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Abstract. We prove the convergence of an adaptive linear finite element method for computing eigenvalues and eigen-
functions of second order symmetric elliptic partial differential operators. The weak form is assumed to yield a bilinear form
which is bounded and coercive in H1. Each step of the adaptive procedure refines elements in which a standard a posteriori
error estimator is large and also refines elements in which the computed eigenfunction has high oscillation. The error analysis
extends the theory of convergence of adaptive methods for linear elliptic source problems to elliptic eigenvalue problems, and in
particular deals with various complications which arise essentially from the nonlinearity of the eigenvalue problem. Because of
this nonlinearity, the convergence result holds under the assumption that the initial finite element mesh is sufficiently fine.
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1. Introduction. In the last decades, mesh adaptivity has been widely used to improve the accuracy of
numerical solutions to many scientific problems. The basic idea is to refine the mesh only where the error is
high, with the aim of achieving an accurate solution using an optimal number of degrees of freedom. There
is a large numerical analysis literature on adaptivity, in particular on reliable and efficient a posteriori error
estimates (e.g. [1]). Recently the question of convergence of adaptive methods has received intensive interest
and a number of convergence results for the adaptive solution of boundary value problems have appeared (e.g.
[9, 22, 23, 8, 7, 28]).

We prove here the convergence of an adaptive linear finite element algorithm for computing eigenvalues
and eigenvectors of scalar symmetric elliptic partial differential operators in bounded polygonal or polyhedral
domains, subject to Dirichlet boundary data. Such problems arise in many applications, e.g. resonance
problems, nuclear reactor criticality and the modelling of photonic band gap materials, to name but three.

Our refinement procedure is based on two locally defined quantities, firstly a standard a posteriori error
estimator and secondly a measure of the variability (or “oscillation”) of the computed eigenfunction. (Measures
of “data oscillation” appear in the theory of adaptivity for boundary value problems, e.g. [22]. In the
eigenvalue problem the computed eigenvalue and eigenfunction on the present mesh plays the role of “data”
for the next iteration of the adaptive procedure.) Our algorithm performs local refinement on all elements
on which the minimum of these two local quantities is sufficiently large. We prove that the adaptive method
converges provided the initial mesh is sufficiently fine. The latter condition, while absent for adaptive methods
for linear symmetric elliptic boundary value problems, commonly appears for nonlinear problems and can be
thought of as a manifestation of the nonlinearity of the eigenvalue problem.

We believe that the present paper is the first contribution to the topic of convergence of adaptive methods
for eigenvalue problems. Since writing this paper substantial improvements in the theory have been made
in [6], where the need to adapt on the oscillations of the eigenvalue is removed and, in addition, the general
convergence of the adaptive scheme to a non-spurious eigenvalue of the continuous problem is established.

The outline of the paper is as follows. In Section 2 we briefly describe the model elliptic eigenvalue
problem and the numerical method and in Section 3 we describe a priori estimates, most of which are classical.
Section 4 describes the a posteriori estimates and the adaptive algorithm. Section 5 proves that proceeding
from one mesh to another ensures error reduction (up to oscillation of the computed eigenfunction) while the
convergence result is presented in Section 6. Numerical experiments illustrating the theory are presented in
Section 7.

2. Eigenvalue problem and numerical method. Throughout, Ω will denote a bounded domain in
R

d (d = 2 or 3). In fact Ω will be assumed to be a polygon (d = 2) or polyhedron (d = 3). We will be
concerned with the problem of finding an eigenvalue λ ∈ R and eigenfunction 0 6= u ∈ H1

0 (Ω) satisfying

a(u, v) := λ b(u, v) , for all v ∈ H1
0 (Ω) , (2.1)
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where, for real valued functions u and v,

a(u, v) =

∫

Ω

∇u(x)TA(x)∇v(x)dx and b(u, v) =

∫

Ω

B(x)u(x)v(x)dx . (2.2)

Here, the matrix-valued function A is required to be uniformly positive definite, i.e.

0 < a ≤ ξTA(x)ξ ≤ a for all ξ ∈ R
d with |ξ| = 1 and all x ∈ Ω. (2.3)

The scalar function B is required to be bounded above and below by positive constants for all x ∈ Ω, i.e.

0 < b ≤ B(x) ≤ b for all x ∈ Ω. (2.4)

We will assume that A and B are both piecewise constant on Ω and that any jumps in A and B are aligned
with the meshes Tn (introduced below), for all n.

Throughout the paper, for any polygonal (polyhedral) subdomain of D ⊂ Ω, and any s ∈ [0, 1], ‖ · ‖s,D

and | · |s,D will denote the standard norm and seminorm in the Sobolev space Hs(D). Also (·, ·)0,D denotes
the L2(D) inner product. We also define the energy norm induced by the bilinear form a:

‖|u ‖|2Ω := a(u, u) for all u ∈ H1
0 (Ω) ,

which, by (2.3), is equivalent to the H1(Ω) seminorm. (The equivalence constant depends on the contrast
a/a, but we are not concerned with this dependence in the present paper.) We also introduce the weighted
L2 norm:

‖u‖2
0,B,Ω = b(u, u) =

∫

Ω

B(x)|u(x)|2 dx .

and note the norm equivalence

√

b‖v‖0,Ω ≤ ‖v‖0,B,Ω ≤
√

b‖v‖0,Ω . (2.5)

Rewriting the eigenvalue problem (2.1) in standard normalised form, we seek (λ, u) ∈ R × H1
0 (Ω) such

that

a(u, v) = λ b(u, v), for all v ∈ H1
0 (Ω)

‖u‖0,B,Ω = 1

}

(2.6)

By the continuity of a and b and the coercivity of a on H1
0 (Ω) it is a standard result that (2.6) has a

countable sequence of non-decreasing positive eigenvalues λj , j = 1, 2, . . . with corresponding eigenfunctions
uj ∈ H1

0 (Ω) [4, 13, 29].
In this paper we will need some additional regularity for the eigenfunctions uj , which will be achieved by

making the following regularity assumption for the elliptic problem induced by a:
Assumption 2.1. We assume that there exists a constant Cell > 0 and s ∈ [0, 1] with the following

property. For f ∈ L2(Ω), if v ∈ H1
0 (Ω) solves the problem a(v, w) = (f, w)0,Ω for all w ∈ H1

0 (Ω), then
‖v‖1+s,Ω ≤ Cell‖f‖0,Ω.

Assumption 2.1 is satisfied with s = 1 when A is constant (or smooth) and Ω is has a smooth boundary
or is a convex polygon. In a range of other practical cases s ∈ (0, 1), for example Ω non-convex (see [5]),
or A having a discontinuity across an interior interface (see [3]). Under Assumption 2.1 it follows that the

eigenfunctions uj of the problem (2.6) satisfy ‖uj‖1+s,Ω ≤ Cellλj

√
b.

To approximate problem (2.6) we use the piecewise linear finite element method. Accordingly, let Tn , n =
1, 2, . . . denote a family of conforming triangular (d = 2) or tetrahedral (d = 3) meshes on Ω. Each mesh
consists of elements denoted τ ∈ Tn. We assume that for each n, Tn+1 is a refinement of Tn. For a typical
element τ of any mesh, its diameter is denoted Hτ and the diameter of its largest inscribed ball is denoted ρτ .
For each n, let Hn denote the piecewise constant mesh function on Ω, whose value on each element τ ∈ Tn is
Hτ and let Hmax

n = maxτ∈Tn
Hτ . Throughout we will assume that the family of meshes Tn is shape regular,

i.e. there exists a constant Creg such that

Hτ ≤ Cregρτ , for all τ ∈ Tn and all n = 1, 2, . . . . (2.7)
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In the later sections of the paper the Tn will be produced by an adaptive process which ensures shape regularity.
We let Vn denote the usual finite dimensional subspace of H1

0 (Ω), consisting of all continuous piecewise
linear functions with respect to the mesh Tn. Then the discrete formulation of problem (2.6) is to seek the
eigenpairs (λn, un) ∈ R × Vn such that

a(un, vn) = λn b(un, vn), for all vn ∈ Vn

‖un‖0,B,Ω = 1 .

}

(2.8)

The problem (2.8) has N = dim Vn positive eigenvalues (counted according to multiplicity) which we
denote in non-decreasing order as λn,1 ≤ λn,2 ≤ . . . ≤ λn,N . It is well-known (see [29, §6.3]) that for any j,
λn,j → λj as Hmax

n → 0 and (by the minimax principle - see e.g. [29, §6.1]) the convergence of the λn,j is
monotone decreasing i.e.

λn,j ≥ λm,j ≥ λj , for all j = 1, . . . , N, and all m ≥ n . (2.9)

Thus it is clear that there exists a separation constant ρ > 0 (depending on the spectrum of (2.6)) with
the following property: If λj = λj+1 = . . . = λj+R−1 is any eigenvalue of (2.6) of multiplicity R ≥ 1, then

λj

|λn,ℓ − λj |
≤ ρ, ℓ 6= j, j + 1, . . . , j + R − 1 , (2.10)

provided Hmax
n is sufficiently small. (Note that for ℓ 6= j, j + 1, . . . j + R − 1, λn,ℓ → λℓ 6= λj .)

The a priori error analysis for our eigenvalue problem is classical (see, e.g. [4], [13] and [29]). In the next
section we briefly recall some of the main known results and also prove a non-classical result (Theorem 3.2)
which is essential to the proof of convergence of our adaptive scheme.

3. A priori analysis. In this section we shall assume that λj is an eigenvalue of (2.6) and λn,j is its
approximation as described above. Let uj and un,j be any corresponding normalised eigenvectors as defined
in (2.6) and (2.8). From these we obtain the important basic identity:

a(uj − un,j , uj − un,j) = a(uj , uj) + a(un,j , un,j) − 2a(uj , un,j)

= λj + λn,j − 2λj b(uj , un,j)

= λn,j − λj + λj (2 − 2b(uj , un,j))

= λn,j − λj + λj b(uj − un,j , uj − un,j) . (3.1)

Using this and (2.9), we obtain

|||uj − un,j |||2Ω = |λj − λn,j | + λj ‖uj − un,j‖2
0,B,Ω . (3.2)

The following theorem investigates the convergence of discrete eigenpairs. Although parts of it are very
well-known, we do not know a suitable reference for all the results given below, so a brief proof is given for
completeness. In the proof we make use of the orthogonal projection Qn of H1

0 (Ω) onto Vn with respect to
the inner product induced by a(·, ·), which has the property:

a(Qnu, vn) = λ b(u, vn) for all vn ∈ Vn, (3.3)

In the main result of this paper we prove convergence for adaptive approximations to eigenvalues and
eigenvectors assuming for simplicity a simple eigenvalue. The following preliminary theorem is stated for a
simple eigenvalue. However this result is known for multiple eigenvalues (see, e.g. [29]). More details are
given in [11].

Theorem 3.1. Let λj be a simple eigenvalue of (2.6), let λn,j be its associated approximation from
solving (2.8) and let uj and un,j be any corresponding normalised eigenvectors. Then for all 1 ≤ j ≤ N ,

(i)

|λj − λn,j | ≤ |||uj − un,j |||2Ω; (3.4)
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(ii) There are constants C1, C2 > 0 and scalars αn,j ∈ {±1} such that

‖uj − αn,jun,j‖0,B,Ω ≤ C1(H
max
n )s ‖|uj − Qnuj ‖|Ω

≤ C1(H
max
n )s ‖|uj − αn,jun,j ‖|Ω , (3.5)

where s is as in Assumption 2.1.
(iii) For sufficiently small Hmax

n there is a constant C2 such that

|||uj − αn,jun,j |||Ω ≤ C2(H
max
n )s . (3.6)

The constants C1, C2 depend on the spectral information λℓ, uℓ, ℓ = 1, . . . , j, the separation constant ρ, the
constants Cell, Creg in Assumption 2.1 and in (2.7) and on the bounds a, a, b, b in (2.3), (2.4).

Proof. The estimate (3.4) follows directly from (3.2). Note that (3.4) holds even if un,j is not close to u,
which may occur due to the non-uniqueness of the eigenvectors.

The proof of (3.5) is obtained by a reworking of the results in [29]. By the symmetry of a and b there
exists a basis {un,ℓ : ℓ = 1, . . . N} of Vn (containing un,j) which is orthonormal with respect to inner product
b, and each un,ℓ is an eigenvector of (2.8) corresponding to eigenvalue λn,ℓ. Then with βn,j := b(Qnuj , un,j),
Parseval’s equality yields

‖Qnuj − βn,jun,j‖2
0,B,Ω =

N
∑

ℓ=1

ℓ 6=j

b(Qnuj , un,ℓ)
2 . (3.7)

Then, since

λn,ℓb(Qnuj , un,ℓ) = a(Qnuj , un,ℓ) = a(uj , un,ℓ) = λjb(uj , un,ℓ) ,

we have (λn,ℓ − λj)b(Qnuj , un,ℓ) = λjb(uj − Qnuj , un,ℓ) , and so

‖Qnuj − βn,jun,j‖2
0,B,Ω =

N
∑

ℓ=1

ℓ 6=j

(

λj

λn,ℓ − λj

)2

b(uj − Qnuj , un,ℓ)
2

≤ ρ2
N

∑

ℓ=1

ℓ 6=j

b(uj − Qnuj , un,ℓ)
2 ≤ ρ2‖uj − Qnuj‖2

0,B,Ω ,

with the last step again by Parseval’s equality. Hence

‖uj − βn,jun,j‖0,B,Ω ≤ (1 + ρ)‖uj − Qnuj‖0,B,Ω . (3.8)

Moreover

‖uj‖0,B,Ω − ‖uj − βn,jun,j‖0,B,Ω ≤ ‖βn,jun,j‖0,B,Ω ≤ ‖uj‖0,B,Ω + ‖uj − βn,jun,j‖0,B,Ω .

Since the uj and the un,j are normalised, this implies

1 − ‖uj − βn,jun,j‖0,B,Ω ≤ |βn,j | ≤ 1 + ‖uj − βn,jun,j‖0,B,Ω

and, combining these with (3.8), we have

||βn,j | − 1| ≤ (1 + ρ)‖uj − Qnuj‖0,B,Ω .

Thus with αn,j := sign(βn,j), we have |βn,j − αn,j | ≤ (1 + ρ)‖uj − Qnuj‖0,B,Ω , and

‖uj − αn,jun,j‖0,B,Ω ≤ 2(1 + ρ)‖uj − Qnuj‖0,B,Ω .

The first inequality in (3.5) now follows from an application of the standard Aubin-Nitsche duality argument,
while the second is just the best approximation of Qn in the energy norm.
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The proof of (3.6) is a slight modification of that given in [29, Theorem 6.2]. The argument consists of
obtaining an O((Hmax

n )2s) estimate for the eigenvalue error |λj − λn,j | and then combining this with (3.2)
and (3.5).

The next theorem is a generalisation to eigenvalue problems of the standard monotone convergence
property for linear symmetric elliptic PDEs, namely that if one enriches the finite dimensional space, then
the error is bound to decrease. This result fails to hold for eigenvalue problems (even for symmetric elliptic
partial differential operators), because of the nonlinearity of such problems. The best that we can do is to
show that if the finite dimensional space is enriched, then the error will not increase very much. This is the
subject of Theorem 3.2.

Theorem 3.2. For any 1 ≤ j ≤ N , there exists a constant q > 1 such that, for m ≥ n, the corresponding
computed eigenpair (λm,j , um,j) satisfies:

‖|uj − αm,jum,j ‖|Ω ≤ q ‖|uj − αn,jun,j ‖|Ω . (3.9)

Proof. From Theorem 3.1 (ii), we obtain

‖uj − αm,jum,j‖0,B,Ω ≤ C1(H
max
m )s ‖|uj − Qmuj ‖|Ω . (3.10)

Since Tm is a refinement of Tn, it follows that Vn ⊂ Vm and so the best approximation property of Qm ensures
that

‖|uj − Qmuj ‖|Ω ≤ ‖|uj − Qnuj ‖|Ω .

Hence from (3.10) and using the fact that Hmax
m ≤ Hmax

n , we have

‖uj − αm,jum,j‖0,B,Ω ≤ C1(H
max
n )s ‖|uj − Qnuj ‖|Ω. (3.11)

Recalling that (3.2) holds for all eigenfunctions, and using (3.11) and then (2.9), we obtain

‖|uj − αm,jum,j ‖|2Ω ≤ |λj − λm,j | + λj‖uj − αm,jum,j‖2
0,B,Ω

≤ |λj − λm,j | + λjC
2
1 (Hmax

n )2s ‖|uj − Qnuj ‖|2Ω
≤ |λj − λn,j | + λjC

2
1 (Hmax

n )2s ‖|uj − Qnuj ‖|2Ω. (3.12)

Hence, from (3.4) we obtain

‖|uj − um,j ‖|2Ω ≤ ‖|uj − un,j ‖|2Ω + λjC
2
1 (Hmax

n )2s ‖|uj − Qnuj ‖|2Ω. (3.13)

But since Qn yields the best approximation from Vn in the energy norm, we have

‖|uj − um,j ‖|2Ω ≤ (1 + λjC
2
1 (Hmax

0 )2s) ‖|uj − un,j ‖|2Ω , (3.14)

which is in the required form.
Remark 3.3. From now on we will be concerned with a true eigenpair (λj , uj) and its computed approx-

imation (λj,n, uj,n) on the mesh Tn . Theorem 3.1 tells us that a priori λn,j is “close” to λj and that the
spaces spanned by uj and un,j are close. From now on we drop the subscript j and we simply write (λ, u) for
the eigenpair of (2.6) (λn, un) for a corresponding eigenpair of (2.8) and the scalar αn,j is abbreviated αn.

4. A posteriori analysis. This section contains our a posteriori error estimator and the definition of
the adaptive algorithm for which convergence will be proved in the following sections.

Recalling the mesh sequence Tn defined above, we let Sn denote the set of all the interior edges (or the
set of interior faces in 3D) of the elements of the mesh Tn. For each S ∈ Sn, we denote by τ1(S) and τ2(S)
the elements sharing S (i.e. τ1(S)∩ τ2(S) = S) and we write Ω(S) = τ1(S)∪ τ2(S). We let ~nS denote the unit
normal vector to S, orientated from τ1(S) to τ2(S). All elements, faces and edges are considered to be closed
sets. Furthermore we denote the diameter of S by HS . Note that by mesh regularity, diam(Ω(S)) ∼ Hτi(S) ,
i = 1, 2.
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Notation 4.1. We write A . B when A/B is bounded by a constant which may depend on the functions
A and B in (2.2), on a, a, b and b, on Cell in Assumption 2.1, Creg in (2.7). The notation A ∼= B means
A . B and A & B.

All the constants depending on the spectrum, namely ρ in (2.10), q in (3.9), C1 and C2 in (3.5) and (3.6)
are handled explicitly. Similarly all mesh size dependencies are explicit. Note that all eigenvalues of (2.8)
satisfy λn & 1, since λn ≥ λ1 = a(u1, u1) & |u1|21,Ω & ‖u1‖2

0,Ω & ‖u1‖2
0,B,Ω = 1.

Our error estimator is obtained by adapting standard estimates for source problems to the eigenvalue
problem. Analogous eigenvalue estimates can be found in [10] (for the Laplace problem) and [30] (for linear
elasticity) and related results are in [18].

For a function g, which is piecewise continuous on the mesh Tn, we introduce its jump across an edge
(face) S ∈ Sn by:

[g]S(x) :=

(

lim
x̃∈τ1(S)

x̃→x

g(x̃) − lim
x̃∈τ2(S)

x̃→x

g(x̃)

)

, for x ∈ int(S).

Then for any function v with piecewise continuous gradient on Tn we define, for S ∈ Sn

JS(v)(x) := [~nS · A▽v]S(x), for x ∈ int(S).

The error estimator ηn on the mesh Tn is defined as

η2
n :=

∑

S∈Sn

η2
S,n , (4.1)

where, for each S ∈ Sn,

η2
S,n := ‖Hnλnun‖2

0,B,Ω(S) + ‖H1/2
S JS(un)‖2

0,S . (4.2)

The following lemma is proved, in a standard way, by adapting the usual arguments for linear source problems.
Note again that λ is an eigenvalue of (2.6), λn is a nearby eigenvalue of (2.8) and u, un are any corresponding
normalised eigenfunctions which are only “near” in the sense of Theorem 3.1.

Lemma 4.2 (Reliability).

‖|u − un ‖|Ω . ηn + Gn, (4.3)

and

Gn :=
1

2
(λ + λn)

‖u − un‖2
0,B,Ω

‖|u − un ‖|Ω
. (4.4)

Remark 4.3. Recalling Remark 3.3, un in Lemma 4.2 is any normalised eigenvector of (2.8) correspond-
ing to the simple eigenvalue λ, i.e. its sign is not unique. However the error estimators ηS,n are independent
of the sign of un. This is not a contradiction: we shall see that only one choice of eigenfunction will guarantee
that the second term on the right-hand side of (4.3) is small, and only in this case is the left-hand side also
guaranteed to be small.

A similar result to Lemma 4.2 was proved in [30, Proposition 5].
Proof. To ease readability we set en = u − un in the proof. Note first that, since (λ, u) and (λn, un)

respectively solve the eigenvalue problems (2.1) and (2.8), we have, for all wn ∈ Vn,

|||en|||2Ω = a(en, en)

= a(en, en − wn) + a(en, wn)

= a(en, en − wn) + a(u,wn) − a(un, wn)

= a(en, en − wn) + b(λu − λnun, wn)

= a(en, en − wn) − b(λu − λnun, en − wn) + b(λu − λnun, en) . (4.5)
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To estimate the first two terms on the right-hand side of (4.5), first note that, for all v ∈ H1
0 (Ω),

a(en, v) − b(λu − λnun, v) = −a(un, v) + λnb(un, v)

Hence, using elementwise integration by parts (and the fact that A∇un is constant on each element and v
vanishes on ∂Ω), we obtain

a(en, v) − b(λu − λnun, v) = −
∑

τ∈Tn

∫

τ

(A∇un).∇v + λnb(un, v)

= −
∑

S∈Sn

∫

S

JS(un)v + λnb(un, v) , (4.6)

and hence, for all wn ∈ Vn,

a(en, en − wn) − b(λu − λnun, en − wn) = −
∑

S∈Sn

∫

S

JS(un)(en − wn) + λnb(un, en − wn). (4.7)

Now recall the Scott-Zhang quasi-interpolation operator ([27]) which has the property that, for all v ∈ H1
0 (Ω),

Inv ∈ Vn and

‖v − Inv‖0,τ . Hτ |v|1,ω(τ) , ‖v − Inv‖0,S . H
1

2

S |v|1,ω(S) , (4.8)

where ω(τ) is the union of all elements sharing at least a point with τ , and ω(S) is the union of all elements
sharing at least a point with S. (Note Ω(S) ⊆ ω(S).) Substituting wn = Inen in (4.7) and using the
Cauchy-Schwarz inequality, together with estimates (4.8), we obtain:

a(en, en − wn) − b(λu − λnun, en − wn) . ηn|||en|||Ω. (4.9)

To estimate the third term on the right-hand side of (4.5), we simply observe that due to the normalisation
in each of the eigenvalue problems (2.1) and (2.8) we have

b(λu − λnun, en) = (λ + λn)(1 − b(u, un)) =
1

2
(λ + λn)‖en‖2

0,B,Ω. (4.10)

Now, combine (4.9) and (4.10) with (4.5) and divide by |||en|||Ω to obtain the result.
Remark 4.4. We shall see below that Gn defined above constitutes a “higher order term”.
For mesh refinement based on the local contributions to ηn, we use the same marking strategy as in [9]

and [22]. The idea is to refine a subset of the elements of Tn whose side residuals sum up to a fixed proportion
of the total residual ηn.

Definition 4.5 (Marking Strategy 1). Given a parameter 0 < θ < 1, the procedure is: mark the sides
in a minimal subset Ŝn of Sn such that

(

∑

S∈Ŝn

η2
S,n

)1/2

≥ θηn . (4.11)

To compute Ŝn, we compute all the “local residuals” ηS,n, then insert edges (faces) into Ŝn in order of

non-increasing magnitude of ηS,n, until (4.11) is satisfied. A minimal subset Ŝn may not be unique. After

this is done, we construct another set T̂n, containing all the elements of Tn which contain at least one edge
(face) belonging to Ŝn.

In order to prove our convergence theory, we require an additional marking strategy based on oscillations
(Definition 4.7 below). This also appears in some theories of adaptivity for source problems, e.g. [9], [22],
[20], [8] and [7]), but to our knowledge has not yet been used in connection with eigenvalue problems.

The concept of “oscillation” is just a measure of how well a function may be approximated by piecewise
constants on a particular mesh. For any function v ∈ L2(Ω), and any mesh Tn, we introduce its orthogonal
projection Pnv onto piecewise constants defined by:
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(Pnv)|τ =
1

|τ |

∫

τ

vn, for all τ ∈ Tn. (4.12)

Then we make the definition:
Definition 4.6 (Oscillations). On a mesh Tn, we define

osc(v, Tn) := ‖Hn(v − Pnv)‖0,B,Ω. (4.13)

Note that

osc(v, Tn) =

(

∑

τ∈Tn

H2
τ ‖v − Pnv‖2

0,B,τ

)1/2

.

and that (by standard approximation theory and the ellipticity of a(·, ·)),

osc(v, Tn) . (Hmax
n )2|||v|||Ω , for all v ∈ H1

0 (Ω) . (4.14)

The second marking strategy (introduced below) aims to reduce the oscillations corresponding to a par-
ticular approximate eigenfunction un.

Definition 4.7 (Marking Strategy 2). Given a parameter 0 < θ̃ < 1: mark the elements in a minimal
subset T̃n of Tn such that

osc(un, T̃n) ≥ θ̃ osc(un, Tn) . (4.15)

Analogously to (4.11), we compute T̃n by inserting elements τ into T̃n according to non-increasing order of
their local contributions H2

τ ‖(un − Pnun)‖2
0,B,τ until (4.15) is satisfied.

Our adaptive algorithm can then be stated:

Algorithm 1 Converging algorithm

Require: 0 < θ < 1
Require: 0 < θ̃ < 1

loop

Solve the Problem (2.8) for (λn, un)
Mark the elements using the first marking strategy (Definition 4.5)
Mark any additional unmarked elements using the second marking strategy (Definition 4.7)
Refine the mesh Tn and construct Tn+1

end loop

In 2D at the nth iteration in Algorithm 1 each element in the set T̂n ∪ T̃n is refined using the algorithm
illustrated in Figure 4.1. This consists of three recursive applications of the newest node algorithm [21] to
each marked triangle, first creating two sons, then four grandsons and finally bisecting two of the grandsons.
This well-known algorithm is stated without name in [22, §5.1]), is called “bisection5” in [8] and is called “full
refinement” in [28]. This technique creates of a new node in the middle of each marked side in Ŝn and also a
new node in the interior of each marked element. It follows from [21] that this algorithm yields shape regular
conforming meshes in 2D.

In the 3D-case we use a suitable refinement that creates a new node on each marked face in Ŝn and a
node in the interior of each marked element.

In [22] and [20] it has been shown for linear source problems that the reduction of the error, as the mesh
is refined, is triggered by the decay of oscillations of the source on the sequence of constructed meshes. For
the eigenvalue problem (2.1) the quantity λu plays the role of data and in principle we have to ensure that
oscillations of this quantity (or more precisely of its finite element approximation λnun), are sufficiently small.
However λnun may change if the mesh changes and so the proof of error reduction for eigenvalue problems is
not as simple as it is for linear source problems. This is the essence of the theoretical difficulty dealt with in
this paper.
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Fig. 4.1. The refinement procedure applied to an element of the mesh. In (a) the element before the refinement, in (b)
after the three sides as been refined and in (c) after the bisection of one of the three new segments.

5. Error Reduction. In this section we give the proof of error reduction for Algorithm 1. The proof
has been inspired by the corresponding theory for source problems in [22]. However the nonlinearity of the
eigenvalue problem introduces new complications and there are several lemmas before the main theorem
(Theorem 5.6). For the rest of the section let (λn, un) be an approximate eigenpair on a mesh Tn, let Tn+1

be the mesh obtained by one iteration of Algorithm 1 and let (λn+1, un+1) be the corresponding eigenpair in
the sense made precise in Remark 3.3.

The first lemma uses ideas from [22, Lemma 4.2] for the 2D case. The extension of this lemma to the 3D
case is treated in Remark 5.2.

Lemma 5.1. Consider the 2D case. Let Ŝn be as defined in Definition 4.5 and let Pn be as defined in
(4.12). For any S ∈ Ŝn, there exists a function ΦS ∈ Vn+1 such that supp(ΦS) = Ω(S) and also

λn

∫

Ω(S)

B(Pnun)ΦS −
∫

S

JS(un)ΦS = ‖HnλnPnun‖2
0,B,Ω(S) + ‖H1/2

S JS(un)‖2
0,S , (5.1)

and

|||ΦS |||2Ω(S) . ‖HnλnPnun‖2
0,B,Ω(S) + ‖H1/2

S JS(un)‖2
0,S , (5.2)

where |||v|||2Ω(S) :=
∫

Ω(S)
∇vTA∇v.

Proof. Figure 5.1 illustrates two possible configurations of the domain Ω(S).
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Fig. 5.1. Two cases of refined couples of elements .

We then define

ΦS := αSϕS + β1ϕ1 + β2ϕ2, (5.3)

where ϕS and ϕi are the nodal basis functions associated with the points xS and xi on Tn+1, and αS , βi are
defined by

αS =















−
‖H1/2

S JS(un)‖2
0,S

∫

S
JS(un)ϕS

if JS(un) 6= 0,

0 otherwise,

(5.4)
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and

βi =



















‖HnλnPnun‖2
0,B,τi(S) − αS

∫

τi(S)
Bλn(Pnun)ϕS

∫

τi(S)
Bλn(Pnun)ϕi

if Pnun|τi(S) 6= 0,

0 otherwise,

(5.5)

for i = 1, 2.
Note that JS(un) and Pnun are constant on each element τ . Using the fact that supp(ϕi) = τi(S), for

i = 1, 2 we can easily see that the above formulae imply

αS

∫

S

JS(un)ϕS = −‖H1/2
S JS(un)‖2

0,S , (5.6)

∫

Ω(S)

Bλn(Pnun)(αSϕS + β1ϕ1 + β2ϕ2) = ‖HnλnPnun‖2
0,B,Ω(S), (5.7)

(and that these formulae remain true even if JS(un) or Pnun|τi(S) vanish). Hence

λn

∫

Ω(S)

B(Pnun)ΦS −
∫

S

JS(un)ΦS = λn

∫

Ω(S)

B(Pnun)(αSϕS + β1ϕ1 + β2ϕ2) − αS

∫

S

JS(un)ϕS

and (5.1) follows immediately on using (5.6) and (5.7).
To proceed from here note that by the shape-regularity of the mesh and the standard inverse estimate,

|||φS |||Ω(S) . H−1
S ‖φS‖0,Ω(S).

Also for all elements τ ∈ Tn+1 with τ ⊂ supp φS , there exists an affine map χ : τ̂ → τ , where τ̂ is the unit
simplex in R

2 and φ̂S := φS ◦ χ is a nodal basis function on τ̂ . The Jacobian Jχ of χ is constant and is
proportional to the area of τ . Hence

‖φS‖2
0,τ =

∫

τ

|φS |2 =

∫

τ̂

|φ̂S |2Jχ ∼ H2
S ,

which ensures at |||ϕS |||Ω(S) . 1 and, similarly, |||ϕi|||Ω(S) . 1. Combining these with (5.3), we obtain

|||ΦS |||2Ω(S) . |αS |2 + |β1|2 + |β2|2 . (5.8)

Now, note that by a simple change of variable,
∫

S
ϕS is the integral over [−HS/2,HS/2] of the one-

dimensional hat function centred on 0 and so
∫

S
ϕS ∼ HS . Since JS(un) is constant on S , we have

|αS | .
|JS(un)|‖H1/2

S ‖2
0,S

HS
. |JS(un)|HS ∼ ‖H1/2

S JS(un)‖0,S . (5.9)

Also since Pnun is constant on each τi(S) and since
∫

τi(S)
Bφi ∼ H2

τi(S), we have

|βi| .
λn| (Pnun)|τi(S) | ‖Hn‖2

0,B,τi(S) + |αS |H2
τi(S)

H2
τi(S)

. λn| (Pnun)|τi(S) | H2
τi(S) + |αS | ∼ λn‖HnPnun‖0,B,τi(S) + |αS |

This implies

|βi|2 . ‖λnHnPnun‖2
0,B,τi(S) + |αS |2 . ‖λnHnPnun‖2

0,B,τi(S) + ‖H1/2
S JS(un)‖2

0,S , (5.10)

and the proof is completed by combining (5.8) with (5.9) and (5.10).
Remark 5.2. To extend the results in Lemma 5.1 to the 3D-case we need to use a refinement procedure

for tetrahedra that creates a new node on each marked face in Ŝn and a node in the interior of each marked
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element. The proof in the 3D-case is similar to the proof in the 2D-case: for each couple of refined elements
we define

ΦS := αSϕS + β1ϕ1 + β2ϕ2,

where ϕS is the nodal basis function associated to the new node on the shared face and ϕi are the nodal basis
functions associated to the new nodes in the interior of the elements. The coefficients αS, β1 and β2 can be
chosen in the same way as in Lemma 5.1 and the rest of the proof proceeds similarly.

In the next lemma we bound the local error estimator above by the local difference of two discrete
solutions coming from consecutive meshes, plus higher order terms. This kind of result is called “discrete
local efficiency” by many authors.

Recall that Tn+1 is the refinement of Tn obtained by applying Algorithm 1.
Lemma 5.3. For any S ∈ Ŝn, we have

η2
S,n . ‖|un+1 − un ‖|2Ω(S) + ‖Hn(λn+1un+1 − λnPnun)‖2

0,B,Ω(S)

+‖Hnλn(un − Pnun)‖2
0,B,Ω(S) .

(5.11)

Proof. Since the function ΦS defined in Lemma 5.1 is in Vn+1 and supp(ΦS) = Ω(S), we have

a(un+1 − un,ΦS) = a(un+1,ΦS) − a(un,ΦS) = λn+1

∫

Ω(S)

Bun+1ΦS − a(un,ΦS). (5.12)

Now applying integration by parts to the last term on the right-hand side of (5.12), we obtain

a(un+1 − un,ΦS) = λn+1

∫

Ω(S)

Bun+1ΦS −
∫

S

JS(un)ΦS . (5.13)

Rewriting (5.13) and combining with (5.1), we obtain

a(un+1 − un,ΦS) −
∫

Ω(S)

B(λn+1un+1 − λnPnun)ΦS

= λn

∫

Ω(S)

B(Pnun)ΦS −
∫

S

JS(un)ΦS

= ‖HnλnPnun‖2
0,B,Ω(S) + ‖H1/2

S JS(un)‖2
0,S . (5.14)

Rearranging this, and then applying the triangle and Cauchy-Schwarz inequalities, we obtain

‖HnλnPnun‖2
0,B,Ω(S) + ‖H1/2

S JS(un)‖2
0,S

≤ |a(un+1 − un,ΦS)| +
∣

∣

∣

∣

∫

Ω(S)

B(λn+1un+1 − λnPnun)ΦS

∣

∣

∣

∣

≤ |||un+1 − un|||Ω(S)|||ΦS |||Ω(S) + ‖λn+1un+1 − λnPnun‖0,B,Ω(S)‖ΦS‖0,B,Ω(S)

.
(

|||un+1 − un|||Ω(S) + ‖Hn(λn+1un+1 − λnPnun)‖0,B,Ω(S)

)

|||ΦS |||Ω(S) . (5.15)

In the final step of (5.15) we made use of the Poincaré inequality ‖ΦS‖0,B,Ω(S) . HS |||ΦS |||Ω(S) and also the
shape-regularity of the meshes. In view of (5.2), the fact that λn ≥ λ1 & 1 (see Notation 4.1) yields

‖HnλnPnun‖2
0,B,Ω(S) + ‖H1/2

S JS(un)‖2
0,S

.
(

|||un+1 − un|||Ω(S) + ‖Hn(λn+1un+1 − λnPnun)‖0,B,Ω(S)

)2

. |||un+1 − un|||2Ω(S) + ‖Hn(λn+1un+1 − λnPnun)‖2
0,B,Ω(S). (5.16)
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Now, from the definition of ηS,n in (4.2), and the triangle inequality, we have

η2
S,n . ‖HnλnPnun‖2

0,B,Ω(S) + ‖H1/2
S JS(un)‖2

0,S + ‖Hnλn(un − Pnun)‖2
0,B,Ω(S). (5.17)

The required inequality (5.11) now follows from (5.16) and (5.17).

In the main result of this section, Theorem 5.6 below, we will be interested in achieving an error reduction
result of the form |||u − αnun+1|||Ω ≤ ρ|||u − αnun|||Ω for some ρ < 1. Note that we need to introduce the
scalar αn here to ensure nearness of the approximate eigenfunction to the true one.

To prove error reduction we exploit the identity

‖|u − αnun ‖|2Ω = ‖|u − αn+1un+1 + αn+1un+1 − αnun ‖|2Ω
= ‖|u − αn+1un+1 ‖|2Ω+ ‖|αn+1un+1 − αnun ‖|2Ω

+ 2a(u − αn+1un+1, αn+1un+1 − αnun).

(5.18)

In the case of source problems (e.g. [22, 23] ) the αn is not needed and the last term on the right-hand
side vanishes due to Galerkin orthogonality. However this approach is not available to us in the eigenvalue
problem. Therefore a more technical approach is needed to bound the last two terms on the right-hand side
of (5.18) from below. The main technical result is in the following lemma. Recall the convention in Notation
4.1.

Lemma 5.4.
With u, un, αn as in Remark 3.3,

|||αn+1un+1 − αnun|||2Ω & θ2|||u − αnun|||2Ω − osc(λnun, Tn)2 − L2
n , (5.19)

where θ is defined in the marking strategy in Definition 4.5 and Ln satisfies the estimate:

Ln ≤ Ĉ(Hmax
n )s|||u − αnun|||Ω , (5.20)

where Ĉ depends on θ, λ, C1, C2, and q.
Remark 5.5. Note that the oscillation term in (5.19) is unaffected if we replace αnun by un.
Proof. By Definition 4.5 and Lemma 5.3, we have

θ2η2
n ≤ ∑

S∈Ŝn
η2

S,n

. ‖|αn+1un+1 − αnun ‖|2Ω + ‖Hn(λn+1αn+1un+1 − λnPnαnun)‖2
0,B,Ω + osc(λnunTn)2 .

Hence, rearranging and making use of Lemma 4.2 and Remark 4.3, we have

|||αn+1un+1 − αnun|||2Ω & θ2η2
n − ‖Hn(λn+1αn+1un+1 − λnPnαnun)‖2

0,B,Ω − osc(λnunTn)2

& θ2|||u − αnun|||2Ω − osc(λnunTn)2

−θ2G̃2
n − ‖Hn(λn+1αn+1un+1 − λnPnαnun)‖2

0,B,Ω , (5.21)

where G̃n is the same as Gn in Lemma 4.2, but with un replaced by αnun.
Note that (5.21) is of the required form (5.19) with

Ln :=
(

θ2G̃2
n + ‖Hn(λn+1αn+1un+1 − λnPnαnun)‖2

0,B,Ω

)1/2

.

We now estimate the last two terms in (5.21) to obtain (5.20). To estimate G̃n, we use Theorem 3.1(ii)
to obtain

G̃n .
1

2
(λ + λn)C2

1 (Hmax
n )2s |||u − Qnu|||2Ω

|||u − αnun|||Ω
≤ 1

2
(λ + λn)C2

1 (Hmax
n )2s|||u − αnun|||Ω. (5.22)
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To estimate the last term in (5.21), we first use the triangle inequality to obtain

‖Hn(λn+1αn+1un+1 − λnPnαnun)‖0,B,Ω ≤ ‖Hn(λn+1αn+1un+1 − λnαnun)‖0,B,Ω + osc(λnun, Tn). (5.23)

For the first term on the right-hand side of (5.23), we have

‖Hn(λn+1αn+1un+1 − λnαnun)‖0,B,Ω ≤ Hmax
n

(

‖λu − λn+1αn+1un+1‖0,B,Ω + ‖λu − λnαnun‖0,B,Ω

)

. (5.24)

Then, recalling (2.6) and Theorem 3.1, we obtain

‖λu − λn+1αn+1un+1‖0,B,Ω ≤ |λ − λn+1|‖u‖0,B,Ω + λn+1‖u − αn+1un+1‖0,B,Ω

≤ |||u − αn+1un+1|||2Ω + λn+1C1(H
max
n )s|||u − αn+1un+1|||Ω . (5.25)

Using Theorem 3.1 (iii) and then Theorem 3.2, this implies

‖λu − λn+1αn+1un+1‖0,B,Ω . (C2 + λn+1C1)(H
max
n )s|||u − αn+1un+1|||Ω

≤ q(C2 + λn+1C1)(H
max
n )s|||u − αnun|||Ω . (5.26)

An identical argument shows

‖λu − λnαnun‖0,B,Ω . (C2 + λnC1)(H
max
n )s|||u − αnun|||Ω . (5.27)

Combining (5.26) and (5.27) with (5.24), and using (2.9), we obtain

‖Hn(λn+1αn+1un+1 − λnαnun)‖0,B,Ω . (1 + q)(C2 + λnC1)(H
max
n )s+1|||u − αnun|||Ω . (5.28)

Now combining (5.28) with (5.21), (5.22) and (5.23) we obtain the result.

The next theorem contains the main result of this section. It shows that provided we start with a ”fine
enough” mesh Tn, the mesh adaptivity algorithm will reduce the error in the energy norm.

Theorem 5.6 (Error reduction). For each θ ∈ (0, 1), there exists a sufficiently fine mesh threshold Hmax
n

and constants µ > 0 and ρ ∈ (0, 1) (all of which may depend on θ and on the eigenvalue λ), with the following
property. For any ε > 0 the inequality

osc(λnun, Tn) ≤ µε, (5.29)

implies either |||u − αnun|||Ω ≤ ε or

|||u − αn+1un+1|||Ω ≤ ρ |||u − αnun|||Ω .

Proof. In view of equation (5.18) and remembering that αn+1un+1 − αnun ∈ Vn+1 we have

‖|u − αnun ‖|2Ω− ‖|u − αn+1un+1 ‖|2Ω
= ‖|αn+1un+1 − αnun ‖|2Ω + 2a(u − αn+1un+1, αn+1un+1 − αnun)

= ‖|αn+1un+1 − αnun ‖|2Ω + 2b(λu − λn+1αn+1un+1, αn+1un+1 − αnun) . (5.30)

Before proceeding further, recall that by the assumptions (2.3) and (2.4), and the Poincaré inequality, there
exists a constant CP (depending on A, B and Ω) such that

‖v‖0,B,Ω ≤ CP |||v|||Ω , for all v ∈ H1
0 (Ω) .

Now using Cauchy-Schwarz and then the Young inequality 2ab ≤ 1
4C2

P

a2 + 4C2
P b2 on the second term on

the right-hand side of (5.30), we get

‖|u − αnun ‖|2Ω− ‖|u − αn+1un+1 ‖|2Ω
≥ ‖|αn+1un+1 − αnun ‖|2Ω − 2‖λu − λn+1αn+1un+1‖0,B,Ω‖αn+1un+1 − αnun‖0,B,Ω

≥ ‖|αn+1un+1 − αnun ‖|2Ω − 1

4C2
P

‖αn+1un+1 − αnun‖2
0,B,Ω − 4C2

P ‖λu − λn+1αn+1un+1‖2
0,B,Ω

≥ 3

4
‖|αn+1un+1 − αnun ‖|2Ω − 4C2

P ‖λu − λn+1αn+1un+1‖2
0,B,Ω .

(5.31)
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Hence

|||u − αn+1un+1|||2Ω ≤ |||u − αnun|||2Ω − 3

4
|||αn+1un+1 − αnun|||2Ω + 4C2

P ‖λu − λn+1αn+1un+1‖2
0,B,Ω .

Applying Lemma 5.4, we see that there exist constants C, Ĉ such that

|||u − αn+1un+1|||2Ω ≤
(

1 − 3

4
Cθ2 +

3

4
CĈ2(Hmax

n )2s

)

|||u − αnun|||2Ω

+ 4 C2
P ‖λu − λn+1αn+1un+1‖2

0,B,Ω

+
3

4
C osc(λnun, Tn)2 .

Then making use of (5.26) we have

|||u − αn+1un+1|||2Ω ≤ γn |||u − αnun|||2Ω +
3

4
C osc(λnun, Tn)2. (5.32)

with

γn :=

[

1 − 3

4
Cθ2 + C ′(Hmax

n )2s

]

, (5.33)

where C ′ is another constant independent of n. Note that Hmax
n can be chosen sufficiently small so that

γm ≤ γ for some γ ∈ (0, 1) and all m ≥ n.
Consider now the consequences of the inequality (5.29). If |||u − αnun|||Ω > ε then (5.32) implies

|||u − αn+1un+1|||2Ω ≤
[

γ + 3
4Cµ2

]

|||u − αnun|||2Ω .

Now choose µ small enough so that

ρ := (γ +
3

4
Cµ2)1/2 < 1 (5.34)

to complete the proof.

6. Proof of convergence. The main result of this paper is Theorem 6.2 below which proves convergence
of the adaptive method and also demonstrates the decay of oscillations of the sequence of approximate
eigenfunctions. Before proving this result we need a final lemma.

Lemma 6.1. There exists a constant ρ̃ ∈ (0, 1) such that

osc(un+1, Tn+1) ≤ ρ̃ osc(un, Tn) + (1 + q)(Hmax
n )2 ‖|u − αnun ‖|Ω. (6.1)

Proof. First recall that one of the key results in [22], namely [22, Lemma 3.8], is the proof that the
oscillations of any fixed function v ∈ H1

0 (Ω) are reduced by applying one refinement based on Marking
Strategy 2 (Definition 4.7). Thus we have (in view of Algorithm 1):

osc(un, Tn+1) ≤ ρ̃ osc(un, Tn), (6.2)

where 0 < ρ̃ < 1 is independent of un. Thus, a simple application of the triangle inequality combined with
(6.2) yields

osc(un+1, Tn+1) ≤ osc(un, Tn+1) + osc(αn+1un+1 − αnun, Tn+1)

≤ ρ̃ osc(un, Tn) + osc(αn+1un+1 − αnun, Tn+1) (6.3)

(Recall again that osc(un, Tn) = osc(αnun, Tn). ) A further application of the triangle inequality and then
(4.14) yields

osc(αn+1un+1 − αnun, Tn+1) ≤ osc(u − αn+1un+1, Tn+1) + osc(u − αnun, Tn+1)

. (Hmax
n )2 (|||u − αn+1un+1|||Ω + |||u − αnun|||Ω) (6.4)
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and then combining (6.3) and (6.4) and applying Theorem 3.2 completes the proof.
Theorem 6.2. Provided the initial mesh T0 is chosen so that Hmax

0 is small enough, there exists a constant
p ∈ (0, 1) such that the recursive application of Algorithm 1 yields a convergent sequence of approximate
eigenvalues and eigenvectors, with the property:

‖|u − αnun ‖|Ω ≤ B0qp
n, (6.5)

and

λn osc(un, Tn) ≤ B1p
n, (6.6)

where B0 and B1 are constants and q is the constant defined in Theorem 3.2.
Remark 6.3. The initial mesh convergence threshold and the constants B0 and B1 may depend on θ, θ̃

and λ.
Proof. The proof of this theorem is by induction and the induction step contains an application of

Theorem 5.6. In order to ensure the reduction of the error, we have to assume that the starting mesh T0 is
fine enough and µ in Theorem 5.6 is small enough such that for the chosen value of θ, the quantity ρ in (5.34)
satisfies ρ < 1.

Then with ρ̃ as in Lemma 6.1, choose p in the range

max{ρ, ρ̃} < p < 1 .

We also set

B1 = osc(λ0u0, T0) and B0 = max{µ−1p−1B1, |||u − u0|||Ω}.

To perform the inductive proof, first note that by the definition of B0 and Theorem 3.2,

‖|u − u0 ‖|Ω ≤ B0 ≤ B0q,

since q > 1. Combined with the definition of B1 we have shown the result for n = 0.
Now, suppose that for some n > 0 the inequalities (6.5) and (6.6) hold.
Now let us consider the outcomes, depending on whether the inequality

‖|u − αnun ‖|Ω ≤ B0p
n+1, (6.7)

holds or not. If (6.7) holds then we can apply Theorem 3.2 to conclude that

‖|u − αn+1un+1 ‖|Ω ≤ q ‖|u − αnun ‖|Ω ≤ qB0p
n+1,

which proves (6.5) for n + 1.
On the other hand, if (6.7) does not hold then, by definition of B0,

|||u − αnun|||Ω > B0p
n+1 ≥ µ−1B1p

n. (6.8)

Also, since we have assumed (6.6) for n, we have

λn osc(un, Tn) ≤ µε with ε := µ−1B1p
n . (6.9)

Then (6.8) and (6.9) combined with Theorem 5.6 yields

|||u − αn+1un+1|||Ω ≤ ρ|||u − αnun|||Ω

and so using the inductive hypothesis (6.5) combined with the definition of p, we have

|||u − αn+1un+1|||Ω ≤ ρB0qp
n ≤ qB0p

n+1,

which again proves (6.5) for n + 1.
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To conclude the proof, we have to show that also (6.6) holds for n + 1. Using Lemma 6.1, (2.9) and the
inductive hypothesis, we have

λn+1 osc(un+1, Tn+1) ≤ ρ̃B1p
n + (1 + q)(Hmax

n )2λnB0qp
n

≤ (ρ̃B1 + (1 + q)(Hmax
0 )2λ0B0q)p

n. (6.10)

Now, (recalling that ρ̃ < p), in addition to the condition already imposed on Hmax
0 we can further require

that

ρ̃B1 + (1 + q)(Hmax
0 )2λ0B0q ≤ pB1.

This ensures that

λn+1 osc(un+1, Tn+1) ≤ B1p
n+1,

thus concluding the proof.

7. Numerical Experiments. We present numerical experiments to illustrate the convergence theory.
Algorithm 1 has been implemented in FORTRAN95. The mesh refinement has been done using the toolbox
ALBERTA [25]. We used the package ARPACK [19] to compute eigenpairs and the sparse direct linear solver
ME27 from the HSL [26, 14] to carry out the shift-invert solves required by ARPACK. Additional numerical
experiments on photonic crystal problems and on 3D problems are given in [11] and [12].

7.1. Example: Laplace operator. In the first set of simulations we have solved the Laplace eigenvalue
problem (i.e. A = I and B = 1 in (2.2)) on a unit square with Dirichlet boundary conditions. The exact
eigenvalues are known explicitly.

We compare different runs of Algorithm 1 using different values for θ and θ̃ in Table 7.1. Since the problem
is smooth, from Theorem 3.1 it follows that using uniform refinement the rate of convergence for eigenvalues
should be O(Hmax

n )2, or equivalently the rate of convergence in the number of degrees of freedom (DOFs) N
should be O(N−1). We measure the rate of convergence by conjecturing that |λ−λn| = CN−β and estimating
β for each pair of computations from the formula β = − log(|λ − λn|/|λ − λn−1|)/ log(DOFsn/DOFsn−1).
Similarly Table 7.2 contains the same kind of information relative to the fourth smallest eigenvalue of the
problem. Our results show a convergence rate close to O(N−1) for θ, θ̃ sufficiently large. However the rate of
convergence is sensitive to the values of θ and θ̃.

θ = θ̃ = 0.2 θ = θ̃ = 0.5 θ = θ̃ = 0.8
Iteration |λ − λn| DOFs β |λ − λn| DOFs β |λ − λn| DOFs β

1 0.1350 400 - 0.1350 400 - 0.1350 400 -
2 0.1327 498 0.0802 0.1177 954 0.1581 0.0529 1989 0.5839
3 0.1293 613 0.1228 0.0779 1564 0.8349 0.0176 5205 1.1407
4 0.1256 731 0.1645 0.0501 1977 1.8788 0.0073 15980 0.7877
5 0.1215 854 0.2138 0.0351 2634 1.2383 0.0024 48434 0.9836
6 0.1165 970 0.3340 0.0176 4004 0.7885 0.0009 122699 1.0673
7 0.1069 1097 0.6962 0.0121 6588 0.7217 0.0003 312591 1.0083

Table 7.1
Comparison of the reduction of the error and DOFs of the adaptive method for the smallest eigenvalue for the Laplace

problem on the unit square.

In the theory presented in [29] it is shown that the error for eigenvalues for smooth problems is bounded
in terms of the square of the considered eigenvalue, i.e.

|λ − λn| ≤ C λ2 (Hmax
n )2 . (7.1)

Also, we know that the first and the fourth eigenvalues are 19.7392089 and 78.9568352 and so λ4 = 4λ1.
Comparing errors in Table 7.2 with those in Table 7.1, we see that the errors are roughly multiplied by a
factor of 16, as predicted by (7.1).
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θ = θ̃ = 0.2 θ = θ̃ = 0.5 θ = θ̃ = 0.8
Iteration |λ − λn| DOFs β |λ − λn| DOFs β |λ − λn| DOFs β

1 2.1439 400 - 2.1439 400 - 2.1439 400 -
2 2.0997 505 0.0895 1.8280 1016 0.1658 0.7603 2039 0.6365
3 2.0549 626 0.1004 1.0850 1636 1.1662 0.2439 6793 0.9447
4 1.9945 759 0.1548 0.7792 2254 1.0331 0.0917 18717 0.9652
5 1.9164 883 0.2638 0.4936 3067 1.4826 0.0331 54113 0.9583
6 1.7717 1017 0.5557 0.3484 4681 0.8240 0.0120 146056 1.0181
7 1.6463 1131 0.6911 0.2578 7321 0.6730 0.0046 382024 0.9970

Table 7.2
Comparison of the reduction of the error and DOFs of the adaptive method for the fourth smallest eigenvalue for the

Laplace problem on the unit square.

Often h-adaptivity uses only a marking strategy based on an estimation of the error, as in Marking
Strategy 1 and avoids refining based on oscillations as in Marking Strategy 2. (Convergence of an adaptive
scheme for eigenvalue problems which does not use marking strategy 2 is recently proved in [6].) To investigate
the effects of refinement based on oscillations, in Table 7.3 we have computed the smallest eigenvalue for the
Laplace problem keeping θ fixed and varying θ̃ only. Reducing θ̃ towards 0 has the effect of turning off
the refinement arising from Marking Strategy 2. The results in Table 7.3 seem to suggest that the rate of
convergence slightly increases as θ̃ increases.

θ = 0.8, θ̃ = 0.1 θ = 0.8, θ̃ = 0.3 θ = 0.8, θ̃ = 0.5
Iteration |λ − λn| DOFs β |λ − λn| DOFs β |λ − λn| DOFs β

1 0.1350 400 - 0.1350 400 - 0.1350 400 -
2 0.0704 1269 0.5646 0.0698 1372 0.5353 0.0673 1555 0.5131
3 0.0307 2660 1.1215 0.0300 2821 1.1700 0.0285 3229 1.1757
4 0.0137 7492 0.7770 0.0133 7846 0.7980 0.0115 9140 0.8731
5 0.0056 18853 0.9699 0.0052 20189 0.9918 0.0046 22793 0.9913
6 0.0021 52247 0.9587 0.0020 55640 0.9382 0.0018 61582 0.9310
7 0.0008 140049 0.9834 0.0008 145773 1.0011 0.0007 161928 1.0238

Table 7.3
Comparison of the reduction of the error and DOFs of the adaptive method for the smallest eigenvalue for the Laplace

problem on the unit square for a fixed value of θ and varying θ̃.

We investigate this further in Table 7.4, where we take iterations 5,6 and 7 from Table 7.3 and we present
the quantity C∗ := N × |λ − λn| , where N denotes the number of DOFs. Then C∗ gives an indication of
the size of the unknown constant in the optimal error estimate |λ−λn| = O(N−1). The results suggest that
C∗ stays fairly constant independent of θ̃.

Iteration θ = 0.8, θ̃ = 0.1 θ = 0.8, θ̃ = 0.3 θ = 0.8, θ̃ = 0.5
5 1.06 × 102 1.05 × 102 1.05 × 102

6 1.10 × 102 1.11 × 102 1.11 × 102

7 1.12 × 102 1.12 × 102 1.13 × 102

Table 7.4
Values of C∗ computed from Table 7.3

In Table 7.5 we have set θ̃ = 0. Although the convergence result given in this paper does not hold any
more, the method is still clearly convergent. Comparing Table 7.1, Table 7.3 and Table 7.5 we see that with
the second marking strategy the number of degrees of freedom grows faster than without it. To illustrate
this effect better, Table 7.6 tabulates the number of elements #T̂n (marked by Marking Strategy 1) with
the extra number of elements #(T̃n\T̂n) (marked by Marking Strategy 2 alone). Note that the new DOFs
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created by mesh refinement come only from the refinement of the marked elements, but also from the closures
used to keep the meshes conforming. It is clear that the number of elements marked as a result of the
oscillations continues to rise as refinement proceeds, although much more slowly than the number marked by
the residual-based criterion (Marking Strategy 1).

θ = 0.2 θ = 0.5 θ = 0.8
Iteration |λ − λn| DOFs β |λ − λn| DOFs β |λ − λn| DOFs β

1 0.1350 400 - 0.1350 400 - 0.1350 400 -
2 0.1328 447 0.1525 0.1209 648 0.2289 0.0704 1253 0.5704
3 0.1299 503 0.1824 0.0859 1036 0.7283 0.0307 2646 1.1125
4 0.1271 565 0.1958 0.0627 1455 0.9301 0.0138 7490 0.7697
5 0.1238 637 0.2157 0.0458 1965 1.0429 0.0056 18847 0.9734
6 0.1189 712 0.3650 0.0323 3031 0.8066 0.0021 52239 0.9585
7 0.1113 795 0.6014 0.0228 4372 0.9531 0.0008 140194 0.9828

Table 7.5
Comparison of the reduction of the error and DOFs of the adaptive method for the smallest eigenvalue for the Laplace

problem on the unit square using marking strategy 1 only.

θ = θ̃ = 0.2 θ = θ̃ = 0.5 θ = θ̃ = 0.8

Iteration #T̂n #(T̃n\T̂n) #T̂n #(T̃n\T̂n) #T̂n #(T̃n\T̂n)

1 12 15 85 99 299 285
2 13 15 102 85 953 19
3 14 15 100 25 3069 198
4 14 14 173 7 7965 2053
5 15 13 310 48 22426 1486
6 15 12 552 184 58075 3005

Table 7.6
Comparison between the number of marked elements by strategy 1 (i.e. #T̂n) and the number of marked elements by

strategy 2 only (i.e. #(T̃n\T̂n)) for different values of θ and θ̃ for the smallest eigenvalue of the Laplace problem on the unit
square.

In Figure 7.1 we compare the performance of the adaptive algorithm with uniform bisection5 refinement
(see Fig. 4.1) for the first and fourth eigenvalues of the Laplace operator. We note that in this case both
methods converge with a similar rate, as is expected since in this case the regularity of eigenfunctions is H2.
To complete this section we give in Table 7.7 an example of the performance of the adaptive method for
computing non-simple eigenvalues. In this case we considered the second smallest eigenvalue of the Laplace
operator on the unit square which has multiplicity 2. We see that although the theory given above does not
strictly hold, the method performs similarly to the case of simple eigenvalues.

7.2. Example: Elliptic operator with discontinuous coefficients. In this example we investigate
how our method copes with discontinuous coefficients. In order to do that we modified the smooth problem
from Example 7.1. We inserted a square subdomain of side 0.5 in the center of the unit square domain.
In the bilinear form (2.2), we also chose the function A to be the scalar piecewise constant function which
assumes the value 100 inside the inner subdomain and the value 1 outside it. As before B in (2.2) is chosen
as B = 1. The jump in the value of A generally produces a jump in the gradient of the eigenfunctions all
along the boundary of the subdomain and at the corners of the subdomain (from both inside and outside)
the eigenfunction has infinite gradient, arising from the usual corner singularities. We choose our initial mesh
to be aligned with the discontinuity in A and so only the corner singularities are active here. We still have
Assumption 2.1, but now s < 1 and, from Theorem 3.1, using uniform refinement, the rate of convergence for
eigenvalues should be O(Hmax

n )2s or equivalently O(N−s), where N is the number of DOFs. The adaptive
method yields the optimal order of O(N−1) (which holds for uniform meshes and smooth problems) for large
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Fig. 7.1. Loglog plots of convergence of adaptive and uniform refinement for first eigenvalue of the Laplacian (left) and
fourth eigenvalue of the Laplacian (right).

θ = θ̃ = 0.2 θ = θ̃ = 0.5 θ = θ̃ = 0.8
n |λ − λn| N β |λ − λn| N β |λ − λn| N β

1 0.5802 400 - 0.5802 400 - 0.5802 400 -
2 0.5678 478 0.1212 0.4935 811 0.2291 0.2447 1533 0.6427
3 0.5514 562 0.1816 0.3201 1275 0.9564 0.0959 3640 1.0826
4 0.5329 646 0.2449 0.2295 1728 1.0953 0.0368 11747 0.8169
5 0.5111 735 0.3237 0.1521 2374 1.2950 0.0136 32881 0.9651
6 0.4758 829 0.5942 0.1078 3498 0.8875 0.0050 82968 1.0778
7 0.4392 918 0.7856 0.0782 5555 0.6938 0.0020 221521 0.9574

Table 7.7
Comparison of the reduction of the error and DOFs of the adaptive method for the second smallest eigenvalue for the

Laplace problem on the unit square.

enough θ and θ̃. (See Table 7.8.) Here we compute the “exact” λ using a mesh with about half a million of
DOFs.

θ = θ̃ = 0.2 θ = θ̃ = 0.5 θ = θ̃ = 0.8
Iteration |λ − λn| DOFs β |λ − λn| DOFs β |λ − λn| DOFs β

1 1.1071 81 - 1.1071 81 - 1.1071 81 -
2 1.0200 103 0.3410 0.8738 199 0.2632 0.4834 356 0.5597
3 1.0105 129 0.0416 0.5848 314 0.8805 0.2244 799 0.9494
4 1.0039 147 0.0498 0.3983 491 0.8591 0.0990 2235 0.7957
5 0.8968 167 0.8843 0.2766 673 1.1564 0.0401 4764 1.1932
6 0.8076 194 0.6996 0.1933 975 0.9665 0.0180 12375 0.8372
7 0.8008 217 0.0747 0.1346 1476 0.8722 0.0065 29148 1.1888
8 0.7502 237 0.7401 0.0948 2080 1.0237 0.0020 65387 1.4482

Table 7.8
Comparison of the reduction of the error and DOFs of the adaptive method for the smallest eigenvalue for the 2D problem

with discontinuous coefficient.

In Figure 7.2 we depict the mesh coming from the fourth iteration of Algorithm 1 with θ = θ̃ = 0.8 for
the smallest eigenvalue of this problem. This mesh is the result of multiple refinements using both marking
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Fig. 7.2. A refined mesh from the adaptive method corresponding to the first eigenvalue of the 2D problem with discontinuous
coefficient, and the corresponding eigenfunction .

strategies 1 and 2 each time. As can be seen the corners of the subdomain are much more refined than the rest
of the mesh. This is clearly the effect of the first marking strategy, since the edge residuals have detected the
singularity in the gradient of the eigenfunction at these points. In Figure 7.2 we also depict the corresponding
eigenfunction.

In Figure 7.3, analogously to Figure 7.1, we compare the convergence of the adaptive method with uniform
refinement for this example. Now, because of the lack of regularity, the superiority of the adaptive method is
clearly visible.
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