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1 Introduction
intro

• Motion of neutrons through a material medium is usually described by the
Boltzmann transport equations. This is a linear integrodifferential equation for
the neutron distribution, with appropriate initial and boundary conditions.

• A common approximation is diffusion theory. This is a linear equation based
on Fick’s law for the neutron flux. It yields good working results for most
practical situations, but tends to be based on seemingly ad-hoc assumptions.

• Objectives are

1. Derive the diffusion equation systematically from the transport equation.

2. Determine appropriate boundary conditions for it.

• Main references:

– K.M. Case, Elementary solutions of the transport equation and their
applications, Annals Phys. 9 (1960), 1–23.

– K.M. Case and P.F. Zweifel, Linear transport theory, Addison-Wesley,
Reading, Mass., (1967).

– G.J. Habetler and B.J. Matkowsky, Uniform asymptotic expansions in
transport theory with small mean free paths, and the diffusion approxi-
mation, J. Math. Phys. 16 (1975), 846–854.

2 Problem formulation

We closely follow here the notation of Prinja and Larsen [7], when appropraite. Let
N(r,Ω, t) denote the (angular) neutron density (number per unit volume) at spatial
location r, velocity direction Ω and time t. We only consider neutrons of the same
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energy i.e. the so-called one-speed or monoenergetic case. Let V ⊂ D be an arbitrary
fixed volume within the domain D ⊂ R3. The statement for conservation of neutrons
is

d

dt

∫
V
NdV = −

∫
∂V

H · ndS +

∫
V
q dV (1) eq:cons1

where H is the flux of neutrons i.e. numbers crossing a unit cross-section per unit
time, n is the unit outward normal to the boundary ∂V , q is the neutron source
(sink). Using the divergence theorem gives∫

V

(
∂N

∂t
+∇ ·H− q

)
dV = 0. (2) eq:cons2

Since V is arbitrary and the integrand is assumed continuous, we may deduce the
point form 1

∂N

∂t
+∇ ·H = q. (3) eq:cons3

The neutron flux is given by H = Nv, where v is the velocity. The velocity is
assumed constant and written as v = vΩ, where v is the speed (constant) and Ω is
the direction. Thus

∇ ·H = vΩ · ∇N (4) eq:flux

noting that ∇ · v = 0.
The source q is composed of several terms relating to the different types of neu-

tron interaction as well as a genuine external neutron source Q(r,Ω, t). The types
of interaction are scattering, fission and capture. Each interaction has an associated
macroscopic cross-section, which is related to it’s microscopic cross-section (see Ap-
pendix A). The macroscopic cross-sections of fission and capture may depend on
position and are denoted by σf (r) and σc(r) respectively. The macroscopic cross-
section of scattering may vary with position as well as orientation and is denoted by
σs(r,Ω ·Ω′). The total macroscopic cross-section σ(r) is defined as

σ(r) = σf (r) + σc(r) +
1

4π

∫
S2
σs(r,Ω ·Ω′) dS(Ω′). (5) eq:sigt

As neutrons are lost through the total cross-section as well as gained through scat-
tering and fission, we take

q = −vσ(r)N(r,Ω, t) +
1

4π

∫
S2
vσs(r,Ω ·Ω′)N(r,Ω′, t) dS(Ω′)

+
ν(r)

4π
vσf (r)

∫
S2
N(r,Ω′, t) dS(Ω′) +Q(r, t), (6) eq:q

1Equation (3) is a conservation statement that also holds more generally in other application
contexts such as heat as well as mass transfer, see for example, section 5.1 in Fowler [4]. Inter-
preting N as temperature (technically heat) or concentration, then the well known heat equation
follows using Fourier’s law for the heat flux or the diffusion equation if Fick’s law is used for the
concentration flux.
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where ν denotes the number of new neutrons from fission. Introducing the angular
flux ψ(r,Ω, t) = vN(r,Ω, t), then using (4) and (6) in (3) gives as the governing
equation

1

v

∂ψ(r,Ω, t)

∂t
+Ω·∇ψ(r,Ω, t)+σ(r)ψ(r,Ω, t) =

1

4π

∫
S2
σs(r,Ω ·Ω′)ψ(r,Ω′, t) dS(Ω′)

+
ν

4π
σf (r)

∫
S2
ψ(r,Ω′, t) dS(Ω′) +Q(r, t). (7) eq:ge

This equation is the fundamental transport equation for neutrons. If the scattering
is assumed to be isotropic, so that σs(r,Ω.Ω

′) = σs(r), then (7) simplifies to

1

v

∂ψ(r,Ω, t)

∂t
+ Ω · ∇ψ(r,Ω, t) + σ(r)ψ(r,Ω, t) =

σ(r)c(r)

4π

∫
S2
ψ(r,Ω′, t) dS(Ω′)

+Q(r, t). (8) eq:ge2

Here c(r) is defined by

c(r) =
σs(r) + νσf (r)

σ(r)

and represents the mean number of secondary neutrons produced per collision.

3 The 1-D problem and non-dimensionalisation

Here we derive the 1-D problem following [2]. We consider 1D slab geometry, so
that the neutron flux ψ only depends on the position coordinate x and the direction
coordinate Ωx = Ω · i = cos θ = µ (θ ∈ [0, π] being the polar angle). This reduces (8)
to

1

v

∂ψ(x, µ, t)

∂t
+ µ

∂ψ(x, µ, t)

∂x
+ σ(x)ψ(x, µ, t) =

σ(x)c(x)

2

∫ 1

−1
ψ(x, µ′, t) dµ′ +Q(x, t).

(9) eq:ge1d

It is common to introduce the change of independent variable

x′ =

∫
σ(x)dx, (10) eq:xp

where x′ is termed the optical thickness. It is dimensionless and when combined
with a scaling of the neutron source Q(x, t) = σ(x)Q′(x′, t) removes the cross-section
function σ(x) from all of the terms except for the time derivative term. However, for
clarity of our nondimensionalisation below, we refrain from introducing this variable
at this stage.

We consider the equation (9) on the interval 0 < x < d and −1 ≤ µ ≤ 1, subject
to boundary conditions

on x = 0: ψ = f1(µ, t) for µ > 0,

on x = d: ψ = f2(µ, t) for µ < 0, (11)
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and the initial condition

at t = 0: ψ = g(x, µ) for 0 ≤ x ≤ d,−1 ≤ µ ≤ 1. (12) eq:ic

Here f1, f2 and g are prescribed functions, which may be assumed bounded and
piecewise continuous.

We nondimensionalise as follows

x = dx̄, t =
d

v
t̄, ψ = ψ0ψ̄, Q = ψ0σ(x)Q̄, (13) eq:nd1

using the geometry and neutron speed for characteristic length and time scales.
The representative neutron density ψ0 may be furnished from either the boundary
conditions or the initial condition, which we conveniently write as

f1 = ψ0f̄1, f2 = ψ0f̄2, g = ψ0ḡ. (14) eq:nd2

The variable µ is already dimensionless. The cross-section function is written as
σ = σ0σ̄(x̄), with the constant σ0 being a representative value and introduce the
dimensionless parameter

ε =
1

σ0d
. (15) eq:ndp

This parameter may be interpreted as the ratio of mean free length 1/σ0 to the
typical physical length of the domain. Using (13)–(15) in (9)–(12), we obtain for
ψ̄(x̄, t̄) the dimensionless problem

ε

σ̄(x̄)

∂ψ̄

∂t̄
+

εµ

σ̄(x̄)

∂ψ̄(x̄, µ, t̄)

∂x̄
+ ψ̄(x̄, µ, t̄) =

c(x̄)

2

∫ 1

−1
ψ̄(x̄, µ′, t̄) dµ′ + Q̄(x̄, t̄), (16) eq:ndge

in 0 < x̄ < 1,−1 ≤ µ ≤ 1, with

on x̄ = 0: ψ̄ = f̄1(µ, t̄) for µ > 0, (17) eq:ndbc1

on x̄ = 1: ψ̄ = f̄2(µ, t̄) for µ < 0, (18) eq:ndbc2

at t̄ = 0: ψ̄ = ḡ(x̄, µ) for 0 ≤ x̄ ≤ 1,−1 ≤ µ ≤ 1. (19) eq:ndic

Some remarks follow:

• It is noteworthy that nondimensionalisation has significantly reduced the num-
ber of parameters in the problem. The dimensional problem (9)–(12) has the
four dimensional parameters (d, v, ψ0, σ0), whilst (16)–(19) contains only the
dimensionless parameter (or group) ε. The solution is thus controlled by the
single dimensionless parameter ε, classifying solutions relative to which is much
easier than the original four dimensional parameter space. Estimates of the size
of ε (see Appendix A) are in the range

ε ∼ 10−9 − 10−3 . (20)

This suggests considering the asymptotic limit ε→ 0 for the system (16)–(19),
which we address in the next section. It is worth remarking that numerical

4



solution of (16)–(19) runs into convergence difficulties at around ε ≈ 10−5

to 10−6. The asymptotic solution that we construct in section 4 becomes a
better approximation as ε becomes smaller. Thus the asymptotic solution pro-
vides a viable alternative approximate solution in a parameter range that the
numerical approaches encounter difficulties. As such, asymptotic and numer-
ical approaches complement each other and the use of both allows accurate
approximate solutions to be obtained over a wide (often full) parameter range.

• We could introduce the change of spatial variable

ξ =

∫ x̄

0
σ̄(s)ds (21) eq:xi

with ξ0 =
∫ 1

0 σ̄(s)ds, so that σ̄ may be absorbed into the spatial derivative

term i.e.
1

σ̄

∂ψ̄

∂x̄
=
∂ψ̄

∂ξ
. Equation (16) is now posed on 0 < ξ < ξ0. The variable

ξ is related to the optical thickness x′ in (10) by ξ = εx′ with ξ0 = εd′, where

d′ =
∫ d

0 σ(s′)ds′ is the optical thickness of the physical length d of the domain.
In the time-independent case this allows σ̄ to be removed from the problem.

• For convenience we subsequently drop bars in (16)–(19).

4 Matched asymptotic expansions
sec:asy

We use the method of matched asymptotic expansions to determine the behaviour
of the system (16)–(19) in the limit ε → 0. An introduction to the technique may
be found in Bender and Orszag [1] and Hinch [5]. The key observation is that the
problem with ε = 0 is fundamentally different from that when ε > 0, in that the both
derivative terms are lost. As a result neither the boundary nor initial conditions can
be imposed when ε = 0. This suggests that the limit ε→ 0 is singular. It turns out
that the ε = 0 problem will hold within the interior of the domain 0 < x < 1, whilst
in narrrow regions near the spatial boundaries at x = 0 and x = 1, we will need
to pull back the lost spatial derivative term. The convention is to term the region
interior to the domain the outer region, whilst the narrow regions at the domain
boundaries are termed inner regions or boundary layers. The approach is much like
a jigsaw, where balances are found in different spatial (and time) regions and these
then have to be pieced together to form the solution. The formal process of piecing
the regions together is termed matching. The analysis below illustrates the method.

4.1 The outer region 0 < x < 1

We begin by posing the regular expansion

ψ = ψ0(x, µ, t) + εψ1(x, µ, t) + ε2ψ2(x, µ, t) + . . . as ε→ 0. (22) eq:outer1

This series in powers of the small parameter ε is suggested directly from the governing
equation (16) and is termed a Poincare expansion. For generality, we also expand
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the mean secondary neutron function c(x) and source Q(x, t) in powers of ε, namely

c(x) = c0(x) + εc1(x) + ε2c2(x) + . . . (23) eq:outer2

Q(x, t) = Q0(x, t) + εQ1(x, t) + ε2Q2(x, t) + . . . (24) eq:outer3

since our objective is to understand when (16) yields a diffusion equation for ψ. It
is also not clear at this stage if we are on the correct time scale and so we introduce
the time scaling

t =
ε

δ
τ (25) eq:outer4

with new time variable τ . For generality we take

δ = K0 +K1ε+K2ε
2 + . . . (26) eq:outer5

and the Ki are constants. Substituting (22)–(26) into (16) and equating like powers
of ε gives a series of subproblems.

At O(ε0):
K0

σ(x)

∂ψ0

∂τ
+ ψ0 =

c0(x)

2

∫ 1

−1
ψ0(x, µ′, t)dµ′ +Q0(x, t). (27) eq:outep0

Since µ does not occur explicitly in this equation, we have that

ψ0 = ψ0(x, τ) (28) eq:outpsi0

i.e. ψ0 is a function on x and τ only. Consequently (27) reduces to

K0

σ(x)

∂ψ0

∂τ
+ (1− c0(x))ψ0 = Q0(x, τ).

This equation allows the imposition of the initial condition (due to the presence of
the time derivative) and is a valid equation for ψ0. However it is not a diffusion
equation but rather a source dominated equation that can accommodate c0(x) 6= 1.
We note that if the coefficients in this equation vanish then ψ0 will be undetermined
at this order in ε, allowing it to satisfy a possibly different equation. Thus we take

K0 = 0, c0 = 0 and Q0 = 0. (29)

At O(ε):
K1

σ(x)

∂ψ0

∂τ
+

µ

σ(x)

∂ψ0

∂x
+ ψ1 =

c0(x)

2

∫ 1

−1
ψ1(x, µ′, τ)dµ′

+
c1(x)

2

∫ 1

−1
ψ0(x, τ)dµ′ +Q1(x, τ). (30) eq:outep1

Thus ψ1(x, µ, τ) is at most linear in µ. Writing

ψ1 = ψ10(x, τ) + µψ11(x, τ) (31) eq:outpsi1

and using c0 = 1, (30) gives

K1

σ(x)

∂ψ0

∂τ
= c1(x)ψ0 +Q1(x, τ), (32) eq:outep1a

1

σ(x)

∂ψ0

∂x
+ ψ11 = 0, (33) eq:outep1b
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on equating powers of µ. Again, (32) does not yield a diffusion equation for ψ0 which
remains undetermined (together with ψ10) if

K1 = 0, c1 = 0 and Q1 = 0. (34)

At O(ε2):
K2

σ(x)

∂ψ0

∂τ
+

µ

σ(x)

∂ψ1

∂x
+ ψ2 =

1

2

∫ 1

−1
ψ2(x, µ′, τ)dµ′

+
c2(x)

2

∫ 1

−1
ψ0(x, τ)dµ′ +Q2(x, τ). (35) eq:outep2

Thus ψ2(x, µ, τ) is at most quadratic in µ. Writing

ψ2 = ψ20(x, τ) + µψ21(x, τ) + µ2ψ22(x, τ), (36) eq:outpsi2

and using with (28), (31) and (36) in (35) gives

K2

σ(x)

∂ψ0

∂τ
=

1

3
ψ22 + c2(x)ψ0 +Q2(x, τ), (37) eq:outep2a

1

σ(x)

∂ψ10

∂x
+ ψ21 = 0, (38) eq:outep2b

1

σ(x)

∂ψ11

∂x
+ ψ22 = 0, (39) eq:outep2c

on equating powers of µ. Using (33) and (39) in (37) now yields

K2

σ(x)

∂ψ0

∂τ
=

1

3σ(x)

∂

∂x

(
1

σ(x)

∂ψ0

∂x

)
+ c2(x)ψ0 +Q2, (40) eq:psi0diff

which is a diffusion equation for ψ0. Thus the timescale to obtain this diffusion
equation is t = O(1/ε) and the source needs to be O(ε2) for its effects not to
dominate. From now on, we adopt this time scale with δ = K2ε

2, setting Ki = 0 for
i ≥ 3.

At O(ε3):
K2

σ(x)

∂ψ1

∂τ
+

µ

σ(x)

∂ψ2

∂x
+ ψ3 =

1

2

∫ 1

−1
ψ3(x, µ′, τ)dµ′

+
c2(x)

2

∫ 1

−1
ψ1(x, µ′, τ)dµ′ +

c3(x)

2

∫ 1

−1
ψ0(x, τ)dµ′ +Q3(x, τ). (41) eq:outep3

Thus ψ3(x, µ, τ) is at most a cubic in µ. Writing

ψ3 = ψ30(x, τ) + µψ31(x, τ) + µ2ψ32(x, τ) + µ3ψ33(x, τ), (42) eq:outpsi3
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and using with (28), (31), (36) and (42) in (41) gives

K2

σ(x)

∂ψ10

∂τ
=

1

3
ψ32 + c2(x)ψ10 + c3(x)ψ0 +Q3(x, τ), (43) eq:outep3a

K2

σ(x)

∂ψ11

∂τ
+

1

σ(x)

∂ψ20

∂x
+ ψ31 = 0, (44) eq:outep3b

1

σ(x)

∂ψ21

∂x
+ ψ32 = 0, (45) eq:outep3c

1

σ(x)

∂ψ22

∂x
+ ψ33 = 0, (46) eq:outep3d

on equating powers of µ. Using (38) and (45) in (43) gives a diffusion equation for
ψ10, namely

K2

σ(x)

∂ψ10

∂τ
=

1

3σ(x)

∂

∂x

(
1

σ(x)

∂ψ10

∂x

)
+ c2(x)ψ10 + c3(x)ψ0 +Q3. (47) eq:psi10diff

Some remarks:

• Clearly we may proceed in a similar manner to higher order terms.

• The equation derived for the leading order term ψ0(x, τ) will not be able to
satisfy the boundary conditions (17) and (18) (since they involve µ, whilst ψ0

is independent of µ). The reason for this is that the spatial derivative term in
(16) is not present in (27) due to the small parameter ε. Consequently we need
to recover the spatial derivative term in (16) in regions near the boundaries.
This motivates the inner regions considered next.

4.2 The inner regions

We now consider the equation (16) in regions near to the boundaries. These will be
termed inner regions or boundary layers as their width will be shown to be small
relative to that of the outer region. We present the analysis for the region near x = 0,
since that for x = 1 will then follow similarly.

We consider as inner variables

x = εy, ψ = Ψ, (48) eq:invars

in terms of which, (16) becomes

ε2

σ(εy)

∂Ψ

∂τ
+

µ

σ(εy)

∂Ψ(y, µ, τ)

∂y
+Ψ(y, µ, τ) =

c(εy)

2

∫ 1

−1
Ψ(y, µ′, τ) dµ′+Q(εy, τ). (49) eq:inge1

Here we have the adopted the time scale identified by the outer expansion, namely
t = τ/ε (taking K2 = 1). We assume that σ and Q have no spatial variation2 in this
region so that for small ε (keeping y fixed)

σ(εy) = σ(0), Q(εy, τ) = ε2Q2(0, τ),

2If σ(x) varies near the boundaries then it is advantageous to perform the change of variable
(21).
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where we set subsequent terms in the source expansion in (24) to zero for conve-
nience. Also, for small ε with y fixed we have

c(εy) = 1 + ε2c2(εy) + ε3c3(εy) +O(ε4)

= 1 + ε2c2(0) + ε3(c3(0) + yc′2(0)) +O(ε4), (50) eq:inc

so that we may introduce

ĉ(y) = c(εy) = 1 + ε2ĉ2(y) + ε3ĉ3(y) +O(ε4) (51) eq:chat

with the ĉi(y) as given in (50). Thus (49) takes the form

ε2

σ(0)

∂Ψ

∂τ
+

µ

σ(0)

∂Ψ(y, µ, τ)

∂y
+Ψ(y, µ, τ) =

ĉ(y)

2

∫ 1

−1
Ψ(y, µ′, τ) dµ′+ε2Q2(0, τ). (52) eq:inge2

We consider this equation on the domain3 0 < y < ∞,−1 ≤ µ ≤ 1. The boundary
condition (17) becomes

on y = 0: Ψ = f1(µ, τ) for µ > 0, (53) eq:inbc1

We pose the expansion

Ψ = Ψ0(y, µ, τ) + εΨ1(y, µ, τ) + ε2Ψ2(y, µ, τ) + . . . as ε→ 0. (54) eq:inexp

Substituting into (52) and using (51) gives a sequence of problems at each order in
ε.

At O(ε0):
µ

σ(0)

∂Ψ0

∂y
+ Ψ0 =

1

2

∫ 1

−1
Ψ0(y, µ′, τ)dµ′. (55) eq:inep0

At O(ε):
µ

σ(0)

∂Ψ1

∂y
+ Ψ1 =

1

2

∫ 1

−1
Ψ1(y, µ′, τ)dµ′. (56) eq:inep1

At O(ε2):
1

σ(0)

∂Ψ0

∂τ
+

µ

σ(0)

∂Ψ2

∂y
+ Ψ2 =

1

2

∫ 1

−1
Ψ2(y, µ′, τ)dµ′

+
ĉ2(y)

2

∫ 1

−1
Ψ0(y, µ′, τ)dµ′ +Q2(0, τ).

(57) eq:inep2

The time derivative and source term do not enter the leading order problem for
Ψ0 nor the first order problem for Ψ1, but rather the second order problem for Ψ2.
Substituting (54) into the boundary condition (53) gives

At O(ε0): Ψ0(0, µ, τ) = f1(µ, τ). (58) eq:inbcep0

At O(ε1): Ψ1(0, µ, τ) = 0. (59) eq:inbcep1

At O(ε2): Ψ2(0, µ, τ) = 0. (60) eq:inbcep2

3The reason for y being on the semi-infinite interval is that the outer region is where x = O(1).
Hence y = O(1/ε) which tends to infinity as ε→ 0.
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The leading order term, Ψ0, satisfies a constant coefficient half-space problem.
The equation (55) possess a general solution in the form

Ψ0(y, µ, τ) = a0(τ) + b0(τ)(σ(0)y − µ) +

∫ 1

−1
A0(ν, τ)φν(µ)e−yσ(0)/ν dν (61) eq:Psi0

where

φν(µ) =
ν

2
P

1

ν − µ
+ λ(ν)δ(ν − µ), λ(ν) = 1− ν tanh−1 ν. (62) eq:phi

The representation (61) is an eigenfunction expansion, where P denotes the Cauchy
principle value and δ the Dirac delta function. The solutions 1 and (σ(0)y − µ) are
classical solutions and correspond to the to the discrete spectrum of the transport
operator, whilst the functions φν(µ)e−y/ν are a one parameter family of singular
or distributional solutions corresponding to the continuous spectrum. These are de-
rived and discussed further in Appendix B. Here, a0(τ), b0(τ), A0(µ, τ) are arbitrary
functions of τ (and also µ in the case of A0) and are to be determined from the
boundary condition at y = 0 and the matching condition as y →∞.

We perform matching of the outer and inner solutions in the next section. How-
ever, it is worth noting that the leading order outer solution contains no growing
exponentials, so matching with the leading order inner solution requires that

A0(ν, τ) = 0 for ν < 0. (63) eq:A0a

This restricts the continuous eigenfunctions to the half range 0 ≤ µ ≤ 1. A half-
range completeness theorem is stated in Case [2] or section 4.8 of Case and Zweifel
[3]. The boundary condition (58) gives

f1(µ, τ) = a0(τ)− b0(τ)µ+

∫ 1

0
A0(ν, τ)φν(µ)dν, µ > 0. (64) eq:inbc0

The necessary orthogonality conditions to extract the coefficients a0, b0, A0 are∫ 1

0
φν(µ) γ(µ) dµ = 0 (65) eq:oc1

and ∫ 1

0
φν(µ)φν′(µ) γ(µ) dµ =

γ(ν)

ν
N(ν)δ(ν − ν ′), (66) eq:oc2

where

γ(µ) =
3µ

2X(−µ)
, N(ν) = ν

(
λ(ν)2 +

π2ν2

4

)
. (67) eq:gamma

The function X(z) is defined as

X(z) =
1

1− z
exp

(
1

π

∫ 1

0

1

(µ′ − z)
tan−1

[
πµ′

2λ(µ′)

])
dµ′,
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whilst λ(ν) is given in (62). Multiplying (64) respectively by the weight function
γ(µ) and then φν′(µ)γ(µ) gives∫ 1

0
f1(µ, τ)γ(µ)dµ = a0(τ)γ0 − b0(τ)γ1,

and ∫ 1

0
f1(µ, τ)φν′(µ) γ(µ) dµ =

νb0(τ)γ0

ν ′
+
A0(ν ′)

ν ′
γ(ν ′)N(ν ′),

where

γi =

∫ 1

0
µiγ(µ)dµ for i = 0, 1.

Consequently

a0(τ) =
γ1

γ0
b0(τ) +

1

γ0

∫ 1

0
f1(µ, τ)γ(µ)dµ, (68) eq:a0

A0(ν, τ) = − ν2γ0b0(τ)

2γ(ν)N(ν)
+

ν

γ(ν)N(ν)

∫ 1

0
f1(µ, τ)φν(µ) γ(µ) dµ. (69) eq:A0

The function b0(τ) remains to be determined through matching to the outer solution.
In a similar manner, the solution to the first order problem (56) with (59) is

Ψ1(y, µ, τ) = a1(τ) + b1(τ)(σ(0)y − µ) +

∫ 1

0
A1(µ, τ)φν(µ)e−yσ(0)/ν dν, (70) eq:Psi1

with

a1(τ) =
γ1

γ0
b1(τ), (71)

A1(ν, τ) = − ν2γ0b1(τ)

2γ(ν)N(ν)
, (72)

which may be deduced from (68) and (69) on taking f1(µ, τ) = 0.

4.3 Matching

The process of matching requires the existence of an overlap domain in which the
outer and inner expansions are valid. Then by comparing the expansions within
the overlap region and requiring them to be the same, we can obtain the matching
conditions. The overlap region has both x small and y large i.e. ε � x = εy � 1.
This process is distinct from patching, which simply seeks to make two functions and
their derivatives agree at a single point. There are several ways to perform matching,
the two most common approaches being Van Dyke’s matching rule and intermediate
variable. Here we use Van Dyke’s matching rule.

First we write the outer expansion (22) in inner variables (48):

Ψ = ψ0(εy, µ, τ) + εψ1(εy, µ, τ) + ε2ψ2(εy, µ, τ) + . . .

= ψ0(0, τ) + ε

[
y
∂ψ0(0, µ, τ)

∂x
+ ψ1(0, µ, τ)

]
+ ε2

[
y2

2

∂2ψ0(0, µ, τ)

∂x2
+ y

∂ψ1(0, µ, τ)

∂x
+ ψ2(0, µ, τ)

]
+ . . . (73) eq:outlim
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We compare this with the outer limit of the inner expansion:

Ψ = Ψ0(y, µ, τ) + εΨ1(y, µ, τ) + ε2Ψ2(y, µ, τ) + . . . as y →∞. (74) eq:inlim

Thus

At O(ε0): lim
y→∞

Ψ0(y, µ, τ) = ψ0(0, τ). (75) eq:match0

At O(ε1): lim
y→∞

Ψ1(y, µ, τ) = y
∂ψ0(0, µ, τ)

∂x
+ ψ1(0, µ, τ). (76) eq:match1

Now, (61), (70) and (31) give

Ψ0(y, µ, τ) = b0(τ)σ(0)y + (a0(τ)− b0(τ)µ) + o(1) as y →∞,
Ψ1(y, µ, τ) = b1(τ)σ(0)y + (a1(τ)− b1(τ)µ) + o(1) as y →∞,
ψ1(0, µ, τ) = ψ10(0, τ) + µψ11(0, τ),

and using in (75)–(76) we obtain

b0(τ) = 0, a0(τ) = ψ0(0, τ),

b1(τ) =
1

σ(0)

∂ψ0(0, τ)

∂x
= −ψ11(0, τ), a1(τ) = ψ10(0, τ). (77) eq:matchcoeffs

Thus the boundary conditions for the outer functions ψ0(x, τ) and ψ10(x, τ) are

ψ0(0, τ) =

∫ 1

0
f1(µ, τ)γ(µ)dµ, ψ10(0, τ) =

γ1

σ(0)

∂ψ0(0, τ)

∂x
, (78) eq:outerbc0

where we have used that γ0 = 1 and we note that γ1 ≈ 0.7104 (see Case and Zweifel
[3]). In a completely analogous way, the boundary conditions at x = 1 would be

ψ0(1, τ) =

∫ 1

0
f2(µ, τ)γ(µ)dµ, ψ10(1, τ) = − γ1

σ(1)

∂ψ0(1, τ)

∂x
. (79) eq:outerbc1

In summary, we have derived the following boundary value problems for the first
two terms in the outer expansion. The leading order term ψ0(x, τ) satisfies

K2

σ(x)

∂ψ0

∂τ
=

1

3σ(x)

∂

∂x

(
1

σ(x)

∂ψ0

∂x

)
+ c2(x)ψ0 +Q2 in 0 < x < 1, τ > 0, (80) eq:psi0diffb

with boundary conditions

ψ0(0, τ) =

∫ 1

0
f1(µ, τ)γ(µ)dµ, ψ0(1, τ) =

∫ 1

0
f2(µ, τ)γ(µ)dµ. (81) eq:psi0bc

We note that the these boundary conditions are the weighted average of the bound-
ary functions wrt µ with the weight function being the orthogonality weight function
γ(µ). The correction to this diffusion problem is given by the component ψ10(x, τ)
of the first order term which satisfies

K2

σ(x)

∂ψ10

∂τ
=

1

3σ(x)

∂

∂x

(
1

σ(x)

∂ψ10

∂x

)
+c2(x)ψ10+c3(x)ψ0+Q3 in 0 < x < 1, τ > 0,

(82) eq:psi10diffb
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with boundary conditions

ψ10(0, τ) =
γ1

σ(0)

∂ψ0(0, τ)

∂x
, ψ10(1, τ) = − γ1

σ(1)

∂ψ0(1, τ)

∂x
. (83) eq:psi10bc

Both of these problems requires suitable initial conditions to complete their full
statement. For similar reasons for the appearance of the spatial boundary layers, a
temporal layer is required in order to accommodate the initial condition (19). We
don’t pursue this here, but is left as an exercise.

4.4 Uniform expansions and extrapolated end point conditions

A uniform expansion over the whole x interval can be constructed by using the outer
expansion together with the inner expansions at both boundaries. These are simply
added with the common behaviour in the overlap regions subtracted. Let us denote
N terms of the outer expansion (22) by ψouterN and of the inner expansion (54) at
x = 0 be Ψ0in

N with a similar expansion for the boundary layer at x = 1. Then an N

term uniform expansion ψunifN is given by

ψunifN = ψouterN + Ψ0in
N −Ψ0overlap

N + Ψ1in
N −Ψ1overlap

N . (84) eq:unif

The overlap expansions are precisely (73) or equivalently (74). For example,

ψunif1 = ψ0(x, τ) +

∫ 1

0
A0(ν, τ)φν(µ)e−yσ(0)/νdν +

∫ 1

0
B0(ν, τ)φν(µ)e−(1−y)σ(1)/νdν,

(85)

ψunif2 = ψunif1 + ε

[
ψ10(x, τ) + µψ11(x, τ) +

∫ 1

0
A1(ν, τ)φν(µ)e−yσ(0)/νdν

+

∫ 1

0
B1(ν, τ)φν(µ)e−(1−y)σ(1)/νdν

]
, (86)

where

B0(ν, τ) =
ν

γ(ν)N(ν)

∫ 1

0
f2(µ, τ)φν(µ)γ(µ)dµ,

B1(ν, τ) =
ν2

2γ(ν)N(ν)σ(1)

∂ψ0(1, τ)

∂x
,

are analogous expansion functions to A0, A1 in the boundary layer at x = 1. These
uniform expansions are formed by additive composition. An alternative is multi-
plicative composition (see Van Dyke [8]).

Another modification is that of the so called extrapolated end point condition.
The outer solution is technically not valid within a region of order ε of the boundaries.
We are thus at liberty to modify the location of our end points for the outer solution
to within a distance of ε. We demonstrate this with the x = 0 boundary. Following
Habetler and Matkowsky [6] let us consider the flux ψ̂(x, τ) defined by

ψ̂(x, τ) =

∫ 1

−1
ψ(x, µ′, τ)dµ′. (87) eq:nflux

13



Using the outer expansion (22) with (28) and (31) we obtain

ψ̂(x, τ) =

∫ 1

−1

(
ψ0(x, τ) + ε[ψ10(x, τ) + µψ11(x, τ)] +O(ε2)

)
dµ′

= ψ0(x, τ) + εψ10(x, τ) +O(ε2). (88) eq:psihatexp

Let us write
ψ̂1(x, τ) = ψ0(x, τ) + εψ10(x, τ),

which we note satisfies the diffusion equation

K2

σ(x)

∂ψ̂1

∂τ
=

1

3σ(x)

∂

∂x

(
1

σ(x)

∂ψ̂1

∂x

)
+ ĉ(x)ψ̂1 + Q̂, (89) eq:psi1hat

where ĉ(x) = c2(x) + εc3(x), Q̂ = Q2 + εQ3 and we ignore terms of O(ε2) in the
product ĉ(x)ψ̂1. For the boundary conditions satisfied by ψ̂1, we expand (88) about
an arbitrary point x = εy0 close to the x = 0 boundary,

ψ̂(εy0, τ) = ψ0(εy0, τ) + εψ10(εy0, τ) +O(ε2)

= ψ0(0, τ) + ε

[
y0
∂ψ0(0, τ)

∂x
+ ψ10(0, τ)

]
+O(ε2)

= ψ0(0, τ) + ε

[
y0 +

γ1

σ(0)

]
∂ψ0(0, τ)

∂x
+O(ε2), (90) eq:psihatbc

using the ψ10 boundary condition in (78). Since ∂ψ0(0,τ)
∂x is not known (but only

determined after solving for ψ0), it is convenient to take

y0 = − γ1

σ(0)
. (91) eq:y0

Then

ψ̂1(εy0, τ) = ψ(0, τ) =

∫ 1

0
f1(µ, τ)dµ (92) eq:hatpsibc2

is the boundary condition with (89) now posed over εy0 < x < 1 − εy1, with y1 =
−γ1/σ(1). The important observation is that this problem for ψ̂1 gives a two-term
accurate solution for the outer expansion. Clearly, we may proceed to higher order
terms and corrections to y0 and y1 can be found.
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Appendix A. Estimates of the macro cross-sections
appa

Thermal cross section (barn) Fast cross section (barn)
Scattering Capture Fission Scattering Capture Fission

U-235 10 99 583 4 0.09 1
U-238 9 2 2× 10−5 5 0.07 0.3
Pu-239 8 269 748 5 0.05 2

Table 1: Typical micro cross-sections σ̂ for fuels used in nuclear reactors. Unit of 1
barn = 10−28 m2 or 10−24 cm2. table1

• The mean free path λ of a particle is the average length between two inter-
actions. It is given by 1/σ, where σ is the macroscopic cross section (units of
cm−1).

• The macroscopic cross σ section is related to the microscopic cross section σ̂
by

σ = Nσ̂, (1) eq:micmac

where N is the atom density (atoms per unit volume). N may be calculated
from

N =
ρNA

M
,

where NA = 6.0231023 is Avogadro’s number, ρ is the density (g/cm3) and M
is the gram atomic weight.

• Estimates of the microscopic cross sections for common fuels are given in Table
1, with Table 2 recording their properties and estimates of the atom density.
Table 3 gives estimates of the macroscopic cross sections using (1).
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density ρ g/cm3 M gram atomic weight N atom density atoms/cm3

U-235 19 235.04 4.87× 1022

U-238 19 238.03 4.81× 1022

Pu-239 19.8 244 4.89× 1022

Table 2: Typical micro cross-sections σ̂ for fuels used in nuclear reactors. Unit of 1
barn = 10−28 m2 or 10−24 cm2. table2

Thermal cross section (cm−1) Fast cross section (cm−1)
Scattering Capture Fission Scattering Capture Fission

U-235 4.9× 10−1 4.8 2.8× 101 1.95× 10−1 4.4× 10−3 4.9× 10−2

U-238 4.3× 10−1 9.6× 10−2 9.6× 10−7 2.4× 10−1 3.4× 10−3 1.4× 10−2

Pu-239 7.8× 10−1 1.3× 101 3.7× 101 2.4× 10−1 2.4× 10−3 9.8× 10−2

Table 3: Typical macro cross-sections σ for fuels used in nuclear reactors. table3

• If the typical length of the reactor is taken as d = 100cm then estimates of
ε = 1/(σd) from the values in Table 3 are O(10−4) using the largest macro
cross sections.

Appendix B. Separable solutions of the time-independent
transport equation

appb
We consider the steady transport equation with constant coefficients and no

source in the form

µ
∂ψ(x, µ)

∂x
+ ψ(x, µ) =

c

2

∫ 1

−1
ψ(x, µ′) dµ′, (1) eq:sepge

for 0 < x <∞ and −1 ≤ µ ≤ 1 with c here taken to be constant. Seeking separable
solutions in the form ψ(x, µ) = F (x)G(µ) gives

F ′(x)

F (x)
= −1

ν
and

(
1− µ

ν

)
G(µ) =

c

2

∫ 1

−1
G(µ′) dµ′,

where 1/ν is a constant of separation. Thus

F (x) = e−x/ν

to within a multiplicative constant and for convenience we normalise such that∫ 1

−1
G(µ′)dµ′ = 1. (2) eq:norm

Writing G(µ) = φν(µ) we thus have separable solutions in the form

ψ = e−x/νφν(µ), (3)
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where φν(µ) satisfies

(ν − µ)φν(µ) =
c

2
ν with

∫ 1

−1
φν(µ′) dµ′ = 1. (4)

Assuming |ν| > 1 then we have solutions in the form

φ±ν0(µ) =
c

2

(±ν0)

(±ν0)− µ
, (5) eq:dmodes

where ν = ±ν0 are the two roots of the transcendental equation

1 = cν tanh−1(1/ν), (6) eq:trans

which follows from use of the normalisation condition. These are the discrete solution
modes of the equation. However, if |ν| < 1 then there are distributional or singular
solutions of the form

φν(µ) =
c

2
P

ν

ν − µ
+ λ(ν)δ(ν − µ), λ(ν) = 1− cν tanh−1 ν, (7)

where P denotes the Cauchy principle value, which is to be understood when in-
tegrating the expression in the normalisation condition which now has a singular
integrand in the interval of integration. These give a continuous set of solution
modes.

The general solution to (1) by linear superposition of the discrete and continuous
modes may be written in the form

ψ(x, µ) = a0+φ+ν0(µ)e−x/ν0 + a0−φ−ν0(µ)ex/ν0 +

∫ 1

−1
A0(ν)φν(µ)e−x/ν dν, (8) eq:gensol

for arbitrary constants a0± and an arbitrary function A0(ν). Full −1 ≤ µ ≤ 1 and
half-range 0 ≤ µ ≤ 1 completeness theorems are stated in Case [2] or Case and
Zweifel [3], along with the appropriate orthogonality conditions.

We make the following remarks on the roots of the transcendental equation (6):

• If c < 1 then there are two real roots ±ν0 on the real axis.

• If c > 1 then there are two complex roots ±ν0 on the imaginary axis.

• If c = 1 then the two roots coalesce at ∞.

It is the case c = 1 we wish to make some further comments on, since it occurs in
the inner region problem. The solution for the two discrete modes may be written
as

ψ(x, µ) =
A

2

(
ν0

ν0 − µ

)
e−x/ν0 +

B

2

(
ν0

ν0 + µ

)
ex/ν0 (9)
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with arbitrary constants A,B. Expanding for large ν0 (with x fixed) gives

ψ(x, µ) =
A

2

(
1 +

µ

ν0
+

µ2

2ν2
0

+ . . .

)(
1− x

ν0
+

x2

2ν2
0

− . . .
)

+
B

2

(
1− µ

ν0
+

µ2

2ν2
0

− . . .
)(

1 +
x

ν0
+

x2

2ν2
0

+ . . .

)
=

(A+B)

2

(
1 +

(x− µ)2

2ν2
0

+O(1/ν4
0)

)
+

(B −A)

2

(
(x− µ)

ν0
+O(1/ν3

0)

)
.

(10)

Writing B +A = 2a0 and B −A = 2b0ν0, in the limit ν0 →∞, we obtain

ψ(x, µ) = a0 + b0(x− µ), (11)

which derives the so called classical solutions.
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