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A NEW MULTISCALE FINITE ELEMENT METHOD FOR

HIGH-CONTRAST ELLIPTIC INTERFACE PROBLEMS

C.-C. CHU, I. G. GRAHAM, AND T.-Y. HOU

Abstract. We introduce a new multiscale finite element method which is
able to accurately capture solutions of elliptic interface problems with high
contrast coefficients by using only coarse quasiuniform meshes, and without
resolving the interfaces. A typical application would be the modelling of flow
in a porous medium containing a number of inclusions of low (or high) per-
meability embedded in a matrix of high (respectively low) permeability. Our
method is H1- conforming, with degrees of freedom at the nodes of a triangular
mesh and requiring the solution of subgrid problems for the basis functions on
elements which straddle the coefficient interface but which use standard linear
approximation otherwise. A key point is the introduction of novel coefficient-
dependent boundary conditions for the subgrid problems. Under moderate
assumptions, we prove that our methods have (optimal) convergence rate of
O(h) in the energy norm and O(h2) in the L2 norm where h is the (coarse)
mesh diameter and the hidden constants in these estimates are independent
of the “contrast” (i.e. ratio of largest to smallest value) of the PDE coeffi-
cient. For standard elements the best estimate in the energy norm would be
O(h1/2−ε) with a hidden constant which in general depends on the contrast.
The new interior boundary conditions depend not only on the contrast of the
coefficients, but also on the angles of intersection of the interface with the
element edges.

1. Introduction

In this paper we present a new application of multiscale finite element methods
for the classical elliptic problem in weak form

(1.1)

∫
Ω

A(x)∇u(x) · ∇v(x)dx =

∫
Ω

F (x)v(x)dx , v ∈ H1
0 (Ω) ,

where the solution u ∈ H1(Ω) is required to satisfy a Dirichlet condition on ∂Ω and
F is given on a bounded domain Ω ⊂ R

2. To concentrate on the essential aspects
of this new theory we primarily treat the homogeneous Dirichlet problem when the
boundary of Ω is a convex polygon. (These are not essential restrictions: All our
results are true for smooth boundaries as well. Similar results could be obtained for
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non-convex polygons, treated with local mesh refinement. Moreover, we state the
corresponding results for inhomogeneous boundary conditions later in the paper.)

The coefficient A, which is assumed here to be scalar, will be allowed to jump
across a number of smooth interior interfaces, and the aim of the present paper is
to propose and analyse a new multiscale finite element method for this problem on
(coarse) meshes which are not required to resolve the interfaces. Our method has
the same rate of convergence (with respect to mesh diameter) as is known for the
case when A is globally smooth (i.e. the rate is not degraded by the loss of solution
regularity across the interfaces) and, moreover (in a way made precise below), this
rate of convergence is independent of the range of variation (“contrast”) of the
coefficient function A.

While the method we propose could be used for the case when the interfaces in
A are of general geometry, our proofs will be given for the particular case when Ω
contains a finite number of inclusions, each with smooth closed boundary not inter-
secting ∂Ω, such as is depicted in Figure 1. Denoting the inclusions by Ω1, . . . ,Ωm

and setting Ω0 = Ω\
⋃m

i=1 Ωi, we assume that the coefficient A is piecewise con-
stant with respect to the decomposition {Ωi : i = 0, . . . ,m}. (Again there is
no essential difficulty in generalising to piecewise smooth coefficients.) Setting
Amin = min{A|Ωi

: i = 0, . . . ,m}, we first scale problem (1.1) by dividing by Amin,
yielding the weak form: Find u such that u ∈ H1

0 (Ω), and

(1.2) a(u, v) = (f, v)L2(Ω) for all v ∈ H1
0 (Ω) ,

where

(1.3) a(u, v) =

∫
Ω

α(x)∇u(x) · ∇v(x)dx ,

with

(1.4) α(x) =
1

Amin
A(x) , f(x) =

1

Amin
F (x) .

Clearly then, α is piecewise constant with respect to the partition {Ωi : i =
0, . . . ,m} and α(x) ≥ 1 for all x ∈ Ω. Letting αi denote the restriction of α to
Ωi, our analysis will focus on the proof of robust optimal order convergence in each
of the two “high contrast” cases, characterised by a large “contrast parameter” α̂:

Case I : α̂ := min
i=1,...,m

αi → ∞ , α0 = 1,(1.5)

Case II : α̂ := α0 → ∞ , maxi=1,...,m αi ≤ K,(1.6)

for some constant K. In Case I, the inclusions are high permeability compared to
the background matrix, while Case II contains the converse configuration.

Our method will involve special “multiscale” nodal basis functions on a (coarse)
quasiuniform triangular mesh Th. On elements on which α is constant, these basis
functions just coincide with the usual linear hat functions. Otherwise we pre-
compute the basis function by solving (approximately) a homogeneous version of
(1.2) on the relevant elements, subject to special boundary conditions described
later in this paper. The resulting basis functions are then used to define a multiscale
finite element solution uMS

h by the usual Galerkin method. We show that our
method satisfies an error estimate of the form

(1.7) |u− uMS
h |H1(Ω) ≤ |u− uMS

h |H1(Ω),α ≤ Ch
[
h|f |2H1/2(Ω) + ‖f‖2L2(Ω)

]1/2
,
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Figure 1. A domain with many inclusions

where

|v|2H1(Ω),α = a(v, v) , with a(v, w) =

∫
Ω

α∇v · ∇w ,

and the constant C is independent of h and of the contrast parameter α̂ . This
should be compared to the best result of O(h1/2−ε) (with a hidden constant which
generally depends on the contrast) for standard finite element methods on a mesh
which does not resolve the interface. We also devise a non-standard duality argu-
ment which shows that

(1.8) ‖u− uMS
h ‖L2(Ω) ≤ Ch2

[
h|f |2H1/2(Ω) + ‖f‖2L2(Ω)

]1/2
.

The price to pay for this improved convergence rate is the solution of subgrid
problems on elements which straddle the interface and a slightly worse dependence
than normal on the data f on the right-hand sides of (1.7) and (1.8). The local
subgrid problems can be done as a preprocessing step before the solution of the
global finite element problem. The accuracy needed for these subgrid problems is
investigated numerically in §4.

The multiscale finite element method (in which basis functions are computed
by solving local homogeneous PDEs subject to special boundary conditions) has a
large literature. The primitive form of this method can be traced back to the early
work of Babus̆ka, Caloz and Osborn [5, 4] who introduced special basis functions
for 1D elliptic problems with rough coefficients.

In [19], Hou and Wu developed the multiscale finite element method for multi-
dimensional problems with multiscale coefficients. The main idea of the method was
to incorporate the small-scale features in the underlying physical problem into the
finite element bases locally. Within each coarse grid block, one can construct the
multiscale basis by solving the leading order governing equation locally. The small
scales then interact with the large scales through the variational formulation of the
finite element method. Hou and Wu [19] also identified a key issue in multiscale
methods, that is, the microscopic boundary condition which connects the small scale
bases to the macroscopic solution. They further performed a convergence analysis to
reveal a resonance error introduced by the microscopic boundary condition [19, 20].
An over-sampling technique was proposed to effectively reduce the resonance error
[19]. The multiscale bases are strongly localized and adaptive. In many cases, the
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multiscale bases can be pre-computed and can be used repeatedly in subsequent
computations with different source terms and different boundary conditions. In
some situations the basis functions can be updated adaptively. This leads to a
significant computational saving in upscaling the two-phase flows where the elliptic
(pressure) equation needs to be solved many times dynamically. Another attractive
feature of the method is the ability to both coarsen (upscale) a fine grid solution
and to reconstruct (downscale) the fine grid solution from a coarse grid solution by
using the multiscale bases. This property is very attractive in many engineering
applications.

Most of the convergence analysis of multiscale finite element methods is for
the periodic homogenisation case where, in (1.2), α(x) = α(x/ε), with ε a small
parameter and α a smooth positive-valued periodic function on a unit cell Y , and
the analysis is geared to obtaining optimal convergence, robust with respect to
the “oscillation parameter” ε → 0 (e.g. [19, 20]). However, the method itself is
quite general and has been applied to non-periodic cases with considerable success.
For example in [19] one finds an application to (1.2) for the case when α is a
realisation of a random field, both in the isotropic and anisotropic cases and with
highly contrasting media. We also refer to a recent book by Efendiev and Hou
[12] for more discussions on the theory and applications of multiscale finite element
methods.

The convergence analysis of the new multiscale finite element method devised in
this paper makes no appeal to homogenisation theory but nevertheless explains why
“multiscale”-type basis construction can be beneficial in more general situations. It
turns out that the new interior boundary conditions obtained in the present work
are a genuine generalisation of the “oscillatory” boundary conditions of [19], in
the sense that the two coincide if and only if the interfaces intersect the element
edges orthogonally. Some of the arguments used in this paper have already been
developed in the context of domain decomposition methods in [15, 16, 36].

To our knowledge the dependence of the accuracy of numerical methods for
elliptic interface problems on coefficient contrast has not been previously analysed,
even though such high contrast problems are ubiquitous in porous media problems,
especially in geophysical and oil recovery applications. We note, however, that there
is substantial literature on the performance of iterative methods (see, e.g. [15] and
the references therein) and on the analysis of a posterior error estimates (see, e.g.
[7, 2, 44]) for such high contrast problems, but this literature does not address the
issues considered in the present paper.

In the following section, §2, we explain the main idea behind our method and
illustrate the analysis in the special case when the coarse mesh can be drawn to
enclose each of the inclusions Ωi : i = 1, . . . ,m. The main results of the paper
are obtained in §3, where we construct the multiscale basis functions in the case
when the coefficient interface intersects a typical triangular coarse mesh element.
Here we present a detailed analysis, obtaining the estimates (1.7) and (1.8) under
certain technical assumptions. Numerical experiments which illustrate these results
are provided in §4. Two new technical results which are crucial to the analysis are
included as appendices: The first is a scaled version of the trace theorem on a
triangular annulus, while the second is a regularity theorem (due to N. Babych,
I. Kamotski and V.P. Smyshlyaev of the University of Bath) for the exact solution
of (1.2) in the high-contrast case. These should be of independent interest.
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Before we embark on §2, we first discuss relevant existing literature on interface
problems of the form (1.1). The approach that is closest to ours is the immersed
finite element (IFE) method of Li, Lin and Wu [28]. This method considered uni-
form triangular grids and approximated the interface by a straight line segment
when it intersects a coarse grid element. By matching the jump condition, they
created a special basis function for elements which are cut through by the interface
and proved a second order convergence rate in the L2 norm and a first order con-
vergence rate in the H1 semi-norm. On the other hand, the constants in their error
estimate depend strongly on the contrast of the coefficient. It turns out that when
the interface intersects an element in a straight line, our new method coincides with
the method of [28]. Thus our results show in fact robustness with respect to the
contrast for the IFE method and hence help explain the rather good numerical ex-
periments in [28]. The connections between our method and that of [28] are further
discussed in §3.2.

Much earlier, Babuška [3] studied the convergence of methods based on a min-
imization problem equivalent to (1.1) in which the boundary and jump condition
were incorporated in the cost functions. There are many subsequent works on such
penalty methods, for example, Barrett and Elliott [6]. Another relevant work is
due to Chen and Zou [9] who approximated the smooth interface by a polygon and
used classical finite element methods to solve both elliptic and parabolic interface
equations. The disadvantage of this approach is that the mesh must align with the
interface. Plum and Wieners [39] studied interface problems with piecewise con-
stant coefficients and proved (under certain assumptions) optimal a priori estimates
which are independent of the coefficients for standard finite element methods with
meshes resolving the interface. Related results for discontinuous Galerkin methods
were given by Dryja in [10]. Unfitted high order finite element methods were re-
cently studied by Li et al. in [25], and error estimates which are explicit in both the
order of the elements and the error in the boundary approximation were proved.

There has been a great deal of effort in developing accurate and efficient finite
difference methods for the interface problem. Among them, the Immersed Bound-
ary Method (IBM) was developed by Peskin [37] for studying the motion of one or
more massless, elastic surfaces immersed in an incompressible, viscous fluid, par-
ticularly in biofluid dynamics problems where complex geometries and immersed
elastic membranes are present. The IBM method employs a uniform Eulerian grid
over the entire domain to describe the velocity field of the fluid and a Lagrangian
description for the immersed elastic structure. The interaction between the fluid
and the structure is expressed in terms of the spreading and interpolation opera-
tions by use of smoothed delta functions. We refer to [38] for an extensive review of
this method and its various applications. Motivated by Peskin’s method, Unverdi
and Tryggvason have developed a highly successful front tracking method to study
viscous incompressible multiphase flows [42].

Another related work is the Immersed Interface Method (IIM) for elliptic inter-
face problems developed by LeVeque and Li [24]. The main idea of the IIM method
is to use the jump condition across the interface to modify the finite difference
approximation near the interface. When this is done properly, one can achieve a
second order discretization. The IIM method can also be applied to the moving
interface problem [18] and to the irregular domain problem [11]. Several extensions
and improvements can be found in the references [1, 26, 27].
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An important development of interface capturing methods is the Ghost Fluid
Method (GFM) [13] developed by Fedkiw, Merriman, Aslam and Osher. The GFM
incorporated the interface jump condition into the finite difference discretization
in a clever way which can be implemented efficiently. The GFM has been applied
to capture discontinuities in multimedium compressible flow [22] and strong shock
impacting problems [23], with considerable success. The GFM has been generalized
to the elliptic interface problem in [30], and its convergence property has been
analyzed in [31]. Related works include [45, 8]. We remark that there has been little
progress in rigorous convergence theory for finite difference methods for interface
problems. By contrast, the present paper proves the robust convergence of our
proposed method.

2. The key idea and a simple application

2.1. The key idea. For any measurable subset D ⊂ Ω, define the local version of
a:

aD(v, w) =

∫
D

α∇v · ∇w .

For a suitable index set Ih(D), let Nh(D) = {xp : p ∈ Ih(D)} denote the nodes of
the mesh Th which lie in D. For any triangular element τ ∈ Th (assumed to contain
its boundary), Nh(τ ) = {xp : p ∈ Ih(τ )} is the set containing the three nodes of τ .
For each p ∈ Ih(τ ) we shall construct nodal basis functions Φ

MS
p , whose restriction

ΦMS
p,τ to each τ ∈ T H is required to solve the “subgrid problem”:

(2.1) aτ (Φ
MS
p,τ , v) = 0 for all v ∈ H1

0 (τ ) ,

together with a suitable boundary condition:

(2.2) ΦMS
p,τ = φp,τ on ∂τ , with φp,τ (xq) = δp,q for all p, q ∈ Ih(τ ),

where φp,τ ∈ C(∂τ ) and

(2.3)
∑

p∈Ih(τ)

φp,τ = 1 on ∂τ .

In general for each p ∈ Ih(Ω) the boundary data in (2.2) has to be prescribed
and the local problems (2.1) may have to be solved (e.g. on a subgrid). (We will
see that there is a bounded number of these local problems for each p, independent
of the coarse mesh diameter.) However, if α is constant on τ , then the boundary
condition will be chosen so that ΦMS

p,τ is just the linear hat function on τ centred at
xp. Observe that under conditions (2.1), (2.2) and (2.3),

(2.4)
∑

p∈Ih(τ)

ΦMS
p,τ = 1 on τ .

From the basis functions we construct the nodal interpolation operator: IMS
h v =∑

p∈Ih(Ω) v(xp)Φ
MS
p , which is defined for all v ∈ C(Ω). Note that from (2.4) it

follows that

(2.5) IMS
h 1 = 1 on Ω .

The basis functions ΦMS
p which we shall construct will be continuous across

element edges and will vanish on ∂Ω, so that

(2.6) VMS
h := span{ΦMS

p : p ∈ Ih(Ω)} ⊆ H1
0 (Ω) ,
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i.e. the method is conforming. Then we define the finite element solution uMS
h ∈

VMS
h of (1.2) by requiring that a(uMS

h , vMS
h ) = (f, vMS

h )L2(Ω) , for all vMS
h ∈ VMS

h ,
which gives us the usual optimality estimate:

(2.7) |u− uMS
h |H1(Ω),α ≤ |u− IMS

h u|H1(Ω),α .

Now, to estimate the right-hand side of (2.7), we note that, since the basis
functions satisfy the homogeneous equation (2.1), and since u solves (1.2), the local
interpolation error EMS

h := u− IMS
h u satisfies, for all τ ∈ Th,

(2.8) aτ (E
MS
h , v) = (f, v)L2(τ) for all v ∈ H1

0 (τ ) .

An estimate for |EMS
h |H1(Ω),α, suitable for inserting in the right-hand side of (2.7),

can be obtained from the following lemma.

Lemma 2.1. Suppose D is a Lipschitz subdomain of Ω and suppose that φ ∈ H1(D)
satisfies

(2.9) aD(φ, v) = (f, v)L2(D) for all v ∈ H1
0 (D) .

Then for any φ̃ ∈ H1(D) such that the trace of φ̃− φ vanishes on ∂D,

|φ|H1(D),α ≤ |φ̃|H1(D),α + C diam(D)‖f‖L2(D) ,

where C is independent of φ, φ̃, the diameter of D and α̂.

Proof. Let φ∗ be the unique solution of the problem

(2.10) aD(φ∗, v) = 0 for all v ∈ H1
0 (D) ,

such that the trace of φ∗ − φ vanishes on ∂D. Then φ − φ∗ ∈ H1
0 (D) and, by

subtracting (2.10) from (2.9), aD(φ− φ∗, v) = (f, v)L2(D) for all v ∈ H1
0 (D). Then

|φ− φ∗|2H1(D),α = aD(φ− φ∗, φ− φ∗) = aD(φ, φ− φ∗) = (f, φ− φ∗)L2(D)

≤ ‖f‖L2(D)‖φ− φ∗‖L2(D) ≤ C diam(D)‖f‖L2(D)|φ− φ∗|H1(D),α ,

where in the last step we used the Poincaré-Friedrichs inequality and also α̂ ≥ 1.
Hence

|φ|H1(D),α ≤ |φ∗|H1(D),α + C diam(D)‖f‖L2(D).

On the other hand, (2.10) implies the minimality of the energy norm of φ∗, i.e.

|φ∗|H1(D),α ≤ |φ̃|H1(D),α for all φ̃ satisfying the same boundary conditions as φ,
and the result follows. �

Recalling (2.8) and using Lemma 2.1 to bound the right-hand side of (2.7), we
then obtain

Theorem 2.2.

(2.11) |EMS
h |H1(τ),α ≤ |ẼMS

h |H1(τ),α + Chτ‖f‖L2(τ)

and

(2.12) |u− uMS
h |H1(Ω),α ≤ C

[ ∑
τ∈Th

(
|ẼMS

h |2H1(τ),α + h2
τ‖f‖2L2(τ)

)]1/2
,

where ẼMS
h is any function whose trace coincides with the trace of EMS

h on ∂τ and
C is a generic constant independent of Th, f , u and α.
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Note that, although simple, Theorem 2.2 represents a genuine extension of stan-
dard estimates. For example, if α is constant on each τ ∈ Th, then the multiscale

basis functions coincide with linear basis functions. Setting ẼMS
h = EMS

h (which
now equals the error in linear interpolation) leads to

(2.13) |u− uMS
h |H1(Ω),α ≤ Ch

[ ∑
τ∈Th

ατ |u|2H2(τ) + ‖f‖2L2(Ω)

]1/2
,

which yields the usual O(h) estimate in the energy norm with (a coefficient depen-
dent) asymptotic constant. However, this also demonstrates the possibility that
when ατ is large, small |u|2H2(τ) could provide better estimates with respect to α.

Our regularity theory (in the Appendix) tells us that this is exactly what does
happen. However, a deeper use of Theorem 2.2 may be envisaged when α varies
within an element. Then it turns out to be possible (although not trivial) to define

the boundary condition (2.2) in such a way that
∑

τ∈Th
|ẼMS

h |2H1(τ),α ≤ Ch2, with

constant C independent of α. We explain how this comes about in the context of
a special case in the next subsection. Then in §3 we extend to the more difficult
case where the interface cuts through a mesh element.

From now on we shall make use of the following notational conventions.

Notation 2.3. We shall write g1 � g2 when there exists a constant C which is
independent of u, f, h, α such that g1 ≤ Cg2. Similarly, g1 ∼ g2 means g1 � g2 and
g2 � g1.

Notation 2.4. For any suitably smooth function φ defined on τ ∈ Th and any edge
e of τ , we define Ds

eφ for s ≥ 1 to be the derivative of φ of order s along e.

2.2. A simple application. In this subsection we assume that each of the inclu-
sions Ωi are enclosed inside elements of Th. More precisely, for any τ ∈ Th and
any sufficiently small ε > 0, let us define τ ε = {x ∈ τ : dist(x, ∂τ ) ≤ ε} . Then, for
each i = 1, . . . ,m, we assume that there exists τi ∈ Th and εi > 0 such that

(2.14) Ωi ⊆ τi\τ εii .

That is the boundary of Ωi lies at least a distance εi from the boundary of τi.
(Note that any element could contain more than one inclusion.) Our estimates will
depend on the following measure of the relative size of εi:

(2.15) δ := max
i=1,...,m

hτi

εi
.

Note that δ ≥ 1. Then we have the following theorem:

Theorem 2.5. Suppose the boundary condition in (2.2) is chosen to be linear on
the boundary of each element τ ∈ Th. Then, for f ∈ H1/2(Ω),

(i) |u− uMS
h |H1(Ω),α � δ3h

[
h|f |2H1/2(Ω) + ‖f‖2L2(Ω)

]1/2
,(2.16)

(ii) ‖u− uMS
h ‖L2(Ω) � δ6h2

[
h|f |2H1/2(Ω) + ‖f‖2L2(Ω)

]1/2
.(2.17)

Proof. We give the proof in Case I (see (1.5)). That means αi ≥ α̂ → ∞ for
i = 1, . . . ,m and α0 = 1. The proof in Case II is dealt with in Remark 2.6.

First consider any element τi ∈ Th which contains an inclusion Ωi. We construct

ẼMS
h on τi by first defining it to be zero on τi\τ εii , equal to EMS

h on ∂τi, and then
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extending into τ εii , using Lemma A.1 of Appendix A (scaled to τi). By combining
this with standard estimates for linear approximation in 1D, we obtain

|ẼMS
h |2H1(τi),α

= |ẼMS
h |2

H1(τ
εi
i )

�
(
hτi

εi

)2

h−1
τi ‖EMS

h ‖2L2(∂τi)
+

(
hτi

εi

)2

hτi |EMS
h |2H1(∂τi)

� δ2h3
τi

∑
e∈E(τi)

‖D2
eu‖2L2(e)

,

where E(τi) denotes the edges of τ . On the other hand if τ ∈ Th contains no

inclusion, then with ẼMS
h := EMS

h it is easy to show that this estimate remains true
with δ replaced by 1; thus

(2.18) |ẼMS
h |2H1(τ),α � δ2h3

τ

∑
e∈E(τ)

‖D2
eu‖2L2(e)

for all τ ∈ Th .

By recalling (2.12), we can now see that (2.18) would allow us to estimate
|u − uMS

h |H1(Ω),α in terms of the data f and certain derivatives of the solution
u along edges which (in this case) lie entirely in Ω0. In order to be able to prove
robustness to the contrast α̂, we now estimate these edge derivatives in terms of
Sobolev norms of u in Ω0, which we can in turn estimate independently of α̂, using
the regularity theory in the Appendix. The required technical argument, which we
now give, leads to (2.29).

First we recall the trace theorem for polygons (e.g. [17, Theorem 1.5.2.1]), which,
after scaling to any element τ ∈ Th, reads

|v|2H1(e) � h−3
τ ‖v‖2L2(τ)

+ h−1
τ |v|2H1(τ) + |v|2H3/2(τ) for all v ∈ H3/2(τ ) .

Moreover, replacing v by v− γ where γ is an arbitrary constant and then invoking
the Poincaré inequality on τ , we easily obtain the simpler estimate:
(2.19)

|v|2H1(e) � h−1
τ |v|2H1(τ) + |v|2H3/2(τ) for all v ∈ H3/2(τ ) and all τ ∈ Th .

Now return to the case where τ = τi, an element which contains an inclusion
Ωi. Choose φ to be a C∞ cut-off function which vanishes on τi\τ εii , has the value 1

on ∂τi and satisfies ‖Dβφ‖L∞(τi) � ε
−|β|
i for all multi-indices β. Then choose any

edge e of τi and any constant γ. Using the fact that φγ is constant on e and then
(2.19), we obtain
(2.20)
‖D2

eu‖2L2(e)
= |φ(Deu−γ)|2H1(e) � h−1

τi |φ(Deu−γ)|2H1(τi)
+ |φ(Deu−γ)|2H3/2(τi)

.

To estimate the right-hand side, we first recall the Poincaré inequality for an
annulus (Lemma A.2) and scale it to τi in order to obtain a constant γ ∈ R such
that

(2.21) ‖v − γ‖L2(τ
εi
i ) � hτi |v|H1(τ

εi
i ) for all v ∈ H1(τ εii ) ,

with a hidden constant independent of both hτi and εi.
Now, to estimate the first term on the right-hand side of (2.20), use the above

estimates for the derivatives of φ and then (2.21) in order to obtain

h−1
τi |φ(Deu− γ)|2H1(τi)

� h−1
τi ε−2

τi ‖Deu− γ‖2
L2(τ

εi
i )

+ h−1
τi |u|2

H2(τ
εi
i )

� h−1
τi δ2|u|2

H2(τ
εi
i )

.(2.22)
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Estimation of the second term on the right-hand side of (2.20) is slightly more
involved. For any multi-index β of order 1, we have
(2.23)

|φ(Deu−γ)|2H3/2(τi)
�

∑
|β|=1

|(Dβφ)(Deu−γ)|2
H1/2(τ

εi
i )

+
∑
|β|=1

|φDβDeu|2H1/2(τ
εi
i )

.

Now for all ψ ∈ C∞(τ εii ) and v ∈ H1/2(τ εii ), elementary arguments show

(2.24) |ψv|2
H1/2(τ

εi
i )

≤ ‖ψ‖2
L∞(τ

εi
i )

|v|2
H1/2(τ

εi
i )

+ hτi‖∇ψ‖2
L∞(τ

εi
i )

‖v‖2
L2(τ

εi
i )

.

Hence, the first term on the right-hand side of (2.23) is estimated by
(2.25)
|(Dβφ)(Deu− γ)|2

H1/2(τ
εi
i )

� ε−2
τi |Deu− γ|2

H1/2(τ
εi
i )

+ ε−4
τi hτi‖Deu− γ‖2

L2(τ
εi
i )

.

Now interpolating (2.21) with the corresponding estimate for ‖Deu− γ‖H1(τ
εi
i ) we

obtain

(2.26) |Deu− γ|H1/2(τ
εi
i ) � h1/2

τi
|Deu|H1(τ

εi
i ) .

Combining (2.21) and (2.26) with (2.25), we have
(2.27)

|(Dβφ)(Deu− γ)|2
H1/2(τ

εi
i )

� (ε−2
τi hτi + ε−4

τi h3
τi)|u|

2
H2(τ

εi
i )

� h−1
τi δ4|u|2

H2(τ
εi
i )

.

The second term on the right-hand side of (2.23) is also estimated by (2.24):
(2.28)
|φDβDeu|2H1/2(τ

εi
i )

� |u|2
H5/2(τ

εi
i )

+hτiε
−2
τi |u|2

H2(τ
εi
i )

� |u|2
H5/2(τ

εi
i )

+h−1
τi δ2|u|2

H2(τ
εi
i )

.

Then by combining (2.27) and (2.28) with (2.23), we have

|φ(Deu− γ)|2H3/2(τi)
� h−1

τi δ4|u|2
H2(τ

εi
i )

+ |u|2
H5/2(τ

εi
i )

.

Combining this with (2.22) and (2.20), we have

‖D2
eu‖2L2(e)

� h−1
τi δ4|u|2

H2(τ
εi
i )

+ |u|2
H5/2(τ

εi
i )

.

By a direct application of (2.19), this estimate also holds (in fact with δ replaced
by 1) when τ does not contain an inclusion, so that

‖D2
eu‖2L2(e)

� h−1
τ δ4|u|2H2(τ∩Ω0)

+|u|2H5/2(τ∩Ω0)
for all e∈E(τ ) and all τ ∈Th.

Combining this with (2.18) yields, for all τ ∈ Th,

(2.29) |ẼMS
h |2H1(τ),α � δ2h2

τ

[
δ4|u|2H2(τ∩Ω0)

+ hτ |u|2H5/2(τ∩Ω0)

]
.

Combining this with (2.12) and employing the regularity theory from the Appendix
yields the result (i).

To obtain (ii), we use a non-standard variant of the usual duality argument. Let
w ∈ H1

0 (Ω) be the solution of

(2.30) a(w, v) = (u− uMS
h , v)L2(Ω) for all v ∈ H1

0 (Ω) ,

and let wMS
h ∈ VMS

h satisfy

(2.31) a(wMS
h , vMS

h ) = (u− uMS
h , vMS

h )L2(Ω) for all vMS
h ∈ VMS

h .
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By applying (2.16), the interpolation theorem forH1/2(Ω) and finally the arithmetic-
geometric mean inequality (ab ≤ a2/2 + b2/2) we obtain

|w − wMS
h |H1(Ω),α � δ3h

[
h|u− uMS

h |2H1/2(Ω) + ‖u− uMS
h ‖2L2(Ω)

]1/2
� δ3h

[
h|u− uMS

h |H1(Ω)‖u− uMS
h ‖L2(Ω) + ‖u− uMS

h ‖2L2(Ω)

]1/2
� δ3h

[
h2|u− uMS

h |2H1(Ω) + ‖u− uMS
h ‖2L2(Ω)

]1/2
� δ3h

[
h|u− uMS

h |H1(Ω) + ‖u− uMS
h ‖L2(Ω)

]
.

(2.32)

Hence, taking v = u− uMS
h in (2.30), we get

‖u− uMS
h ‖2L2(Ω) = a(w, u− uMS

h ) = a(w − wMS
h , u− uMS

h )

≤ |w − wMS
h |H1(Ω),α|u− uMS

h |H1(Ω),α ,

and combining this with (2.32) (and recalling α ≥ 1), we have
(2.33)

‖u− uMS
h ‖2L2(Ω) ≤ Cδ3h

[
h|u− uMS

h |2H1(Ω),α + |u− uMS
h |H1(Ω),α‖u− uMS

h ‖L2(Ω)

]
for some constant C > 0. Now again by the arithmetic-geometric mean inequality
we have

Cδ3h|u−uMS
h |H1(Ω),α‖u−uMS

h ‖L2(Ω) ≤
1

2
C2δ6h2|u−uMS

h |2H1(Ω),α +
1

2
‖u−uMS

h ‖2L2(Ω),

and substitution into (2.33) yields

1

2
‖u− uMS

h ‖2L2(Ω) ≤ Cδ3h2|u− uMS
h |2H1(Ω),α +

1

2
C2δ6h2|u− uMS

h |2H1(Ω),α

= Cδ3(1 + (C/2)δ3)h2|u− uMS
h |2H1(Ω),α ,

which, combined with (2.16), leads to the desired result (2.17). �

Remark 2.6. For Case II, we can use the same idea to prove

(i) |u− uMS
h |H1(Ω),α � δ3h

[
h|f |2H1/2(Ω) + ‖f‖2L2(Ω)

]1/2
,(2.34)

(ii) ‖u− uMS
h ‖L2(Ω) � δ6h2

[
h|f |2H1/2(Ω) + ‖f‖2L2(Ω)

]1/2
.(2.35)

We construct ẼMS
h as in the proof of Theorem 2.5 and notice that |ẼMS

h |H1(τi),α =

α̂1/2|ẼMS
h |H1(τi). The regularity result in Theorem B.1 leads to (2.34). The same

duality argument gives (2.35).
The estimates above can also be extended to the inhomogeneous Dirichlet case.

This is discussed in detail in the more general context in Remark 3.19.

3. Error analysis for elements which intersect inclusions

Now we want to consider the case where the interface may intersect with the
boundaries of some of the mesh elements. Recalling Theorem 2.2 we have to show
that for each element τ there is a boundary condition for the multiscale basis

functions on ∂τ such that EMS
h := u − IMS

h u has an extension ẼMS
h from ∂τ into

τ , with a suitably bounded energy.
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In §3.1 we present some qualitative properties of the exact solution u of (1.2)
in the generic case when the interface intersects two edges of τ . These relate var-
ious derivatives of u at the points of edge-interface intersection, plus controllable
remainders. These relations motivate the interior boundary conditions for the mul-
tiscale basis functions which are presented in §3.2. In particular, it is explained
how the boundary conditions can be found by solving a 6×6 linear system for each
element which intersects the interface. In Theorem 3.9 we estimate EMS

h on each
element boundary.

The interior error is then considered in §3.3. First Lemma 3.15 uses the result

of Theorem 3.9 to prove the existence of an extension ẼMS
h of EMS

h with suitably
bounded energy. This leads to Theorem 3.16, which proves a suitable error estimate
for the energy norm of EMS

h on each element τ , making use of Theorem 2.2 and the
estimate for the extension proved in Theorem 3.9.

The procedure that we describe constructs interior boundary conditions element-
by-element and does not naturally lead to conforming elements. However, confor-
mity can be retained by local averaging. This is described in §3.4, where the main
theorem, Theorem 3.18, is proved. An important observation (discussed in §3.2)
is that in the special case when the interface intersects the element edges orthogo-
nally, our boundary condition coincides with the “oscillatory boundary conditions”
proposed in [19].

3.1. Properties of the exact solution. In this subsection we derive some prop-
erties of the exact solution of (1.2) in an element τ through which an intersection
cuts. To reduce some technicalities in the theory we shall make the following geo-
metrical assumption on elements which intersect the interface.

Assumption 3.1. When the interface Γ intersects an element τ , we shall assume
that it subdivides τ into two parts. We label the vertices of τ as x1, x2, x3 in such
a way that Γ intersects ∂τ at points which we denote by yi in the edges x3xi for
i = 1, 2. We let β denote the angle of τ subtended at x3, and we let τ− denote
the part where α ≥ α̂ and τ+ denote the part where α ≤ K (see (1.5), (1.6)). A
typical situation is depicted in Figure 2. Letting r−i and r+i denote, respectively,
the length of the line segments ei∩ τ− and ei∩ τ+, we shall assume that there exist
positive constants 0 ≤ R < R ≤ 1 and 0 < B < π such that, for all meshes
(characterised by mesh parameter h),
(3.1)
Rhτ ≤ min{r−i , r+i } ≤ max{r−i , r+i } ≤ Rhτ for i = 1, 2 and π−B ≥ β ≥ B.

For i = 1, 2 we define θi ∈ (−π/2, π/2) to be the unique angle such that

(3.2) ei = cos θi ni + sin θi ti .

Then we also assume that Γ is not tangential to either of the edges ei, i.e.

(3.3) |θi| ≤ π/2− T for some T > 0.

The hidden constants in the estimates below may depend on β,R,R, B and T .

In many cases where the element intersects the interface in a different way, we
can always find a refinement to reduce to cases satisfying Assumption 3.1; see, e.g.
Figure 3.

Now, referring again to Figure 2, for i = 1, 2 we let ei denote the unit vector
directed from x3 to xi and we let ni and ti denote, respectively, the unit normal
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t1

t2

n1

θ1

θ2Γ

β

τ+τ−

x3 x1

x2

∂τ

1

e2

e

n2

y1

y2

Figure 2. An interface cutting through an element: Here τ− de-
notes the part where the coefficient α is large.

Γ Γ

Figure 3. After a simple refinement, we can reduce the element
to the case we consider.

and the unit tangent to Γ at yi. These are uniquely determined by requiring that
ni is directed outward from τ− and that ti = Rπ/2ni, where Rφ is the rotation
matrix

Rφ =

[
cosφ − sinφ
sinφ cosφ

]
.

Note also that ei = Rθi ni. In particular, ei = ni if and only if θi = 0.
Later we shall use the easily derived relations:

(3.4) Rφ ni = cosφ ni + sinφ ti and Rφ ti = − sinφ ni + cosφ ti

for i = 1, 2 and any φ. From these it follows that n2 = R−θ2 e2 = R−θ2+β e1 =
Rθ1−θ2+β n1 and, similarly, t2 = Rθ1−θ2+β t1 . Combining these last two relations
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with (3.4) yields

(3.5) n2 = cos(θ2 − θ1 − β) n1 − sin(θ2 − θ1 − β) t1

and

(3.6) t2 = sin(θ2 − θ1 − β) n1 + cos(θ2 − θ1 − β) t1.

As explained above, we study here how the solution u of (1.2) behaves on ∂τ .
This information will be used to construct suitable internal boundary conditions
for multiscale basis functions in §3.2.

Throughout, we denote the restriction of u on τ± by u±. Also, for any unit
vector v we let Dvu denote the derivative of u in the direction v. The boundary
conditions derived in the following section will be motivated by some relationships
between the quantities (Deiu

±)(yi), for i = 1, 2, where u is the exact solution of
(1.2). Our first relationship is the following:

Lemma 3.2. Let u be the exact solution of (1.2) and define the vector ε =
(ε1, ε2)

T ∈ R
2 by requiring

(3.7) r−i (Deiu
−)(yi) + r+i (Deiu

+)(yi) = u(xi)− u(x3) + εi , i = 1, 2 .

Then

(3.8) |εi| � h3/2
τ

(
‖D2

eiu
−‖L2(ei∩τ−) + ‖D2

eiu
+‖L2(ei∩τ+)

)
for i = 1, 2.

Proof. This uses, in a straightforward way, the Taylor expansions at the point yi
and the interface matching condition u+(yi) = u−(yi), plus the fact that u± ∈
H2(τ±). �

Now, if u were known at the three node points xi, x2, x3, then setting εi = 0
in (3.7) would give us two equations for (approximations of) the four unknown
quantities (Deiu

±)(yi), i = 1, 2.
To determine additional equations for these quantities, we use the interface jump

conditions for u at y1, y2 to obtain in a straightforward way:

Lemma 3.3. Let u be the exact solution of (1.2). For i = 1, 2,

(3.9)

⎡⎣ Deiu
−(yi)

Deiu
+(yi)

⎤⎦ = Aα̂,θi

⎡⎣ Dni
u−(yi)

Dtiu
−(yi)

⎤⎦ ,

where

(3.10) Aα̂, θ =

[
cos θ sin θ

α̂ cos θ sin θ

]
.

Proof. The proof is obtained by simply combining the interface conditions:
(3.11)
(Dni

u+)(yi) = α̂(Dni
u−)(yi) and (Dtiu

+)(yi) = (Dtiu
−)(yi) for i = 1, 2

with (3.2). �

We can use (3.9) to define a relation between (Deiu
±)(yi), i = 1, 2, provided we

have a relation between (Dn1
u−)(y1), (Dt1u

−)(y1), (Dn2
u−)(y2), and (Dt2u

−)(y2).
This is provided by the following lemma.
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Lemma 3.4. Let u be the exact solution of (1.2):

(3.12)

⎡⎣ Dn2
u−(y2)

Dt2u
−(y2)

⎤⎦ = Rθ2−θ1−β

⎡⎣ Dn1
u−(y1)

Dt1u
−(y1)

⎤⎦ + ε′ ,

where

‖ε′‖∞ � h1/2
τ

[∥∥De2Dn1
u−∥∥2

L2(e2∩τ−)
+
∥∥De1Dn1

u−∥∥2
L2(e1∩τ−)

]1/2
.

Proof. From equations (3.5) and (3.6) we have, for all x ∈ τ−,

(3.13)

⎡⎣ Dn2
u−(x)

Dt2u
−(x)

⎤⎦ = Rθ2−θ1−β

⎡⎣ Dn1
u−(x)

Dt1u
−(x)

⎤⎦ .

Then, using Taylor expansions and the fact that u− is H2 on each ei ∩ τ−, we
obtain the desired estimate. �

Before we move on to the definition of the multiscale basis functions, in Corollary
3.5 we shall collect the results of Lemmas 3.2, 3.3 and 3.4 in a simpler form. To do
this, introduce the 6× 6 matrix

Mα̂,θ1,θ2,β :=

⎡⎣ I 0 −Aα̂,θ1

0 I −Aα̂,θ2Rθ2−θ1−β

R1 R2 0

⎤⎦ ,

where

(3.14) R1 =

[
r−1 r+1
0 0

]
and R2 =

[
0 0
r−2 r+2

]
.

Also, for each v ∈ H1
0 (Ω) with suitably well-defined point values at yi, i = 1, 2,

we define the vectors c(v) d(v) ∈ R
6 by

(3.15) c(v) = [0, 0, 0, 0, v(x1)− v(x3), v(x2)− v(x3)]
T

and

d(v) := [(De1v
−)(y1), (De1v

+)(y1), (De2v
−)(y2), (De2v

+)(y2),

(Dn1
v−)(y1), (Dt1v

−)(y1)]
T .

(3.16)

Note that c(v) and d(v) depend linearly on v. Then we have

Corollary 3.5. If u is the exact solution of the problem (1.2), then for each element
τ which intersects the interface as in Assumption 3.1, and with the notation defined
there, we have

Mα̂,θ1,θ2,β d(u) = c(u) + δ ,

where δ ∈ R
6 is defined by

(3.17) δ =

⎡⎣ 0
Aα̂,θ2ε

′

ε

⎤⎦ ,

and ε, ε′ are as defined in Lemmas 3.2 and 3.4.

Proof. This is obtained by writing: (i) Lemma 3.3 for i = 1; (ii) Lemma 3.3 for
i = 2 combined with Lemma 3.4; (iii) Lemma 3.2. �
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3.2. Novel interior boundary condition and boundary error. We now use
the relations derived in the previous subsection to derive suitable boundary condi-
tions for multiscale basis functions.

For any element τ ∈ Th, let xp, p = 1, 2, 3, denote its nodes. The multiscale basis
functions ΦMS

p are found as solutions to the subgrid problems (2.1) on τ , subject to
Dirichlet boundary data φp,τ on ∂τ which has to be specified, subject to the nodal
condition

(3.18) φp,τ (xq) = δp,q , p, q ∈ {1, 2, 3}
(see (2.2)). If the interface Γ does not intersect τ , then we choose φp,τ on ∂τ to
be the linear interpolant of (3.18) on each edge of τ , and then the solution of (2.1)
is also linear on τ . Otherwise (under Assumption 3.1), our construction for φp,τ

(described below) will be continuous on ∂τ , linear on each of the intersected edge
segments {x3yi, yixi, for i = 1, 2} and linear on the third edge x1x2. Because
of (3.18), it remains to specify the gradient of φp,τ on each of the two pieces of
the intersected edges. These gradients are computed by Algorithm 3.7 below. This
requires solving two 6× 6 linear systems with the same coefficient matrices. Before
we give the algorithm we first establish the solvability of these systems and obtain
bounds on their solution which will be needed later.

Theorem 3.6. Under Assumption 3.1, suppose φ := θ2− θ1−β 
= 0 and introduce
the 2× 2 matrix

D := R1Aα̂,θ1 + R2Aα̂,θ2Rφ.

Then, for all α̂ sufficiently large, D is non-singular, and Mα̂,θ1,θ2,β is non-singular
with

(3.19) (Mα̂,θ1,θ2,β)
−1 =

⎡⎢⎢⎢⎢⎣
I 0 Aα̂,θ1

0 I Aα̂,θ2Rφ

0 0 I

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

I 0 0

0 I 0

−D−1R1 −D−1R2 D−1

⎤⎥⎥⎥⎥⎦ .

Moreover,

(3.20) ‖D−1‖∞ � α̂−1h−1
τ (sinφ)−1.

Proof. A tedious but elementary calculation shows that with

E :=

⎡⎣ r+1 cos θ1 0

r+2 cos θ2 cosφ −r+2 cos θ2 sinφ

⎤⎦
we have ‖α̂−1D − E‖∞ ≤ Cα̂−1hτ , with the constant C independent of θ1, θ2,
φ, β and hτ . Since E is non-singular, standard matrix perturbation theory shows
that, for large enough α̂,

‖α̂D−1‖∞ = ‖(α̂−1D)−1‖∞ ≤ C ′‖E−1‖∞,

with C ′ also independent of the above parameters. In fact,

E−1 =

⎡⎣ (r+1 cos θ1)
−1 0

−(r+1 cos θ1 sinφ)
−1 cosφ −(r+2 cos θ2 sinφ)

−1

⎤⎦ ,

and so (3.20) follows directly, recalling Assumption 3.1. Because D−1 exists, the
formula for M−1 is verified by simple matrix manipulation. �
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This now leads us to Algorithm 3.7 for computing the boundary data φp,τ for
the multiscale basis functions ΦMS

p on τ .

Algorithm 3.7. For p = 1, 2, 3,

(1) Solve the linear system:

(3.21) Mα̂,θ1,θ2,β dp = c(φp,τ ) .

(2) Then set

(3.22)

⎧⎨⎩
(De1φp,τ )|x3y1

= (dp)1, (De1φp,τ )|y1x1
= (dp)2 ,

(De2φp,τ )|x3y2
= (dp)3, (De2φp,τ )|y2x2

= (dp)4 .

Remark 3.8. (i) The right-hand side c(φp,τ ) in system (3.21) is determined by
(3.15) and (3.18). It is easy to see that c(φ1,τ ) + c(φ2,τ ) + c(φ3,τ ) = 0, so
d1+d2+d3 = 0 and only two of the three systems (3.21) has to be solved.
Moreover, since the function φ1,τ +φ2,τ +φ3,τ has value 1 at each node of τ
and zero derivative along each x3yi, yixi, i = 1, 2, and along x1x2, it thus
satisfies the requirements of (2.2) and (2.3).

(ii) Since φp,τ is defined to be linear on each ei ∩ τ− and ei ∩ τ+ and to satisfy
the nodal condition (3.18), the continuity of φp,τ at each intersection point
yi is guaranteed by the last two equations in (3.21).

(iii) If θi = 0 (i.e. the interface intersects edge ei orthogonally), then the bound-
ary condition computed by Algorithm 3.7 coincides with the “oscillatory
boundary condition” proposed in [19]. More precisely, if θ1 = 0, it is easy
to see that the first two equations and last two equations of (3.21) imply

(dp)2 = α̂(dp)1 and r−1 (dp)1 + r+1 (dp)2 = φp,τ (x1)− φp,τ (x3),

and hence

(3.23) (dp)1 =
φp,τ (x1)− φp,τ (x3)

r−1 + α̂ r+1
, (dp)2 = α̂

φp,τ (x1)− φp,τ (x3)

r−1 + α̂ r+1
.

Thus φp,τ is the solution of the reduced elliptic differential equation

−(αφ′
p,τ )

′ = 0

on x3x1, which is exactly how the “oscillatory” boundary condition is con-
structed.

(iv) When θi 
= 0 for i = 1, 2 the boundary condition on each ei depends on
both θ1 and θ2. In particular, if p = 1 (respectively 2), the function φp,τ

does not necessarily vanish on the edge e2 (respectively e1).
(v) Algorithm 3.7 determines φp,τ and hence ΦMS

p on each τ individually and

does not guarantee that ΦMS
p will be continuous across element edges, so

that approximation in span{ΦMS
p : p ∈ Ih(Ω)} may not be conforming. We

resolve this issue later by averaging across element edges (see §3.4).

In the next theorem we show that the nodal interpolant IMS
h u =

∑
p u(p)φp,τ is a

good approximation to u along the boundary of the element τ . Recall the notation
EMS

h := u− IMS
h u.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

1932 C.-C. CHU, I. G. GRAHAM, AND T.-Y. HOU

Theorem 3.9. Let u be the exact solution of (1.2). Consider an element τ which
intersects the interface as in Assumption 3.1. Suppose also that φ := θ2−θ1−β 
=
0. Then we have, for m = 0, 1,

max
i=1,2

{
α̂hm

τ ‖Dm
eiE

MS
h ‖L∞(ei∩τ−) , hm

τ ‖Dm
eiE

MS
h ‖L∞(ei∩τ+)

}
� h3/2

τ max
i=1,2

|k|=1

[
α̂2‖DkDeiu‖2L2(ei∩τ−) + ‖DkDeiu‖2L2(ei∩τ+)

]1/2
.

(3.24)

The hidden constant may blow up if φ → 0. (See Remark 3.10 below.)

Proof. We give the proof on the assumption that τ± are as depicted in Figure 2 (i.e.
α is large in the region containing x3 and small in the region containing x1, x2).
Making use of (3.21) and the fact that c(u) depends only on the nodal values of u,
we have

Mα̂,θ1,θ2,β

(
3∑

p=1

u(xp)dp

)
= c(IMS

h u) = c(u) .

Combining this with Corollary 3.5 we obtain

Mα̂,θ1,θ2,β

(
d(u)−

3∑
p=1

u(xp)dp

)
= δ .

Hence, using (3.19) and (3.17), we obtain
(3.25)

(
d(u)−

3∑
p=1

u(xp)dp

)
=

⎡⎢⎢⎢⎢⎣
I 0 Aα̂,θ1

0 I Aα̂,θ2Rφ

0 0 I

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

0

Aα̂,θ2ε
′

D−1(ε−R2Aα̂,θ2ε
′)

⎤⎥⎥⎥⎥⎦ .

Now by (3.16) and (3.22), we see that the first four entries of the left-hand side
of (3.25) are

De1(u− IMS
h u)−(y1), De1(u− IMS

h u)+(y1), De2(u− IMS
h u)−(y2),

and

De2(u− IMS
h u)+(y2).

Examining the right-hand side of (3.25), we see that the first two entries are

Aα̂,θ1D
−1(ε−R2Aα̂,θ2ε

′) .

Now, recalling Lemmas 3.2, 3.4 and (3.20) we obtain

‖D−1(ε−R2Aα̂,θ2ε
′)‖∞

� h1/2
τ (sinφ)−1 max

i=1,2

|k|=1

{
‖DkDeiu‖2L2(ei∩τ−) + α̂−2‖DkDeiu‖2L2(ei∩τ+)

}1/2

.

Hence

max
{
α̂|De1(u− IMS

h u)−(y1)|, |De1(u− IMS
h u)+(y1)|

}
� h1/2

τ max
i=1,2

|k|=1

[
α̂2‖DkDeiu‖2L2(ei∩τ−) + ‖DkDeiu‖2L2(ei∩τ+)

]1/2
.
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Similarly, the third and fourth components of (3.25) yield the same estimate for
max

{
α̂|De2(u− IMS

h u)−(y2)|, |De2(u− IMS
h u)+(y2)|

}
.

The estimates (3.24) for m = 1 then readily follow. For example, since IMS
h u is

linear on ei ∩ τ−, we have, for x ∈ ei ∩ τ−,

α̂|Dei(u− IMS
h u)(x)|

≤ α̂|(Deiu)(x)− (Deiu
−)(yi)| + α̂|Dei(u− IMS

h u)−(yi)|

� h1/2
τ max

i=1,2

|k|=1

[
α̂2‖DkDeiu‖2L2(ei∩τ−) + ‖DkDeiu‖2L2(ei∩τ+)

]1/2
.

(3.26)

To obtain the estimate for m = 0, recall that u − IMS
h u vanishes at the nodes, so

we can write, for x ∈ e1 ∩ τ−,

(3.27) (u− IMS
h u)(x) =

∫ x

x3

De1(u− IMS
h u)(t)dt,

and the required estimates for ‖u−IMS
h u‖L∞(e1∩τ−) follow directly. The remainder

of the estimates (3.24) for m = 0 are similar. �

Remark 3.10. The critical case φ = θ2−θ1−β = 0 in Theorem 3.9 occurs when the
unit outward normals n1 and n2 to Γ at the two intersection points y1, y2 coincide.
In this case, if the interface Γ is not a straight line, then τ may be subdivided into
two sub-elements, in each of which φ no longer vanishes, and Algorithm 3.7 applies
to each of these sub-elements.

However, if Γ ∩ τ is a straight line, no such refinement will succeed. Instead
(referring to the geometry in Figure 2), we may simply subdivide the quadrilateral
τ+ into two triangles and combine this with τ− to yield a new mesh which locally
resolves Γ, and then we can discretise using standard linear basis functions on each
of these three elements.

An alternative approach is suggested by the “Immersed Finite Element (IFE)
method” of Li, Lin and Wu [28], where in any case the interface segment τ ∩ Γ is
approximated by a straight line and where a special finite element basis Ψp,τ : p =
1, 2, 3 is constructed on τ , which is required to be affine on each of τ− and τ+ and
to satisfy the six conditions (with the same geometry as in Assumption 3.1)

Ψp,τ (xq) = δp,q , q = 1, 2, 3 ,(3.28)

Ψ−
p,τ (yi) = Ψ+

p,τ (yi) , i = 1, 2 ,(3.29)

and DnΨ
−
p,τ = α̂DnΨ

+
p,τ .(3.30)

Here n denotes the (constant) normal direction to the straight line Γ ∩ τ pointing
from τ− to τ+ and t the corresponding tangential direction (as in Figure 2). Note
that in (3.30), the quantities on each side of the equation are constant since the
Ψ±

p,τ are assumed affine.
The following lemma shows that the immersed finite element algorithm defines

a solution to (3.21) even when Γ∩ τ is a straight line (so that φ = 0). However, the
error estimates of Theorem 3.9 are no longer true in general for the IFE approach,
as the following example shows.

Example 3.11. Consider an element τ with vertices (0, 0), (0, h), (h, h) and
where the interface is the segment connected by (0, h/2), (h/2, h/2). If we consider



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

1934 C.-C. CHU, I. G. GRAHAM, AND T.-Y. HOU

α = α̂ on τ− (the left part) and α = 1 on τ+ (the right part), then the IFE nodal
basis function with value 1 at (h, 0) is given by

2 x

(α̂+ 1)h
− y

h
on τ− and

2 α̂ (x− h)

(α̂+ 1)h
− y − h

h
on τ+ .

The directional derivative along the edge from (0, 0), (h, h) in τ− is
√
2

(α̂+1)h − 1√
2h

of O(1/h) but not O(1/(α̂ h)). Hence the estimate in Theorem 3.9 can not be true.

Lemma 3.12. Suppose Γ ∩ τ is a straight line segment and suppose Ψp,τ is de-
fined via (3.28), (3.29) and (3.30). Then the vector d(Ψp,τ ) (defined as in (3.16))
provides a solution to system (3.21).

Proof. Using the fact that Ψp,τ is affine on each of τ± and also using (3.29), we
have, for i = 1, 2,

(∇Ψ−
p,τ )

T (yi − x3) + (∇Ψ+
p,τ )

T (xi − yi)

= Ψ−
p,τ (yi)−Ψp,τ (x3) + Ψp,τ (xi)−Ψ+

p,τ (yi)

= Ψp,τ (xi)−Ψp,τ (x3) .

Since r−i ei = (yi − x3) and r+i ei = (xi − yi), and since the gradients ∇Ψ±
p,τ are

constant, it follows that

r−i DeiΨ
−
p,τ (yi) + r+i DeiΨ

+
p,τ (y1) = Ψp,τ (xi)−Ψp,τ (x3) for i = 1, 2 ,

and so the last two equations of (3.21) are satisfied.
By a similar argument,

(∇Ψ−
p,τ )

T (y1−y2) = Ψ−
p,τ (y1)−Ψ−

p,τ (y2) = Ψ+
p,τ (y1)−Ψ+

p,τ (y2) = (∇Ψ+
p,τ )

T (y1−y2) ,

and since y1−y2 is in the direction of t (the tangent direction along Γ), this implies

DtΨ
+
p,τ = DtΨ

−
p,τ on Γ ∩ τ .

Combining this with (3.2) and (3.30), we have

De1Ψ
−
p,τ = cos θ1DnΨ

−
p,τ + sin θ1DtΨ

−
p,τ ,

De1Ψ
+
p,τ = α̂ cos θ1DnΨ

−
p,τ + sin θ1DtΨ

−
p,τ ,

and thus the first two equations in (3.21) are satisfied. The verification of the third
and fourth equations in (3.21) is entirely analogous. �

Remark 3.13. The previous lemma shows that the system (3.21) is consistent when
Γ ∩ τ is a straight line, which is a particular case of φ = 0. Under the general
assumption only that φ = 0 and by examining the proof of Theorem 3.6, we see
that in this case D = R1Aα̂,θ1 +R2Aα̂,θ2 . The (non)singularity of this for general

choices of α̂ and for θi, r
−
i , r

+
i , i = 1, 2, has not yet been analysed.

3.3. Interior error. The main result in this section is Theorem 3.16, which gives
an α-explicit estimate for the error |u−uMS

h |H1(τ),α, in the case where the interface
may cut through τ . This is obtained by an application of Theorem 2.2 and thus
requires that we first show that EMS

h = u−IMS
h u can be extended from the boundary

to the interior of τ in a suitably robust way. This extension is proved in Lemma
3.15, which requires a further technical assumption on the geometry of Γ ∩ τ .
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Assumption 3.14. We impose Assumption 3.1, and we further assume that when
Γ intersects any element τ , Γ∩τ is star-shaped about x3. That is, introducing polar
coordinates with origin x3 and polar angle θ measured counterclockwise from e1,
we assume that each (x, y) ∈ Γ∩ τ can be written as (x, y) = (r(θ) cos θ, r(θ) sin θ),
for θ ∈ [0, β]. Also writing the edge x1x2 as (x, y) = (r∗(θ) cos θ, r∗(θ) sin θ) for a
suitable function r∗, we assume that there exist constants C > 0 and 1 > C∗ > 0
such that

(3.31) |r′(θ)| ≤ Cr(θ) and r(θ) ≤ C∗r∗(θ) for all θ ∈ [0, β].

Note that under this assumption, we can integrate the left-hand side of (3.31) to
obtain | log(r(θ)/r(0))| ≤ Cβ, and since r(0) = r−1 , we can combine this with (3.1)
to obtain

(3.32) r(θ) ∼ hτ for all θ ∈ [0, β] .

Now letting s denote arclength along Γ ∩ τ , it is easily seen that

(3.33) ds =
√
(r(θ))2 + (r′(θ))2dθ ∼ hτdθ.

Moreover, since (3.31) implies r∗(θ) ∼ hτ , we also have

|τ+| =

∫ β

0

∫ r1(θ)

r(θ)

rdrdθ =
1

2

∫ β

0

[
(r∗)2(θ)− r2(θ)

]
dθ ∼ h2

τ .

A similar but simpler argument shows that |τ−| ∼ h2
τ . Collecting these relations,

we have

(3.34) |Γ ∩ τ | ∼ hτ , |τ±| ∼ h2
τ .

These are needed in the proof of the following result.

Lemma 3.15. Under Assumption 3.14 there exists ẼMS
h ∈ H1(τ ) with ẼMS

h =
EMS

h on ∂τ and satisfying
(3.35)

|ẼMS
h |2H1(τ),α�h2

τ

(
α̂ max

i=1,2,3
‖DeiE

MS
h ‖2L∞(ei∩τ−) + max

i=1,2,3
‖DeiE

MS
h ‖2L∞(ei∩τ+)

)
.

Proof. For notational convenience in the proof we make the following abbreviations:

E = EMS
h , Ẽ = ẼMS

h . We assume the geometric situation as in Figure 2, so that
τ− (the region where α is high) contains the node x3. The case where τ− contains
two nodes is entirely analogous.

Using Assumption 3.14, we can parametrise τ− by introducing local coordinates
(t, θ) such that

(3.36) x = t r(θ) cos θ, y = t r(θ) sin θ, t ∈ [0, 1] , θ ∈ [0, β] .

Then we define Ẽ on τ− explicitly by
(3.37)

Ẽ(t, θ) =

(
θ

β

)
E(x3+tr−2 e2) +

(
1− θ

β

)
E(x3+tr−1 e1) , t ∈ [0, 1] , θ ∈ [0, β] .
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Clearly Ẽ coincides with E on ei ∩ τ− for each i = 1, 2 and, moreover,

∂Ẽ

∂x
(t, θ) =

((
θ

β

)
r−2 (De2E)(x3 + tr−2 e2)

+

(
1− θ

β

)
r−1 (De1E)(x3 + tr−1 e1)

)
∂t

∂x

+
1

β

(
E(x3 + tr−2 e2)− E(x3 + tr−1 e1)

)
∂θ

∂x

(3.38)

with an analogous formula for ∂Ẽ/∂y. Defining the Jacobian

(3.39) J :=

⎡⎣ ∂x
∂t

∂x
∂θ

∂y
∂t

∂y
∂θ

⎤⎦ , we have det(J) = t r2(θ),

and (abbreviating r(θ) by r) the partial derivatives of θ and tmay then be computed
by

(3.40)

⎡⎣ ∂t
∂x

∂t
∂y

∂θ
∂x

∂θ
∂y

⎤⎦ = J−1 =
1

t r2

[
t(r cos θ + r′ sin θ) t(r sin θ − r′ cos θ)

−r sin θ r cos θ

]
.

Making use of (3.40) and then Assumption 3.14 (which includes Assumption
3.1), the first term on the right-hand side of (3.38) may be estimated by
(3.41)
hτ

r(θ)

∣∣∣∣cos θ + r′(θ)

r(θ)
sin θ

∣∣∣∣ max
i=1,2

‖DeiE‖L∞(ei∩τ−) � hτ

r(θ)
max
i=1,2

‖DeiE‖L∞(ei∩τ−) .

Moreover, since E(x3) = 0, we have |E(x3 + tr−i ei)| � thτ‖DeiE‖L∞(ei∩τ−),
i = 1, 2, and hence the second term on the right-hand side of (3.38) may also be
bounded exactly as in the right-hand side of (3.41). An analogous procedure can

be applied to ∂Ẽ/∂y, thus yielding, overall,

|∇Ẽ(t, θ)| � hτ

r(θ)
max
i=1,2

‖DeiE‖L∞(ei∩τ−) for t ∈ [0, 1], θ ∈ [0, β] .

Therefore, also using (3.39), we obtain the estimate on τ−:

|Ẽ|2H1(τ−),α =

∫
τ−

α̂|∇Ẽ(x, y)|2 dx dy = α̂

∫ 1

0

∫ β

0

|∇Ẽ(t, θ)|2 t r2(θ) dθ dt

� h2
τ α̂ max

i=1,2
‖DeiE‖2L∞(ei∩τ−) .(3.42)

Note that we constructed above an explicit expansion Ẽ into τ− whose precise
behaviour is quite delicate. For the extension into τ+, it turns out to be sufficient to
apply the inverse trace theorem, which only obtains the extension implicitly. Since
τ+ is a Lipschitz domain, the (inverse) trace theorem (also using (3.34)) gives an
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extension Ẽ which satisfies ( since α � 1 on τ+)

|Ẽ|2H1(τ+),α � |Ẽ|2H1(τ+)

� hτ
−1‖Ẽ‖2L2(∂τ+) + hτ |Ẽ|2H1(∂τ+)

=
∑

i=1,2,3

(
hτ

−1‖E‖2L2(ei∩τ+) + hτ |E|2H1(ei∩τ+)

)
+ hτ

−1‖Ẽ‖2L2(Γ∩τ) + hτ |Ẽ|2H1(Γ∩τ)

� h2
τ max

i=1,2,3
‖DeiE‖2L∞(ei∩τ+) + hτ

−1‖Ẽ‖2L2(Γ∩τ) + hτ |Ẽ|2H1(Γ∩τ) ,(3.43)

where in the final estimate we used E(x1) = 0 = E(x2) .
It remains to estimate the final two terms in (3.43). First note that on Γ∩ τ we

can write Ẽ = Ẽ(1, θ) for some θ ∈ [0, β], and by (3.37) we have (as above)

(3.44) ‖Ẽ‖L∞(Γ∩τ) � max
i=1,2

|E(yi)| � hτ max
i=1,2

‖DeiE‖L∞(ei∩τ+) .

Moreover, writing θ = θ(s), where s denotes arclength along Γ ∩ τ , we have∣∣∣∣ dds{Ẽ(1, θ(s))}
∣∣∣∣ =

1

β
|E(y2)− E(y1)|

∣∣∣∣dθds
∣∣∣∣ � hτ max

i=1,2
‖DeiE‖L∞(ei∩τ+)

∣∣∣∣dθds
∣∣∣∣ .

Hence, making use of (3.33) and (3.34), we have

|Ẽ|2H1(Γ∩τ+) � h2
τ max
i=1,2

‖DeiE‖2L∞(ei∩τ+)

∫ |Γ∩τ |

0

∣∣∣∣dθds
∣∣∣∣2 ds

∼ hτ max
i=1,2

‖DeiE‖2L∞(ei∩τ+).(3.45)

The lemma follows by insertion of (3.44) and (3.45) into (3.43). �
Theorem 3.16. Let u be the solution of (1.2) and suppose τ is one of the elements
which are cut through by the interface Γ. Then, under Assumption 3.14,

|EMS
h |2H1(τ),α � h2

τ α̂2
[
|u|2H2(τ−) + hτ |u|2H5/2(τ−)

]
+ h2

τ

[
|u|2H2(τ+) + hτ |u|2H5/2(τ+)

]
+ h2

τ ‖f‖2L2(τ)
.(3.46)

Remark 3.17. When τ is an element which is not intersected by the interface, the
estimate (3.46) still holds but the terms in |u|H5/2(τ±) are absent.

Proof. From Theorem 2.2 and Lemma 3.15 we have

(3.47) |EMS
h |2H1(tτ),α

� h2
τ

(
α̂ max

i=1,2,3
‖DeiE

MS
h ‖2L∞(ei∩τ−)+ max

i=1,2,3
‖DeiE

MS
h ‖2L∞(ei∩τ+)+‖f‖2L2(τ)

)
.

The edge derivatives on the right-hand side of (3.47) may be estimated by Theorem
3.9, yielding

(3.48) |EMS
h |2H1(τ),α

� h3
τ max

i=1,2,3

|k|=1

[
α̂2‖DkDeiu‖2L2(ei∩τ−) + ‖DkDeiu‖2L2(ei∩τ+)

]
+ h2

τ‖f‖2L2(τ)
.

Now we adapt the procedure from the proof of Theorem 2.5 to bound the terms
in u appearing on the right-hand side of (3.48). Let η− be a polygon chosen inside
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+η−η

x2

x1 x3

x4

Figure 4. Left: Γ is the curved interface and η− (η+) is the poly-
gon inside τ− (respectively τ+). Right: Two elements intersected
by the interface.

τ− with the property that ∂τ ∩ τ− ⊂ ∂η− and let η+ be chosen analogously (see
Figure 4, left). Clearly we may choose these polygons so that |η±| ∼ |τ±|.

Then, for |k| = 1 and i = 1, 2, we have (cf. (2.19))

‖DkDeiu
−‖2L2(ei∩τ−) = |Dku−|2H1(ei∩τ−)

� h−1
τ |Dku−|2H1(η−) + |Dku−|2H3/2(η−)

� h−1
τ |u−|2H2(τ−) + |u−|2H5/2(τ−).(3.49)

Analogously we have

(3.50) ‖DkDeiu
+‖2L2(ei∩τ+) � h−1

τ |u+|2H2(τ+) + |u+|2H5/2(τ+).

The required result follows by combining (3.49) and (3.50) with (3.48) �

3.4. Conforming modification and global error estimate. The multiscale
basis functions discussed in the previous sections were obtained by solving (2.1) on
each element τ individually, using a boundary condition relevant to that particular
element. When an interface cuts an element edge, there is no guarantee that the
boundary condition will match across that edge, and so the basis constructed in this
way may be discontinuous (i.e. the element may be non-conforming). However, as
we now show, it is easy to make the basis functions continuous by local averaging.
Consider the interface crossing an edge belonging to two adjacent elements, as in
Figure 4 (right). Let xp denote any one of the nodes of this pair of triangles and
denote the boundary condition on x2x3 (constructed by the method in §3.2) for
τ = �x1x2x3 by φp,τ and the analogous boundary condition for τ ′ = �x4x2x3 by
φp,τ ′ . Then we simply define the averaged boundary condition on x2x3 to be

(φp,τ + φp,τ ′)

2
.

Doing this for all edges cut by the interface yields a conforming method. Moreover,
we can show by a simple application of the triangle inequality that the new bound-
ary condition yields multiscale basis functions and an interpolation operator which
satisfies the estimate in Theorem 3.9, and hence Theorem 3.16 remains true. How-
ever, the price we pay is that the resulting basis functions may have a slightly larger
support than the standard linear functions. For example in Figure 4 (right), when
p = 4, the basis function ΦMS

p will not necessarily vanish in the triangle x1x2x3.
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Theorem 3.18. Suppose Assumption 3.14 holds for each element which is cut
through by the interface. Suppose also that f ∈ H1/2(Ω). Let u be the solution of
(1.2). Assume also that h is sufficiently small. Then

(i) |u− uMS
h |H1(Ω),α � h

[
h|f |2H1/2(Ω) + ‖f‖2L2(Ω)

]1/2
,(3.51)

(ii) ‖u− uMS
h ‖L2(Ω) � h2

[
h|f |2H1/2(Ω) + ‖f‖2L2(Ω)

]1/2
.(3.52)

Proof. Consider first Case I (see (1.5)). By the optimality of uMS in the energy
norm, we get

(3.53) |u− uMS
h |2H1(Ω),α ≤ |EMS

h |2H1(Ω),α =
∑
τ

|EMS
h |2H1(τ),α.

We now employ Theorem 3.16 to estimate the right-hand side. Bearing in mind the
regularity estimates in Theorem B.1 (since ∂Ω is assumed to be a convex polygon),
we need to assume here that h is small enough so that all elements which cross Γ
are separated from ∂Ω by at least a fixed distance. (For example, h ≈ dist(Γ, ∂Ω)/2
would be sufficient.) Under this assumption, and bearing in mind Remark 3.17, we
have

(3.54) |u− uMS
h |2H1(Ω),α

� h2

{
α̂2

m∑
i=1

(
|u|2H2(Ωi)

+ h|u|2H5/2(Ωi)

)
+|u|2H2(Ω0)

+ h|u|2H5/2(Ω0)
+‖f‖2L2(Ω)

}
.

The required estimate (3.51) follows from the regularity theorem, Theorem B.1.
The estimate (3.52) is derived by adapting the duality argument used in the proof
of Theorem 2.5. The proof of Case II similar. �

Remark 3.19. If u is required to satisfy an inhomogeneous boundary condition g
(as described in Remark B.3), then we have the following estimates for Case I:

(i) |u− uMS
h |H1(Ω),α�h

[
‖f‖2L2(Ω)+‖g‖2H2(Ω0)

+h(|f |2H1/2(Ω)+|g|2H5/2(Ω0)
)
]1/2

,

(ii) ‖u− uMS
h ‖L2(Ω)�h2

[
‖f‖2L2(Ω)+‖g‖2H2(Ω0)

+h(|f |2H1/2(Ω)+|g|2H5/2(Ω0)
)
]1/2

,

and, for Case II,

(i) |u− uMS
h |H1(Ω),α

� h
[
‖f‖2L2(Ω) + α̂2‖g‖2H2(Ω0)

+ h(|f |2H1/2(Ω) + α̂2|g|2H5/2(Ω0)
)
]1/2

,

(ii) ‖u− uMS
h ‖L2(Ω)

� h2
[
‖f‖2L2(Ω) + α̂2‖g‖2H2(Ω0)

+ h(|f |2H1/2(Ω) + α̂2|g|2H5/2(Ω0)
)
]1/2

,

The latter estimates can be pessimistic in some inhomogeneous Dirichlet cases.
For example, if u = u0 +C where u0 enjoys the same estimates as in Theorem B.1,
then since IMS

h preserves constants (see (2.5)),

(3.55) |u− uMS
h |H1(Ω),α ≤ |u− IMS

h u|H1(Ω),α = |u0 − IMS
h u0|H1(Ω),α,

and the results of Theorem 3.18 are still valid in this case.
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4. Numerical experiments

In this section, we perform three numerical experiments to verify the convergence
rates established above. We consider the weak form of the Dirichlet boundary value
problem:

(4.1) −∇ · (α∇u) = f in Ω, with u = g on ∂Ω ,

for different domains Ω, piecewise constant function α, source term f and boundary
condition g. To compute the multiscale basis functions, we subdivide each coarse
grid element into M uniform triangular sub-elements and apply the IFE method of
[28] for basis function calculation on each coarse element. As discussed in Remark
3.10, this involves approximating the interface by a straight line in each element
of the fine grid which it intersects. Clearly, extending the theoretical results in
this paper to this case will require M sufficiently large relative to h and α. In the
following three experiments, we use M = 1024 to ensure the errors in computing
the basis functions are small. At the end of this section we study in more detail
how the choice of M affects the overall error in the method.

Experiment 1. In this experiment, Ω = [−1, 1] × [−1, 1], f = −9 r,

g = r3

α0
+
(

1
α1

− 1
α0

)
r30, and

(4.2) α =

{
α1, r < r0,
α0, r ≥ r0,

where r = (x2 + y2)1/2 and r0 = π/6.28 (see also [28]). The exact solution is

(4.3) u(r, θ) =

{
r3

α1
, r < r0,

r3

α0
+
(

1
α1

− 1
α0

)
r30, r ≥ r0.

Recalling (1.5) and (1.6) we shall study Case I: α1 = α̂, α0 = 1 and Case II:
α1 = 1, α0 = α̂. Notice that the source term f is independent of α̂. Although
this is an inhomogeneous Dirichlet problem, the general estimates in Remarks 3.19
and B.3 are overly pessimistic for Case II here. In Case II, the exact solution (4.3)
satisfies |u|Hs+2(Ω0) = 1

α̂ |r3|Hs+2(Ω0) and |u|Hs+2(Ω1) = |r3|Hs+2(Ω1) for any s ≥ 0,
which is sufficient for α̂-robust optimal convergence. Thus our method still enjoys
the error estimates of Theorem 3.18 in both Cases II and I in this example.

The coarse grid in this case is a uniform triangular grid on Ω. We depict the
numerical solutions for both cases in Figure 5. The solutions are flat in the region
where the coefficient α is high. Figure 6, shows that the errors are small but are
concentrated along the interface. The errors are presented in Tables 1 and 2. These
show that the method is first order in the H1 semi-norm and second order in the
L2 norm as predicted by the theory. (Throughout, we use least squares fitting
to estimate the convergence rates.) The independence of α̂ can be observed from
Figure 7.

For this experiment our new multiscale finite element method gives much better
performance than the standard linear finite element method (on the same grid). The
improvement is more significant when α̂ is very large, which may be expected since
we have proved that our multiscale method converges independently of α̂, whereas
the asymptotic constant in the error estimate for the standard finite element method
may depend on α̂. For example, when α̂ = 105, the multiscale finite element
method has an L2 norm error about 66 times smaller than that of the standard
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Figure 5. Numerical solutions uMS
h with h = 1/32 for Experiment 1.
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Figure 6. Pointwise errors EMS
h and h = 1/32 for Experiment 1.

linear finite element method, while in the H1 semi-norm the error is better by a
factor of about 15. We have also compared our multiscale finite element method
with the IFE method [28] applied on the coarse grid, and we found that our method
gives a consistently better performance for all values of α̂, although the gain is less
pronounced compared with that of the standard finite element method.

Experiment 2. In this experiment Ω is the unit disk, α is as defined in (4.2), with
r0 = 1/3, f = 0 and g(x) = x. The exact solution can be obtained analytically:

(4.4) u(x, y) =

⎧⎪⎨⎪⎩
−2

(β−1) r20−(β+1)
x, r < 0,

−(β+1)
(β−1) r20−(β+1)

x+
(β−1)r20

(β−1) r20−(β+1)
x

x2+y2 , r ≥ r0,

where β = α1/α0. Unlike Experiment 1, the exact solution depends on the polar
angle θ. We investigate convergence for the case α1 = α̂, α0 = 1, with increasing α̂
(i.e. Case I), using quasi-uniform meshes, with a typical example shown in Figure
8. A typical numerical solution and pointwise error are shown in Figure 9. As in
Experiment 1, we can see that the solution is flat in the high conductivity region
and that the errors are small and concentrated along the interface. From Table 3,
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Table 1. The L2-norm errors (upper) and the H1 semi-norm er-
rors (lower) for the Case I: α1 = α̂, α0 = 1 in Experiment 1.

h α̂ = 10 α̂ = 100 α̂ = 1000 α̂ = 10000 α̂ = 100000
1/4 8.9457e-2 9.0295e-2 8.9569e-2 8.9489e-2 9.0375e-2
1/8 2.2833e-2 2.2877e-2 2.2881e-2 2.2891e-2 2.2912e-2
1/16 5.7666e-3 5.7703e-3 5.7791e-3 5.7824e-3 5.7808e-3
1/32 1.4548e-3 1.4521e-3 1.4511e-3 1.4517e-3 1.4511e-3
1/64 3.6619e-4 3.6242e-4 3.6482e-4 3.6369e-4 3.6366e-4
rate 1.9837 1.9899 1.9858 1.9865 1.9895

h α̂ = 10 α̂ = 100 α̂ = 1000 α̂ = 10000 α̂ = 100000
1/4 5.1756e-1 5.5251e-1 5.1793e-1 5.2480e-1 5.5458e-1
1/8 2.4868e-1 2.5246e-1 2.4854e-1 2.4858e-1 2.5381e-1
1/16 1.2349e-1 1.2339e-1 1.2355e-1 1.2297e-1 1.2377e-1
1/32 6.2156e-2 6.1687e-2 6.1456e-2 6.1289e-2 6.1355e-2
1/64 3.1374e-2 3.1011e-2 3.0915e-2 3.0651e-2 3.0662e-2
rate 1.0088 1.0343 1.0149 1.0216 1.0402

Table 2. The L2-norm errors (upper) and the H1 semi-norm er-
rors (lower) for the Case II: α1 = 1, α0 = α̂ in Experiment 1.

h α̂ = 10 α̂ = 100 α̂ = 1000 α̂ = 10000 α̂ = 100000
1/4 1.2782e-2 9.0781e-3 9.3489e-3 9.2490e-3 9.2439e-3
1/8 3.7991e-3 2.8410e-3 3.0394e-3 2.9212e-3 2.9314e-3
1/16 1.0235e-3 9.3213e-4 9.2752e-4 8.3648e-4 8.5214e-4
1/32 2.7485e-4 2.7843e-4 2.4049e-4 2.2169e-4 2.2716e-4
1/64 7.7605e-5 6.6592e-5 5.4716e-5 5.7664e-5 5.9580e-5
rate 1.8517 1.7533 1.8493 1.8371 1.8245

h α̂ = 10 α̂ = 100 α̂ = 1000 α̂ = 10000 α̂ = 100000
1/4 1.3950e-1 1.2346e-1 1.2486e-1 1.2422e-1 1.2408e-1
1/8 6.7497e-2 5.7930e-2 5.7251e-2 5.7320e-2 5.7267e-2
1/16 3.3704e-2 3.0806e-2 2.6738e-2 2.6893e-2 2.6961e-2
1/32 1.8304e-2 1.4854e-2 1.2806e-2 1.2563e-2 1.2609e-2
1/64 9.9543e-3 7.3327e-3 6.2600e-3 6.0577e-3 6.2529e-3
rate 0.9987 0.9708 0.9982 1.0063 1.0160

we can see that the convergence rates are very close to optimal and independent of
α̂. Although the theory presented above is for polygonal ∂Ω, the error estimates
in Remark 3.19 could easily be extended to prove α̂-independent convergence of
optimal order for this experiment, as is observed in the tables.
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Figure 7. Figures (a)–(d) show that the errors are not affected
by the values of α̂ in Experiment 1. Each line represents the error
versus α̂ for fixed h. The values of h are 1/4, 1/8, 1/16, 1/32, 1/64
from top to bottom.

Table 3. The L2-norm errors (upper) and the H1 semi-norm er-
rors (lower) for Experiment 2.

h α̂ = 10 α̂ = 100 α̂ = 1000 α̂ = 10000 α̂ = 100000
1/8 2.2893e-3 4.6732e-3 3.4460e-3 3.3769e-3 3.3855e-3
1/16 7.0721e-4 1.7751e-3 9.0811e-4 8.8256e-4 8.8731e-4
1/32 1.8442e-4 3.1863e-4 2.5463e-4 2.4886e-4 2.8548e-4
1/64 5.2058e-5 7.9585e-5 7.0451e-5 7.0448e-5 7.0659e-5
rate 1.8315 2.0105 1.8671 1.8575 1.8383

h α̂ = 10 α̂ = 100 α̂ = 1000 α̂ = 10000 α̂ = 100000
1/8 7.3816e-2 9.1749e-2 9.0765e-2 9.1247e-2 9.1505e-2
1/16 4.1501e-2 4.6103e-2 4.5586e-2 4.5827e-2 4.5973e-2
1/32 2.2267e-2 2.4132e-2 2.3906e-2 2.3967e-2 2.4874e-2
1/64 1.3250e-2 1.3547e-2 1.2411e-2 1.2333e-2 1.2382e-2
rate 0.8332 0.9213 0.9543 0.9597 0.9543
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Figure 9. Numerical solution uMS
h and pointwise error EMS

h for
Experiment 2 with α̂ = 100000 and h = 1/32.

Experiment 3. In this experiment Ω = [−1, 1] × [−1, 1], and we consider the
case of two inclusions with

α =

⎧⎨⎩
α1, when (x− x1)

2 + (y − y1)
2 < r21,

α2, when (x− x2)
2 + (y − y2)

2 < r22,
α0, otherwise.

Here we choose f = 1 and g = 0. Since an analytical solution is unknown, we
use the solution on the finest mesh (here with 16641 grid points) as the reference
solution to compute the error for solutions on coarser meshes. We choose (x1, y1) =
(1/2, 0), (x2, y2) = (−1/2, 1/2) and r1 = 2/5, r2 = 1/3.

Recalling that (1.5) allows α1 and α2 to approach infinity with different rates,
we set α1 = α̂, α2 = 5 α̂ and α0 = 1 as an example of Case I. For Case II, we let
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Figure 10. Numerical solutions uMS
h for Experiment 3.
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Figure 11. Pointwise errors EMS
h for Experiment 3.

α1 = 1, α2 = 5 and α0 = α̂. The numerical solution and pointwise error are shown
in Figure 10 and Figure 11. We can see that the error is still small and concentrated
along the interface. Tables 4 and 5 show that our method enjoys a roughly optimal
convergence rate and that the errors are independent of α̂ as predicted by Theorem
3.18.

Discussion on the choice of the number of subgrid elements. Finally we dis-
cuss the sensitivity of the error in the overall multiscale method to the choice of M
(the number of subgrid elements) used to compute the basis functions. Here we test
how the errors depend on M in Experiment 1 (Case I), with α̂ = 100, 1000, 10000,
and h = 1/4, 1/8, 1/16, 1/32, 1/64, and we plot the error against M in Figure 12.
In each plot there are five groups of three lines, where each group corresponds to
a different value of h, with h decreasing from 1/4 (top group) to 1/64 (bottom
group). In each group of three lines, the dash ∗ line is for α̂ = 100, the dash x line
is for α̂ = 1000 and the dash diamond line is for α̂ = 10000. (In the case of the L2

error, the cases h = 1/32 and 1/64 are almost coincidental.)
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Table 4. The L2-norm errors (upper) and the H1 semi-norm er-
rors (lower) for Case I: α1 = α̂, α2 = 5 α̂, α0 = 1 in Experiment 3.

h α̂ = 10 α̂ = 100 α̂ = 1000 α̂ = 10000 α̂ = 100000
1/4 2.2150e-2 7.2008e-3 7.0956e-3 7.2309e-3 8.1280e-3
1/8 2.9498e-3 2.5855e-3 2.5863e-3 2.6387e-3 3.1500e-3
1/16 1.0142e-3 7.0168e-4 7.1187e-4 7.5761e-4 1.1063e-3
1/32 1.6523e-4 1.9426e-4 1.5366e-4 1.5484e-4 1.7776e-4
rate 2.2740 1.7518 1.8449 1.8436 1.8054

h α̂ = 10 α̂ = 100 α̂ = 1000 α̂ = 10000 α̂ = 100000
1/4 1.0715e-1 3.5010e-2 3.5559e-2 3.5590e-2 3.5765e-2
1/8 2.2953e-2 1.5407e-2 1.5854e-2 1.6046e-2 1.8413e-2
1/16 1.2119e-2 5.9967e-3 6.7962e-3 7.9550e-3 1.6621e-2
1/32 5.8558e-3 3.1782e-3 2.0319e-3 2.2558e-3 4.0509e-3
rate 1.3502 1.1746 1.3610 1.2951 0.9574

Table 5. The L2-norm errors (upper) and the H1 semi-norm er-
rors (lower) for Case II: α1 = 1, α2 = 5, α0 = α̂ in Experiment 3.

h α̂ = 10 α̂ = 100 α̂ = 1000 α̂ = 10000 α̂ = 100000
1/4 6.6651e-3 1.3188e-3 1.2837e-3 1.2870e-3 1.2343e-3
1/8 7.7081e-4 4.9420e-4 3.3161e-4 3.3314e-4 3.2842e-4
1/16 1.8952e-4 1.6737e-4 6.9212e-5 6.9211e-5 6.6224e-5
1/32 4.9532e-5 5.8600e-5 1.4979e-5 1.5999e-5 1.6192e-5
rate 2.3240 1.5039 2.1524 2.1257 2.1067

h α̂ = 10 α̂ = 100 α̂ = 1000 α̂ = 10000 α̂ = 100000
1/4 5.9426e-2 9.7096e-3 8.7966e-3 8.7811e-3 8.1776e-3
1/8 1.1250e-2 6.9732e-3 4.4793e-3 4.2302e-3 4.4192e-3
1/16 4.7793e-3 5.0584e-3 1.3624e-3 1.2180e-3 1.1965e-3
1/32 3.0188e-3 2.9506e-3 6.1242e-4 4.0833e-4 4.7003e-4
rate 1.4132 0.5618 1.3250 1.5076 1.4248

From these graphs we can see that the errors decrease as M increases, and with
M = 64, the multiscale finite element method gives an error that is comparable to
that of using M = 1024 when the coarse mesh size is less than 1/4 for all α̂. This
indicates that, at least in this example, it is possible to use relatively few subgrid
elements to compute the basis function with the desired accuracy, for example by
choosing M = 64. We expect that the use of adaptive subgrid elements may lead
to further computational saving in computing the multiscale basis function.
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Figure 12. The sensitivity test of M for Case I in Experiment 1
with α̂ = 100(- - ∗ line), 1000(- - x line), 10000(- - diamond line).
The values of h are 1/4, 1/8, 1/16, 1/32, 1/64 from top to bottom.

Appendix A. Extension theorem and Poincaré inequality

on an annulus

Lemma A.1. Extension theorem on an annulus.
Consider an equilateral triangle denoted τ , with side 1 depicted in Figure 13, and

let τ δ be the closed annulus of uniform width δ bounded by Γ1 and Γ2 as pictured.
Let Γ := Γ1 ∪ Γ2 and let v ∈ H1/2(Γ). Then v has an extension ṽ ∈ H1(τ δ) such
that

(A.1) |ṽ|H1(τδ) ≤ C δ−1‖v‖H1/2(Γ),

where C is a generic constant independent of δ and v.

Proof. For this proof only, we use the notation A � B to mean that A ≤ CB
with C independent of δ and u. We use standard tools for Lipschitz domains (as
found for example in [34]). Let {Wi}Ni=1 be an overlapping open covering of τ δ and
let {φi}Ni=1 be a corresponding partition of unity with the properties: (i) Each Wi

is the intersection of τ δ with an open ball of diameter � δ, and either Wi ∩Γ1 = ∅
or Wi ∩ Γ2 = ∅; (ii) ‖∇φi‖L∞(τ) � δ−1; (iii) each Wi has non-empty intersection
with at most m Wj for some number m independent of δ.

Define σi = Wi ∩ Γ. By property (i), σi is either a straight line segment or a
corner segment of Γ. Therefore there exists a bijective H1 map Fi : R

2 → R
2 such

that σ̃i := Fi(σi) is a subinterval of the x-axis in R
2 and Fi(Wi) is a bounded

subset of the upper half plane R
2
+. Since v ◦ F−1

i ∈ H1/2(σ̃i) and σ̃i is an open
subset of R, by the Extension Theorem (e.g. [34, Theorem A.4]), we can find an
extension function wi on R such that wi|σ̃i

= v ◦ F−1
i and

‖wi‖H1/2(R) � ‖v ◦ F−1
i ‖H1/2(σ̃i) � ‖v‖H1/2(σi).

Then, by the (inverse) Trace Theorem on a half-space (e.g. [34, Lemma 3.36]), we
can extend wi to a function w̃i on the upper half plane R2

+ such that w̃i ∈ H1(R2
+),

w̃i(x, 0) = wi(x), x ∈ R, and

(A.2) ‖w̃i‖H1(R2
+) � ‖wi‖H1/2(R) � ‖v‖H1/2(σi).
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Γ1

Γ2
τδ

δ

Figure 13. The graph of the triangular strip.

Now define ṽi = w̃i ◦Fi and ṽ =
∑N

i=1 φiṽi. Then ṽ = v on Γ and, using property
(ii), (iii) and (A.2), we obtain

|ṽ|2H1(τδ) ≤
N∑
i=1

|ṽ|2H1(Wi)
�

N∑
i=1

|φiṽi|2H1(Wi)
� δ−2

N∑
i=1

‖ṽi‖2H1(Wi)

� δ−2
N∑
i=1

‖w̃i‖2H1(R2
+) � δ−2

N∑
i=1

‖v‖2H1/2(σi)
� δ−2‖v‖2H1/2(Γ),

as required. �

Lemma A.2. Poincaré inequality on an annulus. Let τ δ, δ and Γ = Γ1 ∪Γ2

be as in Lemma A.1. Then for all u ∈ H1(τ δ), there exists a constant γ such that

‖u− γ‖L2(τδ) � |u|H1(τδ) ,

where the hidden constant is independent of δ.

Proof. Surprisingly, there seems no good source for a proof of this result. However,
a proof may be easily constructed by first writing the estimate

‖u− γ‖2L2(τδ) � δ‖u− γ‖2L2(Γ2)
+ δ2|u|H1(τδ).

This may be found as equation (3.15) in [41] and can then be combined with the
estimate (proved in [36, Lemma 4.3]) that there exists a choice of γ which ensures
that

‖u− γ‖2L2(Γ) � δ−1|u|2H1(τδ).

(To be precise γ may be chosen as the average of u over any of the edges of τ .)
These two estimates imply the required result. �

Appendix B. Regularity estimates

for high-contrast interface problems

While the Sobolev regularity of the solution u to the interface problem (1.2) is
classical, there are relatively few published results which give estimates on how the
Sobolev norms of u depend on the contrast parameter α̂. An exception is Huang
and Zou (cf. [21]) which gives a partial result in this direction, which we generalise
in the following theorem. The proof below was proposed to us by N. Babych,
I.V. Kamotski and V.P. Smyshlyaev of the University of Bath, United Kingdom.
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Theorem B.1. Let Ω be either a smooth C∞ bounded domain in R
2 or a bounded

convex polygon, let Ω contain inclusions Ωi, i = 1, 2 . . . ,m, each having a C∞

boundary, and define Ω0 = Ω\
⋃m

i=1 Ωm, as described in §1. Consider problem (1.2)

and assume that either Case I or Case II ( (1.5) or (1.6)) holds. In addition, let Γ̃

denote any closed C∞ contour in Ω0, which encloses all the Ωi, and let Ω̃0 be the

domain with boundary Γ ∪ Γ̃ (see Figure 14 for an illustration in the special case
m = 1). Then we have

(B.1) |u|Hs+2(Ωi) � 1

αi
‖f‖Hs(Ω) for all s ≥ 0 , i = 1, 2 . . . ,m .

Moreover,

(B.2) |u|H2(Ω0) � 1

α0
‖f‖L2(Ω)

and

(B.3) |u|H2+s(Ω̃0)
� 1

α0
‖f‖Hs(Ω), for all s ≥ 0 .

The hidden constants depend on the distance of Γ from ∂Ω.

Remark B.2. While the estimates (B.2) and (B.3) can be recovered from the re-
sults in [21], the result (B.1) cannot be found there, because [21] works only with
estimates of norms and proves ‖u‖Hs+2(Ωi) � ‖f‖Hs(Ω), i = 1, . . . ,m. The bounds

on the Hs+2-semi-norms in (B.1) are sharper in Case I and are essential for the
analysis in the present paper. In Case II the semi-norms of u on the left-hand side
of (B.2) and (B.3) can even be replaced by the corresponding norms. However,
only the estimates on the semi-norms are needed in this paper.

Proof. In the proof, we consider only the case when Ω is a convex polygon. The
case of smooth ∂Ω is simpler. Also, only the case of one inclusion is considered,
although the proof for m > 1 inclusions is similar. Thus the geometry which we
consider is illustrated in Figure 14. Also, we shall consider only Case I (1.5), i.e.

(B.4) α̂ = α1 → ∞ , α0 = 1.

As we shall explain at the end of the proof, Case II is easy once the proof for Case
I is clear.

Thus our required result in Case I is, for all s ≥ 0,

|u|Hs+2(Ωi) � 1

α̂
‖f‖Hs(Ω), i = 1, 2 . . . ,m ,(B.5)

|u|H2(Ω0) � ‖f‖L2(Ω), and |u|H2+s(Ω̃0)
� ‖f‖Hs(Ω) .(B.6)

The result is clear for all α̂ ∈ [1, A] for some fixed A, so we only have to prove
(B.5), (B.6) for α̂ sufficiently large.

Before beginning the proof, we recall two classical regularity results for elliptic
boundary value problems. Let s ≥ 0 and let φ ∈ Hs+3/2(Γ). Then

(B.7)

⎧⎨⎩
Δz = ω on Ω1

z = φ on Γ
ω ∈ Hs(Ω1)

⎫⎬⎭ =⇒ ‖z‖Hs+2(Ω1) � ‖ω‖Hs(Ω1) + ‖φ‖Hs+3/2(Γ)

and
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Ω1
∂Ω

∼
Γ

Γ

Figure 14. The domain Ω in the special case m = 1. The domain

Ω0 is bounded by Γ and ∂Ω, while the domain Ω̃0 is bounded by
Γ and Γ̃.

(B.8)⎧⎪⎪⎨⎪⎪⎩
Δz = ω on Ω0

z = φ on Γ
z = 0 on ∂Ω
ω ∈ Hs(Ω0)

⎫⎪⎪⎬⎪⎪⎭=⇒
{‖z‖H2(Ω0) � ‖ω‖L2(Ω0) + ‖φ‖H3/2(Γ),
‖z‖Hs+2(Ω̃0)

� ‖ω‖Hs(Ω0) + ‖φ‖Hs+3/2(Γ)

}
.

A suitable reference for (B.7) is [29, §2, Thm 5.4]. For the first inequality on the
right-hand side of (B.8), we can construct a proof by first extending φ to a function
φ′ ∈ H2(Ω0) which vanishes on ∂Ω and with ‖φ′‖H2(Ω0) � ‖φ‖H3/2(Γ). Then

Δ(z − φ′) = ω − Δφ′ on Ω0 and z − φ′ vanishes on ∂Ω0. So using estimates
for elliptic equations on domains with convex corners (for example [17, §3.2]), we
obtain the estimate. To obtain the second inequality on the right-hand side of
(B.8), we use interior regularity results (a suitable reference is [40, Th 11.1]) and
then the trace theorem to obtain

‖z‖Hs+3/2(Γ̃) � ‖ω‖Hs(Ω0) + ‖z‖H1(Ω0) � ‖ω‖Hs(Ω0) + ‖φ‖H1/2(Γ) .

Again applying regularity estimates on the smooth domain Ω̃0 ([29, §2, Thm 5.4]),
we obtain the required estimate.

Now the first step in the proof is to introduce a decomposition of the form

(B.9) u = û + ũ ,

where û solves independent Dirichlet problems with homogeneous boundary data
on each Ωi:

−αiΔû = f on Ωi, with û = 0 on ∂Ωi, i = 0, 1 .

Then, from (B.7) and (B.8) and recalling (B.4), we obtain, for all s ≥ 0 ,

(B.10) ‖û‖H2+s(Ω1) � 1

α̂
‖f‖Hs(Ω1) , ‖û‖H2(Ω0) � ‖f‖L2(Ω0)

and ‖û‖H2+s(Ω̃0)
� ‖f‖Hs(Ω0) .
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Thus û satisfies all the estimates (B.5) and (B.6), and the remainder of the proof
is concerned with obtaining the same estimates for ũ. Since ũ = u − û, it follows
that

Δũ = 0 on Ωi, i = 0, 1 , and ũ = 0 on ∂Ω .(B.11)

Since ũ is continuous across Γ, we can define ṽ = ũ|Γ .
For any suitably smooth v defined on Ω, we let ∂vi/∂n denote the normal deriv-

ative of v evaluated on Γ, with value taken from within Ωi, i = 0, 1. (The normal
direction is fixed as outward from Ω1.) Then the usual jump relation for the so-
lution u of the interface problem (1.2) reads: (∂u0/∂n) − α̂(∂u1/∂n) = 0, which
immediately implies that the function ũ satisfies the following equation on Γ:

(B.12)
∂ũ0

∂n
− α̂

∂ũ1

∂n
= G := α̂

∂û1

∂n
− ∂û0

∂n
.

This may be readily written as

(B.13) (N0 − α̂N1)ṽ = G ,

withNi denoting appropriate Dirichlet to Neumann maps on Ωi (taking ṽ as Dirich-
let data on Γ and using homogeneous Dirichlet data on ∂Ω).

To analyse (B.13) as α̂ → ∞, we might consider scaling by α̂−1 to obtain a
small perturbation of N1. However, because N1 has a non-trivial kernel (namely
the constant functions on Γ, henceforth denoted 〈1〉), we must study the operator
N1 in the orthogonal complement of this space. Thus we introduce

Pv =
1

|Γ|

∫
Γ

v(s) ds ,

the orthogonal projection from L2(Γ) onto 〈1〉 and (I−P), the orthogonal projection
onto L2(Γ)

⊥ := {v ∈ L2(Γ) : Pv = 0}. Then writing

ṽ = P ṽ + (I − P)ṽ =: c̃+ w̃ ,

equation (B.13) may be expressed as the system in 〈1〉 × L2(Γ)
⊥:

(B.14)[
P(N0 − α̂N1)P P(N0 − α̂N1)(I − P)

(I − P)(N0 − α̂N1)P (I − P)(N0 − α̂N1)(I − P)

] [
c̃
w̃

]
=

[
PG

(I − P)G

]
.

Moreover, since PN1 = N1P are null operators on L2(Γ), (B.14) may be rewritten
as

(B.15) (P− α̂−1Q)

[
c̃
α̂w̃

]
=

[
PG

(I − P)G

]
,

where

P =

[
PN0P 0

(I − P)N0P −N1

]
and Q =

[
0 PN0(I − P)
0 (I − P)N0(I − P)

]
.

We next show that P is invertible on 〈1〉 × L2(Γ)
⊥. Note first that N1 is

invertible on L2(Γ)
⊥. To analyse PN0P, consider the boundary value problem:

(B.16) Δη = 0 in Ω0, with η = 1 on Γ and η = 0 on ∂Ω,

which has a unique solution η ∈ H2(Ω0). The linear operator PN0P operates on
〈1〉 as multiplication by the scalar

γ := P
[
∂η

∂n

]
=

1

|Γ|

∫
Γ

∂η

∂n
ds ,



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

1952 C.-C. CHU, I. G. GRAHAM, AND T.-Y. HOU

and this scalar does not vanish, since (by (B.16))

γ|Γ| =
∫
Γ

∂η

∂n
ds =

∫
∂Ω0

η
∂η

∂n
ds =

∫
Ω0

∇ · (η∇η) dx =

∫
Ω0

|∇η|2 dx > 0.

Moreover, the linear operator (I −P)N0P operates on 〈1〉 as multiplication by the
function ρ := (I − P)(∂η/∂n) = ∂η/∂n− γ ∈ L2(Γ)

⊥. Hence

P =

[
γ 0
ρ −N1

]
and P−1 =

[
γ−1 0

γ−1N−1
1 ρ −N−1

1

]
.

Now combining (B.7) and (B.8) with the Trace Theorem we obtain that N1 :
L2(Γ)

⊥ ∩Hs+3/2(Γ) → L2(Γ)
⊥ ∩Hs+1/2(Γ) is a bounded operator and in fact has

a bounded inverse (see, e.g. [29, §2, Th. 5.4]). Moreover, N0 : Hs+3/2(Γ) →
Hs+1/2(Γ) is also bounded, and it is straightforward to show that P−1Q is a
bounded operator on 〈1〉 ×Hs+3/2(Γ) and that

(B.17)

∥∥∥∥P−1

[
PG

(I − P)G

]∥∥∥∥
〈1〉×Hs+3/2(Γ)

� ‖G‖Hs+1/2(Γ) .

Hence, considering (B.15) for α̂ sufficiently large, we have the estimate

max{|c̃|, α̂‖w̃‖Hs+3/2(Γ)} � ‖G‖Hs+1/2(Γ) ≤ α̂

∥∥∥∥∂û1

∂n

∥∥∥∥
Hs+1/2(Γ)

+

∥∥∥∥∂û0

∂n

∥∥∥∥
Hs+1/2(Γ)

� α̂‖û‖Hs+2(Ω1) + ‖û‖Hs+2(Ω̃0)
(B.18)

� ‖f‖Hs(Ω) ,(B.19)

where the last three estimates are obtained from employing the definition of G in
(B.12), then the trace theorem and finally (B.10).

Now recall that ũ is harmonic on Ω1 and that ũ|Γ =: ṽ = c̃+ w̃, where c̃ ∈ R.
Hence, if we define ũ1 on Ω1 by requiring it to be harmonic and to coincide with w̃
on Γ, we have, by uniqueness, ũ = c̃ + ũ1 on Ω1. Thus by using (B.7) and then
(B.18), we have, for all s ≥ 0,

(B.20) |ũ|Hs+2(Ω1) = |ũ1|Hs+2(Ω1) � ‖w̃‖Hs+3/2(Γ) � 1

α̂
‖f‖Hs(Ω).

Combining (B.20) with the first inequality in (B.10) (and recalling (B.4)) then yields
the first required estimate (B.5). To obtain (B.6), we note that (B.18) implies that
‖ṽ‖Hs+3/2(Γ) � ‖f‖Hs(Ω), and hence the required estimates follow from (B.8).

Finally we remark why the result is easier to prove in Case II, i.e.

α̂ = α0 → ∞ , α1 = 1 .

In this case the analysis of û is unchanged, but in the analysis of ṽ we obtain,
instead of (B.13), the equation

(α̂N0 −N1)ṽ = G :=
∂û1

∂n
− α̂

∂û0

∂n
.

Since N0 is invertible, the estimate for ṽ can then be obtained by premultiplying
this equation by α̂−1N−1

0 and letting α̂ get sufficiently large, without having to go
through the projection procedure leading to the system (B.14). �

Remark B.3. Here we briefly discuss the case of inhomogeneous Dirichlet conditions.
Consider problem (1.2), but replace u ∈ H1

0 (Ω) by the requirement that u ∈ H1(Ω)
with u = g on ∂Ω. For simplicity assume that g is the restriction to ∂Ω of a function
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g ∈ Hs+2(Ω0), where g has compact support in Ω0 and with s as large as we wish.
Assume also that there is only one inclusion Ω1. Then an analogous argument as
that in Theorem B.1 can be carried out, but with û now required to satisfy û = g
on ∂Ω, so that, in Case I, by (B.8),

‖û‖H2+s(Ω1) � 1

α̂
‖f‖Hs(Ω) , and

‖û‖H2(Ω0)�‖f‖L2(Ω0)+‖g‖H2(Ω0) and ‖û‖H2+s(Ω̃0)
� ‖f‖Hs(Ω0) + ‖g‖H2+s(Ω0).

The analysis for ũ is as in (B.18), (B.19) and (B.20), leading to the estimates for u:

|u|H2+s(Ω1) � 1

α̂

[
‖f‖Hs(Ω) + ‖g‖Hs+2(Ω0)

]
,

|u|H2(Ω0) � ‖f‖L2(Ω) + ‖g‖H2(Ω0) and |u|H2+s(Ω̃) � ‖f‖Hs(Ω) + ‖g‖H2+s(Ω0).

Thus the higher semi-norms of u in the inclusions still decay as α̂ → ∞.

However, in Case II the semi-norms on Ω0 and Ω̃0 do not necessarily decay, and
the best estimate for general g is

|u|H2+s(Ω1) � ‖f‖Hs(Ω) + ‖g‖Hs+2(Ω0),(B.21)

|u|H2(Ω0) � 1

α̂

{
‖f‖L2(Ω) + α̂|g|H2(Ω0)

}
,(B.22)

and |u|H2+s(Ω̃0)
� 1

α̂

{
‖f‖Hs(Ω) + α̂|g|H2+s(Ω0)

}
.

To give more detail of derivation of the final estimate, note that under the stated
assumptions on g, we have u− g ∈ H1

0 (Ω) and

a(u− g, v) = (f, v)L2(Ω) + α̂(Δg, v)L2(Ω0).

Then applying Theorem B.1, we have the stated estimate. It could be useful to have
only the semi-norms of g on the right-hand side of (B.22): If the given boundary
data g has an extension which is “nearly flat”, near ∂Ω then the estimates (B.22)
will be decaying as α̂ → ∞. This is the case, for example in Experiment 1 (Case
II) in §4.
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