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SUMMARY

Two-level overlapping Schwarz methods for elliptic partial differential equations combine local solves on
overlapping domains with a global solve of a coarse approximation of the original problem. To obtain
robust methods for equations with highly varying coefficients, it is important to carefully choose the coarse
approximation. Recent theoretical results by the authors have shown that bases for such robust coarse spaces
should be constructed such that the energy of the basis functions is minimized. We give a simple derivation of
a method that finds such a minimum energy basis using one local solve per coarse space basis function and one
global solve to enforce a partition of unity constraint. Although this global solve may seem prohibitively expensive,
we demonstrate that a one-level overlapping Schwarz method is an effective and scalable preconditioner and we
show that such a preconditioner can be implemented efficiently using the Sherman-Morrison-Woodbury formula.
The result is an elegant, scalable, algebraic method for constructing a robust coarse space given only the supports
of the coarse space basis functions. Numerical experiments on a simple two-dimensional model problem with
a variety of binary and multiscale coefficients confirm this. Numerical experiments also show that, when used
in a two-level preconditioner, the energy minimizing coarse space gives better results than other coarse space
constructions, such as the multiscale finite element approach. Copyright c© 2008 John Wiley & Sons, Ltd.

KEY WORDS: overlapping additive Schwarz method; coarse space; constrained energy minimization; domain
decomposition; preconditioning

1. Introduction

In this paper we study the construction of scalable and robust domain decomposition methods for
elliptic partial differential equations with highly variable coefficients. In particular, we want the work
per iteration to be proportional to the number of unknowns. Furthermore, the number of iterations
should be independent of the mesh size, the number of subdomains and, in this paper especially, the
coefficients of the partial differential equation. Ideally, we would like the cost of our methods to be
similar to the cost of solving the Laplace equation, i.e., a problem with constant coefficients, using an
optimal solver, such as geometric multigrid.

We consider a scalar elliptic equation of the form
−∇ · (A∇u) = f, (1)
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on a bounded open domain � ⊂ Rd , d = 2, 3, with Dirichlet or mixed boundary conditions. The
symmetric positive definite coefficient tensor A : � → Rd×d can be highly varying. Standard finite
element discretization on a fine mesh leads to a system of equations

Au = f, (2)

where A is a large, sparse, symmetric positive definite matrix. This problem can be solved iteratively
using a preconditioner which solves subproblems corresponding to discretizations of (1) on a set of
overlapping subdomains which cover �. For each iteration, the problems on the subdomains can be
solved independently. This so-called one-level overlapping Schwarz method is not robust since the
number of iterations depends on the number of subdomains. The method can be made robust by solving
a coarse approximation to the original problem in addition to the subproblems on the subdomains [1, 2].
A standard two-level Schwarz preconditioner uses a coarse approximation based on a finite element
discretization on a coarse mesh. This results in a method that is robust with respect to the mesh size
and the number of subdomains, but, in general, not the coefficient variation [1, 2, 3]. For a completely
robust method, the construction of the coarse level should take into account the coefficient variation.

In Section 5 we recall the convergence theory for overlapping additive Schwarz methods from [4,
5, 6, 7]. This theory refines the standard Schwarz theory [1, 8, 2] and gives coefficient-dependent
criteria for choosing a coarse space which motivates a construction based on energy minimization.
More precisely our coarse space will be spanned by a partition of unity which is piecewise linear on
the fine mesh and which satisfies a certain energy minimizing criterion. Let Ā be the stiffness matrix
corresponding to the finite element approximation of (1) on the given fine mesh with natural boundary
conditions. Then Ā has dimension N equal to the number of nodes in �̄ = � ∪ ∂�. The matrix Ā
is symmetric positive semidefinite with a single zero eigenvalue with eigenvector 1 =

[
1 · · · 1

]T .
The energy minimization problem which we are concerned with consists in finding vectors 8̄ j ∈ RN ,
that minimize the energy functional ∑

j
8̄T

j Ā8̄ j , (3)

subject to the condition ∑
j
8̄ j = 1. (4)

In addition we require that the i-th entry of 8̄ j is nonzero only for indices i ∈ ωh
j . The set {ωh

j } is a
(usually overlapping) partitioning of indices to be chosen. This final requirement is needed to ensure
that the resulting coarse matrix is still sparse.

As shown in [9], the minimization problem (3)–(4) has a unique solution. The vectors 8̄ j can be
found by solving local systems corresponding to subblocks of Ā, as well as a global system with a
matrix of the same size as Ā. We assume that the subblocks can be solved efficiently and concentrate
on finding efficient ways to solve the global system, which we call the Lagrange multiplier system.

The energy minimizing coarse space construction was proposed and studied in the (related but
different) context of multigrid methods in [9, 10, 11]. The construction requires the solution of a
Lagrange multiplier system of the same size as the original problem, but with a special structure.
In Section 6 we extend ideas from [11], to propose an efficient preconditioner for this system in the
domain decomposition case. The main point in [11] is that, because of the special structure of the
Lagrange multiplier system, it suffices to use a one-level preconditioner to solve it efficiently. Since the
matrix of the system is dense, constructing and applying the preconditioner is not straightforward. We
demonstrate in Section 6 how to obtain an efficient and scalable implementation. The numerical results
in Section 7 show that the energy minimizing coarse space does indeed give better results than other
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coarse space constructions in all test cases. More importantly the results show that the preconditioner
for the Lagrange multiplier system is completely robust for all the examples considered, which means
the coarse space construction is robust and its cost grows with the problem size only at the same rate
as the construction of other coarse spaces. For related work on coarse space constructions based on
energy minimization see [12].

There are many approaches for the construction of coarse spaces, or equivalently interpolation
operators, that have been studied in the context of multigrid and domain decomposition methods.
Carefully chosen coarse grids and interpolation operators form the basis of the success of algebraic
multigrid methods [13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. In the context of domain decomposition
methods, the multiscale finite element approach, originally introduced as a numerical homogenization
tool [23, 24], was used for the construction of robust coarse spaces in [4]. Other related coarse spaces
are the partition of unity coarse spaces of [3, 25, 26] and the coarse spaces described in [27]. In [28, 5]
the ideas from aggregation type multigrid methods [14, 18] are applied in the context of overlapping
domain decomposition methods.

For expositional purposes, we consider only the scalar elliptic equation (1) with continuous
piecewise linear finite elements and homogeneous Dirichlet boundary conditions, and set A(x) =
α(x)I in the numerical tests. However, the method itself is much more generally applicable. The energy
minimization approach can also be used to set up coarse spaces for linear elasticity problems [10]
and edge-element discretizations of curl-curl type problems [29]. Higher-order finite elements or
mixed boundary conditions pose no additional difficulties. It is even possible to construct efficient
preconditioners for anisotropic problems with this approach provided the overlapping sets ωh

j are
chosen appropriately (see [9]). The numerical results in this paper show in fact very clearly that (even in
the isotropic case) when the coefficients are highly varying, in a complicated (possibly random) way,
the crucial ingredient for a robust and efficient two-level Schwarz method is a careful choice of the
sets ωh

j . Some ideas on how to choose these sets, inspired by aggregation type algebraic multigrid
techniques [14] are provided in [5], but this requires still further investigation. These techniques
are related to methods for choosing coarse grid points in other algebraic multigrid approaches
[21, 15, 19, 22].

Note that any techniques to find coefficient robust coarse spaces for multigrid or domain
decomposition methods are interesting in the context of numerical homogenization and upscaling as
well [23, 30].

In what follows, we use the notation x . y to stand for x ≤ Cy for some constant C . It is standard
to assume that the constant C is independent of the mesh size and the parameters of the method, such
as the number of subdomains, the size of the subdomains and the size of the overlap. Here, in addition
we also assume that C is independent of the coefficients A of the PDE (1). The notation x ∼ y means
x . y and y . x .

2. Model Problem

Let � be a bounded, open, polygonal (polyhedral) domain in R2 (R3). As our model problem we
consider the scalar elliptic equation

−∇ · (A∇u) = f, on �, (5)

with homogeneous Dirichlet boundary conditions

u = 0, on ∂�. (6)
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The unknown function u, the right hand side f and the coefficient tensorA are functions defined on �.
We assume thatA is uniformly bounded and symmetric positive definite, but it may otherwise be highly
varying throughout �. The model problem can be formulated in weak form as finding u ∈ H1

0 (�) such
that

a(u, v) = ( f, v), (7)

for all test functions v ∈ H1
0 (�), where H1

0 (�) is the usual Sobolev space on �. The bilinear form
a(·, ·) and the inner product (·, ·) are defined as

a(u, v) =

∫
�
A∇u · ∇v dx, ( f, v) =

∫
�

f v dx . (8)

The continuous problem (7) is discretized using a standard finite element approximation with
continuous piecewise linear functions. Let T h be a family of conforming meshes of triangles
(tetrahedra), which are shape-regular as the mesh diameter h goes to zero. We denote by �h and �̄h

the sets of nodes of T h contained in � and �̄ = � ∪ ∂�, respectively. Note that throughout we will
use “barred” symbols to distinguish between objects related to � and �̄ (i.e., including the boundary).
The space of continuous functions on �̄ which are piecewise linear with respect to T h , is denoted by
V̄h . Using the nodal hat functions φp, defined such that†

φp ∈ V̄h, φp(q) = δpq , p, q ∈ �̄h, (9)

where δpq = 1 if p = q and 0 otherwise, the finite element space can be written as

V̄h
= span{φp : p ∈ �̄h

}. (10)

The space of finite element functions that in addition satisfy the homogeneous Dirichlet boundary
conditions and are therefore zero on ∂� is given by

Vh
= span{φp : p ∈ �h

}. (11)

The Galerkin method replaces the space H1
0 (�) in (7) by the finite dimensional space Vh

⊂ H1
0 (�).

That is, we look for an approximate solution uh ∈ Vh such that (7) holds for all vh ∈ Vh . Using the
vector of coefficients u =

[
· · · uq · · ·

]T , where uq = uh(q), q ∈ �h , we can write the approximate
solution as uh =

∑
q∈�h uqφq . Using the test functions vh = φp, p ∈ �h , results in the system of

linear equations
Au = f, (12)

where the elements of the matrix and of the right hand side vector are given by

Apq = a(φq , φp), fp = ( f, φp), p, q ∈ �h . (13)

The matrix A is symmetric positive definite and typically large, but sparse.
If instead of Vh we use V̄h in the Galerkin method, we obtain a matrix Ā which does not explicitly

incorporate boundary conditions (we have so-called natural boundary conditions). The matrix Ā is
introduced since it is used in the coarse space construction. It is symmetric positive semidefinite and
the kernel of Ā consists of the constant vectors, i.e., all row sums of Ā are zero. The matrix A is a
submatrix of Ā.

†We use the nodes of the finite element triangulation as indices for matrices and vectors. For each vector or matrix the set(s) of
indices will be specified. In an actual implementation it may be necessary to choose a numbering for each set of indices.
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3. Two-Level Schwarz Method

We now describe a two-level additive Schwarz method for the system of equations (12). Additive
Schwarz methods are domain decomposition methods. Thus, let �i be open subsets of the domain �.
We assume that each subdomain �i is the interior of a union of triangles of the mesh T h . We denote
by �h

i the nodes of T h contained in �i , i.e.,

�h
i = {p ∈ �h : p ∈ �i }. (14)

For each subdomain �i , we specify a subproblem with homogeneous Dirichlet boundary conditions
on ∂�i . We define a restriction matrix Ri as

[Ri ]pq = δpq , p ∈ �h
i , q ∈ �h . (15)

The system matrix of the homogeneous Dirichlet problem on �i is then given by the Galerkin product

Ai = Ri ART
i . (16)

For a restriction matrix of the form (15), Ai is a submatrix of A. Note, however, that in general Ri
could also be chosen differently. The (one-level) overlapping additive Schwarz preconditioner is given
by

B =
∑

i
RT

i A−1
i Ri (17)

Applying B to a vector involves solving subsystems with sparse, symmetric positive definite matrices
Ai . The subproblems can be solved in parallel. Note that B is completely determined by the matrix A
and the index sets �h

i .
This one-level preconditioner is in general not scalable since the number of iterations depends on

the number of subdomains. This problem can be overcome by solving an approximation of the original
system in a suitable coarse space [1, 2]. Let 8 be a matrix whose columns span the coarse space. The
coarse approximation of A is formed using the Galerkin product

AH = 8T A8. (18)

The two-level additive Schwarz preconditioner B̃ is then given by

B̃ = 8A−1
H 8T

+

∑
i

RT
i A−1

i Ri . (19)

The crucial thing to make this preconditioner robust for highly varying coefficients is a careful choice
of 8. In the next section we present a method for constructing 8 that takes into account coefficient
variation.

4. Coarse Space Construction

In this section we describe a practical and efficient coarse space construction based on local solves on
overlapping domains. We construct a coarse space that is a subspace of the finite element space V̄h .
This means that (as usual) the coarse space basis functions can be represented by their values at the
nodes of the finite element mesh. Let {9 j ∈ V̄h

} be the set of coarse space basis functions. We denote
the vector of nodal values of the j-th coarse space basis function 9 j by 8̄ j . Consequently, the matrix
8̄ with j-th column equal to 8̄ j represents an interpolation from the coarse space to the fine space.
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The matrix 8̄T represents a restriction from the fine space to the coarse space. Note that we use the
terms fine and coarse space to refer to the spaces of finite element functions as well as the spaces of
vectors representing them. Once 8̄ has been constructed, the coarse space for the Dirichlet problem
is obtained by dropping those basis functions that are non-zero on the boundary. The matrix 8 which
interpolates from the Dirichlet coarse space to the Dirichlet fine space is a submatrix of 8̄ with rows
restricted to the nodes in the interior of the domain � and columns restricted to coarse basis functions
which are zero on the boundary ∂�. This can be written as

8pj = 8̄pj , p ∈ �h, j ∈ { j : 8̄pj = 0 for all p ∈ ∂�}. (20)

The number of columns in 8 determines the dimension of the coarse space, and therefore the
dimension of the coarse matrix AH . The sparsity pattern of 8 determines the sparsity pattern of AH .
To obtain an efficient and practical method we need the dimension of AH to be much smaller than the
dimension of A, and we want AH to have a similar sparsity pattern as A, i.e., a small, bounded number
of nonzeros per row independent of the dimension of A or of AH . Therefore, we prescribe the support
ω j for each of the coarse space basis functions 9 j , or equivalently a set of nodes ωh

j = ω j ∩ �̄h such
that the i-th element of 8̄ j can only be nonzero if i ∈ ωh

j . In matrix notation we write

8̄ j = R̄T
j q j , (21)

where q j is a vector containing the non-zero coefficients of the coarse basis function and R̄T
j is an

extension matrix from ωh
j to �̄h . The corresponding restriction matrix R̄ j from �̄h to ωh

j is a zero-one
matrix constructed in the same way as the restriction matrix Ri from �̄h to �h

i for the subdomain
problems (see (15) in Section 3).

To obtain a sparse coarse matrix AH , we assume that each support ω j overlaps with at most η other
supports, where η is independent of the problem size and of the number of subdomains. This implies
that each point of � is contained in at most η+1 supports ω j and also that each node in �̄h is contained
in at most η+ 1 sets ωh

j . The latter, together with the assumption that each node is contained in at least
one set ωh

j , implies, in matrix notation

I ≤
∑

j
R̄T

j R̄ j ≤ (η + 1) I, (22)

where the inequalities are taken componentwise.
With these preliminaries out of the way we can describe the coarse space construction. We will

show in the next section (Theorem 1) that the following construction solves the energy minimization
problem (3)–(4).

We propose that q j be found by solving a local system

A j q j = ḡ j , (23)

where ḡ j is a “well-chosen” right hand side and A j = R̄ j Ā R̄T
j , i.e., the system matrix of a local

problem on ω j . The matrix A j is a principal submatrix of Ā.
If we assume that the right hand sides ḡ j are restrictions of one global vector ḡ, i.e.,

ḡ j = R̄ j ḡ, (24)

then, combining (21), (23) and (24), we see that

8̄ j = R̄T
j A−1

j R̄ j ḡ. (25)

Copyright c© 2008 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2008; 0:1–24
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It is important to make sure that the kernel of the matrix Ā, which contains all constant vectors, can
be represented by the coarse space. This is achieved by enforcing the partition of unity constraint∑

j 8̄ j = 1. We see that ḡ is uniquely defined as the solution of the system

B̄ḡ = 1. (26)

where
B̄ =

∑
j

R̄T
j A−1

j R̄ j . (27)

In other words to construct the coarse space, we need to solve a system with B̄, the one-level
overlapping additive Schwarz preconditioner for Ā with respect to the covering {ω j }, as the system
matrix.

Given ḡ, each column 8̄ j of the matrix 8̄ can then be found by solving the local problem (23) on
the interior nodes of the support ω j .

In Section 6 we investigate how to solve the system (26) efficiently. In the next section we show
that the above construction gives the unique solution to a constrained energy minimization problem
and that this minimization problem arises naturally in the coefficient-explicit convergence theory for
two-level Schwarz methods.

5. Energy Minimization

Consider the following constrained optimization problem for the vectors 8̄ j , given Ā and the sets {ωh
j }:

min
∑

j
8̄T

j Ā8̄ j , such that
∑

j
8̄ j = 1, (28)

and such that the i-th entry of 8̄ j is non-zero only for i ∈ ωh
j . We show that the construction outlined

in Section 4 is equivalent to solving the constrained minimization problem (28).

Theorem 1. The set of vectors {8̄ j } defined in (25)–(27) is the unique solution to the constrained
minimization problem (28).

Proof. The optimization problem (28) has a quadratic objective function and linear constraints. Such
problems can be solved by solving a linear system of equations. We define the Lagrangian

L =
1
2

∑
j
8̄T

j Ā8̄ j − (
∑

j
8̄ j − 1)T λ̄, (29)

where we introduced a vector of Lagrange multipliers λ̄. The factor 1
2 is introduced for convenience.

We can incorporate the sparsity constraints by substituting 8̄ j = R̄T
j q j

L =
1
2

∑
j

qT
j R̄ j Ā R̄T

j q j − (
∑

j
R̄T

j q j − 1)T λ̄ (30)

To find the stationary points of the Lagrangian we set ∇λ̄L = 0 and ∇q j L = 0, which results in the
equations ∑

j
R̄T

j q j − 1 = 0 and R̄ j Ā R̄T
j q j − R̄ j λ̄ = 0. (31)

Solving the second equation and using the definition of A j gives

q j = A−1
j R̄ j λ̄. (32)
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Substituting this in the first equation we find∑
j

R̄T
j A−1

j R̄ j λ̄− 1 = 0 (33)

or B̄λ̄ = 1. By comparing with (26)–(27), we see that the Lagrange multipliers λ̄ correspond to the
vector ḡ that provides the right hand sides (24) for the local solves (23). 2

The energy minimization approach was introduced for the construction of coarse spaces for multigrid
methods in [9, 10]. There, the approach was motivated by results for the one-dimensional problem.
In the one-dimensional case the optimal coarse space can be worked out explicitly by solving local
one-dimensional problems. The supports can be chosen such that the resulting method gives a direct
solver for (12) and the corresponding basis functions are in fact the unique solution to the constrained
minimization problem (28). This was the motivation in [9, 10] to use this minimization problem and
the construction in the previous section also in the two and three dimensional case.

We now present a new way of motivating the energy minimization approach by showing that it
follows naturally from convergence theory for two-level Schwarz methods. For the theory we assume
that the triangulation T h is quasi-uniform and that the eigenvalues of A(x) satisfy λi (A(x)) ∼ α(x)
for some scalar function α : � → [1,∞) that is piecewise constant with respect to T h . This means
we only consider the (nearly) isotropic case here and we possibly need to scale our system, but we still
allow A to be highly variable throughout the domain �.

It is well known that for the preconditioned conjugate gradient method applied to (12) with
preconditioner P , the number of iterations guaranteeing a required accuracy can be bounded in terms
of the square root of the condition number κ(P A) := λmax(P A)/λmin(P A) of the preconditioned
matrix P A.

A typical two-level Schwarz method uses a discretization of (5) on a coarse mesh T H with mesh
width H (see Section 7), and extends the coarse elements K ∈ T H to obtain subdomains with overlap
width δ. Applying the standard theory for two-level Schwarz methods [1], but taking into account the
coefficient variation gives the following bound (see e.g. [4])

κ(B̃ A) . max
K∈T H

sup
x,y∈ωK

α(x)

α(y)

(
1+

H
δ

)
, (34)

where ωK is the union of all elements in T H having a non-empty intersection (i.e., sharing an edge or a
vertex) with the coarse element K . This means that as long as the coefficient jumps are small (locally)
and the overlap width δ is sufficiently large, standard two-level Schwarz methods are robust. A similar
result can be found in [26]. For non-overlapping methods, robustness can usually be shown as long as
the coefficients are constant or vary only slightly on each subdomain and provided the coarse mesh is
aligned with jumps in the coefficients [2]. In [4] and [5] this standard theory was extended to the case
of arbitrary coefficient variation. We summarize here the coefficient explicit theory taken from [5] (see
also [7]).

Let {9 j ∈ V̄h
} be a set of functions spanning the coarse space. Denote the support and the diameter

of 9 j by
ω j = supp 9 j and H j = diam ω j , (35)

respectively. We assume that the supports ω j are shape-regular and form a finite cover of �̄.
Furthermore, we assume that the overlap between a support ω j and its neighbours is uniform, with
δ j > 0 the width of the overlap region. The parameter δ j is defined to be the smallest value such that
each point in ω j at a distance less than δ j from the boundary, is also contained in some ωk , k 6= j . For
more technical details see [4, 5]. The following theorem is [5, Theorem 3.8].

Copyright c© 2008 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2008; 0:1–24
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Theorem 2. Assume that

•
∑

j 9 j (x) = 1, x ∈ �̄,
• ‖9 j‖L∞(�) . 1, and
• each �i is large enough such that each ω j is contained in at least one �i .

Then the condition number of the preconditioned matrix can be bounded as follows

κ(B̃ A) . γ (α)

(
1+max j

H j

δ j

)
. (36)

where
γ (α) = max j δ2

j‖α|∇9 j |
2
‖L∞(�) (37)

is the coarse space robustness indicator.

The proof of Theorem 2 is similar to the standard proof for two-level additive Schwarz methods with
general partition of unity coarse spaces [1, §3.10], but working directly in the energy norm, rather than
the H1-seminorm. If the third assumption is violated, it is still possible to prove the robustness of the
method at the expense of some other (technical) assumptions on the basis functions {9 j }. However,
in that case two robustness indicators, one for the subdomain partitioning {�i } and one for the coarse
space span{9 j }, are necessary [4].

If we assume that δ j ∼ H j , then Theorem 2 shows that we should strive to make γ (α) as small
as possible to obtain a robust and efficient preconditioner. This can be achieved by a good choice of
coarse basis functions. ForA(x) = I and {9 j } piecewise linear with respect to some coarse mesh T H ,
we have γ (α) = O(1). In this article we try to find basis functions with prescribed supports, that are
optimal (in a certain sense) for more general coefficient distributions A.

Since α is piecewise constant with respect to T h and 9 j is piecewise linear, the coarse space
robustness indicator can be written as

γ (α) = max j δ2
j maxτ

[
α|∇9 j |

2
]
τ
, (38)

where
[
α|∇9 j |

2]
τ

denotes the constant value of α|∇9 j |
2 for the triangle τ ∈ T h . If we define Y to

be the matrix with entries

Yτ j =

(∫
τ
A|∇9 j |

2
)1/2

,

then by the quasi-uniformity of T h and the assumptions made on the eigenvalues of A(x) we have

γ (α) ∼ h−d max j δ2
j maxτ Y 2

τ j = h−d
‖YD‖2max =: γ h(A) , (39)

where the matrix max-norm is defined as ‖A‖max = maxi, j |Ai j |, and D is the diagonal matrix with
entries D j j = δ j . The notation “∼” absorbs the quasi-uniformity constants. Note that

Y T Y = 8̄T Ā8̄. (40)

Recall that the columns 8̄ j of 8̄ contain the nodal values representing the coarse space basis functions
9 j ∈ V̄h (see Section 4). To make the problem of minimizing γ h(A) more tractable, we replace the
max-norm ‖·‖max in (39) by the scaled Frobenius norm hd/2

‖·‖F and define a new robustness indicator

γ h
F (A) = ‖YD‖2F = tr(D8̄T Ā8̄D) =

∑
j
δ2

j 8̄
T
j Ā8̄ j

Copyright c© 2008 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2008; 0:1–24
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where we have used the identity ‖A‖2F = tr(AT A). Note that γ h(A) ≤ hdγ h
F (A) and therefore if

γ h
F (A) is bounded independent of the coefficients than so is γ h(A). However, this leaves open the

possibility that γ h(A) is bounded independent of the coefficients for some basis functions {9 j }, but
that no such functions exist for γ h

F (A). In practice, little difference has been found between the different
matrix norms in the context of algebraic multigrid methods [10].

We see that provided the overlap width δ j is of the same order for each support ω j , the constrained
optimization problem (28) corresponds exactly to the minimization of the Frobenius norm robustness
indicator γ h

F (A), subject to the partition of unity constraint in Theorem 2. The Frobenius norm is scaled
such that for A(x) = I and piecewise linear {9 j }, we have γ h

F (A) = O(1) again.

6. Solving the Lagrange Multiplier System

The local problems (23) in the coarse space construction in Section 4 are similar to the ones which
have to be solved anyway when applying the overlapping Schwarz preconditioner for A. We assume
that this can be done efficiently. The hard part in the construction of the coarse space is solving the
system (26) for the Lagrange multipliers. Since this system is of the same size as the original problem,
we will solve it iteratively as well. Unfortunately, in general B̄ is ill-conditioned and so we need to find
a good preconditioner for B̄.

In [9] it was proposed to use Ā as a cheap preconditioner for B̄. However, since

κ( Ā B̄) = κ(B̄ Ā), (41)

it is clear that the performance of this preconditioner will be only as good as the performance of the
one-level preconditioner B̄ applied to the matrix Ā. In other words, Ā is a cheap preconditioner for
B̄, but it does not scale well. Note that, since Ā is singular, the condition numbers in (41) should be
interpreted as effective condition numbers. Furthermore, since Ā is singular, it is proposed in [9] to use
Ā + ζ I , which introduces a parameter ζ that needs to be chosen. These shortcomings were already
pointed out in [9].

In [11] it was observed that B̄ is a “local” operator. The authors mainly considered constructing
coarse spaces for multigrid methods, i.e., for a large number of coarse space basis functions with
small supports. For this case, where the size of the supports is of the same order as the mesh size
(i.e. H . h), they prove that the condition number κ(B̄) is uniformly bounded with respect to h and
they show numerically that using D̄, the inverse of the diagonal of B̄, as a preconditioner is sufficient
to guarantee robustness also with respect to coefficient jumps. For two-level Schwarz methods, the size
of the coarse space is relatively small (compared to the size of the original space). This means that
the supports are typically large and the observations from [11] do not apply any longer. The numerical
results in Section 7, in particular Tables VI and VIII, illustrate that in this case robustness with respect
to the mesh size is lost and moreover, diagonal preconditioning is no longer robust with respect to
coefficient variation. It was suggested in [11] that, because of its special structure, B̄ could also be
preconditioned by a one-level domain decomposition method, that is, without a coarse space. We now
construct such a one-level preconditioner C̄ and show that it can be implemented efficiently.

Just as the local matrices A j are constructed based on Ā we can construct local matrices

B j = R̄ j B̄ R̄T
j , (42)

based on B̄. A one-level overlapping Schwarz preconditioner C̄ for B̄ is then given by

C̄ =
∑

j
R̄T

j B−1
j R̄ j . (43)
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Note that the one-level preconditioner B̄ for Ā can be applied efficiently since the local matrices A j ,
which have to be inverted, are sparse. In contrast, the matrix B̄ and therefore the local matrices B j are
in general dense. As we show now, it is nevertheless still possible to apply C̄ efficiently.

We illustrate this using an example with a support overlapping with only two others. Consider a
support ω j with 2 neighbours ωk and ωl . We have

R̄ j R̄T
j = I j , R̄ j R̄T

k = Î jk 6= 0, R̄ j R̄T
l = Î jl 6= 0 ,

where each row of Îk j and of Îl j is zero except for at most one entry which is one. All other products
are zero matrices. Thus the matrix B j can be written as

B j = R̄ j (
∑

i
R̄T

i A−1
i R̄i )R̄T

j = A−1
j + Î jk A−1

k Îk j + Î jl A−1
l Îl j .

It is well known that this is a dense matrix which means we do not want to explicitly construct it when
implementing the method. Instead, the question is how we can efficiently apply

B−1
j = (A−1

j + Î jk A−1
k Îk j + Î jl A−1

l Îl j )
−1. (44)

We use the following form of the Sherman-Morisson-Woodbury formula [31, §2.1.3]

(X−1
+U6−1V T )−1

= X − XU (6 + V T XU )−1V T X. (45)

Using the substitutions

X ← A j , U = V ←
[
Î jk Î jl

]
, 6←

[
Ak

Al

]
, (46)

we get

B−1
j = A j − A j

[
Î jk Î jl

]
G−1

j

[
Îk j

Îl j

]
A j ,

where

G j =

[
Ak

Al

]
+

[
Îk j

Îl j

]
A j

[
Î jk Î jl

]
.

This shows that B−1
j can be applied to a vector by performing sparse matrix-vector multiplications and

by solving a system involving the sparse matrix G j .
In general let k1, . . . , kq be such that ωki ∩ ω j 6= ∅, for all i = 1, . . . , q (with q ≤ η). Define

R̂T
j =

[
Î jk1 · · · Î jkq

]T
, (47)

where each row of R̂T
j is again zero except for at most one entry which is one. This operator essentially

duplicates each degree of freedom in the overlap of ω j as many times as it appears in other supports
ωki , i = 1, . . . , q , and extends the vector to the remainder of each of the ωki . If we also define

G j = diag(Ak1 , . . . , Akq )+ R̂T
j A j R̂ j , (48)

then, in the general case,
B−1

j = A j − A j R̂ j G−1
j R̂T

j A j . (49)
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Figure 1. Example of overlap supports and block matrix structure of G j .

Figure 1(a) shows a typical hexagonal support ω j , as used in the numerical examples in Section 7, and
the six supports ωk1 , . . . , ωk6 it overlaps with. All seven supports are shown separately in Figure 1(b).
If the unknowns are grouped and numbered as illustrated in Figures 1(a) and 1(b), then the matrix G j
has the block structure shown in Figure 1(c). The shaded regions indicate the non-zero blocks of G j
which are themselves sparse.

To illustrate that (49) can indeed be applied efficiently to a vector, we estimate the complexity of
this operation under some reasonable assumptions: (i) the cost of adding two sparse vectors of size m
and the cost of multiplying an m×m sparse matrix by a vector are both proportional to m; (ii) the cost
of solving a sparse m × m system is S(m) = O(mβ) for some β ≥ 1 (ideally β = 1). Now recall
that each support overlaps with η other supports and assume further that the number of interior nodes
in each support is m. This implies that A j ∈ Rm×m , R̂ j ∈ Rm×ηm and G j ∈ Rηm×ηm . Applying B−1

j
involves vector additions and matrix-vector multiplications with a cost proportional to ηm and a sparse
solve with a cost of S(ηm). Since the coupling between the m×m blocks of G j is sparse (only through
the shared overlap of two supports with a third, see Figure 1(c)), we can expect the cost of this sparse
solve to be closer to ηS(m), the cost of solving η decoupled m × m systems. Since we assumed η to
be uniformly bounded, the cost of applying C̄ will be O(mβ) which (asymptotically) is the same as
the cost of applying B̄. More specifically the cost of applying C̄ will be roughly η times the cost of
applying B̄.

Remark 1. The number of iterations for solving (26) is determined by κ(C̄ B̄). The numerical results
in §7.2 indicate that this condition number is bounded by a constant that only depends on η and not on
the size of the supports, on the size of the overlap, on the number of coarse basis functions or on the
coefficients of the problem. The proof of this result is beyond the scope of the present paper and will
be the subject of a forthcoming paper.

7. Numerical Results

As a typical domain for our numerical tests we take the unit square � = [0, 1]2. In all the examples we
takeA(x) = α(x)I , with α(x) piecewise constant with respect to T h . To make it easier to compare with
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Figure 2. Coarse grid and fine mesh in one
coarse element (ns = 4, n = 8).

jjjjjjjjjj

Figure 3. The support for the coarse basis
function associated with coarse node j .

other methods, we assume that there is a coarse triangulation T H which partitions the fine mesh into
non-overlapping sets of triangles. Note, however, that the energy minimizing coarse space construction
also works for more general partitionings. For our example, we consider a coarse triangulation obtained
by dividing the unit square into ns × ns squares and subdividing each square along its main diagonal.
Each coarse square is further subdivided into n × n small squares which are further subdivided into
triangles. Each coarse triangle now contains n × n fine mesh triangles. For the numerical experiments
we use r as a measure of the total number of unknowns where nsn = 2r . The coarse grid and one
coarse triangle with subtriangles are shown in Figure 2 for ns = 4, n = 8, r = 5.

The subdomains �i for the one-level additive Schwarz method are chosen to consist of the union of
all coarse triangles around a node of the coarse mesh. This means there are (ns + 1)2 subdomains, one
for each coarse mesh node (see Figure 3 for a typical subdomain). This choice of subdomains gives
δ j ∼ H j , which is often referred to as generous overlap [1].

For our numerical examples we take the supports ω j of the coarse space basis functions to be
the same as the subdomains �i . This means that the coarse space basis functions (in all the studied
methods) will have the same supports as the piecewise linear finite element basis functions with respect
to the coarse mesh.

We compare several additive Schwarz preconditioners. The first method is the one-level additive
Schwarz method based on the subdomains described above, i.e., without a coarse space (NO). For the
two-level additive Schwarz methods we consider coarse spaces based on standard piecewise linear (PL)
finite elements (with respect to the coarse mesh) and multiscale finite elements with linear (LB) and
oscillatory (OB) boundary conditions [23, 24, 4], as well as the energy minimizing (EM) coarse space
described above.

The basis functions in the case of the piecewise linear (PL) coarse space are the standard finite
element “hat” functions which take the value one at one of the nodes of the coarse mesh and are zero
at all other nodes of the coarse mesh.

The multiscale finite element basis functions are constructed by discrete α-harmonic extension of
data on the boundary of each coarse triangle to the interior of the triangle. As for the piecewise linear
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basis functions, we assume that the function 9 j associated with coarse node j satisfies 9 j ( j) = 1 and
is zero at all other coarse nodes. Different types of multiscale finite element bases arise from different
choices of the boundary data. For the first type of multiscale finite element basis functions, we use
linear boundary conditions (LB) on the boundary of each coarse triangle. The discrete α-harmonic
extension of this boundary data to the interior of a coarse triangle K is obtained by (numerically)
solving the homogeneous problem

−∇ · (α∇u) = 0, on K . (50)

In practice this corresponds to solving a linear system with system matrix AK , the principal subblock
of A with row/column indices in �h

∩ K . Note that 9 j
∣∣
K ≡ 0 for all coarse triangles K such that

j /∈ K̄ . Therefore we only need to solve a small number of local subproblems for each 9 j .
For the second type of multiscale finite element functions, the boundary data is obtained by first

(numerically) solving a one-dimensional problem on each edge E of the coarse mesh. In [23] these are
referred to as oscillatory boundary conditions (OB). The one-dimensional problem is the restriction of
the homogeneous two-dimensional problem (50) to an edge E of the coarse mesh. Since the coefficient
function α is a piecewise constant function with respect to T h , we have to define a value for α on E .
Several choices are possible. Here, as suggested in [4], we assign to each fine mesh edge the maximum
of the coefficient values of the triangles containing that fine mesh edge, since this choice guarantees that
the basis functions are flat where α is large. This is different to the standard choice for discretization
where typically a harmonic average is used (e.g., motivated by Darcy’s Law). The resulting coefficient
function on each coarse mesh edge E is piecewise constant with respect to the fine mesh edges. Again,
we only have to solve these one-dimensional problems for a particular basis function 9 j if j ∈ Ē . The
discrete α-harmonic extension of the boundary data to the interior K of each coarse triangle is obtained,
as above, by (numerically) solving (50) subject to the obtained oscillatory boundary conditions. For
details see [4].

The construction of the multiscale finite element functions has many similarities with the
construction based on energy minimization described in the previous sections. In both cases, local
problems are solved to find the coarse space basis functions. The main differences are that for
the multiscale finite elements we need a coarse mesh and we have to specify artificial boundary
conditions on the triangles of the coarse mesh. For the energy minimizing basis it suffices to specify
the overlapping supports of the basis functions. Note that if the supports are the same in both cases
and if the boundary data in the multiscale finite element case are chosen to coincide with the values
of the energy minimizing basis, then both methods will produce identical coarse spaces. However,
since the optimal boundary data are not known a priori, the coarse spaces will normally be different.
Intuitively, the energy minimizing coarse space can be expected to be more robust, since the multiscale
finite element construction only takes into account coefficients near coarse edges when setting up
the boundary conditions on coarse elements. Of course, the energy minimization construction is
more expensive, since the local problems are slightly larger. Furthermore, we have to solve a global
system (26) for the Lagrange multipliers to satisfy the partition of unity constraint, which is satisfied
by construction in the case of the multiscale finite element coarse spaces. However, as explained in
Section 6, using the preconditioner proposed here, this additional global solve has a cost that is of
the same order as the remainder of the additive Schwarz algorithm. Thus asymptotically the cost of
applying the two-level preconditioner B̃ grows at the same rate with respect to the number of unknowns
for all four coarse spaces (PL, LB, OB, EM). Of course in absolute terms the energy minimizing coarse
space is the most costly. However, we will see below that in some cases this is easily outweighed by
the increased robustness of the preconditioner and thus the reduced number of CG iterations.
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(a) Example 1 (b) Example 2 (c) Example 3 (d) Example 4

Figure 4. Coefficient patches for the binary media examples. Each patch is repeated ns times in each direction.
White indicates α = 1 and black indicates α = α̂.

For structured grids, robust coarse spaces can also be constructed based on the operator dependent
prolongation used in certain geometric multigrid methods such as BoxMG [30]. Our construction is
more costly (although again the cost is assymptotically the same), but it allows for arbitrary supports,
not just uniform coarsenings of structured grids.

We consider several example problems similar to the ones in [4]. For the first set of so-called binary
media examples, the coefficient α takes the value α̂ ≥ 1 in some parts of the domain (resolved by the
fine mesh) and the value 1 in the remainder. The four binary media examples are illustrated in Figure 4
with white indicating α = 1 and black indicating α = α̂. Each figure shows the n × n small squares
making up a representative square, which is repeated ns times in each direction. We use the side lengths
H = 1/ns and h = H/n of the coarse and fine mesh squares as mesh parameters.

Example 1. For the first example, each coarse triangle has a high coefficient region in its interior.
The regions are squares of size H/4, located at a distance H/8 from the horizontal and vertical edges
of the coarse triangles.

Example 2. For the second example there is a high coefficient region on top of the middle of each
diagonal edge shared by two coarse triangles. The regions are squares of size H/4, located at a distance
3H/8 from the horizontal and vertical edges of the coarse triangles.

Example 3. The third example is an example of a fine scale binary medium. The high coefficient
regions are regularly spaced squares of size h with corners (2ih, 2 jh) and (2ih + h, 2 jh + h),
(i, j) ∈ Z2.

Example 4. The fourth example has an L-shaped region with high coefficients (see Figure 4(d)).
All the examples have high coefficient regions. The coefficient explicit convergence theory (see

Section 5) shows that for a robust method we need basis functions with low energy. This means
that the basis functions should be flat in the high coefficient regions. We therefore expect that the
standard piecewise linear coarse space will not perform well as α̂ increases. Since Example 1 has
no high coefficients on or near the coarse element boundaries, the multiscale finite element coarse
space with linear boundary conditions will be robust with respect to coefficient variation. The resulting
coarse basis functions are flat in the high coefficient region and they behave like the piecewise linear
hat functions near the edges of the coarse mesh. On the other hand, Examples 2, 3 and 4 have high
coefficient regions on the boundaries of the coarse elements and therefore linear boundary conditions
will not be sufficient for robustness. Because of the linear boundary conditions, the solution has to
go from high to low values within a region of high coefficients and therefore it is impossible for the
α-harmonic extensions to be flat there. On the other hand, the oscillatory boundary conditions obtained
by solving one-dimensional problems on the coarse edges, allow low energy basis functions to be
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Figure 5. Typical energy minimizing coarse space basis function for Example 2.

found for Examples 2 and 3. Figure 5 shows a typical energy minimizing coarse space basis function
for Example 2. Example 4 aims to illustrate that, for the same set of supports, it is possible to have
a coefficient function for which the multiscale finite element functions do not work very well and the
energy minimizing basis functions do. Since the area where the coefficient is high stretches across
a coarse triangle and the (linear or oscillatory) boundary conditions on opposite edges of the coarse
element specify both high and low values for this area, the multiscale finite element basis function
cannot be flat everywhere. It will therefore have a high energy, which blows up as α̂→∞. This means
that, in this case, the multiscale finite element functions do not provide a coarse space that is robust
with respect to the coefficients. Figures 6(a) and 6(b) show surface and contour plots for some of the
coarse basis functions for Example 4, both for the multiscale finite elements with oscillatory boundary
conditions (OB) and the energy minimizing coarse basis functions (EM). We see that the basis functions
are flat in regions with high coefficients for the EM case, but not for the OB case.

Finally we consider random media examples. Let Z(p), p ∈ R2 be a Gaussian random field with
mean µ(p) = E(Z(p)) and covariance function 6(p, q) = E((Z(p) − µ(p))(Z(q) − µ(q))). We
use the software package Gaussian [32] to construct a Gaussian random field Z(p) on a grid with
nsn× nsn squares. We consider homogeneous, stationary, isotropic Gaussian random fields with mean
µ(p) = µ = 0 and an exponential covariance function of the form (see, e.g., eq. (2.2) in [33])

6(p, q) = σ 2 exp(−|p − q|/λ), (51)

where the parameters are the variance σ 2 and the correlation length λ. The coefficients are then taken
to be the exponential of this field to obtain a lognormal random field. This gives a coefficient function
with a certain smoothness determined by the correlation length λ. For each random field realization we
calculate α̌ = supx,y∈� α(x)/α(y). Table I shows the minimum, median and maximum of α̌ for the
100 realizations used in the experiments. We also consider random binary media examples obtained
by taking Gaussian random fields with the same covariance structure and by replacing the 50% lowest
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(a) OB (b) EM

Figure 6. Typical coarse space basis functions for Example 4 (ns = 4, n = 8, α̂ = 106) with a clearly visible
non-zero gradient in the high coefficient region for OB and not for EM.

Table I. Statistics for α̌ = sup
x,y∈�

α(x)/α(y) for 100 log-normal random field realizations used in the experiments.

σ 2 α̌min α̌med α̌max

0 1.0e+00 1.0e+00 1.0e+00
2 4.8e+04 1.6e+05 6.2e+05
4 4.2e+06 2.2e+07 1.5e+08
6 1.3e+08 9.9e+08 1.1e+10
8 2.4e+09 2.4e+10 3.8e+11

and the 50% highest values of the field by 1 and α̂, respectively. A Gaussian random field and the
corresponding clipped random field are shown in Figure 7.
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(a) Unclipped (b) Clipped

Figure 7. Gaussian random media examples (ns = 32, n = 8, λ = 4h).

7.1. Scalability and Coefficient Robustness of the Two-Level Preconditioner

We first consider how the different preconditioners perform when using them in a conjugate gradient
iteration to solve (12), with right hand side f = 1 and initial guess u = 0. Tables II–V show the number
of CG iterations needed to attain a relative reduction in the residual norm by a factor of 10−6 for the
different methods applied to the binary and random media examples. Tables II–IV show results for the
binary media examples, Table V shows results for the random media.

For our choice of subdomains, the one-level method (NO) is robust with respect to coefficient
variation in Examples 1–4 (see [4]) and this can be observed in Table II. However, Table III shows
that, for the one-level method (NO), the number of iterations increases with the number of subdomains.
Adding a standard piecewise linear finite element coarse space (PL) leads to a significant improvement
for small values of α̂, but as soon as α̂ becomes larger the number of iterations increases. For Example 1
the multiscale finite element coarse space with linear boundary conditions (LB) is sufficient to obtain
a fully robust method. For Examples 1–3, the multiscale finite element coarse space with oscillatory
boundary conditions (OB) and the energy minimizing coarse space (EM) give equally good results.
Example 4 illustrates that there are cases where the EM space is robust and the OB space is not.

Table V shows results for the clipped and unclipped random media examples. As σ 2 increases the
coefficient variation increases (see Table I). For the clipped (binary) case this is similar to increasing
α̂ in Examples 1–4. The performance of the multiscale finite element coarse space with oscillatory
boundary conditions and the energy minimizing coarse space is very similar here. Both perform
better than piecewise linear coarsening but unfortunately both are not fully robust. However, the
energy minimizing framework is much more flexible than the multiscale finite element framework. In
particular, it allows for more general supports. To achieve a fully robust method it is necessary to adapt
not only the values, but also the supports of the coarse space basis functions to the coefficients. This can
be done fully algebraically using ideas from Algebraic Multigrid. In [5], numerical experiments with
adaptively chosen supports based on an aggregation method are performed. The aggregation method
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Table II. Number of CG iterations to solve (12) with different preconditioners for different values of the
coefficient α̂ (ns = 32, n = 8, r = 8).

Example 1 Example 2 Example 3 Example 4
α̂ NO PL LB OB EM NO PL LB OB EM NO PL LB OB EM NO PL LB OB EM

100 79 13 13 13 13 79 13 13 13 13 79 13 13 13 13 79 13 13 13 13
102 79 48 14 14 15 79 46 37 15 13 80 63 40 14 14 123 64 51 46 29
104 79 89 14 14 15 79 104 89 15 14 84 113 110 15 14 131 167 171 157 32
106 79 89 14 14 15 79 113 92 15 14 87 115 112 15 14 135 179 183 162 32

Table III. Number of CG iterations to solve (12) with different preconditioners for an increasing number n2
s of

subdomains (α̂ = 106).

Example 1 Example 2 Example 3 Example 4
ns n r NO PL LB OB EM NO PL LB OB EM NO PL LB OB EM NO PL LB OB EM

4 8 5 14 18 13 13 13 14 18 17 13 13 15 19 18 13 13 25 29 27 26 21
8 8 6 21 23 14 14 15 21 31 25 15 14 23 33 31 15 14 34 48 49 48 26
16 8 7 42 48 15 15 15 41 58 48 15 14 45 59 57 15 14 74 89 95 88 29
32 8 8 79 89 14 14 15 79 113 92 15 14 87 115 112 15 14 135 179 183 162 32

in [5], without smoothing, results in supports with minimal overlap. For this case, the basis functions
are the same as the ones found by the energy minimization construction (since there is only one set
of functions that satisfies the partition of unity constraint). The numerical results in [5] show that with
an adaptive choice of supports the method is fully robust even in the random coefficient case. For
problems of the same size as the ones used here (but with slightly smaller supports) and for values of
α̂ varying between 10 and 106 the experiments in [5, Table 1] show that the number of CG iterations
in the clipped case varies only very slightly between 24 and 29 iterations. Similar results are reported
for the unclipped case.

7.2. Scalability and Coefficient Robustness of the Coarse Space Construction

We now consider the construction of the coarse spaces based on energy minimization as described in
Sections 4–6. The main part of this construction is the solution of the Lagrange multiplier system (26).
We solve this system using a preconditioned conjugate gradient method. As preconditioners we
consider a shifted version of the semidefinite system matrix Ā + ζ I , ζ = 10−3 (indicated as Ā in
the tables) as proposed in [9], the inverse diagonal D̄ of B̄ as proposed in [11] and the one-level
additive Schwarz preconditioner C̄ described in Section 6. Another idea that we have tried, is to use a
“localized” version of Ā, that is

Ē =
∑

j
R̄T

j A j R̄ j . (52)
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Table IV. Number of CG iterations to solve (12) with different preconditioners for growing subdomain problem
size (α̂ = 106).

Example 1 Example 2 Example 3 Example 4
ns n r NO PL LB OB EM NO PL LB OB EM NO PL LB OB EM NO PL LB OB EM

8 4 5 28 37 35 35 26 21 22 14 14 14 24 32 31 14 13 40 48 49 46 24
8 8 6 21 23 14 14 15 21 31 25 15 14 23 33 31 15 14 34 48 49 48 26
8 16 7 22 24 15 15 15 22 32 26 15 14 24 32 31 15 15 37 49 51 48 26
8 32 8 23 24 15 15 15 23 32 27 16 15 25 34 31 15 15 39 50 52 49 27

Table V. Number of CG iterations (median for 100 realizations) to solve (12) for the random media examples for
different values of α̂ and σ 2 (ns = 32, n = 8, r = 8, λ = 4h).

Clipped

α̂ NO PL LB OB EM

100 79 13 13 13 13
102 169 35 31 28 26
104 216 59 52 42 40
106 265 93 80 64 60
108 322 138 120 94 89

Unclipped

σ 2 NO PL LB OB EM

0 79 13 13 13 13
2 174 31 28 24 23
4 238 48 41 31 30
6 322 68 56 37 37
8 428 93 74 44 45

This operator can be motivated by considering the case of minimal overlap between the supports, i.e.,
when the overlap consists of one layer of elements of the fine mesh. For this case no interior nodes are
shared between the supports so that R̄ j R̄T

k = 0 for j 6= k and R̄ j R̄T
j = I j and therefore Ē is the exact

inverse of B̄.

To see how each of the different preconditioners performs, we show in Tables VI–IX the number of
CG iterations needed for solving the Lagrange multiplier system (26). Again the stopping tolerance
is 10−6. We observe that the performance of the one-level additive Schwarz preconditioner C̄ is
outstanding for all test cases. It gives a coarse space construction that is robust with respect to
coefficient variation, number of subdomains and subproblem size. All the other preconditioners break
down in one or more cases.

Figure 8 shows typical graphs for the processor time taken to construct the multiscale finite element
coarse space with oscillatory boundary conditions (OB) and the energy minimizing coarse space (EM)
for increasing subproblem size (see Tables IV and VIII, i.e. ns = 8). In each case the subproblem size
is O(n2). The results are for Example 4. We see that the more robust EM construction is slightly more
expensive, but it still scales similarly to the OB construction. Two lines indicating linear (β = 1) and
quadratic (β = 2) behaviour are also shown. As explained in Section 6, a good sparse solver should
give a computational complexity that scales close to linearly with subproblem size.
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Table VI. Number of CG iterations to solve (26) for different values of the coefficient α̂ (ns = 32, n = 8, r = 8).

Example 1 Example 2 Example 3 Example 4
α̂ Ā D̄ Ē C̄ Ā D̄ Ē C̄ Ā D̄ Ē C̄ Ā D̄ Ē C̄

100 53 43 18 10 53 43 18 10 53 43 18 10 53 43 18 10
102 57 80 16 9 55 124 32 10 70 108 57 10 93 139 35 10
104 57 46 16 9 55 167 50 10 71 119 135 9 96 200+ 46 10
106 57 46 16 9 55 42 67 10 71 37 200+ 9 96 160 53 10

Table VII. Number of CG iterations to solve (26) for an increasing number n2
s of subdomains (α̂ = 106).

Example 1 Example 2 Example 3 Example 4
ns n r Ā D̄ Ē C̄ Ā D̄ Ē C̄ Ā D̄ Ē C̄ Ā D̄ Ē C̄

4 8 5 14 36 16 10 14 37 54 11 18 33 167 10 27 132 52 11
8 8 6 23 43 17 10 23 42 66 10 31 37 200+10 48 149 57 10
16 8 7 39 46 16 9 39 42 71 10 52 38 200+10 76 155 55 10
32 8 8 57 46 16 9 55 42 67 10 71 37 200+ 9 96 160 53 10

Table VIII. Number of CG iterations to solve (26) for growing subdomain problem size (α̂ = 106).

Example 1 Example 2 Example 3 Example 4
ns n r Ā D̄ Ē C̄ Ā D̄ Ē C̄ Ā D̄ Ē C̄ Ā D̄ Ē C̄

8 4 5 32 43 28 8 24 20 46 11 32 45 145 11 49 76 46 11
8 8 6 23 43 17 10 23 42 66 10 31 37 200+10 48 149 57 10
8 16 7 22 83 22 10 22 77 83 11 28 60 200+10 41 200+64 10
8 32 8 18 151 29 11 17 142 110 11 22 103 200+10 29 200+87 11

Table IX. Number of CG iterations (median for 3 realizations) to solve (26) for the random media examples for
different values of α̂ and σ 2 (ns = 32, n = 8, r = 8, λ = 4h).

Clipped

α̂ Ā D̄ Ē C̄

100 53 43 18 10
102 189 101 50 14
104 200+ 174 88 15
106 200+ 200+ 145 16
108 200+ 200+ 200+ 16

Unclipped

σ 2 Ā D̄ Ē C̄

0 53 43 18 10
2 122 115 43 14
4 200+ 200+ 74 15
6 200+ 200+ 106 15
8 200+ 200+ 143 16
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Figure 8. Timings for the OB and EM coarse space constructions for increasing
subdomain size (Example 4, α̂ = 106, ns = 8).

8. Concluding Remarks

In this paper we have investigated the construction of coarse spaces for two-level Schwarz type domain
decomposition methods. We used a coarse space construction based on energy minimization [9, 11].
The construction of the energy minimizing coarse space involves solving a Lagrange multiplier
system of the same size as the original problem. To obtain an efficient solver, we propose a one-
level overlapping additive Schwarz preconditioner for this system and we demonstrate how this
preconditioner can be implemented effectively. Our numerical results show that, as opposed to
previously studied preconditioners, the one-level overlapping additive Schwarz preconditioner results
in a coarse space construction that is robust, efficient and scalable.

The numerical results show that the two-level method using the energy minimizing coarse space,
performs well for many of the examples considered. However, for a fixed choice of supports for the
coarse space basis functions, there are examples for which the method is not robust with respect to
coefficient variation. Further investigations will show how to improve the robustness of the method by
combining the energy minimizing coarse space construction with techniques for choosing the supports
adaptively, depending on the coefficient function (see, e.g., [5]).

We have considered here the use of energy minimizing coarse spaces in the context of two-
level Schwarz methods. However, these coarse spaces are also very interesting for numerical
homogenization and upscaling.
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13. Ruge JW, Stüben K. Algebraic multigrid. Multigrid methods, Frontiers Appl. Math., vol. 3. SIAM: Philadelphia, 1987;
73–130.
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