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Abstract

In this paper we obtain a range of inverse-type inequalities which are applicable
to finite element functions on general classes of meshes, including degenerate meshes
obtained by anisotropic refinement. These are obtained for Sobolev norms of positive,
zero and negative order. In contrast to classical inverse estimates, negative powers of the
minimum mesh diameter are avoided. We give two applications of these estimates in the
context of boundary elements: (i) to the analysis of quadrature error in discrete Galerkin
methods and (ii) to the analysis of the panel clustering algorithm. Our results show that
degeneracy in the meshes yields no degradation in the approximation properties of these
methods.

1 Introduction

For d = 2 or 3, let Ω ⊂ R
3 denote either a bounded domain (d = 3) or a bounded surface with

or without boundary (d = 2). Suppose that Ω is decomposed into a mesh of tetrahedra/bricks
(d = 3) or curvilinear triangles/quadrilaterals (d = 2). Then classical inverse estimates give

‖u‖Hs(Ω) . h−s
min‖u‖L2(Ω) . h−2s

min‖u‖H−s(Ω) , (1.1)

for a suitable range of positive s and for all functions u ∈ Hs(Ω) which are piecewise polyno-
mials of degree ≤ m with respect to this mesh. (Here the notation A . B means that A/B
is bounded by a constant independent of the mesh and independent of u - for a more precise
statement, see §2.) The quantity hmin is the minimum diameter of all the elements of the mesh
and (1.1) holds under the assumption of shape regularity, i.e. ρτ & hτ for each τ , where hτ is
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the diameter of τ and ρτ is the diameter of the largest inscribed sphere (see Definition 2.1).
Such estimates are regularly used in finite element analysis. When the mesh is quasiuniform
(h . hmin, where h is the maximum diameter of all the elements), they can be used to obtain
convergence rates in powers of h for various quantities in various norms. However, practical
meshes are often non-quasiuniform and then the negative powers of hmin in (1.1) may give rise
to overly pessimistic convergence rates. In the recent paper [4], less pessimistic replacements
for (1.1) have been derived, a particular case being

‖u‖Hs(Ω) . ‖h−su‖L2(Ω) . ‖h−2su‖H−s(Ω) , (1.2)

where h : Ω → R is now a continuous piecewise linear mesh function whose value on each
element τ reflects the diameter of that element (i.e. hτ . h|τ . hτ ).

Estimates (1.2) have several applications, e.g. to the analysis of quadrature errors in dis-
crete Galerkin boundary element methods [8] and to the analysis of the mortar element method
[4]. In fact [4] contains more general versions of (1.2), e.g. in the Sobolev space W s,p(Ω) and
in related Besov spaces. While the left-hand inequality in (1.2) is well-known, at least in the
Sobolev space case, the right-hand inequality requires rather delicate analysis.

In this paper we obtain more general versions of (1.2) which do not require the mesh
sequence to be shape-regular. A typical estimate is

‖u‖Hs(Ω) . ‖ρ−su‖L2(Ω) . ‖ρ−2su‖H−s(Ω) , (1.3)

where the mesh function ρ : Ω → R is now a continuous piecewise linear function whose
value on each element τ reflects the diameter of the largest inscribed sphere, introduced in
Definition 2.1. Estimates (1.3) hold under the rather weak assumptions that (i) the quantities
hτ and ρτ are locally quasiuniform (i.e. hτ/hτ ′ . 1 and ρτ/ρτ ′ . 1 for all neighbouring
elements τ, τ ′) and (ii) the number of elements which touch any element remains bounded
as the mesh is refined (see Assumption 2.6). These assumptions admit degenerate meshes,
containing long thin “stretched” elements, which are typically used for approximating edge
singularities or boundary layers in solutions of PDEs. Our estimates (1.3) hold true when all
the elements τ of a mesh are obtained by suitable maps from a single unit element, as is usual
for finite element spaces. For the purpose of a readable introduction we have here written
our estimates (1.3) in a very compact form. In fact the range of s for which the right-hand
inequality in (1.3) holds may be greater then that for which the left-hand inequaliy holds and
we shall give precise ranges in §3.

It is expected that these estimates will have a range of applications similar to those already
identified above for (1.2). In particular we already used a special case of (1.3) to analyse
quadrature errors for a Galerkin boundary element discretisation of a model screen problem
in [10]. In this paper we give as applications a more general Galerkin quadrature error analysis,
as well as an error analysis of the panel clustering algorithm in the presence of degenerate
meshes.

Our inverse estimates are proved in §3. We briefly introduce the well-known Galerkin
boundary element method in §4. The analysis of Galerkin quadrature is given in §5. Quadra-
ture almost always has to be employed in practical computations; a general analysis for
shape-regular meshes was included in [8]. In §5, with the help of (1.3), we generalise the
results of [8] to degenerate meshes. The results turn out to be qualitatively the same as those
in [8]: in the far field the degeneracy of the mesh has no effect on the required precision of
the quadrature needed to preserve the accuracy of the Galerkin method. The error analysis of
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the panel clustering algorithm is given in §6. This algorithm [15, 21] provides an alternative
representation of the finite-dimensional Galerkin operator which has the same order of accu-
racy as the standard representation. The multiplication of the panel clustering representation
with any vector has complexity O(N logκ N), for some (small) κ, where N is the number of
degrees of freedom. This should be compared with the complexity O (N 2) of the standard
matrix representation. Up till now the accuracy and complexity analysis for this algorithm
was obtained only for quasiuniform meshes. In §6 we extend the accuracy analysis to the
case of much more general (including degenerate) meshes using (1.3). Again we find the error
estimate is qualitatively the same as in the quasiuniform case.

It turns out, however, that when the conventional panel clustering algorithm is applied
in practice to some discretisations on degenerate mesh sequences, it has a complexity higher
than the O(N logκ N) mentioned above. In the subsequent paper [11] we shall elaborate on
this and we shall propose a new variant of the panel clustering algorithm which is optimal for
this type of mesh. The results here, depending on (1.3), are crucial for the analysis which will
be given in [11].

2 Meshes and Finite Elements

Throughout §§2, 3, Ω will denote a bounded d-dimensional subset of R
3, for d = 2 or 3. More

precisely, when d = 3, Ω will denote a bounded domain in R
3 and for d = 2, Ω will denote

a bounded 2-dimensional piecewise smooth Lipschitz manifold in R
3 which may or may not

have a boundary. The case when Ω is a bounded domain in R
2 is then included as a special

case, by trivially embedding it into R
3.

We define the Sobolev space Hs(Ω), s ≥ 0, in the usual way (see, e.g., [12] or [17]). Note
that in the case d = 2 the range of s for which Hs(Ω) is defined may be limited, depending on
the global smoothness of the surface Ω. Throughout, we let [−k, k] denote the range of Sobolev
indices for which we are going to prove the inverse estimates (where k is a positive integer),
and we assume that Hs(Ω) is defined for all s ∈ [−k, k], and that H−s(Ω) is the dual of Hs(Ω),
for s > 0. (For example, when d = 2 and Ω is a Lipschitz manifold, then −1 ≤ s ≤ 1.) We
assume that Ω is decomposed into a mesh T of relatively open pairwise-disjoint finite elements
τ ⊂ Ω with the property Ω = ∪{τ : τ ∈ T }.

In our applications to boundary integral equations in §§4 – 6, we will restrict to equations
posed on closed bounded surfaces in R

3. Thus we avoid dealing explicitly with special sub-
spaces of Hs(Ω) which vanish on the boundary (for s ≥ 0), and their dual spaces. However we
note that the inverse estimates which we shall obtain for functions in H s(Ω) obviously hold
also for functions in any subspace of Hs(Ω).

Definition 2.1 (Mesh Parameters) For each τ ∈ T , |τ | denotes its d-dimensional mea-
sure, hτ denotes its diameter and ρτ is the diameter of the largest sphere centred at a point in
τ whose intersection with Ω lies entirely inside τ . For any other simplex or cube t ∈ R

d (not
necessarily an element of T ) we define ht and ρt in the same way.

In order to impose a simple geometric character on the mesh τ , we assume that each
τ ∈ T is diffeomorphic to a simple unit element. More precisely, let σ̂3 denote the unit
simplex with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), let κ̂3 denote the unit cube with
vertices {(x, y, z) : x, y, z ∈ {0, 1}}. In 2D, define σ̂2 to be the unit simplex with vertices
(0, 0), (1, 0) and (0, 1) and define κ̂2 to be the unit square with vertices {(x, y) : x, y ∈ {0, 1}}.

3



Then we assume that for each τ ∈ T , there exists a unit element τ̂ = σ̂d or κ̂d and
a bijective map χτ : τ̂ → τ , with χτ and χ−1

τ both smooth. (Here, for simplicity, “smooth”
means C∞.) We also let |τ̂ | denote the d−dimensional measure of τ̂ and hτ̂ denote its diameter.
Since χτ is smooth, each element τ ∈ T is either a curvilinear tetrahedron/brick (d = 3) or
a curvilinear triangle/rectangle (d = 2). The mesh T is allowed to contain both types of
elements. Each element has vertices and edges (defined to be the images of the vertices and
edges of the corresponding unit element under χτ ). In the 3D case the element also has faces,
comprising the images of the faces of the unit element. For a suitable index set N , we let
{xp : p ∈ N} denote the set of all vertices of T . We assume the mesh is conforming, i.e. for
each τ, τ ′ ∈ T with τ 6= τ ′, τ ∩ τ ′ is allowed to be either empty, a node, an edge or (when
d = 3) a face of both τ and τ ′. The requirement that χτ is smooth ensures that edges of Ω
(d = 2) and edges of ∂Ω (d = 3) are confined to edges of elements τ ∈ T . Let Jτ denote the
3 × d Jacobian of χτ . Then

gτ := {det JT
τ Jτ}1/2

is the Gram determinant of the map χτ , which appears in the change of variable formula:∫
τ
f(x)dx =

∫
τ̂
f(χτ (x̂))gτ (x̂)dx̂. To ensure that the map χτ is sufficiently regular we shall

make the following assumptions on Jτ :

Assumption 2.2 (Mapping Properties)

D−1|τ |2 ≤ det{Jτ (x̂)T Jτ (x̂)} ≤ D|τ |2, (2.1a)

Eρ2
τ ≤ λmin{Jτ (x̂)T Jτ (x̂)} (2.1b)

uniformly in x̂ ∈ τ̂ , for all τ ∈ T , with positive constants D, E independent of τ .

(Throughout this section, for a symmetric matrix A, λmin(A) and λmax(A) denote respectively
the minimum and maximum eigenvalues of A.) Assumption 2.2 is satisfied in a number of
standard cases.

Example 2.3 Suppose either d = 2 and τ ⊂ Ω, where Ω is a planar polygon (assumed without
loss of generality to lie in the plane x3 = 0) or d = 3. Suppose also that χτ is an affine map.
Then the Jacobian Jτ can be identified with a d×d constant matrix and it is well-known (e.g.,
[3]) that det Jτ = |τ |/|τ̂ | and that ‖J−1

τ ‖2 ≤ hτ̂ρ
−1
τ , from which the estimates (2.1a,b) follow.

Proceeding to the case when Ω is a surface we have:

Example 2.4 Suppose d = 2 and let Ω be the surface of a polyhedron. Let τ be a triangle
with vertices x1,x2,x3 ∈ R

3 and choose χτ to be the affine map: χτ (x̂) = x1 + x̂1a + x̂2b ,
where a = x2 − x1, b = x3 − x1. Then

JT
τ Jτ =

[
|a|2 aTb
aTb |b|2

]
, det JT

τ Jτ = |a × b|2 = 4|τ |2 , (2.2)

from which (2.1a) follows. If we denote the eigenvalues of JT
τ Jτ by 0 < λ− < λ+, then we can

easily obtain the relations λ+ ≤ λ− + λ+ = |a|2 + |b|2 ≤ 2h2
τ and λ−λ+ = 4|τ |2 which imply

(2.1b).
Finite elements on curved surfaces can similarly be shown to satisfy Assumption 2.2, for

example when the map χτ is sufficiently close to affine.
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In many applications quadilateral or hexahedral elements are important. Consider, for
example, quadrilateral elements τ obtained by mapping from the unit element κ̂2 = (0, 1)2. If
the map is affine, then the estimates for (2.1a,b) obtained in Example 2.4 carry over verbatim.
However only parallelograms can be obtained by applying affine maps to κ̂2. More general
quadrilaterals can be obtained using bilinear maps and it turns out that, under quite moderate
assumptions, (2.1a,b) still hold. Since there is no obvious reference for this result we state
and prove it here as a proposition.

Consider any quadrilateral element τ . A parallelogram π (considered as an open subset of
R

2) will be called an inscribed parallelogram for τ if π ⊂ τ and if two adjacent edges of π are
identical with two adjacent edges of τ . It is easy to show that any convex quadrilateral τ has
at least one inscribed parallelogram.

Proposition 2.5 Let τ be a convex planar quadrilateral obtained by applying a bilinear map-
ping to κ̂2. Let π be any inscribed parallelogram for τ . Then the estimates (2.1a,b) hold
uniformly in x̂ ∈ τ̂ with D, E depending continuously on the ratio r := |π| / |τ | ∈ (0, 1] .

Remark. It follows that if the ratio |π| / |τ | is bounded below by some constant γ > 0 say,
for all elements τ as the mesh is refined, then (2.1a,b) hold (with D and E dependent on γ).
There are obvious degenerate elements which satisfy this, for example any parallelograms (no
matter how small the smallest interior angles are) satisfy it. Similarly “moderately” distorted
parallelograms also satisfy it.

Proof. We assume that τ has vertices x0, x0 +a, x0 +b, x0 +a+b+c and that the inscribed
parallelogram π has vertices x0, x0 + a, x0 + b, x0 + a + b. Without loss of generality, we
may assume that |a| ≤ |b| (see Figure 1 in which we put x0 at 0 for convenience).

a+b

a+b+c

a

0 b

Rτ

π

a+b+2c

Figure 1: Quadrilateral τ (with x0 := 0), parallelogram π and bounding rectangle R

For this proof only, we introduce the notation A - B to mean that A/B is bounded above
by a constant which depends continuously on r ∈ (0, 1], and we attach the obvious analogous
meanings to % and w.

a) Elementary trigonometry shows that |c| - |b| and
∣∣P⊥c

∣∣ -
∣∣P⊥a

∣∣ , where P⊥ denotes
the projection orthogonal to b.

b) Now let R be the smallest rectangle containing π, τ , and the shifted vertices {x0 + a +
c, x0+b+c, x0+a+b+2c} (see Figure 1). The length of R is bounded by - |b|+2 |c| - |b|
and the height of R is bounded by -

∣∣P⊥a
∣∣ + 2

∣∣P⊥c
∣∣ -

∣∣P⊥a
∣∣, with both estimates making

use of part a). Hence we have

|τ | w |π| = |b|
∣∣P⊥a

∣∣ w |R| .
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c) The bilinear mapping from κ̂2 to τ may be written χτ (x̂) = x0 + x̂1a + x̂2b + x̂1x̂2c.
With Jτ (x̂) denoting its Jacobian, it can easily be seen that JT

τ (x̂)Jτ (x̂) has the form (2.2)
with a,b replaced by a′(x̂) := a+x̂2c, b′ := b+x̂1c. Hence, det JT

τ (x̂)Jτ (x̂) = 4|π(x̂)|2, where
π(x̂) is the parallelogram with vertices x0, x0 + a′(x̂), x0 + b′(x̂), x0 + a′(x̂) + b′(x̂). Since
π(x̂) ⊂ R for all 0 ≤ x̂1, x̂2 ≤ 1, we can employ part b) to obtain (det JT

τ Jτ )(x̂) ≤ 4R2 - 4|τ |2,
and the right-hand inequality in (2.1a) follows.

To obtain the left-hand inequality in (2.1a), let (p,q) denote the matrix with columns
p and q. Then note (from Figure 1) that a,b, c satisfy det(c, a) ≥ 0 and det(b, c) ≥ 0.
Hence, |π(x̂)| = det(b′(x̂), a′(x̂)) = det(b, a) + x̂1 det(b, c) + x̂2 det(c, a) + x̂1x̂2 det(c, c) ≥
det(b, a) = |π| % |τ |. Also the proof of (2.1b) is analogous to the proof of (2.1b) in Example
2.4.

Assumption 2.2 describes the quality of the maps which take the unit element τ̂ to each
τ . We also need assumptions on how the size and shape of neighbouring elements in our
mesh may vary. Here we impose only very weak local conditions which require the meshes to
be neither quasi-uniform nor shape-regular. Throughout the rest of this paper we make the
following assumption.

Assumption 2.6 (Mesh Properties) For some K, L ∈ R
+ and M ∈ N, we assume that,

for all τ, τ ′ ∈ T with τ ∩ τ ′ 6= ∅,

hτ ≤ Khτ ′ , ρτ ≤ Lρτ ′ , (2.3a)

max
p∈N

#{τ ∈ T : xp ∈ τ} ≤ M . (2.3b)

Note that condition (2.3a) requires that hτ and ρτ do not vary too rapidly between neigh-
bouring elements. This allows elements with large aspect ratio, provided their immediate
neighbours have a comparable aspect ratio.

Example 2.7 Shape-regular meshes are easily shown to satisfy Assumption 2.6 with moderate
K, L, M . Also, meshes which are anisotropically graded towards an edge typically lie in this
class. A classical example of these arises in the approximation of boundary integral formula-
tions of screen problems for elliptic PDEs, where the screen is a polygon. Near an edge, but
away from the corners, the solution typically is badly behaved only in the direction orthogonal
to the edge and efficient approximations require meshes which are anisotropically graded.

For example, for the square screen [0, 1]× [0, 1], a typical tensor product anisotropic mesh
would be: xi,j = (ti, tj), where ti = (i/n)g/2 and t2n−i = 1 − (i/n)g/2 for i = 0, . . . , n, for
some grading exponent g ≥ 1. (For example, see [19], [20], [6], [10].) An illustration of such
a graded mesh is given in Figure 2. In this case the elements become very long and thin near
smooth parts of edges. In the hp version of the finite element method similar meshes but with
more extreme grading may be used (e.g. [23]) and these also satisfy Assumption 2.6.

We denote the class of meshes which satisfy Assumptions 2.2 and 2.6 as MD,E,K,L,M .
From now on, if A(T ) and B(T ) are two mesh-dependent quantities, then the inequality
A(T ) . B(T ) will mean that there is a constant C independent of T ∈ MD,E,K,L,M , such
that A(T ) ≤ CB(T ). (The class of meshes MD,E,K,L,M depends on D, E, K, L, M , and we
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Figure 2: Illustration of a graded mesh. Some elements become very long and thin as, e.g., the
shaded one in the figure. We have chosen here a smaller grading exponent g<5 for illustration
purpose only.

do not claim that C is independent of D, E, K, L, M .) Also the notation A(T ) ∼ B(T ) will
mean that A(T ) . B(T ) and B(T ) . A(T ).

Now we introduce finite element spaces on the mesh T .

Definition 2.8 (Finite Element Spaces) For m ≥ 0 and τ̂ ∈ {σ̂d, κ̂d}, we define

P
m(τ̂ ) =

{
polynomials of total degree ≤ m on τ̂ if τ̂ = σ̂d,
polynomials of coordinate degree ≤ m on τ̂ if τ̂ = κ̂d .

Then we define

Sm
0 (T ) = {u ∈ L∞(Ω) : u ◦ χτ ∈ P

m(τ̂ ), τ ∈ T } , for m ≥ 0 .

Sm
1 (T ) = {u ∈ C0(Ω) : u ◦ χτ ∈ P

m(τ̂), τ ∈ T } for m ≥ 1.

We finish this section with a generalisation of a standard scaling argument which is used
several times in later proofs.

Proposition 2.9 Let τ ∈ T and let t̂ be any simplex which is contained in the associated unit
element τ̂ ∈ R

d. Let P̂ denote any d-variate polynomial on t̂ and define t = χτ (t̂), P = P̂ ◦χ−1
τ .

Then for all 0 ≤ s ≤ 1,
‖P‖Hs(t) . ρ−s

t̂
ρ−s

τ ‖P‖L2(t) . (2.4)

The hidden constant of proportionality in (2.4) depends on P̂ only through its degree and is
independent of t̂.
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Proof. The proof is a refinement of standard scaling arguments (e.g., [3]).
Consider first the case d = 3. Then Ω ⊂ R

3 is a bounded Euclidean domain and by the
chain rule we have ∇̂P̂ (x̂) = Jτ (x̂)T (∇P )(χτ(x̂)), where ∇̂ denotes the gradient with respect
to x̂ ∈ τ̂ and ∇ denotes gradient with respect to x ∈ τ . By (2.1a), JT

τ Jτ is invertible and

|P |2H1(t) =

∫

t̂

(∇̂P̂ )T (JT
τ Jτ )

−1(∇̂P̂ )gτ , (2.5)

where | · |H1(t) denotes the usual seminorm. Using (2.1b) we get

|P |2H1(t) . ρ−2
τ

∫

t̂

|∇̂P̂ |2gτ . (2.6)

Since t̂ is a simplex, we can also introduce an affine map ν : σ̂3 → t̂, introduce a new function
P̂ ◦ ν and repeat the previous argument, using also Example 2.3 to obtain:

|P |2H1(t) . ρ−2
τ ρ−2

t̂

∫

σ̂3

|∇̃(P̂ ◦ ν)|2ggτ , (2.7)

where g is the Gram determinant for ν and ∇̃ denotes the gradient with respect to x̃ := ν−1(x̂).
Then, since P̂ ◦ ν is a polynomial of the same degree as P̂ , by equivalence of norms on finite-
dimensional spaces there follows

|P |2H1(t) . ρ−2
τ ρ−2

t̂

∫

σ̂3

|P̂ ◦ ν|2ggτ = ρ−2
τ ρ−2

τ̂ ‖P‖2
L2(t) . (2.8)

(Here the hidden constant of proportionality depends on the degree of P̂ .) This proves the
result for s = 1. The intermediate values of s are obtained by interpolation.

Turn now to the case d = 2. When Ω is a bounded 2-dimensional Euclidean domain, the
proof is entirely analogous to that given above. Now consider the case when Ω is a piecewise
smooth Lipschitz surface in R

3. Since χτ is assumed a smooth mapping, the element τ consists
of a smooth portion of Ω and can be written τ = η(τ̃) where τ̃ ⊂ R

2 is a planar, curvilinear
element lying in one of the charts which determine Ω and η is a smooth bijective map with
smooth inverse. We consider η as the transformation of the surface metric to a planar metric
which is independent of the size of τ . We may write the mapping χτ as the composition
χτ = η ◦ χτ̃ , where χτ̃ is now a scaling from the unit element τ̂ to τ̃ . Introduce the set
t̃ := η−1 (t) ⊂ τ̃ and the function P̃ := P ◦ η on τ̃ . The above result on two-dimensional
Euclidean domains shows

‖P̃‖Hs(t̃) . ρ−s
t̂

ρ−s
τ̃ ‖P̃‖L2(t̃).

Since the constants in ρτ̃ ∼ ρτ only depend on the mapping η, and since we also have

‖P̃‖Hs(t̃) ∼ ‖P‖Hs(t), ‖P̃‖L2(t̃) ∼ ‖P‖L2(t) ,

the result follows.
The argument in Proposition 2.9 can be extended to general positive s when χτ is simple

enough, as the following extension shows.

Corollary 2.10 Let the assumptions of Proposition 2.9 hold and suppose in addition that χτ

is an affine map. Then (2.4) holds uniformly for all s in any compact subset of (0,∞).
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Proof. Let α be any multiindex with |α| = k > 1. Then, repeating the argument by which we
derived (2.7) from (2.5), we obtain

∥∥∥∥
∂αP

∂xα

∥∥∥∥
2

L2(t)

≤
∣∣∣∣
∂βP

∂xβ

∣∣∣∣
2

H1(t)

. ρ−2
τ ρ−2

t̂

∫

σ̂3

|∇̃(Q̂β ◦ ν)|2ggτ .

where Q̂β(x̂) = (∂βP/∂xβ)(χτ (x̂)) , x̂ ∈ τ̂ and β is a multiindex of order |β| = k − 1.

Then, since both χτ and ν are affine, Q̂β ◦ ν is still a polynomial of degree no more than
the degree of P . Thus the equivalence of norms argument which was used to derive (2.8) can
be applied again to obtain

∥∥∥∥
∂αP

∂xα

∥∥∥∥
2

L2(t)

. ρ−2
τ ρ−2

τ̂ sup
|β|=k−1

∥∥∥∥
∂βP

∂xβ

∥∥∥∥
2

L2(t)

.

The required result (2.4) for any integer s ≥ 1 follows by iterating this, with the intermediate
values of s being obtained by interpolation.

This generalises the argument of Proposition 2.9 when τ is a subset of a Euclidean domain
in R

2 or R
3. When τ is a surface element, the generalisation of the Proposition is trivial, since

the assumption that χτ is affine forces τ to be a planar and the result follows from the R
2

case.

3 Inverse Estimates

In this section we prove our inverse estimates, which were motivated in the Introduction (see
(1.3)). To define the scaling function ρ, recall the parameters ρτ introduced in Definition 2.1.
From these we construct a continuous mesh function ρ ∈ S1

1 on Ω as follows.

Definition 3.1 (Mesh Function) For each p ∈ N , set ρp = max{ρτ : xp ∈ τ}. The mesh
function ρ is the unique function in S1

1 (T ) such that ρ(xp) = ρp, for each p ∈ N .

Clearly ρ is a positive, continuous function on Ω and, by Assumption 2.6, it follows that
ρ(x) ∼ ρτ for x ∈ τ , and all τ ∈ T . The main results of this section are Theorems 3.2, 3.4 and
3.6. The first two of these provide inverse estimates in positive Sobolev norms for functions
u ∈ Sm

i (T ) with continuity index i = 1, 0 respectively. The third theorem provides inverse
estimates in negative norms.

Theorem 3.2 Let 0 ≤ s ≤ 1 and −∞ < α < α < ∞. Then

‖ραu‖Hs(Ω) . ‖ρα−su‖L2(Ω) ,

uniformly in α ∈ [α, α], u ∈ Sm
1 (T ).

Remark 3.3 Since Sm
1 (T ) ⊂ Hs(Ω) for all s < 3/2, it may be expected that the range of

Sobolev indices for which Theorem 3.2 holds may be extended. Such an extension has been
obtained in [4] for shape-regular meshes at the expense of working in Besov norms. We have
avoided such extensions here in order to simplify the present paper.
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Proof. The proof is a generalisation of [4, Theorem 4.1]. First write

∇(ραu) = αρα−1u∇ρ + ρα∇u .

Using this, Assumption 2.6 and Proposition 2.9, we have

‖∇(ραu)‖2
L2(τ) . ‖ρα−1u‖2

L∞(τ)‖∇ρ‖2
L2(τ) + ‖ρα∇u‖2

L2(τ)

. ρ2α−4
τ ‖u‖2

L∞(τ)‖ρ‖2
L2(τ) + ρ2α−2

τ ‖u‖2
L2(τ)

. ρ2α−2
τ ‖u‖2

L∞(τ)|τ | + ρ2α−2
τ ‖u‖2

L2(τ).

Now a simple scaling argument shows that

‖u‖2
L∞(τ)|τ | ∼ ‖u‖2

L2(τ) uniformly in u ∈ Sm
i (T ) , i = 0, 1. (3.1)

Hence
‖∇(ραu)‖2

L2(τ) . ρ2α−2
τ ‖u‖2

L2(τ) ∼ ‖ρα−1u‖2
L2(τ)

and the proof for s = 1 follows by summation over τ ∈ T . The proof for s ∈ [0, 1] follows by
interpolation.

Theorem 3.4 Let 0 ≤ s < 1/2 and −∞ < α < α < ∞. Then

‖ραu‖Hs(Ω) . ‖ρα−su‖L2(Ω) ,

uniformly in α ∈ [α, α], u ∈ Sm
0 (T ).

Proof. We give the proof for d = 2. It is a generalisation of [4, Theorem 4.2]. (The proof for
d = 3 follows similar lines.)

Firstly, it follows from a result of B. Faermann [7, Lemma 3.1], that the fractional order
Sobolev norm ‖ · ‖Hs(Ω) admits an estimate in terms of local norms of the form

‖ραu‖2
Hs(Ω) .

∑

τ∈T





ρ2(α−s)
τ ‖u‖2

L2(τ) +
∑

τ ′∈T
τ ′∩τ 6=∅

∫

τ

∫

τ ′

|(ραu)(x) − (ραu)(y)|2
|x − y|2+2s

dx dy





. (3.2)

(Note that in [7] the estimate (3.2) is proved in a slightly different setting, where meshes on a
surface Γ are obtained by mappings of triangulations of the surface of a nearby polyhedron.
However it is easy to check that (3.2) still holds true in the more general setting of this paper.)
Because of the local quasiuniformity (Assumption 2.6), the proof is finished, provided we can
show ∑

τ∈T

∑

τ ′∈T
τ ′∩τ 6=∅

∫

τ

∫

τ ′

|(ραu)(x) − (ραu)(y)|2
|x − y|2+2s

dx dy .
∑

τ∈T

ρ2(α−s)
τ ‖u‖2

L2(τ) . (3.3)

To prove this, we decompose the left-hand side of (3.3) as

∑

τ∈T

∑

τ ′∈T \{τ}

τ ′∩τ 6=∅

∫

τ

∫

τ ′

|(ραu)(x) − (ραu)(y)|2
|x − y|2+2s

dx dy +
∑

τ∈T

∫

τ

∫

τ

|(ραu)(x) − (ραu)(y)|2
|x − y|2+2s

dx dy .

(3.4)
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By definition of the Aronszajn-Slobodeckij norm on Hs (τ) (see, e.g., [7]) and by using Propo-
sition 2.9, the second term in (3.4) may be bounded by

∑

τ∈T

‖ραu‖2
Hs(τ) .

∑

τ∈T

ρ2(α−s)
τ ‖u‖2

L2(τ) . (3.5)

Finally, following the proof of [4, Theorem 4.2], the first term in (3.4) may be bounded by

∑

τ∈T

∑

τ ′∈T \{τ}

τ ′∩τ 6=∅

{
‖ραu‖2

L∞(τ) + ‖ραu‖2
L∞(τ ′)

}
Jτ,τ ′ , where Jτ,τ ′ =

∫

τ

∫

τ ′

|x−y|−2−2s dx dy . (3.6)

The proof may be completed by showing that, for all τ 6= τ ′ with τ ∩ τ ′ 6= ∅,

Jτ,τ ′ . min
{
ρ−2s

τ |τ |, ρ−2s
τ ′ |τ ′|

}
. (3.7)

Inserting this into the left-hand side of (3.6) and using again Assumption 2.6 shows that the
first term of (3.4) may be bounded by a constant times

∑
τ∈T ‖u‖2

L∞(τ) |τ | ρ2α−2s
τ . Using (3.1),

this can be bounded analogously to (3.5). Thus the proof is complete once we establish (3.7).
The estimate (3.7) follows from the proof of Theorem 4.2 in [4] in the case when τ and τ ′

are planar triangular elements. In this paper we allow the more general setting where τ and
τ ′ can be curved surface elements and the proof in needs to be extended [4] slightly.

First observe that since τ and τ ′ are smooth subsurfaces of Ω (itself a piecewise smooth
Lipschitz surface), τ ∪ τ ′ may be parametrised by a bi-Lipschitz map η : τ̃ ∪ τ̃ ′ :−→ τ ∪ τ ′,
where τ̃ = η−1(τ), τ̃ ′ = η−1(τ ′) and η is independent of the mesh T . Then

Jτ,τ ′ .

∫

τ̃

∫

τ̃ ′

|x̃ − ỹ|−2−2s dx̃ dỹ .

Now, proceeding as in the proof of [4, Theorem 4.2], it is easy to deduce from this that
Jτ,τ ′ .

∫
τ̃
dist(ỹ, ∂τ̃ )−2s dỹ . If we now define χ̃τ = η−1 ◦ χτ , and let J̃τ denote the Jacobian

of this map, it is easy to deduce (using (2.1a) and (2.1b)) that estimates (2.1a) and (2.1b)
still hold when Jτ is replaced by J̃τ . Hence, when ỹ = χ̃τ (ŷ), it follows that dist(ỹ, ∂τ̃ ) &

ρτdist(ŷ, ∂τ̂ ). Hence on using (2.1a) and (2.1b) for J̃τ , there follows

Jτ,τ ′ .

{∫

τ̂

dist(ŷ, ∂τ̂ )−2s dŷ

}
ρ−2s

τ |τ | . ρ−2s
τ |τ |.

Since τ and τ ′ are interchangeable, (3.7) follows.

The final theorem in this section (Theorem 3.6) provides estimates in negative Sobolev
norms for finite element functions. Before we prove this, we require the following technical
lemma.

Lemma 3.5 Let τ̂ and P
m(τ̂) be as in Definition 2.8. Then for each integer m ≥ 0, there

exists δ = δ(m) ∈ (0, 1) with the following property:
For each û ∈ P

m(τ̂ ), there exists a simplex t̂ ⊂ τ̂ (which may depend on u and m), such
that

ρt̂ ≥ δ and inf
x̂∈t̂

|û(x̂)| ≥ δ‖û‖L∞(τ̂) , (3.8)

where ρt̂ is as defined in Definition 2.1.
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Proof. By equivalence of norms on finite-dimensional spaces, there exists γ = γ(m) > 0 such
that, for all û ∈ P

m(τ̂ ),

‖∇̂û‖L∞(τ̂ ) ≤ γ‖û‖L∞(τ̂ ) , (3.9)

where ∇̂ denotes the gradient with respect to x̂. Now, by choosing δ0 = δ0(m) such that
0 < δ0 ≤ (1 + γ)−1 < 1, it follows that

0 < δ0 ≤ (1 + ‖∇̂û‖L∞(τ̂)/‖û‖L∞(τ̂))
−1 =

‖û‖L∞(τ̂ )

‖∇̂û‖L∞(τ̂) + ‖û‖L∞(τ̂)

(3.10)

for all û ∈ P
m(τ̂).

For any x̂ ∈ R
d and ρ > 0, let Bρ(x̂) denote the open ball centred at x̂ with radius ρ.

We shall establish the statement: For all û ∈ P
m(τ̂), there exists ρ ≥ δ0 and x̂∗ ∈ τ̂ (both of

which may depend on u and m), such that

inf
x̂∈Bρ(x̂∗)∩τ̂

|û(x̂)| ≥ δ0‖û‖L∞(τ̂) . (3.11)

Then, with a suitable choice of α ∈ (0, 1), (depending only on the unit element τ̂ ), there is
always a simplex t̂ ⊂ Bρ(x̂

∗) ∩ τ̂ with ρt̂ ≥ αδ0. The required result follows with δ = αδ0.

To establish (3.11), consider any û ∈ P
m(τ̂). Suppose that ‖∇̂û‖L∞(τ̂ ) 6= 0. Then

‖û‖L∞(τ̂) 6= 0 and we can choose ρ = ρ(û, m) > 0 by setting

ρ = (1 − δ0)‖û‖L∞(τ̂)/‖∇̂û‖L∞(τ̂) . (3.12)

By (3.10), we then have δ0 ≤ ρ. Moreover, if we now choose any x̂∗ ∈ τ̂ such that

|û(x̂∗)| = ‖û‖L∞(τ̂) ,

then, for any x̂ ∈ Bρ(x̂
∗) ∩ τ̂ , we have

|û(x̂) − û(x̂∗)| ≤ ‖∇̂û‖L∞(τ̂ )|x̂ − x̂∗| < ‖∇̂û‖L∞(τ̂)ρ = (1 − δ0)‖û‖L∞(τ̂ ).

This implies that |û(x̂)| ≥ |û(x̂∗)|−|û(x̂)−û(x̂∗)| > δ0‖û‖L∞(τ̂). This establishes the statement

(3.11) when ‖∇̂û‖L∞(τ̂ ) 6= 0. On the other hand, if ‖∇̂û‖L∞(τ̂) = 0, then û is constant on τ̂ ,

and (3.11) holds trivially with ρ = δ0 and any x̂∗ ∈ τ̂ .

Theorem 3.6 Let i ∈ {0, 1}, m ≥ i, 0 ≤ s ≤ 1 and −∞ < α < α < ∞. Then the inequality

‖ρs+αu‖L2(Ω) . ‖ραu‖H−s(Ω) , (3.13)

holds uniformly in u ∈ Sm
i (T ) and α ∈ [α, α]. If χτ is affine for all τ then (3.13) holds for

all 0 ≤ s ≤ k, where k is as described in the second paragraph of §2.

Proof. The result is clear for s = 0. Throughout the proof we make use of the inequality (2.4)
which we assume holds for all 0 ≤ s ≤ k. For k > 1 the restriction that χτ should be affine is
required (see Corollary 2.10).

Suppose u ∈ Sm
i (T ). The case u ≡ 0 is trivial, so from now on we assume that u 6≡ 0.

Then, for any w ∈ Hk(Ω), we have, by definition,

‖ραu‖H−k(Ω) ≥
|(ραu, w)|
‖w‖Hk(Ω)

.
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We shall construct w ∈ Hk(Ω) such that

|(ραu, w)| & ‖ρk+αu‖2
L2(Ω) (3.14)

and
‖w‖Hk(Ω) . ‖ρk+αu‖L2(Ω) , (3.15)

from which the result follows immediately.
The construction of w is a generalisation of the argument used to prove [4, Theorem 4.7].

For any τ ∈ T , we have u ◦ χτ ∈ P
m(τ̂), and by Lemma 3.5, there exists a simplex t̂(τ) ⊆ τ̂

such that:

ρt̂(τ) & 1 and inf
x̂∈t̂(τ)

|u ◦ χτ (x̂)| ≥ δ‖u ◦ χτ‖L∞(τ̂) & ‖u ◦ χτ‖L∞(τ̂ ) . (3.16)

(Recall that the constant δ in Lemma 3.5 was independent of u, hence δ & 1 .) It is clear from
this that u ◦ χτ does not change sign on t̂(τ) and that

|t̂(τ)| ∼ 1 . (3.17)

Using the Bernstein representation of polynomials (as described, for example in [4, §4.3]),
we can construct a non-negative function P̂t̂(τ) in Hk

0 (τ̂ ) such that supp P̂t̂(τ) = t̂(τ), P̂t̂(τ) is a

polynomial on t̂(τ) and such that

C2|t̂(τ)|1/p ≥ ‖P̂t̂(τ)‖Lp(t̂(τ)) ≥ C1|t̂(τ)|1/p , (3.18)

with C1, C2 independent of p and of t̂(τ). (This is done by constructing a positive-valued
polynomial on t̂(τ) which vanishes with sufficiently high order on the boundary of t̂(τ).)
Combining this with (3.17), we have

∫

t̂(τ)

P̂t̂(τ) ∼ |t̂(τ)| ∼ 1 . (3.19)

Now set t(τ) = χτ (t̂(τ)) ⊆ τ and define a corresponding non-negative function Pt(τ) ∈
Hk(Ω) by setting Pt(τ) = P̂t̂(τ) ◦ χ−1

τ on τ and Pt(τ) = 0 on Ω\τ . It follows that

supp Pt(τ) = t(τ) and

∫

t(τ)

Pt(τ) ∼ |τ | . (3.20)

(The proof of the second relation makes use of (2.1a) and (3.19).)
For each τ ∈ T , we introduce scalars

bτ = ρk+α
τ sign(u|t(τ)) inf

x∈t(τ)
|u(x)| , (3.21)

and we define w ∈ Hk(Ω) by

w =
∑

τ∈T

bτρ
k
τPt(τ) . (3.22)

Then, using (3.22), (3.20), we obtain

(ραu, w) =
∑

τ∈T

∫

t(τ)

(ρτ/ρ)k
{
ρk+αbτu

}
Pt(τ) .
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By (3.21), (2.3a) and the non-negativity of Pt(τ), we have,

|(ραu, w)| &
∑

τ∈T

ρ2(k+α)
τ

{
inf

x∈t(τ)
|u(x)|

}2 ∫

t(τ)

Pt(τ) .

Then, by (3.16) and (3.20)

|(ραu, w)| &
∑

τ∈T

ρ2(k+α)
τ ‖u‖2

L∞(τ)|τ | ,

which, using (3.1) and (2.3a), readily yields (3.14).
To obtain (3.15), we first obtain the estimate

‖w‖2
Hk(Ω) =

∑

τ∈T

‖w‖2
Hk(τ) ≤

∑

τ∈T

ρ2k
τ |bτ |2‖Pt(τ)‖2

Hk(t(τ)) .
∑

τ∈T

|bτ |2‖Pt(τ)‖2
L2(t(τ)) , (3.23)

where the final inequality follows from Proposition 2.9 (or Corollary 2.10) and (3.16). Since

∥∥Pt(τ)

∥∥2

L2(t(τ))
=

∫

t̂(τ)

∣∣∣P̂t̂(τ)

∣∣∣
2

gτ ∼ |τ |
∫

t̂(τ)

∣∣∣P̂t̂(τ)

∣∣∣
2

,

(3.18), and then (3.17), yields
∥∥Pt(τ)

∥∥2

L2(t(τ))
∼ |τ |

∣∣t̂ (τ)
∣∣ ∼ |t (τ)|. Using this together with

the definition (3.21) of bτ , we finally obtain

‖w‖2
Hk(Ω) .

∑

τ∈T

|bτ |2|t(τ)| ≤
∑

τ∈T

ρ2(k+α)
τ

{
inf

x∈t(τ)
|u(x)|

}2

|t(τ)| . ‖ρk+αu‖2
L2(Ω), (3.24)

i.e. (3.15).

Remark 3.7 When i = k = 1, a simpler construction for w can be given in terms of a
suitable element in Sm

1 (T ) (see [8] for the case m = 1).

Remark 3.8 Note that the test function w constructed in the proof of Theorem 3.6 vanishes
at the boundaries of elements. Hence if Ω has a boundary then w belongs to the closure of the
space C∞

0 (Ω) with respect to the Hs(Ω) norm (this space is usually denoted H s
0(Ω)). Thus the

result of Theorem 6 also holds if H−s(Ω) was defined as the dual of Hs
0(Ω), although we have

not so defined it here.

4 Galerkin Boundary Element Method

In this section we review briefly the Galerkin boundary element method for elliptic PDEs,
which forms the basis of the applications in the proceeding sections. We consider a 2D surface
Ω in R

3 (i.e. the case d = 2 above). To conform with more usual notation in boundary integral
equations, we rename this surface Γ. To avoid technicalities, we assume that Γ is a closed
bounded Lipschitz surface in R

3, consisting of infinitely smooth (i.e. C∞) pieces joined at
corners and edges. (The extension to the case when Γ is an open surface may require slightly
different Sobolev spaces. Although this extension is possible, in the interests of brevity, we
do not give it here.)
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Consider the general linear integral equation

(λI + K)u(x) := λu(x) +

∫

Γ

k(x,y)u(y)dy = g(x) , x ∈ Γ , (4.1)

for some given scalar λ ∈ R, kernel function k and sufficiently smooth right-hand side g. The
corresponding weak form is

Find u ∈ Vµ such that a(u, v) := ((λI + K)u, v) = (g, v) for all v ∈ Vµ . (4.2)

In general the energy space Vµ is a closed subspace of Hµ (Γ) for some µ ∈ R with norm
induced by Hµ (Γ). (The most usual case is Vµ = Hµ(Γ).) The bracket (·, ·) denotes the
continuous extension of the L2 (Γ) scalar product to the H−µ(Γ) × Hµ(Γ) duality pairing.
Typical examples of kernels k and scalars λ in (4.1) arise in boundary integral reformulations
of the PDE problem:

−∆u + ω2u = 0 , (4.3)

for some (generally complex) parameter ω , subject to Dirichlet or Neumann boundary condi-
tions on Γ (together with appropriate decay conditions at infinity if the computational domain
is unbounded). The fundamental solution for (4.3) is G (z) := e−ω|z|/(4π |z|) and equations
(4.1) appear in three standard formats:

Single layer potential: k(x,y) = G (x − y) , λ = 0 (4.4a)

Double layer potential: k(x,y) = ∂/∂n(y)G (x − y) , λ = ±1/2 (4.4b)

Hypersingular operator: k(x,y) = ∂/∂n(x)∂/∂n(y)G (x − y) , λ = 0. (4.4c)

It is well known that existence, uniqueness and well posedness of the weak problem (4.2)
follows if the following three conditions hold:

Continuity: There exists C > 0 such that

∀u, v ∈ Vµ : |a (u, v)| ≤ C ‖u‖Hµ(Γ) ‖v‖Hµ(Γ) . (4.5.a)

G̊arding’s inequality: There exist a constant γ > 0 and a compact operator T : Vµ →
(Vµ)′ with associated bilinear form t (·, ·) = (T ·, ·) such that

∀u ∈ Vµ : a (u, u) ≥ γ ‖u‖2
Hµ(Γ) − t (u, u) . (4.5.b)

Injectivity:

If u ∈ Vµ, then a(u, v) = 0 ∀v ∈ Vµ implies u = 0. (4.5.c)

Let us recall what is known about the conditions (4.5) for the operators (4.4), in the
special case when ω ∈ [0,∞) in (4.3). (Proofs are given, e.g., in [24].) The single layer
potential (4.4a), satisfies (4.5) in space Vµ = H−1/2 (Γ). The double-layer potential (4.4b) is
known to satisfy (4.5) in Vµ = L2 (Γ) provided Γ is a sufficiently smooth (e.g. Lyapunov)
surface. In this case the generalisation to less smooth surfaces (e.g. polyhedra) is still an open
problem - see [5]. Subject to the further restriction that ω > 0, the hypersingular operator
(4.4c) satisfies (4.5) in Vµ = H1/2 (Γ).
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Remark 4.1 The case of the Laplace operator (ω = 0) is exceptional for the hypersingular
operator, since, in order to ensure (4.5), the energy space Vµ has to be chosen as the quotient
space H1/2 (Γ) /R . In order to reduce technicalities we will always assume in the following
that

Conditions (4.5) hold in Vµ = Hµ (Γ) for some µ ∈ {−1/2, 0, 1/2} .

Under this restriction, our analysis only handles the hypersingular operator for the case ω > 0.
Our analysis could be further extended to the case ω = 0 (or indeed to integral equation
formulations of the Helmholtz equation ((4.3) with ω purely imaginary), but for brevity we do
not do that here.

In the (conforming) Galerkin method we select a space of piecewise polynomial functions
Sm

i (T ) ⊂ Hµ(Γ) and approximate (4.2) by seeking U ∈ Sm
i (T ), such that

a (U, V ) = (g, V ) for all V ∈ Sm
i (T ). (4.6)

Note that when µ < 1/2 we may choose i = 0 or 1, but when µ ≥ 1/2 we are forced to work
in the space of continuous piecewise polynomials (i = 1).

In order to realise (4.6) numerically, we need to introduce a basis for Sm
i (T ). For conve-

nience we shall restrict here to standard nodal bases defined as follows. For each τ ∈ T , we
define (cf. Definition 2.8):

P
m(τ) = {u : τ → R : u ◦ χτ |τ̂ ∈ P

m(τ̂ )} .

In τ̂ , we choose a set of d(m) := (m + 1)(m + 2)/2 nodes {x̂p : p = 1, . . . , d(m)} so that each

û ∈ P̂
m(τ̂) is uniquely determined by its values at the x̂p. (This is the so-called unisolvence

property. Some of the x̂p may lie on the boundary of τ̂ .) The corresponding nodes on τ are
defined by: xp,τ := χτ (x̂p) and there exist corresponding nodal basis functions φp,τ ∈ P

m(τ) ∈
Sm

0 (T ), with the property that

φp,τ(xq,τ ′) = δ(p,τ),(q,τ ′), for p, q = 1, . . . , d(m), τ, τ ′ ∈ T . (4.7)

The functions
{φp,τ : p = 1, . . . d(m), τ ∈ T } (4.8)

then constitute a suitable basis of Sm
0 (T ).

For Sm
1 (T ), we require further that if two elements τ and τ ′ share a common edge e, then,

this edge is parametrised equally from both sides. More precisely, we require that if χ−1
τ (e) = ê

and χ−1
τ ′ (e) = ê′ then there exists an affine mapping γ : ê → ê′ such that χτ and χτ ′ ◦γ coincide

pointwise on ê. We assume that the points xp,τ and xp,τ ′ restricted to e coincide and that
the values of u at these points are sufficient to determine uniquely u|e on e. In this case any
u ∈ Sm

1 (T ) is determined uniquely by its values at the set of global nodes, namely the set
{xp,τ : p = 1, . . . , d(m), τ ∈ T }, where nodes on the boundaries of several elements now
constitute a single “freedom”. Denoting this set more abstractly by {xf : f ∈ F} for some
suitable index set of freedoms F , then our basis for Sm

1 (T ) is

{φf : f ∈ F} , (4.9)

where φf ∈ Sm
1 (T ) is the unique function satisfying

φf(xf ′) = δf,f ′ , for all f, f ′ ∈ F . (4.10)
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Clearly the basis (4.8) may be written in the abstract form (4.9) by allowing the set F
to contain double indices of the form (p, τ). With this notation, (4.10) follows from (4.7).
Moreover, in any case,

supp φf ⊆
⋃

{τ : xf ∈ τ} (4.11)

Note also that, because of the above unisolvence assumption above,

the functional û 7−→





d(m)∑

p=1

|û (x̂p)|2




1/2

is a norm on P
m (τ̂) . (4.12)

Writing U =
∑

f ′∈F Uf ′φf ′ , (4.6) is equivalent to the linear system

∑

f ′∈F

(λMf,f ′ + Kf,f ′)Uf ′ = gf , f ∈ F , (4.13)

where gf = (g, φf), Mf,f ′ = (φf ′, φf) is the mass matrix and

Kf,f ′ =

∫

Γ

∫

Γ

k(x,y)φf ′(y)φf(x)dydx , f, f ′ ∈ F . (4.14)

is the stiffness matrix. The mass matrix M is sparse and can be easily computed. The stiffness
matrix is dense and generally has to be approximated by quadrature. Replacing Kf,f ′ by an
approximation K̃f,f ′ leads to the discrete counterpart of (4.6): Find Ũ ∈ Sm

i (T ), such that

ã(Ũ , V ) = (f, V ) , for all V ∈ Sm
i (T ) , (4.15)

where
ã (V, W ) :=

∑

f∈F

∑

f ′∈F

Wf

(
λMf,f ′ + K̃f,f ′

)
Vf ′ . (4.16)

The stability and convergence of Ũ is provided by the first “Strang Lemma”. A version
for symmetric continuous elliptic bilinear forms is given in [3]; however in this paper we need
an extension to forms satisfying the weaker assumptions (4.5) . Before stating the result, we
first introduce the relevant parameters. A measure for stability of the perturbed bilinear form
is:

rstab := sup
V,W∈Sm

i (T )\{0}

|a (V, W ) − ã (V, W )|
‖V ‖Hµ(Γ) ‖W‖Hµ(Γ)

. (4.17)

The stability of the perturbed problem (4.15) follows if rstab approaches 0 as the mesh is
refined. However the rate of convergence of Ũ may depend on the regularity parameter δ in
the following assumption:

The solution u of (4.2) satisfies u ∈ Hµ+δ (Γ) , for some δ ≥ 0 . (4.18)

Note that conditions (4.5) ensure that (4.18) holds at least for δ = 0.
With the regularity assumption in place, the rate of convergence depends on the quantity:

rconv := sup
V,W∈Sm

i (T )\{0}

|a (V, W ) − ã (V, W )|
‖V ‖Hν(Γ) ‖W‖Hµ(Γ)

. (4.19)

where the parameter ν has to satisfy

µ ≤ ν ≤ µ + δ with Sm
i (T ) ⊂ Hν (Γ) . (4.20)
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Lemma 4.2 Consider the problem (4.2), where a(·, ·) satisfies (4.5). Suppose

rstab → 0 as h := max{hτ : τ ∈ T } → 0. (4.21)

Then, for sufficiently small h, the approximate Galerkin method (4.15) has a unique solution
Ũ ∈ Sm

i (T ). If, in addition, (4.18) holds and ν satisfies (4.20), then we have the error
estimate

‖u − Ũ‖Hµ(Γ) .


 sup

w∈H2ν−µ(Γ)
‖w‖H2ν−µ(Γ)=1

inf
Z∈Sm

i (T )
‖w − Z‖Hν(Γ)


 inf

Z∈Sm
i (T )

‖u − Z‖Hν(Γ) + rconv ‖u‖Hν(Γ) .

(4.22)

The proof of this Lemma can be found in [24, Satz 4.2.11 and Bemerkung 4.2.12].

Remark 4.3 Note that since µ ≤ ν, we always have rconv ≤ rstab, and the best possible
estimate for rconv would be obtained by choosing the maximal ν so that Sm

i (T ) ⊂ Hν(Γ),
provided also that µ ≤ ν ≤ µ+δ. The error estimate (4.22), will then give a rate of convergence
which is the maximum of rconv and the first term on the right-hand side of (4.22).

In the applications in the following two sections we shall study two different stiffness matrix
approximations K̃ to K. Our estimates for the induced perturbation in the bilinear form do
not depend on the underlying energy space and in their simplest possible form imply:

|a (V, W ) − ã (V, W )| ≤ Ch ‖V ‖L2(Γ) ‖W‖L2(Γ) , for all V, W ∈ Sm
i (T ) , (4.23)

where Ch → 0 as h := max {hτ : τ ∈ T } → 0.
Lebesgue-type norms (here L2, but they may be L1) naturally appear on the right-hand

side (see (5.2) and (6.11). In order to use (4.23) to estimate rstab and rconv, the argument
differs according to whether µ ≥ 0 or µ < 0.

If µ ≥ 0, then the estimates

rstab ≤ Ch and rconv ≤ Ch for all µ ≤ ν ≤ µ + δ

are a trivial consequence and cannot be bettered. Thus the rate of convergence provable from
(4.22) is limited to Ch in this case. Thus, for the double layer potential and the hypersingular
operator the simplest choice ν = µ and δ = 0 is optimal in Lemma 4.2, leading to rconv = rstab,
independent of any regularity in the problem.

The situation is different if µ < 0, since then inverse estimates are needed to estimate
the L2− norms on the right-hand side of (4.23) in terms of (negative) energy norms. Since
inverse estimates incur some blow-up as h → ∞ there is the possiblity of obtaining a better
estimate for rconv than for rstab, when some regularity is present. This is the gain from the
use of different measures for stability and consistency.

For the single layer operator, µ = −1/2 and one has to combine inverse inequalities for
V and W with (4.23) in order to estimate rstab. If we assume L2-regularity, i.e., δ = 1/2, we
obtain optimal estimates for rconv by choosing ν = 0 in (4.20). Under moderate assumptions
on the mesh we have

sup
w∈H1/2(Γ)

‖w‖
H1/2(Γ)

=1

inf
Z∈Sm

i (T )
‖w − Z‖L2(Γ) ≤ Ch1/2
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and the error estimate (4.22) takes the form

‖u − Ũ‖H−1/2(Γ) . h1/2 inf
Z∈Sm

i (T )
‖u − Z‖L2(Γ) + rconv ‖u‖L2(Γ) . (4.24)

Since the estimate of rconv only requires one application of inverse estimates (for the function
W ), the term rconv should converge faster to zero than rstab and estimate (4.24) should be
better than the “trivial” one (corresponding to the choice ν = −1/2):

‖u − Ũ‖H−1/2(Γ) . inf
Z∈Sm

i (T )
‖u − Z‖H−1/2(Γ) + rstab ‖u‖H−1/2(Γ) . (4.25)

This is the reason why sharp inverse estimates play a key role in the anaysis. We give
detailed estimates for rstab and rcond in the following sections.

5 Galerkin Method with Quadrature

The effect of quadrature errors in Galerkin methods is analysed in [8], under the assumption
of shape-regular meshes. The following theory generalises these results, allowing also the
treatment of degenerate mesh sequences, provided they satisfy Assumptions 2.2 and 2.6.

Theorem 5.1 Suppose, for all f, f ′ ∈ F the approximate matrix entries K̃f,f ′ are constructed
so that the following error estimate holds:

|Kf,f ′ − K̃f,f ′ | . hχ+1| supp φf | | supp φf ′ | (5.1)

for some χ ≥ 0 where h = max {hτ : τ ∈ T } is the global mesh diameter. Let i ∈ {0, 1}.
Then, for all ν1, ν2 ∈ [−1, k] such that Sm

i (T ) ⊂ Hmax{ν1,ν2}(Γ),

|a(V, W ) − ã(V, W )|
‖V ‖Hν1 (Γ)‖W‖Hν2(Γ)

. hχ+1

√∑

τ∈T

ρ
2ν−

1
τ |τ |

√∑

τ∈T

ρ
2ν−

2
τ |τ | ,

uniformly in V, W ∈ Sm
i (T ) where ν−

i := min{νi, 0}.

Remark 5.2 Theorem 5.1 extends to all ν1, ν2 ∈ [−k, k] under the assumption that χτ is
affine for each τ ∈ T (see Theorem 3.6).

Proof. By the definitions (4.2) and (4.16) of a and ã, we have, for all V, W ∈ Sm
i (T ),

|a(V, W ) − ã(V, W )| ≤
∑

f∈F

∑

f ′∈F

|Vf ||Kf,f ′ − K̃f,f ′ ||Wf ′| ≤ hχ+1

{
∑

f∈F

sf |Vf |
}{

∑

f∈F

sf |Wf |
}

,

(5.2)
where sf = | supp φf |. Now, using the Cauchy-Schwarz inequality, we obtain

∑

f∈F

sf |Vf | =
∑

f∈F

{ρν−

1
f s

1/2
f }{ρ−ν−

1
f s

1/2
f |Vf |} ≤

√∑

f∈F

ρ
2ν−

1
f sf

√∑

f∈F

ρ
−2ν−

1
f sf |Vf |2, (5.3)

where ρf = ρ (xf ) and ρ is the piecewise linear function specified in Definition 3.1.
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Now, using (4.11) and then (2.3a) and (2.3b), we have

∑

f∈F

ρ
2ν−

1
f sf ≤

∑

f∈F

ρ
2ν−

1
f

∑

τ∈T
xf∈τ

|τ | =
∑

τ∈T

∑

f∈F
xf∈τ

ρ
2ν−

1
f |τ | .

∑

τ∈T

ρ2ν−

1
τ |τ | , (5.4)

where the constant of proportionality in the last inequality depends on the polynomial degree
m, but not on the mesh T or on ν1. A similar argument shows

∑

f∈F

ρ
−2ν−

1
f sf |Vf |2 .

∑

τ∈T

ρ−2ν−

1
τ

∑

f∈F
xf∈τ

|Vf |2 |τ | .

Thus, by a simple scaling argument based on (4.12) and making use again of (2.3a), we have

∑

f∈F

ρ
−2ν−

1
f sf |Vf |2 .

∑

τ∈T

∥∥∥ρ−ν−

1 V
∥∥∥

2

L2(τ)
. (5.5)

Combining (5.3) with (5.4) and (5.5) we obtain

∑

p∈F

sp|Vp| .

√∑

τ∈T

ρ
2ν−

1
τ |τ | ‖ρ−ν−

1 V ‖L2(Γ) .

√∑

τ∈T

ρ
2ν−

1
τ |τ | ‖V ‖Hν1(Γ) ,

where the final relation follows from Theorem 3.6 when ν1 ≤ 0 and trivially otherwise. Using
this and an analogous estimate for

∑
p∈F sp|Wp| in (5.2), we obtain the theorem.

Remark 5.3 (i) When K̃f,f ′ is a quadrature approximation of Kf,f ′ , the value of χ in The-
orem 5.1 is determined by the order of precision of the chosen quadrature rule, the distance
between supp φf and supp φf ′ and the blow-up of the kernel. The rule to be used typically
depends on f, f ′ and should be chosen so that the resulting estimates for rstab and rconv are
suitable for the required application of Lemma 4.2. Typically for kernels k(x,y) which blow
up at x = y, the order of precision has to be increased when supp φp and supp φq get closer
together (see, e.g. [8]). Special transformation methods can be used to remove the singularity
when supp φp and supp φq intersect (cf. [14], [24]).

(ii) In [8, 9] we give a number of different quadrature schemes which can achieve (5.1) in
the case when the approximating space is S1

1 (T ). This analysis can be easily extended to the
more general approximating spaces considered here.

A general theory of quadrature approximation of Galerkin methods follows by combining
Lemma 4.2 and Theorem 5.1.

Corollary 5.4 Under the conditions of Theorem 5.1, we have

rstab . hχ+1

{
∑

τ∈T

ρ2µ−+1
τ hτ

}
, rconv . hχ+1

√∑

τ∈T

ρ2µ−+1
τ hτ

√∑

τ∈T

ρ2ν−+1
τ hτ .

Proof. It is a trivial application of Theorem 5.1, with ν1 = µ = ν2 for rstab and ν1 = ν, ν2 = µ
for rconv, and noting that |τ | ∼ ρτhτ .
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When the energy space of the Galerkin method is Hµ, for µ ≥ −1/2, we have 2ν− + 1 ≥
2µ− + 1 ≥ 0, and no negative exponent appears in the estimates in Corollary 5.4. Hence
the degeneracy has no effect on the stability and consistency estimates. This holds for all
the standard boundary integral equations for second-order elliptic PDEs. In particular, for
the three standard integral equations given by (4.4a-c), we obtain Corollary 5.5, the proof of
which follows directly from Corollary 5.4.

Corollary 5.5 For the single layer potential, we have µ = −1/2 and

rstab . hχ+1{
∑

τ∈T

hτ} ≤ hχ+2 {#T } ,

where #T denotes the number of elements in T . With the regularity assumption δ = 1/2 we
may set ν = 0 to obtain

rconv . hχ+1{
∑

τ∈T

hτ}1/2

{
∑

τ∈T

|τ |
}1/2

. hχ+3/2{#T }1/2 .

To see why rconv may be smaller than rstab, assume, as is often the case, that #T . h−2.
Then, rstab . hχ, while rconv . hχ+1/2 and we see the gain of using different quantities for
measuring the stability and consistency.

For the double layer potential and hypersingular operator, we choose δ = 0 and ν = µ to
obtain in this case

rstab = rconv . hχ+1
∑

τ∈T

|τ | . hχ+1.

6 Galerkin Method with Panel Clustering

The panel clustering algorithm provides an alternative representation of the finite-dimensional
Galerkin operator described in §4 , so that multiplication of any vector by the corresponding
matrix representation has complexity O(N logκ N), for some (small) κ ∼ 4, where N (= #F)
is the number of degrees of freedom. This should be compared with the N 2 complexity required
for multiplication by the exact matrix. Approximations of this sort are at the heart of many
fast methods for dense systems. As well as providing a fast multiplication, the approximation
needs also to be sufficiently accurate and, so far, this has only been shown for quasi-uniform
meshes. The purpose of this section is to extend the error analysis to (possibly) degenerate
meshes. Our results show that the panel clustering approximation satisfies stability and
consistency estimates which are independent of mesh degeneracy.

First, we will analyse standard formulations of integral operators in a unified setting. In
the final subsection we consider a special formulation of the hypersingular operator.

6.1 Panel Clustering in the general case

To obtain this result we need to introduce the following concepts. (For a more complete
introduction, see [16, 14, 13, 22, 1, 2]).
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Definition 6.1 (Cluster Tree) A cluster tree T is a tree1 whose vertices (called “clusters”)
consist of unions σ = ∪{τ : τ ∈ T ′} for certain subsets T ′ ⊂ T . These are required to satisfy
the following properties:

(i) Γ = ∪τ∈T τ is the root of T .

(ii) L(T) = T , where L(T) denotes the set of leaves of T.

(iii) If σ ∈ T\L(T), there is an associated set of vertices of T (denoted sons(σ)) which
satisfies:
(a) σ = ∪{σ′ : σ′ ∈ sons(σ)};
(b) If σ′, σ′′ ∈ sons(σ) and σ′ 6= σ′′, then σ′, σ′′ intersect at most by their boundaries.

There are standard procedures for constructing cluster trees (see for example [1, Example
2.1]). Once T has been constructed, a second tree, T2, whose vertices are pairs of clusters
may be uniquely defined by the following prescription.

Definition 6.2 (i) (Γ, Γ) ∈ T2 is the root of T2,
(ii) For b = (σ′, σ′′) ∈ T2, the set of sons is defined as follows:

sons (b) :=





sons (σ′) × sons (σ′′) if σ′, σ′′ ∈ T\L (T) ,
{σ′} × sons (σ′′) if b ∈ L (T) × T\L (T) ,
sons {σ′} × {σ′′} if b ∈ T\L (T) × L (T) ,
∅ if b ∈ L (T) × L (T) .

The key point in the panel clustering algorithm is to select pairs of clusters (σ ′, σ′′) ∈ T2

and to approximate the corresponding integrals by replacing the kernel k in (4.14) with some
suitable separable expansion. This cannot be done on all pairs of clusters, but only on pairs
which are sufficiently far apart relative to their diameters. This leads to the definition of an
admissible pair of clusters:

Definition 6.3 (Admissible Pair) For η > 0, a pair (σ ′, σ′′) ∈ T2 is called η-admissible if

η dist(σ′, σ′′) ≥ max{diam σ′, diam σ′′} .

Using the concept of admissibility, the integration domain Γ × Γ in (4.14) is split into a
near field and a far field, characterised by the subsets Pfar (“far field”) and Pnear (“near field”)
of T2, defined as follows.

First set Pnear = ∅ = Pfar, and then initiate a call divide(Γ, Γ) to the following recursive
procedure:

procedure divide(σ′, σ′′);
begin if (σ′, σ′′) is η-admissible then Pfar := Pfar ∪ {(σ′, σ′′)}

else if (σ′, σ′′) is a leaf then Pnear := Pnear ∪ {(σ′, σ′′)}
else for all (c′, c′′) ∈ sons(σ′, σ′′) do divide(c′, c′′)

end;

1Usually a tree is a graph (V, E) with vertices V and edges E having a certain structure. Here the structure
will be given by the sons of the vertices (defined below), while V is identified with T.
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As a result of this call, P := Pnear ∪ Pfar describes a non-overlapping covering of Γ × Γ in
the sense that ∪{σ′ × σ′′ : (σ′, σ′′) ∈ P} = Γ × Γ and all contributions σ′ × σ′′ in this union
intersect at most by their boundaries.

Now we describe how the matrix K is approximated, using this decomposition. For the
integration in Pfar, we approximate the kernel k(x,y) as follows. Let b = (σ ′, σ′′) ∈ Pfar. For
x ∈ σ′, y ∈ σ′′, we use a separable approximation kb(x,y) ≈ k(x,y) of the form:

kb(x,y) :=
∑

i∈Iσ′ , j∈Iσ′′

κi,j(b)Φ
(i)
σ′ (x)Ψ

(j)
σ′′ (y) (6.1)

with appropriate function systems {Φ(i)
σ′ : i ∈ Iσ′} and {Ψ(j)

σ′′ : j ∈ Iσ′′} and expansion
coefficients κi,j(b).

For kernel functions which are related to linear elliptic PDEs of second order with constant
coefficients and when (6.1) is related to a polynomial approximation of degree ` in each
coordinate direction, one can prove (cf. [15], [24]) the exponential convergence estimate

|k(x,y) − kb(x,y)| ≤ C1
(η′)`

dist(σ′, σ′′)s
, (6.2)

for all x ∈ σ′,y ∈ σ′′ and b = (σ′, σ′′) ∈ Pfar, where η′ = C2η for some constant C2 and s is
the blow-up rate of the kernel

|k (x,y)| ≤ C3 |x − y|−s , x,y ∈ Γ, x 6= y. (6.3)

Note that the constants C1 and C2 are independent of ` while the cardinality of the index sets
Iσ′ , Iσ′′ depends on `. In the following, we assume that (6.2) holds.

The panel-clustering approximation of the bilinear form a in (4.2) acting on the finite-
dimensional space Sm

i (T ) × Sm
i (T ) is given by

ã(V, W ) = ((λI + K̃)V, W ) , with K̃V (x) =

∫

Γ

k̃(x,y)V (y)dy , for V, W ∈ Sm
i (T ) , (6.4)

and

k̃(x,y) :=

{
k(x,y) x ∈ σ′,y ∈ σ′′ with b = (σ′, σ′′) ∈ Pnear ,
kb(x,y) x ∈ σ′,y ∈ σ′′ with b = (σ′, σ′′) ∈ Pfar .

(6.5)

Since we are concerned here only with error estimates for this approximation, we do not
discuss its implementation, but instead refer readers to [16, 14] for details.

Analogously to Theorem 5.1 we then have

Theorem 6.4 Suppose we use the panel clustering algorithm described above to obtain an
approximate bilinear form ã. Then, for all ν1, ν2 ∈ [−1, k] such that Sm

i (T ) ⊂ Hmax{ν1,ν2}(Γ),

|a(V, W ) − ã(V, W )|
‖V ‖Hν1(Γ)‖W‖Hν2(Γ)

. (η′)`+s{#T }max
t,τ∈T

Λs
t,τ (6.6)

uniformly in V, W ∈ Sm
i (T ), where

Λs
t,τ := max{ht, hτ}1−s

{
ρ

ν−

1 +1/2
t ρν−

2 +1/2
τ

}
and ν−

i := min{νi, 0} , i = 1, 2.

The asymptotic constant in (6.6) may depend on m.
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Remark 6.5 As in Theorem 5.1 this result extends to all ν1, ν2 ∈ [−k, k] under the assump-
tion that χτ is affine for each τ ∈ T .

Proof. By (6.4), (6.5) and (6.2),

|a(V, W ) − ã(V, W )| =

∣∣∣∣∣∣

∑

b=(σ′ ,σ′′)∈Pfar

∫

σ′

∫

σ′′

V (x)(k(x,y) − kb(x,y))W (y)dydx

∣∣∣∣∣∣

.
∑

b=(σ′ ,σ′′)∈Pfar

(η′)`

dist (σ′, σ′′)s

∫

σ′

|V |
∫

σ′′

|W |

=
∑

b=(σ′,σ′′)∈Pfar

(η′)`

dist (σ′, σ′′)s

∑

t,τ∈T

t⊂σ′,τ⊂σ′′

∫

t

|V |
∫

τ

|W | . (6.7)

Now if t, τ ∈ T , t ⊂ σ′, τ ⊂ σ′′ and (σ′, σ′′) ∈ Pfar, then (σ′, σ′′) is η-admissible and we have

η dist(t, τ) ≥ η dist(σ′, σ′′) ≥ max{diam σ′, diam σ′′} ≥ max{diam t, diam τ} , (6.8)

which shows that such (t, τ) ∈ T2 are η-admissible. Since the procedure divide implies that
each such η-admissible (t, τ) belongs to a unique far field block (σ ′

t, σ
′′
τ ) ∈ Pfar, we can rewrite

(6.7) as

|a(V, W ) − ã(V, W )| .
∑

t,τ∈T
(t,τ) η−admissible

(η′)`

dist (σ′
t, σ

′′
τ )

s

∫

t

|V |
∫

τ

|W | . (6.9)

Because of the properties of (σ′
t, σ

′′
τ ),

dist(σ′
t, σ

′′
τ ) ≥ η−1 max{diam(σ′

t), diam(σ′′
τ )} ≥ η−1 max{ht, hτ} & (η′)

−1
max{ht, hτ}, (6.10)

where the constant of proportionality is independent of η. Moreover, for any V ∈ Sm
i (T ) and

any τ ∈ T , we have, by Assumption 2.6, for any ν ∈ R,
∫

τ

|V | ∼
∫

τ

ρν−

τ |ρ−ν−

V | ≤
√

|τ |ρ2ν−

τ ‖ρ−ν−

V ‖L2(τ) ,

where ν− = min{ν, 0}. Inserting these last two results into (6.9), we obtain

|a(V, W ) − ã(V, W )|

.
∑

t,τ∈T
(t,τ) η−admissible

(η′)`+s

max {ht, hτ}s

√
|t|ρ2ν−

1
t |τ |ρ2ν−

2
τ ‖ρ−ν−

1 V ‖L2(t)‖ρ−ν−

2 W‖L2(τ)

. (η′)`+s max
t,τ∈T

√
|t|ρ2ν−

1
t |τ |ρ2ν−

2
τ

max {ht, hτ}s

∑

t∈T

‖ρ−ν−

1 V ‖L2(t)

∑

τ∈T

‖ρ−ν−

2 W‖L2(τ) . (6.11)

Now observe that (since here Γ is a two-dimensional manifold), for all t, τ ∈ T ,

√
|t|ρ2ν−

1
t |τ |ρ2ν−

2
τ

max {ht, hτ}s ∼
√

hthτ

max {ht, hτ}s

{
ρ

ν−

1 +1/2
t ρν−

2 +1/2
τ

}
≤ max{ht, hτ}1−s

{
ρ

ν−

1 +1/2
t ρν−

2 +1/2
τ

}
.
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The result follows from (6.11) by first applying the Cauchy-Schwarz inequality and then
Theorem 3.6 – when either ν1 or ν2 is negative – or a trivial inequality otherwise.

In Theorem 6.4, ` and η are parameters which control the accuracy of the panel-clustering
algorithm. (They also control its computational cost.) Using Theorem 6.4 we can see how `
and η should be chosen in order to ensure the required accuracy in the case of various standard
integral equations. The results are in the following corollary.

Corollary 6.6 Under the assumptions of Theorem 6.4, we have

(i) For the single layer potential: rstab . (η′)`+1{#T } ,
(ii) For the double layer potential: rstab . (η′)`+2{#T } ,
(iii) For the hypersingular operator: rstab . (η′)`+3{#T }maxτ∈T {h−1

τ }.
According to Remark 4.3, the choice ν = µ and δ = 0 is optimal for the double layer

potential and the hypersingular operator. In this case rstab = rconv.
If we assume for the single layer potential L2-regularity, i.e., δ = 1/2 in (4.18) we may

choose ν = 0 to obtain
rconv . h1/2(η′)`+1 {#T } .

Proof. Putting ν1 = µ = ν2 in the result of Theorem 6.4, we obtain

rstab . (η′)`+s{#T }max
t,τ∈T

{
max{ht, hτ}1−s{ρtρτ}µ−+1/2

}
, (6.12)

where µ− = min{µ, 0}.
The estimate (i) follows easily since, for the single layer potential, s = 1 and µ = −1/2.
The estimate for rconv in the case δ = 1/2 and ν = 0 follows from (6.6) with s = 1,

ν1 = 0, ν2 = −1/2:

rconv . (η′)`+s{#T }max
t,τ∈T

{
ρ

ν−

1 +1/2
t ρν−

2 +1/2
τ max{ht, hτ}1−s

}

= (η′)`+1{#T }
(

max
t∈T

ρ
1/2
t

)
. h1/2(η′)`+1{#T }.

For the double layer potential (on a polyhedron) we have s = 2 and µ = 0. Then (6.12)
leads to

rstab . (η′)`+2{#T }max
t,τ∈T

{√
ρtρτ max{ht, hτ}−1

}
.

Since max{ht, hτ}−1 ≤ {hthτ}−1/2, and since ρτ ≤ hτ , for all τ ∈ T , the result (ii) follows.
In the hypersingular case s = 3 and µ = 1/2 and (6.12) readily yields

rstab . (η′)`+3{#T }max
t,τ∈T

max{ht, hτ}−1 ,

which yields the required result.

Example 6.7 Let Γ be the surface of the unit cube [0, 1]3 and consider problem (4.2) in the
special case (4.4a): Find u ∈ H−1/2 (Γ) such that

∫

Γ

u (y) v (x)

4π |x − y| dx dy =

∫

Γ

g (x) v (x) dx ∀v ∈ H−1/2 (Γ) ,
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for a given (say smooth) function g on Γ. It is known that the Galerkin discretisation in
S1

0 (T ) on the mesh obtained by applying the mesh in Example 2.7 on each face of Γ, then we
obtain a solution which satisfies the error estimate (cf. [20], [24])

‖u − U‖H−1/2(Γ) ≤ CN−min{g−ε,5}/4,

where 0 < ε < 1 is arbitrary but fixed, N = dimS1
0 (T ), and g denotes the grading exponent.

The choice g > 5 leads to the optimal convergence rate of N−5/4.
For this problem, Corollary 6.6 (i) tells us that provided (η ′)`+1N . N−5/4, then optimal

convergence will follow. Hence, by the trivial estimate (4.25) the Galerkin solution converges
with optimal rate if the expansion order for the panel clustering algorithm is chosen according
to

` =

⌈
9

4

log N

|log η′|

⌉
.

The estimates given in Corollary 6.6 for the single and double layer potentials are clearly
unaffected by any mesh degeneracy. However in the case of the hypersingular operator, a neg-
ative power of the minimum diameter occurs. This is not a severe deficiency, but nevertheless
it can be removed if we reformulate the hypersingular equation using the concept of partial
integration. This we describe in the following final subsection.

6.2 Hypersingular Operator with Partial Integration

The integral of the kernel of the hypersingular operator in (4.4c) does not exist as an im-
proper integral and has to be defined as a finite part integral. Various regularisation methods
for hypersingular integrals exist in the literature and we choose here the method of partial
integration (cf. [18]). As explained in Remark 4.1, we restrict for the hypersingular operator
(cf. (4.4c)) to the case ω > 0 allowing the choice V1/2 = H1/2 (Γ), while the case ω = 0 can
be treated similarly, but with some more technicalities.

The bilinear form a : H1/2(Γ) × H1/2(Γ) → R which is associated with the hypersingular
operator can be written in the form (cf. [18], [24])

a (u, v) =

∫

Γ×Γ

〈−−→
curlΓv (x) ,

−−→
curlΓu (y)

〉
+ ω2 〈n(x), n(y)〉 v(x)u(y)

4π |x − y| dx dy, (6.13)

where the tangential rotation
−−→
curlΓ is defined as follows (cf. [18]). For functions u ∈ H1/2 (Γ)

and surface vector fields having componentwise differentiable extensions ũ and ṽ, respectively,
in H1 (U), where U is some three-dimensional neighbourhood of Γ, we define the tangential
gradient ∇Γu as the restriction of the Euclidean gradient to the surface Γ

∇Γu := (∇ũ)|Γ .

This enables us to introduce the tangential rotation of u as

−−→
curlΓu := −n ×∇Γu.
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Since the energy space for (6.13) is H1/2(Γ) we must use continuous piecewise polynomials
Sm

1 (T ) for its discretisation. To analyse the effect of the approximation of the bilinear form
a (·, ·) by the panel clustering algorithm, the estimate of the quantities

rstab :=
|a (V, W ) − ã (V, W )|
‖V ‖H1/2(Γ) ‖W‖H1/2(Γ)

and rconv := sup
V,W∈Sm

i (T )\{0}

|a (V, W ) − ã (V, W )|
‖V ‖Hν(Γ) ‖W‖H1/2(Γ)

(6.14)

for all V, W ∈ Sm
1 (T ) \ {0} plays the essential rôle. The parameter ν must satisfy (4.20) with

µ = 1/2.
We split the bilinear form a (·, ·) = a1 (·, ·) + a2 (·, ·) in (6.13) according to the sum in the

numerator of the integrand.
To estimate the perturbation in a2, we can employ (6.12) with s = 1 and µ = 1/2 to

obtain, for all ν ≥ 1/2,

r(2)
conv ≤ r

(2)
stab . (η′)`+1{#T }h, (6.15)

where the indices (2) in the left-hand side of (6.15) correspond to the bilinear form a2 (·, ·).
Next, we turn to the estimate for the perturbation error in a1 (·, ·). For simplicity, we

assume that the piecewise smooth Lipschitz surface Γ is actually the surface of a polyhedron

Γ =

q⋃

i=1

Γi where every Γi, 1 ≤ i ≤ q, is planar. (6.16)

As a consequence, the normal n is constant on every panel τ ∈ T and

−−−→
curlΓ Sm

1 (T ) :=
{−−−→

curlΓ u : u ∈ Sm
1 (T )

}
⊂

(
Sm−1

0 (T )
)3

. (6.17)

Theorem 6.8 Let r
(1)
stab, r

(1)
conv be defined as in (6.14) with respect to the bilinear form a1 (·, ·)

as in (6.13) and denote its panel-clustering approximation by ã1 (·, ·). Assume that Γ satisfies
(6.16). Then the stability estimate:

r
(1)
stab . (η′)`+1{#T }

holds uniformly in V, W ∈ Sm
1 (T )\ {0}. The choice ν = 1/2 leads to rconv = rstab.

Assume that the continuous problem has regularity δ = 1/2. In this case, we have

r(1)
conv . h1/2 (η′)

`+1
(#T ) .

Proof. It is well known that the bilinear form a (·, ·) is elliptic and continuous in H1/2 (Γ)
(cf. [18], [24]). In view of the inclusion in (6.17) we may use the inverse inequality from
Theorem 3.4 for s = 1, α = 1/2 and interpolate with the trivial identity ‖ρ1/2V ‖H1(Ω) =
‖ρ1/2V ‖H1(Ω) to obtain

∥∥∥ρ1/2−−−→curlΓ V
∥∥∥

(L2(Γ))3
≤

∥∥ρ1/2V
∥∥

H1(Γ)
. ‖V ‖H1/2(Γ) for all V ∈ Sm

1 .

Hence,
|a1 (V, W ) − ã1 (V, W )|
‖V ‖H1/2(Γ) ‖W‖H1/2(Γ)

.
|a1 (V, W ) − ã1 (V, W )|

‖ρ1/2V c‖L2(Γ) ‖ρ1/2W c‖L2(Γ)

, (6.18)
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where V c :=
−−−→
curlΓ V and W c :=

−−−→
curlΓ W . Now, by repeating the steps in the proof of

Theorem 6.4, we obtain the estimate for a1 − ã1 :

|a1 (V, W ) − ã1 (V, W )| =
∑

b=(σ′,σ′′)∈Pfar

∫

σ′

∫

σ′′

〈V c (x) , W c (y)〉 |k (x,y) − kb (x,y)| dx dy

.
∑

t,τ∈T
(t,τ) η−admissible

(η′)`

dist (σ′
t, σ

′′
τ )

∫

t

|V c|
∫

τ

|W c| . (6.19)

Moreover, for any V c ∈ Sm−1
0 (T ) and any τ ∈ T , we have, by Assumption 2.6,

∫

t

|V c| ∼
∫

t

ρ
−1/2
t

∣∣ρ1/2V c
∣∣ ≤

{
|t| ρ−1

t

}1/2 ∥∥ρ1/2V c
∥∥

L2(t)
. h

1/2
t

∥∥ρ1/2V c
∥∥

L2(t)

Inserting this and (6.10) into (6.19), we obtain

|a1 (V, W ) − ã1 (V, W )| . (η′)
`+1

[
max
τ,t∈T

{
(hthτ )

1/2

max {ht, hτ}

}]
∑

t∈T

∥∥ρ1/2V c
∥∥

L2(t)

∑

τ∈T

∥∥ρ1/2W c
∥∥

L2(τ)
.

(6.20)
Since

√
hthτ ≤ max {ht, hτ}, the term in square brackets in (6.20) is bounded from above by

1 and we obtain by the Cauchy-Schwarz inequality the final estimate

|a1 (V, W ) − ã1 (V, W )| . (η′)
`+1

(#T )
∥∥ρ1/2V c

∥∥
L2(Γ)

∥∥ρ1/2W c
∥∥

L2(Γ)
.

Combining this with (6.18) yields the estimate for r
(1)
stab.

Assume that the problem has regularity δ = 1/2. Repeating the proof for r
(1)
stab but applying

the inverse estimate only for the function W , we obtain

|a1 (V, W ) − ã1 (V, W )| . h1/2 (η′)
`+1

(#T ) ‖V ‖H1(Γ) ‖W‖H1/2(Γ) .

Remark 6.9 Theorem 6.8 along with estimate (6.15) shows that the negative power of h in
Corollary 6.6 (iii) can be avoided by applying the panel clustering algorithm to the kernel in
(6.13) and not to the hypersingular kernel function in its original form (4.4c). In addition, we
gain an additional factor h1/2 in the error estimate by employing the regularity of the solution.
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