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1 Introduction

We begin by looking at the governing equations for fluid motion. These are derived from the balance laws of conservation
of mass and conservation of momentum. Conservation of mass gives rise to the continuity equation which reads:

Dρ

Dt
+ ρ∇ · v = 0 (1)

Where ρ is the density, v is the velocity and D
Dt =

∂
∂t +(v ·∇). For an incompressible fluid, which is the case we shall study,

Dρ
Dt = 0 and so the continuity equation reduces to:

∇ · v = 0 (2)

Further, by the conservation of linear momentum we recover the equation:

ρ
Dv

Dt
= ∇ · σ + ρF (3)

Where F is the body force acting on the fluid and σ is the stress tensor. Everything else is defined as before. We are going
to assume the absence of a body force (F = 0). σ is given by:

σ = −pI+T (4)

Where p is the pressure, Iij = δij and T is the extra stress tensor. Conservation of angular momentum does not give us
another equation, but we do recover the condition that the stress tensor is symmetric, i.e.

σ
T = σ (5)

It then follows that the extra stress tensor T is also symmetric. In component form, the equation reduces to:

ρ

�
∂vi

∂t
+ vj

∂vi

xj

�
=

∂σij

∂xj
= − ∂p

∂xj
δij +

∂Tij

∂xj
= − ∂p

∂xi
+

∂Tij

∂xj
i = 1, 2, 3 (6)

Where the summation convention has been used. In vector form this reads:

ρ

�
∂v

∂t
+ (v ·∇)v

�
= −∇p+∇ ·T (7)

In order to solve these equations we need additional constitutive relations that relate the extra stress tensor to the motion.
In the interpolated Maxwell models this relation takes the following form:

T = TP +TS (8)

Here TP is polymer stress and TS is solvent stress which is newtonian like. The maxwell models treat the fluid as strings
of polymers lubricated by solvent. Further information may be gained from the relations for TP and TS which read[1]:

TS = 2ηSD (9)

TP + λP

�
TP= 2ηPD (10)

Where D = 1
2

�
∇v + (∇v)T

�
is the rate of strain tensor (the symmetric part of the velocity gradient), ηS and ηP are the

solvent and polymer viscosities respectively and λP is the relaxation time and can be interpreted as a measure of the strength

of the fluid’s memory.
�
TP is given by:

�
TP=

∂T

∂t
+ (v ·∇)TP − (W + aD)TP +TP (W − aD) (11)

Where W = 1
2

�
∇v − (∇v)T

�
(the anti-symmetric part of the velocity gradient), and −1 ≤ a ≤ 1 is known as the ’slip

parameter’ and accounts for non-affine deformation of the fluid. a = 1 represents affine motion, and deviation from this
value measures deviation from affine motion[11].
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1.1 Typical Parameter Values

The most commonly used values for a are −1, 0, 1. These give rise to the Lower Convected, Co-rotational and Upper Con-
vected Maxwell models respectively. The other parameters naturally will vary from fluid to fluid. Below is a list of actual
viscoelastic fluids and their parameter values[1].

Fluid Density (kg/m3) Viscosity (Pa · s) Relaxation Time (10−3s)
Glycerol 1255 0.69 0.12
Olive Oil 914 0.06 0.65
Soybean Oil 922 0.046 1.26
SAE 30 Motor Oil 886 0.098 0.19
Honey 1400 249 0.97
Cherry Jam (Pillsbury) 1090 474 0.32

1.2 Non-dimensionalisation

We seek to non-dimensionalise, we have the governing equations:

∇ · v = 0 ρv ·∇v = −∇p+∇ ·T T = TP +TS

TS = 2ηSD TP + λP

�
TP= 2ηPD

The density ρ, solvent and polymer viscosities ηS , ηP and relaxation time λP are assumed to be constant. We can now
nondimensionalise as follows[5]:

x = Lx̄, v = U v̄, p = ηU
L p̄, T = ηU

L T̄, TS = ηU
L T̄S , TP = ηU

L T̄P

Where L and U are characteristic length and flow speed resp. and η = ηS + ηP . We thus obtain:

∇̄ · v̄ = 0, Rev̄ · ∇̄v̄ = −∇̄p̄+ ∇̄ · T̄, T̄ = T̄S + T̄P

T̄S = 2βD̄, T̄P +We
�
T̄P= 2(1− β)D̄

Where Re = ρUL
η is the Reynolds number, We = λPU

L is the Weissenberg number and β = ηS

ηS+ηP
. The solutions to the

non-dimensional equations depend on these three dimensionless parameters, the original equations have four dimensional
parameters and each solution of these corresponds to a solution of the non-dimensional equations, and different cases in the
dimensional case correspond to a single solution in the non-dimensionalised case. This means it is easier to investigate the
effects of the parameters and also easier to design experiments to verify the predictions of the model. For the rest of the
report we will use the non-dimensionalised equations and drop the bars. In component form the equations become:

∂vi

∂xi
= 0 (12)

Revk
∂vi

∂xk
= − ∂p

∂xi
+

∂Tik

∂xk
(13)

Tij = T
P
ij + T

S
ij (14)

T
S
ij = 2βDij (15)

T
P
ij +We

�
∂TP

ij

∂t
+ vk

∂

∂xk
T

P
ij −

�
a+ 1

2

∂vi

∂xk
+

a− 1

2

∂vk

∂xi

�
T

P
kj − T

P
ik

�
a− 1

2

∂vk

∂xj
+

a+ 1

2

∂vj

∂xk

��
= (1− β)

�
∂vi

∂xj
+

∂vj

∂xi

�

(16)
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2 Cartesian and Natural Stress Formulations

We will now consider steady planar flow. That is, there is no time dependence and we work in two dimensions. The momentum
and constitutive equations may be written in the form:

Re v ·∇u = −∂p

∂x
+

∂T11

∂x
+

∂T12

∂y
(17)

Re v ·∇v = −∂p

∂y
+

∂T12

∂x
+

∂T22

∂y
(18)

and

T11 +We

�
u
∂T11

∂x
+ v

∂T11

∂y
− 2a

∂u

∂x
T11 − (a− 1)

∂v

∂x
T12 − (a+ 1)

∂u

∂y
T12

�
= 2(1− β)

∂u

∂x
(19)

T22 +We

�
u
∂T22

∂x
+ v

∂T22

∂y
− 2a

∂v

∂y
T22 − (a− 1)

∂u

∂y
T12 − (a+ 1)

∂v

∂x
T12

�
= 2(1− β)

∂v

∂y
(20)

T12 +We

�
u
∂T12

∂x
+ v

∂T12

∂y
−
�
a+ 1

2

∂u

∂y
+

a− 1

2

∂v

∂x

�
T22 −

�
a− 1

2

∂u

∂y
+

a+ 1

2

∂v

∂x

�
T11

�
= (1− β)

�
∂u

∂y
+

∂v

∂x

�
(21)

The velocity field is given by:

v = (u, v) =

�
∂ψ

∂y
,−∂ψ

∂x

�
(22)

where ψ is the stream function. We can also express the stress tensor with respect to a natural stress basis which is spanned
by the velocity field and its orthogonal counterpart. The vector w given by:

w = (w1, w2) =

�
− v

u2 + v2
,

u

u2 + v2

�
(23)

is orthogonal to v (it is easy to check that v ·w = 0) and also satisfies |v ×w| = 1. We can then express TP using dyadic
products of v and w as follows[2]:

TP = −1− β

We
I+ λvvT + µ(vwT +wvT ) + νwwT (24)

In component form the Cartesian and natural stress bases are related as follows:

T11 = − (1− β)

We
+ λu

2 − 2µuv

u2 + v2
+

νv2

(u2 + v2)2
(25)

T12 = λuv +
µ(u2 − v2)

u2 + v2
− νuv

(u2 + v2)2
(26)

T22 = − (1− β)

We
+ λv

2 +
2µuv

u2 + v2
+

νu2

(u2 + v2)2
(27)

Under this change of variables, equations (19), (20) and (21) become:

λ+Wev ·∇λ+ (a+ 1)Weµ∇ ·w − (a− 1)

|v|2 Weλv ·∇(|v|2) = (1− β)

|v|2

�
1

We
− (a− 1)

|v|2 v ·∇(|v|2)
�

(28)

µ+Wev ·∇µ+

�
(a− 1)

2
λWe|v|4 + (a+ 1)

2
νWe

�
∇ ·w = (1− β)(a− 1)|v|2∇ ·w (29)

ν +Wev ·∇ν +We(a− 1)

�
µ|v|4∇ ·w − ν

|v|2v ·∇(|v|2)
�

= (1− β)

�
|v|2

We
− (a− 1)v ·∇(|v|2)

�
(30)
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Or alternatively, stated in order to make the effects of the slip parameter a clearer:

λ+Wev ·∇λ+ 2Weµ∇ ·w + (a− 1)

�
1

|v|4
�
(1− β)−Weλ|v|2

�
v ·∇(|v|2) +Weµ∇ ·w

�
=

1− β

We

1

|v|2 (31)

µ+Wev ·∇µ+Weν∇ ·w + (a− 1)

�
λWe

2
|v|4 − (1− β)|v|2 + Weν

2

�
∇ ·w = 0 (32)

ν +Wev ·∇ν + (a− 1)

�
Weµ|v|4∇ ·w +

�
(1− β)− νWe

|v|2

�
(v ·∇(|v|2))

�
=

1− β

We
|v|2 (33)

Here it is very easy to see that for the case a = 1 the above equations agree with published results for the UCM model[2].
Where ∇ ·w is given by:

∇ ·w =
1

|v|4

�
(v2 − u

2)

�
∂v

∂x
+

∂u

∂y

�
+ 4uv

∂u

∂x

�
(34)

And the momentum equations 17 and 18 become:

Rev ·∇u = −∂p

∂x
+ v ·∇(λu) +

�
µuw − (µv + νw)

v

|v|2

�
(35)

Rev ·∇v = −∂p

∂y
+ v ·∇(λv) +

�
µvw + (µv + νw)

u

|v|2

�
(36)

We can solve (25) - (27) simultaneously to get expressions for λ, µ and ν:

λ =
1

We(u2 + v2)2
((1− β)(u2 + v

2) +We(u2
T11 + 2uvT12 + v

2
T22)) (37)

µ =
1

(u2 + v2)
((u2 − v

2)T12 + uv(T22 − T11)) (38)

ν =
1

We
((1− β)(u2 + v

2) +We(u2
T22 − 2uvT12 + v

2
T11)) (39)

We note these for use later.

3 Viscometric Behaviour

We begin the analysis by considering a simple shear flow with constant shear rate γ̇, i.e. the velocity is given by v = (γ̇y, 0).
We thus have:

T =

�
T11 T12

T21 T22

�
∇v =

�
0 γ̇

0 0

�
(40)

and so the constitutive equations become:
T11 − γ̇We(a+ 1)T12 = 0 (41)

T12 −
γ̇We

2
((a+ 1)T22 + (a− 1)T11) = γ̇(1− β) (42)

T22 − γ̇We(a− 1)T12 = 0 (43)

The cases a = ±1 will require a little special care. First the case a = −1 which corresponds to the lower convected Maxwell
model. Here the above equations become:

T11 = 0 (44)

T12 = γ̇(1− β) (45)
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T22 = −2(1− β)γ̇2We (46)

For γ̇ = O(1) we have that T11 = 0, T12 = O(1) and T22 = O(We). If, on the other hand, we consider the case a = 1
corresponding to the upper convected Maxwell model, we find the following:

T11 = 2(1− β)γ̇2We (47)

T12 = γ̇(1− β) (48)

T22 = 0 (49)

So we have that T11 = O(We), T12 = O(1) and T22 = 0. Having dealt with these two cases, we can consider a more general
case −1 < a < 1. This is the case we will be most interested as analysis has already been done for the upper and lower
convected Maxwell models. For this case we have:

T11 =
γ̇2We(a+ 1)(1− β)

1− γ̇2We2(a2 − 1)
(50)

T22 =
γ̇2We(a− 1)(1− β)

1− γ̇2We2(a2 − 1)
(51)

T12 =
γ̇(1− β)

1− γ̇2We2(a2 − 1)
(52)

So we can deduce that T11 = O(We−1), T12 = O(We−2) and T22 = O(We−1). We can actually do slightly better than this
by rewriting our expressions for T11, T12 and T22 in the following manner:

T11 =
−(1− β)

(a− 1)We

�
1− 1

γ̇2(a2 − 1)We2

�−1

(53)

T22 =
−(1− β)

(a+ 1)We

�
1− 1

γ̇2(a2 − 1)We2

�−1

(54)

T12 =
−(1− β)

γ̇We2(a2 − 1)

�
1− 1

γ̇2(a2 − 1)We2

�−1

(55)

Doing this is only valid for a �= ±1 else we will have a zero in the denominator of each expression. We can then expand the
square brackets to obtain the following expressions:

T11 =
−(1− β)

(a− 1)We

�
1 +

1

γ̇2(a2 − 1)We2
+O

�
1

We4

��
(56)

T22 =
−(1− β)

(a+ 1)We

�
1 +

1

γ̇2(a2 − 1)We2
+O

�
1

We4

��
(57)

T12 =
−(1− β)

γ̇We2(a2 − 1)

�
1 +

1

γ̇2(a2 − 1)We2
+O

�
1

We4

��
(58)

So as We → ∞ we have the asymptotic relations:

T11 ∼ − (1− β)

We(a− 1)
(59)

T22 ∼ − (1− β)

We(a+ 1)
(60)
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T12 ∼ − (1− β)

γ̇We2(a2 − 1)
(61)

As We → ∞. These are in agreement to what we derived above. We can also substitute (56) and (57) into (42) to obtain:

T12 −
γ̇We

2

�
− (1− β)

We

�
1 +

1

γ̇2(a2 − 1)We2
+O

�
1

We4

��
− (1− β)

We

�
1 +

1

γ̇2(a2 − 1)We2
+O

�
1

We4

���
= γ̇(1− β)

T12 + γ̇(1− β)

�
1 +

1

γ̇2(a2 − 1)We2
+O

�
1

We4

��
= γ̇(1− β) (62)

The right hand side will cancel with the first term in the braces, and so we have:

T12 ∼ − (1− β)

γ̇We2(a2 − 1)
(63)

Which is consistent with 61. We can see from the above working that as a → 1 and We → ∞ there is a clash of scales. To
get around this problem and to allow us to transition between cases more smoothly we shall introduce the new parameter
b = (1 − a)We2 = O(1). Then we have that a = 1 − b

We2 . We can now substitute this into the expressions above for the

components of T to get:

T11 =
γ̇2(1− β)(2We− b)

1 + γ̇2(2We− b)b
(64)

T12 =
γ̇(1− β)

1 + γ̇2(2We− b)b
(65)

T22 =
−γ̇2(1− β)b

1 + γ̇2(2We− b)b
(66)

Which means we have that

T11 ≈
�

(1−β)
b if 2We � b � 1

2Weγ̇2(1− β) if b � 1
(67)

T12 ≈
�

1−β

γ̇(2We−b)b
if 2We � b � 1

γ̇2(1− β) if b � 1
(68)

T22 ≈
�
− (1−β)

(2We−b)
if 2We � b � 1

0 if b � 1
(69)

The upper bound for b comes from noting the following:

2We− b = We(2− (1− a)) = We(1 + a) ≥ 0

In the limit as We gets large. As b → 0 and so a → 1 we find that T11 = O(We), T12 = O(1) and T22 = 0 which is in
agreement with published results on the upper convected Maxwell model[8]. We are going to concentrate on the case where
We → ∞ and a �= ±1 as analysis has already been done for the cases a = ±1 which correspond to the Upper and Lower
Convected Maxwell models. See appendix for viscometric stress plots.

4 High Weissenberg Limit

We will look at a steady two-dimensional flow near a flat boundary, so the domain is the half plane y > 0. We are interested
in solutions for small y and large We. The viscometric behaviour derived in the previous section suggests the following
scaling of variables.

x = x̄(= O(1)) y = δȳ ψ = δnψ̄

T11 = δn1 T̄11 T12 = δn2 T̄12 T22 = δn3 T̄22 p = δn4 p̄

Here n, n1, n2 and n3 are yet to be determined and δ = δ(We) (the ’gauge’) is assumed small. We will determine it by
balancing terms in the constitutive equations. Now for the case a �= ±1 we have from the viscometric behaviour that:
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δn1 = We−1
δn2 = We−2

δn3 = We−1

We can also scale the velocity components using the scaled stream function:

u =
∂ψ

∂y
=

δn

δ

∂ψ̄

∂ȳ
= δ

n−1
ū (70)

v = −∂ψ

∂x
= −δ

n ∂ψ̄

∂x̄
= δ

n
v̄ (71)

Substituting this into the constitutive equations we obtain:

1

We
T̄11 +We

�
δn−1

We

�
ū
∂T̄11

∂x̄
+ v̄

∂T̄11

∂ȳ
− 2a

∂ū

∂x̄
T̄11

�
− (a− 1)

δn

We2
∂v̄

∂x̄
T̄12 − (a+ 1)

δn−2

We2
∂ū

∂ȳ
T̄12

�
= 2(1− β)δn−1 ∂ū

∂x̄
(72)

1

We
T̄22 +We

�
δn−1

We

�
ū
∂T̄22

∂x̄
+ v̄

∂T̄22

∂ȳ
− 2a

∂v̄

∂ȳ
T̄22

�
− (a− 1)

δn−2

We2
∂ū

∂ȳ
T̄12 − (a+ 1)

δn

We2
∂v̄

∂x̄
T̄12

�
= 2(1− β)δn−1 ∂v̄

∂ȳ
(73)

1

We2
T̄12 +We

�
δn−1

We2

�
ū
∂T̄12

∂x̄
+ v̄

∂T̄12

∂ȳ

�
− δn−2

We

∂ū

∂ȳ

�
a− 1

2
T̄11 +

a+ 1

2
T̄22

�
− δn

We

∂v̄

∂x̄

�
a+ 1

2
T̄11 +

a− 1

2
T̄22

��
(74)

= (1− β)

�
δ
n−2 ∂ū

∂ȳ
+ δ

n ∂v̄

∂x̄

�

Since δ � 1, the fullest balance is when
δn−1

We
=

δn−2

We2
⇒ δ =

1

We
(75)

and additionally 1
We = δn−1 which allows us to conclude that n = 2. Then keeping only the leading order terms we obtain

the following constitutive boundary layer equations.

T̄11 + ū
∂T̄11

∂x̄
+ v̄

∂T̄11

∂ȳ
− 2a

∂ū

∂x̄
T̄11 − (a+ 1)

∂ū

∂ȳ
T̄12 = 2(1− β)

∂ū

∂x̄
(76)

T̄22 + ū
∂T̄22

∂x̄
+ v̄

∂T̄22

∂ȳ
− 2a

∂v̄

∂ȳ
T̄22 − (a− 1)

∂ū

∂ȳ
T̄12 = 2(1− β)

∂v̄

∂ȳ
(77)

−a− 1

2
T̄11 −

a+ 1

2
T̄22 = (1− β) (78)

At first glance this system seems a little unexpected, it is however possible to recover a viscometric flow. Let:

ψ̄ = 1
2 γ̇ȳ

2 ū = γ̇ȳ v̄ = 0

Then we can substitute these into our boundary layer equations to obtain:

T̄11 − (a+ 1)γ̇T̄12 = 0

T̄22 − (a− 1)γ̇T̄12 = 0 (79)

−(a− 1)T̄11 − (a+ 1)T̄22 = 2(1− β)

From these we can get T̄12 = − (1−β)
γ̇(a2−1) which is the highest order term in (61) and so we recover viscometric behaviour. We

can also scale the momentum equations in a similar manner, with just the scaling for p remaining to be found explicitly.

Re

We2
v̄ · ∇̄ū = −δ

n4
∂p̄

∂x̄
+

1

We

�
∂T̄11

∂x̄
+

∂T̄12

∂ȳ

�
(80)

Re

We3
v̄ · ∇̄v̄ = −Weδn4

∂p̄

∂ȳ
+

1

We2
∂T̄12

∂x̄
+

∂T̄22

∂ȳ
(81)
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The fullest balance here is when δn4 = 1
We so we conclude n4 = 1. Thus keeping the leading order terms , we obtain the

boundary layer momentum equations.

−∂p̄

∂x̄
+

∂T̄11

∂x̄
+

∂T̄12

∂ȳ
= 0 (82)

−∂p̄

∂ȳ
+

∂T̄22

∂ȳ
= 0 (83)

By multiplying (76) and (77) appropriately then subtracting one from the other we are able to eliminate T̄12. We can then
use (78) to obtain a boundary layer equation just in terms of T̄11. Applying the continuity equation, this reduces to:

T̄11 + v̄ · ∇̄T̄11 =
(1− β)

(1− a)
(84)

We can replace v̄ · ∇̄ with ∂
∂s where s is measured along streamlines. Then we have a simple ODE for T11 in s:

T̄11 +
∂T̄11

∂s
=

(1− β)

(1− a)
(85)

We can immediately recover the particular solution:

T̄11 =
(1− β)

(1− a)

The general solution may be found using the integrating factor and we obtain:

T̄11 =
(1− β)

(1− a)
+ c(ψ)e−s (86)

Where c(ψ) is constant along streamlines.
We now seek to find the natural stress formulations of the boundary layer equations, we first however need to find scalings

for λ, µ and ν. We do this by attempting to balance the relation that links cartesian and natural stress formulations.

T̄11

We
= − (1− β)

We
+ λ

ū2

We2
− 2

µ

We

v̄

ū
+ ν

v̄2

ū4

T̄11 = −(1− β) +
λ

We
ū
2 − 2µ

v̄

ū
+ νWe

v̄2

ū4
(87)

T̄12

We2
= λ

ūv̄

We3
+ µ− ν

v̄

ū3
We

T̄12 = λ
ūv̄

We
+We2µ− νWe3

v̄

ū3
(88)

T̄22

We
= − (1− β)

We
+

λ

We4
v̄
2 + 2µ̄We

v̄

ū
+ ν

We2

ū2

T̄22 = −(1− β) +
λ

We3
v̄
2 + 2µ

v̄

ū
+ ν

We3

ū2
(89)

The fullest balance seems to come when we scale in the following manner:

λ = Weλ̄ µ = 1

We2 µ̄ ν = 1

We3 ν̄

Then at leading order we have:
T̄11 = −(1− β) + λ̄ū

2 (90)

T̄22 = −(1− β) +
ν̄

ū2
(91)
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T̄12 = λ̄ūv̄ + µ̄− ν̄
v̄

ū3
(92)

We can substitute these expressions into the boundary layer equations, and we can also substitute our scalings into (31) -
(33) to obtain natural stress boundary layer equations.

λ̄+ v̄ · ∇̄λ̄− (a+ 1)
µ̄

ū2

∂ū

∂ȳ
+

(a− 1)

ū2
v̄ · ∇̄(ū2)

�
(1− β)

ū2
− λ̄

�
=

(1− β)

ū2
(93)

(1− a)

2

λ

ū2
− (a+ 1)

2
ν̄ū

2 = (1− β)(1− a)ū4 (94)

ν̄ + v̄ · ∇̄ν̄ − (a− 1)µ̄ū2 ∂ū

∂ȳ
+

(a− 1)

ū2
v̄ · ∇̄(ū2)(ū2(1− β)− ν̄) = (1− β)ū2 (95)

We seek a similarity solution for the constitutive equations. We start with:

ξ = ȳx̄−q0 ψ̄ = x̄q1f(ξ) T̄ij = x̄qij tij(ξ)

This then also gives us:

ū =
∂ψ̄

∂ȳ
= x̄

q1 df

dξ

∂ξ

∂ȳ
= x̄

(q1−q0)f
�

v̄ = −∂ψ̄

∂x̄
= −q1x̄

q1−1
f − x̄

q1 df

dξ

∂ξ

∂x̄
= x̄

q1−1(q0ξf
� − q1f)

From (78) we can immediately recover that q11 = q22 = 0. Then substituting into (76) and (77) we also learn that q1 = q0+1
and q12 = q0 − 1, and the similarity solution is given by:

ξ =
ȳ

x̄q0
, ψ̄ = x̄

q0+1
f(ξ)

T̄11 = t11(ξ), T̄12 = x̄
q0−1

t12(ξ), T̄22 = t22(ξ) (96)

Which gives us the following system of ODEs:

t11(ξ)− (1 + q0)f(ξ)t
�
11(ξ)− 2a(f �(ξ)− q0ξf

��(ξ))t11(ξ)− (a+ 1)f ��(ξ)t12(ξ) = 2(1− β)(q0ξf
��(ξ)− f

�(ξ)) (97)

t22(ξ)− (1 + q0)f(ξ)t
�
22(ξ)− 2a(q0ξf

��(ξ)− f
�(ξ))t22(ξ)− (a− 1)f ��(ξ)t12(ξ) = 2(1− β)(q0ξf

��(ξ)− f
�(ξ)) (98)

1− a

2
t11(ξ)−

1 + a

2
t22(ξ) = (1− β) (99)

Multiplying and adding (97) and (98) appropriately then substituting in an expression for t22 obtained from (99) we can
obtain the following single ode to be solved for t11 and f :

2(1− β)(a− 1)(f � − q0ξf
��) + (a− 1)(t11 − (1 + q0)ft

�
11) + (1− β) = 0 (100)

5 Low Weissenberg Limit

We will look again at a steady two-dimensional flow near a flat boundary, so the domain is the half plane y > 0. We are
interested in solutions for small y and small We. We once again assume the variables will scale in the following manner:

x = x̄(= O(1)) y = δȳ ψ = δnψ̄

T11 = δn1 T̄11 T12 = δn2 T̄12 T22 = δn3 T̄22 p = δn4 p̄

Here n, n1, n2 and n3 are yet to be determined and δ = δ(We) (the ’gauge’) is assumed small. We will determine it by
balancing terms in the constitutive equations. Now for the case a �= ±1 we have from the viscometric behaviour that:
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δn1 = We1 δn2 = We0 = 1 δn3 = We1

We can also scale the velocity components using the scaled stream function:

u =
∂ψ

∂y
=

δn

δ

∂ψ̄

∂ȳ
= δ

n−1
ū (101)

v = −∂ψ

∂v
= −δ

n ∂ψ̄

∂x̄
= δ

n
v̄ (102)

Substituting this into the constitutive equations we once again obtain:

WeT̄11 +We

�
δ
n−1We

�
ū
∂T̄11

∂x̄
+ v̄

∂T̄11

∂ȳ
− 2a

∂ū

∂x̄
T̄11

�
− (a− 1)δn

∂v̄

∂x̄
T̄12 − (a+ 1)δn−2 ∂ū

∂ȳ
T̄12

�
= 2(1− β)δn−1 ∂ū

∂x̄
(103)

WeT̄22 +We

�
δ
n−1We

�
ū
∂T̄22

∂x̄
+ v̄

∂T̄22

∂ȳ
− 2a

∂v̄

∂ȳ
T̄22

�
− (a− 1)δn−2 ∂ū

∂ȳ
T̄12 − (a+ 1)δn

∂v̄

∂x̄
T̄12

�
= 2(1− β)δn−1 ∂v̄

∂ȳ
(104)

T̄12 +We

�
δ
n−1

�
ū
∂T̄12

∂x̄
+ v̄

∂T̄12

∂ȳ

�
− δ

n−2We
∂ū

∂ȳ

�
a− 1

2
T̄11 +

a+ 1

2
T̄22

�
− δ

nWe
∂v̄

∂x̄

�
a+ 1

2
T̄11 +

a− 1

2
T̄22

��
(105)

= (1− β)

�
δ
n−2 ∂ū

∂ȳ
+ δ

n ∂v̄

∂x̄

�

Here both We and δ are small, so the fullest balance is when

δ
n−1 = We & δ

n−2 = 1 ⇒ δ = We & n = 2 (106)

Thus keeping just the highest order terms we obtain the low Weissenberg number boundary layer constitutive equations:

T̄11 − (a+ 1)
∂ū

∂ȳ
T̄12 = 2(1− β)

∂ū

∂x̄
(107)

T̄22 − (a− 1)
∂ū

∂ȳ
T̄12 = 2(1− β)

∂v̄

∂ȳ
(108)

T̄12 = (1− β)
∂ū

∂ȳ
(109)

From this it is easy to obtain the following system of non-linear pdes:

T̄11 − (1− β)(a+ 1)

�
∂ū

∂ȳ

�2

= 2(1− β)
∂ū

∂x̄

T̄22 − (1− β)(a− 1)

�
∂ū

∂ȳ

�2

= 2(1− β)
∂v̄

∂ȳ
(110)

6 Extended Stretching Solution

From the constituive relation for TP (TP +We
�
TP= 2(1 − β)D) we can recover that for large We we must have

�
TP= 0.

This can be written in component form as the system:

u
∂T11

∂x
+ v

∂T11

∂y
− 2a

∂u

∂x
T11 − (a− 1)

∂v

∂x
T12 − (a+ 1)

∂u

∂y
T12 = 0 (111)

u
∂T22

∂x
+ v

∂T22

∂y
− 2a

∂v

∂y
T22 − (a− 1)

∂u

∂y
T12 − (a+ 1)

∂v

∂x
T12 = 0 (112)

11



u
∂T12

∂x
+ v

∂T12

∂y
−
�
a+ 1

2

∂u

∂y
+

a− 1

2

∂v

∂x

�
T22 −

�
a− 1

2

∂u

∂y
+

a+ 1

2

∂v

∂x

�
T11 = 0 (113)

Doing as before we can obtain a natural stress formulation for this new system. The natural stress formulations read:

v ·∇λ+ 2µ∇ ·w + (a− 1)

�
µ∇ ·w − λ

|v|2v ·∇(|v|2)
�

= 0 (114)

2v ·∇µ+ 2ν∇ ·w + (a− 1)(λ|v|4 + ν)∇ ·w = 0 (115)

v ·∇ν + (a− 1)

�
|v|4µ∇ ·w +

ν

|v|2v ·∇(|v|2)
�

= 0 (116)

Motivated by Renardy’s work for the case a = 1[10], we will try the case µ = 0. Equations (114) and (116) then become
respectively:

v ·∇λ− (a− 1)
λ

|v|2v ·∇|v|2 = 0 (117)

v ·∇ν + (a− 1)
ν

|v|2v ·∇|v|2 = 0 (118)

We can solve this by making use of the following identity:

1

λ
v ·∇λ = (v ·∇) log λ

This gives us the following particular solution.

λ = λ0(ψ)|v|2(a−1)
µ = 0 ν = ν0(ψ)|v|2(1−a) (119)

Where λ0(ψ) and ν0(ψ) are arbitrary functions of streamlines of the flow, i.e. λ0 and ν0 are constant along a streamline,
though may take different values on distinct streamlines.

7 To Do

• Natural stress boundary layer equations

• Hybrid boundary layer equations from limits a → 1− and a → −1+

A High Weissenberg Boundary Layer Equations for Cases a = ±1

As we obtained different viscometric behaviour for the cases a = ±1 we would expect different scalings and thus different
boundary layer equations. We will look, as before, at a steady two-dimensional flow near a flat boundary, so the domain is
the half plane y > 0. We are interested in solutions for small y and large We.

The viscometric behaviour derived in the previous section for the first case a = 1 (corresponding to the Upper Convected
model) suggests the following scaling of variables.

x = x̄(= O(1)) y = δȳ ψ = δnψ̄

T11 = δn1 T̄11 T12 = δn2 T̄12 T22 = δn3 T̄22 p = δn4 p̄

Here n, n1, n2 and n3 are yet to be determined and δ = δ(We) (the ’gauge’) is assumed small. We will determine it by
balancing terms in the constitutive equations. We have from the viscometric behaviour that:

δn1 = We1 δn2 = We0 = 1

We cannot conclude anything about the scaling for T22 as the viscometric behaviour gives T22 = 0 so we cannot say anything
about δn3 at the moment. We can also scale the velocity components using the scaled stream function:

u =
∂ψ

∂y
=

δn

δ

∂ψ̄

∂ȳ
= δ

n−1
ū (120)

v = −∂ψ

∂x
= −δ

n ∂ψ̄

∂x̄
= δ

n
v̄ (121)
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We can now substitute the scaled variables into the constitutive equations to get:

WeT̄11 +We

�
δ
n−1We

�
ū
∂T̄11

∂x̄
+ v̄

∂T̄11

∂ȳ
− 2

∂ū

∂x̄
T̄11

�
− 2δn−2 ∂ū

∂ȳ
T̄12

�
= 2(1− β)δn−1 ∂ū

∂x̄
(122)

δ
n3 T̄22 +We

�
δ
n3+n−1

�
ū
∂T̄22

∂x̄
+ v̄

∂T̄22

∂ȳ
− 2

∂v̄

∂ȳ
T̄22

�
− 2δn

∂v̄

∂x̄
T̄12

�
= 2(1− β)

1

We

∂v̄

∂ȳ
(123)

T̄12 +We

�
1

We

�
ū
∂T̄12

∂x̄
+ v̄

∂T̄12

∂ȳ

�
− δ

n−2 ∂ū

∂ȳ
δ
n3 T̄22 − δ

n ∂v̄

∂x̄
WeT̄11

�
= (1− β)

�
δ
n−2 ∂ū

∂ȳ
+ δ

n ∂v̄

∂x̄

�
(124)

The fullest balance comes when the following holds:

δ = 1
We n = 2 n3 = 1

Then keeping just the highest order terms, we obtain the UCM high Weissenberg number boundary layer equations:

T̄11 + ū
∂T̄11

∂x̄
+ v̄

∂T̄11

∂ȳ
− 2

∂ū

∂x̄
T̄11 − 2

∂ū

∂ȳ
T̄12 = 0 (125)

T̄22 + ū
∂T̄22

∂x̄
+ v̄

∂T̄22

∂ȳ
− 2

∂v̄

∂ȳ
− 2

∂v̄

∂x̄
T̄12 = 2(1− β)

∂v̄

∂ȳ
(126)

T12 + ū
∂T̄12

∂x̄
+ v̄

∂T̄12

∂ȳ
− ∂ū

∂ȳ
T̄22 −

∂v̄

∂x̄
T̄11 = (1− β)

∂ū

∂ȳ
(127)

The viscometric behaviour derived for the first case a = −1 (corresponding to the Lower Convected model) suggests the
following scaling of variables.

x = x̄(= O(1)) y = δȳ ψ = δnψ̄

T11 = δn1 T̄11 T12 = δn2 T̄12 T22 = δn3 T̄22 p = δn4 p̄

Here n, n1, n2 and n3 are yet to be determined and δ = δ(We) (the ’gauge’) is assumed small. We will determine it by
balancing terms in the constitutive equations. We have from the viscometric behaviour that:

δn2 = We0 = 1 δn3 = We1

We cannot conclude anything about the scaling for T11 as the viscometric behaviour gives T11 = 0 so we cannot say anything
about δn1 at the moment. We can also scale the velocity components using the scaled stream function:

u =
∂ψ

∂y
=

δn

δ

∂ψ̄

∂ȳ
= δ

n−1
ū (128)

v = −∂ψ

∂x
= −δ

n ∂ψ̄

∂x̄
= δ

n
v̄ (129)

We can now substitute the scaled variables into the constitutive equations to get:

δ
n1 T̄11 +We

�
δ
n−1

δ
n1

�
ū
∂T̄11

∂x̄
+ v̄

∂T̄11

∂ȳ
+ 2

∂ū

∂x̄
T̄11

�
+ 2δn

∂v̄

∂x̄
T̄12

�
= 2(1− β)δn−1 ∂ū

∂x̄
(130)

WeT̄22 +We

�
δ
n−1We

�
ū
∂T̄22

∂x̄
+ v̄

∂T̄22

∂ȳ
+ 2

∂v̄

∂ȳ
T̄22

�
+ 2δn−2 ∂ū

∂ȳ
T̄12

�
= 2(1− β)δn−1 ∂v̄

∂ȳ
(131)

T̄12 +We

�
δ
n−1

�
ū
∂T̄12

∂x̄
+ v̄

∂T̄12

∂ȳ

�
+ δ

n1δ
n−2 ∂ū

∂ȳ
T̄11 +Weδn

∂v̄

∂x̄
T̄22

�
= (1− β)

�
δ
n−2 ∂ū

∂ȳ
+ δ

n ∂v̄

∂x̄

�
(132)

The fullest balance here is when:

δ = 1
We n = 2 n1 = 1
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As before we keep just the leading order terms to obtain the high Weissenberg boundary layer equations for the LCM model.

T̄11 + ū
∂T̄11

∂x̄
+ v̄

∂T̄11

∂ȳ
+ 2

∂ū

∂x̄
T̄11 + 2

∂v̄

∂x̄
T̄12 = 2(1− β)

∂v̄

∂ȳ
(133)

T̄22 + ū
∂T̄22

∂x̄
+ v̄

∂T̄22

∂ȳ
+ 2

∂v̄

∂ȳ
T̄22 + 2

∂ū

∂ȳ
T̄12 = 0 (134)

T̄12 + ū
∂T̄12

∂x̄
+ v̄

∂T̄12

∂ȳ
+

∂ū

∂ȳ
T̄11 +

∂v̄

∂x̄
T̄22 = (1− β)

∂ū

∂ȳ
(135)

A Viscometric Stress Plots

The following plots show the relation between shear rate γ̇ and the stress tensor components T11, T12 and T22.
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Figure 1: Plots of T11 against γ̇ for different values of a
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Figure 2: Plots of T12 against γ̇ for different values of a
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Figure 3: Plots of T22 against γ̇ for different values of a
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