MA20220 Revision Checklist

- Give the form of the most general system of first-order linear ordinary differential equations. Show how to rewrite this (if possible) in the standard form of a first-order system of linear ordinary differential equations. When is the system called (i) autonomous (ii) homogeneous (iii) inhomogeneous?
- Define the matrix exponential function $\exp (t A): \mathbb{R} \rightarrow \mathbb{C}^{n \times n}$, where $A \in \mathbb{C}^{n \times n}$ is a given matrix. State two properties of $\exp (t A)$ (concerning convergence and derivative).
- Let $A \in \mathbb{C}^{n \times n}$ and $\mathbf{x}_{0} \in \mathbb{C}^{n}$. What is the solution of $\dot{x}(t)=A x(t)$ with $x\left(t_{0}\right)=\mathbf{x}_{0}$? What other property does this solution possess?
- Let $I \subset \mathbb{R}$ be an interval. Define that it means for the vector functions $y_{1}, \ldots, y_{m}: I \rightarrow \mathbb{C}^{n}$ to be linearly independent and linearly dependent.
- Let $A \in \mathbb{C}^{n \times n}$ and consider the system $\dot{x}(t)=A x(t)$, where $x: \mathbb{R} \rightarrow \mathbb{C}^{n}$. Show that there exist n linearly independent solutions of this system, and that any other solution can be written in terms of these solutions.
- Show that $x(t)=e^{\lambda t} v, v \in \mathbb{C}^{n}$ is a solution of $\dot{x}(t)=A x(t)$ if and only if λ is an eigenvalue of A and v a corresponding eigenvector.
- How is the characteristic polynomial $A \in \mathbb{C}^{n \times n}$ sometimes denoted? How is the set of eigenvalues of A denoted?
- Define what it means for $v \in \mathbb{C}^{n}$ to be a generalised eigenvector of order $m \in \mathbb{N}$ with respect to $\lambda \in \operatorname{Spec} A$.
- Let v be a generalised eigenvector of order $m \geq 2$ with respect to $\lambda \in \operatorname{Spec} A$. Show that

$$
v_{m-k}:=(A-\lambda I)^{k} v
$$

is a generalised eigenvector of order $m-k$, for $k=1, \ldots, m-1$.

- Define the geometric and algebraic multiplicities of $\lambda \in \operatorname{Spec} A$, where $A \in \mathbb{C}^{n \times n}$. Define a simple eigenvalue.
- Let $A \in \mathbb{C}^{n \times n}$ and $v \in \mathbb{C}^{n}$ be a generalised eigenvector of order m, with respect to $\lambda \in \operatorname{Spec} A$. Define v_{i}, for $1 \leq i \leq m-1$, and show that they are linearly independent. Further show that the functions

$$
x_{k}(t)=\sum_{i=0}^{k-1} \frac{t^{i}}{i!} v_{k-i}, \quad 1 \leq k \leq m
$$

form a set of m linearly independent solutions of $\dot{x}(t)=A x(t)$.

- Define a fundamental system and a fundamental matrix. Show that for a fundamental matrix $\Phi(t)$, $\dot{\Phi}(t)=A \Phi(t)$. Why does $\Phi^{-1}(t)$ exist for all $t \in \mathbb{R}$?
- Prove that if $\Phi(t)$ and $\Psi(t)$ are two fundamental matrices for the system $\dot{x}(t)=A x(t)$ then $\exists C \in$ $\mathbb{C}^{n \times n}$ such that $\Phi(t)=\Psi(t) C$.
- Show that the matrix function $\Phi(t)=\exp (t A)$ is a fundamental matrix for the system $\dot{x}(t)=A x(t)$. Show that $\Phi(t)=\Psi(t) \Psi_{0}^{-1} \Phi_{0}$ solves the initial value problem

$$
\dot{\Phi}(t)=A \Phi(t), \quad \Phi\left(t_{0}\right)=\Phi_{0}
$$

where $\Psi(t)$ is a fundamental matrix with $\Psi\left(t_{0}\right)=\Psi_{0}$. State the unique solution to this initial value problem.

- Derive a formula for $\exp (t A)$ in terms of an arbitrary fundamental matrix of $\dot{x}(t)=A x(t)$.
- Derive a formula for $\exp (t A)$, where $A \in \mathbb{C}^{n \times n}$ is diagonalisable.
- Non-homogeneous (or inhomogeneous) systems: consider the system

$$
\begin{equation*}
\dot{x}(t)=A x(t)+g(t), \quad A \in \mathbb{C}^{n \times n}, \quad x, g: \mathbb{R} \rightarrow \mathbb{C}^{n} \tag{1}
\end{equation*}
$$

Derive a formula for the solution of this system, assuming that it takes the form $x(t)=\Phi(t) u(t)$, where $u: \mathbb{R} \rightarrow \mathbb{C}^{n}$. Derive the same result via the Laplace transform. Given the initial value problem (1) with $x\left(t_{0}\right)=\mathbf{x}_{0} \in \mathbb{C}^{n}$, determine the solution.

- Define the Laplace transform of a function $f:[0, \infty) \rightarrow \mathbb{R}$. If $g: \mathbb{R} \rightarrow \mathbb{C}$ and $z \in \mathbb{C}$, what can be said about

$$
\int g(t) d t \quad \text { and } \quad\left|e^{z}\right| ?
$$

- Define what it means for $f:[0, \infty) \rightarrow \mathbb{R}$ to be of exponential order.
- Suppose $f:[0, \infty) \rightarrow \mathbb{R}$ is piecewise continuous and of exponential order with constants α, M. Show that $\hat{f}(s)$ exists for all $s \in \mathbb{C}$ with $\operatorname{Re} s>\alpha$.
- Let $f(t), g(t)$ be of exponential order. Show that for Re s sufficiently large, the properties of linearity, transform of derivative, transform of integral and the damping and delay formulae hold. Show inductively that

$$
\mathcal{L}\left\{f^{(n)}(t)\right\}(s)=s^{n} \hat{f}(s)-\sum_{i=0}^{n-1} s^{n-1-i} f^{(i)}(0)
$$

- Derive the Laplace transform of $\cos a t, \sin a t, t^{n}(n \in \mathbb{N})$ and $e^{-\lambda t} \cos a t$.
- Define the convolution integral of f and g.
- Given $\hat{f}(s)$ and $\hat{g}(s)$, derive

$$
\mathcal{L}^{-1}\{\hat{f}(s) \hat{g}(s)\}
$$

- Consider the initial value problem $\dot{\Phi}(t)=A \Phi(t), \Phi(0)=I$. Show that

$$
\Phi(t)=\exp (t A)=\mathcal{L}^{-1}\left\{(s I-A)^{-1}\right\}
$$

- Let $\epsilon>0$. Define $\delta_{\epsilon}(t)$; for continuous $f: \mathbb{R} \rightarrow \mathbb{R}$, derive a formula for

$$
\int_{-\infty}^{\infty} f(t) \delta_{\epsilon}(t) d t
$$

State the mean value theorem for integrals. Hence show that

$$
\lim _{\epsilon \rightarrow 0} \int_{\mathbb{R}} f(t) \delta_{\epsilon}(t) d t=f(0)
$$

- Define the Dirac Delta "function". Derive the properties

$$
\int_{\mathbb{R}} \delta(t) d t=1 ; \quad \int_{\mathbb{R}} f(t) \delta(t-a) d t=f(a) ; \quad \int_{\mathbb{R}} e^{-s t} \delta(t) d t=1 \Rightarrow \mathcal{L}^{-1}\{1\}=\delta(t)
$$

and $(f \star \delta)(t)=f(t)$. Find expressions for $\mathcal{L}\{\delta(t-T)\}(s)$ and $\delta(t-T) \star f(t)$.

- State and prove the final value theorem.
- Given the general form of the system (with output) considered in the control theory section of this course. Find $x(t)$ by the variation of parameters formula, and find $y(t)$. Show that with $\xi=0$, $\hat{y}(s)=G(s) \hat{u}(s)$, where $G(s)=c^{T}(s I-A)^{-1} b$. Define the state of the system. What is G the Laplace transform of? What are G and g called?
- Define $\mathbb{R}[s], \mathbb{R}(s)$, a proper rational function and a strictly proper rational function. Give equivalent conditions for $R \in \mathbb{R}(s)$ to be proper and improper. Define a pole and a zero of $R \in \mathbb{R}(s)$. Define coprime polynomials. Let $R \in \mathbb{R}(s)$; derive equivalent conditions for $z \in \mathbb{C}$ to be a zero and a pole of R.
- Let $G \in \mathbb{R}(s)$ be a transfer function given by

$$
G(s)=c^{T}(s I-A)^{-1} b+d
$$

Show that if $p \in \mathbb{C}$ is a pole of G, then p is also an eigenvalue of A, and that the converse is false.

- Define the equilibrium solution of

$$
\dot{x}(t)=A x(t), \quad A \in \mathbb{R}^{N \times N}
$$

What is 0 called?

- Define what it means for $\dot{x}(t)=A x(t)$ to be asymptotically stable. Give an equivalent condition (with reasons) for the system to be asymptotically stable.
- Define BIBO stability, and show that the system is BIBO stable if and only if every pole of the transfer function

$$
G(s)=c^{T}(s I-A)^{-1} b+d
$$

has negative real part.

- Define what it means for $P \in \mathbb{R}[s]$ to be stable. State necessary conditions for $P \in \mathbb{R}[s]$ to be stable.
- Define the Hurwitz matrix associated with

$$
P(s)=\sum_{i=0}^{N} a_{i} s^{i} \in \mathbb{R}[s], \quad a_{N} \neq 0 .
$$

Define the Hurwitz determinants associated with P.

- State the Hurwitz stability criterion.
- Assume that $\dot{x}(t)=A x(t)+b u(t), y(t)=c^{T} x(t)$ is BIBO stable and that $G(0)>0$. Show that $\exists k^{*}>0$ such that $\forall k \in\left(0, k^{*}\right)$, the feedback system is BIBO stable and $y(t) \rightarrow r$ as $t \rightarrow \infty$.

