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Abstract

We consider the numerical solution to the stationary Reynolds averaged Navier-Stokes equa-
tions coupled with the k-ε turbulence model. These form a second-order system of partial
differential equations which is used in engineering applications to model the mean properties
of turbulent flows; this set of equations is highly nonlinear and presents the additional com-
plication that the variable ε (the dissipation rate of mean turbulent energy) blows-up as the
parameter h+ → 0. (The parameter h+ is the distance of artificial boundaries (“walls”) from

physical boundaries and, for modelling reasons, approaches zero as the Reynolds number in-
creases).

Using the standard Galerkin finite element method, we discretise the equations on a mesh
which is carefully refined in the direction of the ε blow-up, and is designed to approximate,
accurately and efficiently, the unknowns in an appropriate sense. The mesh grading depends
on h+. This dependence is invistigated in detail theoretically and by numerical experiments.
Through numerical experiments on 1D problems and 2D straight channel flows, we show
that, by using this graded mesh, very little computational effort is needed to obtain accurate
solutions, even in the case of very small values of h+.

Not only is the mesh very satisfactory from the point of view of the accuracy of the numerical
solutions and of the practicality of their computation but it also improves drastically the ro-
bustness of iterative methods for solving the discrete nonlinear system. In fact, on the graded,
h+-dependent mesh the convergence ball of Newton’s method for the nonlinear finite element
system does not shrink to zero as h+ → 0. We show this theoretically for 1D flows, by ex-
ploiting the invariance of the iterative method under affine covariant and affine contravariant

transformations of the underlying nonlinear system, and give experimental evidence for 1D

flows and flows in straight channels. Newton’s method is also shown to outperform the often
used inner-outer iterative scheme for the problem under investigation. This is of prime impor-
tance in industrial applications where existing solvers and ad hoc meshes have been observed
to be very unreliable.

We also consider the finite element computation of fully developed turbulent flows in 2D ex-
panding channels. We discretise these flow domains by orthogonal meshes which, in the direc-
tion where ε blows-up, have the graded, h+-dependent points’ distribution we have identified.
We experimentally show that on such grids it is possible to resolve, accurately and practically,
complex flow features, such as recirculation, even for widely expanded channels and small
values of h+.
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Preface

The aim of this project is to improve the robustness of the finite element CFD code FEAT (Fi-
nite Element Analysis Toolbox); this is a multiphysics industrial code, containing solvers for
fluid flows, heat transfer and structural analysis. Due to the lack of robustness, the solver for
turbulent flows, which solves the Reynolds averaged Navier-Stokes equations coupled with
the k-ε turbulence model, has been unreliable and unpractical. We have solved this non-
convergence problem by devising a robust solution method for turbulent flows, which relies
on the use of a specific family of meshes in combination with Newton’s method.

vi



Chapter 1

Turbulent flows, properties and
modelling

The focus of this chapter is on providing an overview of some of the physical and modelling
issues related to the study of turbulent flows.

Initially, we will discuss the physical properties of turbulence and very briefly review the
Navier-Stokes equations, the governing equations of turbulent flows (§1.1). In §1.2, we will
outline Kolmogorov’s theory, one of the few theoretical results available in the field of turbu-
lence, and then, in §1.3, present the basic statistical analysis of turbulent flows together with

the derivation of the Reynolds-averaged Navier-Stokes (RANS) equations (see §1.3.1). In §1.4
we will discuss Boussinesq’s hypothesis (a possible way to close the RANS equations) and the
related k-ε model of turbulence, and in §1.5 we will illustrate the “wall function” technique
used in turbulence modelling for determining the behaviour of the variables in the proximities
of solid boundaries. In particular, we will discuss one of the major landmarks in turbulence
theory: the logarithmic “law of the wall” for the velocity profile (see §1.5.1). Finally, in §1.6,
we will outline the mathematical results on the k-ε model which we are aware of.

The physical and theoretical considerations on turbulent flows presented in this chapter
have been elaborated mainly bearing in mind the results discussed in [1], [2], [3] and [4], while
the part concerned with turbulence modelling is based on [5], [2] and [6].

Due to the extent and complexity of the subject, the following summary can only be partial
and simply aims at giving a hint of the physical, engineering and mathematical issues involved
in the description of turbulent flows.

1.1 The physical nature of turbulence

Turbulent flows exist in nature as well as in industrial environments, where they represent the
vast majority of flows in practical applications. For example, flows around airplanes and cars,

in gas/coal burning furnaces and in cooling systems are turbulent, even the blood flowing past
prosthetic heart valves is turbulent. Turbulent flows also occur in oceans, rivers, the atmosphere
and in the lungs of human beings. The prediction of their properties is therefore crucial to many

1



1.1. The physical nature of turbulence

scientific and engineering activities.
A fully satisfactory definition of turbulence is not yet available, and flows are regarded as

turbulent if they exhibit the following properties:

Irregularity Randomness is one of the main characteristics of turbulent flows. For example,
the velocity field of a turbulent flow varies significantly and irregularly in both position and
time (this makes the statistical approach to the problem of turbulent flows quite natural, see

§1.3).

Large Reynolds number Turbulent flows always occur at high Reynolds number1. Tur-
bulence often originates as instability of laminar flows if the Reynolds number becomes too
large.

Wide range of length scales In turbulent flows a number of different length scales exists,
these are bounded from above by the dimension of the flow field (the imposed length scale)
and from below by the diffusive action of molecular viscosity.

Three-dimensional vorticity fluctuations Turbulent flows are three dimensional and their
vorticity field (defined as the curl of the velocity field) is characterized by intense, fine-scale,
random fluctuations. The random vorticity fluctuations could not maintain themselves if the ve-
locity field was two dimensional, since an important vorticity-maintenance mechanism, known
as vortex stretching, is absent in two dimensional flows (for a discussion of this phenomenon
see [1] §3.3). (It should be made clear that a turbulent flow can nonetheless be two-dimensional
in a statistical sense, that is its statistical properties are independent of one of the three spatial
directions with zero mean-velocity component in that direction).

Diffusivity The diffusivity of turbulence, which causes rapid mixing and increased rates of
momentum, heat, and mass transfer, is another important feature of all turbulent flows. If a

flow pattern looks random but does not exhibit spreading of velocity fluctuations through the
surrounding fluid, it is surely not turbulent.

Dissipation Turbulent flows are always dissipative. Viscous shear stress perform deforma-
tion work which increases the internal energy of the fluid at the expense of kinetic energy of
the turbulence. Turbulence needs a continuous supply of energy to make up for these viscous
losses. If no energy is supplied, turbulence decays rapidly. (We will argue that dissipation acts
on the finest scales of turbulent flows where viscosity becomes effective).

1If U and L are respectively a representative velocity and a representative length of a particular flow whose
kinematic viscosity is ν, then the Reynolds number is defined to be Re :=UL/ν. It can be interpreted as a measure
of the relative magnitude of inertial and viscous forces in the flow (see §1.1.1).

2



1.1. The physical nature of turbulence

Continuum Turbulence is a continuous phenomenon, governed by the equations of fluid
mechanics. Even the smallest scales occurring in a turbulent flow are ordinarily far larger than
any molecular length scale.

Turbulence is a feature of flows, not of fluids The major characteristics of turbulent flows
are not controlled by the molecular properties of the fluid in which turbulence occurs, therefore
most of the dynamics of turbulence is the same in all fluids, whether they are liquids or gases,
if the Reynolds number is large enough.

1.1.1 The Navier-Stokes equations

First, for clarity and reduction of ambiguity, we explain the tensor notation which we will
employ in the rest of this thesis and which is also used and reviewed in [2] and [7]. In the
following the summation convention over repeated indices is assumed. Let us consider the
vector (or rank-one tensor) b, then by ∇b we will denote a rank-two tensor which, in the
Cartesian base-vector notation, is expressed as:

∇b = eiej
∂bj

∂xi
.

Clearly ∇b can also be interpreted as a matrix with entries (∇b)ij :=∂bj/∂xi. Also, if A is
a rank-two tensor, then the inner product of A and b is the vector:

A·b = (eiejAij)·ekbk = eiδjkAijbk = eiAijbj ,

where δjk is the Kronecker delta which is equal to zero for i 6= j and equal to 1 if i= j. A·b
can also be interpreted as the product of the matrix A, with entries (A)ij :=Aij , and the vector
b. The divergence of the rank-two tensor A is the inner product of ∇ and A:

∇·A =
(
ek

∂

∂xk

)
· (eiejAij) = ej

∂Aij

∂xi
,

correspondingly the vector (∇ ·A)j := ∂Aij/∂xi can be interpreted as the divergence of the
matrix A. Finally we define the dot product of two rank-two and rank-three tensors. Let B be
a rank-two tensor, then the dot product between A and B is given by:

A : B = (eiejAij) : (ekelBkl) = δjkδilAijBkl = AijBji ,

in matrix notation A :B is given by the trace of the product of the matrices A and B, while if
C and D are two rank-three tensors, then their dot product is given by:

C : D = (eiejekCijk) : (elemenDlmn) = δklδjmδinCijkDlmn = CijkDkji ,

the last quantity has no correspondent in matrix notation and will be needed in §1.4.2.
We now present the equations describing the dynamical properties of turbulent flows. Due

3



1.1. The physical nature of turbulence

to the continuum assumption (see above), the dynamics of a turbulent, Newtonian, incompress-
ible flow, with uniform initial density and no external body force acting on it, is represented by
the Navier-Stokes equations:

∇·u = 0 (1.1)

∂u
∂t

+ u·∇u = ∇·σ (1.2)

where u = u(x, t) is the (unknown) velocity field and σ is the Cauchy stress tensor per unit
mass, given by:

σ := −pI + ν
[∇u + (∇u)T

]
, (1.3)

with p = p(x, t) the (unknown) hydrodynamic pressure per unit mass and ν the kinematic
viscosity, a property of the particular fluid which is being considered. Equation (1.1) expresses
the conservation of mass in incompressible fluids and is also known as continuity equation,
equation (1.2) represents the conservation of linear momentum (for a derivation of (1.1)-(1.2)-
(1.3) see [8]).

It should be noted that equations (1.1)-(1.2), subject to appropriate initial and boundary
conditions, apparently represent a perfectly deterministic system for u and p, therefore the
question of how they can describe turbulent flows, which are random phenomena (see §1.3 for
a discussion on the randomness of turbulence), has represented a major conceptual obstacle
to the progress in the theory of turbulence. A fully satisfactory mathematical answer to this
problem has not been provided yet, but it has been shown that nonlinear equations may exhibit

acute sensitivity to initial conditions, and hence unpredictability (see [9], [10], [11] and also
the books [12], [13] and [14]). This issue is well beyond the scope of this thesis, and we will
readily accept, as commonly done, that the Navier-Stokes equations also govern the motion of
turbulent flows.

Next, for the sake of illustrating the meaning of the Reynolds number, which has a key role
in the dynamics of turbulent flows, we give an alternative formulation of (1.2). By substituting
the expression (1.3) for σ into the right-hand side of (1.2) and using the vector identity ∇ ·
(∇u)T =∇(∇·u) together with (1.1), it is possible to express (1.2) as follows:

∂u
∂t

+ u·∇u = −∇p + ν∆u . (1.4)

The nonlinear convective term (∂/∂t + u ·∇)u on the left-hand side of (1.4) (and of (1.2)) is
called the inertial term, while the diffusive linear term ν∆u, on the right-hand side of (1.4), is
the viscous term. Now, let U and L be respectively a representative velocity and a representa-
tive length of a particular flow. If (1.4) is expressed in nondimensional form, using U , L and

L/U respectively as reference velocity, length and time, then the nondimensionalised equation
will explicitly contain the Reynolds number Re which can then be interpreted as an estimate

4



1.2. Kolmogorov’s theory

of the relative magnitude of inertial and viscous terms:

Re :=
UL

ν
∼ |Dui/Dt|

|ν∆ui| ,

where
Dui

Dt
:=

(
∂u
∂t

+ u·∇u
)

i

and ∆ui := (∆u)i. Usually L is the imposed length scale, that is some large-scale length
related to the domain occupied by the fluid (for example, for a channel flow, L can be the width

of the channel) while U can be related to the boundary conditions. As said at the beginning of
this section, a distinctive feature of turbulent flows is ReÀ 1, for example for the flow of air
around a glider of characteristic length 1m cruising at speed 1m · s−1, Re≈6× 104; for cars
of characteristic length 4 m running at 30m · s−1, Re≈ 7 × 106 and for airplanes of length
50m cruising at 270m·s−1, Re≈8× 108.

Finally, in order to form an intuitive impression of the existence in turbulent flows of dif-
ferent characteristic lengths, consider that, broadly speaking, the viscous diffusive term in the
Navier-Stokes equations scales with distance (generically denoted by x) as 1/x2 whilst the
inertial term scale as 1/x, therefore the former increase in relative importance as the length
scale considered decreases. So viscous force becomes effective on length scales much smaller
than the imposed length scale on which, at high Reynolds number, the inertial term dominates.
Moreover, in the case of wall-bounded flows, viscosity, no matter how small it is, enforces
the no-slip condition at the physical walls and viscous forces become then dominant in very
thin boundary layers adjacent to the solid surfaces. In §1.5 the structure of turbulent boundary
layers will be briefly discussed in the context of the “laws of the wall” for the mean properties
of turbulent flows.

1.2 Kolmogorov’s theory

In this section, we briefly outline a cornerstone in the field of turbulence: Kolmogorov’s theory
(originally discussed in [15], [16], [17]). This theory, by representing turbulent flows in terms
of a cascade of kinetic energy from large to small scales, provides an estimate of the size of
the finest scales and an expression for the energy spectrum in the so called inertial range (see
below). (The cascade metaphor was not used by Kolmogorov, but is due to Onsager [18]).

As it is presented here and was originally formulated, Kolmogorov’s theory is based on
heuristic arguments and on scaling properties and has no explicit reference to the Navier-
Stokes equations. Some work has recently been done in order to obtain some of its results
in a mathematically rigorous way starting from the Navier-Stokes equations, see [19], [20],
[21].

In the framework of Kolmogorov’s theory, turbulent flows are qualitatively regarded as a
cascade of large eddies (large-scale components of the flow) breaking up successively into ever
smaller sized eddies (fine-scale components of the flow). This cascade process entails a trans-

5



1.2. Kolmogorov’s theory

fer of kinetic energy from one length scale to a smaller one and is associated with the “vortex
stretching mechanism”, a phenomenon strictly related to changes in the length scales and solely
due the presence of the nonlinear inertial term in the Navier-Stokes equations (see §3.3 of [1]
for a detailed discussion). The flow of kinetic energy, however, does not continue to arbitrarily
small length scales, in fact, as the length scale becomes smaller and smaller the relative impor-
tance of molecular viscous diffusion increases and eventually becomes dominant and prevents

the generation of infinitely small scales of motion by dissipating small-scale energy into heat
(the range of length scales where dissipation occurs is called the dissipation range).

From the observation that at high Reynolds number there is little direct interaction between
the large eddies governing the energy transfer and the small dissipating eddies, Kolmogorov
proposed his first similarity hypothesis: “small-scale motions are isotropic and statistically

independent of the large-scale turbulence and of the mean flow”. In terms of the cascade
representation, this can be interpreted saying that at high Reynolds number the cascade is very
long (that is there is a large difference in the eddy sizes at its ends) and, as kinetic energy
flows from one scale to a smaller one, all information about the anisotropy of the large energy-
containing scales is lost and the small-scales then show a universal behaviour. Therefore, being
independent of initial and boundary conditions (which affect large-scale motions), small-scale
motions can depend only on the rate at which they are supplied with energy by the large-scale
motion and on the kinematic viscosity ν, related to the dissipation of kinetic energy into heat
occurring at the finest scales. Since it is also assumed that the rate of energy supply is equal to
the rate of dissipation, it then follows that the dynamics of small scale motion is governed by the
viscosity ν and the dissipation rate (which we denote by ε). With these two parameters, one can
form length, time and velocity scales, as now shown. The dimensions of ε are length2·time−3:

[ε] =
l2

t3
,

where l means length, and its unit of measurement is meter, and t means time, and its measure
is second, and the dimensions of ν are length2·time−1:

[ν] =
l2

t
.

Therefore the relation between l and [ε], [ν] can be obtained by setting:

l = [ε]α[ν]β =
l2α

t3α

l2β

tβ
=

l2(α+β)

t3α+β

from which α=−1/4 and β=3/4. It then follows that the characteristic length of the smallest
eddies is:

ε−1/4 ν3/4 =
(

ν3

ε

)1/4

:= η . (1.5)

Similarly one can obtain the characteristic time and velocity of the smallest eddies, which are

6



1.2. Kolmogorov’s theory

respectively:

τ :=
(ν

ε

)1/2
and

η

τ
= (νε)1/4 := υ . (1.6)

The scales η, τ and υ, typical of the dissipation range, are referred to as Kolmogorov

microscales of length, time and velocity.
As said before, the flow of kinetic energy from large to small scales is assumed to be due

only to the vortex stretching mechanism which is a nonlinear phenomenon totally unrelated
to viscous effects. This consideration is at the basis of Kolmogorov’s second similarity hy-
pothesis: “the cascade process occurs in a regime at lengths sufficiently large for the effects

of viscosity to be inconsequential”. It is then assumed that there exists in the flow a range
of length scales, called inertial range, where viscous forces have no effect on the removal of
energy from one length scale to a smaller one, and there is then an equilibrium between energy
flowing in from above to a given scale and that flowing out to a lower scale (experimentally
it turns out that 90% of the energy that is fed into the large eddies is finally dissipated at the
smallest eddies). The fact that in the inertial range the energy fed to the largest eddies is merely
transmitted to the smallest eddies, where dissipation occurs, allows us to relate ε to the length
and velocity scales of the large-scale turbulence, as now explained. Let L represent the size of
the largest eddies or the width of a particular flow, and u the characteristic turbulent velocity
of the largest eddies. It is plausible to assume that the rate at which large eddies supply en-

ergy to small eddies is proportional to the reciprocal of the time scale of the large eddies L/u,
moreover, since the amount of turbulent kinetic energy per unit mass in the large-scale eddies
is proportional to u2, the rate of energy supply to the small scale eddies can be estimated to be
of the order: u2 · u/L=u3/L . This energy is dissipated at a rate ε, which should be equal to
the supply rate. Hence,

ε ∼ u3

L
, (1.7)

the viscous dissipation of energy is then estimated from the large-scale dynamics, which do not
involve viscosity. Dissipation is clearly seen as a passive process, in the sense that it proceeds
at a rate dictated by the inviscid inertial behaviour of the large eddies. We can now use (1.7)
to form an impression of the differences between the large-scale and small-scale aspects of
turbulence. In order to do so we first define the Reynolds number:

Re =
uL

ν
, (1.8)

based on the representative velocity and length of the large eddies. Then, substituting the
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1.3. Statistical description of turbulent flows

expression (1.7) for ε into (1.5) and into (1.6) and using (1.8) yields:

η ∼
(

ν3 L

u3

)1/4

= L

(
ν3

u3L3

)1/4

= LRe−3/4 ⇒ η

L
∼ Re−3/4 , (1.9)

τ ∼
(

ν
L

u3

)1/2

=
L

u

( ν

u L

)1/2
=

L

u
Re−1/2 ⇒ τ

u

L
∼ Re−1/2 , (1.10)

υ ∼
(

ν
u3

L

)1/4

= u
( ν

u L

)1/4
= uRe−1/4 ⇒ υ

u
∼ Re−1/4 . (1.11)

These relations indicate that the length, time and velocity scales of the smallest eddies are
very much smaller than those of the largest eddies. From (1.9)-(1.11) it is clear that the sepa-
ration in scales widens as the Reynolds number increases, in accordance with the assumption
that at high Reynolds number the cascade is long and there is little direct interaction between
the large eddies and the small ones.

The other aspect of Kolmogorov’s theory is concerned with the distribution of the energy
spectrum E(k), where k is the wave number (which carries dimension length−1). In the inertial
range, E(k) must be a function of the rate at which energy is transmitted from one length
scale to a smaller one (ε) and of the wave number and must be independent of the viscosity.
Therefore, dimensional considerations again dictate that this dependence can only be of the

form
E(k) = C ε2/3k−5/3 , (1.12)

where C is a dimensionless constant. (1.12) is known as Kolmogorov −5/3 law. The first
experimental verification of (1.12) was carried out by Grant, Stewart and Moilliet [22], who
conducted their experiments in a tidal channel between Vancouver Island and mainland Canada
where Re∼108. A spectral exponent of −5/3 has since been measured many times in materi-
ally different flow with very high Reynolds number (see [23]) and the dimensionless constant
C in (1.12) appears to be a universal constant with a value close to 1.5 (see [24]).

1.3 Statistical description of turbulent flows

In this section we give a very brief account of the statistical description of turbulent flows on
which turbulence modeling relies (for more details see Chapter 6 of [1], Chapter 3 of [2] and
Chapter 2 of [4] and [25]). We will discuss the physical and practical reasons for introducing

a statistical representation of turbulent flows, trying to highlight its drawbacks and advantages,
especially in comparison with the two techniques which, in the last two decades, have been in-
creasingly successful in correctly predicting the properties of turbulent flows: direct numerical
simulation (DNS) and large eddy simulation (LES).

DNS and LES are both based on fully three-dimensional and time dependent calculations
which need to be conducted over long periods of time in order to obtain stable and signifi-
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cant statistics. The first approach (DNS) pursues a thorough three-dimensional resolution of
all scales present in the turbulent flow under investigation by solving the Navier-Stokes equa-
tions (1.1)-(1.2). Therefore, in the case of turbulent flows without wall boundaries, the DNS
technique requires a number of mesh cells in each spatial direction of the order of Re3/4 (this
follows from the length scale estimate (1.9)). In this case in 3D the total number of cells then
scales like Re9/4 (the dependence on Re is more severe in the case of turbulent channel flows,

see the discussion in [2]). Moreover, considering that the number of time steps over which
the equations have to be integrated is at least of the order of the number of grid cells in one
direction, we obtain a total computing expense for a simulation which varies at least as Re3.
This is clearly totally unpractical already for flows with Re=105, which are very common in
engineering applications.

LES is a more practical alternative in which the large-scale part of turbulent quantities is
computed explicitly, while the small scales are treated by some approximate parametrization
or model. Clearly LES is less costly than DNS, but, like DNS, has the drawback of always
requiring three-dimensional and time-dependent calculations even for flows which are two- or
one-dimensional in the mean. The use of LES is becoming more and more popular in engi-
neering applications, but complex turbulent flows still cannot yet be tackled by this technique
due to the high requirements in computer memory and central-processing-unit time.

When a study of the detailed physics of the flow is the goal, then DNS or LES, if fea-
sible, should be the methods of choice, but, in most circumstances, what engineers would
like to know is the mean effect of the turbulent quantities and they are not so concerned with
the instantaneous fluctuations. Thus, a more practical approach to describing turbulent flows
would be to couple the Reynold-averaged Navier-Stokes (RANS) equations (which, as it will
be shown in the next subsection, represent a system of equations for the mean properties of the

flow) with a turbulence model. This technique will be illustrated in the next sections and is
based on the statistical representation of turbulent flows which is now briefly discussed.

The reason for modelling turbulent flows by suitable average quantities, has its foundation
in the fact that, as a matter of definition, we are supposing that in turbulent flow regimes, the
physical properties are randomly varying (see §1.1). By saying, for example, that the velocity
u is a random function of position x and time t we mean that at a given point (x, t) of space-
time the velocity u is not predictable in practice from the data of the problem. Thus, if an
experiment is repeatedly carried out, a different velocity field is obtained in each realization

even if the experimental conditions are nominally the same (we will refer to a collection of
realizations as an ensemble). Physically, this is due to the fact that the detailed behaviour of
the flow in any one realization is extremely sensitive to small changes in the initial or boundary
conditions, that cannot be controlled to infinite precision.

We also observe that it is implicit in the use of the phrase “random function” that the values
assumed by u at any point (x, t) are distributed according to certain definite probability laws.
We shall assume that the probability laws describing the velocity fluctuations are determined
by the data of the problem. Therefore, we could define the turbulent motion at (x, t) to be such
that as the number of realizations tends to infinity the probability distribution of u tends to a
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limiting form which depends only on the data of the problem.
This interpretation of u as random variable applies for every point (x, t) and in general

there will exist a statistical connection between the random values of u that occur at different
points in space-time. Therefore the full statistical properties of the velocity field are charac-
terized by the joint-probability distribution of the values u1,u2, . . . ,uN of u, at the points
(x1, t1), (x2, t2), . . . , (xN , tN ) in space-time, and this for arbitrary values of N . Furthermore

the pressure field should also be considered and its joint distribution with velocity should then
be taken into account. It is then clear that, in principle, a vast amount of statistical information
is contained in a turbulent flow. But, usually correlations between different time-space points
and different variables are not taken into account and the flow is described only through single-
point statistics. In the case of incompressible flows (when no variations in the density of the
fluid have to be considered), this is done as now explained. The velocity and pressure fields
are split into a mean and a fluctuating part:

u(x, t) = u(x, t) + ũ(x, t) , p(x, t) = p(x, t) + p̃(x, t) , (1.13)

(the decomposition (1.13) is referred to as Reynolds decomposition), where ũ and p̃ are the
fluctuating velocity and pressure at (x, t) and are usually identified with the turbulence, whilst
u and p are respectively the average over the ensemble at (x, t) of u and p and define the “mean
flow”:

u :=
∫

uFu(u,x, t)du p :=
∫

p Fp(p,x, t)dp , (1.14)

with Fu(u,x, t) the probability distribution of u at (x, t) and similarly Fp(p,x, t). In (1.14)
the integration is carried out over all possible values of u and p respectively. Then, a system
of equations for u and p is determined by computing the “Reynolds average” of (1.1)-(1.2), as
will be shown in §1.3.1. For this, we first need to introduce the Reynolds average operator 〈 · 〉,
which is a linear operator such that, for any function f of the flow variable ϕ,

〈f(ϕ)〉 = f(ϕ) , (1.15)

where f(ϕ) is the average over the ensemble at (x, t) of f(ϕ). The following properties of the
Reynolds average operator are also assumed:

(a)
〈

∂ϕ

∂t

〉
=

∂〈ϕ〉
∂t

,

〈
∂ϕ

∂xi

〉
=

∂〈ϕ〉
∂xi

,

(b) 〈〈ϕ〉〉 = 〈ϕ〉 ,

(c) 〈〈ϕ1〉ϕ2〉 = 〈ϕ1〉 〈ϕ2〉 .

Note that from linearity and property (b) it follows that:

〈ũ〉 = 〈u− u〉 = 〈u〉 − 〈〈u〉〉 = 0 , (1.16)

and similarly
〈p̃〉 = 0 , (1.17)
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moreover (1.16)-(1.17) together with property (c) imply that the Reynolds average of the prod-
uct of a fluctuating and a mean quantity is zero. For example, using again linearity and also
(a), we have:

〈ũ·∇u〉 = 〈ũ·〈∇u〉〉 = 〈ũ〉·〈∇u〉 = 0

The equations for the mean flow will be derived in the next section. Here we observe
that if, on one hand, by considering one-point statistics, information about the flow is reduced
to what might be presumed its essentials (e.g., mean velocities) and the flow description is
consequently simplified, on the other hand, one-point averaged quantities do not encompass
the full statistics of the flow, since multipoint averages cannot be deduced from one point data.
Statistical information is thus lost in going to one-point averages, information that may be
crucial to an understanding of certain aspects of the flow. In what follows, we will see that
the incompleteness of the one-point statistics will prevent the system of equations for the mean
flow from being closed, so that approximations will have to be introduced in order for the set
of equations to be complete.

Finally, it should be noted that we have introduced a statistical representation of turbulent
flows based on the assumption that suitable probability distribution functions exist, assuring
then the existence of meaningful ensemble averages. But, in practice, measurements of various
aspects of turbulent flows are actually measurements of time-averaged quantities. The relation
between the two types of average is usually dealt with by assuming the “ergodic hypothesis”.

Then, in the case of statistically steady turbulence (all mean quantities are invariant under
translation in time), for example, time averages are precisely equal to ensemble averages and
there is then a correspondence between experiments and theoretical results.

1.3.1 RANS equations

Now, by taking the Reynolds average of the Navier-Stokes equations (1.1)-(1.2) we derive
the Reynolds-averaged Navier-Stokes (RANS) equations for u and p. We shall see that the
RANS equations are not closed, due to the fact that the averaging process will introduce a
new unknown: the Reynolds stress, which involves second order moments of the fluctuating

velocity field. The lack of closure reflects the incompleteness of the one-point statistics which
does not encompass the full multipoint statistics of the flow.

In the following we will use the properties (a), (b), (c) of the filter 〈 · 〉, without making
explicit reference to them. We have that the Reynolds average of equation (1.1) yields:

∇·u = 0 , (1.18)

and taking the difference of (1.1) and (1.18) we obtain:

∇·ũ = 0 . (1.19)

We then observe, from (1.18) and (1.19), that the mean and fluctuating velocities satisfy the

11



1.4. Eddy viscosity k-ε model

continuity equation as they were assumed to be independent flows. This decoupling, however,
does not extend to equation (1.2), due to the presence of the nonlinear term u ·∇u, as now
shown. Reynolds averaging equation (1.2) gives:

∂u
∂t

+ 〈u·∇u〉 = ∇·σ , (1.20)

with
σ := −pI + ν

[∇u + (∇u)T
]

, (1.21)

then, also using the expression (1.13) for u and equation (1.19), we write:

〈u·∇u〉 = 〈(u + ũ)·∇(u + ũ)〉

= u·∇u + 〈ũ·∇ũ〉+ 〈ũ·∇u〉+ 〈u·∇ũ〉

= u·∇u + 〈ũ·∇ũ〉

= u·∇u + 〈∇·ũũ〉

= u·∇u + ∇·ũũ .

The last expression for 〈u·∇u〉 can be used in (1.20) to obtain:

∂u
∂t

+ u·∇u = ∇·(σ + τ ) (1.22)

with
τ := −ũũ (1.23)

the Reynolds stress tensor per unit mass, a second order moment of the velocity components at
single point in space and time.

It is now clear that the equations (1.18) and (1.22) for the mean flow are not closed since
they are coupled to the fluctuations through τ . This represents the mean transport of fluctuating
linear momentum per unit mass due to turbulent velocity fluctuations and is interpreted as an
additional stress tensor by which the fluctuating part of the flow interacts with the mean flow.

In order to close the equations (1.14)-(1.22), it is then necessary to tie τ to the global
history of the mean velocity u in a physical consistent fashion, i.e.:

τ (x, t) = F(u(x′, t′);x, t) , x′ ∈ V , t′ ∈ (−∞, t)

where V is the fluid volume. This is discussed in the next section.

1.4 Eddy viscosity k-ε model

Here we will consider the eddy viscosity k-ε turbulence model (where k is the turbulent kinetic
energy and ε its dissipation rate), which is a two-equations first-order closure model based on
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Boussinesq’s hypothesis (introduced in 1877):

τ = νT(∇u + (∇u)T)− 2
3

k I , (1.24)

where νT is a positive scalar coefficient to be specified, called the eddy viscosity or turbulent

viscosity and k is given by

k :=
1
2

ũ·ũ ,

the expression for ε is given in (1.34) (the reasons for defining the k-ε model a two-equations
first-order closure model will become clear in the following).

The (questionable) assumption behind (1.24) is that the Reynolds stress can be related to the
gradient of the mean velocity field in a similar manner as in Newtonian incompressible fluids
the stress is related to the gradient of the total velocity field (compare (1.24) with (1.3)). Then,
by substituting (1.24) and (1.21) into (1.22), and by using the vector identity ∇ ·(fI) = ∇f

(where f is a scalar function), it is not difficult to obtain:

∂u
∂t

+ u ·∇u = ∇ · [(ν + νT)
(∇u + (∇u)T

)]−∇
(

p +
2
3

k

)
, (1.25)

finally, defining the modified mean pressure:

P := p +
2
3

k ,

(1.25) can be written as:

∂u
∂t

+ u ·∇u = ∇ · [(ν + νT)
(∇u + (∇u)T

)]−∇P . (1.26)

We then have two dynamical equations, (1.26) and (1.18), for the mean variables u and P ,
there still remains the task of expressing νT in terms of known or calculable quantities. We now
discuss the solution to the problem of determining νT provided by the k-ε turbulence model.

An expression for νT is determined by observing that it carries dimensions length2·time−1

(as it can be deduced from (1.24)):

[νT ] =
l2

t
,

therefore, since νT , unlike the kinematic viscosity ν, is not a property of the fluid but is ex-
pected to be determined by the structure of the turbulence at the point (x, t) in question, it is
expressed as:

νT = Cµ
l2
T

tT
, (1.27)

where Cµ is a constant (whose value will be given in §1.4.3) and lT = lT(x, t) and tT = tT(x, t)
are respectively the turbulent length and time scales. In the framework of the k-ε turbulence
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model, lT and tT are built up from k and ε as follows:

lT =
k3/2

ε
, tT =

k

ε
(1.28)

and the turbulent quantities k and ε in turn are determined by way of transport equations, see
(1.41) and (1.45) (this is the reason for referring to the k-ε model as a two-equations model,
in contrast to zero-equation models where νT is found by way of algebraic formulae or to one-

equation models in which the determination of νT entails the solution of a differential equation
for only one property of the turbulence). Then, combining (1.27) with (1.28) yields

νT = Cµ
k2

ε
. (1.29)

Note that it is also possible to construct lT and tT using variables other than (k, ε), and
in fact turbulence models with various combination of variables have been proposed. The
k-ε model has emerged as the most widely used turbulence model, and is included in most
commercial CFD codes. As for all turbulence models, its details and the concepts which it

relies on, have evolved over time; but Jones and Launder [26] are credited with developing the
“standard” k-ε model, with Launder and Sharma [27] providing improved values of the model
constants (see Postulation 5 below and the discussion in §1.4.3).

Before sketching the derivation of the governing differential equations for k and ε (see
§§1.4.1, 1.4.2), we summarize the basic postulations which, together with the “k-ε turbulence
scale hypothesis” (1.28), are adopted by the k-ε model (some of the following assumptions
underlie most turbulence models):

1. The diffusion of turbulent transport properties by turbulence is proportional to the gradi-
ent of transport properties (diffusion gradient model)

2. Small turbulent eddies are isotropic (isotropic dissipation model)

3. All turbulent transport quantities are local functions of Reynolds stress, turbulence ki-
netic energy, rate of dissipation of turbulent kinetic energy, mean-flow variables (ũũ , k ,
ε , u , p ) (one-point correlation closure statement).

4. All modeled turbulent phenomena must be consistent in symmetry, invariance, permuta-
tion, and physical observations (consistency and realizability requirement).

5. All turbulence model constants, Cµ , σk , σε , Cε1 , Cε2 (these are the constants ap-
pearing in (1.29), (1.49) and (1.50)) require experimental calibration and determination

(uniqueness of constants).

1.4.1 Modelled k transport equation

In this and next section we will derive the modelled transport equations respectively for k and
ε, following mainly the study presented in [5].
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We now describe the governing equation for the turbulent kinetic energy k and the mod-
elling procedure related to the diffusion gradient model hypothesis (Postulation 1). Subtracting
the mean flow equation (1.22) from equation (1.2) for the total field, yields

∂

∂t
(u− u) + u·∇u− u·∇u = ∇·[(σ − σ)− τ ] , (1.30)

then, using the expressions for u and p in (1.13), those for σ, σ and τ respectively in (1.3),
(1.21) and (1.23), and using also (1.19), it is not difficult to obtain from (1.30) the following
equation for the fluctuating part of the velocity field:

∂ũ
∂t

+ u·∇ ũ + ũ·∇u + ũ·∇ ũ + ∇p̃− ν∆ũ−∇·ũũ = 0 , (1.31)

which is formally written in operator notation as:

N ũ = 0 . (1.32)

From (1.32), we then construct the Reynolds average:

〈(N ũ)·ũ〉 = 0

which, by using (1.19) together with some vector identities and the properties of the filter 〈 · 〉,
yields the “exact” transport equation for k:

∂k

∂t
+ u·∇k = ∇·

(
−k̃ ũ− p̃ ũ + ν∇k

)
− ũũ :∇u− ν∇ũ : (∇ũ)T , (1.33)

where
k̃ :=

1
2

ũ·ũ

is the fluctuating kinetic energy.
The left-hand side of (1.33) clearly represents the total derivative of k following the motion

of the mean flow with velocity u, we now give a physical interpretation of the terms on the
right-hand side of equation (1.33) and discuss the modelling procedure needed for the new
unknowns k̃ ũ and p̃ ũ. The last term on the right-hand side of (1.33) represents the rate of
dissipation of turbulent kinetic energy:

ε := ν∇ũ : (∇ũ)T , (1.34)

note that ε is always positive (the ε-transport equation will be derived in §1.4.2), the term

−ũũ :∇u = τ :∇u (1.35)

represents, instead, the production of turbulent kinetic energy due to the interaction of the
Reynolds stress with the gradient of the mean flow (the energy exchange between the mean
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flow and the turbulence usually involves loss to the mean flow and a profit to the turbulence),
and finally we observe that the diffusion of turbulent kinetic, given by

∇·
(
−k̃ ũ− p̃ ũ + ν∇k

)
, (1.36)

is due both to fluctuating motions (first two terms in (1.36)) and to the molecular properties
of the fluid (third term in (1.36)). The first two terms in (1.36) are new unknowns and are
modelled according to Postulation 1. Hence, we take them proportional to the gradient of k, as
follows:

−k̃ ũ− p̃ ũ = Ck

(
l2
T

tT

)
∇k (1.37)

= Ck
k2

ε
∇k . (1.38)

In the expressions above, which simulate isotropic diffusivity, Ck is a dimensionless scalar
coefficient, while the coefficient l2

T
/tT in (1.37) must be attached to ∇k in order to keep the

dimensions consistent and it is easy to see that (1.38) follows from (1.37), by using (1.28).
Substituting (1.38) into (1.36) then gives:

∇·
(
−k̃ ũ− p̃ ũ + ν∇k

)
= ∇·

[(
Ck

k2

ε
+ ν

)
∇k

]

= ∇·
[(

νT

σk
+ ν

)
∇k

]
(1.39)

where, in order to obtain (1.39), we have used (1.29) and introduced the coefficient σk :=
Cµ/Ck (whose value will be specified in §1.4.3).

Equation (1.33) requires no additional modelling and, using (1.34), (1.35) and (1.39), can
be rearranged into:

∂k

∂t
+ u·∇k = ∇·

[(
νT

σk
+ ν

)
∇k

]
+ τ :∇u− ε . (1.40)

Finally, substituting for τ on the right-hand side of (1.40) its expression (1.24) and observing
that I :∇u=∇·u=0, because of (1.18), yields the modelled transport equation for k:

∂k

∂t
+ u·∇k = ∇·

[(
νT

σk
+ ν

)
∇k

]
+ νT(∇u + (∇u)T) :∇u− ε . (1.41)

with νT given in (1.29).

1.4.2 Modelled ε transport equation

The transport equation for ε, the rate of dissipation of turbulent kinetic energy, is obtained by
the following approach.
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From (1.32), we construct the Reynolds average:

2ν〈(N ũ) :∇ũ〉 = 0 (1.42)

then, similarly to the derivation of the k-equation, by using (1.19) together with some vector
identities and the properties of the filter 〈 · 〉, it is possible to obtain from (1.42) the “exact”
transport equation for ε:

∂ε

∂t
+ u·∇ε = ∇·

(
−ε̃ũ− 2ν∇p̃·∇ũ + ν∇ε

)
− 2ν[∇ũ·(∇ũ)T] :∇ũ−

−2ν∇u : (∇ũT ·∇ũ + ∇ũ·∇ũT)− 2ν∇ũ : [ũ·∇(∇u)T]−

−2ν2[∇(∇ũ)T] : [∇(∇ũ)T] , (1.43)

where
ε̃ := ν∇ũ : (∇ũ)T

is the fluctuating dissipation rate.

Unlike the k-equation, where only the diffusive term is modelled, in the case of the trans-
port equation for ε each term on the right-hand side of (1.43) must be modelled (this will clearly
reduce the general validity of the modelled ε-equation). The modelling procedure involves a
lot of heuristic arguments and is discussed in detail in [5], here we give the final modelled
ε-equation:

∂ε

∂t
+ u·∇ε = ∇·

[(
νT

σε
+ ν

)
∇ε

]
+ Cε1

ε

k
τ :∇u− Cε2

ε2

k
. (1.44)

Then, substituting (1.24) into the right-hand side of (1.44) and using the fact that I : ∇u =
∇·u=0, yields:

∂ε

∂t
+ u·∇ε = ∇·

[(
νT

σε
+ ν

)
∇ε

]
+ Cε1

ε

k
νT (∇u + (∇u)T) :∇u− Cε2

ε2

k
. (1.45)

The values of the constants σε, Cε1 and Cε2 will be given in the next section.

1.4.3 The closed system of dynamical and model equations

We finally summarize the closed system of dynamical and model equations which describe the
mean properties of turbulent flows in the framework of the eddy viscosity k-ε model.

Below we will show that:
ν

νT
¿ 1 , (1.46)

and hence ν + νT can be well approximated by νT. Using this and the expression (1.29) for
νT , the differential equations (1.26), (1.18), (1.41) and (1.45) for the variables u, P , k and ε,
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can be written as:

∂u
∂t

+ u ·∇u = ∇·
[
Cµ

k2

ε

(∇u + (∇u)T
)]−∇P , (1.47)

∇·u = 0 , (1.48)

∂k

∂t
+ u·∇k = ∇·

(
Cµ

σk

k2

ε
∇k

)
+ Cµ

k2

ε
(∇u + (∇u)T) :∇u− ε , (1.49)

∂ε

∂t
+ u·∇ε = ∇·

(
Cµ

σε

k2

ε
∇ε

)
+ Cε1Cµ k (∇u + (∇u)T) :∇u− Cε2

ε2

k
. (1.50)

This is the form of the dynamical and model equations that we will consider in the rest of this
thesis. It should be noted that (1.46) is valid for large Reynolds numbers and sufficiently far
from physical walls and both conditions are satisfied by k-ε model in its formulation presented
here (see the comment below and §1.5 for an explanation of how the turbulence model describes
the properties of flows near solid walls).

Equations (1.47)-(1.50) form a system of coupled PDE’s and must be provided with ap-
propriate initial and boundary conditions. In the next section we will see that in the case of
wall-bounded flows, the boundary conditions for the mean flow variables are not imposed at
the solid surfaces, where some assumptions behind the k-ε model fail to be valid, but are pre-
scribed some distance away from the physical walls, by using the “wall function” technique
(see §1.5).

Note that, according to Postulation 5 (see §1.4), the values of the constants Cµ, σk, σε, Cε1

and Cε2, introduced by the modelling procedure, are to be determined from experiments. It
should be remarked that if the k-ε model was complete then the turbulence model constants
would be unique and valid for any turbulent flow geometry and conditions. However, at present
time, no such turbulence model is available, and although the model coefficients are called
constants, they can nevertheless depend on fluid properties and nondimensional parameters,
such as the Reynolds number. Moreover for any particular flow it is likely that the accuracy of
the model calculation can be improved by adjusting the values of the constants. In this thesis
we will use the values recommended in [27]:

Cµ = 0.09 , σk = 1.0 , σε = 1.3 Cε1 = 1.44 , Cε2 = 1.92 , (1.51)

these represent a sensible compromise which gives model equations acceptably accurate for
a relatively wide range of flows. Also from these considerations it is clear that turbulence
models should be regarded as engineering correlations or approximations rather than scientific
laws; moreover since models can be “tuned” for particular features that may arise in individual
turbulent flows, many variations of turbulence models, and hence model constants, are in exis-
tence under the postulations indicated in §1.4, for example high-Re turbulence models, low-Re

turbulence models, near-wall turbulence model, two-scale turbulence models, and so forth.
We now show (1.46). As in §1.2, let u and L be respectively the characteristic turbulent

velocity and characteristic length of the largest eddies of a particular flow whose viscosity is ν,
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1.5. Near-wall turbulence

and let
Re =

uL

ν
À 1

be the Reynolds number based on these representative quantities. Then, assuming that k∼u2

(which is justified by the fact that most of the energy of the flow is contained in the large
eddies) and using the expression for the Kolmogorov microscale of velocity υ in (1.6) and the
relation (1.11) between u and υ, we obtain:

ν

νT

=
1

Cµ

εν

k2
∼ 1

Cµ

εν

u4
∼ 1

Cµ

υ4

u4
∼ 1

Cµ

1
Re

¿ 1 .

We finally mention the fact that there are flows, such as flows with strong curved surfaces
or three dimensional flows, for example, for which the k-ε model cannot perform well because
their Reynolds stress cannot be approximated sufficiently accurately by Boussinesq’s hypoth-
esis (1.24). In order to describe correctly the features of these classes of flows, turbulence
models which bypass Boussinesq’s hypothesis (1.24), have been introduced. One of these is
the second order two-equation Reynolds stress model, which represents the highest level of clo-
sure that is currently feasible for practical computations and involves the solution of modelled
transport equations for each component of the Reynolds stress τ =−ũũ, along with the RANS
equations (1.47)-(1.48) and the transport equations (1.40)-(1.44) for k and ε. The other is the
algebraic stress model which still entails the solution of the RANS and k-ε equations but, by
some approximations, reduces the differential transport equations for τ to a set of algebraic
equations which implicitly determines the Reynolds stress as a local function of u, k and ε. nd
have better predictive These models have certainly better capabilities than the eddy viscosity

k-ε model but require much more computational effort.

1.5 Near-wall turbulence

Most turbulent flows are bounded (at least in part) by one or more solid surfaces. For example,
consider flows through pipes and ducts, flows around aircraft and ships’ hulls, flows of rivers
and the atmospheric boundary layer. The presence of solid walls imposes constraints which
complicate the structure of the flow; most notably, the viscosity of the fluid enforces the no-
slip condition, which requires that the velocity of the fluid at a solid surface is equal to the
velocity of the surface, and this viscous constraint gives rise to a viscosity-dominated layer
adjacent to the solid wall. It is then clear that, as already noticed, (1.46) cannot be true at
physical walls or in their closest proximities, and in fact solid boundaries cause a number
of different effects which would necessitate modifications of the k-ε model as presented in
§1.4 (some postulations adopted in the formulation of the turbulence model, such as isotropic
dissipation and isotropic diffusion, become questionable when the flow is studied near a wall).
This problem is overcome by a special near-wall treatment: the “wall function” technique. This
consists in determining distribution functions (based on the properties of the log-law region of
the flow which are discussed in §1.5.1) which describe the variation of k and ε some distance
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1.5. Near-wall turbulence

h 
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x 

Figure 1.1: Flow in a channel with parallel walls.

away from the wall and in applying boundary conditions in this region. Thus the turbulence
model equations are not solved very close to the wall (i.e. they are not solved between the
physical wall and the location at which boundary conditions are applied, which later we call
the “artificial wall”).

The wall function for ε is derived by using one of the major landmarks in turbulence theory:
the logarithmic law for the component of the mean velocity field parallel to the wall. This is
briefly discussed in §1.5.1 below, while the wall functions for the turbulence variables k and
ε are presented in §1.5.2. The logarithmic law of the wall is also used explicitly in practical
implementations of the k-ε model as discussed in §2.6.2 and in §6.1.2.

1.5.1 Log-law for the mean velocity profile

In this subsection we will sketch the derivation of the logarithmic law of the wall for the mean
velocity profile following Chapter 5 of [1]. The study presented in [1] consists of a thorough
multiple scales analysis of the dynamics of turbulent boundary-layer flows. We will see, in
fact, that turbulent boundary layers are characterized by the coexistence of a very thin sublayer
adjacent to the physical wall where the viscous stress is dominant, of an external sublayer
where the viscous stress is negligibly small and of an overlap region between the two sublayers
(a more refined subdivision of the boundary layer can also be considered, for this see §5.2 of
[1] and §7.1.4 of [2]).

Tennekes and Lumley [1] consider the particular case of flows in channels with parallel
walls which are infinitely long and wide and at rest with respect to the coordinate system used,

see Figure 1.1. The mean flow, governed by the equations (1.18), (1.22), is assumed to be in the
(x, y) plane and steady, and all derivatives of mean quantities normal to that plane are assumed
to be zero. All derivatives with respect to the streamwise coordinate x are also assumed to be
zero, except for the pressure gradient ∂p/∂x which drives the flow. Under these conditions
it is shown that there exists a region of the flow where the x-component of u = (u, v) can be
expressed as:

u(y)
u∗

=
1
κ

ln
(u∗y

ν

)
+ C , (1.52)

and where the x-component of the force exerted by the Reynolds stress (per unit mass) is
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1.5. Near-wall turbulence

constant and has the form:
−ũṽ = u2

∗ . (1.53)

In (1.52) and (1.53), u∗ is called friction velocity and its square gives the value of the x-
component of the total stress vector (σ + τ ) · ey at the physical wall:

u2
∗ := {ex · [(σ + τ ) · ey]}y=0 =

(
ν

∂u

∂y
− ũṽ

)

y=0

=
(

ν
∂u

∂y

)

y=0

, (1.54)

where we have used the fact that ũṽ(0) = 0, due to the no-slip boundary condition for the
fluctuating velocity. In (1.52), C and κ are constants (κ is called von Kármán’s constant)
and their experimentally determined values are approximatively 5.1 and 0.41, respectively.
Experiments in turbulent channel flows show an excellent agreement between (1.52), (1.53)
and the corresponding measured quantities for u∗y/ν >30.

We now illustrate, in general terms, the argument used by Tennekes and Lumley to derive
(1.52). In [1], it is first shown that (1.18) yields:

v = 0 ∀ y ∈ [0, 2h]

(h is half of the width of the channel, see Figure 1.1) and that the x-component of (1.22) can
be expressed as

ν
du

dy
− ũṽ = u2

∗
(
1− y

h

)
, (1.55)

then the following study is based on the observation that, for large values of the Reynolds
number R∗ = u∗ h/ν, two different nondimensionalisations of (1.55) should be considered.
One which holds in the wall layer or surface layer, which is a very thin inner layer confined to

the immediate vicinity of the wall of representative scaled length

y+ =
u∗ y

ν
= O(1) ,

where the viscous term does not become small as R∗→∞, and the another which is valid in
the core region (or “outer layer”) of characteristic length

η =
y

h
= O(1) ,

where the viscous stress is negligibly small as R∗→∞. From the analysis of the governing
equation in the surface layer, the following similarity expressions for the velocity field and the
Reynolds stress are then deduced:

(
u

u∗

)
(y) = f(y+) , (1.56)

−
(

ũṽ

u2∗

)
(y) = g(y+) , (1.57)
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1.5. Near-wall turbulence

for some well behaved functions f and g such that f(0)=0=g(0) (due to the no-slip condition
at the solid wall). The relations (1.56) and (1.57) are called law of the wall. In the core region,
instead, also from the analysis of the time-independent version of (1.33), it is deduced that:

du

dy
(y) =

u∗
h

dF

dη
(η) , (1.58)

where dF/dη is the derivative of some unknown function F . It is then shown that, as R∗→∞,
the limits y+ → ∞ and η → 0 can be taken simultaneously, that is there exists a region of

overlap (or matched layer) between the wall layer and the core region. The result (1.52) then
follows from matching the velocity gradient of the wall layer and the core region, as now
shown. From (1.56) we have:

du

dy
=

u2∗
ν

df

dy+
, (1.59)

then, by equating (1.58) and (1.59), keeping in mind that we are considering a limit process
where y+→∞ and η→0 simultaneously, we obtain:

u∗
h

dF

dη
=

u2∗
ν

df

dy+
,

and multiplying both sides of the last expression by y/u∗ yields:

η
dF

dη
= y+

df

dy+
. (1.60)

Since the left-hand side of (1.60) can be only a function of η and the right-hand side can be
only a function of y+, in the region of overlap it must be

η
dF

dη
=

1
κ

= y+
df

dy+
(1.61)

where 1/κ is a universal constant. (1.61) can finally be integrated to get:

F (η) =
1
κ

ln η + const ,

f(y+) =
1
κ

ln y+ + const , (1.62)

which are valid only if η ¿ 1 and y+ À 1. The logarithmic law of the wall (1.52) then clearly
follows from substituting (1.62) into (1.56).

A similar matching process for the Reynolds stress yields (1.53).
It should be noted that for curved solid walls the above results are valid only locally, and

generalisation of (1.52) to the case of expanding channels, will be given in §6.1.2.
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1.5. Near-wall turbulence

1.5.2 Wall functions for k and ε

We now determine the wall functions for k and ε in the region of the flow where (1.52) and
(1.53) hold (u∗y/ν >30).

First we observe that in the case of the straight channel geometry we are considering, we
can use Boussinesq’s hypothesis (1.24) to express −ũṽ as:

−ũṽ = νT
∂u

∂y
,

and therefore, using (1.46) and (1.53), we have that in the log-law region of the flow the fol-
lowing holds:

Cµ
k2

ε

∂u

∂y
= u2

∗ . (1.63)

This is the wall function for the component of the Reynolds stress vector parallel to the wall
which , in the framework of the k-ε model is employed as boundary condition for the velocity
field, see (2.14).

Next we derive the wall functions for k and ε. For this, consider that, for a stationary
straight channel flow, the “exact” transport equation for k (1.33) becomes:

0 =
∂

∂y

(
−k̃ṽ + p̃ṽ + ν

∂k

∂y

)
− ũṽ

∂u

∂y
− ε , (1.64)

and, since experiments show that in the log-law region (u∗y/ν > 30), the dominant balance
in (1.64) is between the production and dissipation terms, we have that, in this region, (1.64)
reduces to

0 = −ũṽ
∂u

∂y
− ε . (1.65)

This is then used to derive the “law of the wall” for k:

k = C−1/2
µ u2

∗ , (1.66)

and the “law of the wall” for ε:

ε =
u3∗
κy

. (1.67)

To obtain (1.66), use (1.63) to get the following expression for ε

ε = Cµ
k2

u2∗

∂u

∂y
, (1.68)

then substituting (1.53) and (1.68) into (1.65) yields:

0 = u2
∗
∂u

∂y
− Cµ

k2

u2∗

∂u

∂y
, ,

from which, by performing simple operations, (1.66) follows.
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1.6. Known mathematical results on the k-ε model

To obtain (1.67) first rearrange (1.65) into:

ε = −ũṽ
∂u

∂y
, (1.69)

then note that, in the log-law region,−ũṽ can be expressed as in (1.53) while an expression for

∂u/∂y can be derived by differentiating (1.52) (or combining (1.59) and (1.61)):

∂u

∂y
=

u∗
κ y

. (1.70)

Finally substituting (1.53) and (1.70) into (1.69) yields (1.67).
We will see, in §§2.1, 2.2, that the wall functions (1.63) and (1.67) are used as boundary

conditions for u and ε at the artificial wall y=h+, with h+ such that u∗h+/ν >30. In practical

implementations of the k-ε model, the wall functions (1.52) and (1.66) are not imposed as
boundary conditions but used to obtain expressions for u∗ which are then substituted into (1.63)
and (1.67), this is discussed in §§2.6.2, 2.6.3.

We also observe, from (1.67), that ε is in inverse proportion to the distance from the phys-
ical wall. This, as we will see in detail in §2.4, determines the blow-up of ε at the artificial
wall, in fact, for large Reynolds numbers (Re≈107), values of h+ as small as 10−4 satisfy the
condition u∗h+/ν >30 (in §2.4.1 we will show that u∗ grows with the Reynolds number).

1.6 Known mathematical results on the k-ε model

The system of coupled PDE’s (1.47)-(1.50) certainly represents a major challenge both analyt-
ically and numerically. In fact, the high nonlinearity of the equations not only makes the task
of proving the existence and uniqueness of their solution extremely difficult (such result has
not been obtained yet) but also complicates the design of robust numerical methods. In this
section we give a brief overview of the mathematical studies of (1.47)-(1.50) we are aware of;
these, as we shall see, concern the transport equations (1.49)-(1.50) and assume that velocity
field u is known. This “simplification” of the problem (consider that the k-ε equations alone
are, anyway, very complicated to analyse) reflects the extremely common approach to solv-

ing the discretised version of (1.47)-(1.50) by an iterative method based on the decoupling of
(1.47)-(1.48) from (1.49)-(1.50) (in §5.3 we will discuss the reason for the widespread use of
this scheme, but we will also show that it is much less effective than Newton’s method for the
system of fully coupled equations).

When the k-ε model was initially incorporated into fluid dynamics codes based on the stan-
dard Galerkin finite element technique, several difficulties were immediately encountered, as
reported by Smith in [28] and [29] and by Hutton, Smith and Hickmott in [30]. The iterative
method for the discretised equations (based on the decoupling of RANS and k-ε equations)
soon proved to be highly unstable, in particular, the occurrence of negative values of k and ε

during the solution procedure made the iterative scheme diverge or converge to unphysical so-
lutions (the physics requires both k and ε to be positive). This last phenomenon even generated
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1.6. Known mathematical results on the k-ε model

some controversy about the existence of meaningful solutions to the k-ε equations for some
flow configurations. These concerns were partly dissipated by the argument of Mohammadi
and Pironneau [31] (see also [32]), who, on the assumption that the velocity field u is known,
showed that if the system (1.49)-(1.50), defined on the domain Ω for t > 0, has a smooth so-

lution, then, for strictly positive Dirichlet conditions on ∂Ω and strictly positive initial data,

k and ε stay positive and bounded at any t > 0. The proof of Mohammadi and Pironneau is

based on the introduction of the variable

θ =
k

ε
, (1.71)

and proceeds as follows. First, from (1.49) and (1.50), a transport equation is derived for
θ, which, by a maximum principle type argument, is shown to be strictly positive (note that
from the assumption that the boundary and initial conditions on k and ε are strictly positive,
it follows that θ(t,x) > 0 on ∂Ω and θ(0,x) > 0). Then, (1.71) is used to eliminate ε from
(1.50) and the strict positivity of θ is used in another maximum principle argument to show
that k(t,x)>0. Finally, the fact that θ(t,x)>0 and k(t,x)>0 for all x∈Ω and t>0 implies,
through (1.71), ε(t,x)>0 for all x∈Ω and t>0.

More recently an equivalent positivity result has been obtained by Wu and Fu [33]. The
study presented in [33] makes the same assumptions as in [31], but relies on the construction
of an iterative method for solving the k-ε equations written in the form (1.41), (1.45). We shall
now briefly outline this iterative method, which produces strictly positive iterates kn, εn by
exploiting an operator splitting technique

Let kn and εn be the known approximations to k and ε, respectively, at time level tn, then
kn+1 and εn+1, approximations to k and ε at time tn+1 = tn +∆t, are determined from kn and
εn as follows:

1. Solve the advection-diffusion step

∂k̂

∂t
+ u·∇k̂ = ∇·

[(
Cµ

σk

k̂2

ε̂
+ ν

)
∇k̂

]
, (1.72)

∂ε̂

∂t
+ u·∇ε̂ = ∇·

[(
Cµ

σε

k̂2

ε̂
+ ν

)
∇ε̂

]
, (1.73)

on [tn, tn+1]×Ω for k̂ and ε̂ with strictly positive initial conditions k̂(tn,x) = kn(x),
ε̂(tn,x)=εn(x) and strictly positive Dirichlet boundary conditions on ∂Ω.

2. Solve the point-source step

dkn+1

dt
= Cµ

(kn+1)2

εn+1
(∇u + (∇u)T) :∇u− εn+1 , (1.74)

dεn+1

dt
= Cε1Cµ kn+1 (∇u + (∇u)T) :∇u− Cε2

(εn+1)2

kn+1
, (1.75)

25



1.6. Known mathematical results on the k-ε model

on [tn, tn+1]×Ω for kn+1 and εn+1 with initial conditions kn+1(tn,x)= k̂(tn+1,x) and
εn+1(tn,x)= ε̂(tn+1,x). (Note that (1.74)-(1.75) is a system of ODE’s at every point in
space).

In [33], the solution (k̂, ε̂) to (1.72)-(1.73) is shown to be strictly positive by the maximum
principle, while the strict positivity of kn+1 and εn+1 (the solutions to (1.74)-(1.75)) is proved
by the same technique used in [31]. That is, first the variable

θn+1 :=
kn+1

εn+1
(1.76)

(compare (1.76) with (1.71)) is shown to be strictly positive, by the analysis of its point-source
equation derived from (1.74)-(1.75), then, from the study of the point-source equation for kn+1,
obtained by eliminating εn+1 from (1.74) using (1.76), it is also shown that kn+1(t,x)>0. The
positivity of εn+1 finally follows. The proof is then concluded by showing the convergence of
the sheme, that is (kn+1, εn+1)→(k(tn+1), ε(tn+1)), in the limit as ∆t→0.

It should be remarked that both positivity results, in [31] and [33], rely on the assumption
that a solution to the k-ε equations exists and is smooth. It seems very hard to prove this.
However, existence results have been established for a reduced model: the ϕ-θ model. The
transport equations for ϕ and θ are derived from (1.49)-(1.50) by the change of variables:

ϕ =
ε2

k3
, θ =

k

ε
,

and by some extra modelling, see [34] (or [35]) and also [36], [37].
Finally we mention the fact that an analytical solution to the stationary k-ε model is avail-

able in the case of turbulent Couette flow in straight channels. This was presented by Cliffe
[38] and, independently, by Henry and Reynolds [39]. These works will be discussed in some
detail in Chapter 2.
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Chapter 2

The k-ε model for stationary turbulent
flows in straight channels

This chapter is devoted to a thorough discussion of turbulent Couette and Poiseuille flows
between two parallel planes, as described by the k-ε turbulence model.

First we formulate the boundary value problem representing a stationary turbulent flow
through a straight channel, both in the case when the flow is driven by the relative motion of
two parallel walls of the channel (Couette flow) and in the case when the flow is driven by the
pressure difference between the inlet and the outlet of the channel (Poiseuille flow), see §§2.1,

2.2 and also §2.5. Then, bearing in mind the work done in [38] and [39], we give the analytic
solution to the system of equations describing Couette flow and analyse its behaviour in the
limit as the distance between the artificial and the physical wall approaches zero, see §§2.3,
2.4 respectively. In §2.5, we discuss the continuation strategy we will use in the numerical
computation of Poiseuille flow. This does not have a known analytic solution. In §2.6, we then
introduce the specific weak forms of the RANS and k-ε equations and, in §2.7, we use these to
generate the Galerkin finite element equations.

The following detailed analysis of turbulent Couette flow in straight channels is motivated
by the fact that this flow (together with the Poiseuille one, whose solution can be confidently
computed numerically using that of the Couette flow as an initial guess) will represent, through-
out this thesis, a very important benchmark. In fact, as far as we know, plane Couette flow is the
only case when the analytical solution to the k-ε model is available and moreover, far from be-
ing trivial, it encompasses the main features of every turbulent flow described by the k-ε model:
the high nonlinearity of the governing equations (see §2.3), the blow up of the ε-variable at the
artificial wall, together with the local predominance of source terms over diffusion terms (see
§2.4) and the “ad hoc” implementations of the laws of the wall for the component of the stress
parallel to the wall and for ε (see §§2.6.2, 2.6.3). The analysis of Couette flow will provide

us with important insights in the understanding of more complex situations, and which will
be used to test the efficiency of the numerical algorithms. The results of these tests then will
guide us to the design of robust solvers for more general and realistic flows. In Chapter 6, in
fact, the solution techniques developed for flows in straight channels will be applied to flows
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Figure 2.1: The geometry of the channel

in expanding channels.

2.1 2D formulation of the problem

In this section we specify the domain of the problem, give the two-dimensional formulation of
the PDE’s which describe the mean properties of the flow and discuss the boundary conditions.
Figure 2.1 shows the geometry of the channel and some of the notation that will be employed
in what follows. The channel width is taken as 2d and its length as l, we are supposing that
l is much larger than d and that the other two walls of the channel, in the z-direction, are so
distant that they have negligible effects on the flow in the region of interest. The last assump-
tion implies that the flow is two-dimensional and all variables depend only on (x, y). The
distance between the physical walls and the artificial walls (where the boundary conditions are
prescribed) is given by h+.

The stationary dynamical equations for the mean velocity field u(x, y)=(U(x, y), V (x, y))T

and the modified mean pressure field p= p(x, y) (in Chapter 1, these quantities were denoted
respectively by ū and P) can be obtained from the RANS equations (1.47)-(1.48), by setting
∂ū/∂t=0, and are expressed here as:





u·∇u = ∇ · σ

∇·u = 0 ,
(2.1)

where the second-rank tensor

σ := νT

[∇u + (∇u)T
]− pI (2.2)

is the total stress tensor, with turbulent kinematic viscosity νT given by:

νT = Cµ
k2

ε
, (2.3)

((2.2) represents the sum of the mean Cauchy stress (1.21) and of the Reynolds stress (1.24)
when ν + νT is approximated by νT, by virtue of (1.46)).

In (2.3), k is the mean turbulent kinetic energy and ε its dissipation rate. k = k(x, y) and
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ε=ε(x, y) are the solutions to the stationary version of the transport equations (1.49)-(1.50):





u·∇k −∇·
(

Cµ
k2

ε
∇k

)
= Cµ

k2

ε
S(u)− ε

u·∇ε−∇·
(

Cµ

σε

k2

ε
∇ε

)
= Cε1 CµkS(u)− Cε2

ε2

k
,

(2.4)

where
S(u) := ∇u :

[∇u + (∇u)T
]

, (2.5)

and : denotes the dot product of two second-rank tensors. Cµ, in (2.3) and (2.4), and σε, Cε1

and Cε2, in (2.4), are all positive constants whose values are specified in (1.51).

Due to the symmetry of the channel with respect to the centre line y = d (see Figure 2.1),
the system of PDE’s (2.1)-(2.4) will be considered only in the lower half of the channel, over
the domain Ω=[0, L]×[h+, d].

We now give the boundary conditions for (2.1)-(2.4); these will be formulated in such a
way as to encompass both cases of Couette and Poiseuille flow. On Γin, the inlet boundary of
the channel at x=0, the variables (U, V ), p, k and ε must satisfy the boundary conditions:

p− νT
∂U

∂x
= pin , (2.6)

∂V

∂x
= 0 , (2.7)

∂k

∂x
= 0 , (2.8)

∂ε

∂x
= 0 , (2.9)

and similarly on Γout, the outlet boundary at x=L,

p− νT
∂U

∂x
= pout , (2.10)

∂V

∂x
= 0 , (2.11)

∂k

∂x
= 0 , (2.12)

∂ε

∂x
= 0 . (2.13)

pin and pout, respectively in (2.6) and (2.10), are parameters of the problem (we will see that
in the case of Couette flow pin−pout =0, while for Poiseuille flow pin−pout >0). (2.6)-(2.13)
are the natural boundary conditions for the specific weak form of the RANS and k-ε equations
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2.1. 2D formulation of the problem

that will be considered, see §2.6. On the artificial wall Γw, at y=h+, we impose the following
boundary conditions:

νT
∂U

∂y
= u2

∗ , (2.14)

V = 0 , (2.15)

∂k

∂y
= 0 , (2.16)

ε =
1
κ

u3∗
h+

. (2.17)

Equation (2.14) is the “law of the wall” for the x-component of t=σ ·ey, the stress vector at

the artificial wall (with σ given in (2.2), and ey the unit vector in the y-direction), and (2.17) is
the “law of the wall” for ε. In (2.14) and (2.17), u∗ is the wall-friction velocity, which depends
on the Reynolds number Re (see §2.4.1 where an expression is given for u∗ in terms of Re and
the other constants of the problem), and finally κ, in (2.17), is von Kármán’s constant. In our
study we will assume the following value for κ

κ :=
√

σεC
1/2
µ (Cε2 − Cε1) = 0.4326 . . . , (2.18)

which is compatible with the experimentally determined one κ≈0.41. The relation between κ

and the other constants in (2.18) is a necessary condition for the existence of a solution to the
turbulent Couette flow, see §§2.3, 2.4.

In order to formulate the boundary conditions on the centre line Γcl in a way to include
both Couette and Poiseuille flow, we now introduce the parameter α which can take the value
either 0 or 1 and then express the symmetry boundary conditions on Γcl, at y=d, as follows:

α
∂U

∂y
= (1− α)(UCL − U) , (2.19)

V = 0 , (2.20)

∂k

∂y
= 0 , (2.21)

∂ε

∂y
= 0 . (2.22)

In (2.19), UCL is the value of U at y=d (set α=0 in (2.19)) and this is related to the Reynolds
number Re by

UCL =
νRe

d
, (2.23)

where ν is the kinematic viscosity of the fluid.
In §2.3 it will be shown that when pin − pout = 0 and α = 0, equations (2.1) and (2.4),
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2.2. 1D formulation of the problem

together with the boundary conditions above, describe a stationary turbulent flow driven by the
relative motion of the walls of the channel with velocity 2UCL (turbulent Couette flow). On
the other hand when pin − pout > 0 and α = 1, the flow under investigation is driven by the
pressure difference between the inlet and the outlet of the channel (turbulent Poiseuille flow).
In order to compute numerically the solution to the Poiseuille flow, we will use continuation
with respect to the parameters pin − pout and α. This is discussed in §2.5.

We finally observe that when α=0, (2.19) becomes a Dirichlet boundary condition for the
longitudinal component of the velocity u:

U(d) = UCL ,

while when α=1, the boundary condition (2.19) reduces to

∂U

∂y
(d) = 0 . (2.24)

(2.24) derives from the commonly used boundary condition that at the symmetry line (the
centre line with normal n = ey, for the geometry under consideration) the mean shear stress
vanishes: [∇u + (∇u)T

] · n− {
n · [∇u + (∇u)T

] · n}
n = 0 .

2.2 1D formulation of the problem

In this section, following a standard procedure, that, for example, can be found in [40], we give
the 1D reduction of the 2D problem formulated in §2.1.
Since we are considering here a straight channel invariant under translations in the x-direction,
all the mean properties of the flow, with the exception of the mean pressure, can be assumed to
be independent of the x-variable:

u = u(y) = (U(y), V (y)) , p = p(x, y) , k = k(y) , ε = ε(y) . (2.25)

The dependence of the mean pressure on the x-variable cannot be excluded because the
streamwise component of the pressure gradient ∇p is usually necessary for the flow to develop.
∇p appears as a source term in the first equation of (2.1) once the divergence of the stress tensor
is computed explicitly. (We will show that, for flows in straight channels, ∇p is constant; in
particular, in the case of the Couette flow, when the flow momentum can be maintained by the
relative motion of the walls of the channel, the pressure gradient can be set to zero).

We now determine what the PDE’s and the boundary conditions, introduced in the previous
section, reduce to when a solution with u, k, ε depending only on the y-coordinate is sought.
Substituting the profiles in (2.25) into (2.1) and (2.4), we get respectively the differential equa-
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2.2. 1D formulation of the problem

tions (2.26)-(2.28) and (2.29)-(2.30) below:

V
dU

dy
− d

dy

(
Cµ

k2

ε

dU

dy

)
= −∂p

∂x
, (2.26)

V
dV

dy
− 2

d

dy

(
Cµ

k2

ε

dV

dy

)
= −∂p

∂y
, (2.27)

dV

dy
= 0 , (2.28)

V
dk

dy
− d

dy

(
Cµ

k2

ε

dk

dy

)
= Cµ

k2

ε

(
dU

dy

)2

− ε , (2.29)

V
dε

dy
− d

dy

(
Cµ

σε

k2

ε

dε

dy

)
= CµCε1k

(
dU

dy

)2

− Cε2
ε2

k
. (2.30)

When a solution of the type given in (2.25) is sought, then the boundary conditions (2.7)-(2.9)
and (2.11)-(2.13) are automatically satisfied, while the boundary conditions (2.6) and (2.10)
simply reduce to the specification of the value of the mean pressure at the inlet and at the outlet
of the channel:

p(0, y) = pin , p(L, y) = pout . (2.31)

(2.31) will be used to determine the constant value of the pressure gradient whose components
appear in (2.26) and (2.27) (see Lemmata below).

The system (2.26)-(2.30) is then to be solved for U , V , p, k, ε over the interval [h+, d],
under the boundary conditions (2.14)-(2.17) and (2.19)-(2.22), that are now recalled (using in
(2.14) the expression for νT given in (2.3)):

(
Cµ

k2

ε

dU

dy

)
(h+) = u2

∗ ,

V (h+) = 0 , (2.32)

dk

dy
(h+) = 0 ,

ε(h+) =
1
κ

u3∗
h+

,

α
dU

dy
(d) = (1− α)(UCL − U(d)) , (2.33)

V (d) = 0 , (2.34)

dk

dy
(d) = 0 ,

dε

dy
(d) = 0 .
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2.2. 1D formulation of the problem

We now show that, for turbulent flows in straight channels, the variable V vanishes and the
variable p is a function of x only and has got a constant gradient in the x-direction.
The following Lemma is evident.

Lemma 2.2.1. Equation (2.28) together with the boundary condition (2.32) or (2.34) has the

solution

V = 0 , ∀ y ∈ [h+, d] . (2.35)

Under the assumption that V is given by (2.35), we then have:

Lemma 2.2.2. The mean pressure p depends only on the x-coordinate:

∂p

∂y
= 0 ,

and has a constant gradient in the x-direction:

dp

dx
= constant .

Proof. Using (2.35) and (2.27) we obtain:

∂p

∂y
= 0 ,

which implies
p = p(x) . (2.36)

Also, combining (2.35) with (2.26) we get

− d

dy

(
Cµ

k2

ε

dU

dy

)
(y) = −dp

dx
(x) .

Since k, ε and U are constrained to be functions of y only, this last equation can be satisfied
only if both terms are equal to the same constant G :

− d

dy

(
Cµ

k2

ε

dU

dy

)
(y) = G , (2.37)

−dp

dx
(x) = G . (2.38)

In fact, integrating (2.38) over the interval [0, L] and using (2.31), we obtain:

G =
pin − pout

L
.

Lemmas 2.2.1-2.2.2 lead to a great simplification of the equations (2.26)-(2.30). In fact,
using (2.35) and (2.36), we can eliminate equations (2.27) and (2.28), and (2.26)-(2.28) reduce
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2.3. Stationary turbulent Couette flow

then to the single equation (2.37) for U . Imposing V = 0 in (2.29) and (2.30), the system of
ODE’s (2.26)-(2.30) finally becomes:

− d

dy

(
Cµ

k2

ε

dU

dy

)
= G , (2.39)

− d

dy

(
Cµ

k2

ε

dk

dy

)
= Cµ

k2

ε

(
dU

dy

)2

− ε , (2.40)

− d

dy

(
Cµ

σε

k2

ε

dε

dy

)
= CµCε1k

(
dU

dy

)2

− Cε2
ε2

k
, (2.41)

which are three second order nonlinear ordinary differential equations, subject to the six
boundary conditions:

(
Cµ

k2

ε

dU

dy

)
(h+) = u2

∗ , (2.42)

dk

dy
(h+) = 0 , (2.43)

ε(h+) =
1
κ

u3∗
h+

, (2.44)

α
dU

dy
(d) = (1− α)(UCL − U(d)) , (2.45)

dk

dy
(d) = 0 , (2.46)

dε

dy
(d) = 0 , (2.47)

with u∗, κ, UCL as discussed above and α=0 or 1.

2.3 Stationary turbulent Couette flow

We now discuss the analytical solution of the equations describing turbulent Couette flow. This
solution is also found in the unpublished report [38] and was in fact published independently
in [39].

Couette flow is driven by the relative motion of the walls of the channel. As such the flow
will suffer no pressure change along the channel. Moreover, the value of U at y = d is given
by half of the velocity of the relative motion of the walls. The first condition is met by setting
G=0 in (2.39) and the second by choosing α=0 in (2.45). Therefore we consider the system
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2.3. Stationary turbulent Couette flow

of ODE’s:

− d

dy

(
Cµ

k2

ε

dU

dy

)
= 0 (2.48)

− d

dy

(
Cµ

k2

ε

dk

dy

)
= Cµ

k2

ε

(
dU

dy

)2

− ε (2.49)

− d

dy

(
Cµ

σε

k2

ε

dε

dy

)
= CµCε1k

(
dU

dy

)2

− Cε2
ε2

k
, (2.50)

over the interval [h+, d], with boundary conditions:

(
Cµ

k2

ε

dU

dy

)
(h+) = u2

∗ , (2.51)

dk

dy
(h+) = 0 , (2.52)

ε(h+) =
1
κ

u3∗
h+

, (2.53)

U(d) = UCL , (2.54)

dk

dy
(d) = 0 , (2.55)

dε

dy
(d) = 0 . (2.56)

We recall that the k-ε model requires that U , at y = h+, satisfies the “logarithmic law of
the wall” (1.52):

U(h+) = u∗

[
1
κ

ln
(

u∗h+

ν

)
+ C

]
. (2.57)

(2.57) represents effectively a condition on U , but should be interpreted as an equation for
the friction velocity u∗. Hence u∗, which appears in (2.51) and in (2.53), is determined by
(2.57) and depends on the U -solution component to be computed. This guarantees that U has
the appropriate logarithmic behaviour at y = h+. In §2.4.1, for the particular case of Couette
flow in the limit h+ → 0, we will give an expression of the solution u∗ to (2.57) in terms of
the Reynolds number, while in §2.6.2 we will illustrate how (2.57) is usually implemented in
practical computations.

Remark 2.3.1. For the analytic solution to (2.48)-(2.56) that will be presented in §2.3.2, it
should also be noted that k, at y=h+, satisfies the law of the wall (1.66):

k(h+) = C−1/2
µ u2

∗ . (2.58)
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2.3. Stationary turbulent Couette flow

This is also often an assumption about k in many treatments of turbulence. We will make this
assumption at several points later and explain how, together with (2.57), it is implemented in
turbulence computations.

2.3.1 A possible scaling

We now briefly consider the scaling of the independent and dependent variables which is used
in [39] and explain why this is not relevant for our study. It is not difficult to see that the
following scaling of the variables

y = d ȳ ,

U = u∗ Ū , k = u2∗ k̄ , ε =
u3∗
d

ε̄ ,
(2.59)

makes the boundary value problem (2.48)-(2.56) independent of u∗, in fact we have:

Lemma 2.3.1. The system of ODE’s (2.48)-(2.50) is invariant under the transformation (2.59),

whilst the boundary conditions (2.51)-(2.56) change into:

(
Cµ

k̄2

ε̄

dŪ

dȳ

)
(d h̄+) = 1 ,

dk̄

dȳ
(d h̄+) = 0 , ε̄(d h̄+) =

1
κ

1
h̄+

,

Ū(1) = ŪCL ,
dk̄

dȳ
(1) = 0 ,

dε̄

dȳ
(1) = 0 .

with h̄+ :=h+/d.

Lemma 2.3.1 then shows that the nondimensional variables (Ū , k̄, ε̄) satisfy a boundary
value problem which is independent of u∗. But, neither in the computation of the analytical

solution below nor in the numerical experiments that we will perform on the 1D and 2D

Couette flow, will we pursue the change of variables (2.59). This, in fact, is specific to the
Couette flow and would give rise to a model problem which would not reflect some important
features (related to the implementation of (2.57) and (2.58) discussed in §§2.6.2, 2.6.3) of the
more complicated flows that we will tackle in the remainder of our study.

2.3.2 Analytical solution

We now present the analytical solution to the boundary value problem (2.48)-(2.56).

Lemma 2.3.2. The system of ODE’s (2.48)-(2.50), subject to the boundary conditions (2.51)-
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2.3. Stationary turbulent Couette flow

(2.56), is satisfied by the functions:

U(y) = UCL +
u∗
κ

ln
∣∣∣∣tan

[
π

4
− εcl

u3∗

κ

2
(d− y)

]∣∣∣∣ , (2.60)

k(y) = C−1/2
µ u2

∗ , (2.61)

ε(y) =
εcl

cos
[
εcl

u3∗
κ (d− y)

] , (2.62)

provided the parameter εcl is chosen as to solve the nonlinear equation

εcl

cos
[
εcl

u3∗
κ (d− h+)

] =
1
κ

u3∗
h+

. (2.63)

Proof. We first show that equation (2.49), together with the boundary conditions (2.52) and
(2.55), admits the solution (2.61). This is done as follows. Suppose that equation (2.48) is sat-
isfied together with the boundary condition (2.51), then its integration over the domain [h+, y]
gives: (

Cµ
k2

ε

dU

dy

)
(y) = u2

∗ , ∀ y ∈ [h+, d] . (2.64)

Rearranging (2.64) to obtain an expression for dU/dy and substituting it into (2.49) yields:

− d

dy

(
Cµ

k2

ε

dk

dy

)
= Cµ

k2

ε

ε2 u4∗
C2

µ k4
− ε

=

(
C−1

µ u4∗
k2

− 1

)
ε . (2.65)

It is then easy to see that the constant function

k = C−1/2
µ u2

∗ , ∀ y ∈ [h+, d] , (2.66)

satisfies equation (2.65); since

− d

dy

(
Cµ

k2

ε

dk

dy

)
= 0 =

(
C−1

µ u4∗
k2

− 1

)
ε .

Moreover k given by (2.66) also satisfies the boundary conditions (2.52), (2.55).
Next we show that the function (2.62) satisfies the equation (2.50) and the boundary con-

ditions (2.53) and (2.56). Due to (2.63), the function (2.62) clearly satisfies the boundary
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2.3. Stationary turbulent Couette flow

condition (2.53). Differentiating we obtain:

dε

dy
= −ε2

cl κ

u3∗

sin
[
εcl κ

u3∗
(d− y)

]

{
cos

[
εcl κ

u3∗
(d− y)

]}2 (2.67)

and we see immediately that the boundary condition (2.56) is also satisfied. Now, given k from
(2.61), ε from (2.62) and dε/dy from (2.67), we have:

Cµ

σε

k2

ε

dε

dy
=

u4∗
σε

1
ε

dε

dy

= −u∗
σε

εcl κ tan
[
εcl κ

u3∗
(d− y)

]
,

and the left-hand side of (2.50) then becomes:

− d

dy

(
Cµ

σε

k2

ε

dε

dy

)
= − κ2

σε u2∗

ε2
cl{

cos
[
εcl κ

u3∗
(d− y)

]}2

= − κ2

σε u2∗
ε2 . (2.68)

Using k from (2.61), dU/dy from (2.64) and the definition of κ in (2.18), the right-hand side
of (2.50) ca be expressed as:

CµCε1k

(
dU

dy

)2

− Cε2
ε2

k
=

C
1/2
µ Cε1

u2∗
ε2 − C

1/2
µ Cε2

u2∗
ε2

= − κ2

σε u2∗
ε2 ,

the same as (2.68). This shows that (2.62) satisfies the equation (2.50).
Finally we prove that the function (2.60) solves equation (2.48) subject to the boundary

conditions (2.51) and (2.54) . The velocity profile (2.60) clearly satisfies the boundary condi-
tions (2.54). Using (2.61) and (2.62), differentiation of (2.60) yields:

dU

dy
=

εcl

u∗2
1

cos
[
εcl

u3∗
κ (d− y)

]

=
u2∗
Cµ

ε

k2
, (2.69)
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2.4. Couette flow in the limit h+→0

rearranging the terms in (2.69), we get:

Cµ
k2

ε

dU

dy
= u2

∗ ,

it is then clear that both the boundary condition (2.51) and the equation (2.48) are satisfied.

Corollary 2.3.3. (εcl, u∗) is a solution to the system of transcendental equations:

εcl

cos
[
εcl

u3∗
κ (d− h+)

] =
1
κ

u3∗
h+

(2.70)

UCL +
u∗
κ

ln
∣∣∣∣tan

[
π

4
− εcl

u3∗

κ

2
(d− h+)

]∣∣∣∣ =u∗

[
1
κ

ln
(

u∗h+

ν

)
+ C

]
. (2.71)

Proof. Equation (2.70) is simply (2.53) which was imposed above. Equation (2.71) follows
from (2.57), by substituting for U(h+) its expression obtainable from (2.60).

We also have that, due to (2.71), the velocity profile (2.60) at the artificial wall has the

correct logarithmic distribution prescribed by the k-ε model, and that k, in (2.61), obviously
satisfies the law of the wall (2.58).

In [39], Henry and Reynolds proved that the profiles (2.60), (2.61) and (2.62) are the unique
solution to the boundary value problem defined by (2.48)-(2.50) together with (2.51)-(2.56).

2.4 Couette flow in the limit h+→0

We now study the behaviour of the solution (2.60)-(2.62) in the limit as h+→0 (recall that h+

is the distance between the artificial and physical wall).
The parameter h+ can be regarded as the main parameter of the problem, and depends on

the Reynold’s number Re. In fact, according to the prescriptions of the k-ε model, as Re is
increased, h+ should be decreased in order for the equations to provide a good model of the
turbulent flow close to the physical wall. For instance, if Re = 107, then a rough estimate of
h+ would be h+

∼= O(10−4). This then implies, through the boundary condition (2.53), that,
as h+→0, ε blows up at the artificial wall. It also implies that dU/dy will blow up at y =h+

as h+ → 0; to see this use the laws of the wall (2.53) and (2.58), respectively for ε and k, in
(2.51) and rearrange the terms to obtain:

dU

dy
(h+) =

u2∗
Cµ (k(h+))2

ε(h+) =
u∗
κ

1
h+

. (2.72)

This situation is shown in Figure 2.2 and in Figure 2.3, where, as h+ varies from 10−2

to 10−3, a substantial change can be observed in the slope of U (Figure 2.2) and in the value
of ε (Figure 2.3), in a neighbourhood of y = h+. The behaviour discussed is not exclusive
to Couette flow, but it is common to every turbulent flow described by the k-ε model, since
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Figure 2.2: Profiles across the channel of the longitudinal component U of the mean velocity u, corre-
sponding to h+ =10−2 (left) and h+ =10−3 (right).
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Figure 2.3: Profiles across the channel of the dissipation rate, corresponding to h+ = 10−2 (left) and
h+ =10−3 (right).

it is due to the boundary conditions (2.53) and (2.51) which are determined by the modelling
procedure and are not affected by the specific characteristics of the flow under investigation.

Another feature common to turbulent flows described by the k-ε model, that we now ex-

plain in the context of Couette flow, is the fact that near h+ source terms dominate diffusion
terms in the transport equations (2.49), (2.50), as h+→0. To see this, first consider (2.49) and
recall that the diffusion coefficient in (2.49) is

Dk(y) := Cµ
(k(y))2

ε(y)
,

while production and destruction of k are respectively given by:
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2.4. Couette flow in the limit h+→0

Pk(y) := Cµ
(k(y))2

ε(y)

(
dU

dy
(y)

)2

, Sk(y) := ε(y) .

Therefore, using (2.53), (2.58) and (2.72), at y=h+ we have:

Dk(h+)
Pk(h+)

=
κ2

u2∗
h2

+→0 ,
Dk(h+)
Sk(h+)

=
κ2

u2∗
h2

+→0 , as h+→0 . (2.73)

Similarly, from (2.50) we have that the amount of diffusion relative to production and
destruction of ε at the artificial wall is given respectively by:

Dε(h+)
Pε(h+)

=
1

σεC
1/2
µ Cε1

κ3

u3∗
h3

+ → 0 , as h+ → 0 , (2.74)

and

Dε(h+)
Sε(h+)

=
1

σεC
1/2
µ Cε2

κ3

u3∗
h3

+ → 0 , as h+ → 0 . (2.75)

The results (2.73), (2.74) and (2.75) can be extended to the case of Poiseuille flow, using
(2.94)-(2.102), below.

This characteristic behaviour at the artificial wall will be exploited in §5.1 in order to derive
a simplified equations which describes k in a small neighbourhood of y=h+.

In the case of Couette flow, we now determine the behaviour of U , k and ε in the limit as
h+→0.

Lemma 2.4.1. At the leading order in h+→0, the system of ODE’s (2.48)-(2.50) with bound-

ary conditions (2.51)-(2.56), is satisfied by the functions:

U(y) = UCL +
u∗
κ

ln
[
tan

(π

4
y

d

)]
, (2.76)

k(y) = C−1/2
µ u2

∗ , (2.77)

ε(y) =
π

2κ

u3∗/d

sin
(π

2
y

d

) , (2.78)

with u∗ and Ucl linked by the equation

UCL = u∗

[
1
κ

ln
(

4
π

u∗ d

ν

)
+ C

]
. (2.79)

Proof. We first show that, at the leading order in h+→0, equation (2.70) yields:

εcl =
π

2
1
κ

u3∗
d

. (2.80)

The profile (2.78) can then be obtained by substituting for εcl in (2.62), its expression in (2.80).
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2.4. Couette flow in the limit h+→0

In order to obtain (2.80), take the inverse of both sides of (2.70), use a trigonometric identity
for cos[εcl m(d− h+)/u3∗] and Taylor expansion in powers of h+, to get:

1
εcl

[
cos

(
κ

εcl d

u3∗

)]
+

κ

u3∗

[
sin

(
κ

εcl d

u3∗

)]
h+ + o(h+) =

κ

u3∗
h+ , as h+→0 . (2.81)

For (2.81) to hold we must have





cos
(

κ
εcl d

u3∗

)
= 0

κ

u3∗
sin

(
κ

εcl d

u3∗

)
=

κ

u3∗
,

and this yields

κ
εcl d

u3∗
=

π

2
, (2.82)

from which (2.80) follows
Next we derive (2.76) and (2.79). Using (2.80) in (2.60), we get the profile of U at the

leading order in h+→0:

U(y) = UCL +
u∗
κ

ln
[
tan

(π

4
y

d

)]
. (2.83)

This, according to the prescriptions of the k-ε model, must obey the “law of the wall” (2.57).
Therefore substituting for U(h+) in the right-hand side of (2.57) its expression obtainable from
(2.83), we get:

UCL +
u∗
κ

ln
[
tan

(
π

4
h+

d

)]
= u∗

[
1
κ

ln
(

u∗h+

ν

)
+ C

]
. (2.84)

(Note that (2.84) can also be obtained directly from (2.71) using (2.80)).
Writing the Taylor expansion of the left-hand side of (2.84) in powers of h+ and neglecting the
higher order terms, we have:

UCL +
u∗
κ

ln
(

π

4
h+

d

)
= u∗

[
1
κ

ln
(

u∗h+

ν

)
+ C

]
,

from which (2.79) follows. (2.76) can finally be derived substituting UCL from (2.79) into
(2.83).

2.4.1 Computation of u∗

In this section, through a fixed point iteration, we derive an expression for u∗ in terms of the
Reynolds number Re, which shows that u∗ grows as Re is increased. This expression for u∗,
together with (2.80), will also be used in practical computation as initial guess for Newton’s
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2.4. Couette flow in the limit h+→0

method for the system of transcendental equations (2.70)-(2.71). Recall that

Re =
UCL d

ν
,

(see (2.23)). We consider the limit Re→∞.
Multiplying both sides of (2.79) by κ d/ν, and introducing the new variable:

R∗ :=
u∗ d

ν
, (2.85)

we obtain:

κRe = R∗

[
ln

(
4
π

R∗

)
+ κ C

]
,

which is rearranged as

κRe = R∗ ln(BR∗) , (2.86)

with B :=(4/π) exp(κC). Multiplying both sides of (2.86) by B and then taking the logarithm
we have:

ln(BκRe) = ln(BR∗) + ln(ln(BR∗)) ,

and this is finally written as:

v + ln v = u , (2.87)

with u := ln(Bκ Re) À 1 known and v := ln(BR∗) unknown. Before giving, in Lemma
2.4.2 below, an expansion of the solution to (2.87) in terms of u (to which an expansion of
u∗ in terms of Re will correspond), we observe that (2.87) has a unique solution. In fact, the
function g : (0, +∞) → R defined by

g(v) = v + ln v − u .

is continuous and strictly increasing on (0, +∞), and also

lim
v→0+

g(v) = −∞ , lim
v→+∞ g(v) = +∞ .

Therefore there exists only one point v∗ ∈ (0, +∞) where g vanishes, i.e. the solution of the
equation (2.87) is unique.
The following Lemma is motivated by the observation that when u À 1 the only possible
consistent balance of the terms in (2.87) is v=O(u).

Lemma 2.4.2. If u>1 is a given number such that:

u− lnu > 1 , (2.88)
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2.4. Couette flow in the limit h+→0

then the sequence 



v0 = u

vn+1 = u− ln vn

(2.89)

converges and its limit is the solution v∗ of (2.87).

Proof. It can be easily verified by induction that

1 < vn ≤ u . (2.90)

Consider now the subsequences cn =v2n and dn =v2n+1 for all n∈N. Then we have





c0 = u

cn+1 = u− ln(u− ln cn)

(2.91)

and 



d0 = u− ln u

dn+1 = u− ln(u− ln dn) .

(2.92)

We now prove by induction that the subsequence {cn} is strictly decreasing. First we show
that c1 <c0. To see this consider that from (2.88) it follows that ln(u− ln u)>0 and therefore:

c1 = u− ln(u− ln c0)

= u− ln(u− lnu)

< u = c0 .

We now assume that cn <cn−1 and show that this implies cn+1 <cn. We have:

cn < cn−1 ⇒ u− ln cn > u− ln cn−1

⇒ cn+1 = u− ln(u− ln cn) < u− ln(u− ln cn−1) = cn .

This then proves that cn+1 <cn for all n∈ N. Similarly it can be shown that the subsequence
{dn} is strictly increasing. Therefore, due to (2.90), there exist c∗, d∗ ∈ [1, u] such that, as
n →∞,

cn → c∗ , dn → d∗ .
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2.5. Stationary turbulent Poiseuille flow

From (2.91) and (2.92), it follows that

c∗ = u− ln(u− ln c∗) , d∗ = u− ln(u− ln d∗) ,

that is c∗ and d∗ are zeros of the function

f(v) = v + ln(u− ln v)− u

in the interval [1, u]. But the function f is continuous and strictly increasing in [1, u] and such
that:

f(1) = −(u− ln u− 1) < 0 , f(u) = ln(u− lnu) > 0 ,

(remember that u−lnu>1), therefore there exists a unique point v∗ ∈ [1, u] where f vanishes.
This implies c∗=v∗=d∗. The convergence of (2.91) and (2.92) to v∗ implies the convergence
of the sequence (2.89) to v∗ and this, in turn, implies that

v∗ = u− ln v∗ ,

i.e. v∗ solves (2.87).

We observe that in the limit we are considering, uÀ1 (for Re→+∞), the condition (2.88) is
certainly satisfied. Now, using the fact that:

ln(ln(BκRe))
ln(BκRe)

¿ 1 ,

we give the approximate solution to (2.86) corresponding to the term v2 of the sequence (2.89):

R∗ =
κRe

ln(BκRe)

[
1 +

ln(ln(BκRe))
ln(BκRe)

+ . . .

]
, (2.93)

from which u∗ can be obtained using the relation (2.85). u∗ from (2.93) and εcl from (2.80)
represent an extremely effective initial guess for Newton’s method applied to the system (2.70)-
(2.71).

2.5 Stationary turbulent Poiseuille flow

We now discuss the system of equations and the boundary conditions which define stationary
turbulent Poiseuille flow in a straight channel and explain how its solution will be computed
numerically. The Poiseuille flow is driven by the pressure difference between the inlet and the
outlet of the channel and is characterized by no relative motion of the walls of the channel.
Therefore the equations and the boundary conditions describing it can be obtained respectively
from (2.39)-(2.41) and (2.42)-(2.47), setting G = G0 > 0 in (2.39) and α = 1 in (2.45). This
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2.6. Weak formulation of the problem

gives the following system of ODE’s:

− d

dy

(
Cµ

k2

ε

dU

dy

)
= G0 , (2.94)

− d

dy

(
Cµ

k2

ε

dk

dy

)
= Cµ

k2

ε

(
dU

dy

)2

− ε , (2.95)

− d

dy

(
Cµ

σε

k2

ε

dε

dy

)
= CµCε1k

(
dU

dy

)2

− Cε2
ε2

k
, (2.96)

subject to the boundary conditions:

(
Cµ

k2

ε

dU

dy

)
(h+) = u2

∗ , (2.97)

dk

dy
(h+) = 0 , (2.98)

ε(h+) =
1
κ

u3∗
h+

, (2.99)

dU

dy
(d) = 0 , (2.100)

dk

dy
(d) = 0 , (2.101)

dε

dy
(d) = 0 . (2.102)

As far as we are aware, the analytical solution to this problem above is not available. However
a numerical solution to the turbulent Poiseuille flow can be computed numerically using con-
tinuation from the Couette case, as we now explain. We know that, in the case G=0 and α=0
(this choice of the parameters identifies the turbulent Couette flow), the system (2.39)-(2.41),
with boundary conditions (2.42)-(2.47), has the unique solution (2.60)-(2.62). This can then be
used as starting point of a continuation process based on two homotopy transformations, one
on the parameter G, from G = 0 to G =G0, and one on the parameter α, from α = 0 to α = 1.
The final step of the continuation method, for G=G0 and α = 1, will then produce a solution
to the Poiseuille flow, corresponding to a pressure drop between the inlet and the outlet of the
channel given by pin − pout =LG0.

2.6 Weak formulation of the problem

We now derive the specific weak form of the RANS and k-ε equations, whose finite element
discretisation, presented in §2.7, will be used throughout our 2D numerical experiments. We
will also discuss the implementation of the law of the wall (2.14) typical of turbulence mod-
elling.
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2.6. Weak formulation of the problem

2.6.1 Weak form of the RANS

We will recast into the weak form the following expression of the RANS equations (2.1):





u ·∇u−∇νT · (∇u)T −∇ · (νT∇u) + ∇p = 0

∇·u = 0 ,

(2.103)

where νT :=Cµ k2/ε (see (2.3)).
In order to obtain the first equation in (2.103) from the averaged linear momentum balance

equation in (2.1), we express the divergence of σ, which is defined in (2.2), as follows:

∇·σ = ∇·(νT∇u) + ∇νT ·(∇u)T + νT∇·(∇u)T −∇p

= ∇·(νT∇u) + ∇νT ·(∇u)T −∇p , (2.104)

where we have used:

∇·(∇u)T = ∇(∇·u) (2.105)

= 0 , (2.106)

with (2.105) a vector identity and (2.106) a consequence of the averaged continuity equation.
Then substituting (2.104) into the right-hand side of the first equation in (2.1) and rearranging
the terms yield the result.

We now determine the weak form of (2.103) subject to the boundary conditions specified
in §2.1. We take the scalar product of the first equation in (2.103) with a generic sufficiently
smooth, vector-valued test function w, whose function class will be defined later, and integrate
all over the space Ω=[0, L]×[h+, d]:

∫

Ω

[
u·∇u−∇νT ·(∇u)T)

]·w dΩ−

−
∫

Ω
[∇·(νT∇u)]·w dΩ +

∫

Ω
∇p·w dΩ = 0 . (2.107)

Integrating by parts the last two integrals of (2.107), and using the divergence theorem, we
obtain:

∫

Ω

[
u·∇u−∇νT ·(∇u)T

]·w dΩ +
∫

Ω
νT∇u : (∇w)T dΩ −

−
∫

Ω
p∇·w dΩ +

∫

Γ
[n·(pI− νT∇u)]·w dΓ = 0 (2.108)
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2.6. Weak formulation of the problem

where Γ = Γin ∪ Γcl ∪ Γout ∪ Γw is the boundary of Ω and n is the outward normal to the
boundary. The boundary term in (2.108) can then be expressed as a sum of four different
integrals each corresponding to one of the edges of Γ, given by

∫

Γin

[n·(pI− νT∇u)]·w dΓ =
∫

Γin

[
−

(
p− νT

∂U

∂x

)
w1 + νT

∂V

∂x
w2

]
dΓ , (2.109)

∫

Γout

[n·(pI− νT∇u)]·w dΓ =
∫

Γout

[(
p− νT

∂U

∂x

)
w1 − νT

∂V

∂x
w2

]
dΓ , (2.110)

∫

Γcl

[n·(pI− νT∇u)]·w dΓ =
∫

Γcl

[
−νT

∂U

∂y
w1 +

(
p− νT

∂V

∂y

)
w2

]
dΓ , (2.111)

∫

Γw

[n·(pI− νT∇u)]·w dΓ =
∫

Γw

[
νT

∂U

∂y
w1 −

(
p− νT

∂V

∂y

)
w2

]
dΓ . (2.112)

From (2.109) and (2.110), it becomes clear that (2.6)-(2.7) and (2.10)-(2.11) are the natural
boundary conditions for the specific weak form of the RANS considered.

Now we specify the space where we will seek the solution u and where the test func-
tion w is defined. Let H1(Ω) be the Sobolev space of square integrable functions whose first
derivatives are also square integrable over Ω and let H1(Ω) :=H1(Ω)×H1(Ω) . In the case of
turbulent Couette flow, we seek the velocity field u in the space

H1
EC

(Ω) = {v ∈ H1(Ω) : v=(Ucl, 0) on Γcl and v2 =0 on Γw} ,

and, correspondingly, we require that the test function w is in

H1
0C

(Ω) = {v ∈ H1(Ω) : v=0 onΓcl and v2 =0 on Γw} .

In the case of the turbulent Poiseuille flow, we seek the velocity field in

H1
0P

(Ω) = {v ∈ H1(Ω) : v2 =0 onΓcl ∪ Γw} .

and require that w∈H1
0P

(Ω).
Then, using the boundary conditions (2.6)-(2.7) and (2.10)-(2.11), respectively in (2.109)

and (2.110), we obtain:

∫

Γin

[n·(pI− νT∇u)]·w dΓ = −
∫

Γin

pin w1 dΓ ,

∫

Γout

[n·(pI− νT∇u)]·w dΓ =
∫

Γout

pout w1 dΓ ,
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2.6. Weak formulation of the problem

(pin =0=pout for turbulent Couette flow). We also have:

∫

Γcl

[n·(pI− νT∇u)]·w dΓ = 0 ,

which, in the case of Couette flow, follows from (2.111) requiring that w ∈H1
0C , while, for

Poiseuille flow, it ensues from (2.111) imposing both the boundary condition (2.19) with α=1
and w2 =0 on Γcl.

Finally due to the boundary condition (2.14) and the fact that, both for Couette and Poiseuille
flow, w2 =0 on Γw, from (2.112) we get:

∫

Γw

[n·(pI− νT∇u)]·w dΓ =
∫

Γw

νT
∂U

∂y
w1 dΓ

=
∫

Γw

u2
∗w1 dΓ . (2.113)

But the parameter u∗ can usually be determined only through measurements in the flow

being studied, therefore, in practical computations of turbulent flows, a specific implementation
of the boundary term (2.113) is needed. This is discussed in §2.6.2 below.

Using the above results in (2.108), we then get an expression for the weak form of the
RANS, valid for both Couette and Poiseuille flow in straight channels:

a(u, p, k, ε,w) :=
∫

Ω

[
u·∇u−∇νT ·(∇u)T

]·w dΩ−
∫

Ω
p∇·w dΩ+

+
∫

Ω
νT∇u : (∇w)T dΩ+

∫

Γw

u2
∗w1 dΓ−

∫

Γin

pin w1 dΓ+
∫

Γout

pout w1 dΓ = 0 . (2.114)

In order to obtain the weak form of the averaged continuity equation (the second equation
in (2.103)) we multiply it by a suitable test function ψ (that is related to the pressure p) and
integrate all over the space Ω to obtain:

b(u, ψ) =
∫

Ω
ψ ∇·u dΩ = 0 . (2.115)

In both cases of Couette and Poiseuille flow, we seek the pressure p in L2(Ω), the space of

square integrable function over the domain Ω, and require that ψ∈L2(Ω).

2.6.2 Implementation of the law of the wall for the stress

Since, as noticed above, the value of the parameter u∗ can usually be known only by measure-
ment, it is customary in turbulence modelling to implement u∗ implicitly in (2.113), as now
explain.
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2.6. Weak formulation of the problem

From the previous section it is clear that the occurrence of u∗ in (2.113), arises from the
boundary condition (2.14):

(
νT

dU

dy

)
(h+) = u2

∗ , y = h+ , (2.116)

the common strategy is then to determine u∗ in (2.116) by using some combination of the wall
law for U :

U(x, h+) = u∗(x)
[

1
κ

ln
(

u∗(x)h+

ν

)
+ C

]
x ∈ Γw , (2.117)

and the wall law for k:
k(x, h+) = C−1/2

µ u2
∗(x) x ∈ Γw . (2.118)

There are clearly several ways which (2.117) and (2.118) can both be used to eliminate u∗ and
each would in effect imply a boundary condition relating U and k. We will proceed as follows:
from (2.118) we get

u∗(x) = C1/4
µ (k(x, h+))1/2 , (2.119)

and substituting (2.119) into the logarithmic term of (2.117) we can obtain the following ex-
pression for u∗:

u∗(x) =
U(x, h+)

1
κ

ln

[
C

1/4
µ (k(x, h+))1/2h+

ν

]
+ C

. (2.120)

Now we use both (2.119) and (2.120) to eliminate u∗ from the right-hand side of (2.116). More
precisely, we replace the Neumann boundary condition (2.116) with the (nonlinear) “Robin
boundary condition”:

νT
∂U

∂y
=

κC
1/4
µ k1/2 U

ln
[
(C1/4

µ k1/2 h+)/ν
]

+ κC
, y = h+ , (2.121)

and consequently we have:

∫

Γw

[n·(pI− νT∇u)]·w dσ =
∫

Γw

νT
∂U

∂y
w1 dσ

=
∫

Γw

κC
1/4
µ k1/2 U

ln
[
(C1/4

µ k1/2 h+)/ν
]

+ κC
w1 dσ . (2.122)
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2.6. Weak formulation of the problem

Finally, (2.114) becomes:

a(u, p, k, ε,w) :=
∫

Ω

[
u·∇u−∇νT ·(∇u)T

]·w dτ −
∫

Ω
p∇·w dτ+

+
∫

Ω
νT∇u : (∇w)T dτ +

∫

Γw

κC
1/4
µ k1/2 U

ln
[
(C1/4

µ k1/2 h+)/ν
]

+ κC
w1 dσ−

−
∫

Γin

pin w1 dσ +
∫

Γout

pout w1 dσ = 0 . (2.123)

This combination of (2.119) and (2.120) for eliminating the unknown u∗ to obtain (2.121),
is typical of the “ad hoc” procedures common in turbulence modelling and requires further
analysis.

In the following we give a simplified expression for (2.123) in the case of 1D turbulent
Couette and Poiseuille flows. For such flows (see §2.2) we have

u = u(y) = (U(y), 0)T , k = k(y) , ε = ε(y) , (2.124)

and

∇p = (−G, 0)T , νT := Cµ
(k(y))2

ε(y)
= νT(y) . (2.125)

Then, using (2.124) and (2.125) and the fact that now w = w(y), it is not difficult to verify
that:

∫

Ω

[
u·∇u−∇νT ·(∇u)T

]·w dτ +
∫

Ω
νT∇u : (∇w)T dτ =

∫ 1

h+

νT(y)
dU

dy

dw1

dy
dy

and that:

−
∫

Ω
p∇·w dτ −

∫

Γin

pin w1 dσ +
∫

Γout

pout w1 dσ =
∫

Ω
∇p·w

= −G
∫ 1

h+

w1(y)dy .

Now, we recall that the boundary integral

∫

Γw

κC
1/4
µ k1/2 U

ln
[
(C1/4

µ k1/2 h+)/ν
] w1 dσ ,

in (2.123), derives from the application of the divergence theorem to

∫

Ω
∇·(νT∇u ·w) dτ , (2.126)
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as in (2.107)-(2.108) and from the discussion which follows from there. In the 1D case we
obtain

∫

Ω
∇ · (νT∇u ·w) dτ =

∫ 1

h+

d

dy

(
νT

dU

dy
w1(y)

)
dy

=
[
νT

dU

dy
w1(y)

]1

h+

= u2
∗w1(h+) , (2.127)

where (2.127) follows from the boundary condition (2.42). In the case of Couette flow, from the
fact that w1(1) = 0 (due to the Dirichlet boundary condition U(1) = UCL which follows from
(2.45) with α=0). In the case of Poiseuille flow, from the boundary condition (dU/dy)(1)=0,
as in (2.45) with α=1. Therefore we obtain:

a(U, k, ε, w1) =
∫ 1

h+

νT
dU

dy

dw1

dy
dy − G

∫ 1

h+

w1(y)dy + u2
∗w1(h+) = 0 , (2.128)

and, by eliminating u2∗ as discussed at the beginning of this section (note that (2.119), (2.120)
and (2.121) are valid also in 1D with the exception that all quantities involved are now inde-
pendent of x), (2.128) can finally be expressed as

a(U, k, ε, w1) =
∫ 1

h+

νT
dU

dy

dw1

dy
dy − G

∫ 1

h+

w1(y)dy+

+
κC

1/4
µ (k(h+))1/2 U(h+)

ln
[
(C1/4

µ (k(h+))1/2 h+)/ν
] w1(h+) = 0 . (2.129)

2.6.3 Weak form of the k-ε equations

In order to derive the weak form of the turbulence model equations, we multiply the transport
equation for k and for ε in (2.4), respectively by the first and the second component of the test
function z=(z1, z2), whose space of definition will be introduced subsequently, and integrate
over the domain Ω. Integrating by parts the diffusion term of both equations and then using the
divergence theorem, we obtain

∫

Ω
(u·∇k)z1 dτ +

∫

Ω
Cµ

k2

ε
∇k ·∇z1 dτ−

−
∫

Ω
Cµ

k2

ε
S(u)z1 dτ +

∫

Ω
εz1 dτ −

∫

Γ
Cµ

k2

ε
(∇k ·n) z1 dσ = 0 (2.130)
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and
∫

Ω
(u·∇ε)z2 dτ +

∫

Ω

Cµ

σε

k2

ε
∇ε·∇z2 dτ +

∫

Ω
Cε2

ε2

k
z2 dτ

−
∫

Ω
CµCε1kS(u)z2 dτ −

∫

Γ

Cµ

σε

k2

ε
(∇ε·n) z2 dσ = 0 . (2.131)

The solution (k, ε) to (2.130)-(2.131) is sought in the space H1(Ω)=H1(Ω)×H1(Ω), and
must satisfy the boundary conditions (2.8)-(2.9), (2.12)-(2.13), (2.16), (2.21)-(2.22), together
with the following particular implementation of the law of the wall (2.17):

ε(x, h+)− C
3/4
µ

κ

(k(x, h+))3/2

h+
= 0 , x ∈ Γw , (2.132)

which can be obtained from (2.17) using (2.119) to eliminate u∗. We also require that the test
function z is in H1

0T
(Ω)=

{
v ∈ H1(Ω) : v2 =0 onΓw

}
.

The condition (2.132) is again obtained by an “ad hoc” elimination of u∗, analogous to
(2.121).

Like in §2.6.1, the boundary term in (2.130) can be expressed as a sum of four integrals each
corresponding to one of the sections of the boundary Γ, and, due to the rectangular geometry
of the channel, we have that

∫

Γout

Cµ
k2

ε
(∇k ·n) z1 dσ =

∫

Γout

Cµ
k2

ε

∂k

∂x
z1 dσ ,

∫

Γcl

Cµ
k2

ε
(∇k ·n) z1 dσ =

∫

Γcl

Cµ
k2

ε

∂k

∂y
z1 dσ ,

and similarly for the integrals on Γin and Γw. Therefore imposing (2.8), (2.12), (2.16) and
(2.21), all four boundary integrals vanish and from (2.130) we get the weak form of the trans-
port equation for k:

c(u, k, ε, z) :=
∫

Ω
(u·∇k)z1 dτ +

∫

Ω
Cµ

k2

ε
∇k ·∇z1 dτ−

−
∫

Ω
Cµ

k2

ε
S(u)z1 dτ +

∫

Ω
εz1 dτ = 0 (2.133)

The same treatment of the boundary term in (2.131), and the boundary conditions (2.9),
(2.13), (2.22), together with the requirement that z2 = 0 on Γw, yields the weak form of the
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ε-transport equation:

d(u, k, ε, z) :=
∫

Ω
(u·∇ε)z2 dτ +

∫

Ω

Cµ

σε

k2

ε
∇ε·∇z2 dτ+

+
∫

Ω
Cε2

ε2

k
z2 dτ −

∫

Ω
CµCε1kS(u)z2 dτ = 0 (2.134)

The statement of the weak form of the full problem is then: find u∈H1
EC

(Ω) (respectively
H1

0P
(Ω)), p∈L2(Ω) and (k, ε)∈H1(Ω) satisfying (2.132) such that





a(u, p, k, ε,w) = 0

b(u, ψ) = 0

c(u, k, ε, z) = 0

d(u, k, ε, z) = 0

(2.135)

for all w∈H1
0C

(Ω) (respectively H1
0P

(Ω)), all ψ∈L2(Ω) and all z∈H1
0T

(Ω).
Finally we specify the weak forms (2.133) and (2.134) in the special case of 1D turbulent

Couette and Poiseuille flows. In the one-dimensional setting we have:

u = u(y) = (U(y), 0)T , k = k(y) , ε = ε(y) ,

and S(u), defined in (2.5), is given by:

S(u) = ∇u :
[∇u + (∇u)T

]
=

(
dU

dy
(y)

)2

.

It is then easy to verify that (2.133) and (2.134) can be expressed respectively as

c(U, k, ε, z1) =
∫ 1

h+

Cµ
(k(y))2

ε(y)
dk

dy

dz1

dy
dy−

−
∫ 1

h+

Cµ
(k(y))2

ε(y)

(
dU

dy
(y)

)2

z1(y) dy +
∫ 1

h+

ε(y) z1(y) dy = 0 (2.136)

and as

d(U, k, ε, z2) =
∫ 1

h+

Cµ

σε

(k(y))2

ε(y)
dε

dy

z2

dy
dy−

−
∫ 1

h+

CµCε1k(y)
(

dU

dy
(y)

)2

z2(y) dy +
∫ 1

h+

Cε2
(ε(y))2

k(y)
z2(y) dy=0 . (2.137)

We finally observe that in the one-dimensional case, (2.132) becomes:
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2.7. Galerkin Finite Element Method equations

ε(h+)− C
3/4
µ

κ

(k(h+))3/2

h+
= 0 . (2.138)

2.7 Galerkin Finite Element Method equations

We now consider the finite element approximation of the weak problem (2.135) and of the
algebraic constraint (2.132). We seek a solution (uh, ph, kh, εh) in the appropriate finite di-
mensional subspaces of those spaces in which (u, p, k, ε) above reside, so defining them as
conforming approximation spaces.

Suppose Ω has been discretised via a mesh of convex quadrilateral finite elements, defined
by a bilinear map from the unit quadrilateral. We shall approximate u and (k, ε) in the same

approximation space Vh constructed of vector valued functions whose components are poly-
nomial in form over each element of the discretisation and continuous between elements, this
ensures that Vh ⊂H1(Ω). An approximation space Sh for the pressure p is chosen to be of
functions which are polynomial in form over each element of the discretisation, but which do
not have to be continuous between elements, in fact we only require Sh⊂L2(Ω). We require
Vh, Sh to be a stable pair for the Stokes system in the Babuska-Brezzi sense, see [7].

In the case of Couette flow we can define the trial space Vh
EC

in which we seek an approx-
imation uh to u as follows:

Vh
0C

:= Vh ∩H1
0C

Vh
EC

:= (Û , 0)⊕Vh
0C

,

where Û ∈H1(Ω) is a function given by the extension on Ω of the Dirichlet data U = Ucl on
Γcl (in practice, Û is not needed in the interior of Ω , in fact only its nodal values on Γcl are
needed, see below). For Poiseuille flow, we seek an approximation uh to u in the space:

Vh
0P

:= Vh ∩H1
0P

.

Finally (kh, εh), approximation to (k, ε), is sought in the trial space:

Vh
k−ε := Vh ∩H1(Ω) ,

and must satisfy the “nodal law” (corresponding to (2.132)):

εh(xi, h+)− C
3/4
µ

κ

(kh(xi, h+))3/2

h+
= 0 , i ∈ Nw , (2.139)

with Nw the set of indexes of the nodes on the boundary Γw which are ε-freedoms.
The Galerkin approximation to the weak form stated in §2.6.3 is then given by: find uh ∈

Vh
EC

(respectively Vh
0P

), ph∈Sh and (kh, εh)∈Vh
k−ε satisfying (2.139) such that
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2.7. Galerkin Finite Element Method equations





a(uh, ph, kh, εh,wh) = 0

b(uh, ψh) = 0

c(uh, kh, εh, zh) = 0

d(uh, kh, εh, zh) = 0

(2.140)

for all wh∈Vh
0C

(respectively Vh
0P

), all ψh∈Sh and all zh∈Vh
0k−ε

:=Vh ∩H1
0T

(Ω).
We now introduce specific bases for the above finite dimensional subspaces and derive the

nonlinear finite element. Let

{
φ1j1 = (φj1 , 0)T, φ2j2 = (0, φj2)

T
}

, j1 ∈ N1, j2 ∈ N2

denote a basis for Vh
0C

(respectively Vh
0P

), with N1 the set of indexes of the nodes which are

U -freedoms and correspondingly N2. In the case of Couette flow, for example, N1 comprises
the indexes of the nodes in Ω\Γcl and N2 the indexes of the nodes in Ω\{Γw∪Γcl}. Let

{ψl} , l ∈ Np

and

{
φkj = (φj , 0)T, φεj = (0, φj)T

}
j ∈ Nk−ε

denote basis sets for Sh and Vh
k−ε, with Np and Nk−ε the sets of indexes of the nodes which

are pressure freedoms and k-ε-freedoms respectively. Then, the Galerkin formulation above
is equivalent to: find uh ∈Vh

EC
(respectively Vh

0P
), ph ∈ Sh and (kh, εh) ∈Vh

k−ε satisfying
(2.139) such that





a(uh, ph, kh, εh, φαjα
) = 0 , α = 1, 2 , jα ∈ Nα

b(uh, ψl) = 0 , l ∈ Np

c(uh, kh, εh, φj) = 0 , j ∈ Nk−ε

d(uh, kh, εh, φj) = 0 , j ∈ Nk−ε\Nw

(2.141)

Finally, expanding the approximate solution (uh, ph, kh, εh) via a linear combination of

the basis functions and substituting the expansions into (2.139) and (2.141) yields the nonlinear
finite element system:

F(U,V,P,k, ε) =




FU(U,V,P,k, ε)

FV(U,V,P,k, ε)

FP(U,V)

Fk(U,V,k, ε)

FNL(k, ε)

Fε(U,V,k, ε)




= 0 , (2.142)
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2.7. Galerkin Finite Element Method equations

where U is a vector of U -velocity freedoms and similarly V, P, k, ε.
As example, we now give an expression for the components of F, in (2.142), corresponding

to the discretised k-ε equations (an expression for the discretised RANS equations can be
obtained by adapting to the case we are considering the formulae for the discretised Navier-
Stokes equations given in [7]). First, define

νh
T := Cµ

(kh)2

εh
= Cµ

(φ·k)2

φ·ε , (2.143)

(in (2.143) φ is a vector of basis functions φj , while in the following φ1 is a vector of basis
functions φj1 and similarly φ2), we have that the “nodal law” vector FNL(k, ε) has entries:

(FNL)i = εi − C
3/4
µ

κ

k
3/2
i

h+
, i ∈ Γw

while the components Fk(U,V,k, ε) and Fε(U,V,k, ε) can be expressed respectively as

Fk(U,V,k, ε) = C(U,V)k + D(k, ε)k + K(U,V,k, ε)

(
k

ε

)
,

Fε(U,V,k, ε) = C(U,V)ε +
1
σε

D(k, ε)ε + T (U,V,k, ε)

(
k

ε

)
,

with

C(U,V) :=
∫

Ω
φ (Û + φ1 ·U, φ2 ·V)T ·∇φ ,

D(k, ε) :=
∫

Ω
νh
T(∇φ)T ·∇φ ,

K(U,V,k, ε) :=
[
−

∫

Ω
Cµ

φ·k
φ·ε S(U,V)φ φ dτ

∫

Ω
φφ dτ

]

and

T (U,V,k, ε) :=
[
−

∫

Ω
CµCε1S(U,V) φφ dτ

∫

Ω
Cε2

φ·ε
φ·k φφ

]
.

In our 2D numerical experiments we will discretise the domain Ω via a mesh of quadri-
laterals and approximate each component of the velocity field u and the turbulence variables
k, ε by a continuous piecewise biquadratic polynomial. The pressure field, instead, will be
approximated by a discontinuous piecewise linear polynomial. This is often called the Q2P−1

finite element method, see [7].
The nonlinear finite element system (2.142) will be solved by Newton’s method (see §4.1

for a description of the properties of the algorithm). At each Newton iteration, the entries of the
Jacobian of the nonlinear system will be computed using the 3×3 points Gauss-Jacobi quadra-

ture rule applied element wise, and the Jacobian will then be inverted using Gauss elimination
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2.7. Galerkin Finite Element Method equations

with pivoting.
When solving the 1D version of the Couette and Poiseuille flow we will use a numerical

procedure corresponding to the one described above. Therefore, U , k and ε will be approx-
imated by continuous piecewise quadratic polynomials, and we will use Newton’s method to
solve the nonlinear finite element system. The Jacobian of the finite element system, whose
entries will be computed using the 3 points Gauss-Jacobi quadrature rule, will then be inverted

by Gauss elimination with pivoting.
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Chapter 3

The finite element mesh

Basing our considerations on the properties of the boundary value problems describing the tur-
bulent Couette and Poiseuille flows, we now tackle the issue of identifying a mesh appropriate
for the discretisation of the RANS and k-ε equations.

The numerical computation of the solution to the k-ε model is certainly complicated by the
highly nonlinear form of the equations. However, the main source of difficulties in devising an
effective numerical scheme can be considered to be the behaviour of ε near the artificial wall.
At the wall itself ε is prescribed by the boundary condition (2.17):

ε(h+) =
1
κ

u3∗
h+

. (3.1)

We recall that, as the Reynold’s number is increased, h+, in (3.1), must be reduced in order
for the turbulence model to provide a satisfactory description of the properties of the flow near
to the physical wall. For example, h+∼O(10−4) when Re∼O(107). Therefore, as h+→ 0
(for Re→+∞), the profile of ε at the artificial wall becomes very steep and blows up with
order 1/h+:

ε(h+) ∼ 1
h+

as h+→0 . (3.2)

If this behaviour is not appropriately captured by the numerical scheme employed for solv-
ing the equations, then the solution process is likely to fail. In order for the numerical method to
be accurate and practical, it is therefore crucial to discretise the equations on a grid where pro-
files with the property (3.2) can be resolved with a minimum number of discretisation points.

We will show in §3.6 that a uniform mesh or a locally uniformly refined mesh is inade-
quate for our purposes, and so here we will describe mesh generation techniques based on the
equidistribution principle. We shall identify an equidistributed h+-dependent mesh which is
optimal (in a sense that will become clear in what follows) for the problem under investigation.

Not only is the mesh we propose very satisfactory from the point of view of the accuracy
of the numerical results and of the practicality of their computation, but it also improves dras-
tically the robustness of Newton’s method for the nonlinear finite element system, as it will be
shown later in Chapter 5.
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This chapter is organized as follows. After a brief overview of the general properties of
equidistributed meshes in §3.1, we discuss in §3.2 the classical estimate of the finite element
error in terms of the error in best approximation, and in §3.3 the approach of Carey and Dinh
[41] for generating effective equidistributed meshes. In §3.4, we present our solution, based on
[41], to the problem of devising an appropriate mesh for the discretisation of the k-ε model, and
we will assess the quality of the mesh we propose, by estimating the error in the interpolation

of functions with the property (3.2), see §§3.4, 3.5. In §3.6, we then illustrate the inadequacy
of uniform meshes for tackling the problem we are faced with, and finally, in §3.7, we give
numerical evidence of the accuracy and practicality that can be attained by approximating the
k-ε model with the mesh we have identified.

3.1 Equidistributed meshes

We now illustrate how equidistributed meshes are generated, their applications and properties.
An extensive literature is available on this subject, see for example [42] and the books [43],
[44].

The use of equidistributed meshes has been largely exploited in numerical schemes for
solving both boundary value problems (BVP’s) and initial-boundary value problems (in the
latter case the equidistribution technique is referred to as the moving mesh method). Assume
that a one-dimensional BVP has been discretised over the domain [a, b], using the mesh

Π : a = x1 < x2 < . . . < xN < xN+1 = b . (3.3)

Then, by definition, Π is called an equidistributed mesh with respect to a given strictly positive
monitor function M if it has the property:

∫ xi+1

xi

M(x)dx = C , i = 1, . . . , N (3.4)

with C independent of i.
The function M , which will give the “ideal” mesh for the problem under investigation,

is hard to identify and is usually chosen in such a way to reflect some expected properties of
the solution to the BVP itself. It may even be a function of the solution u of the differential
equation being solved. Typically, M is selected so that the grid points cluster in those regions
where the solution has the largest gradient. Since the choice of M depends on the behaviour of
the solution which is to be computed, in practice equidistributed meshes are usually determined
adaptively. That is, once a solution has been obtained on a preliminary grid, the mesh points
are redistributed so that (3.4) is satisfied with the monitor function M corresponding to the
preliminary solution. The solution is then recomputed on the new grid. This procedure may
then be iterated.

In order to understand the process of equidristibution more precisely, we now give a vari-
ational formulation of the problem of generating a 1D equidistributed mesh and show that
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this has a unique solution. Let x be the spatial coordinate in the physical domain Ωp = [a, b],
where the function u : Ωp → R is defined. Let us introduce a one-to-one smooth coordinate
transformation from the computational domain Ωc =[0, 1] to the physical domain Ωp:

x = x(ξ) , ξ ∈ Ωc = [0, 1]

x(0) = a , x(1) = b ,

(3.5)

where ξ denotes the spatial coordinate in the computational domain Ωc, and is the inverse of
the transformation (3.5):

ξ = ξ(x) , x ∈ Ωp = [a, b]

ξ(a) = 0 , ξ(b) = 1 .

(3.6)

The usual approach to the process of equidistribution is to consider the mesh on Ωp with prop-
erty (3.4), the image of a uniform discretisation of Ωc through the appropriate transformation
(3.5). The lemma below specifies which property the inverse mapping ξ = ξ(x) must have, in

order for the mesh xi =x((i− 1)/N), i=1, 2, . . . , N + 1, to satisfy (3.4).

Lemma 3.1.1. Let M be a srictly positive valued function which is integrable and continu-

ously differentiable over the domain Ωp. Then there exists a unique minimizer ξ = ξ(x) of the

functional

I(ξ) =
1
2

∫ b

a

ξ2
x

M(x)
dx , (3.7)

over the space S = {η ∈ C2[a, b] : η(a) = 0 , η(b) = 1}. Moreover the minimizer ξ has an

inverse x=x(ξ), and the mesh xi :=x ((i− 1)/N), i=1, 2, . . . , N +1, has the property (3.4).

Proof. In order to prove that (3.7) has a unique minimizer, suppose ξ is an extremal for I , then
it must satisfy the Euler-Lagrange equation for all x∈ [a, b], i.e.,

d

dx

[
∂

∂ξx

(
1
2

ξ2
x

M(x)

)]
− ∂

∂ξ

(
1
2

ξ2
x

M(x)

)
= 0 ,

and this reduces to
d

dx

(
1

M(x)
ξx

)
= 0 , (3.8)

which has the solution
1

M(x)
ξx = constant . (3.9)

Becasue of the boundary conditions in (3.6) the only extremal ξ for I is therefore

ξ(x) =

∫ x
a M(x̄) dx̄∫ b
a M(x̄) dx̄

. (3.10)
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3.1. Equidistributed meshes

It can now be easily checked that for all x∈ [a, b] the function

f(x, ξ, ξx) :=
1
2

ξ2
x

M(x)

is convex for all (ξ, ξx) in the convex set R+×R+, this then implies that the extremal (3.10)
minimizes I (see Theorem 10.7.1 and Theorem 10.7.2 p. 259 of [45]).

The existence of x = x(ξ), the inverse of ξ, follows from the fact that ξ is monotonic
increasing, as can be deduced from (3.10) recalling that M is strictly positive.

We finally obtain (3.4). From (3.10) we have that:

∫ xi+1

xi

M(x) dx = (ξ(xi+1)− ξ(xi))
∫ b

a
M(x) dx (3.11)

and since ξ(xi)=ξ(x((i− 1)/N))=(i− 1)/N , the right-hand side of (3.11) is

1
N

∫ b

a
M(x) dx ,

a constant independent of i. The result then follows.

We observe that the functional (3.7) may be seen as a weighted H1-seminorm of ξ, and
can then be interpreted as a weighted measure of the global roughness of the mapping ξ. In
this sense, the equidistribution technique gives the smoothest point distribution attainable.

Now we obtain the conventional 1D equidistribution principle, see (3.12)-(3.13) below.

Corollary 3.1.2. Since M ∈C1(Ωp) is strictly positive and ξ∈C2(Ωp) is invertible, it follows

that (3.8) and (3.9) are respectively equivalent to:

d

dξ
[M(x(ξ))xξ] = 0 , (3.12)

and

M(x(ξ))xξ = constant . (3.13)

Proof. Performing the differentiation in (3.8) and rearranging the terms we get

ξxx =
Mx

M
ξx . (3.14)

Using the chain rule and the fact that ξx(x)=(xξ(ξ))−1 we obtain

Mx(x(ξ)) ξx(x(ξ)) =
{

d

dξ
[M(x(ξ))]

}
1
x2

ξ

,

ξxx(x(ξ)) = − 1
(xξ)3

xξξ .
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Substituting the last two expressions into (3.14), and rearranging the terms we have:

−Mxξξ =
[

d

dξ
M(x(ξ))

]
xξ ,

from which (3.12) clearly follows. (3.13) is then obtained by integrating (3.12).

Next we give an expression for the mesh size in the physical domain Ωp.

Corollary 3.1.3. The length of the i-th subinterval hi =xi+1 − xi of the equidistributed mesh

defined above can be expressed as

hi =
1
N

1
ξx(xi)

(
1 + O

(
1
N

))
. (3.15)

Proof. From (3.10) we have that:

ξx =
M(x)∫ b

a M(x̄) dx̄
, (3.16)

from which we get

xξ =

∫ b
a M(x̄) dx̄

M(x(ξ))
.

The result (3.15) is then obtained by integrating the last equation and using (3.16):

hi = x(i/N)− x((i− 1)/N) =
∫ b

a
M(x̄) dx̄

∫ i/N

(i−1)/N

1
M(x(ξ))

dξ

=
∫ b

a
M(x̄) dx̄

1
N

1
M(x(i/N))

(
1+O

(
1
N

))

=
1
N

∫ b
a M(x̄) dx̄

M(x(i/N))

(
1 + O

(
1
N

))

=
1
N

1
ξx(xi)

(
1 + O

(
1
N

))
.

In the following, we will refer to the mapping ξ from the physical to the computational
domain, given by (3.10), as the grading function.

Finally, we simply mention the two-dimensional formulation of the above variational ap-
proach for mesh generation, originally inspired by the work of Winslow [46], Brackbill and
Saltzman [47] and Brackbill [48]. A 2D equidistributed mesh is provided by the minimizer of
a functional of the form

I(ξ, η) =
1
2

∫

Ωp

[
(∇ξ)T G−1

1 ∇ξ + (∇η)T G−1
2 ∇η

]
dxdy (3.17)
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where ξ = ξ(x, y), η = η(x, y) is the mapping between the physical domain and the computa-
tional domain, and G1 =G1(x, y) and G2 =G2(x, y) are symmetric positive definite matrices,
called the monitor functions. The functional (3.17) represents a natural extension of (3.7) to
two-dimensional problems.

The choice of 2D monitor functions based on estimates of the error in the interpolant of
the solution to a certain boundary value problem (as it is possible to do in the 1D case, see

§3.3) is investigated in [49] and [50].

3.2 The finite element error

In this section we briefly discuss the standard finite element error estimates arising in the ap-
proximation of elliptic BVP’s; these estimates represent the rationale behind the approach to
mesh generation which will be presented in §§3.3, 3.4. In the following we will describe the
bounds on the finite element error only in general terms, the details can be found, for example,
in [51].

Let us introduce the space H1
0 (Ω):={v∈H1(Ω) : v=0 on ∂Ω}, with Ω⊂Rd (d=1, 2),

and consider the variational problem

find u ∈ H1
0 (Ω) such that a(u, v) = F (v) , ∀ v ∈ H1

0 (Ω) , (3.18)

where a(·, ·) is a bounded, symmetric, coercive, bilinear form on H1(Ω) and F (·) is a bounded,
linear functional on H1(Ω). (3.18) can be interpreted as the weak formulation of some elliptic
linear BVP for the function u satisfying homogeneous Dirichlet boundary conditions on ∂Ω
(this last assumption is not crucial for the results that will be discussed in the following). The
Galerkin finite element approximation to (3.18) is the following: given a discretisation of Ω
and a finite-dimensional subspace V h⊂H1

0 (Ω), consisting of functions which are polynomial
in form over each element of the discretisation, find uh∈V h such that

a(uh, vh) = F (vh) , ∀ vh ∈ V h .

One powerful aspect of the Galerkin method for (3.18) is that in the energy norm ‖ · ‖E , defined
as

‖v‖E :=
√

a(v, v) , ∀ v ∈ H1(Ω) , (3.19)

the error in the approximation uh to u is optimal, in the following sense:

‖u− uh‖E ≤ min
vh∈V h

‖u− vh‖E . (3.20)

By a “duality” argument, it is also possible to estimate ‖u− uh‖L2(Ω) as follows:

‖u− uh‖L2(Ω) ≤ ‖u− uh‖E inf
zh∈V h

‖w − zh‖E , (3.21)
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where w is the solution to the dual problem corresponding to (3.18):

find w ∈ H1
0 (Ω) such that a(w, v) = (u− uh, v) , ∀ v ∈ H1

0 (Ω)

with
(u− uh, v) :=

∫

Ω
(u− uh)v dΩ .

Then, under suitable regularity assumptions, by exploiting the regularity of w and by appropri-
ately choosing zh∈V h, it is possible to obtain from (3.21) the following bound:

‖u− uh‖L2(Ω) ≤ C h‖u− uh‖E , (3.22)

where h is the diameter of the mesh. Combining (3.20) and (3.22) gives:

‖u− uh‖L2(Ω) ≤ C h min
vh∈V h

‖u− vh‖E . (3.23)

Finally, from the boundness of the bilinear form a(·, ·), it follows that:

‖u− vh‖E =
√

a(u− vh, u− vh) ≤ C ′‖u− vh‖H1(Ω) , ∀ vh ∈ V h ,

and using this in (3.20) and (3.23), yields:

‖u− uh‖E ≤ C ′ min
vh∈V h

‖u− vh‖H1(Ω) , (3.24)

‖u− uh‖L2(Ω) ≤ C̃ h min
vh∈V h

‖u− vh‖H1(Ω) . (3.25)

A practical way to estimate the left-hand sides of (3.24)-(3.25) is to chose vh as the finite

element interpolant of u, denoted in the following by Ihu, and this gives:

‖u− uh‖E ≤
√

C1‖u− Ihu‖H1(Ω) , (3.26)

‖u− uh‖L2(Ω) ≤ C̃ h‖u− Ihu‖H1(Ω) , (3.27)

and then to bound the H1(Ω)-norm of the interpolation error. By the Poincaré inequality:

‖v‖H1(Ω) ≤ C̃1|v|H1(Ω) , ∀v ∈ H1
0 (Ω) ,

where

|v|H1(Ω) :=
(∫

Ω
‖∇v‖2

2 dΩ
)1/2

is the H1(Ω)-seminorm of v∈H1
0 (Ω). Then from (3.27) we get:

‖u− uh‖L2(Ω) ≤ Ĉ h|u− Ihu|H1(Ω) , (3.28)
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and a similar result follows from (3.26) (note that (u− Ihu)∈H1
0 (Ω)).

Error estimates corresponding to (3.24)-(3.25), and therefore to (3.26)-(3.28), also hold in
the case of general linear elliptic BVP’s for which the corresponding bilinear form a(·, ·) is
neither symmetric nor coercive and in the case of nonlinear elliptic BVP’s. They are derived
using the strategy outlined above. That is, a “duality” argument gives the bound

‖u− uh‖L2(Ω) ≤ Ch‖u− uh‖H1(Ω) , (3.29)

which corresponds to (3.22), and an optimal H1(Ω) estimate, corresponding to (3.20) (or
(3.24)), can also be established:

‖u− uh‖H1(Ω) ≤ C inf
vh∈V h

‖u− vh‖H1(Ω) . (3.30)

Then combining (3.29) and (3.30) gives:

‖u− uh‖L2(Ω) ≤ C̃ h inf
vh∈V h

‖u− vh‖H1(Ω) ,

the result equivalent to (3.23) (or (3.25)).
The bounds (3.26)-(3.28) then suggest that a numerical scheme designed to constrain the

error in the interpolant of the solution will also keep under control the accuracy of the finite
element solution. This consideration is at the basis of the work of Carey and Dinh [41] which
is discussed in the next section.

3.3 Optimal monitor functions

We now discuss the choice of monitor function proposed by Carey and Dinh [41]. This choice
is motivated by the control of the error in the interpolant of the solution to a certain boundary
value problem. The rationale behind this choice lies in the fact that, as shown in §3.2, the
interpolation error often represents an estimate from above of the error in a finite element
approximation to a differential equation. The argument of Carey and Dinh is outlined below.

Assume that the mesh Π in (3.3) satisfies the property (3.4), for some monitor function

M . Let hi := xi+1 − xi be the size of the i-th subinterval τi := [xi, xi+1]. In this section and
throughout the rest of this chapter, we will denote by πk

hu a piecewise k-th degree polynomial

interpolant of the function u at the nodal points of Π. πk
hu is a polynomial of degree k on each

interval τi and is not necessarily continuous across subinterval boundaries. Let m≥ 0 and let
|v|m,[a,b] denote the Hm([a, b])-seminorm of a function v over the interval [a, b]:

|v|m,[a,b] :=
{∫ b

a
(Dmv)2 dx

}1/2

. (3.31)

(Note that if m = 0, then (3.31) is just ‖v‖L2([a,b]), the L2-norm of v on the interval [a, b]).
Finally, let eh :=u− πk

hu be the interpolation error.
The problem tackled by Carey and Dinh [41] is to determine the monitor function M which
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gives the sharpest upper bound on |eh|m,[a,b] with respect to variations in the mesh coordinates.
This is now discussed.

The main inequality given in [41], obtained by expanding the error eh and its derivatives
on τi in a Fourier series and using Parseval’s identity, is

|eh|2m,[a,b] ≤
N∑

i=1

(
hi

π

)2(k+1−m) ∫

τi

(
Dk+1u

)2
dx , (3.32)

for k>m (we recall that k is the degree of the polynomial approximation on τi). The midpoint

quadrature rule is then used to obtain an expression for each of the integrals on the right-hand
side of (3.32):

∫

τi

(
Dk+1u

)2
dx = hi

[(
Dk+1u

)
(xi+1/2)

]2
(1 + O(hi)) (3.33)

and also for

∫

τi

ξ′ dx = hi ξ
′(xi+1/2)(1 + O(hi)) . (3.34)

(3.34) is combined with

∫

τi

ξ′ dx = ξ(xi+1)− ξ(xi) =
1
N

(3.35)

(we recall that ξ(xi) = (i−1)/N , as noticed in the proof of Lemma 3.1.1), in order to derive
the following expression for the length hi of the interval τi:

hi =
1

N ξx(xi+1/2)
(1 + O(hi)) . (3.36)

Expressions (3.33) and (3.36) are then substituted into (3.32) to get:

|eh|2m,[a,b] ≤
1

(π N)2(k+1−m)

N∑

i=1

[(
Dk+1u

)
(xi+1/2)

]2

[ξ′(xi+1/2)]2(k+1−m)
hi(1 + O(hi)) . (3.37)

Finally, interpreting the sum on the right-hand side of (3.37) as a Riemann sum and neglecting

higher order terms, the following result is obtained:

|eh|2m,[a,b] ≤
1

(π N)2(k+1−m)

∫ b

a

(
Dk+1u

)2

(ξ′)2(k+1−m)
dx . (3.38)

We now show that there exists a unique monitor function M which minimizes the asymp-
totic constant in (3.38):

1
π2(k+1−m)

∫ b

a

(
Dk+1u

)2

(ξ′)2(k+1−m)
dx , (3.39)

with respect to variations in the grid points. Note that the monitor function M appears in (3.39)
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through ξ′, in fact:

ξ′(x) =
M(x)∫ b

a M(x̄) dx̄
,

(see (3.10)). The monitor function minimizing (3.39) will be called optimal monitor function

and the corresponding equidistributed mesh will be the optimal mesh.
First we observe that (3.39) is minimal with respect to variations in the grid points if and

only if the functional

J(ξ) =
∫ b

a

(
Dk+1u

)2

(ξ′)2(k+1−m)
dx (3.40)

is minimal. The monitor function which minimizes (3.40) is next determined.

Lemma 3.3.1. The optimal monitor function which minimizes the functional (3.40) over all

admissible choices of the mesh is:

M =
(
Dk+1u

)2/[2(k+1−m)+1]
. (3.41)

Proof. First we show that the only extremal for the functional (3.40) in the space S = {η ∈
C2[a, b] : η(a)=0 , η(b)=1} is

ξ(x) =

∫ x
a

[(
Dk+1u

)
(x̄)

]2/[2(k+1−m)+1]
dx̄

∫ b
a [(Dk+1u) (x̄)]2/[2(k+1−m)+1]

dx̄
. (3.42)

This is the grading function corresponding to the monitor function (3.41), as it can be deduced
from comparing (3.10) with (3.42). Then we prove that (3.42) minimizes J and the result

follows.
To see that (3.42) is the extremal for (3.40) in the space S, consider the Euler-Lagrange

equation for J (cf (3.8)):
d

dx

( (
Dk+1u

)2

(ξ′)2(k+1−m)+1

)
= 0 .

This is equivalent to (
Dk+1u

)2

(ξ′)2(k+1−m)+1
= constant . (3.43)

Then, integration of (3.43), using the boundary the boundary conditions imposed in the space
S, yields the solution (3.42).

We finally have to show that the extremal (3.42) minimizes J . This follows from the fact
that, for all x∈ [a, b], the function

f(x, ξ, ξ′) :=

(
Dk+1u

)2

(ξ′)2(k+1−m)

is convex for all (ξ, ξ′) in the convex set R+×R+, as it can be easily checked (see Theorem
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10.7.1 and Theorem 10.7.2 p. 259 of [45]).

3.4 Monitor functions for specific classes of functions

We now discuss the properties of the equidistributed h+-dependent mesh, that we have iden-
tified for discretising the equations (2.39)-(2.41) over the domain [h+, d] (from now on it will
be assumed that d=1).

As said at the beginning of this Chapter, the mesh should be chosen so that, in the limit
h+→0, the profile of ε at the artificial wall:

ε(h+) =
1
κ

u3∗
h+

, (3.44)

is captured as accurately as possible by the numerical scheme, using a number of discretisation
points which does not make the computation impractical.

We will show that the grid which meets the previous requirements and noticeably improves
the robustness of Newton’s method for the nonlinear finite element system (as it will be dis-
cussed later in Chapter 5), is the equidistributed mesh with respect to the monitor function
given in Lemma 3.3.1, applied to a particular class of functions f , designed to contain the
function ε(y) (given in (2.62) and in (2.78), for h+→0) as a particular case.

As mentioned above, the variable ε is expected to vary smoothly faraway from the artificial
wall and resemble closely the function f(y) = C/y, with C = u3∗/κ, in a neighbourhood of
y = h+, due to the boundary condition (3.44). Rather than considering ε directly, we will
consider a class of functions which includes ε. So, for given real number p > 0 and integer
n≥0, and for f ∈Cn([h+, 1]), we define the seminorm:

|f |n,p,[h+,1] := ‖yn+p(Dnf)(y)‖∞, [h+,1] ,

and, in Corollary 3.4.2, we will determine a monitor function which minimizes, over all ad-
missable choices of the mesh, the bound on |eh|m,[a,b] :=

f−πk
hf


m,[a,b]

(where πk
hf is the

piecewise k-th degree polynomial interpolant of f ) that will be derived in Theorem 3.4.1 for
all f in the space

Vk+1,p,h+ =
{

f ∈ Ck+1([h+, 1]) : |f |k+1,p,[h+,1] < +∞ as h+ → 0
}

. (3.45)

Note that when p=1, the set (3.45) contains functions f whose k+1 derivative blows up
like yk+2, which coincides with the expected behaviour of ε. Moreover, we observe that for
all p > 0, the function g(y) := ln(y) lies in the space Vk+1,p,h+ . This is relevant to our study
because, as seen in (2.57),

U(h+) = u∗

[
1
κ

ln
(

u∗h+

ν

)
+ C

]
,
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then we expect U(y) to blow up logarithmically as y=h+→0.
We will also show that on the mesh we propose, the interpolation error for the functions

f ∈ Vk+1,p,h+ deteriorates very mildly when h+ → 0, which suggests that, in this limit, not
many mesh points will be needed to resolve the profile (3.44).

Theorem 3.4.1. Let f ∈ Vk+1,p,h+ and let {yi}, i = 1, . . . , N + 1, be a mesh on the interval

[h+, 1] equidistributed with respect to a monitor function M . Then

|eh|2m,[a,b] ≤
|f |2k+1,p,[h+,1][∏k

j=0(p + j)
]2

1
(πN)2(k+1−m)

∫ 1

h+

[
Dk+1(1/yp)

]2

[ξ′]2(k+1−m)
dy (3.46)

Proof. We start with the upper bound for the Hm([h+, 1]) seminorm of the interpolation error
(3.32) given in [41]:

|eh|2m,[a,b] ≤
N∑

i=1

(
hi

π

)2(k+1−m)∫

τi

(
Dk+1f

)2
dy , (3.47)

where τi :=[yi, yi+1]. Multiplying and dividing the integrand in (3.47) by y2(k+1+p) we have:

|eh|2m,[a,b] ≤
N∑

i=1

(
hi

π

)2(k+1−m)∫

τi

|yk+1+p(Dk+1f)|2
(

1
yk+1+p

)2

dy

= C
N∑

i=1

(
hi

π

)2(k+1−m)∫

τi

|yk+1+p(Dk+1f)|2
[
Dk+1

(
1
yp

)]2

dy , (3.48)

where C is a constant which depends on p and k. Now, since

sup
τi

|yk+1+pDk+1f | ≤ |f |k+1,p,[h+,1] ,

from (3.48) we get:

|eh|2m,[a,b] ≤
|f |2k+1,p,[h+,1][∏k

j=0(p + j)
]2

N∑

i=1

(
hi

π

)2(k+1−m)∫

τi

[
Dk+1

(
1
yp

)]2

dy . (3.49)

The sum in the right hand side of (3.49) is the same as the sum in the right hand side of (3.32)
with u = 1/yp, therefore, the same argument as in [41], which leads to (3.38), will then give
the result (3.46).

Following the same strategy as Carey and Dinh [41], we now determine the monitor func-
tion which minimizes the integral

∫ 1

h+

[
Dk+1(1/yp)

]2

[ξ′]2(k+1−m)
dy , (3.50)

in the asymptotic constant in (3.46).
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Corollary 3.4.2. The monitor function which minimizes (3.50) is the optimal monitor function

for a piecewise k-th degree polynomial interpolation of u(y)=1/yp :

M(y) =
[
Dk+1

(
1
yp

)]2/[2(k+1−m)+1]

. (3.51)

Proof. The asymptotic constant in (3.46) is minimal if and only if the functional

K(ξ) =
∫ 1

h+

[
Dk+1(1/yp)

]2

[ξ′]2(k+1−m)
dy

is minimal. This is the same as (3.40) with u = 1/yp. The result then follows from Lemma
3.3.1.

It is now convenient to introduce the notation:

r := 2(k + 1−m) + 1 , q := 2(m + p)− 1 . (3.52)

We then obtain an expression for the grading function ξ corresponding to the monitor function
(3.51).

Corollary 3.4.3. The grading function corresponding to the monitor function (3.51) is given

by

ξ(y) =
1− (y/h+)−q/r

1− h
q/r
+

, for (m, p) 6= (0, 1/2) , (3.53)

and

ξ(y) =
ln(y/h+)
ln(1/h+)

, for (m, p) = (0, 1/2) . (3.54)

Proof. Substituting M from (3.51) into (3.10), we get:

ξ(y) =

∫ y
h+

[
Dk+1(1/sp)

]2/r
ds

∫ 1
h+

[Dk+1(1/sp)]2/r
ds

, (3.55)

and, by computing the (k+1) derivative of 1/sp and by using the expressions for q and r in
(3.52), from (3.55) we obtain

ξ(y) =

∫ y
h+

s−(q/r+1) ds
∫ 1
h+

s−(q/r+1) ds
. (3.56)

It is then not difficult to check that, provided

q

r
+ 1 6= 1 , i.e., q 6= 0 , i.e., m + p 6= 1

2
, (3.57)

the computation of the integrals in (3.56) yields the expression for ξ in (3.53). As far as the
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condition (3.57) is concerned, it should be noted that

m + p 6= 1
2

⇔ (m, p) 6= (0, 1/2) ,

since m∈N and we are considering p>0.
If q/r + 1=1, i.e. (m, p)=(0, 1/2), then note that:

∫ y

h+

s−(q/r+1) ds = ln
(

y

h+

)
, (3.58)

hence (3.54) follows from (3.56).

In the following, for the sake of clarity of the exposition, we will assume that (m, p) 6=
(0, 1/2). We will, then, avoid considering the approximation in the L2 norm of functions
f ∈ Vk+1,1/2,h+

. We recall that we are mostly interested in the properties of the piecewise
polynomial interpolant of f ∈Vk+1,1,h+ .

We now determine the mesh points which equidistribute the monitor function (3.51) and
then, using in (3.46) the expression (3.53) for the grading function ξ, we will determine the ex-
plicit dependence on h+ of the upper bound on the error in the interpolation of f ∈Vk+1,p,h+ .
Note that the equidistributed mesh with respect to the monitor function (3.51) will be the opti-
mal mesh for a piecewise k-th degree polynomial interpolation of u(y)=1/yp (in the sense of
§3.3).

Lemma 3.4.4. The mesh generated by (3.53), which equidistributes the monitor function

(3.51), is:

yi = h+

[
1− i− 1

N

(
1− h

q/r
+

)]−r/q

i = 1, 2, . . . , N + 1 , (3.59)

Proof. As discussed in §3.1, in the computational domain Ωc =[0, 1], the mesh is uniform:

ξi+1 − ξi =
1
N

, (3.60)

but, since ξ1 =ξ(h+)=0, from (3.60) we get:

ξi = ξ(yi) =
i− 1
N

, i = 1, 2, . . . , N + 1 .

Therefore, the grid points {yi} in the physical domain Ωp = [h+, 1] are given by the solution
of the scalar equation:

ξ(yi)− i− 1
N

= 0 . (3.61)

Then (3.59) follows from solving (3.61) for yi with ξ given in (3.53).

We now briefly discuss how the distributions of grid points (3.59) can be equivalently
obtained from the 1D equidistribution principle (3.13). From (3.51), computing the (k + 1)-th
derivative of y−p and using the definitions of r and q in (3.52), we can express the monitor
function as:
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M(y) =


(−1)k+1

k∏

j=0

(p + j)




2/r

y−(q/r+1) . (3.62)

Substituting (3.62) into (3.13) (with y instead of x) and using the chain rule, we have, for q 6=0
(i.e. (m, p) 6=(0, 1/2)),

(y(ξ))−(q/r+1) dy

dξ
(ξ) = −r

q

d

dξ

[
(y(ξ))−q/r

]
= constant ,

which yields the following ordinary differential equations for the coordinate transformation
y=y(ξ) from the computational domain to the physical domain:

d

dξ

[
(y(ξ))−q/r

]
= constant .

This has the solution

y(ξ) = h+

[
1− ξ

(
1− h

q/r
+

)]−r/q
, (3.63)

which satisfies y(0) = h+, y(1) = 1. Finally, evaluating (3.63) at the points ξi = (i − 1)/N
yields (3.59).

In §3.5, we will discuss in detail the distribution of mesh points (3.59) which minimizes
the L2([h+, 1]) norm of the error in a piecewise quadratic approximation of f(y) = 1/y. We
first establish a general estimate to show how the right-hand side of (3.46) depends on h+.

Lemma 3.4.5. Let (m, p) 6=(0, 1/2) and f ∈Vk+1,p,h+ , then on the mesh (3.59), we have

|eh|m,[h+,1] ≤
|f |k+1,p,[h+,1]

πk+1−m

(
r

q

)r/2 (
1− h

q/r
+

)r/2 h
−q/2
+

Nk+1−m
. (3.64)

Proof. Using also (3.55), from which we get an expression for ξ′(y), it is not difficult to see
that the integral on the right-hand side of (3.46) (with 2(k + 1 − m) replaced by r − 1, see
(3.52)) can be expressed as follows:

∫ 1

h+

[
Dk+1(1/yp)

]2

[ξ′(y)]r−1
dy =

{∫ 1

h+

[
Dk+1(1/sp)

]2/r
ds

}r−1∫ 1

h+

[
Dk+1(1/yp)

]2

[Dk+1(1/yp)]2−2/r

=
{∫ 1

h+

[
Dk+1(1/yp)

]2/r
dy

}r

=




k∏

j=0

(p + j)




2(∫ 1

h+

y−(q/r+1)dy

)r

. (3.65)

Since by assumption (m, p) 6=(0, 1/2), we have that q 6=0 and the integral in (3.65) yields:

(∫ 1

h+

s−2(k+1+p)/r ds

)r

=
(

r

q

)r (
1− h

q/r
+

)r
h−q

+ ,
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which is substituted back into (3.65), to obtain:

∫ 1

h+

[
Dk+1(1/yp)

]2

[ξ′(y)]r−1
dy =




k∏

j=0

(p + j)




2 (
r

q

)r (
1− h

q/r
+

)r
h−q

+ . (3.66)

The result then follows from substituting the expression (3.66) into (3.46).

We now analyse the behaviour of the bound (3.64) as h+→0. For simplicity, we study the
dependence of the error on h+, N and f only.

Theorem 3.4.6. Let the assumptions of Lemma 3.4.5 hold. Suppose

either m ≥ 1 or p > 1/2 . (3.67)

Then there exists a constant C1, which does not blow up as h+→0, such that

|eh|m,[h+,1] ≤ C1h
−(m+p)+1/2
+

|f |k+1,p,[h+,1]

Nk+1−m
. (3.68)

If

m = 0 and p < 1/2 , (3.69)

then

‖eh‖L2([h+,1]) ≤ C2

|f |k+1,p,[h+,1]

Nk+1
(3.70)

with asymptotic constant C2 bounded as h+→0.

Proof. Assume that (3.67) holds. Then, recalling the definition of r and q in (3.52):

r := 2(k + 1−m) + 1 , q := 2(m + p)− 1 , (3.71)

we observe that r>0, since k>m, and that

m ≥ 1 ⇒ q = 2
(

m− 1
2

)
+ 2p ≥ 1 + 2p > 1 ∀ p > 0 ,

and similarly

p >
1
2

⇒ q = 2m + 2
(

p− 1
2

)
> 2m ≥ 0 ∀m ≥ 0 .

Hence (3.68) follows from observing that, using the definition of q in (3.71), (3.64) can be
written as

|eh|m,[h+,1] ≤ C1h
−(m+p)+1/2
+

|f |k+1,p,[h+,1]

Nk+1−m
,

with constant

C1 :=

(
1− h

q/r
+

)r/2

πk+1−m

(
r

q

)r/2

, (3.72)
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3.5. A particular case

which is bounded as h+→0, since, in this limit, h
q/r
+ →0 due to the fact that q/r>0.

Assume now that (3.69) holds. We observe that

m = 0 and p < 1/2 ⇒ q = 2
(

p− 1
2

)
< 0 ,

moreover, by setting m=0 in (3.64), we get:

‖e‖L2([h+,1]) ≤
|f |k+1,p,[h+,1]

πk+1

(
r

q

)r/2 (
1− h

q/r
+

)r/2 h
−q/2
+

Nk+1
. (3.73)

The result (3.70) then follows from rearranging the right-hand side of (3.73) as:

‖e‖L2([h+,1]) ≤ C2

|f |k+1,p,[h+,1]

Nk+1
, (3.74)

with constant

C2 :=
(

r

q

)r/2 (
1− h

q/r
+

)r/2 h
−q/2
+

πk+1

=
1

πk+1


−r

(
1− h

−q/r
+

)

q




r/2

, (3.75)

and noticing that h
−q/r
+ →0 as h+→0, since −q/r>0.

Observation 3.4.1. It is clear, respectively from (3.68) and (3.70), that, as h+ → 0, the
bound on the Hm([h+, 1]) seminorm of the interpolation error blows up proportionally to
h
−(m+p)+1/2
+ in the regime of the parameters (3.67), while is independent of h+ when m = 0

and p< 1/2. Moreover, we notice that, by increasing the degree k of the polynomial interpo-

lation, it is possible to obtain a better approximation to f ∈Vk+1,p,h+ because of the very mild
dependence on k of the asymptotic constants C1 and C2, respectively in (3.72) and (3.75). Note
that in (3.68), changes in the value of k will not affect the order of blow-up of the asymptotic
constant. We finally observe that for p>1/2, the L2([h+, 1]) norm (m=0) of the interpolation
error shows the mildest deterioration as h+→ 0, namely of order h−p+1/2, as it follows from
(3.68) by setting m=0.

3.5 A particular case

We now discuss the above results in the case of the particular function f(y) = 1/y, focusing,
specifically, on its piecewise quadratic interpolation. This choice is motivated by the fact that
in a neighbourhood of y=h+, as h+→0, the asymptotic behaviour in the direction orthogonal
to the artificial wall of the variable ε, in the k-ε system (2.4), is expected to be represented well
by the profile 1/y, and by the fact that in the particular finite element method, in this thesis
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Figure 3.1: Discretisation of the channel for h+ =10−1 (left) and h+ =10−3 (right), with a mesh given
by the tensor product between a uniform mesh in the x-direction and the equidistributed mesh (3.76)
with N =30 in the y-direction.

ε will be approximated using piecewise quadratic polynomial basis functions. This study will
then provide us with some insights into the properties of our finite element discretisation.

Let us consider the optimal distribution of mesh points (in the sense of §3.3) for a piecewise
quadratic interpolation of f(y)= 1/y over the interval [h+, 1], when the interpolation error is
measured in the L2([h+, 1]) norm. Then, k = 2, p = 1 and m = 0 and from (3.52), r = 7 and
q=1, and (3.59) gives:

yi = h+

(
1− i− 1

N

(
1− h

1/7
+

))−7

i = 1, 2, . . . , N + 1 . (3.76)

This mesh in the y-direction is combined with a uniform mesh in the the x-direction and plotted
in Figure 3.1.

In this case Theorem 3.4.6 yields

‖e‖L2([h+,1]) ≤ C1h
−1/2
+

|f |3,1,[h+,1]

N3
, (3.77)

(for f(y)=1/y, we have |f |3,1,[h+,1] =1).
To illustrate (3.77), in Table 3.1, for a sequence of decreasing values of h+, we compute

the piecewise quadratic interpolant of f(y) = 1/y at the points yi, (yi + yi+1)/2 and yi+1 of
the mesh (3.76) (with fixed N = 62 and N = 124) and then measure its error in the norm
L2([h+, 1]).

Table 3.1 indicates the O(h−1/2
+ ) blow up predicted by the theoretical result (3.77). It also

shows the effectiveness of the mesh (3.76) in approximating the profile 1/y. In fact, for only
64 elements the relative error in the piecewise quadratic interpolation of f(y) = 1/y, when
h+ =10−13, is very small of order 10−4, that is
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3.5. A particular case

N =64 N =128

h+ ‖eh‖L2([h+,1]) EOBU ‖eh‖L2([h+,1]) EOBU

10−4 4.005× 10−3 5.004× 10−4

10−5 1.784× 10−2 0.649 2.223× 10−3 0.649

10−6 7.083× 10−2 0.599 8.847× 10−3 0.599

10−7 2.616× 10−1 0.567 3.267× 10−2 0.567

10−8 9.218× 10−1 0.547 1.150× 10−1 0.547

10−9 3.145 0.533 3.923× 10−1 0.533

10−10 10.50 0.523 1.309 0.523

10−11 34. 52 0.517 4.30 0.516

10−12 112.3 0.512 13.97 0.512

10−13 363.5 0.509 45.1 0.508

Table 3.1: Dependence on h+→0 of the L2-norm of the error in the piecewise quadratic interpolation
of f(y)=1/y at the nodes (3.76) and estimated order of blow-up (EOBU).

‖e‖L2([10−13,1])

‖1/y‖L2([10−13,1])
= 1.15× 10−4 .

The final result of this section is about the fine structure of the mesh (3.59) near the wall

y = h+. Let h̄+ ¿ 1 be a fixed value of the coordinate of the artificial wall and consider the
following two sets of nodes of the grid (3.59):

Ñw :=
{
i ∈ N | yi = O(h+) as h+ → h̄+

}
,

Ñcl :=
{
i ∈ N | yi = O(1) as h+ → h̄+

}
.

Let N be sufficiently large, then from (3.59) it is not difficult to see that:

i s.t.
i− 1
N

¿ 1 ⇒ i ∈ Ñw ,

and that

i s.t.
i− 1
N

u 1 ⇒ i ∈ Ñcl .

We will prove, in particular, that
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3.5. A particular case

i ∈ Ñw ⇒ hi

yi
= O

(
1
N

)
,

which shows that if N is sufficiently large, then the number of elements in a neighbourhood

of h̄+, is sufficient to resolve accurately the boundary layer of width O(h̄+), as it can be seen
from considering, for example, that hi/yi =O(1/N) implies

h1

h̄+
= O

(
1
N

)
,

h2

h̄+
= O

(
1
N

)
+ h.o.t. .

We have:

Lemma 3.5.1. Let h̄+¿1 and let h+→ h̄+, then the mesh (3.59) is such that

i ∈ Ñw ⇒ hi

yi
= O

(
1
N

)
, (3.78)

and

i ∈ Ñcl ⇒ hi

yi
= O

(
h
−q1/r
+

N

)
. (3.79)

Proof. The relation between the mesh size hi and the grid point yi can be derived from (3.15),
which, neglecting the higher order terms, gives:

hi =
1
N

1
ξ′(yi)

. (3.80)

The derivative of the grading function can be obtained from (3.53):

ξ′(y) =
q1

r

y−1−q1/r

h
−q1/r
+ − 1

,

and by evaluating the last expression at y=yi, substituting the result into (3.80) and rearranging
the terms we get:

hi

yi
=

r

q1

1
N

[(
yi

h+

)q/r

− y
q/r
i

]
. (3.81)

If i∈ Ñw, then:

(
yi

h+

)q/r

= O(1) and y
q/r
i = O

(
h

q/r
+

)
¿ 1 , as h+ → h̄+ ¿ 1

and the result (3.78) follows from (3.81). In the case when i∈ Ñcl, we can get the result (3.79)
rearranging (3.81) as

hi

yi
=

r

q1

h
−q/r
+

N

[
y

q/r
i − (yi h+)q/r

]

and observing that if i∈ Ñcl, then

y
q/r
i = O(1) and (yi h+)q/r = O(hq/r

+ ) ¿ 1 , as h+ → h̄+ ¿ 1 .
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3.6. Close-up of the approximation of f(y)=1/y

Note that the blow-up in hi/yi for i∈Ñcl, as h+→ h̄+, (see (3.79)), is very mild when the
error in a piecewise quadratic interpolation of 1/y is measured in the L2([h+, 1]) norm, in fact
in this case we have q/r =1/7 (from (3.52) with k =2 and m=0). This is important in later
sections.

3.6 Close-up of the approximation of f(y)=1/y

In this section we pursue further the study of the properties of the interpolant of f(y) = 1/y

over the interval [h+, 1], with h+ → 0, which was started in §3.5. Our investigation aims at
highlighting the difficulties posed by the approximation of the variable ε in the k-ε system
(2.4) and at showing how beneficial the use of the mesh (3.76) is. For this purpose, first, trough
a Taylor expansion, we will derive an expression for the L2([h+, 1])-norm of the error in a
continuous piecewise quadratic interpolation of 1/y on a fairly general mesh, we will then
study the behaviour of the error on uniform discretisations of the interval [h+, 1] and compare
it with the properties of (3.77) (see §3.6.1). Finally, in §3.6.2, we will briefly describe an
alternative derivation for (3.76) and (3.77).

Let {yi}, i = 1, 2, . . . , N + 1, define a mesh of N intervals over the domain [h+, 1], with
y1 =h+, yN+1 =1 and let hi =yi+1 − yi denote the length of the interval τi, i = 1, 2, . . . , N .
Let π2

hf be a piecewise quadratic interpolant of f(y) = 1/y at the nodes yi. We now give an
expression for the L2([h+, 1]) norm of the interpolation error eh :=f − π2

hf .
We have:

‖eh‖2
L2([h+,1]) =

∫ 1

h+

|f − π2
hf |2 dy ,

which can be written as:

‖eh‖2
L2([h+,1]) =

N∑

i=1

E2
i , (3.82)

where

E2
i :=

∫

τi

|f − π2
hf |2 dy (3.83)

is the square of the L2-norm of the local interpolation error.
Define:

g(s) = f(yi + shi) , s ∈ [0, 1]

and let

g̃(s) = (π2
hf)(yi + shi) , s ∈ [0, 1] , i = 1, . . . , N

be the continuous piecewise quadratic polynomial interpolant of f = 1/y at the points yi,
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3.6. Close-up of the approximation of f(y)=1/y

(yi + yi+1)/2 and yi+1 of τi. Then an easy calculation shows that for all s∈ [0, 1]:

g̃(s) =
1− s

yi
+

s

yi+1
− 2h2

i

yi+1yi(yi + yi+1)
s(1− s) , i = 1, . . . , N . (3.84)

(3.83) can then be written as:

E2
i =

∫ 1

0

{
1

yi + shi
−

[
1− s

yi
+

s

yi+1
− 2h2

i

yi+1yi(yi + yi+1)
s(1− s)

]}2

hi ds ,

and introducing the parameter αi :=hi/yi, the last expression can be rearranged in the follow-
ing form:

E2
i =

αi

yi

∫ 1

0

[
1

1 + αis
− (1− s)− s

1 + αi
+

2α2
i s(1− s)

(1 + αi)(2 + αi)

]2

ds . (3.85)

We will consider meshes with the property:

αi :=
hi

yi
¿ 1 , (3.86)

which, as discussed in §3.5, guarantees that the number of elements in a neighbourhood of h+

is sufficient to resolve accurately the boundary layer. For N large enough, (3.86) is also met
by the optimal mesh for a piecewise quadratic interpolation of 1/y (3.76), compare with (3.78)
and (3.79) with q1 =1 and r=7 (corresponding to k=2 and m=0). We have:

Lemma 3.6.1. Under the condition (3.86),

‖eh‖L2([h+,1]) =

√√√√ 1
840

N∑

i=1

1
yi

(
α7

i + O(α8
i )

)
. (3.87)

Proof. If (3.86) holds, then the Taylor expansion of (3.85) in powers of αi yields:

E2
i =

1
yi

(
α7

i

840
+ O(α8

i )
)

.

The result (3.87) then follows from substituting the last expression into (3.82) and taking the
square root.

In §3.6.1, (3.87) will be used to derive an expression for the interpolation error on uniform
discretisations of [h+, 1], while in §3.6.2 from its minimisation with respect to variations in the
grid points we will reobtain (3.76) and (3.77).
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3.6. Close-up of the approximation of f(y)=1/y

3.6.1 Uniform mesh

Now, let the domain [h+, 1] be partitioned with the uniform mesh:

yi = h+ + (i− 1)
1− h+

N
, i = 1, 2, . . . , N + 1 (3.88)

satisfying the condition:

h

y1
=

h

h+
=

1− h+

N h+
¿ 1 , (3.89)

which, in the case of a uniform discretisation, is obviously equivalent to (3.86), since αi =
h/yi≤h/y1 for all i=1, 2, . . . , N . We have:

Lemma 3.6.2. If the interval [h+, 1] is discretised using the uniform mesh (3.88) with prop-

erty (3.89), then the L2([h+, 1])-norm of the interpolation error (3.87) can be approximately

expressed as:

‖eh‖L2([h+,1]) ≈
√

(1− h+)7(1− h7
+)

5880
h
−7/2
+

N3
. (3.90)

Proof. Taking the square of (3.87) and using the expression h=(1− h+)/N and the fact that
h/yi≤h/y1 =h/h+, we have:

‖eh‖2
L2([h+,1]) =

1
840

N∑

i=1

h7

y8
i

(
1 + O

(
h

yi

))

=
(1− h+)7

840

N∑

i=1

1
y8

i

1
N7

(
1 + O

(
h

yi

))

=
1

N6

(1− h+)7

840

N∑

i=1

1
y8

i

1
N

(
1 + O

(
1

N h+

))
. (3.91)

Interpreting the sum on the right-hand side of the last expression as a Riemann sum and ne-
glecting higher order terms we obtain:

‖eh‖2
L2([h+,1]) ≈

1
N6

(1− h+)7

840

∫ 1

h+

1
s8

ds ,

and therefore

‖eh‖2
L2([h+,1]) ≈

(1− h+)7(1− h7
+)

5880
h−7

+

N6
.

The result (3.90) then follows from taking the square root of the last expression.

At the end of this section we will illustrate, through numerical experiments, that the es-
timate (3.90) correctly describes the behaviour of the interpolation error, by showing that the
constant
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c(h+) :=

√
(1− h+)7(1− h7

+)
5880

1

h
7/2
+

, (3.92)

in (3.90), represents a very good estimate of the actual asymptotic constant. First, we make
two observations that follow obviously from (3.90):

Corollary 3.6.3. Consider the limit h+ → 0, then on the uniform mesh (3.88) with property

(3.89) the continuous piecewise quadratic interpolant (3.84) of f(y)=1/y will converge to f

in the L2([h+, 1])-norm if and only if N→∞ at least with order h
−(7/6+δ)
+ .

Corollary 3.6.4. Let the domain [h+, 1] be subdivided into a uniform mesh with property

(3.89). Then the L2([h+, 1])-norm of the error in the continuous piecewise quadratic inter-

polant (3.84) of f(y)=1/y is smaller than a given tolerance τ :

‖eh‖L2([h+,1]) ≤ τ ,

if and only if

N ≥
[
(1− h+)7(1− h7

+)
5880

]1/6
h
−7/6
+

τ1/3
(3.93)

We now compare the results above with the behaviour of the interpolation error on the
optimal mesh (3.76). As already seen in §3.5, on the mesh (3.76), an upper bound for the square
of the L2([h+, 1])-norm of the error for a piecewise quadratic interpolation of f(y) = 1/y, is
given by (3.77) with |f |3,1,[h+,1] =1:

‖e‖2
L2([h+,1]) ≤

7 7

π6

1
N6h+

. (3.94)

From (3.94), we have that, in the limit h+ → 0, the piecewise quadratic approximation of
f(y) = 1/y on the optimal mesh will converge to f if

N ∼ h
−( 1

6
+δ)

+ .

This certainly represents a big improvement on the condition

N ∼ h
−( 7

6
+δ)

+

required for convergence on the uniform mesh.
When the optimal mesh (3.76) is used, then the number of mesh points needed for the

interpolation error (3.77), with k=2, to be less then a given tolerance τ is bounded from below
by:

N ≥
(

77/2

τ

)1/3

h
−1/6
+ . (3.95)

Again, (3.95) is a considerable improvement on (3.93).

82



3.6. Close-up of the approximation of f(y)=1/y

Λ :=
�??N3 ‖eh‖L2([h+,1]) − c(h+)

??� / c(h+)

h+ =10−1 h+ =10−2 h+ =10−3

c(h+) = 28.5 c(h+) = 125, 903 c(h+) = 410, 951, 477

h/h+ Λ Λ Λ

2.25 6.7×10−1 6.8×10−1 6.8×10−1

1.125 3.9×10−1 4.2×10−1 4.2×10−1

5.6×10−1 1.4×10−1 1.8×10−1 1.8×10−1

2.8×10−1 9.8×10−3 5.6×10−2 6.0×10−2

1.4×10−1 3.6×10−2 1.2×10−2 1.6×10−2

7.0×10−2 5.0×10−2 7.8×10−4 3.8×10−3

3.5×10−2 5.7×10−2 6.6×10−3 7.0×10−3

Table 3.2: Numerical illustration of the accuracy of the asymptotic constant (3.92).

Now we discuss how well the constant (3.92) approximates the actual asymptotic constant.
In order to estimate the closeness of the two constants, we have computed ‖eh‖L2([h+,1]) on a
sequence of uniform meshes characterised by decreasing values of the ratio h/h+, with h+ =
10−1, 10−2, 10−3, (recall that for h/h+ ¿ 1 we expect ‖eh‖L2([h+,1]) to have the expression
(3.91)) and for each grid we have calculated the quantity:

Λ :=


N3‖eh‖L2([h+,1]) − c(h+)

c(h+)

 .

The results, given in Table 3.2, show that c(h+) represents a very good approximation to
the actual asymptotic constant even for relatively big values of the parameter h/h+. In fact,

for h/h+ =1.4×10−1 we have that Λ=O(10−2) for all values of h+ considered.

3.6.2 Alternative derivation of the optimal mesh for approximating f(y)=1/y

In this subsection we return to the case m = 0, p = 1, k = 2 and describe an alternative
derivation for (3.76), which shows that it can be obtained by requiring that the error identity
(3.87) be minimized with respect to variations in the mesh points. This is consistent with the
fact that (3.87) is an expression for the interpolation error valid on grids satisfying the condition
(3.86), which is a property of the mesh (3.76), as shown in Lemma 3.5.1.

Corollary 3.6.5. The interpolation error (3.87) is minimal with respect to variations in the

grid points on the mesh (3.76):

yi = h+

(
1− i− 1

N

(
1− h

1/7
+

))−7

i = 1, 2, . . . , N + 1 , (3.96)
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where it has the approximate expression

‖e‖L2([h+,1]) ≈
77/2

√
840

(
1− h

1/7
+

)7/2 h
−1/2
+

N3
. (3.97)

Proof. Let the mesh Π : h+ =y1 < y2 < . . . < yN+1 =1, have the property (3.86) and be the
image of a uniform mesh of the domain [0, 1] through a mapping g in the space

S = {η ∈C2([0, 1]) : η(0) = h+ , η(1) = 1} .

Let ∆t := ti+1−ti =1/N be the size of the uniform grid of [0, 1], then, using Taylor expansion,
we have that:

hi = yi+1 − yi = g(ti+1)− g(ti)

=
1
N

g′(ti)
(

1 + O

(
1
N

))
,

and also, for all n∈N,

αn
i =

(
hi

yi

)n

=
[

1
N

g′(ti)
g(ti)

(
1 + O

(
1
N

))]n

=
1

Nn

(
g′(ti)
g(ti)

)n (
1 + O

(
1
N

))
.

Therefore (3.87) can be written as

‖e‖2
L2([h+,1]) =

1
840

N∑

i=1

1
yi

(
α7

i + O(α8
i )

)

=
1

840

N∑

i=1

(g′(tj))7

(g(tj))8
1

N7

(
1 + O

(
1
N

))

≈ 1
840

1
N6

∫ 1

0

(g′(t))7

(g(t))8
dt . (3.98)

Hence ‖eh‖L2([h+,1]) is minimal with respect to variations in the mesh points if and only if the
functional:

I(g, g′) :=
∫ 1

0

(g′(t))7

(g(t))8
dt (3.99)

is minimal. Since the functional I does not depend explicitly on the independent variable t, it
can be shown that a first order differential equation for its extremals is given by:

(g′(t))7 = const (g(t))8 ,
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(see Theorem 2.3.1 p. 38 of [45]). This has the solution

g(t) = h+

(
1− t

(
1− h

1/7
+

))−7
, (3.100)

which satisfies g(0) = 0, g(1) = 1. It can be proved that (3.100) is a weak minimizer of the
functional (3.99) (see Theorem 10.5.1 p. 242 of [45]). The mapping (3.100) generates the
mesh (3.96) and by substituting it into (3.98), we finally obtain:

‖e‖2
L2([h+,1]) ≈

77

840

(
1− h

1/7
+

)7 h−1
+

N6
,

from which (3.97) follows.

3.7 Numerical tests for the accuracy and practicality of the mesh

We now assess the practical utility of the equidistributed mesh (3.76), especially for small
values of h+. We will pursue this comparing the solution to the 1D Couette flow (2.48)-(2.56)
obtained on the mesh (3.76) with the solution computed on uniform and “ad hoc” exponentially
graded meshes (the properties of the latter family of meshes will be discussed in §3.7.2 below).
Numerical experiments will be carried out also for the 2D Couette flow, presented in §2.1.
In this case we will consider the tensor product of meshes obtained by using (3.76) in the
y-direction and a uniform mesh in the x-direction.

We recall that in 2D, each component of the velocity field u := (U, V ) and the turbulence
variables k, ε will be approximated by continuous piecewise biquadratic polynomials while
the pressure p will be approximated by a discontinuous piecewise linear polynomial. Corre-
spondingly, in 1D we will approximate U and (k, ε) using continuous piecewise quadratic
polynomials. Both in 1D and in 2D the nonlinear finite element system will be solved by
Newton’s method (see §4.1 for a description of the algorithm), this will be initialized by the

finite element interpolant of the analytical solution (which is available for Couette flow).
In our numerical experiments the Reynolds number will be equal to 107, therefore con-

sidering values of h+ as small as 10−4 will make sense from the point of view of turbulence
modelling.

3.7.1 Equidistributed mesh vs. uniform mesh

We now compare the numerical solutions to the Couette flow computed on the equidistributed
mesh (3.76):

yi = h+

(
1− i− 1

N
(1− h

1/7
+ )

)−7

, i = 1, 2, . . . , N + 1 (3.101)

and on the uniform mesh:

yi = h+ + (i− 1)
1− h+

N
, i = 1, 2, . . . , N + 1 (3.102)
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Below we present the relative error in the solution to the 1D turbulent Couette flow ob-
tained on the meshes above with N =16 and N =128, for a sequence of decreasing values of
h+.

MESH (16 ELEMENTS) MESH (128 ELEMENTS)

h+ RELATIVE ERROR EQUIDISTR. UNIFORM EQUIDISTR. UNIFORM

‖Uh−U∗‖2/‖U∗‖2 9.52×10−7 1.54×10−5 2.35×10−10 4.50×10−9

10−1 ‖kh−k∗‖2/‖k∗‖2 9.80×10−6 5.20×10−4 2.39×10−9 1.65×10−7

‖εh−ε∗‖2/‖ε∗‖2 1.79×10−5 9.89×10−4 4.34×10−9 2.42×10−7

‖Uh−U∗‖2/‖U∗‖2 2.59×10−5 1.39×10−2 6.46×10−9 5.93×10−5

10−2 ‖kh−k∗‖2/‖k∗‖2 1.24×10−4 1.50×10−1 3.23×10−8 1.19×10−3

‖εh−ε∗‖2/‖ε∗‖2 1.14×10−4 5.11×10−1 2.74×10−8 2.91×10−3

‖Uh−U∗‖2/‖U∗‖2 2.34×10−4 ∞ 5.87×10−8 9.52×10−3

10−3 ‖kh−k∗‖2/‖k∗‖2 7.77×10−4 ∞ 2.29×10−7 1.21×10−1

‖εh−ε∗‖2/‖ε∗‖2 1.76×10−4 ∞ 4.52×10−8 5.83×10−1

‖Uh−U∗‖2/‖U∗‖2 1.60×10−3 ∞ 3.80×10−7 ∞

10−4 ‖kh−k∗‖2/‖k∗‖2 4.02×10−3 ∞ 1.27×10−6 ∞

‖εh−ε∗‖2/‖ε∗‖2 3.40×10−3 ∞ 7.57×10−7 ∞

Table 3.3: Relative error in the numerical solution of the 1D Couette flow for a sequence of decreasing
values of h+, obtained on the equidistributed mesh (3.101), with 16 and 128 elements, and on the
corresponding uniform grid. (∞ indicates that Newton’s method has failed to converge).

From the results given in Table 3.3 it is clear that the equidistributed mesh (3.101) is by far
superior to the uniform mesh (3.102), where the solution deteriorates much more dramatically
as h+ is reduced. On the equidistributed mesh, in particular, it is possible to achieve a satisfac-
tory accuracy even for a fairly small number of elements. In fact, on the mesh (3.101) with just
16 elements, when h+ =10−2 the relative error both in k and in ε is O(10−4) and is O(10−5)
in U , and when h+ = 10−4 the error in each solution component is also small, O(10−3). On
the corresponding uniform mesh Newton’s method fails to converge already for h+ =10−3 and
when convergence is attained, for h+ = 10−1 and h+ = 10−2, the solution is respectively two
and three order of magnitudes less accurate than the one obtained on the equidistributed mesh.

When the number of elements is equal to 128, Newton’s method attains convergence on
the mesh (3.102) when h+ = 10−3, but the realtive errors in the solution components k and ε

are big approximately equal to 0.1 and 0.6 respectively. On the corresponding equidistributed
mesh the relative error both in k and in ε is O(10−8). Also for h+ = 10−2, the solution for

k and ε is five order of magnitudes more accurate on the equidistributed mesh than on the
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uniform mesh.

MESH (20×16 ELEMENTS) MESH (20×128 ELEMENTS)

h+ RELATIVE ERROR EQUIDISTR. UNIFORM EQUIDISTR. UNIFORM

‖Uh−U∗‖2/‖U∗‖2 3.88×10−6 2.40×10−5 2.53×10−8 4.94×10−8

10−1 ‖kh−k∗‖2/‖k∗‖2 7.28×10−6 4.95×10−4 1.63×10−7 1.57×10−8

‖εh−ε∗‖2/‖ε∗‖2 8.53×10−5 1.76×10−3 1.92×10−7 4.30×10−6

‖Uh−U∗‖2/‖U∗‖2 5.05×10−5 1.15×10−2 1.08×10−7 6.06×10−5

10−2 ‖kh−k∗‖2/‖k∗‖2 1.54×10−4 1.40×10−1 1.43×10−7 1.18×10−3

‖εh−ε∗‖2/‖ε∗‖2 5.18×10−4 4.01×10−1 1.13×10−6 4.03×10−3

‖Uh−U∗‖2/‖U∗‖2 2.96×10−4 ∞ 6.36×10−7 9.13×10−3

10−3 ‖kh−k∗‖2/‖k∗‖2 1.43×10−3 ∞ 3.17×10−7 1.20×10−1

‖εh−ε∗‖2/‖ε∗‖2 8.65×10−4 ∞ 5.12×10−6 5.67×10−1

‖Uh−U∗‖2/‖U∗‖2 1.38×10−3 ∞ 3.30×10−6 ∞

10−4 ‖kh−k∗‖2/‖k∗‖2 8.50×10−3 ∞ 7.91×10−6 ∞

‖εh−ε∗‖2/‖ε∗‖2 3.26×10−3 ∞ 6.47×10−6 ∞

Table 3.4: Relative error in the numerical solution of the 2D Couette flow at the outlet of the channel
for a sequence of decreasing values of h+. (∞ indicates that Newton’s method has failed to converge).

In Table 3.4 we give the relative errors in the U -, k-, ε-solution components of the 2D

Couette flow at the outlet of the channel. We compare the results obtained on uniform meshes
with those arising on meshes given by the combination of a uniform mesh in the x-direction
with the mesh (3.102) in the y-direction.

The errors ‖V h − V ∗‖2, ‖ph − p∗‖2 do not appear in Table 3.4, because, if Newton’s

method attains convergence, they are very small, of order machine epsilon, independently of
the mesh.

The qualitative observations made earlier in the case of the 1D turbulent Couette flow
hold true for the 2D formulation of the problem. Similarly to the 1D results, the use of the
equidistributed mesh (3.101) in the y-direction gives a satisfactorily accurate solution for small
values of h+, even in the case of a small number of elements. On the contrary, for a uniform
discretisation of the channel with 20×16 elements Newton’s method does not converge already
when h+ =10−3. On the uniform mesh with 20×128 elements, Newton’s method does attain
convergence for h+ = 10−3, but, similarly to the 1D case, the quality of the solution is much
worse than in the case when the mesh (3.101) is used in the y-direction. Already for h+ =10−2

the accuracy of the k- and ε-solution components is approximately three order of magnitudes
worse on the uniform mesh.
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It should also be noted that Table 3.3 and Table 3.4 clearly indicate that in the case of a
uniform mesh the convergence of Newton’s method depends on h+ and the algorithm becomes
more robust, with respect to small values of h+, as the number of elements is increased. On the
other hand, when the equidistributed mesh is used the convergence of Newton’s method does
not appear to depend on h+ and the algorithm seems to be equally robust with respect to small
values of h+ when 16 or 126 elements are used. We will investigate and explain this behaviour

in Chapter 5.

3.7.2 Equidistributed mesh vs. exponentially graded mesh

The performances of the equidistributed mesh (3.101) are now compared with those of an
exponentially graded mesh, whose features are described below. Exponentially graded meshes
are implemented in the industrial finite element code ENTWIFE.

Properties of exponentially graded meshes

The mehs h+ = y1 < y2 < . . . < yN+1 = 1 is said to be exponentially graded if the ratio of
the sizes of its adjacent elements does not vary throughout the domain. Hence, if hi :=yi+1−yi

denotes the size of the i-th element, we must have:

α :=
hi+1

hi
= constant i = 1, 2, . . . , N (3.103)

and α is independent of i. From (3.103) it is easy to obtain:

hi+1 =αih1 , i = 1, 2, . . . , N (3.104)

which shows that the grid is exponentially expanding towards one of the two end points of the
domain. Now, combining (3.104) with the fact that

y1 = h+ , yi = h+ +
i−1∑

j=1

hi i = 2, 3, . . . , N + 1 ,

it is not difficult to see that the nodes of an equidisrubuted mesh are distributed according to
the rule:

yi = h+ +
αi−1 − 1
α− 1

h1 i = 1, 2, . . . , N+1. (3.105)

The size of the first element h1 is related to α, N and the size of the domain, through the
formula:

h1 =
α− 1

αN − 1
(1− h+) , (3.106)

which can be obtained by using (3.104) in
∑N

i=1 hi = 1 − h+ (or equivalently imposing that
yN+1 =1 in (3.105)). Substituting (3.106) into (3.105), we finally get:
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yi = h+ +
αi−1 − 1
αN − 1

(1− h+) , i = 1, 2, . . . , N + 1. (3.107)

In our numerical experiments, we have determined the distribution of mesh points (3.107)
by prescribing directly α and N , another possibility could be to assign the values of h1 and N

and then to compute α from (3.106). For given number of elements and h+, the value of α has
been chosen “ad hoc” to minimize ‖εh − ε∗‖2. In more general situations, when the analytical
solution to the problem being solved is not available, identifying the appropriate value of α is
not an easy task and in Table 3.7 we will show that even a small perturbation to α can cause
Newton’s method to diverge.

MESH (16 ELEMENTS) MESH (128 ELEMENTS)

h+ RELATIVE ERROR EQUIDISTR. EXPONENTIAL EQUIDISTR. EXPONENTIAL

‖Uh−U∗‖2/‖U∗‖2 9.52×10−7 9.29×10−7 2.35×10−10 2.46×10−10

10−1 ‖kh−k∗‖2/‖k∗‖2 9.80×10−6 9.47×10−6 2.39×10−9 2.33×10−9

‖εh−ε∗‖2/‖ε∗‖2 1.79×10−5 1.85×10−5 4.34×10−9 4.44×10−9

‖Uh−U∗‖2/‖U∗‖2 2.59×10−5 2.87×10−5 6.46×10−9 6.81×10−9

10−2 ‖kh−k∗‖2/‖k∗‖2 1.24×10−4 1.18×10−4 3.23×10−8 2.93×10−8

‖εh−ε∗‖2/‖ε∗‖2 1.14×10−4 1.30×10−4 2.74×10−8 3.28×10−8

‖Uh−U∗‖2/‖U∗‖2 2.34×10−4 1.88×10−4 5.87×10−8 5.15×10−8

10−3 ‖kh−k∗‖2/‖k∗‖2 7.77×10−4 5.27×10−4 2.29×10−7 1.56×10−7

‖εh−ε∗‖2/‖ε∗‖2 1.76×10−4 2.49×10−4 4.52×10−8 6.69×10−8

‖Uh−U∗‖2/‖U∗‖2 1.60×10−3 4.37×10−4 3.80×10−7 1.16×10−7

10−4 ‖kh−k∗‖2/‖k∗‖2 4.02×10−3 1.11×10−3 1.27×10−6 3.29×10−7

‖εh−ε∗‖2/‖ε∗‖2 3.40×10−3 4.93×10−4 7.57×10−7 1.37×10−7

Table 3.5: Relative error in the numerical solution of the 1D Couette flow for a sequence of decreasing
values of h+, obtained on the equidistributed mesh (3.101), with 16 and 128 elements, and on the
corresponding exponentially graded mesh (3.105), with α chosen to minimize ‖εh−ε∗‖.

In Table 3.5 we present the relative error in the solution to the 1D turbulent Couette flow
obtained on the meshes (3.101) and (3.105) with 16 and 128 elements, for increasingly smaller
values of h+.

The numerical experiments show that the solution on the equidistributed mesh is of the
same quality as the solution on the “ad hoc” exponentially graded mesh. The only appreciable
difference between the two solutions occurs for h+ =10−4 and N =16, when the relative error
in ε on the mesh (3.105) is nearly one order of magnitude smaller than on the mesh (3.101).
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When N = 126 the relative errors are very small on both meshes for all values of h+ and no
important differences can be noticed.

MESH (20×16 ELEMENTS) MESH (20×64 ELEMENTS)

h+ RELATIVE ERROR EQUIDISTR. EXPONENTIAL EQUIDISTR. EXPONENTIAL

‖Uh−U∗‖2/‖U∗‖2 3.88×10−6 4.36×10−6 6.64×10−8 5.71×10−8

10−1 ‖kh−k∗‖2/‖k∗‖2 7.28×10−6 7.38×10−6 1.49×10−7 1.45×10−7

‖εh−ε∗‖2/‖ε∗‖2 8.53×10−5 9.04×10−5 1.36×10−6 1.32×10−6

‖Uh−U∗‖2/‖U∗‖2 5.05×10−5 3.14×10−5 8.08×10−7 5.85×10−7

10−2 ‖kh−k∗‖2/‖k∗‖2 1.54×10−4 7.23×10−5 7.18×10−7 4.07×10−7

‖εh−ε∗‖2/‖ε∗‖2 5.18×10−4 5.78×10−4 8.39×10−6 9.55×10−6

‖Uh−U∗‖2/‖U∗‖2 2.96×10−4 9.54×10−5 4.74×10−6 1.15×10−6

10−3 ‖kh−k∗‖2/‖k∗‖2 1.43×10−3 2.85×10−4 7.42×10−6 5.27×10−6

‖εh−ε∗‖2/‖ε∗‖2 8.65×10−4 1.08×10−3 1.38×10−5 1.81×10−5

‖Uh−U∗‖2/‖U∗‖2 1.38×10−3 2.95×10−4 2.02×10−5 8.04×10−6

10−4 ‖kh−k∗‖2/‖k∗‖2 8.50×10−3 1.65×10−3 5.06×10−5 2.77×10−5

‖εh−ε∗‖2/‖ε∗‖2 3.26×10−3 3.11×10−4 4.08×10−5 4.85×10−5

Table 3.6: Relative error in the numerical solution of the 2D Couette flow at the outlet of the channel
for a sequence of decreasing values of h+.

The relative errors in U , k and ε obtained at the outlet of the channel, in the 2D formulation
of the Couette flow, are given in Table 3.6. Similarly to before, the channel has been discretised
using the grids given by the tensor product of a uniform mesh in the x-direction (with 20
elements) respectively with the mesh (3.101) and (3.105) in the y-direction, for N = 16 and

N =64.
The 2D numerical experiments confirm the results obtained in the 1D version of the Cou-

ette flow. There is no significant difference between the solutions obtained on the two grids
a part from the case h+ = 10−4, N = 16, when the relative error on the mesh exponentially
graded in the y-direction is one order of magnitude lower. This difference, anyway, already
disappears when N =64.

Finally, in Table 3.7, we investigate the sensitivity to α (see (3.105)) of the results obtained
on the exponentially graded mesh (we recall that, for given h+ and N , the values of the relative
errors presented in Table 3.5 and in Table 3.6, were obtained on meshes for which α was chosen
“ad hoc” to minimize ‖εh− ε∗‖2). This will be done by assessing the quality of the solution to
the Couette flow on “non optimal” exponentially graded meshes, generated by perturbing the
“optimal” values of α in the 1D meshes used to produce the results given in Table 3.5. More
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MESH (16 ELEMENTS) MESH (128 ELEMENTS)

EXPONENTIAL EXPONENTIAL
h+ RELATIVE ERROR EQUIDISTR. (NON OPTIMAL) EQUIDISTR. (NON OPTIMAL)

‖Uh−U∗‖2/‖U∗‖2 9.52×10−7 2.90×10−4 2.35×10−10 ∞

10−1 ‖kh−k∗‖2/‖k∗‖2 9.80×10−6 1.48×10−3 2.39×10−9 ∞

‖εh−ε∗‖2/‖ε∗‖2 1.79×10−5 2.02×10−3 4.34×10−9 ∞

‖Uh−U∗‖2/‖U∗‖2 2.59×10−5 1.97×10−3 6.46×10−9 ∞

10−2 ‖kh−k∗‖2/‖k∗‖2 1.24×10−4 3.72×10−3 3.23×10−8 ∞

‖εh−ε∗‖2/‖ε∗‖2 1.14×10−4 2.05×10−3 2.74×10−8 ∞

‖Uh−U∗‖2/‖U∗‖2 2.34×10−4 6.17×10−3 5.87×10−8 ∞

10−3 ‖kh−k∗‖2/‖k∗‖2 7.77×10−4 8.17×10−3 2.29×10−7 ∞

‖εh−ε∗‖2/‖ε∗‖2 1.76×10−4 5.78×10−3 4.52×10−8 ∞

‖Uh−U∗‖2/‖U∗‖2 1.60×10−3 1.11×10−2 3.80×10−7 ∞

10−4 ‖kh−k∗‖2/‖k∗‖2 4.02×10−3 1.71×10−2 1.27×10−6 ∞

‖εh−ε∗‖2/‖ε∗‖2 3.40×10−3 2.18×10−2 7.57×10−7 ∞

Table 3.7: Relative error in the numerical solution of the 1D Couette flow for a sequence of decreasing
values of h+, obtained on the equidistributed mesh (3.101), with 16 and 128 elements, and on the
corresponding “non optimal” exponentially graded mesh

specifically, the values of α will be doubled when N = 16 and will be changed into (5/4)α
for N =128. The results presented in Table 3.7 show a clear deterioration in the quality of the
solution on the “non optimal” exponentially graded mesh. In fact, for N =16 the relative errors
on the exponential mesh are now much bigger than on the corresponding equidistributed mesh,
especially for h+ =10−1, 10−2 (compare with Table 3.7), and, even more dramatically, when
N =128, a perturbation to α as small as α/4, prevents Newton’s method from converging for
all values of h+ considered. Such a high sensitivity to α clearly represents a big obstacle to
the successful use of exponentially graded meshes in practical computations of the k-ε model.
The equidistributed grid, instead, does not require any parameter to be tuned as h+ varies and
has also a mathematical certainty which is useful to us later when considering the robustness
of Newton’s method.
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Chapter 4

Affine invariant properties of
Newton’s method

In this chapter we discuss some abstract results on the convergence theory for Newton’s itera-
tive method which will be exploited in Chapter 5, where the properties of the iterative scheme
applied to the k-ε model will be investigated.

There are two possible approaches to the convergence analysis of Newton’s method: “the
local theory” and the “semilocal theory”. Both provide sufficient conditions for convergence.
In the local theory the existence of a solution to the nonlinear operator equation is assumed and

also the initial guess is assumed to be sufficiently close to this solution. The semilocal theory,
instead, requires only that some conditions hold at the initial guess and these then guarantee
both the existence of a solution and the convergence of the method to it. The literature on
Newton’s method is extremely vast, a detailed treatment of the local theory can be found in
[52], [53] and [54], while the semilocal theory is illustrated in [55], [56], [57] and [58]. The
relation between the two theories is investigated in [59].

In this chapter and the next, we will base our study on the local convergence theory. The
local theory, in fact, allows a more intuitive picture of the problem under investigation and,
as will be shown in the following, describes the key feature of Newton’s method in practical
applications: the quadratic reduction in the error at each iteration. The Newton-Kantorovich
theorem, which is at the heart of the semilocal theory, cannot predict the same quadratic reduc-
tion in the error due to the weaker assumptions it relies on.

This chapter initially deals with an overview of the local convergence analysis of Newton’s
method (§4.1), whose invariance under affine covariant and affine contravariant transforma-
tions of the underlying nonlinear operator equation is discussed in §4.2 and §4.3 respectively
(both transformations will be needed in the analysis of Newton’s method for the k-ε model in
Chapter 5). In §4.4 it will be shown that the classical local convergence theory lacks the affine

invariant properties that the method itself has and, in §4.5, we will propose a possible way to
overcome this difficulty when an affine covariant and an affine contravariant transformation are
considered simultaneously.

In [58], the invariance of Newton’s method under four affine transformations has been
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investigated and four different convergence theories, each reflecting one of the affine invariant
properties of the iterative scheme, have been proposed in the framework of the semilocal theory.
(Note that the theory we refer to as semilocal is called in [58] “local” in order to distinguish
it from the “global” theory of Newton’s method, where no conditions on the initial guess are
required, but additional “global structure” of the nonlinear operator is assumed). However in
[58] the case when affine covariant and contravariant transformations are applied at the same

time is not covered. It turns out that such combination is beneficial in the analysis of the k-ε
system. As far as we are aware, there is no convergence theory for Newton’s method which is
at the same time invariant under covariant and contravariant transformation.

In the following sections the abstract study of the convergence properties of Newton’s
method will be carried out in Banach spaces. In Chapter 5, the practical applications of this
study will be discussed in the particular case of Rn.

4.1 Local convergence theory of Newton’s method

Throughout this chapter, we will consider a nonlinear operator equation of the form

F (x) = 0 (4.1)

where F : D ⊂ X → Y is a nonlinear mapping, defined on a open convex domain D of a
Banach space X with values in a Banach space Y . (In the following, ‖ · ‖ will denote both the

norm on X and on Y and also the corresponding operator norm for bounded linear operators
from X to Y . It should be clear from the context which norm is being used).

The main computational tool to solve systems like (4.1) with a solution x∗ is Newton’s

method:

xk+1 = xk − F ′(xk)−1F (xk) k = 0, 1, . . . (4.2)

which, under appropriate conditions (that will be examined below), produces a sequence {xk}∞k=0

converging to x∗. In (4.2) F ′(xk) denotes the Fréchet derivative of the nonlinear operator F at
the point xk. At each step of Newton’s method the linear equation

F (xk) + F ′(xk)sk = 0 (4.3)

must be solved for sk, and the new approximation to x∗ is given by

xk+1 = xk + sk .

This iterative scheme is based on a linearisation of the equation (4.1) at the current iterate
xk. A way to show this is to consider the equation satisfied by the error h := x∗ − xk. If the
operator F is differentiable, we have
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0 = F (x∗) = F (xk + h)

= F (xk) + F ′(xk)h + ζ , (4.4)

where, if F is sufficiently smooth, ‖ζ‖ = o(‖h‖). (In fact if F ′ is Lipschitz continuous in
a neighbourhood of xk, then, as it can be seen from Lemma 4.1.1 (a), ‖ζ‖= O(‖h‖2)). The
result (4.4) suggests that, under appropriate conditions on F ′, {xk}may converge quadratically
to x∗ (see Theorem 4.1.2). Then, comparing (4.4) with (4.3), it becomes clear that (4.3) is a
linearisation procedure for the operator F around xk.
We finally observe that (4.2) can be interpreted as a fixed point iteration:

xk+1 = H(xk+1) ,

with the fixed point map H given by the Newton iteration operator:

H(x) = x− F (x)−1F (x) . (4.5)

Some properties of the operator H will be exploited in the convergence analysis of Newton’s
method below.

If V is a subset of the Banach space X , then, in what follows, we will write G∈Lipγ(V )
if the mapping G is Lipschitz continuous with constant γ in the set V :

‖G(y)−G(x)‖ ≤ γ‖y − x‖ ∀x, y ∈ V ,

while B(x̄, r) will denote the open ball of radius r centered at x̄:

B(x̄, r) = {x ∈ X| ‖x− x̄‖ < r} .

We now state, without giving the proof, a Lemma which will be needed in Theorem 4.1.2,
where we will present sufficient conditions for the local convergence of Newton’s method.
(The proof of (a) in Lemma 4.1.1 can be found in [55], p. 73, while (b) is a consequence of the
Banach perturbation lemma, see [60], pp. 266-267.).

Lemma 4.1.1. Let F : D ⊂ X → Y be continuously differentiable in B(x̄, r) ⊂ D. Assume

(i) F ′ ∈ Lipγ(B(x̄, r)),

(ii) F ′(x̄) is nonsingular, with ‖F ′(x̄)−1‖ ≤ β.

Then

(a) ‖F (y)− F (x)− F ′(x)(y − x)‖ ≤ γ

2
‖y − x‖2 ∀x, y ∈ B(x̄, r) ,
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(b) F ′(x) is nonsingular and

‖F ′(x)−1‖ ≤ β

1− βγ‖x− x̄‖ ∀x ∈ B(x̄, δ̄) ,

with δ̄ = min
{

r,
1

βγ

}
.

The theorem below establishes sufficient conditions for Newton’s method to converge quadrat-
ically to a solution of (4.1).

Theorem 4.1.2. Suppose there exists x∗∈D such that F (x∗)=0, and suppose the conditions

of Lemma 4.1.1 are satisfied at x̄=x∗. Set δ=min {r, 2/(3βγ)}≤ δ̄, with δ̄ defined in Lemma

4.1.1. Then, provided the starting guess x0 satisfies x0 ∈ B(x∗, δ), we have:

(A) the sequence {xk} of Newton iterates generated by (4.2) is well defined, remains in

B(x∗, δ) and converges to x∗,

(B) the rate of convergence of {xk} to x∗ is q-quadratic, i.e. there exists K >0 such that:

‖xk+1 − x∗‖ < K‖xk − x∗‖2 , (4.6)

and K =
3
2
βγ ,

(C) the following error estimate holds

‖xk+1 − x∗‖ ≤ 2
3βγ

(
3
2
βγ‖x0 − x∗‖

)2k+1

, k = 1, 2, . . . (4.7)

In Theorem 4.1.2, the radius δ of the ball B(x∗, δ), represents an estimate from below of
the actual ball of convergence of Newton’s method. The symbol ε is often used instead of δ,
but we use δ here since, in this thesis, ε indicates the dissipation of mean turbulent kinetic
energy, as described in other chapters.

The above estimate of δ, was obtained by Rheinbodt in [61]. The following proof of
Theorem 4.1.2 uses some of the arguments of Rheinbodt [61] and some of the arguments of
Dennis and Schnabel [53], whose proof yields an estimate for δ which is slightly smaller than
the one given in [61].

Proof of Theorem 4.1.2 We will first prove the following two statements:

(i) F ′(x)−1 is well defined for all x∈B(x∗, δ), and

‖F ′(x)−1‖ ≤ β

1− βγ‖x− x∗‖ < 3β ∀ x ∈ B(x∗, δ) (4.8)

(ii) the Newton iteration operator (4.5):

H(x) = x− F ′(x)−1F (x)
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is well defined for all x∈B(x∗, δ) and satisfies

‖H(x)− x∗‖ ≤ α‖x− x∗‖ < ‖x− x∗‖ ∀ x ∈ B(x∗, δ) (4.9)

with
α =

1
2

βγ‖x− x∗‖
1− βγ‖x− x∗‖ < 1 .

We prove (i). The nonsingularity of F ′(x) in B(x∗, δ) and the first inequality in (4.8) are

implied by Lemma 4.1.1 (b). The second inequality in (4.8) follows from the observation that

1− βγ‖x− x∗‖ > 1− βγδ ≥ 1− 2
3

=
1
3

.

We next prove (ii). The Newton iteration operator H is well defined for x∈B(x∗, δ), since,
from (i), F ′(x) is nonsingular in B(x∗, δ). (4.9) is now shown. Let x ∈B(x∗, δ), using also
Lemma 4.1.1, we get:

‖H(x)− x∗‖ = ‖x− F ′(x)−1F (x)− x∗‖

= ‖x− x∗ − F ′(x)−1(F (x)− F (x∗))‖

= ‖F ′(x)−1[F (x∗)− F (x)− F ′(x)(x∗ − x)]‖

≤ ‖F ′(x)−1‖‖F (x∗)− F (x)− F ′(x)(x∗ − x)‖

≤ 1
2

βγ

1− βγ‖x− x∗‖ ‖x− x∗‖2 (4.10)

=
1
2

βγ‖x− x∗‖
1− βγ‖x− x∗‖ ‖x− x∗‖

= α‖x− x∗‖ .

To show that α<1, use the second inequality in (4.8) and the definition of δ, to obtain

α =
1
2

β

1− βγ‖x− x∗‖γ‖x− x∗‖

<
3
2
βγ‖x− x∗‖

<
3
2
βγδ ≤ 1 .
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From (ii), it follows that if x0∈B(x∗, δ) then x1 is well defined. Moreover by (4.9),

‖x1 − x∗‖ = ‖H(x0)− x∗‖ < ‖x0 − x∗‖ < δ ,

so x1∈B(x∗, δ). It then follows by induction that xk is well defined and that xk∈B(x∗, δ) for
all k≥1.

We now show the convergence of the Newton iterates to x∗. Since xk∈B(x∗, δ) for all k,
we can use (4.10) and the second inequality in (4.8) to obtain:

‖xk+1 − x∗‖ = ‖H(xk)− x∗‖

≤ 1
2

βγ

1− βγ‖xk − x∗‖ ‖x
k − x∗‖2

<
3
2
βγ‖xk − x∗‖2 , (4.11)

and this gives:

‖xk+1 − x∗‖ <
3
2
βγ ‖xk − x∗‖2

<

(
3
2
βγ

)3

‖xk−1 − x∗‖4

< . . . . . . <

(
3
2
βγ

)2k+1−1

‖x0 − x∗‖2k+1

=
2

3βγ

(
3
2
βγ‖x0 − x∗‖

)2k+1

. (4.12)

The convergence of {xk} to x∗ then follows from (4.12), since, using the definition of δ, we
have:

3
2
βγ‖x0 − x∗‖ <

3
2
βγδ ≤ 1 .

Finally, the q-quadratic rate of convergence (4.6) and the error bound (4.7) are shown
respectively in (4.11) and (4.12). ¤

4.1.1 Termination of the iteration

In the practical computations whose outcomes are presented throughout this thesis, we have

terminated Newton’s iteration when the change in the iterate xn is smaller than a given thresh-
old τ :

‖xn+1 − xn‖ ≤ τ .

This criterion is motivated by the following result:
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Lemma 4.1.3. Let the assumptions of Theorem 4.1.2 hold, then:

‖xn − x∗‖ = ‖xn+1 − xn‖+ O(‖xn − x∗‖2) . (4.13)

This shows that, near the solution x∗, (xn+1 − xn) is essentially of the same size as (xn −
x∗). We now prove (4.13).
Proof of Lemma 4.1.3 We have that

xn+1 − xn = (x∗ − xn) + xn+1 − x∗

= (x∗ − xn) + xn − F ′(xn)−1F (xn)− x∗

= (x∗ − xn)− F ′(xn)−1[F (x∗) + F (xn) + F ′(xn)(x∗ − xn)] , (4.14)

and from (4.14), using also Lemma 4.1.1 (a) and (4.8), we get:

‖xn+1 − xn‖ − 3
2
β γ‖xn − x∗‖2 ≤ ‖xn − x∗‖ ≤ ‖xn+1 − xn‖+

3
2
β γ‖xn − x∗‖2

from which (4.13) follows. ¤

4.2 Affine covariant transformation

We now investigate the properties of Newton’s method for the nonlinear operator equation

(4.1):

F (x) = 0 , (4.15)

when the mapping F :D ⊂ X→Y undergoes the affine transformation

F → G := AF , (4.16)

where A denotes a one-to-one bounded linear map from the Banach space Y onto the Banach
space Z. Without loss of generality, we now assume that F is differentiable all over its domain

D.
Under the transformation (4.16), the nonlinear equation (4.15) transforms into:

G(x) = AF (x) = 0 , (4.17)

our aim is then to determine the relation between the Newton’s sequence for (4.15) and the
Newton’s sequence for (4.17).

Transformations such as (4.16) occur very often in practical computations. In fact, for
example, the operation of replacing some of the equations in (4.15) each with its linear combi-
nation with the remaining ones or of multiplying them by constant factors can be expressed in
the form (4.16).
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The following invariance property is called affine covariance.

Proposition 4.2.1. (Affine covariant invariance of Newton’s method) Let {xk} and {x̃k} be

respectively the Newton’s iterates for the system (4.15) and the transformed system (4.17).

Provided x0 = x̃0, then

xk = x̃k k = 0, 1, 2, . . .

Proof. From the chain rule and the fact that the Fréchet derivative of a linear operator is the
linear operator itself, it follows that the Fréchet derivative in D of the nonlinear mapping G is

G′(x) = AF ′(x) , x ∈ D . (4.18)

In particular (4.18) shows that G′(x) is invertible at all points in D where F ′(x) is invertible.
The result then follows from the observations above and the invertibility of A. In fact, Newton’s
method applied to the system (4.15) gives:

xk+1 = xk − F ′(xk)−1F (xk)

= xk − F ′(xk)−1A−1AF (xk)

= xk − (AF ′(xk))−1(AF (xk))

= xk −G′(xk)−1G(xk) . (4.19)

If x0 = x̃0, from (4.19) we get

x1 = x0 −G′(x0)−1G(x0)

= x̃0 −G′(x̃0)−1G(x̃0) = x̃1 ,

it is then easy to prove by induction that xk = x̃k for all k≥0.

We conclude this section by asking whether the theory for Newton’s method actually re-
flects the affine covariance property of the algorithm. That is does the theory guarantee the
same convergence properties to the iterates {xk} and {x̃k} if x0 = x̃0? It is immediately ob-
vious that this may well not be the case when the standard convergence theorem, presented
in §4.1, is considered. In fact, the standard norm used when the system (4.15) is solved by
Newton’s method will be replaced by a weighted norm when Newton’s algorithm is applied to

99



4.3. Affine contravariant transformation

system (4.17):

‖F (x)‖ → ‖AF (x)‖ = ‖G(x)‖ , (4.20)

‖F ′(x)‖ → ‖AF ′(x)‖ = ‖G′(x)‖ , (4.21)

and, from a computational point of view, the change of norm (4.20) may entail a change in the
criterion for the termination of the iterations which is usually based on the size of the residual.
The change of norm (4.21) may affect, instead, the estimates of the Lipschitz constant of the
Fréchet derivative and of the bound on its inverse. This can then lead to an estimate of the size
of the convergence ball of Newton’s method applied to system (4.15) which does not agree
with the predictions of the theory for Newton’s algorithm applied to the transformed system
(4.17). (This will be first shown in an abstract form in §4.4, and then illustrated by a simple
example in Chapter 5).

A local convergence theory which is invariant under the transformation (4.16) can indeed
be obtained telescoping the assumptions (i) and (ii) of Lemma 4.1.1, with x̄ = x∗, into the
following “affine covariant Lipschitz condition”:

‖F ′(x∗)−1(F ′(y)− F ′(x))‖ ≤ ω∗‖y − x‖ ∀x, y ∈ B(x∗, r) .

This was done by Bader [62], as reported in [58], see p. 48 and p. 105. An affine covariant
version of the semilocal theory is discussed in detail in [58].

4.3 Affine contravariant transformation

We now study the behaviour of Newton’s method applied to the nonlinear operator equation
(4.1):

F (x) = 0 , (4.22)

when the domain space D of the mapping F : D ⊂ X→Y is affinely transformed according
to the rule:

x → x̃ := B−1x , x ∈ D (4.23)

where B is a one-to-one bounded linear map from D̃, a convex subset of the Banach space W ,
onto D. Equation (4.22) is then accordingly transformed into:

G(x̃) = F (Bx̃) = 0 , (4.24)

with G :D̃ ⊂ W→Y

In contrast to the covariant transformation in §4.2 (where the system is transformed), here
it is the solution which is transformed. In practical computations, transformations like (4.24)
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occur when the variables are nondimensionalised or their unit of measurement is changed.
The relation between the Newton’s iterates for (4.22) and the Newton’s iterates for (4.24)

is next determined. The property expressed by the following proposition is called affine con-

travariance.

Proposition 4.3.1. (Affine contravariant invariance of Newton’s method) Let the domain space

D of the nonlinear operator F be transformed according to (4.23) and let {xk} and {x̃k} be

respectively the Newton’s iterates for the system (4.22) and the transformed system (4.24).

Provided x̃0 = B−1x0, the Newton’s iterates {xk} will transform analogously, i.e.:

x̃k = B−1xk k = 0, 1, 2, . . . (4.25)

Proof. Similarly to the proof of Proposition 4.2.1, the chain rule and the fact that B is a linear
operator give the following expression for the Fréchet derivative in D̃ of G:

G′(x̃) = F ′(Bx̃)B , x̃ ∈ D̃ . (4.26)

G′(x̃) is then invertible at all points x̃ = B−1x corresponding to those points x ∈D where
F ′(x) is invertible. These observations are used below in showing (4.25).

Newton’s method applied to (4.22) gives:

xk+1 = xk − F ′(xk)−1F (xk) ,

and multiplication of both sides of the last expression by B−1 yields:

B−1xk+1 = B−1xk −B−1F ′(xk)−1F (xk) . (4.27)

If x̃0 = B−1x0, from (4.27) we get

B−1x1 = B−1x0 −B−1F ′(x0)−1F (x0)

= x̃0 −B−1F ′(Bx̃0)−1F (Bx̃0)

= x̃0 −G′(x̃0)−1G(x̃0) = x̃1 .

It can then be easily proved, by induction, that:

x̃k = B−1xk ∀ k ≥ 0 .

Proposition 4.3.1 shows that, provided x̃0 = B−1x0, the sequence {x̃k} converges to x̃∗

solution of (4.24), if and only if the sequence {xk} converges to x∗=Bx̃∗ (which is the solution
of (4.22). It is important to observe that when switching from Newton’s method applied to
(4.22), to Newton’s method applied to (4.24), the standard norms will correspondingly change
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into weighted norms:

‖xk − x∗‖ → ‖B−1(xk − x∗)‖ = ‖x̃k − x̃∗‖ (4.28)

‖F ′(x)‖ → ‖F ′(Bx̃)B‖ = ‖G′(x̃)‖ . (4.29)

As already noticed in §4.2, the standard convergence theory may then lead to conclusions about
the iterates {xk} which substantially differ from its predictions about the iterates {x̃k}. This is
explained in more detail in the next section.

4.4 Discrepancy between the theory for Newton’s method and its
affine properties

We now investigate the effect of applying both covariant and controvariant transformations to
the nonlinear operator equation:

F (x) = 0 , (4.30)

with F : D ⊂ X → Y and solution x∗. Such double transformations are crucial in the k-ε
system in Chapter 5. Thus, if A and B are the operators defined respectively in §4.2 and §4.3,
we shall consider the nonlinear equation:

G(x̃) = AF (Bx̃) = 0 , (4.31)

with G : D̃ ⊂ W →Z and solution x̃∗= B−1x∗, resulting from the concurrent application of
the affine transformations

F → G := AF , x ∈ D → x̃ := B−1x ∈ D̃ . (4.32)

Let {xk} and {x̃k} be respectively the Newton’s iterates for (4.30) and for (4.31), then the
following corollary is an obvious consequence of Proposition 4.2.1 and Proposition 4.3.1.

Corollary 4.4.1. If x0 = Bx̃0, then the sequence {x̃k} converges to x̃∗ if and only if the

sequence {xk} converges to x∗=Bx̃∗.

However the result of Corollary 4.4.1 is not sufficiently reflected in the convergence theory
presented in §4.1. In fact, in the following we will show that if B(x∗, δ) and B(x̃∗, δ̃) are
respectively the convergence balls of the iterates {xk} and {x̃k} predicted by Theorem 4.1.2,
then it may be possible that

x̃0 ∈ B(x̃∗, δ̃) but x0 /∈ B(x∗, δ) , where x0 = Bx̃0 . (4.33)

In this case Theorem 4.1.2 would guarantee that x̃k→ x̃∗, but would not guarantee that xk→x∗.
A practical realisation of (4.33) will follow in Chapter 5.
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We now explain this in more detail. Let the operator G satisfiy the assumptions of Theorem
4.1.2:

G′ ∈ Lipγ̃(B(x̃∗, r̃)) and ‖G′(x̃∗)−1‖ ≤ β̃ . (4.34)

It then follows from Theorem 4.1.2 that for all starting guesses x̃0∈B(x̃∗, δ̃), with

δ̃ ≤ 2
3 β̃ γ̃

, (4.35)

the Newton’s iterates x̃k for (4.31) are well defined, remain in B(x̃∗, δ̃) and converge q-
quadratically to x̃∗. We now show that the transformed initial guess x0 = Bx̃0 lies in a ball
centred on x∗, B(x∗, δ′), which, under certain conditions (that will be examined below), has
the property: B(x∗, δ)⊂B(x∗, δ′). Hence, it may happen that x0 /∈B(x∗, δ) and therefore the
convergence of {xk} is not guaranteed by Theorem 4.1.2.

Lemma 4.4.2. If x0 =Bx̃0, and x̃0∈B(x̃∗, δ̃) then

x0∈B(x∗, δ′) with δ′ =
2‖B‖
3 β̃ γ̃

(4.36)

Proof. We have

‖x0 − x∗‖ = ‖B(x̃0 − x̃∗)‖ ≤ ‖B‖‖x̃0 − x̃∗‖ < ‖B‖δ̃ ≤ 2‖B‖
3β̃γ̃

.

We now estimate δ, the lower bound on the radius of the convergence ball of the iterates
{xk} predicted by Theorem 4.1.2, in terms of the parameters of the problem under investigation
and then determine under which conditions δ′ > δ.

We will need the lemma below, which is proved at the end of this section.

Lemma 4.4.3. Let the nonlinear operators F and G and their domains D and D̃ be related as

in (4.32) and let G have the properties (4.34). Then

F ′ ∈ Lipγ(B(x∗, r)) with γ = ‖A−1‖‖B−1‖2γ̃ and r =
r̃

‖B−1‖ (4.37)

and

‖F ′(x∗)−1‖ ≤ β with β = ‖A‖ ‖B‖ β̃ . (4.38)

Let κ(A) := ‖A‖ ‖A−1‖ ≥ 1 be the condition number of the operator A, and similarly
κ(B), we have

Theorem 4.4.4. Let the operators F and G and their respective domains D and D̃ be related

as in (4.32) and let G satisfy the assumptions of Theorem 4.1.2. Then the lower bound δ for

the radius of the convergence ball of the iterates {xk} predicted by Theorem 4.1.2 for (4.30) is

bounded above by:

δ ≤ 1
κ(A)κ(B)‖B−1‖

2
3β̃ γ̃

. (4.39)
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Proof. The result follows from using the expressions for γ and β, respectively in (4.37) and
(4.38), in the upper bound for δ predicted by Theorem 4.1.2 applied to the nonlinear operator
F :

δ ≤ 2
3β γ

.

The inequality (4.39) allows the possibility that a particular choice of either A or B can
make δ arbitrarily small. In particular, if either κ(A)>1 or κ(B)>1, then it might be possible
that the initial guess x0 is not in the convergence ball B(x∗, δ), in fact we have that δ′>δ as it
is shown below using (4.36) and (4.39):

δ′

δ
≥ 2‖B‖

3β̃γ̃

(
1

κ(A)κ(B)‖B−1‖
2

3β̃ γ̃

)−1

= κ(A)(κ(B))2 > 1 .

We finally prove Lemma 4.4.3.
Proof of Lemma 4.4.3. (4.37) is next shown. To obtain this, let x=Bx̃, y=Bỹ ∈ B(x∗, r̃/‖B−1‖),
then it is easy to verify that x̃, ỹ ∈ B(x̃∗, r̃), the ball of x̃∗ where G′(x̃) is Lipschitz continuous.
We have

‖F ′(y)− F ′(x)‖ = ‖A−1(G′(ỹ)−G′(x̃))B−1‖

≤ ‖A−1‖ ‖B−1‖ ‖G′(ỹ)−G′(x̃)‖

≤ ‖A−1‖ ‖B−1‖ γ̃ ‖ỹ − x̃‖

= ‖A−1‖ ‖B−1‖ γ̃ ‖B−1(y − x)‖

≤ ‖A−1‖ ‖B−1‖2 γ̃ ‖y − x‖ .

Therefore, the Lipschitz constant γ of F ′(x) in B(x∗, r̃/‖B−1‖) is such that

γ ≤ ‖A−1‖ ‖B−1‖2 γ̃ , (4.40)

but, due to the optimality of the bounds used in the proof above (for the problem that will be
examined in §5.1, it can be shown indeed that there exist x, y such that ‖F ′(y) − F ′(x)‖ =
‖A−1‖ ‖B−1‖2 γ̃ ‖y − x‖), it follows that

γ = ‖A−1‖ ‖B−1‖2 γ̃ ,

and this value of γ cannot be bettered.
We next show (4.38). This is done as follows:
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‖F ′(x∗)−1‖ = ‖BG′(x̃∗)−1A‖

≤ ‖A‖ ‖B‖ ‖G′(x̃∗)−1‖

≤ ‖A‖ ‖B‖ β̃ .

Thus

β ≤ ‖A‖ ‖B‖ β̃ , (4.41)

and the result follows from the use of optimal bounds. In §5.1.2, it will be shown that, for
the model problem we will be considering, ‖F ′(x∗)−1‖ = ‖A‖ ‖B‖ β̃, so that in general the
estimate (4.41) cannot be improved. ¤

4.5 A weighted norm

We now discuss a possible way to overcome the lack of invariance of the standard convergence
theory for Newton’s method, which we have described in §4.4.

We will show that there exists a weighted norm where the iterates xk, generated by New-

ton’s method applied to the “unscaled” problem (4.30), have all the properties exhibited in the
standard norm by the iterates x̃k for the “scaled” problem (4.31). (The practical utility of the
weighted norm will be investigated in detail in Chapter 5).

In particular, we have in mind the situation when the original unscaled problem is a system
of nonlinear equations in Rn depends on a “bad” parameter µ and the transformations (4.32),
with matrices A, B ∈ Rn×Rn both different from the identity and possibly dependent on µ,
is sought so that either the scaled system or its Jacobian do not depend critically on µ. The
conclusions of the standard convergence theory for Newton’s method applied to the scaled
system (4.31) will then be robust with respect to variations in µ and so its predictions about
Newton’s iterates for the unscaled system (4.30) should also be.

We recall that from the study presented in §§4.2, 4.3, it follows that if x0 = Bx̃0 then
xk = Bx̃k for all k ≥ 1. Therefore if we consider the following weighted norm (which,
hereafter, will be called the B-norm):

‖ · ‖B := ‖B−1( · )‖ , (4.42)

for the iterates xk, with ‖ · ‖ any standard norm on the space where the linear operator B is
defined, the identity

‖xk − x∗‖B = ‖x̃k − x̃∗‖ (4.43)
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holds, and the following main property ensues:

(i) the sequence {x̃k} converges to x̃∗, in the standard norm, if and only if the sequence
{xk} converges to x∗, in the B-norm.

That is, the actual radius of the ball of convergence of the iterates xk measured in the B-norm
is the same as the actual radius of the ball of convergence of the iterates x̃k measured in the
standard norm and there is a one-to-one correspondence between the points in the two balls.
As far as the predictions of Theorem 4.1.2 are concerned, (4.43) clearly implies that

(ii) The radius of the quadratic convergence ball of the iterates xk measured in the B-norm,
is the same as the radius of the quadratic convergence ball of the iterates x̃k measured in
the standard norm:

‖x̃k+1 − x̃∗‖ ≤ K‖x̃k − x̃∗‖2 ⇐⇒ ‖xk+1 − x∗‖B ≤ K‖xk − x∗‖2
B .

(iii) The same error estimate holds for the iterates xk and for the iterates x̃k, respectively in

the standard and in the B-norm:

‖x̃k − x̃∗‖ ≤ φk ⇐⇒ ‖xk − x∗‖B ≤ φk ,

with
φk =

1
K

(K‖x̃0 − x̃∗‖)2k
=

1
K

(K‖x0 − x∗‖B)2
k

.

The Newton convergence theory applied to the scaled problem (4.31), using the standard norm
‖ · ‖, will then yield results about the behaviour of the iterates x̃k, which will also hold for the
iterates xk in the weighted norm ‖ · ‖B .
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Chapter 5

Iterative procedures for the discretised
k-ε model

The focus of this chapter is on the analysis of the convergence properties of Newton’s method
for the systems arising from the discretisation of the coupled RANS and k-ε equations and
of the k-ε equations only. We will prove that if the problem which is being solved by New-
ton’s method is well posed as h+ → 0 and the mesh is appropriately chosen (see condition
(5.78)), then, in a specific weighted norm, the lower estimate for the convergence ball of the
algorithm, provided by Theorem 4.1.2, does not shrink to zero as h+→ 0. This will be done

by exploiting the invariance of Newton’s method under a combination of affine covariant and
affine contravariant transformations of the underlying nonlinear system (see §§4.4, 4.5). We
will also show that the most commonly used iterative scheme based on the decoupling of the
RANS from the k-ε equations, which is implemented in the industrial code FEAT (Finite El-
ement Analysis Toolbox), does not have the same robustness as Newton’s method, in fact, we
will see, its performances drastically worsen in the limit h+→0.

This chapter is organized as follows. In §5.1, we will initially carry out a detailed study of
the properties of Newton’s method applied to the 2×2 algebraic system of equations provided
by the diffusionless k-equation evaluated at y=h+ combined with the law of the wall (2.44) for
ε. Despite its simplicity, this reduced problem encapsulates some of the key features of the k-ε
model at y =h+, for h+→ 0, such as the blow-up of ε and the predominance of source terms
over diffusion (see §2.4), and will turn out to be particularly enlightening for the behaviour of
Newton’s method for the full finite element system. This will be discussed in §5.2, where, by
pursuing the same strategy adopted in §5.1, we will show that the choice of a graded mesh is
essential for guaranteeing the robustness of Newton’s method with respect to h+ → 0, both
when the scheme is applied to the coupled discretised RANS and k-ε equations and when it is
used for solving the discretised k-ε equations only with given velocity field. In §5.3, we will

consider the iterative method based on the decoupling of the RANS from the k-ε equations,
which we will refer to as inner-outer iteration. Through numerical experiments, we will show
that the performances of the inner-outer iteration dramatically deteriorates as h+ → 0, even
on the equidistributed mesh (3.101) on which Newton’s method performs robustly. We will
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5.1. Newton’s method for a model reduced 2×2 problem

explain this by proving that the inner-outer iteration applied to the 3×3 algebraic system of
equations obtained by combining the 2×2 system of §5.1 with the law of the wall for U has a
convergence ball with zero radius.

Our study then shows that Newton’s method should be the method of choice for solving
the discretised RANS and k-ε equations, and that its approximations (such is the inner-outer
iteration, see the beginning of §5.3) should be considered very carefully.

5.1 Newton’s method for a model reduced 2×2 problem

We now investigate in detail the properties of Newton’s method for a special 2×2 algebraic
system of equations derived by restricting the k-ε system to the artificial wall, and neglecting
diffusion. This study will show the practical utility of the abstract theory of Chapter 4 and
provide us with some insight into the behaviour of Newton’s algorithm for the discretised full
k-ε system to be considered later.

Neglecting the second order term in (2.40) yields the diffusionless k-equation, over the
domain [h+, 1]:

−Cµ

(
dU

dy

)2 k2

ε
+ ε = 0 . (5.1)

In (5.1), dU/dy has the property:

dU

dy
(h+) =

1
Cµ

ε(h+)
(k(h+))2

u2
∗ =

u∗
κ

1
h+

,

which follows from (2.42), rearranging the terms and using the laws of the wall (2.44) and

(2.58), respectively for ε and k.
Evaluating (5.1) at y=h+ gives an approximate relation between k and ε at h+:

−α2 k(h+)2

ε(h+)
+ ε(h+) = 0 , (5.2)

where

α := C1/2
µ

dU

dy
(h+) =

C
1/2
µ u∗
κ

1
h+

. (5.3)

As observed in §2.4, there exists a neighbourhood of y = h+ where diffusion is much
smaller than production and dissipation, and so, in this region, equation (5.2) can be considered
a first order approximation to (2.40). In the case of turbulent Couette flow the diffusive term
in the k-transport equation (2.40) is exactly zero, since production and dissipation of turbulent
kinetic energy perfectly balance each other, and the solution of (2.40) is k=C

−1/2
µ u2∗=const,

see §2.3.
The behaviour of ε at the artificial wall is prescribed by the law of the wall (2.44). As

typical of turbulence modelling, this has been implemented as the nonlinear Dirichlet boundary
condition :
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5.1. Newton’s method for a model reduced 2×2 problem

ε(h+) =
C

3/4
µ

κ

(k(h+))3/2

h+
, (5.4)

see (2.44), (2.58).
Equations (5.2) and (5.4) form a nonlinear system for k(h+) and ε(h+), which we express

as

F (x) :=




−α2 k2
+

ε+
+ ε+

ε+ − η α k
3/2
+


 = 0 , (5.5)

where F : R+×R+→R2, k+ :=k(h+), ε+ :=ε(h+), x := (k+, ε+)T,

η :=
C

1/4
µ

u∗
= O(1) , as h+ → 0 , (5.6)

and α is given in (5.3). The solution to (5.5) is

x∗ =
(

1
η2

,
α

η2

)T

=

(
u2∗√
Cµ

,
u3∗
κ

1
h+

)
, (5.7)

We are interested in investigating the robustness of nonlinear solvers for (5.5) as h+→ 0,
since this is of direct relevance to the behaviour of practical solvers for turbulence models.
Note that the coefficient α appearing in both equations of (5.5), and defined in (5.3), depends
on h+, and blows up with O(1/h+) as h+ → 0. In the L∞([h+, 1])-norm, the solution (5.7)
also blows up with O(1/h+), in fact

‖x∗‖∞ =
u3∗
κ

1
h+

, as h+ → 0 .

We will study the convergence properties of Newton’s method under affine transformations
of the system (5.5). In particular we consider the scaled version of (5.5):

G(x̃) := DEF (DV x̃) , (5.8)

where

DE :=
1
α




1 0

0 1


 , DV :=




1 0

0 α


 , (5.9)

and

x̃ := (k̃+, ε̃+)T = D−1
V x =

(
k+,

ε+

α

)T
.

The scaling (5.8) is chosen to ensure that the transformed system does not depend on the
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large parameter α, equivalently the small parameter h+. It is easy to see that (5.8) is

G(x̃) =


 − k̃2

+

ε̃+
+ ε̃+

ε̃+ − ηk̃
3/2
+


 = 0 , (5.10)

and it has solution

x̃∗ = D−1
V x∗ =

(
1
η2

,
1
η2

)T

=

(
u2∗√
Cµ

,
u2∗√
Cµ

)
. (5.11)

Note that ‖x̃∗‖∞ = 1/η2 = O(1) as h+ → 0, and (5.10) no longer depends on the large
parameter α.

We will be mainly interested in comparing the lower estimates for the radii of the conver-
gence balls predicted by Theorem 4.1.2 for Newton’s method applied to (5.5) and to (5.10),
especially their behaviour as h+→0. We will say that Newton’s method converges robustly if
the lower bound for the radius of its ball of convergence, predicted by Theorem 4.1.2, does not
become arbitrarily small as h+→0.

The rest of this section is organized as follows. In §5.1.1 we will prove the following
theorem:

Theorem 5.1.1. In the weighted L∞ norm induced by DV , the iterates {xk}, generated by

Newton’s method applied to the unscaled system (5.5), converge robustly to x∗ as h+→0.

In §5.1.2 we will show:

Theorem 5.1.2. The predicted lower bound for the radius of the convergence ball of Newton’s

method for the unscaled system (5.5), measured in the standard L∞ norm, becomes arbitrarily

small as h+→0.

We will also give an example of a family of initial guesses for which Theorem 4.1.2 will
guarantee the convergence of Newton’s method in the weighted norm induced by DV , but will
not guarantee the convergence of the method if the standard norm is used.

In the following we will consider R2 equipped with the infinity norm ‖ · ‖∞, and with the
weighted norm ‖ · ‖D−1

V
defined by:

‖y‖D−1
V

= ‖D−1
V y‖ , y ∈ R2 . (5.12)

5.1.1 Convergence analysis in the weighted norm

Let BDV
(x∗, δ̃) be the lower bound on the ball of convergence of the Newton’s iterates {xk}

for the system (5.5) predicted by Theorem 4.1.2, with radius δ̃ measured in the weighted norm
induced by DV :

BDV
(x∗, δ̃) :=

{
x ∈ R2 | ‖x− x∗‖D−1

V
< δ̃

}
. (5.13)
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Then, from §4.5, we have that

B(x̃∗, δ̃) :=
{

x̃ = D−1
V x , x ∈ R2 | ‖x̃− x̃∗‖∞ < δ̃

}
(5.14)

is the ball of convergence of the iterates {x̃k} for the system (5.10) predicted by Theorem 4.1.2,
and

x ∈ BDV
(x∗, δ̃) ⇔ x̃ ∈ B(x̃∗, δ̃) .

Thus, in order to prove Theorem 5.1.1, we will show that the upper bound on δ̃ given by
Theorem 4.1.2 applied to the scaled mapping G in (5.8) is unaffected by the limit h+ → 0.
That is, we will prove that there exist two strictly positive constants c̃1, c̃2 independent of h+

such that;
c̃1 ≤ 2

3β̃γ̃
≤ c̃2 as h+ → 0 , (5.15)

where β̃ and γ̃ are as described in Theorem 4.1.2 applied to G. We recall that β̃ is the upper
bound on ‖G′(x̃∗)−1‖ and γ̃ is the Lipschitz constant of G′.

The result (5.15) can be easily deduced considering that both the coefficients multiplying
the unknowns of the system (5.10) and its solution x̃∗ (see (5.11)) are independent of h+, thus
neither β̃ nor γ̃ can depend on h+. However, in the following proof of Theorem 5.1.1 we will
give precise estimates of β̃ and γ̃, since these will be needed later to show the tightness of the
bounds (4.40) and (4.41).
Proof of Theorem 5.1.1. We will prove that

(I) β̃ =
7
2

(II) there exist two strictly positive constants d̃1, d̃2 independent of h+ such that

d̃1 ≤ γ̃ ≤ d̃2 . (5.16)

(5.15) will then follow from (I) and (II), with c̃1 =4/(21 d̃2) and c̃2 =4/(21 d̃1).

Proof of (I) We have that the Fréchet derivative of G, represented by the Jacobian matrix

JG(x̃) =




−2
k̃+

ε̃+

(
k̃+

ε̃+

)2

+ 1

−3
2
ηk̃

1/2
+ 1




,

is nonsingular at x̃∗=(1/η2, 1/η2)T solution to G(x̃)=0 (see (5.11)), in fact

JG(x̃∗) =



−2 2

−3
2

1



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and thus det(JG(x̃∗)) = 1. JG(x̃∗)−1 is then given by:

JG(x̃∗)−1 =




1 −2

3
2

−2


 ,

and we have:
‖JG(x̃∗)−1‖∞ = max

{
3,

7
2

}
=

7
2

=: β̃ . (5.17)

Proof of (II) We will first show that there exist two vectors ṽ and w̃ such that:

‖JG(w̃)− JG(ṽ)‖
‖w̃ − ṽ‖ = d̃1 (5.18)

with d̃1 independent of h+. This, by definition of the Lipschitz constant γ̃:

γ̃ := sup
x̃ 6=ỹ

‖JG(ỹ)− JG(x̃)‖
‖ỹ − x̃‖ , (5.19)

will imply that:
γ̃ ≥ d̃1 . (5.20)

Then we will determine d̃2 independent of h+ such that

γ̃ ≤ d̃2 , (5.21)

and (5.16) will derive from (5.20) and (5.21).
Let x̃=(x̃1, x̃2)T and ỹ=(ỹ1, ỹ2)T, from

JG(ỹ)− JG(x̃) =




−2
(

ỹ1

ỹ2
− x̃1

x̃2

) (
ỹ1

ỹ2

)2

−
(

x̃1

x̃2

)2

−3
2
η(ỹ1/2

1 − x̃
1/2
1 ) 0




,

we get

‖JG(ỹ)− JG(x̃)‖∞ =

= max






ỹ1

ỹ2
− x̃1

x̃2


(

2 +


ỹ1

ỹ2
+

x̃1

x̃2


)

,
3
2
η

|ỹ1 − x̃1|ỹ
1/2
1 + x̃

1/2
1





 . (5.22)

In order to prove (5.18), consider x̃ and ỹ in a neighbourhood of x̃∗ = (1/η2, 1/η2)T, as
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specified below:

x̃ = ṽ :=
(

1
η2

,
1
µ̃

1
η2

)T

, ỹ = w̃ :=
(

1
η2

,
1
ζ̃

1
η2

)T

, (5.23)

with µ̃, ζ̃ ∈ R+ and µ̃ 6= ζ̃. We have that:

‖w̃ − ṽ‖∞ =

ζ̃ − µ̃


µ̃ζ̃

1
η2

,

and that:
‖JG(w̃)− JG(ṽ)‖∞ =

ζ̃ − µ̃


(
2 +

(
ζ̃ + µ̃

))
,

therefore: ‖JG(w̃)− JG(ṽ)‖∞
‖w̃ − ṽ‖∞ = µ̃ ζ̃

(
2 +

(
ζ̃ + µ̃

))
η2 . (5.24)

If ṽ and w̃ are sufficiently close to x̃∗, then µ̃ and ζ̃ are independent of h+ and since η does not
depend on h+ either (see its definition in (5.6)), (5.24) proves (5.18). (5.20) then follows.

We now show (5.21). Using |ỹi − x̃i|≤‖ỹ − x̃‖∞, i=1, 2, and


ỹ1

ỹ2
− x̃1

x̃2

 =


x̃2(ỹ1 − x̃1)− x̃1(ỹ2 − x̃2)
x̃2 ỹ2



≤
(

1
|ỹ2| +


x̃1

x̃2 ỹ2


)
‖ỹ − x̃‖∞ ,

in the right-hand side of (5.22) and rearranging the terms we obtain:

‖JG(ỹ)− JG(x̃)‖∞
‖ỹ − x̃‖∞ ≤ M̃(x̃, ỹ) , (5.25)

with

M̃(x̃, ỹ) :=max

{
1
|ỹ2|

(
1+


x̃1

x̃2


)(

2+


ỹ1

ỹ2
+

x̃1

x̃2


)

,
3
2
η

1

|ỹ1/2
1 +x̃

1/2
1 |

}
. (5.26)

Therefore, by definition of γ̃ (see (5.19)), from (5.25) we deduce:

γ̃ ≤ sup
x̃ 6=ỹ

M̃(x̃, ỹ) . (5.27)

But, from the fact that x∗ does not depend on h+, it follows that there exists a neighbourhood
of x∗ where x̃ and ỹ are independent of h+ and so is supx̃ 6=ỹ M̃(x̃, ỹ). We can then conclude
that (5.27) implies (5.21). ¤
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5.1.2 Convergence analysis in the standard norm

Let B(x∗, δ) be the lower bound on the ball of convergence of the Newton’s iterates {xk} for
(5.5) predicted by Theorem 4.1.2, with radius δ measured in the infinity norm ‖ · ‖∞:

B(x∗, δ) = {x ∈ R2 | ‖x− x∗‖∞ < δ} . (5.28)

Similarly to §5.1.1, to prove Theorem 5.1.2 we will show that the upper bound on δ given

by Theorem 4.1.2 applied to the unscaled mapping F in (5.5), becomes arbitrarily small as
h+→0. That is, we will prove that:

2
3βγ

= O(h+) as h+ → 0 , (5.29)

with β and γ as in Theorem 4.1.2 applied to F .
Thus, the predicted lower bound for the radius of the convergence ball for Newton’s method

shrinks to 0 as h+→0.
First, from (5.3), we recall that:

α =
C

1/2
µ u∗
κ

1
h+

. (5.30)

Proof of Theorem 5.1.2 We will show:

(I) β =
7
2

(II) γ = O

(
1

h+

)
as h+ → 0 .

(I) and (II) will then imply (5.29).
To obtain (I), we observe that the Jacobian matrix JF (x), given by

JF (x) =




−2α2 k+

ε+
α2

(
k+

ε+

)2

+ 1

−3
2
σ k

1/2
+ 1




,

is nonsingular at x∗=(1/η2, α/η2)T, since det(JF (x∗))=α>0, as it follows from

JF (x∗) =



−2α 2

−3
2
α 1


 .
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We then have

JF (x∗)−1 =




1
α

− 2
α

3
2

−2


 ,

from which we get:

‖JF (x∗)−1‖∞ = max
{

3
α

,
7
2

}
= max

{
3κ

C
1/2
µ

h+

u∗
,
7
2

}
=

7
2

=: β , (5.31)

for h+ sufficiently small.
We next prove (II). The proof is organized as now explained. We first show that there exist

two vectors v and w such that:

‖JF (w)− JF (v)‖∞
‖w − v‖∞ = O

(
1

h+

)
as h+ → 0 , (5.32)

and from the definition of γ (see §4.1), we have that

γ ≥ sup
x6=y

‖JF (w)− JF (v)‖
‖w − v‖ = O

(
1

h+

)
. (5.33)

We will also show that
γ ≤ O

(
1

h+

)
as h+ → 0 , (5.34)

and hence (II) follows.
Let x=(x1, x2)T and y=(y1, y2)T, from

JF (y)− JF (x) =




−2α2

(
y1

y2
− x1

x2

)
α2

((
y1

y2

)2

−
(

x1

x2

)2
)

−3
2
σ(y1/2

1 − x
1/2
1 ) 0




,

we obtain:
‖JF (y)− JF (x)‖∞ = αM1(x, y) , (5.35)

with

M1(x, y) :=max



α


y1

y2
−x1

x2


(

2+


y1

y2
+

x1

x2


)

,
3
2
η

|y1−x1|y
1/2
1 + x

1/2
1





 . (5.36)

We now show that (5.33) holds. To prove this, we will determine v, w in a neighbourhood of
x∗ with the property:
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(i) there exist two strictly positive constants c1, c2 independent of h+ such that:

c1 ≤ M1(v, w)
‖w − v‖∞ ≤ c2 as h+ → 0 . (5.37)

Then, using (5.37) and (5.30) in

‖JF (w)− JF (v)‖∞
‖w − v‖∞ = α

M1(v, w)
‖w − v‖∞ ,

which can be obtained from (5.35), will yield (5.32) and (5.33) will follow.
Let

v :=
(

µ
1
η2

,
α

η2

)T

, w :=
(

ζ
1
η2

,
α

η2

)T

with ζ, µ ∈ R+ and µ 6=ζ, we have:

‖w − v‖∞ =
|ζ − µ|

η2
,

and, using (5.30),

M1(v, w) = max
{
|ζ − µ|

(
2 +

1
α
|ζ + µ|

)
,
3
2

|ζ − µ|
ζ1/2 + µ1/2

}

= max
{

2 |ζ − µ| , 3
2

|ζ − µ|
ζ1/2 + µ1/2

}
as h+ → 0 .

Hence:
M1(v, w)
‖w − v‖∞ = η2 max

{
2,

3
2

1
ζ1/2 + µ1/2

}
as h+ → 0 ,

which proves (5.37), since η = O(1) as h+ → 0 and ζ and µ are fixed numbers. (5.32) and
(5.33) then follow.

We now prove (5.34). Using the same technique as in (5.25), (5.35)-(5.36) yield:

‖JF (y)− JF (x)‖∞ ≤ α M2(x, y)‖y − x‖∞ ,

with

M2(x, y) :=max





α

|y2|
(

1+


x1

x2


)(

2+


y1

y2
+

x1

x2


)

,
3
2
η

1y
1/2
1 +x

1/2
1





 , (5.38)

therefore, by definition of γ, we have:

γ ≤ α sup
x 6=y

M2(x, y) . (5.39)
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We now show that there exists a neighbourhood of x∗, where

d1 ≤ M2(x, y) ≤ d2 as h+ → 0 , (5.40)

with d1 and d2 strictly positive constants independent of h+, (5.34) will then follow from
(5.39), (5.30) and (5.40).
In order to prove (5.40), consider the change of variable:

x=(x1, x2)T =DV x̃=(x̃1, αx̃2)T , y=(y1, y2)T =DV ỹ=(ỹ1, αỹ2)T , (5.41)

then M2(x, y), in (5.38), transforms into

M̃2(x̃, ỹ):=M2(x(x̃), y(ỹ))

= max





1
|ỹ2|

(
1+

1
α


x̃1

x̃2


)(

2+
1
α


ỹ1

ỹ2
+

x̃1

x̃2


)

,
3
2
η

1ỹ
1/2
1 +x̃

1/2
1





 (5.42)

If x̃ and ỹ are sufficiently close to x̃∗, then they are independent of h+, since x̃∗ is so, and
using (5.30) we have:

1
α


x̃1

x̃2

 → 0 ,
1
α


ỹ1

ỹ2
+

x̃1

x̃2

 → 0 as h+ → 0 ,

hence, in the limit h+→0,

M̃2(x̃, ỹ) = max





2
|ỹ2| ,

3
2
η

1ỹ
1/2
1 +x̃

1/2
1





 .

Therefore there exists a neighbourhood of x̃∗, where:

b̃1 ≤ M̃2(x̃, ỹ) ≤ b̃2 as h+ → 0 ,

with b̃1 and b̃2 strictly positive constants independent of h+, and this, in turn, implies the

existence of a neighbourhood of x∗ where (5.40) holds. ¤

Observation 5.1.1. In this case, the bound (4.41) is achieved. This follows because A = DE

and B=DV , and from (5.9), we have

‖DE‖∞ =
1
α

, ‖DV ‖∞ = α , as h+ → 0 . (5.43)

Thus, recalling from (5.17) and (5.31) that β̃=7/2=β, we have:

β =
7
2

=
1
α

α β̃ = ‖DE‖∞ ‖DV ‖∞ β̃ .

Observation 5.1.2. As a proof of the practical usefulness of the abstract formulation of §4.4
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we now show that (5.29) can also be obtained using the result (4.39), which, in our case, takes
the expression:

δ ≤ 2
3βγ

=
1

κ(DE)κ(DV )‖D−1
V ‖

2
3β̃ γ̃

. (5.44)

From the definitions of DE and DV in (5.9), we get

‖D−1
E ‖∞ = α , ‖D−1

V ‖∞ = 1 , as h+ → 0 ,

and using (5.43) we have:

κ(DE) = 1 , κ(DV ) = α .

(5.44) finally yields:

δ ≤ 1
α

2
3β̃ γ̃

= O(h+) as h+ → 0 ,

using (5.30) and the fact that both β̃ and γ̃ are independent of h+, as proved in §5.1.1.

The next example shows that the striking difference in the results of Theorems 5.1.1 and
5.1.2. is a consequence of the fact that the standard convergence theory for Newton’s method
lacks the affine invariant properties of the algorithm. This has already been investigated in
abstract terms in §4.4. In the following example, it will be illustrated by discussing a practical
situation when Theorem 4.1.2 guarantees the convergence of the Newton’s sequence {x̃k} for
(5.10) but does not ensure the convergence of the sequence {xk} for (5.5), even though the
initial guesses are related by:

x0 = DV x̃0 . (5.45)

We recall that if (5.45) holds then {x̃k} converges to x̃∗ if and only if {xk} converges to x∗,
see Corollary 4.4.1.

Example 5.1.1. Let ξ∈(0, δ̃), let ρ :=1 + η2(δ̃ − ξ) and let

x̃0 := ρx̃∗ = ρ

(
1
η2

,
1
η2

)T

be the initial guess for the iterates {x̃k}. It is easy to check that x̃0 is in B(x̃∗, δ̃), the ball of
quadratic convergence of Newton’s method applied to (5.10) (see (5.14)). In fact we have:

‖x̃0 − x̃∗‖∞ = |ρ− 1| ‖x̃∗‖∞ = δ̃ − ξ < δ̃ ,

hence Theorem 4.1.2 ensures the convergence of the Newton’s sequence {x̃k} for the system
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(5.10). Consider now the transformed starting guess x0 for the iterates {xk}:

x0 = DV x̃0 = ρx∗ = ρ

(
1
η2

,
α

η2

)T

,

we have that
‖x0 − x∗‖∞ = (δ̃ − ξ)α = O

(
1

h+

)
as h+ → 0 .

Therefore, for h+ sufficiently small, x0 is not in B(x∗, δ), the ball of quadratic convergence
of Newton’s method applied to (5.5) (see (5.28)), because δ≤ O(h+) as h+→ 0 (see §5.1.2).
Then Theorem 4.1.2 does not guarantee the convergence of the Newton’s sequence {xk} for
the system (5.5). But we know {xk} does converge to x∗ from Corollary 4.4.1.

5.1.3 Practical properties of Newton’s method

We now show that the weighted L∞ norm induced by DV , defined in (5.12), with DV given in
(5.9), is not merely a useful tool for overcoming a failure of the standard convergence theory
of Newton’s method applied to system (5.5), but is also essential for explaining the size of the
errors in Newton’s iterates as the iteration proceeds.

Let
xn+1 = xn − F ′(xn)−1F (xn) (5.46)

be the Newton’s iterates for the system (5.5):

F (x) :=




−α2 k2
+

ε+
+ ε+

ε+ − η α k
3/2
+


 = 0 , (5.47)

with xn :=(kn
+, εn

+)T and

F ′(xn)−1 =
1

det(F ′(xn))




1 −α2

(
kn

+

εn
+

)2

− 1

3
2
η α (kn

+)1/2 −2α2 kn
+

εn
+




, (5.48)

where

det(F ′(xn)) = −2α2 kn
+

εn
+

+
3
2
η α(kn

+)1/2

[
α2

(
kn

+

εn
+

)2

+ 1

]
,

and let us recall that the solution to (5.47) is

x∗ = (k∗+, ε∗+)T =
(

1
η2

,
α

η2

)T

. (5.49)
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In what follows, we will first try to get some insight into the practical aspects of New-
ton’s method for (5.47), by analyzing qualitatively the behaviour of the iterates (5.46) in the
weighted L∞ norm (see Observation 5.1.3 and Observation 5.1.4). The preliminary qualita-
tive observations will then be formalized (see Lemma 5.1.3, Proposition 5.1.5 and Proposition
5.1.6) and finally illustrated by numerical experiments (see Table 5.1 and Table 5.2).

Observation 5.1.3. Consider the condition that the iterates {xn} all lie in BDV
(x∗, δ̃), the ball

of convergence predicted by Theorem 4.1.2, with centre in x∗ and radius δ̃ measured in the
weighted L∞ norm (see (5.13)):

‖xn − x∗‖D−1
V

=‖D−1
V (xn − x∗)‖∞=max

{kn
+ − k∗+

 ,
1
α

εn
+ − ε∗+


}

<δ̃ . (5.50)

For n=0 this yields:

‖x0 − x∗‖D−1
V

=max
{k0

+ − k∗+
 ,

1
α

ε0
+ − ε∗+


}

<δ̃ ,

this suggests that if h+ ¿ 1 (correspondingly α À 1), then ε0
+ can be much less accurate

than k0
+ without preventing Newton’s method from converging, provided the following scaling

proportionality holds
|ε0

+ − ε∗+| = α|k0
+ − k∗+| (5.51)

and k0
+ is sufficiently close to k∗+. Moreover, observing from (5.49) that

ε∗+ = α k∗+ , (5.52)

we can expect the iterates {xn =(kn
+, εn

+)T} to satisfy asymptotically the relation:

εn
+ ∼ α kn

+ , (5.53)

and therefore also: εn
+ − ε∗+

 ∼ α
kn

+ − k∗+
 , (5.54)

where the right-hand side can be obtained from the left-hand side using (5.52) and (5.53).
Note that the properties (5.53)-(5.54) are consistent with the condition that xn ∈BDV

(x∗, δ̃),
see (5.50).

Thus for the rest of this subsection we shall assume that the components of the initial guess
x0 =(k0

+, ε0
+)T are related by:

ε0
+ = α k0

+ . (5.55)

From this we will show that

i) xn ∈BDV
(x∗, δ̃) for all n = 0, 1, . . ., provided k0

+ is sufficiently accurate (see Lemma
5.1.3)

ii) the sequence {xn} satisfies (5.53)-(5.54) (see Lemma 5.1.4 and Proposition 5.1.5).

120



5.1. Newton’s method for a model reduced 2×2 problem

iii) the accuracy of the iterates xn increases as h+→0 (see Proposition 5.1.6).

The relation (5.54) will finally be illustrated numerically in Table 5.1 and Table 5.2. Finally,
note that (5.55), combined with (5.52), implies (5.51):

ε0
+ − ε∗+

 = α
k0

+ − k∗+
 À k0

+ − k∗+
 , for h+ ¿ 1 .

Lemma 5.1.3. Let x0 =(k0
+, ε0

+) have the property (5.55) and let

k0
+ − k∗+

 < δ̃ , (5.56)

then xn∈ BDV
(x∗, δ̃).

Proof. As noticed above, (5.55) yields:

ε0
+ − ε∗+

 = α
k0

+ − k∗+
 ,

using this and (5.56), we get

‖x0 − x∗‖D−1
V

= ‖D−1
V (x0 − x∗)‖∞

= max
{k0

+ − k∗+
 ,

1
α

ε0
+ − ε∗+


}

=
k0

+ − k∗+
 < δ̃ ,

i.e. x0 ∈ BDV
(x∗, δ̃). It is then a property on Newton’s method that xn ∈ BDV

(x∗, δ̃) for all
n, see Theorem 4.1.2.

We now show that the Newton’s iterates have the properties (5.53)-(5.54).

Lemma 5.1.4. Provided the starting guess x0 = (k0
+, ε0

+)T satisfies (5.55), we have that the

components of the iterates xn = (kn
+, εn

+)T are such that

εn
+ = α kn

+ , ∀ n = 0, 1, 2, . . . . (5.57)

Proof. The proof is by induction on n. (5.57) is obviously true for n = 0 as a result of the
choice of x0. Assume that the components of the n-th iterate xn satisfy (5.57), then, using this
assumption, we get the following expression for wn := (sn, tn)T, the Newton’s correction to
xn,

wn =


 sn

tn


 := −F ′(xn)−1F (xn) =

−2
det(JF (xn))


 εn

+ − η (kn
+)3/2

α
(
εn
+ − η (kn

+)3/2
)


 ,

which shows that
tn = α sn . (5.58)
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Therefore we obtain:

εn+1
+ = εn

+ + tn = α (kn
+ + sn) = α kn+1

+ ,

we then conclude that (5.57) holds for every n.

Proposition 5.1.5. If the starting guess x0 =(k0
+, ε0

+)T satisfies (5.55), then

εn
+ − ε∗+

 = α
kn

+ − k∗+
 ∀ n = 0, 1, 2, . . . (5.59)

Proof. (5.59) follows from (5.57) and the fact ε∗+ =α k∗+ (see (5.49)):

εn
+ − ε∗+

 =
α kn

+ − α k∗+
 = α

kn
+ − k∗+

 ∀ n = 0, 1, 2, . . .

We now discuss the prediction of Theorem 4.1.2 about the q-quadratic convergence of
Newton’s iterates {xn} for (5.47).

Observation 5.1.4. In the weighted L∞ norm, the q-quadratic convergence of the sequence
{xn} is expressed by:

‖xn+1 − x∗‖D−1
V

‖xn − x∗‖2
D−1

V

< K̃ :=
3
2
β̃ γ̃ , (5.60)

see (4.6). Note that the asymptotic constant K̃ is independent of h+, because both β̃ and γ̃ do
not depend on h+, as it was shown in the proof of Theorem 5.1.1 (numerical illustration of the
h+-independence of K̃ will be given in Table 5.1 and Table 5.2). On the other hand, in the
standard L∞ norm we have:

‖xn+1 − x∗‖∞
‖xn − x∗‖2∞

< K :=
3
2

β γ = O

(
1

h+

)
, as h+ → 0 (5.61)

as follows from the fact that

β =
7
2

, γ = O

(
1

h+

)
, as h+ → 0 ,

(see the proof of Theorem 5.1.2). However, in Proposition 5.1.6 below, exploiting the h+-

independence of K̃, we will show instead that the rate of convergence in the L∞ norm is

correctly described by

‖xn+1 − x∗‖∞
‖xn − x∗‖2∞

< O(h+) , as h+ → 0

(numerical illustration of this will be given in Table 5.1 and Table 5.2). Therefore, the L∞
estimate of the Lipschitz constant γ, which determines the proportionality of K to 1/h+ in
(5.61), proves again to be misleading. In fact we obtain the startling result that Newton’s
method becomes more robust as h+ → 0. This phenomenon is also observed in the full k-ε
system, see Table 5.9.
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Proposition 5.1.6. If the initial guess x0 satisfies (5.55), then

‖xn+1 − x∗‖∞
‖xn − x∗‖2∞

< C h+ , ∀ n = 0, 1, 2, . . . (5.62)

with constant C independent of h+.

Proof. By (5.59) and the fact that αÀ1 we have:

‖xn − x∗‖∞ = max
{kn

+ − k∗+
 ,

εn
+ − ε∗+

}

= max
{kn

+ − k∗+
 , α

kn
+ − k∗+

}

= α
kn

+ − k∗+
 ,

therefore:
‖xn+1 − x∗‖∞
‖xn − x∗‖2∞

=
1
α

kn+1
+ − k∗+


kn

+ − k∗+
2 . (5.63)

But, using (5.59), we also get:

‖xn − x∗‖D−1
V

= max
{kn

+ − k∗+
 ,

1
α

εn
+ − ε∗+


}

= max
{kn

+ − k∗+
 ,

kn
+ − k∗+

}

=
kn

+ − k∗+
 . (5.64)

Finally, combining (5.64) with (5.63) we obtain:

‖xn+1 − x∗‖∞
‖xn − x∗‖2∞

=
1
α

‖xn+1 − x∗‖D−1
V

‖xn − x∗‖2
D−1

V

< K̃
1
α

,

from which the result follows using the definition of α in (5.3) and the fact that K̃ is indepen-
dent of h+.

We now discuss the computational experiments that we have performed as illustration to
the results presented throughout this subsection.

The robust convergence of Newton’s method for (5.47) with respect to h+→ 0 (see The-
orem 5.1.1), has been checked numerically by showing that the actual ball of convergence of
Newton’s method does not shrink as h+→0. For this purpose, we have considered a sequence
of decreasing values of h+, {h+ = 10−1, 10−2, 10−3, 10−4}, and, for each h+, the following
family of initial guesses for Newton’s method:

x0
i,j = x∗ + ρi vj (5.65)

where x∗ is the solution to (5.47), given in (5.49), {ρi} is an increasing sequence of positive
numbers and {vj} is a sequence random vectors uniformly distributed over the interval [0, 1].
The experiment then consists in prescribing ρi and in initializing Newton’s method with N
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different initial guesses x0
i,j , j = 1, . . . , N corresponding to N different random vectors vj .

If the algorithm successfully converges for all initial guesses x0
i,j , then ρi is replaced by ρi+1

and N other initial guesses x0
i+1,j are considered as before, and so on. The value ρn̄ for which

Newton’s method fails to converge will then represent an estimate of the upper bound on the
radius of the actual ball of convergence. This experiment has proved Newton’s method for
(5.47) to converge robustly because decreasing the value of h+ from 10−1 to 10−4 has not

determined a corresponding decrease in ρn̄. Due to the simplicity of the system (5.47), it has
not been possible to identify a finite value of ρn̄ for which Newton’s algorithm failed, in fact
in this case it seems ρn̄ =∞.

Clear numerical illustration of Proposition 5.1.5, Proposition 5.1.6 and of the h+-independence
of K̃ in (5.60) is given in Table 5.1 and in Table 5.2.

The results presented in Table 5.1 have been obtained by starting Newton’s method with
x0 =(k0

+, ε0
+)T satisfying (5.55):

ε0
+ = α k0

+ ,

and choosing k0
+ = 428.2. They show that (5.59) is satisfied by every iterate, as predicted by

Proposition 5.1.5, and confirm (5.62) together with the h+-independence of K̃. (Several other
values of k0

+ have been used, always yielding similar results). In order to show experimentally
that (5.59) is an asymptotic property of the Newton’s sequence {xn}, we have considered initial

guesses as in (5.65):

x0 = x∗ + ρ w

where ρ is a number and w is a random vector uniformly distributed over the interval [0, 1].
In Table 5.2, we present the results corresponding to ρ = 500 and w = (0.69318, 0.650106)T.
These illustrate once more (5.62) and the h+-independence of K̃, and show that (in our ex-
periments at least) the iterates xn do satisfy asymptotically (5.59), even if the initial guess
assumption (5.55) is not satisfied.

5.2 Robustness of Newton’s method for the discretised 1D turbu-
lence equations

After having analyzed in detail the model 2×2 system (5.5), we now turn to the analysis of
Newton’s method for the system arising from the discretisation of the full 1D turbulent Couette
and Poiseuille flows. Initially, we will briefly derive the finite element approximation to the 1D

weak forms presented in §2.6, then we will devote §5.2.1 and §5.2.2 to studying the properties
of Newton’s method for the discrete RANS and k-ε equations and for the k-ε equations only.
(In the latter case the velocity field will be assumed to be known exactly in the boundary value
problem (2.39)-(2.47)). In both cases we will apply a combination of affine covariant and
contravariant transformations, and identify a condition on the size of the mesh such that, in a
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ε0
+ = α k0

+ , k0
+ = 428.2

h+ = 10−1, α = 1.99× 10 h+ = 10−2, α = 1.99× 102

n
‖xn−x∗‖∞
‖xn−1−x∗‖2∞

‖xn−x∗‖
D−1

V

‖xn−1−x∗‖2
D−1

V

|εn
+−ε∗+|??kn
+−k∗+

?? ‖xn−x∗‖∞
‖xn−1−x∗‖2∞

‖xn−x∗‖
D−1

V

‖xn−1−x∗‖2
D−1

V

|εn
+−ε∗+|??kn
+−k∗+

??
0 1.99×10 1.99×102

1 4.35×10−5 8.69×10−4 1.99×10 4.35×10−6 8.69×10−4 1.99×102

2 1.18×10−4 2.35×10−3 1.99×10 1.18×10−5 2.36×10−3 1.99×102

3 2.96×10−4 5.91×10−3 1.99×10 2.96×10−5 5.91×10−3 1.99×102

4 6.50×10−4 1.30×10−2 1.99×10 6.50×10−5 1.30×10−2 1.99×102

5 1.11×10−3 2.21×10−2 1.99×10 1.11×10−4 2.21×10−2 1.99×102

6 1.34×10−3 2.67×10−2 1.99×10 1.34×10−4 2.67×10−2 1.99×102

7 1.36×10−3 2.71×10−2 1.99×10 1.36×10−4 2.72×10−2 1.99×102

h+ = 10−3, α = 1.99× 103 h+ = 10−4, α = 1.99× 104

n
‖xn−x∗‖∞
‖xn−1−x∗‖2∞

‖xn−x∗‖
D−1

V

‖xn−1−x∗‖2
D−1

V

|εn
+−ε∗+|??kn
+−k∗+

?? ‖xn−x∗‖∞
‖xn−1−x∗‖2∞

‖xn−x∗‖
D−1

V

‖xn−1−x∗‖2
D−1

V

|εn
+−ε∗+|??kn
+−k∗+

??
0 1.99×103 1.99×104

1 4.35×10−7 8.69×10−4 1.99×103 4.35×10−8 8.68×10−4 1.99×104

2 1.18×10−6 2.35×10−3 1.99×103 1.18×10−7 2.35×10−3 1.99×104

3 2.96×10−6 5.91×10−3 1.99×103 2.96×10−7 5.91×10−3 1.99×104

4 6.49×10−6 1.30×10−2 1.99×103 6.50×10−7 1.30×10−2 1.99×104

5 1.11×10−5 2.21×10−2 1.99×103 1.11×10−6 2.21×10−2 1.99×104

6 1.33×10−5 2.67×10−2 1.99×103 1.34×10−6 2.67×10−2 1.99×104

7 1.36×10−5 2.71×10−2 1.99×103 1.36×10−6 2.71×10−2 1.99×104

Table 5.1: Rates of convergence of Newton’s sequence for (5.47) and proportionality between the
errors in each component of the iterate xn = (kn

+, εn
+)T when Newton’s method is initialized with

x0 =(k0
+, ε0

+)T such that ε0
+ =α k0

+, k0
+ =428.2.

suitable neighbourhood of the true solution, the Jacobian of the transformed system remains
bounded with bounded inverse as h+→0. This, together with the affine invariant properties of
Newton’s method discussed in §§4.4, 4.5, will then be exploited to show the robust convergence
of Newton’s method for the untransformed original system. We will give numerical illustration
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x0 = x∗ + ρw , ρ = 500 , w = (0.69318, 0.650106)T

h+ = 10−1, α = 1.99× 10 h+ = 10−2, α = 1.99× 102

n
‖xn−x∗‖∞
‖xn−1−x∗‖2∞

‖xn−x∗‖
D−1

V

‖xn−1−x∗‖2
D−1

V

|εn
+−ε∗+|??kn
+−k∗+

?? ‖xn−x∗‖∞
‖xn−1−x∗‖2∞

‖xn−x∗‖
D−1

V

‖xn−1−x∗‖2
D−1

V

|εn
+−ε∗+|??kn
+−k∗+

??
0 9.38×10−1 9.38×10−1

1 8.54×10−4 8.54×10−4 4.87×10−1 1.28×10−2 8.39×10−4 1.52×10

2 1.06×10−2 2.14×10−3 4.96 1.13×10−3 1.93×10−3 1.36×102

3 1.32×10−2 1.62×10−2 1.25×102 4.36×10−4 4.01×10−2 5.45×102

4 2.60×10−3 5.19×10−2 2.95×10 2.23×10−4 4.46×10−2 2.80×102

5 3.54×10−4 9.42×10−3 1.50×10 5.89×10−5 1.52×10−2 1.55×102

6 2.10×10−3 2.47×10−2 1.91×10 1.84×10−4 2.28×10−2 1.93×102

7 1.48×10−3 2.71×10−2 1.99×10 1.45×10−4 2.70×10−2 1.99×102

8 1.36×10−4 2.72×10−2 1.99×102

h+ = 10−3, α = 1.99× 103 h+ = 10−4, α = 1.99× 104

n
‖xn−x∗‖∞
‖xn−1−x∗‖2∞

‖xn−x∗‖
D−1

V

‖xn−1−x∗‖2
D−1

V

|εn
+−ε∗+|??kn
+−k∗+

?? ‖xn−x∗‖∞
‖xn−1−x∗‖2∞

‖xn−x∗‖
D−1

V

‖xn−1−x∗‖2
D−1

V

|εn
+−ε∗+|??kn
+−k∗+

??
0 9.38×10−1 9.38×10−1

1 1.45×10−1 8.37×10−4 1.73×102 1.47 8.37×10−4 1.75×103

2 9.30×10−5 1.91×10−3 1.46×103 9.13×10−6 1.91×10−3 1.47×104

3 4.08×10−5 4.34×10−2 5.28×103 4.06×10−6 4.38×10−2 5.26×104

4 2.23×10−5 4.46×10−2 2.78×103 2.23×10−6 4.46×10−2 2.78×104

5 6.36×10−6 1.65×10−2 1.54×103 6.41×10−7 1.66×10−2 1.55×104

6 1.79×10−5 2.22×10−2 1.93×103 1.78×10−6 2.21×10−2 1.93×104

7 1.45×10−5 2.69×10−2 1.99×103 1.45×10−6 2.69×10−2 1.99×104

8 1.36×10−5 2.71×10−2 1.99×103 1.36×10−6 2.71×10−2 1.99×104

Table 5.2: Rates of convergence of Newton’s sequence for (5.47) and proportionality between the errors
in each component of the iterate xn =(kn

+, εn
+)T when Newton’s method is initialized with x0 =x∗+ρw

where x∗ is the solution to (5.47), ρ=500 and w = (0.69318, 0.650106)T

of the theoretical results for one- and two-dimensional flows.
We make the following assumption:
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Assumption 5.2.1. From now to the end of Chapter 5 we will restrict our analysis to the
continuous piecewise linear finite element approximation of the 1D turbulent Couette flow
(2.48)-(2.56).

It should be remarked that Assumption 5.2.1 has been made with the only purpose of
presenting our arguments in the clearest possible way. In fact, the results on the robustness of
Newton’s method, which follow below, can be proved also for the 1D turbulent Poiseuille flow
(2.94)-(2.102) and for continuous finite elements of any order.

Let the domain [h+, 1] be divided into N subintervals:

h+ = y1 < y2 < . . . < yN < yN+1 = 1

with the jth subinterval ej :=[yj , yj+1] having length hj . We consider the discretisation on the
mesh {yi} of (2.128) (with G=0), (2.136), (2.138) and (2.137), with u∗, in (2.128), supposed
to be known. Even if u∗ is regarded as known, we are still assuming that, at y = h+, ε and k

are related by (2.138). Let

Uh(y) =
N∑

j=1

Ujφj(y) + UCLφN+1(y) , kh(y) =
N+1∑

j=1

kj φj(y) , εh(y) =
N+1∑

j=1

εj φj(y)

be the finite element approximations to U , k and ε respectively (where {φj} are the usual hat
functions), and let

F(x) =




FU (x)

Fk(x)

Fnl(x)

Fε(x)




= 0 (5.66)

be the nonlinear system arising from the discretisation of the equations considered. In (5.66)
there are 3N + 2 equations, and

x :=(UT, kT, εT)T :=(U1, . . . , UN , k1, . . . , kN+1, ε1, . . . , εN+1)T

is the vector of U -, k- and ε-freedoms, while

(FU (x))i := a(Uh, kh, εh, φi) , i = 1, . . . , N , (5.67)

with the form a given by (2.128) with G=0,

(Fk(x))i := c(Uh, kh, εh, φi) , i = 1, . . . , N + 1 , (5.68)

with c specified in (2.133),

Fnl(x) := ε1 − C
3/4
µ

κ

k
3/2
1

h+
, (5.69)
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and
(Fε(x))i := d(Uh, kh, εh, φi) , i = 2, . . . , N + 1 , (5.70)

where d is defined in (2.134).

5.2.1 Newton’s method for the RANS and k-ε equations

The convergence properties of Newton’s method for (5.66) are now studied in the limit as
h+→ 0. Before presenting the details, we briefly indicate our strategy. Initially we will show
that, under a certain condition on the mesh grading (see (5.78)), it is possible to design a
combination of affine covariant and contravariant transformations of system (5.66), such that
all constant terms in the transformed system are essentially independent of h+, in the sense
that they do not blow up or become arbitrarily small in the limit as h+→0 (what we mean by

“constant terms” will become clear in Lemma 5.2.2). This, together with the assumption that
the problem is well posed as h+→ 0 (see (5.100)), will imply the robust convergence for the
transformed system. The robustness of Newton’s method for (5.66) will then follow from its
affine covariant and contravariant properties (§§4.4, 4.5).

We now simultaneously perform an appropriate affine covariant and an affine contravariant
transformation of the system (5.66). Let us define the diagonal matrix

B :=




IN

IN+1

1/y1
. . .

1/yN+1




,

with IN and IN+1 respectively the N×N and (N + 1)×(N + 1) identity matrices. Then in-
troduce the following combination of affine covariant and affine contravariant transformations
of (5.66):

G(x̃) := B−1F(Bx̃) =




GU (x̃)

Gk(x̃)

Gnl(x̃)

Gε(x̃)




= 0 , (5.71)

where:

x̃ = B−1x = B−1(UT,kT, εT)T =: (UT,kT, ε̃T)T =

= (U1, . . . , UN , k1, . . . , kN+1, ε̃1, . . . , ε̃N+1)T . (5.72)

Note that the transformations (5.71)-(5.72) involve a scaling both of the equations correspond-

ing to the ε-freedoms and of the nodal values of εh, while the equations corresponding to the
U - and k-freedoms and the nodal values of Uh and kh are kept unchanged (the action of B−1
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on x essentially corresponds to scaling the ε-component of x by y). By defining

ε̃h(y) :=
N+1∑

j=1

ε̃j φj(y) ,

and the “scaling operator” S such that:

S(ε̃h)(y) =
N+1∑

j=1

ε̃j

yj
φj(y) = εh(y) , (5.73)

the components of G(x̃) in (5.71) can be expressed as:

(GU (x̃))i = a(Uh, kh, S(ε̃h), φi) , i = 1, . . . , N (5.74)

(Gk(x̃))i = c(Uh, kh, S(ε̃h), φi) , i = 1, . . . , N+1 (5.75)

Gnl(x̃) = ε̃1 − C
3/4
µ

κ
k

3/2
1 , (5.76)

(Gε(x̃))i = yi d(Uh, kh, S(ε̃h), φi) , i = 2, . . . , N+1 . (5.77)

To see the benefits of the chosen scaling, consider, in particular, the following result:

Lemma 5.2.1. The coefficients in the scaled “nodal law” Gnl(x̃) in (5.71) are independent of

h+ (see (5.76)).

Proof. Recall that from (5.72) we have ε̃1 = y1ε1 with y1 = h+, hence, writing out the third
component of (5.71), we have:

Gnl(x̃) = y1Fnl(Bx̃)

= h+

(
ε̃1

h+
− C

3/4
µ

κ

k
3/2
1

h+

)

= ε̃1 − C
3/4
µ

κ
k

3/2
1 .

Indeed, we now show:

Lemma 5.2.2. Assume that there exists a strictly positive constant C independent of h+ such

that
hj

yj
≤ C , j = 1, 2, . . . , N (5.78)

then GU (x̃), Gk(x̃) and Gε(x̃) (respectively first, second and fourth component of G(x̃) in

(5.71)) are rational functions of x̃ with coefficients which are bounded independently of h+ as

h+→0.
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We will show that the robust convergence of Newton’s method for (5.71) is guaranteed by
(5.78) together with the assumption that the original unscaled system is well posed for (see
(5.100) and Observation 5.2.1) as h+→ 0. It should be noted that for a uniform mesh on the
domain [h+, 1], with h+¿1, the number of elements needed to satisfy (5.78) is

N ' C h−1
+ . (5.79)

Since in applications h+ = 10−3 or 10−4, this can clearly make the computation unpractical
(consider that N is the number of mesh points in one coordinate direction only). This obser-
vation then highlights the key role that graded meshes can have in assuring the robustness of

Newton’s method, by satisfying (5.78) with a small number of elements. In particular, Lemma
3.5.1 shows that the equidistributed mesh (3.59) readily meets the condition (5.78).

Below we will show that, for each i = 2, . . . , N +1, (Gε(x̃))i (see (5.77)) is a rational
function of x̃ with coefficients which do not blow up or become arbitrarily small as h+ → 0.
This will be done as now explained. First (Gε(x̃))i will be expressed as a sum of integrals over
the elements ej =[yj , yj+1] which contain the node yi, then, through a special affine transfor-
mation, each element ej =[yj , yj+1] will be mapped onto the canonical interval [−1, 1] and the
corresponding elemental integral will be accordingly transformed. Finally, each transformed
elemental integral will be shown to contain only rational functions of x̃ which have coeffi-
cients bounded independently of h+→0. Applying exactly the same strategy to (GU (x̃))i and
(Gk(x̃))i, respectively in (5.74) and (5.75), will yield the proof of Lemma 5.2.2.
Proof of Lemma 5.2.2 Expressing the form d in (5.77) (this is defined in (2.134)) in terms of
the sum of the integrals over the elements ej which contain the node yi, we can write (Gε(x̃))i

as:
(Gε(x̃))i =

∑

j:yi∈ej

yi d
ej (Uh, kh, S(ε̃h), φi) , i = 2, . . . , N + 1 (5.80)

with

yi d
ej (Uh, kh, S(ε̃h), φi) = yi

∫

ej

{
Cµ

σε

(kh)2

S(ε̃h)
dS(ε̃h)

dy

dφi

dy
−

−Cε1 Cµ

(
dUh

dy

)2

khφi + Cε2
(S(ε̃h))2

kh
φi

}
dy . (5.81)

The interval ej = [yj , yj+1] is then mapped onto the canonical interval [−1, 1] by the affine
transformation:

y =
1
2

yj(1− η) +
1
2

yj+1(1 + η) , η ∈ [−1, 1] , (5.82)

and within each element ej , Uh, kh and S(ε̃h) are expressed in terms of the element basis
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functions Nα(η)=φj(α)(y(η)) as shown below:

Uh(y(η)) =
2∑

α=1

Uj(α)Nα(η) =: Ûh(η) , (5.83)

kh(y(η)) =
2∑

α=1

kj(α)Nα(η) =: k̂h(η) , (5.84)

S(ε̃h)(y(η)) =
2∑

α=1

ε̃j(α)

yj(α)
Nα(η) .

The index α refers to the local numbering of the vertices, and is such that j(1)=j, j(2)=j+1,
with either j = i or j + 1= i. For reasons that will become clear below, we write S(ε̃h)(y(η))
as follows:

S(ε̃h)(y(η)) =
1

yj(1)
Ŝ(ε̃h)(η) , (5.85)

where

Ŝ(ε̃h)(η) := yj(1)

2∑

α=1

ε̃j(α)

yj(α)
Nα(η) =

2∑

α=1

rj(α) ε̃j(α)Nα(η) (5.86)

with
rj(α) :=

yj(1)

yj(α)
. (5.87)

Also, observing from (5.82) that
dy

dη
=

hj

2
, (5.88)

we have:
dφj(α)

dy
(y(η)) =

2
hj

dNα

dη
(η) , (5.89)

while from (5.83) and (5.85) we get respectively:

dU

dy
(y(η)) =

2
hj

dÛh

dη
(η) , (5.90)

and
dS(ε̃h)

dy
(y(η)) =

1
yj(1)

2
hj

dŜ(ε̃h)
dη

(η) . (5.91)

Using (5.83)-(5.85) and (5.88)-(5.91) we can then express (5.81) as

yi d
ej (Ûh, k̂h, Ŝ(ε̃h), Nα) =

yi

yj(1)

∫

[−1,1]

{
2Cµ

σε

(
(k̂h(η))2

Ŝ(ε̃h)(η)

)(
dŜ(ε̃h)

dη

)
dNα

dη

yj(1)

hj
−

−2Cε1Cµ

(
dÛh

dη

)2

k̂h(η)Nα(η)
yj(1)

hj
+

Cε2

2
(Ŝ(ε̃h)(η))2

k̂h(η)
Nα(η)

hj

yj(1)



 dη . (5.92)

All constant terms in (5.92) are now shown to be bounded independently of h+ → 0. The
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terms in (5.92) which could exhibit a strong dependence on h+→0 are:

yi

yj(1)
=

yi

yj
, rj(α) =

yj(1)

yj(α)
=

yj

yj(α)
,

yj(1)

hj
=

yj

hj
,

hj

yj(1)
=

hj

yj
. (5.93)

The first appears as a multiplicative constant outside the integral, the second is contained in
the expressions for Ŝ(ε̃h)(η) and its derivative dŜ(ε̃h)/dη (see (5.86)), the third is both in the
diffusion and in the source term and finally the last coefficient appears in the destruction term.
For the first term in (5.93), it is not difficult to show that:

1 ≤ yi

yj
≤ 1 + C , for j such that yi ∈ ej . (5.94)

To obtain (5.94), first recall that either yj =yi or yj+1 =yi, therefore:

yi

yj
=





1 , yj = yi

yi

yi−1
=

yi−1 + hi−1

yi−1
, yj+1 = yi

(5.95)

then note that, for yj+1 =yi, we have:

1 <
yi−1 + hi−1

yi−1
= 1 +

hi−1

yi−1
≤ 1 + C , (5.96)

where we have used (5.78), finally (5.94) follows from (5.95) and (5.96). It is also easy to see
that the second term in (5.93) can be bounded as follows:

1
1 + C

≤ rj(α) ≤ 1 , α = 1, 2 . (5.97)

For this consider that:

rj(α) =
yj

yj(α)
=





1 , α = 1
yj

yj+1
=

yj

yj + hj
, α = 2

(5.98)

and for α=2, by using also (5.78), it is not difficult to obtain:

1
1 + C

≤ yj

yj + hj
< 1 , (5.99)

hence (5.98) and (5.99) imply (5.97). The following lower bound for the third term in (5.93) is
an obvious consequence of (5.78):

1
C
≤ yj

hj
,

and the last term is bounded from above independently of h+ → 0 by assumption. This then
showns that the integrand in (5.92) does not contain coefficients which blow up or tend to zero
as h+→0, and this, together with the fact that the domain of integration is independent of h+,
implies that none of the equations (Gε(x̃))i, i=2, . . . , N +1, in (5.77), contains terms which
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blow up or become arbitrarily small as h+→ 0. The same line of reasoning applied to (5.74)
and (5.75) will yield the result. ¤

Lemma 5.2.2 is now used to show that in a neighbourhood of the solution to (5.71), the
entries of the Jacobian G′(x̃) are bounded independently of h+→0 (recall that the convergence
of Newton’s method depends on the properties of the Jacobian of the nonlinear system which
is being solved, see Lemma 4.1.1 and Theorem 4.1.2). The result below clearly follows from

Lemma 5.2.2.

Corollary 5.2.3. Let the assumption of Lemma 5.2.2 hold. Then the solution x̃∗ to (5.71) does

not blow up or become arbitrarily small as h+→0.

From Lemma 5.2.2 and Corollary 5.2.3, we then have

Lemma 5.2.4. Let the assumption of Lemma 5.2.2 hold. Then there exist a neighbourhood of

x̃∗, B(x̃∗, σ̃), such that for all ỹ∈B(x̃∗, σ̃) the entries of the Jacobian of the system in (5.71),

(G′(ỹ))ij :=
∂Gi

∂x̃j
(ỹ) ,

do not blow up or become arbitrarily small as h+→0.

Proof. The result follows from the fact that the entries of G(x̃) are rational functions of x̃ with
coefficients bounded independently of h+ → 0 (see Lemma 5.2.1 and Lemma 5.2.2) and the
fact that if ỹ is sufficiently close to x̃∗, then ‖ỹ‖ does not blow up or tend to 0 as h+ → 0
because so does ‖x̃∗‖ (Corollary 5.2.3).

We finally have:

Theorem 5.2.5. Let the assumption of Lemma 5.2.2 hold, and suppose that there exists a

strictly positive constant b independent of h+ such that

det(G′(x̃∗))
 > b . (5.100)

Then Newton’s method for (5.71) is robust in the limit h+→0.

Observation 5.2.1. Note that (5.100) indicates that, as h+ → 0, the problem (5.71) is well
posed for Newton’s method to be used. It should also be remarked that (5.100) follows the
assumption that the original unscaled problem (5.66) is well posed, i.e. that there exists a
strictly positive constant b independent of h+ such that

det(F′(x∗))
>b . (5.101)

It is easy to see this, in fact from (5.71) we have G′(x̃∗) = B−1F′(Bx̃∗)B and therefore
det(G′(x̃∗))=det(F′(x∗)). The validity of (5.101) (and therefore of (5.100)) has been verified
computationally.
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Proof of Theorem 5.2.5 Theorem 4.1.2 predicts that Newton’s sequence for (5.71) has ball of
convergence B(x̃∗, δ̃) with radius δ̃ such that:

δ̃ ≤ 2
3 β̃ γ̃

,

where γ̃ is the Lipschitz constant of the Jacobian G′(x̃):

γ̃ := sup
ỹ 6=z̃

‖G′(ỹ)−G′(z̃)‖
‖ỹ − z̃‖

and β̃ the upper bound on the inverse of the Jacobian evaluated at the solution x̃∗:

β̃ ≥ ‖(G′(x̃∗))−1‖ .

From Lemma 5.2.4 it follows that for all ỹ, z̃ in B(x̃∗, σ̃), γ̃ is essentially independent of h+,
moreover Lemma 5.2.4 and assumption (5.100) imply that β does not blow up or tend to 0 as
h+→0. Therefore if 2/(3 β̃ γ̃)≤ σ̃, then we set δ̃ =2/(3 β̃ γ̃), otherwise if σ̃ <2/(3 β̃ γ̃), we
choose δ̃= σ̃ and the convergence of Newton’s method for (5.71) will be robust with respect to
h+→0 in B(x̃∗, δ̃). ¤

Theorem 5.2.6. Let the assumptions of Theorem 5.2.5 hold. Then Newton’s method for (5.66)

is robust as h+→0.

Proof. From Corollary 4.4.1 (a) we have that Newton’s method for (5.66) converges robustly
as h+→0 for all x0 =Bx̃0 with x̃0∈B(x̃∗, δ̃).

Numerical experiments

We now give numerical evidence of the fact that, in the limit as h+→0, Newton’s method for
the discretised RANS and k-ε equations, converges robustly on meshes which satisfy (5.78)
for sufficiently small values of the constant C.

The experiments we present below, involve the application of Newton’s method to the non-
linear systems arising from the continuous piecewise quadratic approximation of 1D turbulent
Couette and Poiseuille flows (experiments for 2D flows will be discussed at the end of §5.2.2).
We have chosen to use 1D quadratic elements for our experiments because quadratic elements
are our favoured 2D elements. For both flows, the finite element system will be denoted by

F(x) =




FU (x)

Fk(x)

Fnl(x)

Fε(x)




= 0 , (5.102)

and we note that if the interval [h+, 1] is subdivided into a mesh with N elements, then (5.102)
will consist of P = (6N + 2) equations in the case of Couette flow and of P = 3(2N + 1)
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equations for Poiseuille flow. In Table 5.4 and Table 5.5, we presente the results when N =64
and N =128, for which we correspondingly have P ≈384 and P ≈768.

The practical robust convergence of Newton’s method for (5.102) has been tested through
an experiment of the same kind as the one described at the end of §5.1.3. That is, we consider
the sequence {10−1, 10−2, 10−3, 10−4} of decreasing values of h+, and, for each h+, the set
of initial guesses:

x0
ij = x∗ + ρi vij , i = 1, 2, . . . j = 1, 2, . . . , P (5.103)

where x∗ is the numerical solution to (5.102), {ρi}, i = 1, 2, . . ., is a strictly increasing se-

quence of positive numbers and {vij}, i = 1, 2, . . ., j = 1, 2, . . . , P , is a sequence of vectors
of the form:

vij =
wij

‖wij‖∞ ,

with wij a random vector whose P components are uniformly distributed over the interval
[0, 1]. Newton’s method is then initialized with x0

1j =x∗ + ρ1 v1j , j = 1, 2, . . . , P and if the

method attains convergence for all x0
1j , the next family of starting guesses x0

2j =x∗ + ρ2 v2j

(with ρ2 >ρ1) is considered and so forth. This algorithm is schematized below:

Algorithm 5.2.1.

1. For h+ = 10−1, 10−2, 10−3, 10−4

i. i = 1, j = 0

ii. While j ≤ P

(a) j = j + 1

(b) Generate the vector vij

(c) Solve the finite element system by Newton’s method initialized with
x0 = x∗ + ρi vij

(d) If Newton’s method fails to converge then exit

(e) If j = P + 1 then
i = i + 1, j = 0

The value ρM for which there exists a vector vMj such that Newton’s method diverges, will
represent an upper bound on the radius ρ of the actual ball of convergence of the method, and ρ

will then be estimated as: ρM−1≤ρ<ρM . (Algorithm 5.2.1 will also be used to test the robust
convergence of Newton’s method for the system arising from the discretisation of the 1D and
2D k-ε equations only, as discussed at the end of §5.2.2). We now show experimentally that
if, for all h+ =10−1, 10−2, 10−3, 10−4, the mesh on [h+, 1] satisfies (5.78) with a sufficiently
small constant C, then ρ does not become smaller and smaller as h+ is reduced.

The experimental estimates of ρ are presented in Table 5.4, for Couette flow, and in Table

5.5, for Poiseuille flow. In the case of Couette flow (Table 5.4), we compare the behaviours of
the convergence ball of Newton’s method on three different type of meshes: the equidistributed
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MESH (64 ELEMENTS)

h+ EQUIDISTR. UNIFORM EXPONENT.

10−1 maxj{hj/yj} 4.3×10−2 1.4×10−1 4.7×10−2

10−2 maxj{hj/yj} 1.1×10−1 1.5 9.9×10−2

10−3 maxj{hj/yj} 2.0×10−1 15.6 1.5×10−1

10−4 maxj{hj/yj} 3.4×10−1 156 2.0×10−1

Table 5.3: Maximum value of the ratio hj/yj , j =1, . . . , N , (see (5.78)) on three discretisations of the
domain [h+, 1], for a sequence of decreasing values of h+.

mesh (3.101), the uniform mesh and the exponentially graded mesh (3.107) (in this case we use
the value of α which, for given h+ and number of elements, minimizes the error ‖εh − ε∗‖2,
as already done in the numerical experiments discussed in §3.7.2). For Poiseuille flow (Table
5.5), we compare the estimated values of ρ on the equidistributed and uniform meshes. For

both flows we present the results in the cases of meshes with 64 and 128 elements.
For the sequence {h+ =10−1, 10−2, 10−3, 10−4} and N =64, the constant C in (5.78) can

be estimated as:

C =





3.4×10−1 , equidistributed mesh

156 , uniform mesh

2.0×10−1 , exponential mesh

This follows from the data presented in Table 5.3, where, as h+ varies from 10−1 to 10−4, we
specify the values of maxj{hj/yj} on the meshes considered with 64 elements, and from these
we derive C as:

C = max
h+

{max
j
{hj/yj}} ,

(obviously, for N = 128 smaller values of C are to be expected). On the equidistributed and
exponentially graded meshes, the constant C is relatively small (even in this case of just 64
elements), and correspondingly the ball of convergence of Newton’s method does not shrink
as h+ is reduced (in fact it slightly increases in size as h+ becomes smaller), as can be clearly
seen from Table 5.4 and Table 5.5. On the uniform mesh, as h+ is reduced with N fixed,
maxj{hj/yj} is essentially proportional to 1/h+ (see Table 5.3), hence C is much bigger than
on the corresponding equidistributed and exponentially graded mesh. It then follows that the
size of the ball of convergence depends on h+ and it turns out that ρ = 0 for small values of
h+, see Table 5.4 and Table 5.5.
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1D COUETTE FLOW (ρ̄ := ρ/10−1)

MESH (64 ELEMENTS) MESH (128 ELEMENTS)

h+ EQUIDISTR. UNIFORM EXPONENT. EQUIDISTR. UNIFORM EXPONENT.

10−1 1.21≤ ρ̄<1.26 1.16≤ ρ̄<1.21 1.01≤ ρ̄<1.06 0.61≤ ρ̄<0.66 0.56≤ ρ̄<0.61 0.56≤ ρ̄<0.61

10−2 2.06≤ ρ̄<2.11 1.26≤ ρ̄<1.31 1.51≤ ρ̄<1.56 1.11≤ ρ̄<1.16 0.66≤ ρ̄<0.71 0.86≤ ρ̄<0.91

10−3 2.81≤ ρ̄<2.86 ρ=0 1.76≤ ρ̄<1.81 1.46≤ ρ̄<1.51 0.66≤ ρ̄<0.71 0.81≤ ρ̄<0.86

10−4 3.16≤ ρ̄<3.21 ρ=0 1.91≤ ρ̄<1.96 1.71≤ ρ̄<1.76 ρ=0 1.36≤ ρ̄<1.41

Table 5.4: Experimental estimates of the radius ρ of the convergence ball of Newton’s method for the
1D Couette flow (ρ =10−1ρ̄). For a sequence of decreasing values of h+, three meshes on the domain
[h+, 1] have been considered: the equidistributed mesh (3.101), the uniform mesh and the exponentially
graded mesh (3.107).

1D POISEUILLE FLOW (ρ̄ = ρ/10−1)

MESH (64 ELEMENTS) MESH (128 ELEMENTS)

h+ EQUIDISTR. UNIFORM EQUIDISTR. UNIFORM

10−1 1.61 ≤ ρ̄ < 1.66 1.31 ≤ ρ̄ < 1.36 0.86 ≤ ρ̄ < 0.91 0.66 ≤ ρ̄ < 0.71

10−2 1.66 ≤ ρ̄ < 2.71 1.41 ≤ ρ̄ < 1.46 1.36 ≤ ρ̄ < 1.41 0.76 ≤ ρ̄ < 0.81

10−3 2.76 ≤ ρ̄ < 3.11 ρ=0 1.71 ≤ ρ̄ < 1.76 0.76 ≤ ρ̄ < 0.81

10−4 3.66 ≤ ρ̄ < 3.71 ρ=0 1.91 ≤ ρ̄ < 1.96 ρ=0

Table 5.5: Experimental estimates of the radius ρ of the convergence ball of Newton’s method for the
1D Poiseuille flow (ρ = 10−1ρ̄). For a sequence of decreasing values of h+, the domain [h+, 1] has
been discretised using the equidistributed mesh (3.101) and the uniform mesh.
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5.2.2 Newton’s method for the k-ε equations

We now discuss the convergence properties of Newton’s method for the discretised k-ε equa-
tions, assuming that the velocity field U is known exactly in the coupled system (2.48)-(2.50)

and satisfies the boundary conditions (2.51) and (2.56). This section is organized along the
lines of §5.2.1, and in our analysis we will use some observations already made there and at
the beginning of §5.2. Hence, in what follows, we will not give a detailed account of those
parts of our argument which simply represent an adaptation of what done before, but, we will
rather try to highlight the characteristic aspects of the problem we are now tackling.

Let

F(x) =




Fk(x)

Fnl(x)

Fε(x)


 = 0 , (5.104)

with x := (kT, εT)T := (k1, . . . , kN+1, ε1, . . . , εN+1)T, be the nonlinear system arising from
the discretisation of (2.136), (2.138) and (2.137), with the derivative of the velocity field
(dU/dy)(y), in (2.136) and (2.137), assumed to be known exactly from U . As in §5.2.1,
in order to show that Newton’s method for (5.104) converges robustly with respect to h+→0,
we will first design a special combination of affine covariant and affine contravariant transfor-
mations of (5.104) and prove that, under appropriate conditions on the size of the mesh and on
(dU/dy)(y), there exists a neighbourhood of the true solution where the Jacobian of the trans-
formed system remains bounded with bounded inverse as h+→0. The robustness of Newton’s
method for (5.104) will then follow from its affine invariant properties.

In (5.104), we have that:

(Fk(x))i = c(U, kh, εh, φi) , i = 1, . . . , N + 1 , (5.105)

Fnl(x) = ε1 − C
3/4
µ

κ

k
3/2
1

h+
, (5.106)

and
(Fε(x))i = d(U, kh, εh, φi) i = 2, . . . , N + 1 , (5.107)

with the forms c and d defined respectively in (2.133) and (2.134). We now introduce the
diagonal matrix

B :=




IN+1

1/y1
. . .

1/yN+1


 , (5.108)

and the following combination of affine covariant and affine contravariant transformations of
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the system (5.104):

G(x̃) := B−1F(Bx̃) =




Gk(x̃)

Gnl(x̃)

Gε(x̃)


 = 0 , (5.109)

with

x̃ = B−1x = B−1(kT, εT)T =: (kT, ε̃T)T = (5.110)

= (k1, . . . , kN+1, ε̃1, . . . , ε̃N+1)T .

Similarly to (5.71)-(5.72), the transformations (5.109)-(5.110) involve a scaling both of the
equations corresponding to the ε-freedoms and of the nodal values of εh, while the equations
corresponding to the k-freedoms and the nodal values of kh are kept unchanged.

The components of G(x̃) in (5.109) can then be expressed as:

(Gk(x̃))i = c(U, kh, S(ε̃h), φi) , i = 1, . . . , N + 1 , (5.111)

Gnl(x̃) = ε̃1 − C
3/4
µ

κ
k

3/2
1 , (5.112)

(Gε(x̃))i = yi d(U, kh, S(ε̃h), φi) , i = 2, . . . , N + 1 . (5.113)

with S(ε̃h) defined in (5.73).
As before, no constant terms in the scaled “nodal law” (5.112) depend on h+, and we have:

Lemma 5.2.7. Assume that there exist strictly positive constants C, C1, C2 independent of h+

such that
hj

yj
≤ C , j = 1, 2, . . . , N (5.114)

and that

C1 ≤
yj

dU

dy
(y)

 ≤ C2 , y ∈ ej = [yj , yj+1] , j = 1, 2, . . . , N , (5.115)

then Gk(x̃) and Gε(x̃) (respectively first and third component of G(x̃) in (5.109)) are rational

functions of x̃ with coefficients which are bounded independently of h+ as h+→0.

It should be remarked that (5.115) can be regarded as a very natural property of dU/dy. In
fact dU/dy resembles closely the function 1/y in a neighbourhood of y = h+ (this is due to
the boundary condition (2.51) and is discussed in §2.4, see (2.72)), and can be expected to vary
smoothly away from the artificial wall. Also to clarify the need for (5.115), we now prove that,
for each i = 2, . . . , N +1, (Gε(x̃))i (see (5.113)) is a rational function of x̃ with coefficients
which do not blow up or become arbitrarily small as h+ → 0. This will be done following
the pattern of the proof of Lemma 5.2.2: first (5.113) is expressed as a sum of integrals over
the elements ej = [yj , yj+1] containing the node yi, then each element ej is mapped onto the
canonical interval [−1, 1] and finally the constant terms in the transformed elemental integrals
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are shown to be bounded independently of h+→ 0. The same strategy applied to (5.111) will
yield the proof of Lemma 5.2.7.
Proof of Lemma 5.2.7. Simply by replacing Uh with U in (5.80) and (5.81), we get the follow-
ing expression for (5.113) as a sum of elemental integrals:

(Gε(x̃))i =
∑

j:yi∈ej

yi d
ej (U, kh, S(ε̃h), φi) (5.116)

with

yi g
ej

i (U, kh, S(ε̃h)) = yi

∫

ej

{
Cµ

σε

(kh)2

S(ε̃h)
dS(ε̃h)

dy

dφi

dy
−

−Cε1Cµ

(
dU

dy

)2

kh φi + Cε2
(S(ε̃h))2

kh
φi

}
dy . (5.117)

(Recall that dU/dy in (5.117) is assumed to be known exactely from U(y)). The interval
ej := [yj , yj+1] is now mapped onto the canonical interval [−1, 1], through the affine transfor-
mation (5.82), and by using (5.84), (5.85), (5.88), (5.89), and (5.91), we have that (5.117) is
transformed into:

yi d
ej (U, k̂h, Ŝ(ε̃h), Nα) =

yi

yj(1)

∫

[−1,1]

{
2Cµ

σε

(
(k̂h(η))2

Ŝ(ε̃h)(η)

)(
dŜ(ε̃h)

dη

)
dNα

dη

yj(1)

hj
−

−Cε1

2
Cµ

(
dU

dy
(y(η))

)2

k̂h(η)Nα(η) yj(1)hj +
Cε2

2
(Ŝ(ε̃h)(η))2

k̂h(η)
Nα(η)

hj

yj(1)

}
dη . (5.118)

By multiplying (dU/dy)(y(η)) in (5.118) by:

1 :=
yj(1)

yj(1)
,

(5.118) can be rearranged into:

yi d
ej (Ûh, k̂h, Ŝ(ε̃h), Nα) =

yi

yj(1)

∫

[−1,1]

{
2Cµ

σε

(
(k̂h(η))2

Ŝ(ε̃h)(η)

)(
dŜ(ε̃h)

dη

)
dNα

dη

yj(1)

hj
−

−Cε1

2
Cµ

(
yj(1)

dU

dy
(y(η))

)2

k̂h(η)Nα(η)
hj

yj(1)
+

Cε2

2
(Ŝ(ε̃h)(η))2

k̂h(η)
Nα(η)

hj

yj(1)

}
dη . (5.119)

The constant coefficients in (5.119) are now shown to be bounded independently of h+→0. In
(5.119), in addition to the terms in (5.93), the only other coefficient which could have a strong
dependence on h+ is

yj(1)
dU

dy
(y(η)) = yj

dU

dy
(y(η)) , η ∈ [−1, 1] ,

but this is bounded because of (5.115). ¤
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It is not difficult to see that under the assumption of Lemma 5.2.7, the results of Corollary
5.2.3 and Lemma 5.2.4 can also be obtained in the case we are investigating, therefore we have:

Theorem 5.2.8. Let the assumption of Lemma 5.2.7 hold, and suppose that there exists a

constant b independent of h+ such that

det(G′(x̃∗)) > b . (5.120)

Then Newton’s method for (5.109) is robust with respect to h+→0.

The robustness of Newton’s method for (5.104) follows from its affine covariant and con-
travariant properties as in Theorem 5.2.6.

Numerical experiments

Algorithm 5.2.1 has also been used to test the robust convergence of Newton’s method for the

finite element system (5.104). This has P =2(N + 1) equations in both cases of Couette and
Poiseuille flow. It should also be remarked that in order to assemble (5.104), it is necessary
to evaluate the derivative of the velocity field at the quadrature points (to see this observe
that dU/dy appears in the expression (5.116)-(5.117) for (Gε(x̃))i). Both for Couette and
Poiseuille flow, we have used the element-wise derivative of the Uh-solution component to the
full finite element system (5.66), as (approximate) expression for dU/dy.

Similarly to before, for the sequence {10−1, 10−2, 10−3, 10−4} of decreasing values of
h+, the size of the convergence ball of Newton’s method has been estimated on different dis-
cretisations of the domain [h+, 1]. For Couette flow (see Table 5.6), we have considered the
equidistributed mesh (3.101), the uniform mesh and the exponentially graded mesh (3.107)
(again, α has been chosen ad “hoc” to minimize ‖εh − ε∗‖2). In the case of Poiseuille flow
(see Table 5.7), we have used the equidistributed mesh (3.101) and the uniform mesh. From
the numerical results it is clear that on the equidistributed and exponentially graded meshes,
the size of the ball of convergence of Newton’s method is independent of h+, while on the uni-
form mesh it shrinks to zero for small values of h+, see Table 5.6 and Table 5.7. As argued in
§5.2.1, these results can be explaind considering that, for all h+ =10−1, . . . , 10−4, the equidis-
tributed and exponentially graded meshes, with 64 and 128 elements, can satisfy (5.114) for a

sufficienty small constant C,while the uniform mesh cannot meet the same condition with the
number of elements considered (see (5.79) for an estimate of the number of elements needed
by the uniform mesh to satisfy (5.114)).

Comparing Table 5.4 and Table 5.5 with Table 5.6 and Table 5.7, it becomes clear that,
when applied to the discretised k-ε equations with given velocity field, Newton’s method has a
bigger ball of convergence than when applied to the full U -k-ε system. This may suggest that
an iterative scheme which exploits the decoupling between dynamical and model equations
will perform better than Newton’s method for the system of fully coupled equations. But, we
will see in §5.3 that this is not the case and that Newton’s method should be the method of
choice for the RANS and k-ε equations.
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Algorithm 5.2.1 has also been used to test the robustness of Newton’s method applied to
the 2D k-ε equations for Couette flow, when the domain [0, 1]×[h+, 1] is discretised through
the tensor product of meshes obtained by using (3.101) and (3.107) in the y-direction and a
uniform mesh in the x-direction, see Table 5.8. Similarly to the 1D case, the performances of
Newton’s method on the equidistributed and exponentially graded meshes are far better than on
the uniform mesh, where, for the number of elements considered, ρ=0 when h+ =10−3, 10−4.

On all meshes the size of the ball of convergence appears to be particularly small and on the
equidistributed and exponentially graded meshes with h+ = 10−2, 10−3, 10−4, it is slightly
smaller is than when h+ = 10−1, but does not change significantly when h+ is reduced from
10−3 to 10−4.

Finally, we discuss the experimental results on the convergence of the Newton’s sequence
{xn := ((kn)T, (εn)T)T} for the discretised 1D k-ε equations. For different initial guesses of
the form x0 =x∗+ρv, as in (5.103), we have measured the rate of convergence of the sequence
{xn} both in the standard infinity-norm and in the weighted norm ‖ · ‖B−1 := ‖B−1( · )‖∞,
with B defined in (5.108). As already noticed for the reduced 2×2 system (see Observation
5.1.4, Proposition 5.1.6, Table 5.1 and Table 5.2) we have observed that

‖xn+1 − x∗‖∞
‖xn − x∗‖2∞

≤ O(h+)

and that
‖xn+1 − x∗‖B−1

‖xn − x∗‖2
B−1

≤ K

with K independent of h+. In Table 5.9, for a specific vector v, we present the result in the
case of Couette flow when the equidistributed mesh with 32 elemets is used and ρ = 22. We
have also monitored the relation between the errors at the artificial wall and, as for the reduced
2×2 system, it turns out that:

|(εn)1−(ε∗)1|
|(kn)1−(k∗)1| ≤ O

(
1

h+

)
.

5.3 An inner-outer iteration

We now give experimental and analytical evidence for the assertation that Newton’s method
for the system of fully coupled RANS and k-ε equations should be preferred to the commonly
used iterative scheme based on the decoupling of the RANS equations from the k-ε system.
The latter method is at the basic nonlinear solver implemented in the industrial finite element
code FEAT and we will refer to it as “inner-outer iteration”.

This section is organized as follows. We will first explain how the inner-outer iteration can
be interpreted as an approximation to Newton’s algorithm, then present the numerical experi-
ments which show that its performances deteriorate dramatically as h+ is decreased (§5.3.1).
Finally we prove that the ball of convergence of the inner-outer iteration applied the to a simple
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1D COUETTE FLOW

MESH (64 ELEMENTS) MESH (128 ELEMENTS)

h+ EQUIDIST. UNIFORM EXPONENT. EQUIDIST. UNIFORM EXPONENT.

10−1 25≤ρ<26 27≤ρ<28 24≤ρ<25 23≤ρ<24 25≤ρ<26 24≤ρ<25

10−2 24≤ρ<25 31≤ρ<32 24≤ρ<25 25≤ρ <26 30≤ρ <31 24≤ρ <25

10−3 24≤ρ<25 ρ=0 25≤ρ<26 25≤ρ<26 22≤ρ<23 24≤ρ<25

10−4 25≤ρ<26 ρ=0 25≤ρ<26 25≤ρ<26 ρ=0 24≤ρ<25

Table 5.6: Couette flow: experimental estimates of the radius ρ of the convergence ball of Newton’s
method applied to the discretised 1D k-ε equations, for a sequence of decreasing values of h+.

1D POISEUILLE FLOW

MESH (64 ELEMENTS) MESH (128 ELEMENTS)

h+ EQUIDIST. UNIFORM EQUIDIST. UNIFORM

10−1 15 ≤ ρ < 16 14 ≤ ρ < 15 14 ≤ ρ < 15 10 ≤ ρ < 11

10−2 14 ≤ ρ < 15 15 ≤ ρ < 16 16 ≤ ρ <17 13 ≤ ρ <14

10−3 14 ≤ ρ < 15 ρ=0 14 ≤ ρ < 15 13 ≤ ρ < 14

10−4 12 ≤ ρ < 13 ρ=0 13 ≤ ρ < 14 ρ=0

Table 5.7: Poiseuille flow: experimental estimates of the radius ρ of the convergence ball of Newton’s
method applied to the discretised 1D k-ε equations, for a sequence of decreasing values of h+.
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2D COUETTE FLOW (ρ̄ := ρ/10−2)

MESH (10×32 ELEMENTS) MESH (10×64 ELEMENTS)

h+ EQUIDIST. UNIFORM EXPONEN. EQUIDIST. UNIFORM EXPONEN.

10−1 2.7≤ ρ̄<2.9 3.7≤ ρ̄<4.0 2.0≤ ρ̄<2.1 2.5≤ ρ̄<2.7 3.7≤ ρ̄<4.0 2.9≤ ρ̄<3.1

10−2 2.0≤ ρ̄<2.2 2.5≤ ρ̄<2.7 1.6≤ ρ̄<1.7 1.7≤ ρ̄ <1.9 3.7≤ ρ̄<4.0 2.0≤ ρ̄ <2.1

10−3 1.1≤ ρ̄<1.2 ρ=0 1.2≤ ρ̄<1.3 1.4≤ ρ̄<1.5 ρ=0 2.0≤ ρ̄<2.1

10−4 1.2≤ ρ̄<1.3 ρ=0 1.4≤ ρ̄<1.5 1.1≤ ρ̄<1.2 ρ=0 1.2≤ ρ̄<1.3

Table 5.8: Experimental estimates of the radius ρ of the convergence ball of Newton’s method applied
to the discretised 2D k-ε equations, for a sequence of decreasing values of h+.

model problem (obtained by restricting the RANS and k-ε equations to the artificial wall and
neglecting diffusion) has null radius. (Below, we will initially use the notation introduced in
§2.7).

We now describe the inner-outer iteration for the system (2.142). Given the initial guess
((U0)T, (V0)T, (P0)T, (k0)T, (ε0)T)T, the inner-outer iteration consists of the following steps:

Algorithm 5.3.1.

Step 1
i. Compute the discretised turbulent viscosity (see (2.143))

(νh
t )n = Cµ

(φ · kn)2

φ · εn
.

ii. Solve∗ the discretised dynamical equations




FU(Un+1,Vn+1,Pn+1, (νh
t )n)

FV(Un+1,Vn+1,Pn+1, (νh
t )n)

FP(Un+1,Vn+1)


 = 0 (5.121)

for
(
(Un+1)T, (Vn+1)T, (Pn+1)T

)T.

Step 2
i. Given ((Un+1)T, (Vn+1)T)T from Step 1, solve∗ the discretised turbulence model equa-

tions 


Fk(Un+1,Vn+1,kn+1, εn+1)

FNL(kn+1, εn+1)

Fε(Un+1,Vn+1,kn+1, εn+1)


 = 0

for kn+1 and εn+1.
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x0 = x∗ + ρv , ρ = 22

h+ = 10−1 h+ = 10−2

n
‖xn−x∗‖∞
‖xn−1−x∗‖2∞

‖xn−x∗‖B−1

‖xn−1−x∗‖2
B−1

|(εn)1−(ε∗)1|
|(kn)1−(k∗)1|

‖xn−x∗‖∞
‖xn−1−x∗‖2∞

‖xn−x∗‖B−1

‖xn−1−x∗‖2
B−1

|(εn)1−(ε∗)1|
|(kn)1−(k∗)1|

0 1.12 1.12

1 7.96×10−4 8.41×10−3 8.83×10 8.42×10−5 9.77×10−3 6.14×102

2 9.04×10−4 1.36×10−2 2.97×10 9.69×10−5 1.29×10−2 2.95×102

3 9.26×10−4 1.61×10−2 9.60 1.00×10−4 1.59×10−2 1.55×102

4 8.60×10−4 1.79×10−2 3.10×10 8.98×10−5 1.79×10−2 1.82×102

5 8.61×10−4 1.81×10−2 3.00×10 9.00×10−5 1.81×10−2 2.57×102

6 9.00×10−5 1.81×10−2 2.56×102

h+ = 10−3 h+ = 10−4

n
‖xn−x∗‖∞
‖xn−1−x∗‖2∞

‖xn−x∗‖B−1

‖xn−1−x∗‖2
B−1

|(εn)1−(ε∗)1|
|(kn)1−(k∗)1|

‖xn−x∗‖∞
‖xn−1−x∗‖2∞

‖xn−x∗‖B−1

‖xn−1−x∗‖2
B−1

|(εn)1−(ε∗)1|
|(kn)1−(k∗)1|

0 1.12 1.12

1 8.41×10−6 1.05×10−2 5.63×103 8.38×10−7 1.11×10−2 5.48×104

2 9.82×10−6 1.33×10−2 2.94×103 9.86×10−7 1.31×10−2 2.94×104

3 1.03×10−5 1.56×10−2 1.67×103 1.03×10−6 1.56×10−2 1.73×104

4 9.01×10−6 1.78×10−2 1.78×103 9.01×10−7 1.77×10−2 1.78×104

5 9.04×10−6 1.81×10−2 1.78×103 9.05×10−7 1.80×10−2 6.51×104

6 9.04×10−6 1.81×10−2 3.07×103 9.05×10−7 1.80×10−2 3.28×104

Table 5.9: 1D Couette flow: rates of convergence of Newton’s sequence {xn := ((kn)T, (εn)T)T}
for (5.104) and proportionality between the errors at the artificiall wall in each of the two components
of the iterate xn.

Step 3
i. Go back to Step 1 unless

‖Un+1 −Un,Vn+1 −Vn,Pn+1 −Pn,kn+1 − kn, εn+1 − εn‖ < τ

for some tolerance τ (i.e. overall convergence is achieved).

In the above, solve∗ indicates the application of Newton’s method, and, in order to empha-
size the fact that the turbulence variables appear in the RANS equations only through the eddy
viscosity (see (2.103)), we have made (νh

t )n an argument of FU (and of FV) , see (5.121),
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5.3. An inner-outer iteration

instead of writing FU(Un+1,Vn+1,Pn+1,kn, εn) (and similarly for FV). This abuse of the
notation will be repeated in the following.

The inner-outer iteration is widely used because it appears as a rather natural way to solve
the finite element system (2.142); in fact the decoupling of dynamical and model equations
makes the RANS equations with specified νt (see Step 1 of the algorithm) formally identical
to the Navier-Stokes equations for variable-viscosity laminar flows, and these flows have been

successfully treated using what are now standard techniques. That is, the Navier-Stokes equa-
tions are discretised using the Galerkin finite element method and the resulting set of algebraic
equations is tackled by means of Newton’s method. After Step 1, it is then practical to dis-
cretise the turbulence model equations by the Galerkin finite element method, approximating
the variables k and ε by the velocity basis functions which are already available, and this gives
Step 2 of the inner-outer iteration. From a computational point of view, the inner-outer iteration
clearly presents the advantage of requiring the inversion of matrices which are sensibly smaller
than those involved in Newton’s method for the system of fully coupled equations. But, in the
following two subsections, we will show that the method of choice for solving the discretised
RANS and k-ε equations should really be Newton’s method, or at least a better approximation
of the full Newton method than the inner-outer iteration presented here.

We now briefly discuss how one step of the inner-outer iteration can be seen as an approx-
imation to one step of Newton’s method applied to the full finite element system (2.142). As
seen in §4.1, Newton’s method for improving a guess

x̄ :=(ŪT, V̄T, P̄T, k̄T, ε̄T)T (5.122)

to the solution x∗ :=((U∗)T, (V∗)T, (P∗)T, (k∗)T, (ε∗)T)T of (2.142), requires that the linear
system

F′(x̄)S̄ = −F(x̄) , (5.123)

is solved for S̄, and the new approximation to x∗ is then given by the update:

z̄ = x̄ + S̄ , (5.124)

and satisfies:
F′(x̄)z̄ = F′(x̄)x̄− F(x̄) . (5.125)

At any point x, we have that the Jacobian matrix F′(x) (which appears in (5.123) and (5.125)
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evaluated at x= x̄) can be expressed as:

F′(x) =




(FU)U(x) (FU)V(x) (FU)P(x) (FU)k(x) (FU)ε(x)

(FV)U(x) (FV)V(x) (FV)P(x) (FV)k(x) (FV)ε(x)

(FP)U(x) (FP)V(x) 0 0 0

(Fk)U(x) (Fk)V(x) 0 (Fk)k(x) (Fk)ε(x)

0 0 0 (Fnl)k(x) (Fnl)ε(x)

(Fε)U(x) (Fε)V(x) 0 (Fε)k(x) (Fε)ε(x)




,

where, for example,

[(FU)k(x)]ij :=
∂(FU)i

∂(k)j
(x) ,

and similarly the other terms. Now, note that if, at a first order approximation, the coupling be-
tween the dynamical and the turbulence variables is neglected, then F′(x) can correspondingly
be approximated by:

F̃′(x) :=




(FU)U(x) (FU)V(x) (FU)P(x) 0 0

(FV)U(x) (FV)V(x) (FV)P(x) 0 0

(FP)U(x) (FP)V(x) 0 0 0

0 0 0 (Fk)k(x) (Fk)ε(x)

0 0 0 (Fnl)k(x) (Fnl)ε(x)

0 0 0 (Fε)k(x) (Fε)ε(x)




(5.126)

=:




0 0

F̃′D(x) 0 0

0 0

0 0 0

0 0 0 F̃′M (x)

0 0 0




(5.127)

and this then makes it possible to approximate the full Newton’s iteration (5.125) for z̄, by
a sequence of Newton’s steps for the dynamical variables only, followed by a sequence of
Newton’s steps for the turbulence variables alone, as now briefly explained. (In (5.127), F̃′D(x)
and F̃′M (x) clearly represent the top left and bottom right block of (5.126), and are respectively

due to the coupling between the dynamical variables only and between the turbulence model
variables alone).

Once the approximation (5.126) is in place, the update to the dynamical part (ŪT, V̄T, P̄T)T

of the guess (5.122), is determined by the Newton’s sequence {z̃i
D :=((Ũi)T, (Ṽi)T, (P̃i)T)T}

147



5.3. An inner-outer iteration

such that:

F̃′D(z̃i
D, ν̄h

t )z̃i+1
D = F̃′D(z̃i

D, ν̄h
t )z̃i

D −




FU(z̃i
D, ν̄h

t )

FV(z̃i
D, ν̄h

t )

FP(z̃i
D)


 , i = 0, 1, 2, . . . (5.128)

with

ν̄h
t = Cµ

(φ · k̄)2

φ · ε̄ ,

and z̃0
D = (ŪT, V̄T, P̄T)T. If W̃ := (ŨT, ṼT)T is the converged value of the sequence

{z̃i
D}, then this new velocity field is substituted into the discretised k-ε equations, and these

are solved by Newton’s method in order to update the turbulence part (k̄T, ε̄T)T of the guess

x̄. This yields the sequence {z̃i
M :=((k̃i)T, (ε̃i)T)T} such that:

F̃′M (W̃, z̃i
M )z̃i+1

M = F̃′M (W̃, z̃i
M )z̃i

M −

 Fk(W̃, z̃i

M )

Fε(W̃, z̃i
M )


 , i = 0, 1, 2, . . . (5.129)

with z̃0
M =(k̄T, ε̄T)T.

(5.128) and (5.129 ) clearly correspond to Step 1 and Step 2 of Algorithm 5.3.1 and give an
update to (5.122) wich can be interpreted as an approximation to (5.124).

5.3.1 Numerical experiments

We now experimentally assess the properties of the inner-outer iteration by applying it to the
discretised 1D turbulent Couette flow and by comparing its performances with those of New-
ton’s method.

We will consider the continuous piecewise quadratic approximation of (2.129) (with G=0),
(2.136), (2.138) and (2.137), both on the equidistributed mesh (3.101) and on the exponentially
graded mesh (3.107), and will denote by

F(U,k, ε) =




FU (U,k, ε)

Fk(U,k, ε)

Fnl(U,k, ε)

Fε(U,k, ε)




= 0 , (5.130)

the resulting finite element system. Clearly, for the 1D case we are now considering with both
V =0 and p=0, Step 1 of the inner-outer iteration simply involves the solution of the system:

FU (Un+1,kn, εn) = 0 , (5.131)

for Un+1, while the overall convergence criterion (see Step 3 of Algorithm 5.3.1) becomes:

‖xn+1 − xn‖2 < τ , (5.132)
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where
xn =

(
(Un)T, (kn)T, (εn)T

)T
. (5.133)

Even if (5.131) is linear in Un+1 (to see this consider that (2.129) is linear in U ), we will
solve it by Newton’s method, this will converge to the solution of (5.131) in just one iteration,
independently of the initial guess.

In order to assess the convergence properties of the inner-outer iteration, we have per-
formed a numerical experiment of the same kind as that illustrated in Algorithm 5.2.1, that is
we have initialized the method with different guesses of the form:

x0 = x∗ + ρv

where ρ denotes a strictly positive number and the vector v is of the form:

v =
w

‖w‖∞

with w chosen so that its components are uniformly distributed over the interval [0, 1]. The nu-
merical tests have clearly shown that the inner-outer iteration performs far worse than Newton’s
method. In fact, it turns out that, for the same initial guesses for which Newton’s method con-
verges quadratically to the solution of (5.130), the inner-outer iteration either converges very
slowly, when h+ =10−1, 10−2, or fails to converge for h+ =10−3, 10−4. This is now discussed
by examining experimental results concerning the convergence history of ‖xn+1 − xn‖2 (on
whose size the convergence criterion is based, see (5.132)) and of ‖F(Un,kn, εn)‖2. The

results we will present below, obviously correspond also to a specific choice of the mesh
(equidistributed or exponentially graded) and of the vector v, but, we have observed that these
two parameters do not significantly affect the quality of the experimental outcomes. Therefore,
in the following, we will mainly emphasize the values of ρ and h+.

The convergence history of ‖xn+1−xn‖2 (with xn given in (5.133)) on the equidistributed
mesh (3.101) with 64 elements, for h+ =10−1 and ρ=0.12, is represented in the top pictures
of Figure 5.1. These plots clearly show that convergence to zero of the difference between two
consecutive iterates is extremely slow, in fact after 13 iterations ‖xn+1−xn‖2 =O(10−1) and it
takes 35 iterations in order for ‖xn+1−xn‖2 <τ =10−8 (for the same values of the parameters
Newton’s method meets the convergence criterion in 6 iterations, see also Table 5.4). The
bottom plots of Figure 5.2 represent the convergence history of the residual ‖F(Un,kn, εn)‖2,
this reduces considerably at the first iteration, but after 10 iterations is still O(10−4). The
performance of the inner-outer iteration worsens for h+ =10−3, 10−4. In fact, when h+ =10−3

there are values of ρ for which Newton’s method converges, but for which the inner-outer
iteration fails, and more dramatically, when h+ = 10−4, the inner-outer iteration will always
diverge no matter how small the value of ρ is. The top picture of Figure 5.2 shows the blow-
up in ‖xn+1 − xn‖2 when ρ = 0.25 and the domain [h+, 1], with h+ = 10−3, is discretised
by the equidistributed mesh (3.101) with 64 elements. The bottom plots show the behaviour

of the residual: this reduces at the first iteration and then increases, slowly but steadily (for
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Figure 5.1: Convergence history of ‖Un+1−Un,kn+1−kn, εn+1−εn‖2 (top) and ‖F(Un,kn, εn)‖2
(bottom), on the equidistributed mesh (3.101) with 64 elements when h+ =10−1 and ρ=0.12

h+ = 10−3 and ρ = 0.25 Newton’s method attains convergence on the equidistributed mesh
with 64 elements, as it can be seen from Table 5.4).

5.3.2 Convergence analysis for a model problem

In order to get some insight into the properties of the inner-outer iteration applied to the RANS
and k-ε equations, we now study its convergence in the case of a special 3×3 algebraic sys-
tem of equations derived by restricting the RANS and k-ε equations to the artificial wall, and
neglecting diffusion. This simplified system reflects some of the key features of the full tur-
bulence model at y = h+, such as the predominance of source terms over diffusion in the
transport equation for k and the blow up of dU/dy and ε, as discussed in §2.4. We will show
that the solution to the reduced system is not a point of attraction for the iterates generated by
the inner-outer algorithm. This, obviously, does not represent an explanation of the numer-
ical results presented in §5.3.1, but, together with them, seriously challenges the efficacy of
the inner-outer iteration for the turbulence model we are considering. By contrast Newton’s
method for this 3×3 system always converges (provided the initial guess is close enough to the
true solution).
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Figure 5.2: Convergence history of ‖Un+1−Un,kn+1−kn, εn+1−εn‖2 (top) and ‖F(Un,kn, εn)‖2
(bottom), on the equidistributed mesh (3.101) with 64 elements when h+ =10−3 and ρ=0.25

The diffusionless k-equation and the behaviour of ε at y = h+ are given respectively in

(5.2):

−Cµ

(
dU

dy
(h+)

)2 (k(h+))2

ε(h+)
+ ε(h+) = 0 , (5.134)

and in (5.4):
ε(h+)− η α(k(h+))3/2 = 0 , (5.135)

where

α :=
C

1/2
µ u∗
κ

1
h+

, η :=
C

1/4
µ

u∗
.

At y = h+, the velocity field U must satisfy the boundary condition (2.42), which, using
the above definition of η, can be expressed as:

C1/2
µ

(k(h+))2

ε(h+)
dU

dy
(h+) =

1
η2

. (5.136)

We then consider the system of nonlinear equations (5.136), (5.134) and (5.135) for the
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variables G+ :=(dU/dy)(h+), k+ :=k(h+) and ε+ :=ε(h+):





FG+(G+, k+, ε+) := C
1/2
µ

k2
+

ε+
G+ − 1

η2
= 0

Fk+(G+, k+, ε+) := −Cµ G2
+

k2
+

ε+
+ ε+ = 0

Fε+(k+, ε+) := ε+ − η α k
3/2
+ = 0

(5.137)

with solution

(G∗+, k∗+, ε∗+
)T =

(
α

C
1/2
µ

,
1
η2

,
α

η2

)T

, (5.138)

and apply to it the inner-outer iteration. We have:

Lemma 5.3.1. The inner-outer iteration applied to the system (5.137) produces the sequences:

Gn+1
+ =

1

C
1/2
µ η2

εn
+

(kn
+)2

, (5.139)

kn+1
+ =

1
η6α2

(εn
+)2

(kn
+)4

, (5.140)

εn+1
+ =

1
η8α2

(εn
+)3

(kn
+)6

, (5.141)

n=0, 1, 2 . . .

Proof. Solving the dynamical equation:

FG+(Gn+1
+ , kn

+, εn
+) := C1/2

µ

(kn
+)2

εn
+

Gn+1
+ − 1

η2
= 0

for Gn+1
+ yields (5.139). It can then be easily verified that (5.140)-(5.141) is the solution to the

equations: 



Fk+(Gn+1
+ , kn+1

+ , εn+1
+ ) = 0

Fε+(kn+1
+ , εn+1

+ ) = 0

with Gn+1
+ given in (5.139).

From (5.139)-(5.140)-(5.141), we observe that, for a given initial guess (k0
+, ε0

+), the itera-
tion (5.139) for the dynamical variable G+ is decoupled from the sequences (5.140)-(5.141) for
the turbulence variables (k+, ε+), and we express (5.140)-(5.141) in the form of the following
fixed-point iteration


 kn+1

+

εn+1
+


 = G

([
kn

+

εn
+

])
:=


 g1(kn

+ , εn
+)

g2(kn
+ , εn

+)


 (5.142)
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with



g1(t, s)

g2(t, s)


 :=




1
η6α2

s2

t4

1
η8α2

s3

t6


 . (5.143)

Clearly (see (5.138))
(k∗+, ε∗+)T =(1/η2, α/η2)T (5.144)

is the fixed point of (5.142).
We will then prove that (5.138) is not a point of attraction for (5.139)-(5.140)-(5.141), by

showing that (5.144) is not a point of attraction for (5.142).
The following lemma indicates, in fact, that (5.144) may well not be a point of attraction

of the iteration (5.142).

Lemma 5.3.2. The spectral radius of G′(k∗+, ε∗+) is

ρ(G′(k∗+, ε∗+)) = 1 .

Proof. The Jacobian of G evaluated at the fixed point (1/η2, α/η2)T is

G′(k∗+, ε∗+) =




−4
2
α

−6α 3


 . (5.145)

The result then follows from the fact that the spectrum of (5.145) is σ(G′(k∗+, ε∗+)) = {0,−1},
as it can be easily verified.

We now prove that there does not exist an open ball S of (5.144) such that for any (k0
+, ε0

+)T∈
S, the iterates

{
(kn

+, εn
+)T

}
in (5.142) converge to (5.144).

We start with the following observation:

Lemma 5.3.3. The sequence (5.142)-(5.143) may be written as:





k1
+ =

1
η6α2

(ε0
+)2

(k0
+)4

kn+2
+ =

1
η4

1
kn+1

+

n = 0, 1 . . .





ε1
+ =

1
η8α2

(ε0
+)3

(k0
+)6

εn+2
+ =

α2

η4

1
εn+1
+

n = 0, 1 . . .

(5.146)

Proof. Using (5.140) and (5.141) we have:

kn+2
+ =

1
η6α2

(εn+1
+ )2

(kn+1
+ )4

=
1

η6α2

[
1

η8α2

(εn
+)3

(kn
+)6

]2 [
1

η6α2

(εn
+)2

(kn
+)4

]−4

= η2α2

[
(εn

+)2

(kn
+)4

]−1

=
1
η4

1
kn+1

+

,

153



5.3. An inner-outer iteration

and similarly:

εn+2
+ =

1
η8α2

(εn+1
+ )3

(kn+1
+ )6

=
1

η8α2

[
1

η8α2

(εn
+)3

(kn
+)6

]3 [
1

η6α2

(εn
+)2

(kn
+)4

]−6

= η4α4

[
(εn

+)3

(kn
+)6

]−1

=
α2

η4

1
εn+1
+

.

The result then follows.

We now give a necessary and sufficient condition for the convergence of the sequence {kn
+}

in (5.146).

Lemma 5.3.4. The sequence





k1
+ =

1
η6α2

(ε0
+)2

(k0
+)4

kn+2
+ =

1
η4

1
kn+1

+

n = 0, 1 . . .

is convergent if and only if ε0
+ =η2α (k0

+)2. If the sequence converges, then its limit is 1/η2.

Proof. We will consider the subsequences cn := k
2(n+1)
+ and dn := k2n+1

+ , n = 0, 1, 2 . . ., and
show that

cn = η2α2 (k0
+)4

(ε0
+)2

∀n = 0, 1, 2 . . . (5.147)

and that

dn =
1

η6α2

(ε0
+)2

(k0
+)4

∀n = 0, 1, 2 . . . (5.148)

The result will then follow by observing that

cn =
1
η2

= dn ∀n = 0, 1, 2, . . . ⇔ ε0
+ = η2α (k0

+)2 ,

therefore
kn

+ =
1
η2

∀n = 1, 2, . . . ⇔ ε0
+ = η2α (k0

+)2 ,

whilst if ε0
+ 6=η2α (k0

+)2, then

cn = η2α2 (k0
+)4

(ε0
+)2

6= 1
η6α2

(ε0
+)2

(k0
+)4

= dn ,

and {kn
+} is not a convergent sequence.

We now show (5.147) by induction. We have:

c0 = k2
+ =

1
η4

1
k1

+

= η2α2 (k0
+)4

(ε0
+)2

.
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We now assume that cn =η2α2(k0
+)4/(ε0

+)2 and prove that this implies cn+1 =η2α2(k0
+)4/(ε0

+)2.
We have:

cn+1 = k
2(n+1)+2
+ =

1
η4

1

k
2(n+1)+1
+

= k
2(n+1)
+ = cn = η2α2 (k0

+)4

(ε0
+)2

.

This then proves (5.147). (5.148) can be similarly proved by induction.

A similar convergence result holds for the sequence {εn
+} in (5.146):

Lemma 5.3.5. The sequence





ε1
+ =

1
η8α2

(ε0
+)3

(k0
+)6

εn+2
+ =

α2

η4

1
εn+1
+

is convergent if and only if ε0
+ =η2α (k0

+)2. If the sequence converges, then its limit is α/η2.

Proof. It is not difficult to prove by induction that the subsequence an :=ε
2(n+1)
+ is such that:

an = η4α4 (k0
+)6

(ε0
+)3

∀n = 0, 1, 2, . . . (5.149)

and that the subsequence bn :=ε2n+1
+ is such that:

bn =
1

η8α2

(ε0
+)3

(k0
+)6

∀n = 0, 1, 2, . . . (5.150)

Similarly to the proof of Lemma 5.3.4, the result then follows from the fact that:

an =
α

η2
= bn ∀n = 0, 1, 2, . . . ⇔ ε0

+ = η2α (k0
+)2 ,

therefore:
εn
+ =

α

η2
∀n = 1, 2, . . . ⇔ ε0

+ = η2α (k0
+)2 ,

whilst if ε0
+ 6=η2α (k0

+)2, then

an = η4α4 (k0
+)6

(ε0
+)3

6= 1
η8α2

(ε0
+)3

(k0
+)6

= bn

and the sequence {εn
+} is not convergent.

We then have:

Theorem 5.3.6. The fixed point (5.144) is not a point of attraction for the iteration (5.142)-

(5.143).
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Figure 5.3: Curves in the (k0
+, ε0

+) plane representing the locus of initial guesses for which the se-
quence (5.151) converges to the fixed point (k∗+, ε∗+) (the point (0, 0) is excluded), for h+ = 10−1

(continuous line) and h+ =10−2 (dashed line).

Proof. From Lemmata 5.3.4, 5.3.5, we have that the iterates (5.142)-(5.143):




kn+1
+

εn+1
+


 =




1
η6α2

(εn
+)2

(kn
+)4

1
η8α2

(εn
+)3

(kn
+)6


 (5.151)

converge to the fixed point (5.144) if and only if ε0
+ = η2α (k0

+)2. Therefore there does not
exist an open ball S of (5.144) such that for any (k0

+, ε0
+)T ∈ S, the sequence

{
(kn

+, εn
+)T

}

converges to (5.144), that is (5.144) is not a point of attraction for (5.151) (see also Figure
5.3).

Theorem 5.3.6 finally implies the following result:

Theorem 5.3.7. The solution (α/C
1/2
µ , 1/η2, α/η2)T to (5.137) is not a point of attraction for

the iterates (5.139)-(5.140)-(5.141).
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Chapter 6

Fully developed turbulent flows in
expanding channels

The mesh grading towards the artificial wall (see (3.101)) which greatly improves the accuracy
of the numerical solution and the robustness of Newton’s method in the finite element compu-
tation of turbulent flows in straight channels (see respectively §3.7 and §5.2), is now tested in
the much more challenging and practical context of fully developed turbulent flows in expand-
ing channels. We will pursue this by solving the RANS and k-ε equations on expanding flow
domains discretised by orthogonal meshes which, in the direction perpendicular to the artifi-

cial wall (now a curved boundary), are graded as (3.101). We will see that, even in the case of
widely expanded channels, on such meshes it is possible to resolve, accurately and practically,
complex flow features, such as recirculation and the blow-up of the ε-solution component as
h+→0.

This chapter is organised as follows. In §6.1.1 we discuss the properties of the transforma-
tion we have used in order to construct expanding channels from straight ones, in §6.1.2 we
present the specific weak form of the RANS and k-ε equations we have considered, together
with the boundary conditions and in §6.1.3 we describe the numerical strategy employed in
the finite element computations. Finally in §6.2.1 we briefly explain the technique we have
adopted to generate graded, boundary-fitted, orthogonal meshes (this is described in details in
[63]) and in §6.2.2 we discuss the outcome of the numerical experiments.

6.1 Formulation of the problem

Now, first we discuss the properties of the mapping we have used to generate expanding flow
domains from a straight channel (see §6.1.1), then give the boundary conditions for the vari-
ables u, k, ε and recast the RANS and k-ε equations into the weak form. This will differ from
the one presented in Chapter 2 mainly in the fact that it will contain the normal component of

the stress vector at the artificial wall as new variable and, therefore, will also comprise an extra
equation (see §6.1.2).
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6.1. Formulation of the problem

6.1.1 The flow domain

The RANS and k-ε equations (2.1)-(2.4), together with appropriate boundary conditions (see
§6.1.2), will be considered in the domain Ω which consists of the lower half of a symmetric

expanding channel. This, as explained below, is generated by a special mapping of the lower
half of the symmetric straight channel introduced in §2.1, which is represented by the domain
Ω̃ = [0, L]× [h+, d] and whose boundary will be denoted by Γ̃ = Γ̃in ∪ Γ̃cl ∪ Γ̃out ∪ Γ̃w (in
§2.1 the corresponding notation without “tilde” is used). We now define the mapping on Ω̃ and
discuss its properties. Let (ξ, η) be the Cartesian coordinates in Ω̃, we consider the following
continuous, one-to-one transformation (x(ξ, η), y(ξ, η)) from Ω̃ onto Ω:

x(ξ, η) := ξ

(6.1)
y(ξ, η) := η −

(α

2

)
(d− η)(tanh(β(ξ − γ)) + 1) ,

with α, β and γ parameters such that α ≥ 0, β ≥ 1, and γ > 0. The precise role of these
parameters will be examined in the following, we now discuss the shape of Ω by determining
an expression for its boundary Γ. This is given by the transformation of Γ̃ through the mapping
(6.1), and, like Γ̃, can be divided into four parts: Γ=Γin ∪Γcl ∪Γout ∪Γw, with Γin the image
of Γ̃in and similarly the other parts. The curves which Γ consists of can be expressed as now
shown.

Property 6.1.1. If γ À 1, then, at a first order approximation, Γin coincides with Γ̃in and is

therefore given by

x = 0 , y ∈ [h+, d] . (6.2)

Proof. Applying the mapping (6.1) to Γ̃in, given by ξ=0 and η∈ [h+, d], yields:

x = 0
(6.3)

y = η −
(α

2

)
(d− η)(tanh(−β γ) + 1) , η∈ [h+, d] .

Now, since β≥1, for γÀ1 we have that:

tanh(−β γ) ≈ −1 ,

and using this in (6.3) gives:

x = 0
(6.4)

y ≈ η , η∈ [h+, d] .

That is, at a first order approximation, (6.1) maps Γ̃in into itself.

In practical computations we have used γ = 10, thus, for all β ≥ 1, we have: −1 <

tanh(−β γ)=tanh(−10 β)≤tanh(−10)=−0.9999999958.
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6.1. Formulation of the problem

Property 6.1.2. Γcl coincides with Γ̃cl and is then given by

x ∈ [0, L] , y = d .

Proof. The result follows from applying (6.1) to Γ̃cl, characterized by ξ∈ [0, L] and η=d.

We also have:

Property 6.1.3. If (L− γ)À1, then, at a first order approximation, Γout is given by:

x = L , y ∈ [h+ − α(d− h+), d] . (6.5)

Proof. First we observe that the mapping (6.1) transforms Γ̃out, given by ξ=L and η∈ [h+, d],
into:

x = L
(6.6)

y = η −
(α

2

)
(d− η)(tanh(β(L− γ)) + 1) , η∈ [h+, d] .

Now, since β≥1, when (L− γ)À1, we have that

tanh(β(L− γ)) ≈ 1 ,

and using this in (6.6) yields:

x = L
(6.7)

y = (1 + α)η − α d , η∈ [h+, d] ,

from which the result follows.

In practical computations we have used L − γ = 240 and this, in the machine arithmetic,
gives tanh(β(L − γ)) = 1, for all β ≥ 1. From (6.5) it is easy to see that, for all α > 0, Γout

is wider then Γ̃out, in fact the first has width (1 + α)(d − h+) whilst the second has width
(d−h+). Finally, simply by applying the mapping (6.1) to Γ̃w, given by ξ∈ [0, L] and η=h+,
we have:

Property 6.1.4. Γw, the image of Γ̃w through (6.1), is represented by the curve (x, b(x)) with

x∈ [0, L] , b(x) := h+ −
(α

2

)
(d− h+)(tanh(β(x− γ)) + 1) . (6.8)

The domain Ω is plotted in Figure 6.1.
We now discuss how α, β and γ affect the geometry of the channel. The parameter α

controls the expansion of the channel. In fact, it is easy to see that for α=0, (6.1) becomes the
identity mapping and Ω then coincides with Ω̃ for all values of β and γ; it also makes sense to
define the expansion factor r as the ratio between the widths of the outlet Γout and of the inlet
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Figure 6.1: The expanding channel, for α=1.5, β=1.7 and γ =10.

Γin, and from their first order expressions (6.5) and (6.2) we have:

r ≈ d− h+ + α(d− h+)
d− h+

=
(1 + α)(d− h+)

d− h+
= 1 + α . (6.9)

The parameter γ, instead, represents the x-coordinate of the point where the slope of the
boundary Γw is maximum. To see this note that from (6.8) the gradient of the profile of Γw is:

b′(x) = −α

2
(d− h+)

β

[cosh(β(x− γ))]2
, (6.10)

and, clearly, |b′(x)| is maximum when x=γ. In particular, for x=γ we have:

b′(γ)
 =

α

2
(d− h+) β , (6.11)

which shows that, for fixed α, the slope of Γw increases with β≥1.
As will be discussed in more detail in §6.1.3, we will compute a numerical solution to the

k-ε model for flows in expanding channels, using continuation from the straight channel α=0,
when a numerical solution to Poiseuille flow can confidently be computed starting from the
analytical solution to Couette flow, as discussed in §2.5.

We now give the expressions for the unit tangent vector t and the unit outward normal
vector n to the artificial wall Γw, these will be needed in the boundary conditions and in the
weak form of the equations, which are presented in the following subsection. Recalling, from
Property 6.1.4, that Γw is represented by the curve (x, b(x)), with b(x) specified in (6.8), we
have

t :=
(1, b′(x))T√
1 + (b′(x))2

, n :=
(b′(x),−1)T√
1 + (b′(x))2

, (6.12)

with b′(x) given in (6.10). Note that, in the case of a straight channel, Γw is a straight line
along the x-direction and b′(x) = 0 for all x ∈ [0, L], therefore from (6.12) we consistently
obtain: t=(1, 0)T =ex and n=(0,−1)T =−ey.
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6.1.2 Boundary conditions and weak form

We now discuss the boundary conditions for the dynamical and turbulent variables and the
weak form of the RANS and k-ε equations.

For given G0 > 0, let Up(y), kp(y) and εp(y) be a solution to the boundary value problem
(2.94)-(2.102) describing Poiseuille flow in straight channels, and let up =(Up(y), 0)T. Then,
at the inlet of the channel, for (x, y) ∈ Γin, we impose the following Dirichlet conditions for
the variables u=(U, V ), k and ε:

u = up(y) , (6.13)

k = kp(y) , (6.14)

ε = εp(y) , (6.15)

(in practical computations the inlet profiles are obtained by a continuous piecewise linear
interpolation of the numerical solution to (2.94)-(2.102) with G0 =12, computed by the contin-
uation strategy discussed in §2.5, see the plots on the left-hand side of Figure 6.4 and of Figure
6.8). At the centre line, for (x, y)∈Γcl, we prescribe the symmetry boundary conditions:

∂U

∂y
= 0 , (6.16)

V = 0 , (6.17)

∂k

∂y
= 0 , (6.18)

∂ε

∂y
= 0 , (6.19)

and at the outlet of the channel, for (x, y)∈Γout, we impose:

p− νT
∂U

∂x
= 0 , (6.20)

∂V

∂x
= 0 , (6.21)

∂k

∂x
= 0 , (6.22)

∂ε

∂x
= 0 . (6.23)

Finally we give the boundary conditions at the artificial wall and explain their meaning. For
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(x, y)∈Γw, we have:

τw ·t =
κC

1/4
µ k1/2

ln
[
(C1/4

µ k1/2 h+)/ν
]

+ κC
u·t , (6.24)

u·n = 0 , (6.25)

∇k ·n = 0 , (6.26)

ε =
C

3/4
µ

κ

k3/2

h+
. (6.27)

Above, t and n are respectively the tangential and normal vector to Γw (see (6.12)), h+, in
(6.24) and (6.27), represents the perpendicular distance of the artificial from the physical wall,
and τw, in (6.24), is the stress vector at Γw:

τw := σ ·(−n)
∣∣∣∣
Γw

, (6.28)

with σ the total stress tensor defined in (2.2). The boundary condition (6.24) states that at the
artificial wall the tangential component of the force per unit area and mass exerted by the fluid
is proportional to the tangential component of the velocity field. It represents a generalization
of (2.121) and reduces to it in the case of a straight channel geometry, as next shown. At the

artificial wall of a straight channel, we have that

u·t
∣∣∣∣
Γw

= u·ex

∣∣∣∣
y=h+

= U(x, h+) , x ∈ [0, L]

and using this in (6.24) yields the right-hand side of (2.121), also, the left-hand side of (6.24)
becomes

τw ·t = t·[σ ·(−n)]
∣∣∣∣
Γw

= ex ·[σ ·ey]
∣∣∣∣
y=h+

= νT

(
∂U

∂y
+

∂V

∂x

)∣∣∣∣
y=h+

. (6.29)

We then observe that, in a straight channel, (6.25) reduces to

V (x, h+) = 0 , x ∈ [0, L] ,

from which it follows that

∂V

∂x
(x, h+) = 0 , x ∈ [0, L] ,

162



6.1. Formulation of the problem

and this can then be used in (6.29) to get:

τw ·t = νT
∂U

∂y

∣∣∣∣
y=h+

the same as the left-hand side of (2.121). Similarly to (2.121), (6.24) can be obtained from
appropriate generalizations of the laws of the wall presented in §1.5. Specifically, the laws of
the wall along curved boundaries corresponding to (1.63), (1.66) and (1.52) are respectively:

τw ·t = [u∗(x)]2 , (x, y) ∈ Γw , (6.30)

k(x, y) = C−1/2
µ [u∗(x)]2 , (x, y) ∈ Γw , (6.31)

u·t
u∗(x)

=
1
κ

ln
(

u∗h+

ν

)
+ C , (x, y) ∈ Γw , (6.32)

and then, by following the same procedure as in §2.6.2, (6.24) can be derived from (6.30) by
eliminating [u∗(x)]2, using both (6.31) and (6.32). Finally we observe that (6.27) represents
the “usual” implementation of the law of the wall for ε (compare it with (2.132)).

Next we derive the weak formulation of the dynamical and model equations subject to the
above boundary conditions. As in the case of straight channel flows, we will recast into the
weak form the RANS equations (2.103), and the turbulence equations (2.4). In deriving the
weak formulation of the RANS equations, we will use some of the results presented in §2.6.1.
In particular, we will start with the expression (2.108) for the weak form of the first equation
in (2.103). In fact, as can be seen from its derivation, (2.108) does not depend on the special
shape of the domain Ω, and we will also use (2.109), (2.110), (2.111). These expressions also
apply to the expanding channel flow domain, since its centre line, inlet and outlet boundaries
have the same orientation with respect to the coordinate axes as those of the straight channel.
The difference from the formulation of §2.6.1, is that now the boundary condition (6.25):

u·n = U n1 + V n2 = 0 , (x, y) ∈ Γw , (6.33)

is treated as an extra equation for the new variable τn, defined as

τn := τw ·n = n·σ ·(−n)
∣∣∣∣
Γw

, (6.34)

and representing the normal component of the stress vector at the artificial wall (we emphasize
the fact that both equation (6.33) and the variable τn are defined only on the boundary Γw).
The introduction of the variable τn is now discussed in conjunction with the derivation of the
weak form of the first equation in (2.103). As observed above, an initial expression for this is
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given by (2.108):

∫

Ω

[
u·∇u−∇νT ·(∇u)T

]·w dΩ +
∫

Ω
νT∇u : (∇w)T dΩ −

−
∫

Ω
p∇·w dΩ +

∫

Γ
[n·(pI− νT∇u)]·w dΓ = 0 , (6.35)

the boundary term in (6.35) can again be expressed as the sum of four integrals each over one
of the four parts of Γ. The integrals over Γin, Γout and Γcl can be expressed respectively as
in (2.109), (2.110) and (2.111) whilst, by using (2.2) and (6.28), the integral over Γw can be
written as:

∫

Γw

[n·(pI− νT∇u)]·w dΓ = −
∫

Γw

[σ ·n− νT(∇u)·n]·w dΓ

=
∫

Γw

[τw + νT(∇u)·n]·w dΓ (6.36)

where we have also used the fact that n · σ = σ ·n, due to the symmetry of σ, and that
n·(∇u)T =(∇u)·n. We then decompose τw into its parallel and orthogonal components to
Γw and, by using (6.24) and (6.34), express it as follows:

τw = (τw ·t) t + (τw ·n)n

= (f(k)u·t) t + τn n , (x, y) ∈ Γw , (6.37)

where

f(k) :=
κC

1/4
µ k1/2

ln
[
(C1/4

µ k1/2 h+)/ν
]

+ κC
, (x, y) ∈ Γw ,

finally, by substituting (6.37) into (6.36), we get

∫

Γw

[n·(pI− νT∇u)]·w dΓ =
∫

Γw

[(f(k)u·t) t + τnn + νT(∇u)·n]·w dΓ . (6.38)

We now specify the spaces in which (6.35) is posed. Let H1(Ω) be the Sobolev space of
square integrable functions whose first derivatives are also square integrable over Ω and let
H1(Ω):=H1(Ω)×H1(Ω), then we seek the velocity field u in:

H1
EP

(Ω) = {v ∈ H1(Ω) : v=up onΓin and v2 =0 on Γcl} ,

and correspondingly require that w is in the space:

H1
0P

(Ω) = {v ∈ H1(Ω) : v=0 onΓin and v2 =0 onΓcl} .

It is then not difficult to see that the only contribution to the boundary term in (6.35) which
does not vanish, is the one corresponding to Γw, (6.38). In fact, the integral (2.109) is zero
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because w = 0 on Γin, while (2.110) vanishes because of the boundary conditions (6.20) and
(6.21), and finally (2.111) is also zero due to the boundary condition (6.16) and to the fact that
w2 =0 on Γcl. Hence, using (6.38), (6.35) becomes:

a(u, p, k, ε, τn,w) :=
∫

Ω

[
u·∇u−∇νT ·(∇u)T

]·w dΩ +
∫

Ω
νT∇u : (∇w)T dΩ−

−
∫

Ω
p∇·w dΩ +

∫

Γw

[(f(k)u·t) t + τnn + νT(∇u)·n]·w dΓ = 0 . (6.39)

As said before, τn in (6.39) is interpreted as a new variable and (6.33) as the equation for it. If
one was going to attempt a theoretical discussion of (6.39), the natural space for τn would be
H−1/2(Γw). For technical reasons our computed approximations will be smoother than that
(see Remark 6.1.1). Finally, recalling (2.115), we can express the weak form of the RANS
equations (2.103) subject to the boundary conditions (6.13), (6.16)-(6.17), (6.20)-(6.21) and
(6.24)-(6.25) as 




a(u, p, k, ε, τn,w) = 0

b(u, ψ) = 0

u·n = 0 , on Γw .

We now briefly recast into the weak form of the transport equations for k and ε. An
initial expression for the weak form of the equations in (2.4) is given by (2.130) and (2.131),
respectively:

∫

Ω
(u·∇k)z1 dΩ +

∫

Ω
Cµ

k2

ε
∇k ·∇z1 dΩ +

∫

Ω
ε z1 dΩ−

−
∫

Ω
Cµ

k2

ε
S(u) z1 dΩ−

∫

Γ
Cµ

k2

ε
(∇k ·n) z1 dΓ = 0 (6.40)

and
∫

Ω
(u·∇ε)z2 dΩ +

∫

Ω

Cµ

σε

k2

ε
∇ε·∇z2 dΩ +

∫

Ω
Cε2

ε2

k
z2 dΩ

−
∫

Ω
CµCε1 k S(u)z2 dΩ−

∫

Γ

Cµ

σε

k2

ε
(∇ε·n) z2 dΓ = 0 . (6.41)

The turbulence variables (k, ε) are sought in the space

H1
ET

(Ω) = {s ∈ H1(Ω) : s = (kp(y), εp(y))T on Γin} ,

and must satisfy the law of the wall:

ε(x, y)− C
3/4
µ

κ

(k(x, y))3/2

h+
= 0 , (x, y) ∈ Γw , (6.42)
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correspondingly the test function z=(z1, z2)T is chosen in the space:

H1
0T

(Ω) = {q ∈ H1(Ω) : q = 0 on Γin and q2 = 0 on Γw} .

From the boundary conditions (6.18), (6.22) and (6.26) (which are equivalent to ∇k·n=0
on Γcl ∪ Γout ∪ Γw) and the fact that z1 =0 on Γin, it follows that the boundary term in (6.40)
vanishes, therefore we write the weak form of the transport equation for k as:

c(u, k, ε, z) :=
∫

Ω
(u·∇k)z1 dΩ +

∫

Ω
Cµ

k2

ε
∇k ·∇z1 dΩ+

+
∫

Ω
ε z1 dΩ−

∫

Ω
Cµ

k2

ε
S(u) z1 dΩ = 0 .

Also the boundary term in (6.41) is zero because of the boundary conditions (6.19) and (6.23)
(which are equivalent to ∇ε·n=0 on Γcl ∪ Γout) and of the fact that z2 =0 on Γin ∪ Γw, thus
we express the weak form of the transport equation for ε as:

d(u, k, ε, z) :=
∫

Ω
(u·∇ε)z2 dΩ +

∫

Ω

Cµ

σε

k2

ε
∇ε·∇z2 dΩ+

+
∫

Ω
Cε2

ε2

k
z2 dΩ−

∫

Ω
CµCε1k S(u) z2 dΩ = 0 .

Summarizing we have that the weak form of the RANS and k-ε equations is: find u∈H1
EP

(Ω),
p∈L2(Ω), τn∈H1/2(Γw), (k, ε)∈H1

ET
(Ω) such that





a(u, p, k, ε, τn,w) = 0

b(u, ψ) = 0

u·n = 0 , on Γw

c(u, k, ε, z) = 0

ε− C
3/4
µ

κ

k3/2

h+
= 0 , on Γw

d(u, k, ε, z) = 0

(6.43)

for all w∈H1
0P

(Ω), ψ∈L2(Ω) and z∈H1
0T

(Ω).

6.1.3 The numerical strategy

We now briefly discuss the finite element discretisation of (6.43) and the continuation tech-
nique used to solve the resulting algebraic system of equations. We first make the following
observation:

Remark 6.1.1. As for the corresponding cases of 2D turbulent Couette and Poiseuille flows
in straight channels, the discretisation of (6.43) and the computation of the solution to the
resulting algebraic system have been carried out using the industrial code ENTWIFE. But, this
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code does not allow variables to be defined only on the boundary or on parts of the boundary of
a given domain, such is τn; hence, a practical version of (6.43) has been obtained by introducing
the harmonic extension of τn to Ω, which we denote by τ̂n. We have then required that τ̂n

satisfies
−∆τ̂n = 0 , on Ω , (6.44)

subject to homogeneous Neumann condition on Γin, Γcl, Γout and equation (6.33) on Γw.
Clearly, only the values of τ̂n on Γw are meaningful for our problem and correspond to the
values of τn. Therefore, considering that the weak formulation of (6.44) is:

â(τ̂n, v) :=
∫

Ω
∇τ̂n ·∇v dΩ = 0

with τ̂n∈H1(Ω) and the test function v in the space:

H1
0τn

(Ω) := {s ∈ H1(Ω) : s = 0 on Γw} ,

in our practical implementation we have discretised the following weak form: find u∈H1
EP

(Ω),
p∈L2(Ω), τ̂n∈H1(Ω), (k, ε)∈H1

ET
(Ω) such that





a(u, p, k, ε, τn,w) = 0

b(u, ψ) = 0

â(τ̂n, v) = 0

u·n = 0 , on Γw

c(u, k, ε, z) = 0

d(u, k, ε, z) = 0

ε− C
3/4
µ

κ

k3/2

h+
= 0 , on Γw

(6.45)

for all w∈H1
0P

(Ω), ψ∈L2(Ω), v∈H1
0τn

(Ω) and z∈H1
0T

(Ω).

We now briefly discuss the finite element approximation to (6.45) on the expanding domain
Ω (we are assuming that α > 0, β ≥ 1 and γ > 0 have been prescribed in (6.1)). This is
carried out in two steps. First the weak form (6.45) is approximated on the straight domain
Ω̃ discretised via a mesh of quadrilateral elements defined by a bilinear map from the unit
quadrilateral and then the resulting equations are mapped onto the expanding domain Ω using
the orthoganal mapping which is described in §6.2.1.

As mentioned at the end of §6.1.1, we will compute a numerical solution to the fully de-
veloped Poiseuille flow in expanding channels using continuation from the straight channel

(identified by α = 0). In this case, in fact, Poiseuille flow can confidently be solved numeri-
cally using the analytical solution to Couette flow as initial guess, as described in §2.5. The
computed solution to Poiseuille flow in a straight domain will then be used as starting point for
a continuation process based on two homotopy transformations one on the parameter α, from
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α = 0 to α0 > 0 and the other on the parameter β, from β = 1 to β = β0 > 1. First we will
perform the transformation on α and therefore solve the finite element system on a sequence of
channels with increasingly bigger expansion factor r (see (6.9)) and increasingly steeper slope
at x=γ (see (6.11)). Then, reached the desired expansion of the channel, its maximum slope
at x=γ will be increased by performing the homotopy transformation on β (see (6.11)).

6.2 A graded boundary-fitted orthogonal mesh

This section consists of two parts. Initially we give a brief overview of the theoretical issues
related to the generation of boundary-fitted, orthogonal meshes and explain how we will prac-
tically discretise expanding channels by appropriately graded, orthogonal grids. Then we will
present the numerical experiments we have performed to assess the quality of such meshes. (In
this section, as in the previous one, the domains Ω and Ω̃ will denote respectively the lower
half of an expanding channel and of a straight one, with boundaries Γ=Γin ∪ Γcl ∪ Γout ∪ Γw

and Γ̃=Γ̃in ∪ Γ̃cl ∪ Γ̃out ∪ Γ̃w. On Ω we will consider the curvilinear coordinates (x, y), while
on Ω̃ we will consider the cartesian coordinates (ξ, η)).

6.2.1 Orthogonal mapping technique

The procedure followed in Chapter 3 for constructing one-dimensional equidistributed meshes,
can also be used to generate graded, boundary-fitted, orthogonal mesh on Ω. These, in fact, can
be considered as the image of certain cartesian meshes on Ω̃ through an appropriate transfor-
mation (x, y) : Ω̃ 7→ Ω (according to the terminology introduced in Chapter 3, Ω̃ represents the
computational domain while Ω is the physical domain). The properties of the mapping (x, y)
and the specific discretisation of Ω̃ we have considered, are illustrated below.

The orthogonal mapping technique which we now outline, is discussed in detail in [63],
where it was initially proposed for the finite element computation of a viscous free-surface
flow along an undulating inclined plane. The mapping (x, y) is obtained by solving the system
of elliptic PDE’s: 




∂

∂ξ

(
λ(ξ, η)

∂x

∂ξ

)
+

∂

∂η

(
1

λ(ξ, η)
∂x

∂η

)
= 0

∂

∂ξ

(
λ(ξ, η)

∂y

∂ξ

)
+

∂

∂η

(
1

λ(ξ, η)
∂y

∂η

)
= 0

∂2λ

∂ξ2
+

∂2λ

∂η2
= 0

(6.46)

for unknowns x = x(ξ, η), y = y(ξ, η) and λ = λ(ξ, η); with (x, y) subject to the boundary
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conditions

x = 0
∂y

∂ξ
= 0 on ξ = 0 (6.47)

∂x

∂η
= −λ

∂y

∂ξ
y = b(x) on η = h+ (6.48)

x = L
∂y

∂ξ
= 0 on ξ = L (6.49)

∂x

∂η
= 0 y = d on η = d (6.50)

and λ subject to the boundary condition

∇λ · n = 0 on Γ̃ (6.51)

and to the additional constraint:

∂x

∂η
+

∂y

∂η
= λ

(
∂x

∂ξ
− ∂y

∂ξ

)
at (ξ, η) = (ξc, ηc) . (6.52)

In (6.48), b(x) is the curved boundary of the expanding channel (see (6.8)) and n, in (6.51),
is the outward normal vector to the boundary Γ̃. In the following we will not give a detailed
derivation of (6.46) (this can be found in [63]) and of (6.47)-(6.52), but we shall simply explain
the rational behind them.

It can be shown (see [63] and also [64]) that, under appropriate boundary conditions, the
solution to the system:





∂

∂ξ

(
λ(ξ, η)

∂x

∂ξ

)
+

∂

∂η

(
1

λ(ξ, η)
∂x

∂η

)
= 0

∂

∂ξ

(
λ(ξ, η)

∂y

∂ξ

)
+

∂

∂η

(
1

λ(ξ, η)
∂y

∂η

)
= 0

(6.53)

(note that (6.53) consists of the first two equations in (6.46)) gives an orthogonal transformation
from Ω̃ to Ω (provided a solution actually exists for the particular boundary shape of Ω). In
(6.53), λ is a strictly positive, smooth function, representing the aspect ratio of a small rectangle
in the (x, y) plane, that is the image of a small square in the (ξ, η) plane; we will explain below

how we have determined it. In [63], the system (6.53) is derived from the equations expressing
the orthogonality constraint on the curvilinear coordinates (x, y):

∂x

∂η
= −λ

∂y

∂ξ
(6.54)

∂y

∂η
= λ

∂x

∂ξ
, (6.55)
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(also known as generalized Cauchy-Riemann equations) using:

∂

∂ξ

(
∂y

∂η

)
=

∂

∂η

(
∂y

∂ξ

)
,

∂

∂ξ

(
∂x

∂η

)
=

∂

∂η

(
∂x

∂ξ

)
.

(It should be noted that in [64], differently from [63], the equations in (6.53) are obtained by
means of a covariant Laplace equation method). We also observe that (6.47)-(6.50) follow
from imposing the orthogonality condition (6.54)-(6.55) and from prescribing that Γ̃in, Γ̃cl,
Γ̃out, Γ̃w are transformed respectively into Γin, Γcl, Γout, Γw. For example, (6.48) expresses
the condition that Γ̃w is mapped into Γw and that the coordinates (x, y) are orthogonal along
Γw.

Finally, as in [63], we reqire that λ in (6.53) takes a constant value on Ω̃. This is achieved
by solving the Laplace equation:

∆λ = 0 on Ω̃ (6.56)

(this is the third equation in (6.46)) under the boundary condition

∇λ · n = 0 on Γ̃ (6.57)

and the constraint:

∂x

∂η
+

∂y

∂η
= λ

(
∂x

∂ξ
− ∂y

∂ξ

)
at (ξ, η) = (ξc, ηc) . (6.58)

(respectively (6.51) and (6.52)). Note that any constant function λ is a solution to (6.56)-(6.57)
and that equation (6.58), obtained from the sum of (6.54) and (6.55), is needed to determine
uniquely the constant value of λ; the point (ξc, ηc) is the centre of the domain Ω̃ (in practical
computation it will be the coordinates of the node at the centre of the mesh on Ω̃). It should
be noted that there are other possible procedures of determining λ (see for example [64], [65],
[66] and [67]) and that the technique described above may not be the most efficient. It was
chosen because it represents the most natural way of treating the equations for the mapping
as a system of elliptic PDE’s to be discretised and solved, together with (6.45), by the finite
element code ENTWIFE.

The weak form of the boundary value problem for determining the orthogonal mapping is
then given by: 




aM (x, y,v) = 0

bM (λ, q) = 0

y − b(x) = 0 , on Γ̃w

∂x

∂η
+

∂y

∂η
= λ

(
∂x

∂ξ
− ∂y

∂ξ

)
, at (ξc, ηc)

(6.59)
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where

(aM (x, y,v))1 :=
∫

Ω̃
λ

∂x

∂ξ

∂v1

∂ξ
dΩ̃ +

∫

Ω̃

1
λ

∂x

∂η

∂v1

∂η
dΩ̃−

∫

Γ̃w

∂y

∂ξ
v1 dΓ̃w ,

(aM (x, y,v))2 :=
∫

Ω̃
λ

∂y

∂ξ

∂v2

∂ξ
dΩ̃ +

∫

Ω̃

1
λ

∂y

∂η

∂v2

∂η
dΩ̃ ,

and
bM (λ, q) :=

∫

Ω̃
∇λ ·∇q dΩ̃ .

The variables (x, y) are sought in the space

H1
EM

(Ω̃) :={w ∈ H1(Ω̃) : w1 =0 on Γ̃in , w1 =L on Γ̃out and w2 = d on Γ̃cl}

while λ is sought in H1(Ω̃). Correspondingly the test function v is chosen in the space

H1
0M

(Ω̃) := {u ∈ H1(Ω̃) : u1 = 0 on Γ̃in ∪ Γ̃out and u2 = 0 on Γ̃w ∪ Γ̃cl}

and q is chosen in H1(Ω̃).
As for the RANS and k-ε equations, the weak form (6.59) is discretised on the domain

Ω̃ using continuous piecewise biquadratic finite elements and the resulting nonlinear algebraic
system is solved by Newton’s method (the entries of the Jacobian of the nonlinear system were
computed using the 3×3 Gauss-Jacobi quadrature applied element wise). The solution to the
finite element system then provides the mapping from the straight channel to the expanding
one to be applied to the dynamical and model equations initially discretised on the straight
domain Ω̃, as discussed in §6.1.3.

The computational domain is discretised as now explained: first Ω̃ is divided into disjoint
sub-domains, and on each sub-domain the tensor product of the following two grids is con-
sidered: a mesh graded as (3.101) in the η-direction, and an exponentially graded mesh (see

(3.104)) in the ξ-direction. Finally the mesh on Ω̃ is obtained by taking the union of all subdo-
mains. The transformation of the mesh on Ω̃ will the produce a grid on Ω which will have the
right grading for resolving profiles as (6.27) in the direction orthogonal to the artificial wall and
be appropriately refined in the longitudinal direction according to geometry of the channel (for
example, finer in a neighbourhood of the expansion of the channel and increasingly coarser
towards the outlet of the channel).

6.2.2 Numerical experiments

In this section we present the outcomes of the finite element computations of fully devel-
oped turbulent flows in expanding channels, discretised by graded, boundary-fitted, orthogonal

meshes.
First, we observe that, in order to validate the computations performed on orthogonal grids

(see Figure 6.3 and Figure 6.6), we have also considered non-orthogonal discretisations of Ω,
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see Figure 6.2. These were obtained simply by transforming the computational grid on Ω̃,
through the mapping (6.1), therefore, using a procedure much more straightforward and less
prone to mistakes than the one used for generating orthogonal grids.

Figure 6.2: Zoom of the non-orthogonal mesh on the the expanding channel with h+ =10−1, α=2.0,
β=1.5 and γ=10.

For h+ = 10−1, the numerical results obtained on these two discretisations of Ω (derived
from the same grid on Ω̃) were identical; this then gave clear indication of the fact that the
method for creating graded, orthogonal mesh was correctly implemented. In the case of
h+ = 10−2, only for values of α sufficiently small (i.e. for flow domains with sufficiently

small expansions, see (6.9)) could the computations performed on the non-orthogonal mesh
reproduce the results obtained on the orthogonal one. In fact, at the stage of the continuation
procedure when α=0.8, Newton’s method for the finite element system obtained on the non-
orthogonal mesh, failed to converge. At this point only by reducing the size of the continuation
steps or by increasing the number of elements could Newton’s method attain convergence. As
the expansion of the channel was increased the computations on the non-orthogonal grid be-
came more and more unpractical and it was not possible to consider values of α as big as in
the case of orthogonal meshes. In the orthogonal case, it took 20 continuation steps on a mesh
with 200×25 elements, to reach the values α=2.0, β=1.5, and then to obtain the outlet U -, k-,
ε-profiles plotted in the left-hand side of Figure 6.4. As it can be clearly seen, these have the
same trend as the inlet profiles but are scaled by a factor proportional to the expansion of the
channel. It was also possible to resolve the flow recirculating immediately after the expansion
as the contour plot of the streamlines, in Figure 6.5, shows.

Figure 6.3: Zoom of the graded, orthogonal mesh on the the expanding channel with h+ = 10−2,
α=2.0, β=1.5 and γ =10. The number of elements in the y-direction is 25.

Qualitatively similar results were also obtained for h+ =10−3, α=1.3 and β =1.55 on a
graded, orthogonal mesh with 200×35 elements. For this case, the pressure profile along the
centre line and the outlet profiles are represented respectively in Figure 6.7 and in Figure 6.8,
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while the streamlines contour plot is in Figure 6.9.
Our numerical experiments then show that the h+-dependent nodes’ distribution in the

direction of the blow-up of ε, identified from the study of “simple” 1D problems, performs
extremely well also in the much more challenging situation of 2D flows in expanding channels.
It allows, in fact, to perform practical computations of the RANS and k-ε equations when
channels with big expansions and small values of h+ are considered.
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Figure 6.4: Left (from top to bottom): inlet U -, k-, ε-profile. Right (from top to bottom): outlet U -,
k-, ε-solution components, computed on an expanding channel with h+ = 10−2, α = 2.0, β = 1.5 and
γ =10.
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Figure 6.5: Contour plot of the streamlines obtained on the expanding channel with h+ = 10−2,
α=2.0, β=1.5 and γ =10.

Figure 6.6: Zoom of the graded, orthogonal mesh on the the expanding channel with h+ = 10−3,
α=1.3, β=1.55 and γ =10. The number of elements in the y-direction is 35.
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Figure 6.7: Pressure profile along the centre line of the expanding channel with h+ = 10−3, α = 1.3,
β=1.55 and γ=10.
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Figure 6.8: Left (from top to bottom): inlet U -, k-, ε-profile. Right (from top to bottom): outlet U -,
k-, ε-solution components, obtained on an expanding channel with h+ = 10−3, α = 1.3, β = 1.55 and
γ =10.
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Figure 6.9: Contour plot of the streamlines obtained on the expanding channel with h+ = 10−3,
α=1.3, β=1.55 and γ =10.
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