions as ξ → ∞

tp11 ∼ 4Csp
1 ξ

2(λ0−1)/(3−λ0), (4.206) fffbeta1

tp12 ∼ 2(1− λ0)C
sp
1 ξ

(λ0+1)/(3−λ0), (4.207)

tp22 ∼ (1− λ0)
2Csp

1 ξ
4/(3−λ0), (4.208)

where we introduce the similarity parameter Csp
1 = Ĉ1Ĉ

2
0 . We record here illustrative

numerical solutions using Cartesian variables. The numerical domain we take here for ξ

is [ξ0, ξ∞], with the wall behaviour (
wbbeta1
4.203) imposed at ξ0 and far field behaviour (

fffbeta1
4.206)

at ξ∞. To implement we use MATLAB’s solver ode15s with absolute and relative

tolerances set at 10−11. Figures (
fig:be1
4.3.2) and (

fig:be2
4.3.2) show the solutions for a re-entrant

corner with parameter values λ0 = 0.56, ξ0 = 10−6, ξ∞ = 1010 and λ0 = 0.9, ξ0 =

10−6, ξ∞ = 1010 respectively. Convergence to far-field behaviour is demonstrated to

ten significant figures.

The asymptotic behaviours in (
wbbeta1
4.203), (

fffbeta1
4.206) determines how many conditions

are imposed on this third order system. The wall behaviour (
wbbeta1
4.203) imposes three

conditions on (
ssbeta1
4.200) thus leaving no degrees of freedom as ξ → 0. In the far field, the

parameter Ĉsp
1 is free with two further free parameters present but existing as higher

order expansion terms. The problem can thus be posed as an initial value problem.

The downstream boundary layer requires the natural stress formulation for its solution,

which is left as further work.

For reference, we note that scaling directly into the boundary layer from the outer

region we use the scalings

x = ϵ̂X̂, y = ϵ̂2−λ0 Ŷ , ψ = ϵ̂3−λ0Ψ̂, p = ϵ̂4(λ0−1)/(3−λ0)p̂

T s
11 = T̂ s

11, T s
12 = ϵ̂λ0−1T̂ s

12, T s
22 = T̂ s

22,

T p
11 = ϵ̂2(λ0−1)T̂ p

11, T p
12 = ϵ̂λ0−1T̂ p

12, T p
22 = T̂ p

22. (4.209)

We can now determine the main length scale that will motivate consideration of an

intermediate region closer to the corner. Since (1− β) is a small quantity, in the core

region, we know the scalings of Tp and Ts to be

Tp = O
(
(1− β)r(1+λ0)n1+2λ0

)
= O

(
(1− β)r4(λ0−1)/(3−λ0)

)
, Ts = O

(
rλ0−1

)
.

(4.210) tstpbeta1

The balance of core region 1 holds until the polymer and solvent extra stress become

the same size i.e. Tp = O(Ts). This occurs when the sizes in (
tstpbeta1
4.210) are of similar
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order and determines the main length scale to be

r = O
(
(1− β)(3−λ0)/(1−λ2

0)
)
. (4.211) eq:mainlength

We note that the conditions (
eq:core1valid
4.173) can be verified with the first condition being

(1− β)(3−λ0)/(1−λ2
0) ≪ ϵ̂, (4.212)

this being the lower limit on the length scale for core region 1. The core and boundary

layer equations have been found for the exterior region, now we look at an intermediate

region.

4.3.3 The main length scale: r ≤ (1− β)(3−λ0)/(1−λ2
0)

In this region we have Tp = O(Ts) and introduce the small parameter ϵ to represent

the length (
eq:mainlength
4.211). We scale with

r = ϵR∗, x = ϵX∗, y = ϵY ∗, ψ = ϵqΨ∗, v = ϵq−1v∗,

Ts = ϵq−2Ts∗, Tp = ϵq−2Tp∗, p = ϵq−2p∗, (4.213)

where q is an as yet undetermined arbitrary scaling for the stream function. Into the

governing equations we get

0 = −∇∗p∗ +∇∗ ·Tp∗ +∇∗ ·Ts∗ (4.214) intermbeta11

Tp∗ + ϵq−2
▽

Tp∗= 2(1− β)D∗. (4.215) intermbeta13

We would expect q < 2, for example to match with core region 1 we require q = 1+λ0

as R∗ → ∞, hence the leading order core equations are

0 = −∇∗p∗ +∇∗ ·Tp∗ +∇∗ ·Ts∗, Ts∗ = 2βD∗,
▽

Tp∗= 0. (4.216) intermbeta14

Seeking viscometric behaviour at the walls, we scale into the wall boundary layers using

a small parameter δ with the scalings

X∗ = X, Y ∗ = δY, Ψ∗ = γΨ, p∗ = θp

T ∗
11 = θT11, T ∗

12 = θδT12, T ∗
22 = θδ2T22,

T s∗
11 =

γ

δ
T s
11, T s∗

12 =
γ

δ2
T s
12, T s∗

22 =
γ

δ
T s
22,

T p∗
11 = θT p

11, T p∗
12 = θδT p

12, T p∗
22 = θδ2T p

22, (4.217)
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for gauges γ and θ to be determined and where we have chosen to balance the pressure

with the polymer stress component T p
11. Into the constitutive equations we get

θT p
11 +

θγϵq−2

δ

(
∂Ψ

∂Y

∂T p
11

∂X
− ∂Ψ

∂X

∂T p
11

∂Y
− 2

∂2Ψ

∂Y 2
T p
12 − 2

∂2Ψ

∂X∂Y
T p
11

)
= 2(1− β)

γ

δ

∂2Ψ

∂X∂Y
, (4.218)

θT p
22 +

θγϵq−2

δ

(
∂Ψ

∂Y

∂T p
22

∂X
− ∂Ψ

∂X

∂T p
22

∂Y
+ 2

∂2Ψ

∂X2
T p
12 + 2

∂2Ψ

∂X∂Y
T p
22

)
= −2(1− β)

γ

δ3
∂2Ψ

∂X∂Y
, (4.219)

θT p
12 +

θγϵq−2

δ

(
∂Ψ

∂Y

∂T p
12

∂X
− ∂Ψ

∂X

∂T p
12

∂Y
+
∂2Ψ

∂X2
T p
11 −

∂2Ψ

∂Y 2
T p
22

)
= (1− β)

γ

δ3

(
∂2Ψ

∂Y 2
− δ2

∂2Ψ

∂X2

)
. (4.220)

Balancing the linear stress terms with the upper convected stress derivative terms,

along with the r.h.s. terms in T p
12 and T p

22 determines γ and δ to be

δ =
(1− β)1/2

θ1/2
ϵ1−q/2, γ =

(1− β)1/2

θ1/2
ϵ3(1−q/2). (4.221)

Considering the momentum equations, we have

0 = − ∂p

∂X
+
∂T p

11

∂X
+
∂T p

12

∂Y
+
ϵ2(1−q/2)

θ

∂T s
11

∂X
+

θ

(1− β)

∂T s
12

∂Y
, (4.222)

0 = − ∂p

∂Y
+ δ2

(
∂T p

12

∂X
+
∂T p

22

∂Y

)
+

γ

δθ

(
∂T s

11

∂X
+
∂T s

12

∂Y

)
. (4.223)

To retain the solvent shear stress we require θ = (1 − β) and thus δ = ϵ1−q/2, γ =

ϵ3(1−q/2). The leading order boundary layer equations for the momentum equations are

thus

0 = − ∂p

∂X
+
∂T p

11

∂X
+
∂T p

12

∂Y
+
∂T s

12

∂Y
, 0 = − ∂p

∂Y
, (4.224)

provided
γ

δθ
=

ϵ2−q

(1− β)
≪ 1, (4.225)
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which at least holds for q = 1 + λ0. The polymer extra stresses satisfy

T p
11 +

(
∂Ψ

∂Y

∂T p
11

∂X
− ∂Ψ

∂X

∂T p
11

∂Y
− 2

∂2Ψ

∂Y 2
T p
12 − 2

∂2Ψ

∂X∂Y
T p
11

)
= 0, (4.226)

T p
22 +

(
∂Ψ

∂Y

∂T p
22

∂X
− ∂Ψ

∂X

∂T p
22

∂Y
+ 2

∂2Ψ

∂X2
T p
12 + 2

∂2Ψ

∂X∂Y
T p
22

)
= −2

∂2Ψ

∂X∂Y
, (4.227)

T p
12 +

(
∂Ψ

∂Y

∂T p
12

∂X
− ∂Ψ

∂X

∂T p
12

∂Y
+
∂2Ψ

∂X2
T p
11 −

∂2Ψ

∂Y 2
T p
22

)
=
∂2Ψ

∂Y 2
. (4.228)

A simple similarity solution to these boundary layer equations and the core is not

anticipated for the whole of this intermediate region. On smaller length scales in this

intermediate region we would expect to obtain the similarity solution detailed in chapter

3.

4.4 Discussion

For the re-entrant corner geometry, we have considered three parameter limits of the

Oldroyd-B equations. Those were low and high We with β < 1 and the Newtonian

limit β → 1 with We = O(1). The double limits involving both β → 1 and low/high

We are expected to form an even more complicated structure with additional regions

needing to be included.

The Newtonian limit β → 1 has identified the main regions in which Newtonian

flow is obtained and the length scale on which it breaks down closer to the corner. This

region we termed the intermediate region, the finer details of which is left as unfinished

work.

It would be of interest to see if the structures presented here can be validated

through full numerical simulation of the equations. The low Weissenberg number limit

and the Newtonian limit should cause numerical schemes no difficulties, although the

high Weissenberg limit is still notoriously difficult.
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fig:be1
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(b) Solution profiles for tp11, t
p
12, t

p
22 scaled with ξ. All should (and do)

tend to Csp
1 = 1.0678176398 to 10 decimal places which is sufficient con-

vergence.

Figure 4-3: To implement we use MATLAB’s solver ode15s with absolute and relative
tolerances set at 10−11. We have the solution for an upstream re-entrant corner with
parameter values λ0 = 0.56, ξ0 = 10−6, ξ∞ = 1010. In the second picture, we scale with
the far-field behaviour aiming to pick up an estimate for Csp

1 . Convergence is found
with Csp

1 = 1.0678176398 to 10 decimal places.
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fig:be2
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(a) Solution profiles for tp11, t
p
12, t

p
22 with λ = 0.9. tp11 slopes off much

slower as λ increases, decreasing the rate of convergence.
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(b) Solution profiles for tp11, t
p
12, t

p
22 scaled with ξ. All should (and do)

tend to Csp
1 = 1.70986761423 to 10 decimal places which is sufficient

convergence.

Figure 4-4: Implementation of the similarity problem with parameter values λ0 =
0.90, ξ0 = 10−6, ξ∞ = 1010 with the same tolerances as in

fig:be1
4.3.2. Convergence to C1 is

found with Csp
1 = 1.70986761423 to 10 decimal places.
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Chapter 5

Salient Corner Flow

chapter:Salientcornerflow

In this chapter we will consider Salient corner flow for the Oldroyd-B fluid. Preliminary

results on Newtonian flow will be discussed first in section
sec:newflow
5.1. This will then be used for

Oldroyd-B in section
sec:oldbsalient
5.2, where we shall show that the Newtonian solution dominates

in a core outer region away from the walls.

5.1 Newtonian corner flow
sec:newflow

Early work was done by Dean and Montagnon
demo49
[14] and extended by Moffat

moff64
[35] to

cover more situations, including flows in which eddies are present. The equations for

Newtonian flow are

∇ · v = 0, Re (v · ∇v) = −∇p+∇ ·T, T = Ts = 2D, (5.1) eq:newtonequations

where T is the total extra stress and Ts the solvent extra stress, these stresses being

the same for Newtonian flow. Separable solutions for the stream function are known

to exist in the form

ψ = c0r
1+λ0f0(θ), (5.2) eq:psinew

where c0 is a constant, r the radius away from the corner r ≪ 1 and λ0 the eigenvalue

which can be real or complex. The function f0 is to be determined. Examining the

relative sizes of the terms in the momentum and constitutive equations in terms of r

from the stream function behaviour, we can deduce

ψ = O(r1+λ0), v = O(rλ0), (v · ∇v) = O(r2λ0−1), D = O(rλ0−1),

T = O(rλ0−1), ∇2v = O(rλ0−2), ∇p = O(rλ0−2),
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where the scaling for p is chosen to retain it at leading order in the momentum equation.

In the limit as r → 0, the leading order momentum equation is

0 = −∇p+∇ ·T. (5.3) eq:momnew

It is assumed that the stream function tends to zero as the corner is approached, hence

1 + λ0 > 0. The inertial terms in (
eq:momnew
5.3) are therefore subdominant. We can use the

solution form for ψ from (
eq:psinew
5.2) here, the set of two simultaneous equations obtained

reduce down, after eliminating p, to the bi-harmonic equation (the Laplacian is given

in polar coordinates for reference)

∇4ψ = 0, ∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
. (5.4) eq:bihar

Substituting the stream function behaviour (
eq:psinew
5.2) into (

eq:bihar
5.4) gives a fourth-order linear

differential equation for f0 as

f ′′′′0 + 2(λ20 + 1)f ′′0 + (λ20 − 1)2f0 = 0, (5.5) eq:salfeq

where the ′ denotes differentiation with respect to θ. We have no slip and no normal

velocity boundary conditions at the wall

f0(0) = f ′0(0) = f0

(π
α

)
= f ′0

(π
α

)
= 0. (5.6) salbc

The general solution form for f0(θ) is given in
demo49
[14] as

f0(θ) = A cos ((λ0 + 1) θ) +B sin ((λ0 + 1) θ) + C cos ((λ0 − 1) θ) +D sin ((λ0 − 1) θ) ,

(5.7) f0moff

involving four arbitrary constants A, B, C, D. This formulation can be helpful when

examining symmetric and anti-symmetric flow. Moffat gives the example of anti-

symmetric flow between rigid boundaries (equivalent to the flow being considered here),

where f0(θ) is even about θ = π/2α. For flow between a rigid boundary and a free

surface f0(θ) is odd about θ = π/2α. For the former flow type then, using that the

solution is required to be symmetric with respect to θ − π
2α , we have

f0(θ) = A cos
(
(λ0 + 1)

(
θ − π

2α

))
+ C cos

(
(λ0 − 1)

(
θ − π

2α

))
. (5.8) f0moff1
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Applying the boundary conditions (
salbc
5.6) to (

f0moff1
5.8) gives two simultaneous equations to

solve as

C cos
(
(λ0 − 1)

π

2α

)
+A cos

(
(λ0 + 1)

π

2α

)
= 0, (5.9) salsol1

C(λ0 − 1) sin
(
(λ0 − 1)

π

2α

)
+A(λ0 + 1) sin

(
(λ0 + 1)

π

2α

)
= 0. (5.10)

Combining these two equations gives a transcendental equation for λ0 as

sin

(
λ0π

α

)
= −λ0 sin

(π
α

)
. (5.11) eq:translam

We can determine A in terms of C from (
salsol1
5.9) thus eliminating one of the constants.

The function f0(θ) can then be written as

f0(θ) = C cos
(
(λ0 − 1)

π

2α

)[cos ((λ0 − 1)
(
θ − π

2α

))
cos
(
(λ0 − 1) π

2α

) −
cos
(
(λ0 + 1)

(
θ − π

2α

))
cos
(
(λ0 + 1) π

2α

) ]
.

(5.12) salf0fin1

Taking the derivative of (
salf0fin1
5.12) twice with respect to θ evaluated at θ = 0 gives

f ′′0 (0) = 4λ0C cos
(
(λ0 − 1)

π

2α

)
. (5.13)

Solving for C, we can alternatively write (
salf0fin1
5.12) as

f0(θ) =
f ′′0 (0)

4λ0

[
cos
(
(λ0 − 1)

(
θ − π

2α

))
cos
(
(λ0 − 1) π

2α

) −
cos
(
(λ0 + 1)

(
θ − π

2α

))
cos
(
(λ0 + 1) π

2α

) ]
. (5.14) salf0fin2

Without loss of generality, we take f ′′0 (0) = 2. For a given α, we can solve (
eq:translam
5.11) numer-

ically for λ0. The pressure can then be determined from (
eq:momnew
5.3) given the stream function

(using vr =
1
rψθ, vθ = −ψr and the Laplacian in polar co-ordinates) in component form

as

∂p

∂r
=

1

r2
∂2ψ

∂r∂θ
+

1

r

∂3ψ

∂r2∂θ
+

1

r3
∂3ψ

∂θ3
, (5.15) eq:ppolar

∂p

∂θ
= −r∂

3ψ

∂r3
− ∂2ψ

∂r2
− 1

r

∂3ψ

∂r∂θ2
+

1

r

∂ψ

∂r
+

2

r2
∂2ψ

∂θ2
. (5.16)
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Substituting the behaviour for ψ from (
eq:psinew
5.2), we can write the pressure as

∂p

∂r
= c0r

λ0−2
(
f ′′′0 + (1 + λ20)

2f ′0
)

(5.17)

∂p

∂θ
= −c0(λ0 − 1)rλ0−1

(
f ′′0 + (1 + λ20)

2f0
)
. (5.18)

Hence, p can be determined as

p =
c0

(λ0 − 1)
rλ0−1

(
f ′′′0 + (1 + λ20)

2f ′0
)
, (5.19) salptermsf0

to within an arbitrary additive constant. The stress components in polar co-ordinates

are

Trr =
∂vr
∂r

= 2c0λ0r
λ0−1f ′0, (5.20)

Trθ =
∂vθ
∂r

+
1

r

∂vr
∂θ

− vθ
r

= c0r
λ0−1

(
f ′′0 − (1− λ20)

2f0
)
, (5.21)

Tθθ = 2
vr
r

+
1

r

∂vθ
∂θ

= −2c0λr
λ0−1f ′0. (5.22)

The equation (
eq:translam
5.11) is transcendental and must be solved numerically. As noted in

demo49
[14], for re-entrant corners and large enough salient corner angles (i.e. between 146.3◦

and 180◦), the solution(s) to (
eq:translam
5.11) are real and may be found by simply looking for

the smallest positive root λ0. For corner angles smaller than 146.3◦ the roots of (
eq:translam
5.11)

are complex and require further analysis. To start this we follow
moff64
[35] in writing the

root λ0 as

λ0 = x0 + iy0, (5.23) eq:lambdareim

where x0 is the real part and iy0 the imaginary part. Substituting into (
eq:translam
5.11) gives two

equations (for the two unknowns x0, y0)

sin
(x0π
α

)
cosh

(y0π
α

)
= −x0 sin

(π
α

)
(5.24) eq:reimsal

cos
(x0π
α

)
sinh

(y0π
α

)
= −y0 sin

(π
α

)
, (5.25)

where the aim is to find (x0, y0). Since there are generally multiple solutions for this

problem, the stream function can be expanded in a series

ψ =

∞∑
n=0

cnr
1+λnfn(θ), (5.26) eq:psinewsum
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where each fn(θ) in (
eq:psinewsum
5.26) is dependant upon the value of λn. The roots are arranged

by convention such that

0 < Re(λ0) < Re(λ1) < · · · , (5.27)

where the first inequality ensures that the velocity vanishes at the wall. Close to the

corner where r → 0, the first term in (
eq:psinewsum
5.26) dominates. For real eigenvalues, this is

the natural way of picking the correct eigenvalue, for complex roots it is assumed by
demo49
[14] that only the real part x0 is relevant. The argument follows that the complex

exponent in (
eq:lambdareim
5.23) corresponds to eddies found near the corner for sharp salient corner

angles. This is found by using (
eq:psinew
5.2) with (

f0moff1
5.8) and determining the transverse velocity

component on θ = 0. This component is found to change sign infinitely often as r → 0

thus implying the existence of eddies in this limit. The geometry considered in the

next section is only relevant then for real solutions to λ0, i.e. for corner angles greater

than 146.3◦ (for more acute corner angles λ0 becomes complex). Figure
fig:eddys
5-1 shows a

sketch of the streamlines for where the corner angles θ < 146.3◦. In order to find (x0,

y0) then, we can do this by trying to minimise the function∣∣∣ sin(x0π
α

)
cosh

(y0π
α

)
+ x0 sin

(π
α

) ∣∣∣+ ∣∣∣ cos(x0π
α

)
sinh

(y0π
α

)
+ y0 sin

(π
α

) ∣∣∣.
(5.28) eq:minfunc

For an initial guess, we can choose a large corner angle value of α = 1
2 . Then in (

eq:translam
5.11),

we get sin(2λ0π) = 0, suggesting the smallest positive root is λ0 = 1/2. Figure (
fig:lamalpha
5-2)

shows the value of λ0 for a range of α, where 1/2 ≤ λ0 < 1 is taken for re-entrant

corners and Re(λ0) > 1 for salient corners. We now record the limiting behaviour at

the wall. No boundary layers are needed in the Newtonian case because all boundary

conditions are satisfied. In the limit then as θ → 0 we determine f0, f
′
0 and the pressure

to be

f0 ∼ θ2, f ′0 ∼ 2θ and p ∼ p0r
λ0−1 + 2c0r

λ0−1(1− λ0)θ. (5.29) sallimitf0p

The constant p0 can be determined here by substituting the form of f0(θ) from (
salf0fin2
5.14)

into (
salptermsf0
5.19) and comparing with (

sallimitf0p
5.29) to give

p0 = 2c0 tan
(
(λ0 − 1)

π

2α

)
. (5.30)
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Figure 5-1: Sketch of the stream lines for corner angles θ < 146.3◦. In between the
eddies are separating streamlines, the existence of eddies implied due to the trans-
verse velocity component on the walls changing sign infinitely often as the corner is
approached. The absolute size of the eddies are proportional to the length scale, deter-
mined by conditions far from the corner. The ‘intensity’ of successive eddies are found
to depend upon the corner angle, with adjacent eddies up to a corner angle of 40◦ being
of comparable size, for greater corner angles than this the relative size starts to drop
off more and more quickly as the corner is approached. The reader is referred to

moff64
[35]

for more detail. fig:eddys

As a note we can transform between polar co-ordinates and Cartesian. This is recorded

in
sib
[52] and is given in component form as

T11 = cos2 θTrr − 2 sin θ cos θTrθ + sin2 θTθθ,

T12 = sin θ cos θTrr + (cos2 θ − sin2 θ)Trθ − sin θ cos θTθθ,

T22 = sin2 θTrr + 2 sin θ cos θTrθ + cos2 θTθθ. (5.31) eq:conv3polcar

In the limit then as y → 0, the stream function and extra stress components behaviours

are

ψ ∼ c0x
λ0−1y2, p ∼ p0x

λ0−1 + 2(1− λ0)c0x
λ0−2y,

T11 ∼ 4(λ0 − 1)c0x
λ0−2y, T12 ∼ 2c0x

λ0−1,

T22 ∼ −4(λ0 − 1)c0x
λ0−2y. (5.32) eq:new:wallmtc
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Figure 5-2: Plots of x0 and y0, the real and imaginary parts of λ0 in (
eq:lambdareim
5.23). This figure

shows the small α behaviour, with the corner angles shown from 360o to 90o. The ‘Error’
is the value of the minimised function in (

eq:minfunc
5.28) and is a check that the calculations

of (x0, y0) are correct. There is agreement with Table 1 of
moff64
[35], for example at α = 2

(θ = 90o), πx0
α = 4.303 and πy0

α = 1.758. fig:lamalpha

This completes the analysis for Newtonian corner flow and covers both the re-entrant

and salient cases.

5.2 Salient corner flow of the Oldroyd-B fluid
sec:oldbsalient

We consider now the salient corner flow of the Oldroyd-B fluid with the usual governing

equations

∇.v = 0, Re (v.∇)v = −∇p+∇.Tp + β∇2v,

Tp +We
▽

Tp= 2(1− β)D. (5.33) eq:oldbforsalient

As for the re-entrant corner there is no natural length scale, so the Weissenberg number

can be scaled out of the problem and set to unity. The geometry to consider is shown

in figure (
fig:salient
5-3). In this geometry, as opposed to the re-entrant corner, it is expected

that the velocity gradient and upper convected polymer stress are small in the core

region, with the dominant behaviour being described by the Stokes equation. So we

assume the flow in the core region away from the walls satisfies

Tp ∼ 2(1− β)D. (5.34) eq:salientcorebal
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Figure 5-3: Salient corner geometry, with the main asymptotic regions shown and
dominant balances given. Distances to the corner are of O(ϵ), and are assumed to
be small. This geometry differs from the re-entrant corner as here the corner angle
depends upon α in the range α ∈ (1,∞). Viscometric behaviour is not recovered in the
core region so a boundary layer is present. For corner angles less than 146.3◦, eddies
will be present as discussed in chapter

sec:newflow
5.1. This figure then illustrates the flow pattern

for corner angles between 180◦ and 146.3◦. fig:salient

Using the small parameter ϵ, the core scalings will be

r = ϵR∗, x = ϵX∗, y = ϵY ∗, ψ = ϵqΨ∗ (5.35)

v = ϵq−1v∗, Tp = ϵq−2Tp∗, p = ϵq−2p∗, (5.36)

with unknown parameter q, where the exponent for p is chosen the same as for Tp due

to the momentum equation. In the governing equations we have

Re ϵq(v∗ · ∇∗)v∗ = −∇∗p∗ +∇∗.Tp∗ + β∇∗2v∗,

Tp∗ + ϵq−2
▽

Tp∗= 2(1− β)D∗, (5.37)

so for the balance (
eq:salientcorebal
5.34) in the constitutive equations we require q > 2. At leading

order in the core region we have

∇∗p∗ = ∇∗.Tp∗ + β∇∗2v∗, Tp∗ = 2(1− β)D∗, (5.38) eq:coreoldbforsalient
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or combining the equations

∇∗p∗ = ∇2v∗. (5.39)

This may then be solved as in the previous section
sec:newflow
5.1, since the same balance occurs.

Hence, we determine q = λ0+1, found from the Newtonian stream function behaviour.

The analysis of section
sec:newflow
5.1 is then relevant here, noting that for salient corners we have

α in the range α ∈ (1,∞). Thus the stream function exponent λ0 satisfies Re(λ0) > 1.

This is crucial as now q = Re(λ0) + 1 > 2 does hold.

Using the wall behaviour as y → 0 from (
eq:new:wallmtc
5.32) in current variables, we have

Ψ∗ ∼ c0X
∗λ0−1Y ∗2, p∗ ∼ p0X

∗λ0−1 + 2(1− λ0)c0X
∗λ0−2Y ∗,

T s∗
11 ∼ 4(λ0 − 1)βc0X

∗λ0−2Y ∗, T s∗
12 ∼ 2βc0X

∗λ0−1,

T s∗
22 ∼ −4(λ0 − 1)βc0X

∗λ0−2Y ∗,

T p∗
11 ∼ 4(λ0 − 1)(1− β)c0X

∗λ0−2Y ∗, T p∗
12 ∼ 2c0(1− β)X∗λ0−1,

T p∗
22 ∼ −4(λ0 − 1)(1− β)c0X

∗λ0−2Y ∗. (5.40) eq:OBwallmatch

We may see that although it is a Newtonian shearing flow, it does not give Oldroyd-B

viscometric behaviour for the polymer extra stresses. Needing to find wall boundary

layers, we can use the behaviours (
eq:OBwallmatch
5.40) to suggest the scalings

X∗ = X̄, Y ∗ = δȲ , Ψ∗ = δ2Ψ̄, p∗ = p̄0(X̄) + δp̄,

T p∗
11 = δT̄ p

11, T p∗
12 = T̄ p

12, T p∗
22 = δT̄ p

22. (5.41) eq:OBblscale

The momentum equations become

Re ϵλ0−1δ3
(
∂Ψ̄

∂Ȳ

∂2Ψ̄

∂X̄∂Ȳ
− ∂Ψ̄

∂X̄

∂2Ψ̄

∂Ȳ 2

)
= −

(
δ
∂p̄0
∂X̄

+ δ2
∂p̄

∂X̄

)
+ δ2

∂T̄ p
11

∂X̄
+
∂T̄ p

12

∂Ȳ
+ δ2β

∂3Ψ̄

∂X̄2∂Ȳ
+ β

∂3Ψ̄

∂Ȳ 3
, (5.42)

Re ϵλ0−1δ3
(
−∂Ψ̄
∂Ȳ

∂2Ψ̄

∂X̄2
+
∂Ψ̄

∂X̄

∂2Ψ̄

∂X̄∂Ȳ

)
=

− ∂p̄

∂Ȳ
+
∂T̄ p

12

∂X̄
+
∂T̄ p

22

∂Ȳ
− δ2β

∂3Ψ̄

∂X̄3
− β

∂3Ψ̄

∂X̄∂Ȳ 2
, (5.43)
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and the constitutive equations

T̄ p
11 +

ϵλ0−1

δ

(
δ2
(
∂Ψ̄

∂Ȳ

∂T̄ p
11

∂X̄
− ∂Ψ̄

∂X̄

∂T̄ p
11

∂Ȳ
− 2

∂2Ψ̄

∂X̄∂Ȳ
T̄ p
11

)
− 2

∂2Ψ̄

∂Ȳ 2
T̄ p
12

)
= 2(1− β)

∂2Ψ̄

∂X̄∂Ȳ
, (5.44) eq:blnewcon1

T̄ p
22 + ϵλ0−1δ

(
∂Ψ̄

∂Ȳ

∂T̄ p
22

∂X̄
− ∂Ψ̄

∂X̄

∂T̄ p
22

∂Ȳ
+ 2

∂2Ψ̄

∂X̄2
T̄ p
12 + 2

∂2Ψ̄

∂X̄∂Ȳ
T̄ p
22

)
= −2(1− β)

∂2Ψ̄

∂X̄∂Ȳ
, (5.45)

T̄ p
12 + ϵλ0−1

(
δ

(
∂Ψ̄

∂Ȳ

∂T̄ p
12

∂X̄
− ∂Ψ̄

∂X̄

∂T̄ p
12

∂Ȳ
− ∂2Ψ̄

∂Ȳ 2
T̄ p
22

)
+ δ3

∂2Ψ̄

∂X̄2
T̄ p
11

)
= (1− β)

∂2Ψ̄

∂Ȳ 2
− δ2

∂2Ψ̄

∂X̄2
. (5.46)

The only possible balance which allows a thin boundary layer, is that of δ = ϵλ0−1 from

(
eq:blnewcon1
5.44) (giving a boundary layer thickness of ϵλ0). Hence we have

Re ϵ4(λ0−1)

(
∂Ψ̄

∂Ȳ

∂2Ψ̄

∂X̄∂Ȳ
− ∂Ψ̄

∂X̄

∂2Ψ̄

∂Ȳ 2

)
= −

(
ϵ(λ0−1)∂p̄0

∂X̄
+ ϵ2(λ0−1) ∂p̄

∂X̄

)
+ ϵ2(λ0−1)∂T̄

p
11

∂X̄
+
∂T̄ p

12

∂Ȳ
+ ϵ2(λ0−1)β

∂3Ψ̄

∂X̄2∂Ȳ
+ β

∂3Ψ̄

∂Ȳ 3
, (5.47)

Re ϵ4(λ0−1)

(
−∂Ψ̄
∂Ȳ

∂2Ψ̄

∂X̄2
+
∂Ψ̄

∂X̄

∂2Ψ̄

∂X̄∂Ȳ

)
=

− ∂p̄

∂Ȳ
+
∂T̄ p

12

∂X̄
+
∂T̄ p

22

∂Ȳ
− ϵ2(λ0−1)β

∂3Ψ̄

∂X̄3
− β

∂3Ψ̄

∂X̄∂Ȳ 2
, (5.48)

and

T̄ p
11 + ϵ2(λ0−1)

(
∂Ψ̄

∂Ȳ

∂T̄ p
11

∂X̄
− ∂Ψ̄

∂X̄

∂T̄ p
11

∂Ȳ
− 2

∂2Ψ̄

∂X̄∂Ȳ
T̄ p
11

)
− 2

∂2Ψ̄

∂Ȳ 2
T̄ p
12

= 2(1− β)
∂2Ψ̄

∂X̄∂Ȳ
, (5.49)

T̄ p
22 + ϵ2(λ0−1)

(
∂Ψ̄

∂Ȳ

∂T̄ p
22

∂X̄
− ∂Ψ̄

∂X̄

∂T̄ p
22

∂Ȳ
+ 2

∂2Ψ̄

∂X̄2
T̄ p
12 + 2

∂2Ψ̄

∂X̄∂Ȳ
T̄ p
22

)
= −2(1− β)

∂2Ψ̄

∂X̄∂Ȳ
, (5.50)

T̄ p
12 + ϵ2(λ0−1)

(
∂Ψ̄

∂Ȳ

∂T̄ p
12

∂X̄
− ∂Ψ̄

∂X̄

∂T̄ p
12

∂Ȳ
− ∂2Ψ̄

∂Ȳ 2
T̄ p
22

)
+ ϵ4(λ0−1) ∂

2Ψ̄

∂X̄2
T̄ p
11

= (1− β)
∂2Ψ̄

∂Ȳ 2
− ϵ2(λ0−1) ∂

2Ψ̄

∂X̄2
. (5.51)

135



At leading order in ϵ we thus obtain

0 =
∂T̄ p

12

∂Ȳ
+ β

∂3Ψ̄

∂Ȳ 3
, 0 = − ∂p̄

∂Ȳ
+
∂T̄ p

12

∂X̄
+
∂T̄ p

22

∂Ȳ
− β

∂3Ψ̄

∂X̄∂Ȳ 2
. (5.52) eq:OBsalbl1

T̄ p
11 − 2

∂2Ψ̄

∂Ȳ 2
T̄ p
12 = 2(1− β)

∂2Ψ̄

∂X̄∂Ȳ
, T̄ p

22 = −2(1− β)
∂2Ψ̄

∂X̄∂Ȳ
, T̄ p

12 = (1− β)
∂2Ψ̄

∂Ȳ 2
, (5.53) eq:OBsalbl2

Eliminating T̄ p
12 from the first equation in (

eq:OBsalbl1
5.52) using the third in (

eq:OBsalbl2
5.53) and then

integrating with respect to Ȳ gives

Ψ̄ =
1

2
ā(X̄)Ȳ 2 + b̄(X̄)Ȳ + c̄(X̄), (5.54)

for some functions ā(X̄), b̄(X̄) and c̄(X̄). The no-slip and no normal velocity conditions

imposed on the wall imply that Ψ̄ = ∂Ψ̄
∂Ȳ

= 0 on Ȳ = 0, and thus b̄(X̄) = c̄(X̄) = 0,

leaving

Ψ̄ =
1

2
ā(X̄)Ȳ 2. (5.55)

We can solve now for the polymer stress components in (
eq:OBsalbl2
5.53) and integrate the pressure

equation in (
eq:OBsalbl1
5.52) to obtain

T̄ p
11 = 2(1− β)

(
ā′(X̄)Ȳ + ā(X̄)2

)
, T̄12 = (1− β)ā(X̄), T̄ p

22 = −2(1− β)ā′(X̄)Ȳ ,

p̄ = −ā′(X̄)Ȳ + p̄0(X̄), (5.56) eq:sol:tp

which is an explicit solution to the boundary layer equations in terms of the unknown

functions ā(X̄) and p̄0(X̄). Recalling the far-field behaviour as θ → 0 from (
eq:OBwallmatch
5.40),

writing these in terms of inner barred variables (equivalent to the limit as Ȳ → ∞)

gives

Ψ̄ ∼ c0X̄
λ0−1Ȳ 2, p̄ ∼ p0X̄

λ0−1 + 2(1− λ0)c0X̄
λ0−2Ȳ ,

T̄ p
11 ∼ 4(λ0 − 1)(1− β)c0X̄

λ0−2Ȳ , T̄ p
12 ∼ 2(1− β)c0X̄

λ0−1,

T̄ p
22 ∼ −4(λ0 − 1)(1− β)c0X̄

λ0−2Ȳ , as Ȳ → ∞. (5.57) eq:sablmc

By comparing with (
eq:sol:tp
5.56) and the expression for the pressure in (

eq:OBblscale
5.41) we may deter-

mine the functions ā(X̄) and p0(X̄) to be

ā = 2c0X̄
λ0−1, p̄0 = p0X̄

λ0−1. (5.58)
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Thus we can write the solution of the leading order boundary layer equations as

Ψ̄ = c0X̄
λ0−1Ȳ 2, T̄ p

11 = 2(1− β)
(
2(λ0 − 1)c0X̄

λ0−2Ȳ + 4c20X̄
2(λ0−1)

)
,

T̄ p
12 = 2(1− β)c0X̄

λ0−1, T̄ p
22 = −4(1− β)(λ0 − 1)c0X̄

λ0−2Ȳ ,

p̄ = p0X̄
λ0−1, (5.59) eq:solvexplisol

satisfying Oldroyd-B viscometric behaviour as Ȳ → 0. In the boundary layer the

solvent extra stresses are their Newtonian like behaviour

T s
11 = ϵ2(λ0−1)T̄ s

11, T s
12 = ϵ(λ0−1)T̄ s

11, T s
22 = ϵ2(λ0−1)T̄ s

22, (5.60)

where

T̄ s
11 = −T̄ s

22 = 2β
∂2Ψ̄

∂X̄∂Ȳ
∼ 4β(λ0 − 1)c0X̄

λ0−2Ȳ ,

T̄ s
12 = β

(
∂2Ψ̄

∂Ȳ 2
− ∂2Ψ̄

∂X̄2

)
∼ 2βc0X̄

λ0−1, (5.61)

at leading order in ϵ.

The above boundary layer analysis has focused on the (‘upstream’) wall θ = 0

and is expected to apply to the (‘downstream’) wall θ = π/α. For the ‘downstream’

layer, Cartesian axes are taken with the x axis along the ‘downstream’ wall θ = π/α

and y orthogonal to the wall along θ = π/α + π/2, preserving the orientation relative

to the ‘upstream’ axes. In terms of polar co-ordinates we have x = r cos (π/α− θ),

y = −r sin (π/α− θ). In outer variables, R∗ ∼ X∗ as normal, but (π/α− θ) ∼ −Y ∗/X∗

as the downstream wall is approached. From the separable solution form of ψ (
eq:psinew
5.2), as

the downstream wall θ = π/α is approached

ψ ∼ r1+λ0c0(π/α− θ)2, since f0 ∼ (π/α− θ)2 (5.62)

= x1+λ0c0
y2

x2
= c0x

λ0−1y2. (5.63)

In terms of boundary layer variables, the equivalent expression for ψ in (
eq:sablmc
5.57) is

1

2
c0X̄

λ0−1Ȳ 2. (5.64)

From (
salf0fin1
5.12), or using the fact that f0 is symmetric around θ − π/2, f ′′0 (π/α) = f ′′0 (0).

The governing equations are therefore unchanged from the upstream case, so the above

analysis applies still. Consequently, (
eq:solvexplisol
5.59) gives the solution for the stream function,

solvent stresses and pressure in the downstream region, with the difference being the
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domain is now

X̄ ≥ 0, Ȳ ≤ 0. (5.65) sddomain

Figure
fig:saldsaxes
5-4 shows the downstream axes alignment.

Figure 5-4: Salient corner geometry, with the downstream axes alignment shown. The
normals n are given on both ‘upstream’ and ‘downstream’ walls, along with the (x, y)
alignment shown for the ‘downstream’ wall. The domain (

sddomain
5.65) is given, where y is

now aligned into the wall now rather than out from it as in the ‘upstream’ case. The
co-ordinate transformations from Cartesian to polars are given, with the relevant angles
indicated on the corner. fig:saldsaxes

5.3 Discussion

The salient corner flow of the Oldroyd-B fluid has been determined as a one parame-

ter family of solutions with respect to the stream function multiplicative constant c0.

The flow, dominated by Newtonian behaviour, has zero velocity gradient and polymer

stresses at the corner in comparison to the singular behaviour of these in re-entrant

corner flow. These features allow the analysis to be far more straightforward, indeed

as far as to have an analytical solution in the core and boundary layer regions. It is no-

table how significantly different the boundary layer equations (
eq:OBsalbl2
5.53) are in the salient

case compared to those of the re-entrant corner in chapter
chapter:reentrantcornerflow
3. Only one component

term in the upper convected stress derivative is present, whilst in comparison all the

component terms are retained in the boundary layer equations at the re-entrant corner.
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The solution derived is valid for β ∈ [0, 1]. The UCM results can be deduced by

simply setting β = 0. In the Newtonian limit β → 1−, we obtain zero polymer extra

stresses in both the outer region (
eq:salientcorebal
5.34) and in the boundary layer (

eq:solvexplisol
5.59). As such

nothing special happens in these two limits.

Another limit of interest is the flat wall case α→ 1+. In this limit, the plot in figure
fig:lamalpha
5-2 shows that λ0 → 1+, or indeed directly from equation (

eq:translam
5.11) it can be calculated

that λ0 = 1 when α = 1. Thus the asymptotic structure breaks down as the boundary

layer thickness becomes order one and is no longer thin. The boundary layer solution

(
eq:solvexplisol
5.59) gives the simple shear solution

Ψ̄ = c0Ȳ
2, T̄ p

11 = 8(1− β)c20, T̄ p
12 = 2(1− β)c0, T̄ p

22 = 0, (5.66)

with analogous expressions for the solvent stresses. We note that the outer core stream

function does give simple shear, since setting α = λ0 = 1 in (
salf0fin2
5.14) gives

f0 =
1

2
(1 + cos(2θ − π)) = sin2 θ,

and thus

ψ → c0r
2 sin2 θ as α→ 1+. (5.67)

The solution of section
sec:oldbsalient
5.2 is only guaranteed to hold for corner angles θ ∈ (146.3o, 180o)

due to the complex nature of the Newtonian eigenvalue λ0 for smaller corner angles.

Further work to understand eddy formation for Oldroyd-B (as in
MOFF64
[?] for Newtonian

flow) is required. Also the analysis has been done for We = 1 and the limits of low and

high Weissenberg number are also of interest.
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Chapter 6

Discussion

chapdisc

The asymptotic structure local to both the re-entrant and salient corners has been

described for classes of self-similar solutions of the Oldroyd-B equations in relevant

parameter regimes. Discussion of the results in each chapter has been previously pre-

sented. Here we discuss the results and limitations of the work presented, along with

possible future lines of enquiry to be pursued.

Prior to this thesis, the re-entrant corner problem was well understood for UCM

fluids, but arguably less so for the more complicated Oldroyd-B fluids. The work of

Rallison and Hinch
rhold
[43], Hinch

hnold
[29] provided the basic solution approach. Here we have

extended this work, primarily investigating in more detail:

(i) the relationship between the Cartesian and natural stress variables,

(ii) the parameter dependence of the solution on both the retardation parameter and

Weissenberg number, and

(iii) providing an alternative numerical scheme to solve the downstream boundary layer

equations.

The other regime of a salient corner problem has also been discussed. This has been

assumed to be straightforward due to the anticipation of a Newtonian flow field dom-

inating, for example see Renardy
rechar
[50], although no details have previously been pre-

sented.

The model equations have been presented here in terms of two dimensionless pa-

rameters, the Weissenberg number We and the retardation parameter (or dimensionless

solvent viscosity) β. The base parameter regime is that of We = O(1) with β ∈ (0, 1),

the singular behaviour of the Oldroyd-B equations near a sharp corner being described

in chapters
chapter:reentrantcornerflow
3 and

chapter:Salientcornerflow
5. In both the re-entrant and salient corner regimes, boundary layers

are present, although their equations are markedly different.

For the re-entrant corner case, the main single parameter limits of (i) high and low
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Weissenberg with β ∈ (0, 1) fixed, and then (ii) β → 1− with Weissenberg kept fixed

and order one, have been described in chapter
chapter:paremterregimes
4. The three region asymptotic structure

of chapter
chapter:reentrantcornerflow
3 occurs at the heart of the high and low Weissenberg structures, which is

expected since the Weissenberg number can be scaled out of the problem. The combined

double parameter limits involving both We and β have been left as open problems and

are likely to have even more complicated structures. Understanding the asymptotics

in these parameter limits is particularly useful as it aids numerical schemes which can

encounter significant difficulties. This aid to the numerics may be by incorporating

the analytical behaviour of the corner stress singularity into a numerical scheme, or

simply by identifying narrow regions where large changes in stress or velocity gradients

can occur and which need appropriate resolution, for example, the cusp like elastic

boundary layers at the walls. As a case in point, numerical schemes tend to have trouble

converging with increasing Weissenberg number (although cope more easily with low

Weissenberg number due to the Newtonian flow behaviour which dominates). As such

the asymptotics of this limit is of use in the understanding of the high Weissenberg

number problem (an overview discussion of which is given in Owens and Philips
OwPh
[39]).

The analytical results of chapter
chapter:reentrantcornerflow
3 give the following asymptotic stress and velocity

field behaviours near to the corner of

Tp = O(r−2(1−α)), Ts = O(r−(1−α)(2−α)), v = O(r(3−α)α−1) as r → 0, (6.1) eq:OBasybeh

with corresponding elastic wall boundary layers of thickness O(r2−α). These behaviours

are known from the earlier work of Hinch
hnold
[29], Rallison and Hinch

rhold
[43] and Evans

EvOB
[17].

However, numerical results in Alves et al.
AOP03
[5] (as well as Singh and Leal

sl
[51], Baaijens

Ba98
[8], Xue et al.

XPT98
[54], Phillips and Williams

PW99
[42], Alves et al.

APO00
[4], Aboubacar and Webster

AW01
[2], Aboubacar et al.

AMW02
[1] amongst others) have only confirmed these behaviours in

the benchmark case of a 270o corner angle i.e. for α = 2/3. It would be of interest to

validate the behaviours (
eq:OBasybeh
6.1) for other corner angles and moreover to see if numerics can

support the asymptotic structures of chapters
chapter:reentrantcornerflow
3 and

chapter:paremterregimes
4 (by simply comparing numerical

sizes of terms in different regions).

For the salient corner case, the Newtonian core similarity solution has been suc-

cessfuly matched to wall boundary layers in chapter
chapter:Salientcornerflow
5 for corner angles greater than

146.3o i.e. α < 1.23. The boundary layers are of thickness rλ0 and retrieve viscomet-

ric behaviour for the polymer stresses. Since only one term of the upper convected

stress derivative is recovered at leading order these boundary layer equations are very

different to those of the re-entrant corner case where all terms in the upper convected

stress derivative are present. The complex mathematical machinery of the natural
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stress formulation is unnecessary in this case to analyse the boundary layer equations

and an explicit solution is available. The retardation parameter β plays less of role

for this solution with the polymer stresses vanishing in the Newtonian limit β → 1−.

The analysis has been performed for the main case of We = 1, with the limits of low

and high Weissenberg numeber being left for future work. For smaller corner angles,

the eigenvalue is complex and the real part of the stream function is taken. Complex

eigenvalues correspond to a sequence of recirculating regions or eddies, the size and

intensity of which are described in Moffatt
moff64
[35]. The details of the boundary layer

equations accommodating such circulating core flows for this corner range have not yet

been been done.

The main extensions to this work can be categorised (not mutually exclusive) in

regard to

� model generalisation ;

� geometry ; and

� other flow types and problems.

Common generalisations of the Oldroyd-B model are the Phan-Thien–Tanner (
PTT
[41])

and Giesekus (
G
[26]) models. These add quadratic stress terms to the polymer consti-

tutive equation which allows these models to capture shear-thinning effects commonly

associated with polymeric fluids. Also these correct the deficiency of Oldroyd-B noted

in chapter
chap:prelim
2 in regard to the unrestrictedly growing extensional viscosity at finite ex-

tension rates in uni- and bi-axial extensional flows. Analogous results to (
eq:OBasybeh
6.1) for the

re-entrant corner exist for these models (see Renardy
Re97PTT
[49] and Evans

EvPTT,EvG
[21, 22]), namely

Tp =

 O(r
− 4(1−λ0)

(5+λ0) ), PTT,

O(r−
(1−λ0)(3−λ0)

4 ), Giesekus,
Ts = O(r−(1−λ0)),v = O(rλ0),

{
PTT,

Giesekus.

(6.2)

Here λ0 ∈ [1/2, 1) is the Newtonian flow eigenvalue (as defined in chapter
chapter:Salientcornerflow
5, but now

applied for the range α < 1). The behaviours are thus very different:

� For Oldroyd-B, the polymer stress dominates the solvent stress. These stress

behaviours hold for the UCM model obtained in the limit β → 0+. However,

they breakdown in the Newtonian limit β → 1− as remarked upon in chapter
chapter:paremterregimes
4.

� For PTT and Giesekus, the solvent stress dominates the polymer stress. These

stress behaviours hold for the Newtonian limit β → 1−, but breakdown in the

limit β → 0+.
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� For β = 0, the PTT model shares the same stress singularity as UCM (but

different velocity behaviours) as described in Evans and Sibley
ES08,ES09
[23, 24]. However,

this solution for the PTT model only holds for angles between 180o and 270o.

Results for larger angles are outstanding as are those entirely for Giesekus in this

limit.

� The boundary layer thickneses for β ∈ (0, 1) are very different, with Oldroyd-

B the thinnest at O(r2−α), then O(r
(3−λ0)

2 ) for Giesekus and the thickest being

O(r
(4−λ0)

3 ) for PTT.

More complex models, include those such as FENE-P and Rollie-Poly
rpoly
[?]. As these be-

come more widely used in numerical simulations, the need to understand the asymptotic

behaviours near singularities (to benchmark the numerical algorithms) also increases.

Understanding the “simpler” models first though is beneficial since they are usually

more tractable analytically and tend to be contained within (i.e. are valid limits of)

the more involved constitutive laws.

Attention has focused entirely on the two-dimensional planar geometry. Equally

important are the circular contraction geometries, so that the axis-symmetric case is

important to study. Much experimental and numerical simulation in the axisymmetic

case has been done (and surveyed in Philips and Owen
PW99
[42]), whilst no analytical results

are available. This is also the case for the fully 3-D contraction flows.

Another restriction of the flow considered here is that it is assumed to be complete

around the re-entrant corner. The presence of a separating streamline at the upstream

wall is of relevance to the situation of a lip vortex, which is often seen in experimental

and numerical simulation of viscoelastic fluids (and not for Newtonian fluids). This

situation has not been discussed. However, if the separating streamline attached to

the corner makes an acute angle π/α′ < π/2 with the upstream wall then there is

an effective re-entrant corner between the separating streamline and the downstream

wall. The core and downstream boundary layer analysis may still be relevant in this

situation, although more general core flows would be anticipated since fluid is now not

originating from the upstream boundary layer. If π/α′ = π/2, then the results here are

unlikely to be applicable.

It is worth mentioning that for the salient corner, antisymmetric flows were only

considered. Following Moffat
moff64
[35], it is possible to consider symmetric flows, where the

symmetry line is a free surface. The flow structure is very similar to the antisymmetric

case with a Newtonian similarity solution dominating between the free surface and the

wall at which a boundary layer of the type obtained in chapter
chapter:Salientcornerflow
5 occurs. The main

difference is that the eigenvalues now satisfy a slightly different transcendental equation
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and the behaviour near the free surface needs investigation. Unlike for Newtonian

fluids, general salient corner flows for Oldroyd-B are not simply linear combinations

of the symmetric and antisymmetric flows due to the nonlinearity of the constitutive

equations.

Further situations possessing both geometric and stress singularities are those as-

sociated with source/sink flows in wedges/cones, stick-slip or slip-stick as well as flows

with general separation points. Very little analytically is available, other than the

recent sink flow in a wedge by Evans and Hagan
eh08
[25].
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Appendix A

Full far field coefficients

ffcoef

Here we record the coefficients in the far-field expansion of the Cartesian variables

(
cff1
3.141)–(

cff4
3.144) in chapter

chapter:reentrantcornerflow
3. The superscript sp denoting similarity parameters have

been dropped in the below expressions for C0 and C1.

F1 =
βC0(α− 2)(α− 3)2

C1(3α− 2)
(A.1)

F2 =
β2C2

0 (α− 2)(27α4 − 102α3 + 135α2 − 73α+ 14)(α− 3)3

2C2
1 (3α− 2)2(2α− 1)2

(A.2)

F3 =
(α− 3)

4C1α2(3α− 2)ξ2

(
α5(4βC0C4 + 6) + α4(14βC0C4 + 40 + β)

+ α3(10βC0C4 + 84 + 3β) + α2(4βC0C4 − 46)− 32α+ 24

)
(A.3)

F4 =
β3C3

0 (α− 1)(α− 2)(α− 3)4

3C3
1 (3α− 1)(5α− 2)(2α− 1)2(3α− 2)3

(
3690α7 − 20722α6 + 47879α5

− 58763α4 + 41304α3 − 16672α2 + 3592α− 320

)
(A.4)

F5 =
β4C4

0 (α− 1)(α− 2)(α− 3)5

24C4
1 (4α− 1)(3α− 1)(5α− 2)(2α− 1)4(3α− 2)4

(
4177800α12

− 36056365α11 + 139910175α10 − 322540510α9 + 491709868α8

− 521994001α7 + 395586577α6 − 215620945α5 + 83898211α4

− 22728136α3 + 4069032α2 − 432208α+ 20592

)
(A.5)
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F6 =
βC0(α− 3)2

6C2
1α

2(α+ 2)(α+ 1)(2α− 1)2(3α− 2)2

(
α10(48C0C4β + 72)

+ α9(−12β − 38C0C4β − 408) + α8(−518βC0C4 + 394− 17β)

+ α7(740βC0C4 + 1204 + 260β) + α6(1028βC0C4 − 1526− 270β)

+ α5(−3100− 182β − 2356βC0C4) + α4(275β + 6484 + 1124βC0C4)

+ α3(−78β − 3326 + 16βC0C4) + α2(−80βC0C4 − 332) + 696α− 144

)
(A.6)

A1 =
2βC0(α− 1)(α− 2)(α− 3)

C1(3α− 2)
(A.7)

A2 =
(α− 1)(α− 2)(25α3 − 66α2 + 50α− 12)β2C2

0

C2
1 (3α− 2)2(2α− 1)

(A.8)

A3 =
(α− 1)(α− 2)(3α3 + (α3 − α2)βC0C4 − 8α2 − 5α+ 6)

C1α2(3α− 2)(α+ 1)
(A.9)

A4 =
(α− 1)(α− 2)(α− 3)3β3C3

0

C3
1 (3α− 2)2(2α− 1)2(5α− 2)

(
775α6 − 3693α5

+ 6883α4 − 6420α3 + 3199α2 − 816α+ 84

)
(A.10)

A5 =
(α− 1)(α− 2)(α− 3)4β4C4

0

3C4
1 (3α− 2)4(2α− 1)3(5α− 2)(3α− 1)

(
505395α11 − 4022929α10

+ 14185420α9 − 29241956α8 + 39170793α7

− 35834263α6 + 22872182α5 − 10198476α4

+ 3116896α3 − 622496α2 + 73184α− 3840

)
(A.11)

A6 =
(α− 3)βC0

6αC2
1 (3α− 2)2(2α− 1)2

(
α9(+48α9C0C4β + 72α9)

+ α8(−232βC0C4 − 552− 12α8β) + α7(+338βC0C4 + 1514 + 56β)

+ α6(−32βC0C4 − 1864− 59β) + α5(−332βC0C4 + 1670− 21β)

+ α4(+346βC0C4 + 65β − 3182) + α3(−200βC0C4 − 35β + 5108)

+ α2(+80βC0C4 − 4066 + 6β) + α(−16βC0C4 + 1520)− 216

)
(A.12)

A7 =
(α− 1)(−3 + 2α)

2αC0(α+ 1)(α− 2)(α− 3)2

(
4α3C0C5 − α2(16C0C5 − 2C0C

2
4 )

+ α(C4 + 6C0C
2
4 + 4C0C5) + 24C0C5 − 4C0C

2
4 − 3C4

)
(A.13)
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B1 =
βC0(2α− 1)(α− 3)(α− 2)2

C1(3α− 2)(α− 1)
(A.14)

B2 =
2(α− 2)(α− 3)2(25α5 − 117α4 + 197α3 − 146α2 + 49α− 6)β2C2

0

C2
1 (3α− 2)2(2α− 1)2

(A.15)

B3 =
2(α− 2)(3α3 + (α3 − α2)βC0C4 − 8α2 − 5α+ 6)

C1α2(3α− 2)(α+ 1)
(A.16)

B4 =
(α− 2)(α− 3)3β3C3

0

2C3
1 (3α− 2)2(2α− 1)2(5α− 2)(3α− 1)

(
4650α8 − 30913α7

+ 84613α6 − 123649α5 + 105184α4 − 53509α3 + 15958α2 − 2556α+ 168

)
(A.17)

B5 =
2(α− 2)(α− 3)4β4C4

0

3C4
1 (3α− 2)4(2α− 1)3(5α− 2)(3α− 1)

(
1010790α13 − 9864353α12

+ 43122976α11 − 111668429α10 + 190927218α9

− 227482449α8 + 194275242α7 − 120407718α6

+ 54151965α5 − 17447730α4 + 3911344α3 − 576824α2 + 50032α− 1920

)
(A.18)

B6 =
(α− 3)βC0

12αC2
1 (3α− 2)2(2α− 1)2(α− 1)(α+ 1)

(
α11(144 + 96C0C4β)

+ α10(−512C0C4β − 24β − 1176) + α9(124β + 668C0C4β + 3148)

+ α8(−2170− 126β + 700βC0C4) + α7(−2086βC0C4 − 1512− 207β)

+ α6(990βC0C4 − 6590 + 387β) + α5(558βC0C4 + 25078− 51β)

+ α4(−622βC0C4 − 213β − 22676) + α3(376βC0C4 + 134β − 906)

+ α2(−232βC0C4 + 11828− 24β) + α(64βC0C4 − 6200) + 1008

)
(A.19)

B7 =
(α2 − 3α+ 3)

αC0(α+ 1)(α− 2)(α− 3)2

(
4α3C0C5 + α2(−16C0C5 − 2C0C

2
4 )

+ α(C4 + 6C0C
2
4 + 4C0C5) + 24C0C5 − 4C0C

2
4 − 3C4

)
(A.20)
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D1 =
2βC0(α− 2)(α− 3)(α2 − 3α+ 1)

C1(3α− 2)(α− 1)
(A.21)

D2 =
(α− 2)(α− 3)2β2C2

0

C2
1 (3α− 2)2(2α− 1)2(α− 1)2

(
50α7 − 36α6 + 1041α5

− 1547α4 + 1272α3 − 578α2 + 134α− 12

)
(A.22)

D3 =
1

(α+ 1)(3α− 2)(α− 1)2C1α2

(
α7(βC0C4 + 3) + α6(−11− 2βC0C4)

+ α5(−6βC0C4 − 15) + α4(16βC0C4 + 104− 3β)

+ α3(−96− 11βC0C4 − β) + α2(6βC0C4 + 2β − 57) + 108α− 36

)
(A.23)

D4 =
(α− 2)(α− 3)3β3C3

0

C3
1 (3α− 2)3(2α− 1)2(5α− 2)(3α− 1)(α− 1)

(
6975α10 − 61827α9

+ 234261α8 − 498701α7 + 658958α6 − 563825α5

+ 316358α4 − 114941α3 + 25838α2 − 3228α+ 168

)
(A.24)

D5 =
(α− 2)(α− 3)4β4C4

0

3C4
1 (3α− 2)4(2α− 1)3(5α− 2)(3α− 1)(α− 1)(4α− 1)

(
4043160α15

− 47742182α14 + 255195011α13 − 819193720α12 + 1765689807α11

− 2705857782α10 + 3044714741α9 − 2560985636α8

+ 1623126047α7 − 774886220α6 + 276205926α5

− 72105876α4 + 13318912α3 − 1637936α2 + 119264α− 3840

)
(A.25)

D6 =
(α− 3)βC0

6αC2
1 (3α− 2)2(2α− 1)2(α− 1)2(α+ 1)

(
α12(72 + 48C0C4β)

+ α11(−696− 12β − 328C0C4β) + α10(80β + 2330 + 658C0C4β)

+ α9(−2420 + 170C0C4β − 147β) + α8(−1962− 51β − 2156βC0C4)

+ α7(−640 + 393β + 2784βC0C4) + α6(25220− 300β − 2394βC0C4)

+ α5(−47560− 117β + 3346βC0C4) + α4(253β + 30450− 3472βC0C4)

+ α3(−117β + 4648 + 1528βC0C4) + α2(−15490 + 18β − 136βC0C4)

+ α(7152− 48βC0C4)− 1080

)
(A.26)
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D7 =
1

2αC0(α+ 1)(α− 2)(α− 1)2(α− 3)2

(
α7(8C0C5) + α6(−76C0C5 − 4C0C

2
4 )

+ α5(284C0C5 + 34C0C
2
4 + 2C4) + α4(−504C0C5 − 126C0C

2
4 − 17C4)

+ α3(254C0C
2
4 + 316C0C5 + 59C4) + α2(−290C0C

2
4 + 300C0C5 − 105C4)

+ α(+180C0C
2
4 − 600C0C5 + 93C4)− 48C0C

2
4 + 288C0C5 − 36C4

)
(A.27)
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Appendix B

α = 2/3 Full-far field case

app:logff
Here are presented the modified expansions analogous to (

cff1
3.141)–(

cff4
3.144) in the case

α = 2/3. These terms are fully determined down to ξ−8/3 where the eigenmodes

associated with C0, C2, C3, C4 and C5 are retained. The structure of the expansion

is similar to that found by Sibley
sib
[52] for the PTT model involving algebraic powers

of ln(ξ). This expansion below completes the far-field analysis for the Cartesian stress

basis. The supercript sp has again been dropped from C0 and C1 for convenience.

f(ξ) ∼ ξ7/3

(
1 + (F1 ln(ξ) + C2)

1

ξ2/3
+ C3

1

ξ1

+
(
F2 ln

2(ξ) + F3 ln(ξ) + C4

) 1

ξ4/3

+
(
F4 ln

3(ξ) + F5 ln(ξ)
2 + F6 ln(ξ) + F7

) 1

ξ2

+
(
F8 ln

4(ξ) + F9 ln(ξ)
3F10 ln

2(ξ) + F11 ln(ξ) + C5

) 1

ξ8/3

)
, (B.1)

tp11(ξ) ∼ C1

(
1 + (A1 ln(ξ) +A2)

1

ξ2/3

+
(
A3 ln

2(ξ) +A4 ln(ξ) +A5

) 1

ξ4/3

+
(
A6 ln(ξ)

2 +A7 ln(ξ) +A8

) 1

ξ2

+
(
A9 ln

4(ξ) +A10 ln(ξ)
3A11 ln

2(ξ) +A12 ln(ξ) +A13

) 1

ξ8/3

)
, (B.2)
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tp12(ξ)
1

3
∼ C1ξ

(
1 + (B1 ln(ξ) +B2)

1

ξ2/3
+B3

1

ξ

+
(
B4 ln

2(ξ) +B5 ln(ξ) +B6

) 1

ξ4/3

+
(
B7 ln(ξ)

2 +B8 ln(ξ) +B9

) 1

ξ2

+
(
B10 ln

4(ξ) +B11 ln(ξ)
3B12 ln

2(ξ) +B13 ln(ξ) +B14

) 1

ξ8/3

)
, (B.3)

tp22(ξ) ∼
1

9
∼ C1ξ

2

(
1 + (D1 ln(ξ) +D2)

1

ξ2/3
+D3

1

ξ

+
(
D4 ln

2(ξ) +D5 ln(ξ) +D6

) 1

ξ4/3

+
(
D7 ln(ξ)

3D8 ln(ξ)
2 +D9 ln(ξ) +D10

) 1

ξ2

+
(
D11 ln

4(ξ) +D12 ln(ξ)
3D13 ln

2(ξ) +D14 ln(ξ) +D15

) 1

ξ8/3

)
. (B.4)

The constants Fi, Ai, Bi, Di are presented separately

F1 =
196

27

βC0

C1
, F2 =

2744

81

β2C2
0

C2
1

, F3 =
28

9

βC0(3C1C2 + 49βC0)

C2
1

,

F4 =
4533088

59049

β3C3
0

C3
1

, F5 =
4571504

6561

β3C3
0

C3
1

,

F6 =
7

26244

β(3616592β2C3
0 + 12312C2

1C
2
0C4 − 1215C2

1 )

C3
1

F7 =
1

104976

(31752C2
1 (C0βC4 + 33)2 − 107163C2

1β + 86512832β3C3
0 )

C3
1

,

F8 =
158658080

1594323

β4C4
0

C4
1

, F9 =
991747456

531441

β4C4
0

C4
1

,

F10 =
49

196830

βC0(37510480β
3C3

0 + 32400C0βC
2
1C4 + 135C2

1β − 5616C2
1 )

C4
1

,

F11 =
1

104976

1

C4
1

(
781734240C0βC

2
1 (C0βC4 + 1021/24620) + 654885C2

1β
2C0

+ 131597465440β4C4
0

)
(B.5)
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A1 =
56

271

βC0

C1
, A2 =

2

63

196βC0 + 9C1C2

C1
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