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Abstract

In this work we describe, implement and analyse in detail a high–order fully dis-
crete spectral algorithm for solving the Helmholtz equation exterior to a bounded
(sound–soft, sound–hard or absorbing) obstacle in three space dimensions, with
Dirichlet, Neumann or Robin (impedance) boundary conditions. Our algorithm
may be thought of as a discrete Galerkin method, but it is also equivalent to a
Nyström method after a simple transformation. We test our algorithm with ex-
tensive computational experiments on a variety of three dimensional smooth and
non–smooth obstacles with conical singularities. Our tests include the compu-
tation of scattered and far fields induced by incident plane waves. Our method
is shown to be very accurate for scattering from surfaces which are globally pa-
rameterised by spherical coordinates, and tests show that it performs very much
better than several of the well-established fast algorithms for obstacle scatter-
ing on a range of such surfaces, even some which are non-smooth. Further, we
prove superalgebraic convergence of the scattered and far fields obtained using our
algorithm in the case of smooth scatterers.
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1 Introduction

In this paper, we present a high–order algorithm for solving the Helmholtz equation de-
fined in an unbounded region, composed of the exterior of a bounded connected obstacle
in R3, with Dirichlet, Neumann or Robin (impedance) boundary conditions. It is well
known that efficient computational schemes for such problems play a significant rôle in
scattering theory [7, 8, 9, 18]. Our algorithm is based on the boundary integral method
and has the usual advantage over domain discretisation schemes that only the finite
boundary has to be discretised and the radiation condition is satisfied automatically.
Domain truncation or infinite elements (e.g. [12]) can thus be avoided.

The spectral algorithm discussed in the present paper is restricted to the class of
obstacles with surfaces that can be described globally in spherical coordinates. When
the surface is smooth, our algorithm attains exponential convergence by exploiting the
smoothness and the spherical coordinate system in a special way. As we shall see,
relatively few degrees of freedom are required to obtain good accuracy on the boundary
or in the exterior domain, or to compute the practically important far field pattern.
In particular, our numerical experiments on spherical scatterers (see §4) show that, for
frequencies in the resonance region (i.e. for obstacles with size close to one wavelength)
very accurate far field approximate solutions (for a fixed incident and observed direction)
can be computed in less than one minute of CPU time (on a moderate computing
platform) and for high frequency scattering (with wavelengths down to 0.04 times the
size of obstacles), accurate solutions (i.e. RMS error about 0.001 %) can be computed
in about ten hours of CPU time. Resonance region calculations are of particular use for
inverse scattering ([8, p. 105]).

We compare our algorithm with some of the most powerful recent algorithms for
scattering [3, 4, 6, 20]. In [3, 4] the Bruno–Kunyansky sound–soft acoustic scattering
algorithm has been computationally demonstrated to be very competitive with the fast
multipole algorithm FISC [20] and the high–order Nyström algorithm FastScat [6], used
in electromagnetic scattering. We compare our algorithm with that of Bruno–Kunyansky
(for all the smooth and non-smooth obstacles considered in [3, 4, 5]) and demonstrate
very competitive accuracy and efficiency of our algorithm in §4. A common feature of
our method and that of Bruno–Kunyansky is the use of spherical coordinates; globally
in our case and locally in [3, 4]. Due to our assumption that the surface is globally
parametrisable, we are able to treat the singularities in the weakly singular integrals
analytically using a singularity division technique.

In the appendix to this paper we prove the superalgebraic convergence of our al-
gorithm in the case of smooth surfaces. In §4 we demonstrate also that our algorithm
can also be used effectively for non–smooth obstacles (provided they have an appropri-
ate global parametrisation). The non-smooth objects used in our experiments feature
conical singularities and can be found in the list of benchmark radar targets suggested
in [23]. The theoretical restriction to smooth objects may not be so much of a disad-
vantage in the context of inverse scattering [8], where general qualitative information
about obstacles is of greater importance than finer details of obstacles such as corners
and edges. Moreover, when the boundary–integral and finite–element methods are cou-
pled across an artificial surface, this surface can be chosen to be smooth, and then the
discretisation proposed here would be very appropriate. (See [14] for such an approach
in two dimensions.)
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We would like to remark that the restriction to surfaces which can be globally
parametrised by spherical coordinates is here rather essential. The extension of our
method to more general geometries would require covering the surface with several co-
ordinate charts. The extension of our method to this setting raises a number of technical
problems, both in the formulation of an extended algorithm and in its error analysis.

A basic theory for the discretisation proposed here was given in [13], which in turn
built on the results in [11, 22]. However, most practical details required for obstacle
scattering, such as an algorithm for computing the far field and the exterior scattered
field were omitted in [13]. These details are part of the present paper. In addition, an
important component of our algorithm is the efficient computation of rotated spherical
harmonics. In [22] (see also [8, p. 84]), such computations were based on the idea
of computing Fourier coefficients of rotated harmonics using a high–order quadrature
rule. In [13] a simple explicit formula which avoided such quadratures was presented.
However the formula in [13] turns out not to be useful in practice for high degree
spherical harmonics (e.g. degree 25 or above), since it contains many terms of almost
equal size but with differing sign and thus suffers from cancellation error. We overcome
this difficulty by deriving (in §3.3) an alternative formula which avoids this cancellation
problem. This formula is crucial for the success of our method in the high-frequency
examples.

In the present paper we provide a full specification of our obstacle scattering al-
gorithm, extensive numerical experiments and additional theoretical results which are
needed to describe the computation of approximate solutions exterior to the scatterer
and the far field. We also discuss the implementation of general boundary conditions:
the boundary integral method in [13] is restricted to the Dirichlet case.

For part of the long history of spectral boundary integral methods using spheri-
cal functions, we refer to [1, 8, 10, 11, 13, 15, 16, 22] and for background on integral
equations in scattering theory we refer to [7, 8, 18]. For a three dimensional exterior
Helmholtz problem, a fully discrete spectral method using a singularity division tech-
nique was introduced (but not analysed) in [22]. In [22], computational results mainly
for frequencies in the resonance region are given but without CPU time details. Our
algorithm leads to only half the size of the linear system in [22]. A three dimensional
spectral method with a singularity subtraction technique was investigated in [15] and
recently, the algorithm of [15] was used in [16] for a different boundary integral formu-
lation of the exterior problem. In [15, 16] only a semi–discrete version of the actually
implemented method was analysed. Further, only low frequency computational results
are given in [15, 16]. Since our algorithm requires only about a minute of a CPU time
to reach high accuracy for low frequencies, much faster than the CPU times reported
in [15, 16], we avoid detailed comparison with methods in [15, 16, 22] and instead focus
mainly on a comparison with [3, 4].

In this work we are interested in computing an approximation to the radiating solu-
tion u of the exterior Helmholtz equation

4u(x) + k2u(x) = 0, x ∈ R3 \ D̄, (1.1)

where D ⊂ R3 is assumed to be a bounded connected domain with boundary ∂D and a
connected complement R3 \ D̄. (We will give precise requirements on the surface ∂D in
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the next section.) Here, k > 0 is called the wavenumber and we use the standard notion
of radiating solution [7, 8, 18], i.e. u satisfies the Sommerfeld radiation condition

lim
r→∞

r (∂u/∂r − iku) = 0, (1.2)

where r = |x| and the limit is assumed to hold uniformly in all directions x/|x|. Assum-
ing that (1.1) has a unique radiating solution, under appropriate regularity assumptions,
by Green’s theorem, u can be represented as [8, Theorem 2.4]:

u(x) =

∫
∂D

∂Φ(x,y)

∂n(y)
u(y)ds(y)−

∫
∂D

Φ(x,y)
∂u

∂n
(y)ds(y), x ∈ R3 \ D̄, (1.3)

where
Φ(x,y) :=

1

4π

exp(ik|x− y|)
|x− y|

(1.4)

is the fundamental solution of the Helmholtz equation and n(y) denotes the unit outward
normal to ∂D at the point y ∈ ∂D. Further, the radiating solution u has the asymptotic
behaviour of an outgoing spherical wave [8, Theorem 2.5]:

u(x) =
eik|x|

|x|

{
u∞(x̂) +O

(
1

|x|

)}
, (1.5)

as |x| → ∞ uniformly in all directions x̂ = x/|x|. In (1.5), the function u∞ is known as
the far field pattern of u, and it is defined on the unit sphere (denoted throughout the
paper by ∂B). Computation of the far field pattern plays an important role in inverse
scattering theory, to identify the shape of the scatterers, such as buried objects [8, 9] .

If we know the radiating solution u and its normal derivative only on the surface ∂D,
then a computable representation of the far field pattern u∞ can be obtained, based on
the asymptotics of the fundamental solution:

Φ(x,y) =
eik|x|

4π|x|

{
e−ikx̂.y +O(

1

|x|
)

}
,

∂Φ(x,y)

∂n(y)
=

eik|x|

4π|x|

{
∂e−ikx̂.y

∂n(y)
+O(

1

|x|
)

}
. (1.6)

Using the direct representation formula (1.3) (or other types of indirect representa-
tions [7, 8, 18]), and depending on the boundary condition, the radiating solution u and
its far field pattern u∞ can thus be computed, essentially by solving a surface integral
equation.

In the next section, following [7, 8, 18], we describe boundary integral equations for
solving (1.1)–(1.2) with Dirichlet, Neumann and Robin boundary conditions. We intro-
duce tools needed for approximating these in §2.4. Our algorithm and implementation
details are described §3. We give numerical results in §4. Finally the relevant stability
and convergence results are presented in the Appendix.
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2 Model problems and approximations

The classical boundary-value problems for the exterior Helmholtz equation are:

Exterior Dirichlet sound–soft obstacle problem

Find the radiating solution u of the Helmholtz equation (1.1) satisfying the Dirichlet
boundary condition

u = f on ∂D. (2.1)

Exterior Robin absorbing (Neumann sound–hard) obstacle problem
Find the radiating solution u of the Helmholtz equation (1.1) satisfying the impedance
(Neumann) boundary condition

∂u

∂n
+ iµu = g, on ∂D, µ > 0 (µ = 0). (2.2)

In case of scattering of a given incoming wave uI by a sound–soft obstacle D, the
Dirichlet data f in (2.1) is given by f = −uI and the solution of (1.1)–(2.1) gives the
scattered field u = uS. For the absorbing (sound–hard) obstacle scattering case, the

Robin (Neumann) data g in (2.2) is given by g = −∂uI

∂n
− iµuI .

These problems have unique solutions for k > 0 and each of them can be reformulated
as a boundary integral equation in several ways (see, e.g. [7, 8, 18]). In this paper we
restrict to second-kind direct or indirect formulations, all of which are of the general form
described in §2.1 - see (2.3). Although our high–order solution method can be applied
to any equation of the general form (2.3), in this paper we compute only scattering
examples. Examples of reformulations of the above boundary value problems into the
form (2.3) is reviewed in §2.2.

2.1 General surface integral equation

In the next subsection, following [7, 8, 18], we review three distinct classes of boundary
integral equations that are equivalent to the exterior problems (see (2.11), (2.13), (2.16)
and (2.19)–(2.25)). These three boundary integral equations can be written as a uniquely
solvable general boundary integral operator equation

w + Mw = [αI + N]h, on ∂D, (2.3)

for the unknown w and for a given function h on ∂D. Here M,N are linear, weakly
singular integral operators on ∂D, of the form

Mψ(x) =

∫
∂D

m(x,y)ψ(y)ds(y), Nψ(x) =

∫
∂D

n(x,y)ψ(y)ds(y), x ∈ ∂D. (2.4)

The kernel functions m(x,y), n(x,y) are of the form

m(x,y) =
1

|x− y|
m1(x,y)+m2(x,y), n(x,y) =

1

|x− y|
n1(x,y)+n2(x,y) (2.5)

with mi, for i = 1, 2, of the form

mi(x,y) = mi,1(x,y) +mi,2(x,y)
(x− y)T n(y)

|x− y|2
+mi,3(x,y)

(x− y)T n(x)

|x− y|2
, (2.6)
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with each mi,j infinitely continuously differentiable on R3 × R3, i = 1, 2, j = 1, 2, 3.
We define ni, for i = 1, 2 similarly, with m in (2.6) replaced by n. In the RHS of (2.3)
α ∈ R, and I is the identity operator.

The general operator equation (2.3) with N = 0 was considered in [13]. However, as
described in (2.16), for the Neumann sound–hard and Robin absorbing obstacle prob-
lems, we need to allow an integral operator N, similar to that of the weakly singular
operator M.

In this paper, we introduce a practical variant of the fully discrete computational
scheme of [13] for (2.3). In addition, we describe and analyse new methods to compute
approximate solutions on the exterior region R3 \ D̄ and the far field pattern.

Using the unique solution of w of (2.3) on the surface ∂D , solutions to the Helmholtz
problems on the exterior region R3 \ D̄ can be written in a unified way as

w(x) =

∫
∂D

m̃(x,y)w(y)ds(y) +

∫
∂D

ñ(x,y)h̃(y)ds(y), x ∈ R3 \ D̄, (2.7)

where the smooth kernel function m̃ is defined on (R3 \ D̄) × ∂D, with representation
analogous to m. For the Dirichlet problem ñ = 0 = h̃ and for the Neumann and Robin
problems ñ = Φ and h̃ = h. (See concrete representations (2.10), (2.14) and (2.17).)
Throughout the paper h̃ = h or 0.

Further, the far field pattern w∞ associated with the solution w of (2.3) gives a
unified representation of the far field pattern of the Helmholtz problems (see 2.12),
(2.15) and (2.18)). The general form of w∞ is given by

w∞(x̂) =

∫
∂D

mf (x̂,y)w(y)ds(y) +

∫
∂D

nf (x̂,y)h̃(y)ds(y), x̂ ∈ ∂B, (2.8)

where mf , nf are defined on ∂B × ∂D, and are linear combinations of e−ikx̂.y and
∂e−ikx̂.y/∂n(y).

2.2 Concrete surface integral representations

We now review various reformulations of the above exterior Helmholtz problems and
show that they are all of the general form (2.3). For this we need the single- and
double-layer operators:

Sψ(x) := 2

∫
∂D

Φ(x,y)ψ(y)ds(y), Kψ(x) := 2

∫
∂D

∂Φ(x,y)

∂n(y)
ψ(y)ds(y) , (2.9)

for x ∈ ∂D, ψ ∈ C(∂D), the space of all continuous functions on ∂D .

The Exterior Dirichlet Problem.
Following [8, p. 48], we can represent the solution u by

u(x) =

∫
∂D

{
∂Φ(x,y)

∂n(y)
− iγΦ(x,y)

}
v(y)ds(y), x ∈ R3 \ D̄, (2.10)

where v ∈ C(∂D) is found by solving:

v + Kv − iγSv = 2f. (2.11)
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Then, by using (1.6) in (2.10), the far field pattern is:

u∞(x̂) =
1

4π

∫
∂D

{
∂e−ikx̂.y

∂n(y)
− iγe−ikx̂.y

}
v(y)ds(y), x̂ ∈ ∂B. (2.12)

In (2.10)–(2.12), γ > 0 is an arbitrary positive constant. It is well known that direct
boundary integral formulations based on the Green’s formula (1.3) for general exterior
problems yield non-uniquely solvable surface integral equations for certain non-physical
values of k [7, 8, 18]. Hence, we used the indirect formulation above using the combined
layer potentials for the general exterior Dirichlet problem.

However, in the particular case of a direct scattering problem, with the Dirichlet
boundary data f in (2.1) given by a plane wave: f(x) = −uI(x) := −eikx.d̂ at a fixed
unit direction vector d̂, we may use the Green’s formula (1.3) to obtain the exterior
solution, known as the scattered field, denoted by uS. More precisely, using the fact
that the plane wave satisfies the Helmholtz equation on the whole of R3, and the total
field uT (:= uI + uS) and uS satisfy the exterior Helmholtz problem, v := ∂uT

∂n
satisfies

the boundary integral equation [8, p. 59]

v + K′v − iSv = 2
∂uI

∂n
− 2iuI , on ∂D (2.13)

where K′ denotes the normal derivative of S. Using the solution v of (2.13), the scattered
field uS on the exterior region R3 \ D̄, is:

uS(x) = −
∫

∂D

Φ(x,y)v(y)ds(y), x ∈ R3 \ D̄ , (2.14)

and the far field pattern of u is:

u∞(x̂) = − 1

4π

∫
∂D

e−ikx̂.yv(y)ds(y) x̂ ∈ ∂B. (2.15)

The Exterior Robin(Neumann) Problem.
Letting x → ∂D in (1.3), and using the jump relations of the layer potentials, we get

−u+ Ku− S
∂u

∂n
= 0 on ∂D .

Substituting (2.2), we obtain the boundary integral equation:

u−Ku− iµSu = −Sg on ∂D, µ > 0 (µ = 0). (2.16)

Throughout this paper for the exterior Robin (Neumann) Helmholtz problem, we assume
that k is not an interior Dirichlet eigenvalue. This ensures that (2.16) is uniquely
solvable ([7, p.98]) and the solution of the exterior Robin (Neumann) problem is:

u(x) =

∫
∂D

[
∂Φ(x,y)

∂n(y)
u(y) + iµΦ(x,y)u(y)− Φ(x,y)g(y)

]
ds(y), x ∈ R3 \ D̄ (2.17)

and the corresponding far field pattern is:

u∞(x̂) =
1

4π

∫
∂D

[
∂e−ikx̂.y

∂n(y)
u(y) + iµe−ikx̂.yu(y)− e−ikx̂.yg(y)

]
ds(y), x̂ ∈ ∂B. (2.18)
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In order to put (2.11), (2.13) and (2.16) into the general form discussed in Subsection
2.1, it is necessary ([8, 22]) to split write the single- and the double-layer acoustic
operators as follows:

Sψ(x) =
1

2π
[Scψ(x) + iSsψ(x)] , Kψ(x) =

1

2π
[Kcψ(x) + iKsψ(x)] , (2.19)

where

Scψ(x) :=

∫
∂D

1

|x− y|
Sc(x,y)ψ(y)ds(y); Ssψ(x) :=

∫
∂D

Ss(x,y)ψ(y)ds(y),

(2.20)

Kcψ(x) :=

∫
∂D

1

|x− y|
Kc(x,y)ψ(y)ds(y); Ksψ(x) :=

∫
∂D

Ks(x,y)ψ(y)ds(y).

(2.21)

Here the kernels Ss, Sc, Ks, Kc are:

Sc(x,y) := cos(k|x− y|), Ss(x,y) :=

{
sin(k|x− y|)|x− y|−1, if x 6= y
k if x = y

(2.22)

and

Kc(x,y) :=
(x− y)T n(y)

|x− y|2
Sc(x,y) + k(x− y)T n(y)Ss(x,y),

Ks(x,y) :=
(x− y)T n(y)

|x− y|2
[Ss(x,y)− kSc(x,y)] . (2.23)

Note that the kernels Sc, Ss, Kc, Ks are infinitely continuously differentiable on R3×R3.
Moreover, the normal derivative of the single layer operator should be represented

as

K′ψ(x) =
1

2π
[(Kc)′ψ(x)− i(Ks)′ψ(x)] , (2.24)

where

(Kc)′ψ(x) :=

∫
∂D

1

|x− y|
Kc(y,x)ψ(y)ds(y); (Ks)′ψ(x) :=

∫
∂D

Ks(y,x)ψ(y)ds(y).

(2.25)
Using (2.19)–(2.25), it is easy to see that equations (2.11), (2.13) and (2.16) are spe-

cial cases of the general boundary integral equation (2.3). Further the exterior solution
representations (2.10), (2.14) and (2.17) can be written in the general form (2.7) and
the three far field representations (2.12), (2.15) and (2.18) are special cases of (2.8).

From now on until the end of §3, we shall describe our algorithm for discretisation
of (2.3), computation of (2.7) and (2.8). In §4 we shall illustrate this general procedure
on a range of particular obstacle scattering Helmholtz boundary-value problems taken
from those reviewed above.

2.3 Boundary integral equation on the sphere

The main ingredient of our algorithm is the assumption that the domain D with bound-
ary ∂D can be described globally in spherical coordinates : Throughout the paper, we
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assume that there exists a bijective parametrisation map q : ∂B → ∂D so that the
following identity holds, for any integrable function ψ on ∂D:∫

∂D

ψ(x)ds(x) =

∫
∂B

ψ(q(x̂))J(x̂)ds(x̂) , (2.26)

where J is the Jacobian of q. (For non–trivial examples of such smooth and non–
smooth obstacles, see Figure 4.1.) We also assume that we know q and J analytically
(or suitably accurate approximations to them).

Throughout this paper, we use the notation x,y, z for points on the given surface
∂D and the corresponding transformed coordinates on ∂B are denoted by x̂, ŷ, ẑ, and
it is convenient to use spherical polar coordinates:

x̂ = p(θ, φ) := (sin θ cosφ, sin θ sinφ, cos θ)T . (2.27)

Using the bijective parametrisation map, the surface integral equation (2.3) can be
written as a equation on the unit sphere. More precisely, we have

w(q(x̂)) + Mw(q(x̂)) = [αI + N]h(q(x̂)) x̂ ∈ ∂B. (2.28)

Now, defining
W (x̂) = w(q(x̂)), H(x̂) = h(q(x̂)), x̂ ∈ ∂B, (2.29)

we can rewrite (2.28) as

W (x̂) +MW (x̂) = [αI +N ]H(x̂) x̂ ∈ ∂B. (2.30)

Here (and in rest of the paper), the combined layer operators M, N are integral oper-
ators on the unit sphere, with following details: For a given Ψ ∈ L2(∂B), and x̂ ∈ ∂B,
using (2.4)–(2.5),

MΨ(x̂) := [M1 +M2] Ψ(x̂), NΨ(x̂) := [N1 +N2] Ψ(x̂), (2.31)

with

M1Ψ(x̂) :=

∫
∂B

1

|x̂− ŷ|
M1(x̂, ŷ)Ψ(ŷ)ds(ŷ); M2ψ(x) :=

∫
∂B

M2(x̂, ŷ)Ψ(ŷ)ds(ŷ),

(2.32)

N1Ψ(x̂) :=

∫
∂B

1

|x̂− ŷ|
N1(x̂, ŷ)Ψ(ŷ)ds(ŷ); N2Ψ(x̂) :=

∫
∂B

N2(x̂, ŷ)Ψ(ŷ)ds(ŷ),

(2.33)

where using the representative kernel

R(x̂, ŷ) :=
|x̂− ŷ|

|q(x̂)− q(ŷ)|
, (2.34)

the kernels M1,M2, N1, N2 on ∂B × ∂B are given by

M1(x̂, ŷ) := R(x̂, ŷ)m1(q(x̂), q(ŷ))J(ŷ), M2(x̂, ŷ) := m2(q(x̂), q(ŷ))J(ŷ), (2.35)

N1(x̂, ŷ) := R(x̂, ŷ)n1(q(x̂), q(ŷ))J(ŷ), N2(x̂, ŷ) := n2(q(x̂), q(ŷ))J(ŷ). (2.36)
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2.4 Discrete spectral projection

We shall approximate the equation (2.30) in the (n+1)2-dimensional space of all spher-
ical polynomials of degree ≤ n, which we denote Pn. A convenient orthonormal basis
for Pn is the spherical harmonics:

Yl,j(x̂) = (−1)(j+|j|)/2

√
2l + 1

4π

(l − |j|)!
(l + |j|)!

P
|j|
l (cos θ) exp(ijφ), 0 ≤ l ≤ n, |j| ≤ l,

(2.37)

where we used the coordinates (2.27) and P
|j|
l are the associated Legendre functions.

Central to our algorithm is the fact that the spherical harmonics are eigenfunctions
of the single layer potential operator on the sphere [8]:∫

∂B

1

|x̂− ŷ|
Yl,j(ŷ)ds(ŷ) =

4π

2l + 1
Yl,j(x̂) , x̂ ∈ ∂B. (2.38)

The standard Galerkin method for (2.30) seeks an approximate solution Wn ∈ Pn,
satisfying

(Wn,Φn) + (MWn,Φn) = ([αI +N ]H,Φn) , for all Φn ∈ Pn, (2.39)

with (·, ·) denoting the usual inner product on ∂B. In practice, we have to approximate
this using cubature rules on ∂B of the form:∫

∂B

Ψ(x̂)ds(x̂) ∼=
m∑

j=1

ζjΨ(x̂j) =: QmΨ, Ψ ∈ C(∂B). (2.40)

From (2.40) we build a discrete version of the inner product on ∂B:

(Ψ1,Ψ2)m := Qm(Ψ1Ψ2) =
m∑

j=1

ζjΨ1(x̂j)Ψ2(x̂j) , Ψ1,Ψ2 ∈ C(∂B). (2.41)

In this paper we shall restrict to the specific 2(n+ 1)× (n+ 1)−point rectangle-Gauss
rule, given by: ∫

∂B

Ψ(x̂)ds(x̂) ∼=
2n+1∑
r=0

n+1∑
s=1

µrνsΨ(p(θs, φr)), (2.42)

with p(θ, φ) defined as in (2.27), θs = cos−1 zs, where zs, s = 1, . . . , n+1, are the zeros of
the Legendre polynomial of degree n+1, and νs, s = 1, . . . , n+1, are the corresponding
Gauss-Legendre weights and

µr =
π

n+ 1
, φr =

rπ

n+ 1
, r = 0, . . . , 2n+ 1 . (2.43)

The number of quadrature points m = 2(n + 1)2 in the above rule is twice the di-
mension of the approximation space Pn. Other “tensor-product” rules are also possible,
see the discussion in [13] and references therein. The rule (2.40) is exact for spherical
polynomials of degree 2n.

Corresponding to the discrete inner product (2.41), we have also a discrete orthogonal
projection operator Ln : C(∂B) → Pn, defined by

LnΨ =
n∑

l=0

∑
|j|≤l

(Ψ, Yl,j)mYl,j, Ψ ∈ C(∂B). (2.44)

The hyperinterpolation operator Ln satisfies LnΦn = Φn, for any Φn ∈ Pn [19].
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3 Fully discrete spectral approximations

Following [13], and with the help of the above cubature and the hyperinterpolation
procedures, we first introduce approximations to the integral operators (2.31) in the
space Pn.

3.1 Discrete integral operators

The operators M and N defined in (2.31)–(2.36) contain weakly singular components
M1 and N1 and smooth components M2 and N2. We approximate these in different
ways.

Weakly singular components

To deal with the weak singularity inM1,N1 , we introduce a change of coordinate system
on ∂B, that will yield transformed operators with kernels which are singular only at one
point on the sphere, namely the north pole. To this end, for each x̂ ∈ ∂B, we introduce
a 3× 3 orthogonal matrix Tx̂ which carries x̂ to the north pole: Tx̂x̂ = (0, 0, 1)T = n̂. If
x̂ = p(θ, φ), then an explicit form of Tx̂ is

Tx̂ := P (φ)Q(−θ)P (−φ), (3.1)

where P (ψ) and Q(ψ) are 3×3 matrices corresponding to positive rotations by ψ about
the z− axis and y−axis respectively,

P (ψ) :=

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 , Q(ψ) :=

 cosψ 0 sinψ
0 1 0

− sinψ 0 cosψ

 . (3.2)

The matrix Tx̂ is then continuous in x̂. At this point, it is useful to introduce an induced
linear transformation Tx̂ on C(∂B) as

Tx̂Ψ(ẑ) = Ψ(T−1
x̂ ẑ), ẑ ∈ ∂B, Ψ ∈ C(∂B). (3.3)

For coordinate transformation of the kernels in (2.34)–(2.36), it is convenient to intro-
duce a bivariate analogue of (3.3), also denoted Tx̂:

Tx̂Ψ(ẑ1, ẑ2) = Ψ(T−1
x̂ ẑ1, T

−1
x̂ ẑ2), ẑ1, ẑ2 ∈ ∂B , Ψ ∈ C(∂B × ∂B). (3.4)

For x̂, ẑ ∈ ∂B, if we write ŷ = T−1
x̂ ẑ, the orthogonality of Tx̂ yields a useful identity

|x̂− ŷ| =
∣∣T−1

x̂ (n̂− ẑ)
∣∣ = |n̂− ẑ| . (3.5)

We shall describe our approximation in detail only for the operator M1; the proce-
dure for N1 is analogous. Using (3.3), (3.4) and (3.5) and the fact that surface measure
on ∂B is invariant under orthogonal transformations, we can write M1 as

M1Ψ(x̂) =

∫
∂B

1

|n̂− ẑ|
Tx̂M1(n̂, ẑ)Tx̂Ψ(ẑ)ds(ẑ), Ψ ∈ C(∂B). (3.6)

There are two important gains from using the rotated coordinate system in (3.6). One
is that, if we now rewrite M1 using spherical polar coordinates, then it turns out not
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to have a singularity at all: for all ẑ = p(θ, φ) ∈ ∂B, the quantity |n̂− ẑ| = 2 sin(θ/2) is
cancelled out by the surface element ds(ẑ) = sin θdθdφ. Furthermore, it can be shown
that [13, Lemma 4.6] the map (θ, φ) → Tx̂M1(n̂,p(θ, φ)) is smooth.

The latter observation suggests that it may be reasonable to approximate the term
Tx̂M1(n̂, ẑ)Tx̂Ψ(ẑ) in (3.6) using a hyperinterpolation operator of the type defined in
(2.44). Let Ln′ be this hyperinterpolation operator, defined through a discrete inner
product (Ψ1,Ψ2)m′ := Q′

m′(Ψ1Ψ2), where, analogously to (2.40), Q′
m′ is a rule with

points and weights ẑq′ , and ηq′ , for q′ = 1, · · · ,m′, i.e.

Q′
m′Ψ =

m′∑
q′=1

ηq′Ψ(ẑq′) .

We assume this rule is exact for spherical polynomials of degree 2n′. Our approximation
M1,n′ to M1 in (3.6) is then defined as

M1,n′Ψ(x̂) :=

∫
∂B

1

|n̂− ẑ|
Ln′ {Tx̂M1(n̂, ·)Tx̂Ψ(·)} (ẑ)ds(ẑ) (3.7)

=
n′∑

l=0

∑
|j|≤l

4π

2l + 1
(Tx̂M1(n̂, ·)Tx̂Ψ(·), Yl,j(·))m′ Yl,j(n̂), (3.8)

where we used (2.44) (with n replaced by n′ and m replaced by m′) and (2.38). More
specifically,

M1,n′Ψ(x̂) =
n′∑

l=0

∑
|j|≤l

m′∑
q′=1

4π

2l + 1
ηq′Tx̂M1(n̂, ẑq′)Tx̂Ψ(ẑq′)Yl,j(ẑq′)Yl,j(n̂). (3.9)

Using the addition theorem for spherical harmonics [8], the representation for M1,n′ in
(3.9) can be simplified as

M1,n′Ψ(x̂) =
m′∑

q′=1

ηq′αn′

q′ Tx̂M1(n̂, ẑq′)Tx̂Ψ(ẑq′), Ψ ∈ C(∂B), (3.10)

where αn′

q′ :=
∑n′

l=0 Pl(n̂ · ẑq′). We note that for the (superalgebraic) convergence of
M1,n′ to M1 it is important to choose n′ > n (see Appendix and [13]). For rest of the
paper, we assume: n′ is dependent on n and n′(n) > n. (For our computations, we took
n′ = 2n.)

Similarly, we approximate N1 in (2.33) by

N1,n′Ψ(x̂) :=
m′∑

q′=1

ηq′αn′

q′ Tx̂N1(n̂, ẑq′)Tx̂Ψ(ẑq′), Ψ ∈ C(∂B), (3.11)

Smooth components

To approximate M2,N2 in (2.32)–(2.33), we write

M2Ψ(x̂) =

∫
∂B

Tx̂M2(n̂, ẑ)Tx̂Ψ(ẑ)ds(ẑ), Ψ ∈ C(∂B),
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and define an approximation M2,n′ for M2 as

M2,n′Ψ(x̂) :=

∫
∂B

Ln′ {Tx̂M2(n̂, ·)Tx̂Ψ(·)} (ẑ)ds(ẑ), Ψ ∈ C(∂B).

Using the definition of Ln′ and the orthonormality of the spherical harmonics,

M2,n′Ψ(x̂) = (Tx̂M2(n̂, ·)Tx̂Ψ(·), 1)m′ =
m′∑

q′=1

ηq′Tx̂M2(n̂, ẑq′)Tx̂Ψ(ẑq′). (3.12)

Similarly, we define

N2,n′Ψ(x̂) :=
m′∑

q′=1

ηq′Tx̂N2(n̂, ẑq′)Tx̂Ψ(ẑq′), Ψ ∈ C(∂B). (3.13)

Combining (3.10)–(3.13), we obtain the approximations to M,N :

Mn′Ψ(x̂) := [M1,n′ +M2,n′ ] Ψ(x̂), Nn′Ψ(x̂) := [N1,n′ +N2,n′ ] Ψ(x̂). (3.14)

3.2 Fully discrete approximations on the surface

Using the discrete operators in (3.14), our fully discrete scheme for (2.30), written in
operator form, is: find Wn ∈ Pn such that

Wn + LnMn′Wn = [αLn + LnNn′Ln]H. (3.15)

To implement this we set

Wn =
n∑

l=0

∑
|j|≤l

ωljYl,j, (3.16)

and compute the coefficients ωlj by solving the system:

(Wn, Yl′,j′)m + (Mn′Wn, Yl′,j′)m = α(H, Yl′,j′)m +
n∑

l=0

∑
|j|≤l

(Nn′Yl,j, Yl′,j′)m(H, Yl,j)m,

for l′ = 0, . . . , n, |j′| ≤ l′. (3.17)

Note that, written this way, our algorithm looks like a discrete Galerkin method.
However, it is shown in [13] that, after a simple transformation, it can also be written
as a variant of the Nyström method of Wienert (see [22], [8, p.83]), to be solved for a
slightly different dependent variable. The reason we do not use the Nyström formulation
is that in this case the corresponding linear system has a dimension about twice that of
the discrete Galerkin system considered here (see [13]).

Inserting (3.16) into (3.17) we see that ω := (ωlj) solves:

[I + M] ω = [αI + N]h, (3.18)

where for l, l′ = 0, . . . , n, |j| ≤ l, |j′| ≤ l′ the l′j′, lj entry of the matrices and the l′j′−th
component of h are given by

Ml′j′,lj = (Mn′Yl,j, Yl′,j′)m; Il′j′,lj = δl′lδj′j,

Nl′j′,lj = (Nn′Yl,j, Yl′,j′)m; hl′j′ = (H, Yl′,j′)m. (3.19)
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This scheme is a more practical variant of the one proposed in [13], where the approxi-
mation of the RHS layer operator in (2.30) was omitted. Here we use the fact that when
H is smooth, it will be sufficient to approximate it to the same accuracy as we expect
for the solution of (2.30).

We compute the corresponding approximation of the solution w of (2.3) by setting

wn(x) := Wn(x̂), x = q(x̂) ∈ ∂D. (3.20)

In the Appendix, Theorem A.1, we prove that wn converges superalgebraically to w.
More precisely, if the given data is smooth, then for any r > 0, the maximum error on
∂D, denoted by ‖w − wn‖∞,∂D, is of order O (n−r).

3.3 Implementation

To complete the practical description of the first part of our algorithm to compute
the density Wn of the combined approximate single–double layer acoustic operators, all
that remains is to describe the efficient computation of the d2 entries of the d× d layer
matrices M, N, given by (3.19), where d = (n+ 1)2. We show that these matrices can
be set up in O(d2.5) operations, even without using any fast transforms. As mentioned
in §1, in the main and most expensive part of the algorithm associated with rotated
harmonics, we describe below an efficient stable practical approach, different from the
ideas given in [13, 22].

It is sufficient to describe the details for the matrix M. Recall from (3.19), (2.41),
(3.14), (3.10), and (3.12) that for l, l′ = 0, . . . , n, |j| ≤ l, |j′| ≤ l′, we have

Ml′j′,lj =
m∑

q=1

ζq

m′∑
q′=1

ηq′

[
αn′

q′ Tx̂qM1(n̂, ẑq′) + Tx̂qM2(n̂, ẑq′)
]
Tx̂qYl,j(ẑq′)Yl′,j′(x̂q). (3.21)

Each entry of the d× d matrix M consists of the approximation of a double integral
over the surface ∂B and each integral over ∂B uses function evaluations at O(d) points,
so the complexity of assembly of M is potentially O(d4) = O(n8). We device an efficient
assembly algorithm which reduces this to O(d2.5) = O(n5). (Note that O(n4) would be
optimal complexity for the matrix assembly. We are willing to tolerate this complexity
growth since the method is superalgebraically convergent.)

Recalling that the quadrature rules on the sphere which we use are defined using
points of latitude and longitude (2.42), we write

(Ψ1,Ψ2)m =
2n+1∑
r=0

n+1∑
s=1

µrνsΨ1(p(θs, φr))Ψ2(p(θs, φr)),

(Ψ1,Ψ2)m′ =
2n′+1∑
r′=0

n′+1∑
s′=1

ξr′ηs′Ψ1(p(Θs′ ,Φr′))Ψ2(p(Θs′ ,Φr′))

and hence we can rewrite (3.21) as

Ml′j′,lj =
2n+1∑
r=0

n+1∑
s=1

µrνs

2n′+1∑
r′=0

n′+1∑
s′=1

ξr′ηs′

[
αn′

s′ Tp(θs,φr)M1(n̂,p(Θs′ ,Φr′))

+ Tp(θs,φr)M2(n̂,p(Θs′ ,Φr′))
]
Tp(θs,φr)Yl,j(p(Θs′ ,Φr′))Yl′,j′(p(θs, φr)), (3.22)
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where αn′

s′ =
∑n′

l=0 Pl (cos Θs′).
Since the approximation space Pn is invariant under rotations, the rotated spherical

harmonic Tp(θs,φr)Yl,j can be written as a linear combination of spherical harmonics
of degree l. However, the efficient and stable computation of the associated Fourier
coefficient matrices in this expansion (for all l = 0, · · · , n, |j| ≤ l, r = 0, · · · , 2n+1, s =
1, · · · , n+ 1) is required.

As in (3.3), for a given orthogonal matrix Ω, we denote the induced linear transfor-
mation by T (Ω), i.e. T (Ω)Ψ(ẑ) = Ψ(Ω−1ẑ). Using (3.1) and (3.2), we have

Tp(θs,φr) = T (P (φr))T (Q(−θs))T (P (−φr)). (3.23)

It is easy to check that positive rotation of Yl,j(θ, φ) by an angle β about the z−axis
(see (3.2)) yields Yl,j(θ, φ− β), equivalently

T (P (β))Yl,j = e−ijβYl,j. (3.24)

However, the representation of the rotated spherical harmonics about the y−axis is not
so simple as in (3.24). Using the fact that the result of rotating Yl,j is also a spherical
harmonic of the same degree (l), we can certainly write:

T (Q(α))Yl,j =
∑
|j̃|≤l

d
(l)

j̃j
(α)Yl,j̃, (3.25)

where d(l)(α) is the required (2l + 1) × (2l + 1) Fourier coefficient matrix. A possible
representation of this (see [2, p.22], [13]) is

d(l)(α)j̃j =
∑

t

(−1)t [(l + j̃)!(l − j̃)!(l + j)!(l − j)!]1/2

(l + j̃ − t)!(l − j − t)!t!(t+ j − j̃)!

(
cos

α

2

)2l+j̃−j−2t (
sin

α

2

)2t+j−j̃

,

(3.26)
with the sum over all t = 0, 1, · · · for which the arguments of the factorials are non–
negative. Further, we have the following symmetry properties [2, p.147]

d
(l)

j̃j
(α) = (−1)j̃−jd

(l)

jj̃
(α) = d

(l)

−j−j̃
(α) = d

(l)

jj̃
(−α). (3.27)

We found that computation of d(l) using the formula (3.26) for higher degree har-
monics (over 25) lead to a marked reduction in the accuracy of the computed solution,
due to the subtraction error arising from the fact that (3.26) contains many terms of
similar magnitude but with alternating signs. To find an efficient and stable formula
for representing Tp(θs,φr)Yl,j as a linear combination of spherical harmonics which both
exploits the simple formula (3.24) but avoids the difficulties associated with (3.25) and
(3.26), we proceed as follows.

Using (3.2) we rewrite Q(−θs) as

Q(−θs) = P (π/2)Q(π/2)P (−θs)Q(−π/2)P (−π/2). (3.28)

Hence from (3.23), with Γ±Z = T (P (±π/2)) and Γ±Y = T (Q(±π/2)), we get

Tp(θs,φr) = T (P (φr)) Γ+
Z Γ+

Y T (P (−θs)) Γ−Y Γ−Z T (P (−φr)). (3.29)
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Using (3.24), (3.25), (3.29) and the fact that d
(l)

j̃j
(π/2) = d

(l)

jj̃
(−π/2) (see (3.27)), it can

be shown that
Tp(θs,φr)Yl,j =

∑
|j̃|≤l

Fslj̃je
i(j−j̃)φrYl,j̃, (3.30)

where
Fslj̃j = ei(j−j̃)π/2

∑
|m|≤l

d
(l)

j̃m
(π/2)d

(l)
jm(π/2)eimθs . (3.31)

In order to compute the (2l + 1)× (2l + 1) matrix Fsl, we observe from (3.26) that

d
(l)

j̃j
(π/2) = 2−l

[
(l + j̃)!(l − j̃)!

(l + j)!(l − j)!

]1/2 l+j̃∑
t=0

(−1)t

(
l + j

l + j̃ − t

) (
l − j
t

)

= 2j̃

[
(l + j̃)!(l − j̃)!

(l + j)!(l − j)!

]1/2

P
(j−j̃,−j−j̃)
l+j̃

(0) , (3.32)

where for given q (= l + j̃ ≥ 0) and non-negative integers a (= j − j̃), b (= −j − j̃),

P
(a,b)
q (0) is the normalized Jacobi polynomial evaluated at zero [21, p.68]:

P (a,b)
q (0) = 2−q

q∑
t=0

(−1)t

(
q + a
q − t

) (
q + b
t

)
. (3.33)

For j − j̃ < 0 or −j − j̃ < 0, we can compute d(l)(π/2)j̃j using the symmetry relation

(3.27) together with the identity (3.32) for the case j̃ ≤ 0, |j| ≤ −j̃. Note that the final

formula (3.32) for d
(l)

j̃,j
(φ/2) now contains no possibility of subtraction error.

If we denote x̂rs = p(θsφr), ŷr′,s′
rs = T−1

p(θs,φr)p(Θs′ ,Φr′) and the normalized coefficient

of Yl,j in (2.37) by cjl , using (3.24) and (2.37) in (3.22), we get

Ml′j′,lj =
2n+1∑
r=0

n+1∑
s=1

µrνs

2n′+1∑
r′=0

n′+1∑
s′=1

ξr′ηs′

[
αn′

s′M1(x̂rs, ŷ
r′s′

rs ) +M2(x̂rs, ŷ
r′s′

rs )
]

×
∑
|j̃|≤l

ei(j−j̃)φrFslj̃jc
j̃
lP

|j̃|
l (cos Θs′)eij̃Φr′cj

′

l′P
|j′|
l′ (cos θs)e

−ij′φr . (3.34)

Thus, the combined acoustic layer d×d matrix M with O(n4) elements, can be set up by
successively computing each of the following arrays depending on the four labels (each
of which is sum with at most 2n′ + 2 elements) can be computed in O(n5) = O(d2.5)
operations:

E1
srs′j̃

=
2n′+1∑
r′=0

ξr′M1(x̂rs, ŷ
r′s′
rs )eij̃Φr′ , E2

srs′j̃
=

2n′+1∑
r′=0

ξr′M2(x̂rs, ŷ
r′s′
rs )eij̃Φr′ ,

Dsrlj̃ =
n′+1∑
s′=1

ηs′

[
αn′

s′E1
srs′j̃

+ E2
srs′j̃

]
cj̃lP

|j̃|
l (cos Θs′),

Csrlj =
∑
|j̃|≤l

Dsrlj̃e
i(j−j̃)φrFslj̃j, Bsj′lj =

2n+1∑
r=0

Csrljµre
−ij′φr ,

Ml′j′,lj =
n+1∑
s=1

Bsj′ljνsc
j′

l′P
|j′|
l′ (cos θs).
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The arrays E1, E2, are computed, stored, used to compute D and can then be dis-
carded. Then arrays D,C,B and M are computed from each other in a similar way.
The result is an algorithm of complexity O(n5).

The fast Fourier transform (FFT) can be used to speed up the calculation of the
above arrays in the longitudinal direction and for calculating F in (3.31). Further, for
spherical harmonics of degrees over 100, the fast transform for spherical harmonics (or
fast Legendre transform along the latitudinal direction, see [17] and references therein)
can be used to reduce the complexity. (For the computational results presented in §4,
we used only the FFT, since in our superalgebraically convergent algorithm, spherical
harmonics of degree less than 100 are enough to achieve good accuracy even for large
acoustic obstacles of size up to 24 times the wavelength.)

In the next two subsections, we describe the second part of our algorithm to compute
approximate scattered and far fields using the approximate density Wn of the combined
single–double layer acoustic operators.

3.4 Fully discrete approximations on the exterior region

We outline how our numerical solution of the surface integral equation (2.3) can be used
to obtain approximate PDE solutions in the exterior by approximating (2.7). The exact
solutions on the exterior region, given by (2.10), (2.14) and (2.17) can be written in the
general form

w(x) =

∫
∂D

[
m̃(x,y)w(y) + ñ(x,y)h̃(y)

]
ds(y)

=

∫
∂B

[
M̃x(ŷ)W (ŷ) + Ñx(ŷ)H̃(ŷ)

]
ds(ŷ), x ∈ R3 \ D̄, (3.35)

where for each fixed x ∈ R3 \ D̄, the smooth functions M̃x, Ñx and H̃ are defined, for
ŷ ∈ ∂B, as

M̃x(ŷ) := m̃ (x, q(ŷ)) J(ŷ); Ñx(ŷ) := ñ (x, q(ŷ)) J(ŷ), H̃(ŷ) = h̃(q(ŷ)), (3.36)

and W is the unique solution of (2.30).
Since we can compute a superalgebraic approximation Wn to W , given by (3.16), and

since smooth data H̃ on ∂B can be well approximated by LnH̃, a natural approximation
wn(x) to w(x), x ∈ R3 \ D̄ is given by

wn(x) =

∫
∂B

[
M̃x(ŷ)Wn(ŷ) + Ñx(ŷ)LnH̃(ŷ)

]
ds(ŷ),

=
n∑

l=0

∑
|j|≤l

{
ωlj

∫
∂B

M̃x(ŷ)Yl,j(ŷ)ds(ŷ) + h̃lj

∫
∂B

Ñx(ŷ)Yl,j(ŷ)ds(ŷ)

}
, (3.37)

where ωlj is the solution of (3.18) and h̃lj = (H̃, Yl,j)m.
However, since the integrals in (3.37) cannot be evaluated analytically, wn is not a

practically computable approximation. We resolve this problem by instead computing
the fully discrete approximation (again denoted by wn) given by the formula

wn(x) =
n∑

l=0

∑
|j|≤l

{
ωlj

∫
∂B

(LnM̃x)(ŷ)Yl,j(ŷ)ds(ŷ) + h̃lj

∫
∂B

(LnÑx)(ŷ)Yl,j(ŷ)ds(ŷ)

}
,

(3.38)

17



where Ln : C(∂B) → Pn, is the conjugate form of the discrete operator in (2.44), defined
as

LnΨ =
n∑

l=0

∑
|j|≤l

(Ψ, Y l,j)mY l,j, Ψ ∈ C(∂B). (3.39)

Using (3.39), the orthonormality of spherical harmonics and (2.41), we get

wn(x) =
n∑

l=0

∑
|j|≤l

{
ωlj

(
M̃x, Y l,j

)
m

+ h̃lj

(
Ñx, Y l,j

)
m

}
=

n∑
l=0

∑
|j|≤l

{
ωljM̃

m
lj (x) + h̃ljÑ

m
lj (x)

}
, x ∈ R3 \ D̄, (3.40)

where for l = 0, · · · , n, |j| ≤ l, the quantities M̃m
lj (x) :=

∑m
q=1 ζqM̃x(x̂q)Yl,j(x̂q) and

Ñm
lj (x) :=

∑m
q=1 ζqÑx(x̂q)Yl,j(x̂q) can be pre-computed, independently of the assembly

of (3.18).

3.5 Fully discrete approximations of far field patterns

Our approach to compute approximations, denoted by wn,∞, to the far field pattern w∞
in (2.8) is analogous to the exterior region computation described in §3.4. The main
changes are to replace M̃x, Ñx by M f

x̂ , N
f
x̂ , x̂ ∈ ∂B, where

M f
x̂ (ŷ) := mf (x̂, q(ŷ)) J(ŷ); N f

x̂ (ŷ) := nf (x̂, q(ŷ)) J(ŷ), ŷ ∈ ∂B. (3.41)

Thus our fully discrete approximation to the far field pattern w∞ of the solution w of
(2.7) at any given direction x̂ ∈ ∂B is defined as

wn,∞(x̂) :=
n∑

l=0

∑
|j|≤l

{
ωljM

f,m
lj (x̂) + h̃ljÑ

f,m
lj (x̂)

}
, x ∈ R3 \ D̄, (3.42)

where for l = 0, · · · , n, |j| ≤ l, the quantities M f,m
lj (x̂) :=

∑m
q=1 ζqM

f
x̂ (x̂q)Yl,j(x̂q) and

N f,m
lj (x̂) :=

∑m
q=1 ζqN

f
x̂ (x̂q)Yl,j(x̂q).

We prove in the Appendix, under suitable conditions, the superalgebraic convergence
of wn to the solution w of (2.3) on the exterior region, and of the approximate far field
pattern wn,∞ to the actual far field pattern w∞ (see Theorems A.2 and A.3). The results
((A.3), (A.7) and (A.11)) suggest that to compute accurate approximate solutions, it
should be enough set up and solve relatively small d = (n + 1)2 dimensional systems
of the form (3.18). In practice we found that n ≤ 20 is sufficient for frequencies in the
resonance region and n < 100 for high frequency scattering (with wavelengths about
0.04 times the size of obstacles). In contrast, for high frequency scattering, algorithms
[3, 4, 20] require about a quarter to half a million unknowns (but of course these latter
algorithms use efficient fast techniques such as the multipole algorithm to create practical
codes).
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4 Numerical experiments

In this section, we use our algorithm to compute scattered and far fields induced by plane
waves impinging on a variety of smooth and non–smooth (sound–soft, sound–hard and
absorbing) three dimensional obstacles with Dirichlet, Neumann and Robin boundary
conditions. We consider frequencies in the resonance region (with size of the obstacle
close to one wavelength) as well as large obstacles with acoustic size up to 24 times
the wavelength. We compare the efficiency of our algorithm (denoted by (GG) in the
tables below) with other recent algorithms for this problem [3, 4, 6, 20]. In particular,
our main comparison is with a recent algorithm of Bruno and Kunyansky (BK) which
has been applied in [3, 4] to the exterior Helmholtz equation with Dirichlet boundary
condition . The BK algorithm has been demonstrated in [3, 4] to be very competitive in
comparison with other recent codes such as [20] and [6] (although the latter algorithms
are for electromagnetic scattering).

For numerical experiments, we use various smooth and non–smooth obstacles with
diameter siz obs. These include spherical, ellipsoidal, bean, peanut, ogive, NASA al-
mond and cone–sphere shaped three dimensional domains with corresponding surfaces
denoted respectively by sph(siz obs), ell(a, b, c), bean(siz obs), pea(siz obs, α),
ogive(siz obs), NASA alm(siz obs) and cone sph(siz obs).

For the ellipsoid, the x, y, z axes diameters are respectively a, b, c so that siz obs =
max{a, b, c}. The bean shaped obstacle bean(siz obs) is defined using a radius param-
eter R (with siz obs = 2R) by the equation [3]

x2

0.64
(
1− 0.1 cos πz

R

) +

(
0.3R cos πz

R
+ y

)2

0.64
(
1− 0.4 cos πz

R

) + z2 = R2.

The peanut shaped obstacle with siz obs = 1 and angle parameter α is defined
implicitly as:

x2 +
y2

4
+ z2 = R(z, α),

where

R(z, α) = c(α)−1
[
p(z) +

√
α+ p2(z)

]
, p(z) = 2z2−1, c(α) = 4

(
1 +

√
α+ 1

)
.

The parameter α > 0 in pea(siz obs, α) determines the narrowness in the middle of the
peanut shape, and as α→ 0 the surface becomes more constricted along its equator in
the plane z = 0.

The ogive, NASA almond and cone–sphere obstacles are defined and used as bench-
mark radar targets for electromagnetic scattering in [23]. These targets can be described
using the spherical coordinate system as below (see Figure 4.1):

ogive(10) =
{
(qo

1(θ), q
o
2(θ, φ), qo

3(θ, φ)) ∈ R3 : 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π
}
,

where

qo
1(θ) = −5 + 10θ/π, qo

2(θ, φ) = f(θ) cos(φ− π)/do, qo
3(θ, φ) = f(θ) sin(φ− π)/do,

f(θ) =
√

1− (qo
1(θ)/5)2 sin2(22.62o)− 1 + do, do = 1− cos(22.62o).
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NASA alm(9.936) =
{
(qa

1(θ), q
a
2(θ, φ), qa

3(θ, φ)) ∈ R3 : 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π
}
,

where

qa
1(θ) = dat, t = −αa + θ/π, da = 9.936, αa = 0.41667, βa = 2.08335, γa = 0.96,

with g(t, a) =
√

1− (t/a)2, ψ = φ− π, for −αa ≤ t ≤ 0,

qa
2(θ, φ) = 0.193333 dag(t, αa) cos(ψ), qa

3(θ, φ) = 0.064444 dag(t, αa) sin(ψ),

and for 0 < t ≤ 0.58333

qa
2(θ, φ) = 4.83345 da [g(t, βa)− γa] cos(ψ), qa

3(θ, φ) = 1.61115 da [g(t, βa)− γa] sin(ψ).

cone sph(27.127) =
{
(qc

1(θ), q
c
2(θ, φ), qc

3(θ, φ)) ∈ R3 : 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π
}
,

where

qc
1(θ) = t, t = −αc + θ(βc + αc)/π, αc = 23.821, βc = 3.306, γc = 2.947,

with h1(t) = γc

√
1− ((t− 0.359)/γc)2, h2(t) = h1(0)(t+ αc)/αc, ψ = φ− π,

qa
2(θ, φ) = h2(t) cos(ψ), qa

3(θ, φ) = h2(t) sin(ψ), for − αc ≤ t ≤ 0,

qa
2(θ, φ) = h1(t) cos(ψ), qa

3(θ, φ) = h1(t) sin(ψ), for 0 < t ≤ βc.

We considered sound–soft, sound–hard and absorbing acoustic scattering problems
induced by plane waves with various incident directions and computed the resulting
scattered and far fields over a thousand observed directions. Throughout this section,
for the plane waves case, the exact far field is denoted by upw

∞ and the approximated
far field pattern, computed using the solution Wn described in §§ 3.2, 3.5 is denoted by
upw

n,∞.
We know the analytical representation of upw

∞ only for the sound–soft sphere case,
so for plane wave scattering from other objects we are unable to compute exact errors.
Thus, in order to calculate errors and demonstrate the convergence of our algorithm in
the case of other scatterers, we compute the far field induced by an off–centre source
of radiation inside all our experimental scatterers. We used the Dirichlet, Neumann
and Robin boundary conditions induced on the scatterers by the off-centre point source
located inside the obstacle at a distance 0.1 from the origin in the direction θ = 30o, φ =
90o. In this case the exact solution is known, it is the field created by the source itself.
For the point source radiation case, we denote corresponding exact far field by u∞ and
our computed far field by un,∞. For the case of non–spherical acoustic scattering, for
comparison with [3, 4, 5], we will present maximum norm errors for the far field induced
by the point source radiation.

A convergence study of this type gives a good demonstration of the efficiency of
an acoustic scattering algorithm based on solving integral equations. However, to get
a firm idea of accuracy, it is also practically important to study the convergence of
far fields induced by plane waves, for example by fixing some forward and backward
incident and observed directions. Such convergence results have been tabulated for
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two–dimensional non–spherical scattering in [8, p.72]. Accordingly, following [3, 4, 5]
and [8], we also give an extensive convergence study of far fields induced by plane wave
incident fields. Here we do not give a comparison with other methods (this case is not
reported in [3, 4, 5]). However we remark that (as one may observe from results below
for ellipsoidal obstacles), one may get faster convergence in the far field induced by a
point source than for that induced by a plane wave with the same frequency. This is
naturally due to the less oscillatory behaviour of the boundary data induced by the
former. Hence a convergence study of both cases seems to be necessary in order to get
a good idea of how an algorithm will perform in practice.

In order to demonstrate superalgebraic convergence in the supremum norm, we com-
puted the errors ‖upw

∞ − upw
n,∞‖∞ (for spherical obstacles) and ‖u∞ − un,∞‖∞, by taking

the maximum of errors obtained over 1300 observed directions. Similar to other algo-
rithms, our computational (and theoretical) convergence results depend on the shape
and acoustic size (k × siz obs) of a chosen obstacle. As in [3, 4, 5], our results below
demonstrate that spherical and ellipsoidal obstacles require fewer degrees of freedom
compared to the bean (and peanut) shaped obstacle and that the number of unknowns
is dictated by the acoustic size k×siz obs (or equivalently by siz obj/λ, where λ = 2π/k
is the wavelength).

We used a direct (LU–factorization) solver for the resulting full complex matrix sys-
tems. The linear systems which we have to solve, although dense, are sufficiently small
so that we could use a direct solver (dimension about 9000 is the largest system solved
in this paper). The CPU times given in this work are compared with results obtained
using a GMRES solver in [3, 4, 5]. The memory requirement in our computations is es-
sentially dominated by allocating memory for a d× d full complex matrix. Accordingly,
memory allocation in our algorithm is not as efficient as in [3, 4, 5].

In the tabulated results, the L2 norm relative pointwise RMS error in |upw
∞ (x̂)|2,

denoted by ε%, the relative L2 norm, denoted by ε2 and the maximum norm ε∞ are
defined as [3]

ε% = 100

{
1

4π

∫
∂B

[(
|upw
∞ (x̂)|2 −

∣∣upw
n,∞(x̂)

∣∣2) /
|upw
∞ (x̂)|2

]2

ds(x̂)

}1/2

, (4.1)

ε2 =

{∫
∂B

∣∣upw
∞ (x̂)− upw

n,∞(x̂)
∣∣2 ds(x̂)

}1/2
/{∫

∂B

∣∣upw
n,∞(x̂)

∣∣2 ds(x̂)

}1/2

, (4.2)

ε∞ = ‖upw
∞ − upw

n,∞‖∞. (4.3)

4.1 Sound–soft smooth obstacle scattering problems

For the exterior Helmholtz problem with Dirichlet boundary conditions, we computed
results using the indirect formulation (2.10)–(2.12) with γ = siz obs/λ. This is a stan-
dard choice - see, e.g. [3]. The tables below demonstrate the high–order accuracy of
our algorithm. Indeed in several places convincing exponential convergence is observed,
even for small values of n. We compare also the performance of our algorithm with other
state–of–the–art high–order scattering algorithms [3, 4, 6, 20]. As in [3, 4], we compare
our CPU time with only the matrix setup time reported in [6] for the FastScat and FISC
algorithms (and we computed ε% from εdB errors measured in decibels using the relation
ε% ≈ 10ln(10)εdB, see [3, p. 108]). The CPU time reported for our algorithm is for the
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combined setup and solve phases of the algorithm. However, it should be noted that
(as acknowledged in [3]), the FastScat and FISC calculations are for electromagnetic
scattering.

In Figures 4.4 and 4.5, we visualise the real part and intensity of the total field
induced by a plane wave striking a peanut–shaped sound–soft obstacle of diameter 16λ,
as depicted in Figures 4.2 and 4.3.

Scattering by sound–soft obstacles of size 1.0λ

sph(1.0λ) sph(1.0λ) ell(1.0λ, 0.75λ, 0.50λ) ell(1.0λ, 0.25λ, 0.25λ)
k = 6.283185 k = 6.283185 k = 0.785398 k = 0.785398

n ‖upw
∞ − upw

n,∞‖∞ ‖u∞ − un,∞‖∞ ‖u∞ − un,∞‖∞ ‖u∞ − un,∞‖∞
05 2.93139 E-03 9.7817 E-05 2.94689 E-03 2.88196 E-02
10 2.23937 E-10 4.8117 E-13 4.47165 E-06 1.88838 E-03
15 6.22260 E-14 2.5713 E-14 1.32438 E-08 8.97334 E-05

Scattering by sound–soft obstacles of size 1.0λ

bean(1.0λ) pea(1.0λ, 1.0) pea(1.0λ, 0.25)
k = 1.570796 k = 6.283185 k = 6.283185

n ‖u∞ − un,∞‖∞ ‖u∞ − un,∞‖∞ ‖u∞ − un,∞‖∞
10 5.85399 E-03 8.93979 E-04 3.10283 E-02
15 2.06106 E-04 1.11009 E-05 2.86259 E-03
20 1.84441 E-05 7.73015 E-08 1.98638 E-04

Performance of GG (present), BK [3, 4], FastScat [6] algorithms

Scattering of a plane wave eikx̂.d̂ by a sound–soft sphere of diameter 5.4λ

Algorithm Unknowns Computer CPU time ε% ε2 ε∞
FastScat 5400 Sparc 10 1953 secs 2.23% - -

(Nystrom) (setup)
FastScat 5400 Sparc 10 38803 secs 0.48% - -

(Galerkin) (setup)
BK 5430 Pentium II 1430 secs 0.0025% - -

Xeon 400 MHz
GG 676 SGI Origin 62 secs 0.0002% 1.0 E-06 3.2 E-06

(n = 25) 2400, 400 MHz
BK 93726 Pentium II > 16 hours∗ - 5.6 E-09 1.6 E-08

Xeon 400 MHz
GG 961 SGI Origin 178 secs 2.3 E-09% 1.3 E-11 3.3 E-11

(n = 30) 2400, 400 MHz

* – approximately, based on 16 hours CPU time for solutions with 87318 unknowns (see
[3, 4] or results below for scattering of a plane wave by a sphere of diameter 24λ).
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Scattering by sound–soft obstacles of size 8.0λ

sph(8.0λ) sph(8.0λ) ell(8.0λ, 6.0λ, 4.0λ) ell(8.0λ, 2.0λ, 2.0λ)
k = 50.265482 k = 50.265482 k = 6.283185 k = 6.283185

n ‖upw
∞ − upw

n,∞‖∞ ‖u∞ − un,∞‖∞ ‖u∞ − un,∞‖∞ ‖u∞ − un,∞‖∞
30 2.30724 E-03 1.1819 E-12 2.00653 E-06 4.49177 E-04
35 7.85715 E-07 9.0183 E-13 3.97078 E-10 9.76850 E-06
40 4.01820 E-11 6.5099 E-13 1.28945 E-12 4.78929 E-07

Scattering by sound–soft obstacles of size 8.0λ

bean(8.0λ) pea(8.0λ, 1.0) pea(8.0λ, 0.25)
k = 12.566370 k = 50.265482 k = 50.265482

n ‖u∞ − un,∞‖∞ ‖u∞ − un,∞‖∞ ‖u∞ − un,∞‖∞
50 9.85025 E-05 4.94508 E-03 8.58038 E-03
55 3.74617 E-06 3.47032 E-04 1.51612 E-03
60 1.01728 E-07 1.58223 E-05 1.03131 E-04

Scattering by sound–soft obstacles of size 16.0λ

sph(16.0λ) sph(16.0λ) ell(16.0λ, 12.0λ, 8.0λ) ell(16.0λ, 4.0λ, 4.0λ)
k = 100.530964 k = 100.530964 k = 12.566370 k = 12.566370

n ‖upw
∞ − upw

n,∞‖∞ ‖u∞ − un,∞‖∞ ‖u∞ − un,∞‖∞ ‖u∞ − un,∞‖∞
50 6.16346 E-01 3.0132 E-12 7.09172 E-04 4.78117 E-03
55 1.32466 E-02 3.0376 E-12 2.71990 E-06 6.31451 E-05
60 4.42319 E-05 2.6661 E-12 2.09927 E-09 1.27233 E-06

Scattering by sound–soft obstacles of size 16.0λ

bean(16.0λ) pea(16.0λ, 1.0) pea(16.0λ, 0.25)
k = 25.132741 k = 100.530964 k = 100.530964

n ‖u∞ − un,∞‖∞ ‖u∞ − un,∞‖∞ ‖u∞ − un,∞‖∞
80 2.56078 E-03 2.17945 E-01 2.00576 E-01
85 3.12683 E-04 8.30092 E-02 9.63539 E-02
90 2.30818 E-05 2.04694 E-02 3.52205 E-02

Scattering by sound–soft obstacles of size 24.0λ

sph(24.0λ) sph(24.0λ) ell(24.0λ, 18.0λ, 12.0λ) ell(24.0λ, 6.0λ, 6.0λ)
k = 150.796447 k = 150.796447 k = 18.849556 k = 18.849556

n ‖upw
∞ − upw

n,∞‖∞ ‖u∞ − un,∞‖∞ ‖u∞ − un,∞‖∞ ‖u∞ − un,∞‖∞
80 3.41556 E-02 2.7120 E-11 2.27858 E-06 8.98950 E-05
85 2.86857 E-04 2.7828 E-11 4.58837 E-09 5.22077 E-07
90 8.21942 E-07 2.7820 E-11 2.93156 E-11 4.06458 E-09

23



Scattering of a plane wave eikx̂.d̂ by non-spherical sound–soft obstacles

Solution: Far Field upw
n,∞(d̂, x̂), upw

n,∞(−d̂, x̂), d̂ = [1, 0, 0], x̂ = [1, 1, 1]/
√

3

Real Imag Real Imag

Obstacle n (upw
n,∞(d̂, x̂)) (upw

n,∞(d̂, x̂)) (upw
n,∞(−d̂, x̂)) (upw

n,∞(−d̂, x̂))
bean 50 -1.211638040 -0.425347893 -0.703082440 -0.037623628
(8λ) 55 -1.211638015 -0.425347908 -0.703082439 -0.037623683

k = 12.5664 60 -1.211638014 -0.425347908 -0.703082438 -0.037623685
bean 80 -0.763292922 -1.023656471 -0.524025819 0.098107599
(16λ) 85 -0.763292757 -1.023655960 -0.524025618 0.098107454

k = 25.1327 90 -0.763292738 -1.023655946 -0.524025593 0.098107445
pea 50 -0.010761380 0.059509554 -0.145594464 -0.113147447

(8λ, 0.25) 55 -0.010788151 0.059517472 -0.145612450 -0.113153591
k = 50.2655 60 -0.010790682 0.059517694 -0.145613620 -0.113154213

pea 80 -0.180243971 -0.083941927 -0.207550479 -0.371539315
(16λ, 0.25) 85 -0.180277359 -0.082725639 -0.207005811 -0.369927890
k = 100.5310 90 -0.180039932 -0.082676548 -0.206769636 -0.369908324

ell 50 0.842667688 1.188820559 0.160488626 0.846546412
(16λ, 12λ, 8λ) 55 0.841248724 1.187593680 0.160922430 0.846980635
k = 12.5664 60 0.841255001 1.187587092 0.160924812 0.846977625

ell 80 -1.400743352 0.300790376 -0.769442036 -0.383459664
(24λ, 18λ, 12λ) 85 -1.400745575 0.300780793 -0.769440067 -0.383456025
k = 18.8486 90 -1.400745555 0.300780760 -0.769440053 -0.383456047

Performance of GG (present), BK [3, 4], FISC [20] algorithms

Scattering of a plane wave eikx̂.d̂ by a sound–soft sphere of diameter 24λ

Algorithm Unknowns Computer CPU time ε% (RMS error)

FISC 602112 SGI Power 12 hours 6.9%
Challenge R8000

BK 26214 Pentium II 6.5 hours 0.18%
Xeon 400 MHz

BK 87318 Pentium II 16 hours 0.0014%
Xeon 400 MHz

GG 6889 SGI Origin 5.8 hours 0.19%
(n = 82) 2400, 400 MHz

GG 7744 SGI Origin 9.3 hours 0.0011%
(n = 87) 2400, 400 MHz
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Performance of GG (present) and BK [5] algorithms

Scattering by sound–soft non–spherical obstacles

Obstacle Algorithm Unknowns Computer CPU time ‖u∞ − un,∞‖∞

BK 265020 AMD 1600+ 494 mins 1.3 E-05
ell 1.4 GHz

(16λ, 12λ, 8λ) GG 3136 SGI Origin 47 mins 2.7 E-06
(n = 55) 2400, 400 MHz

BK 199536 AMD 1600+ 675 mins 1.4 E-04
ell 1.4 GHz

(16λ, 4λ, 4λ) GG 3136 SGI Origin 47 mins 6.3 E-05
(n = 55) 2400, 400 MHz

BK 238646 AMD 1600+ 1003 mins 1.7 E-05
bean 1.4 GHz
(16λ) GG 8649 SGI Origin 777 mins 7.9 E-06

(n = 92) 2400, 400 MHz

BK 265020 AMD 1600+ 858 mins 9.3 E-06
ell 1.4 GHz

(24λ, 18λ, 12λ) GG 6561 SGI Origin 336 mins 2.3 E-06
(n = 80) 2400, 400 MHz

BK 199536 AMD 1600+ 720 mins 2.6 E-04
ell 1.4 GHz

(24λ, 6λ, 6λ) GG 6561 SGI Origin 335 mins 9.0 E-05
(n = 80) 2400, 400 MHz
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4.2 Sound–hard smooth obstacle scattering problems

The following selected results demonstrate the power of our algorithm for computations
in the resonance and high frequency regions for three dimensional exterior Neumann
problems for both the point source radiation and plane wave acoustic scattering.

Scattering by sound–hard obstacles of size 1.1λ - Neumann

bean(1.1λ) pea(1.1λ, 1.0) pea(1.1λ, 0.25)
k = 1.727876 k = 6.911504 k = 6.911504

n ‖u∞ − un,∞‖∞ ‖u∞ − un,∞‖∞ ‖u∞ − un,∞‖∞
10 7.11578 E-02 1.57695 E-03 2.28875 E-02
15 4.66991 E-03 1.16830 E-05 1.48284 E-03
20 5.56065 E-04 7.07394 E-08 1.22790 E-04

Scattering by sound–hard obstacles of size 8.1λ - Neumann

bean(8.1λ) pea(8.1λ, 1.0) pea(8.1λ, 0.25)
k = 12.723450 k = 50.893801 k = 50.893801

n ‖u∞ − un,∞‖∞ ‖u∞ − un,∞‖∞ ‖u∞ − un,∞‖∞
50 2.95234 E-04 8.25592 E-06 1.10301 E-03
55 1.21654 E-05 2.17825 E-07 7.55252 E-05
60 3.59514 E-07 4.05182 E-09 7.38611 E-06

Scattering by sound–hard obstacles of size 16.0λ - Neumann

bean(16.0λ) pea(16.0λ, 1.0) pea(16.0λ, 0.25)
k = 25.132741 k = 100.530964 k = 100.530964

n ‖u∞ − un,∞‖∞ ‖u∞ − un,∞‖∞ ‖u∞ − un,∞‖∞
80 4.20005 E-03 1.44818 E-04 3.40975 E-02
85 3.45799 E-04 8.49506 E-06 1.10705 E-02
90 2.70156 E-05 4.22015 E-07 2.43972 E-03

Scattering of a plane wave eikx̂.d̂ by sound–hard obstacles - Neumann

Solution: Far Field upw
n,∞(d̂, x̂), upw

n,∞(−d̂, x̂), d̂ = [1, 0, 0], x̂ = −[1, 1, 1]/
√

3

Real Imag Real Imag

Obstacle n (upw
n,∞(d̂, x̂)) (upw

n,∞(d̂, x̂)) (upw
n,∞(−d̂, x̂)) (upw

n,∞(−d̂, x̂))
bean 50 0.415261424 -0.505277949 0.438549342 -1.338746349
(8.1λ) 55 0.415257586 -0.505270217 0.438545727 -1.338751789

k = 12.7235 60 0.415257617 -0.505270015 0.438545604 -1.338751798
bean 80 0.559103508 -0.245076660 -0.291237321 -1.378483777

(16.0λ) 85 0.559127902 -0.245065203 -0.291245398 -1.378511528
k = 25.1327 90 0.559128870 -0.245064721 -0.291246171 -1.378512892

pea 50 0.026594481 0.128380355 0.006540556 0.001711920
(8.1λ, 0.25) 55 0.026665734 0.128349275 0.006637935 0.001707533
k = 50.8938 60 0.026667821 0.128346121 0.006642237 0.001704709

pea 80 0.041727559 0.349839234 0.089615803 -0.028435947
(16.0λ, 0.25) 85 0.043566240 0.351311085 0.091114809 -0.026822423
k = 100.5310 90 0.043162994 0.350877127 0.090605571 -0.027221696
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4.3 Absorbing smooth obstacle scattering problems

We computed approximate solutions of the impedance boundary condition scattering
problem with Robin constant µ = 1. As in the Dirichlet and Neumann problem ex-
periments, we obtained good accuracy for all the geometries and the wave numbers
considered in this paper. Here is a selection of results.

Scattering by absorbing obstacles of size 1.1λ - Robin µ = 1

bean(1.1λ) pea(1.1λ, 1.0) pea(1.1λ, 0.25)
k = 1.727876 k = 6.911504 k = 6.911504

n ‖u∞ − un,∞‖∞ ‖u∞ − un,∞‖∞ ‖u∞ − un,∞‖∞
10 2.84122 E-02 1.54524 E-03 2.38354 E-02
15 1.91105 E-03 1.11917 E-05 1.55407 E-03
20 2.18761 E-04 6.89745 E-08 1.25606 E-04

Scattering by absorbing obstacles of size 8.1λ - Robin µ = 1

bean(8.1λ) pea(8.1λ, 1.0) pea(8.1λ, 0.25)
k = 12.723450 k = 50.893801 k = 50.893801

n ‖u∞ − un,∞‖∞ ‖u∞ − un,∞‖∞ ‖u∞ − un,∞‖∞
50 2.64753 E-04 8.25994 E-06 1.07671 E-03
55 1.09092 E-05 2.18623 E-07 7.54619 E-05
60 3.22415 E-07 4.04770 E-09 7.24602 E-06

Scattering by absorbing obstacles of size 16.0λ - Robin µ = 1

bean(16.0λ) pea(16.0λ, 1.0) pea(16.0λ, 0.25)
k = 25.132741 k = 100.53096 k = 100.53096

n ‖u∞ − un,∞‖∞ ‖u∞ − un,∞‖∞ ‖u∞ − un,∞‖∞
80 3.86799 E-03 1.40528 E-04 3.36103 E-02
85 3.26862 E-04 8.47871 E-06 1.08972 E-02
90 2.42218 E-05 4.21669 E-07 2.39322 E-03

Scattering of a plane wave eikx̂.d̂ by absorbing obstacles - Robin µ = 1

Solution: Far Field upw
n,∞(d̂, x̂), upw

n,∞(−d̂, x̂), d̂ = [1, 0, 0], x̂ = [1, 1, 1]/
√

3

Real Imag Real Imag

Obstacle n (upw
n,∞(d̂, x̂)) (upw

n,∞(d̂, x̂)) (upw
n,∞(−d̂, x̂)) (upw

n,∞(−d̂, x̂))
bean 50 1.157322289 -0.215292184 0.311971960 -0.362405347
(8.1λ) 55 1.157313018 -0.215289339 0.311975072 -0.362401148

k = 12.7235 60 1.157312917 -0.215289154 0.311975191 -0.362401065
bean 80 0.928403718 0.886621134 0.284685356 -0.166745117

(16.0λ) 85 0.928415863 0.886629309 0.284678019 -0.166760975
k =25.1327 90 0.928416373 0.886629785 0.284677674 -0.166761669

pea 50 0.005081427 0.000776985 0.022830804 0.124490732
(8.1λ, 1.0) 55 0.005172910 0.000780003 0.022899996 0.124466732
k = 50.8938 60 0.005176831 0.000778074 0.022901998 0.124464350

pea 80 0.085105780 -0.025378131 0.038948001 0.345352189
(16.0λ, 0.25) 85 0.086474020 -0.023845559 0.040625060 0.346789662
k = 100.5310 90 0.085995837 -0.024256504 0.040245496 0.346359508
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4.4 Non–smooth obstacle scattering

In this section, we demonstrate fast convergence of our algorithm for obstacles with
conical singularities for frequencies in the resonance region and compare our results
with those given in [4]. In this paper, for the non–smooth obstacles, we restrict to
low frequency scattering and we present our results for the sound–soft case. We find
that, despite the non-smoothness of the domain, reasonable accuracy is still obtained,
especially for the NASA almond and ogive examples.

Scattering by sound–soft obstacles of size 1.0λ

NASA alm(1.0λ) ogive(1.0λ) cone sph(1.0λ)
k = 0.6283185 k = 0.6323657 k = 0.2316211

n ‖u∞ − un,∞‖∞ ‖u∞ − un,∞‖∞ ‖u∞ − un,∞‖∞
05 6.73728 E-02 2.30540 E-02 2.18547 E-01
15 3.15581 E-03 1.40747 E-04 6.35614 E-02
25 2.68313 E-04 8.31994 E-05 3.27117 E-02

Performance of GG (present), BK [4] algorithms

Scattering by one–wavelength long sound–soft ogive

Algorithm Unknowns Computer CPU time ‖u∞ − un,∞‖∞

BK 1568 Pentium II 1380 secs 2.5 E-03
Xeon 400 MHz

GG 256 SGI Origin 16 secs 1.4 E-04
(n = 15) 2400, 400 MHz

BK 6336 Pentium II 13005 secs 3.8 E-05
Xeon 400 MHz

GG 676 SGI Origin 173 secs 8.3 E-05
(n = 25) 2400, 400 MHz
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Appendix

In this section we prove superalgebraic convergence properties of our fully discrete ap-
proximations on the surface and on the exterior region, using results in [13] and func-
tional analytic arguments.

Through this section, the space C(∂B) of continuous functions on ∂B is equipped
with the uniform norm ‖·‖∞,∂B and we also use the same notation for the corresponding
operator norm. For r > 0, Cr(∂B) denotes the space of all r times continuously
differentiable functions on ∂B. We use similar notation for ∂D and assume that the
parametrisation map q : ∂B → ∂D is smooth.

The hyperinterpolation operator defined in (2.44) has the following crucial bound-
edness and approximation properties [19]:

‖Ln‖∞,∂B ≤ cn1/2, ‖LnΨ−Ψ‖∞,∂B ≤ cr
1

nr−1/2
‖Ψ‖r,∂B, Ψ ∈ Cr(∂B), (A.1)

where (throughout this section) c, cr, c`,r are generic constants independent of the ap-
proximation parameter n. (The conjugate operator Ln in (3.39) also satisfies the bounds
in (A.1).) The discrete layer operator Nn′ defined in (3.14) is a powerful approximation
to N in the following sense [13, Theorem 5.2]:

‖(Nn′ −N )LnΨ‖∞,∂B ≤ c`
1

n`
‖Ψ‖∞,∂B, Ψ ∈ C(∂B), and for any ` ∈ N. (A.2)

A similar estimate holds for ‖(Mn′ −M)LnΨ‖∞,∂B.
We first prove that our algorithm for solving (2.3) converges superalgebraically.
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Theorem A.1 Let w be the unique solution of (2.3) with a given data h. Let wn be as
in (3.20), where Wn ∈ Pn is the unique solution of (3.15). If h ∈ Cr+2(∂D) for some
r > 0, then for n sufficiently large n, there exists cr > 0 such that

‖w − wn‖∞,∂D ≤ cr
1

nr
{‖w‖r+1,∂D + ‖h‖r+2,∂D} . (A.3)

Proof. Following the proof of Theorem 5.1 in [13], we have for sufficiently large n,
(I + LnMn′)−1 exists and ‖(I + LnMn′)−1‖∞,∂B ≤ cn1/2. Hence, for sufficiently large
n, (3.15) has a unique solution Wn ∈ Pn.

Let Un ∈ Pn be the unique solution of

Un + LnMn′Un = Ln [αI +N ]H , (A.4)

a semi-discrete approximation of (2.30). For such an approximation, a direct application
of results in [13] yields the superalgebraic convergence property

‖W − Un‖∞,∂B ≤ cr
1

nr
‖W‖r+1,∂B, (A.5)

Now, using (3.15), (A.4), (A.1), (A.5), and (A.2), we get

‖W −Wn‖∞,∂B

≤ ‖W − Un‖∞,∂B + ‖Un −Wn‖∞,∂B

≤ ‖W − Un‖∞,∂B + ‖(I + LnMn′)−1 (LnNn′LnH − LnNH) ‖∞,∂B

≤ ‖W − Un‖∞,∂B + c n‖Nn′LnH −NH‖∞,∂B

≤ ‖W − Un‖∞,∂B + c n‖ (Nn′ −N )LnH‖∞,∂B + c n‖N (LnH −H) ‖∞,∂B

≤ cr
1

nr
‖W‖r+1,∂B + cr n

1

nr+1
‖H‖∞,∂B + cr n

3/2 1

nr+2
‖H‖r+2,∂B

≤ cr
1

nr
{‖W‖r+1,∂B + ‖H‖r+2,∂B} (A.6)

Finally, from (2.29), (3.20) and (A.6), we get

‖w − wn‖∞,∂D ≤ c ‖W −Wn‖∞,∂B ≤ cr
1

nr
{‖w‖r+1,∂D + ‖h‖r+2,∂D} . �

Next we prove the convergence of approximate solutions in the exterior domain.

Theorem A.2 Let w(x), wn(x), for x ∈ R3 \ D̄, be respectively defined by (2.7) and
(3.40), for a given data h ∈ Cr+2(∂D) with r > 0. Then, for x ∈ R3 \ D̄, and for any
` ∈ N, there exist constants cr, c`,r > 0, independent of n, such that

|w(x)− wn(x)| ≤ cr
1

nr

{∣∣∣M̃x

∣∣∣
1
(‖W‖r+1,∂B + ‖H‖r+2,∂B) +

∣∣∣Ñx

∣∣∣
1
‖H̃‖r+1,∂B

}
+c`,r

1

n`+r

{
‖M̃x‖r+`,∂B‖W‖∞,∂B + ‖Ñx‖r+`,∂B‖H̃‖∞,∂B

}
, (A.7)

where |•|1 :=
∫

∂B
|•(ŷ)| ds(ŷ), W is the unique solution of (2.30), M̃, Ñ , H̃ are given

by (3.36), and H̃ = 0 (or H) for the Dirichlet (or the Neumann/Robin) problem.
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Proof. We use representations (3.35), (3.37) and (3.38) to prove the result. Let x ∈
R3 \ D̄, be fixed. We have, |w(x)− wn(x)| ≤ I1 + I2, where

I1 =

∫
∂B

∣∣∣M̃x(ŷ)W (ŷ)−
(
LnM̃x

)
(ŷ)Wn(ŷ)

∣∣∣ ds(ŷ)

≤
∫

∂B

∣∣∣M̃x(ŷ) (W −Wn) (ŷ)
∣∣∣ ds(ŷ) +

∫
∂B

∣∣∣(M̃x − LnM̃x

)
(ŷ)Wn(ŷ)

∣∣∣ ds(ŷ)

≤
∣∣∣M̃x

∣∣∣
1
‖W −Wn‖∞,∂B + |Wn|1 ‖M̃x − LnM̃x‖∞,∂B (A.8)

and

I2 =

∫
∂B

∣∣∣Ñx(ŷ)H̃(ŷ)−
(
LnÑx

)
(ŷ)

(
LnH̃

)
(ŷ)

∣∣∣ ds(ŷ)

≤
∫

∂B

∣∣∣Ñx(ŷ)
(
H̃ − LnH̃

)
(ŷ)

∣∣∣ ds(ŷ) +

∫
∂B

∣∣∣(Ñx − LnÑx

)
(ŷ)LnH̃(ŷ)

∣∣∣ ds(ŷ).

≤
∣∣∣Ñx

∣∣∣
1
‖H̃ − LnH̃‖∞,∂B +

∣∣∣LnH̃
∣∣∣
1
‖Ñx − LnÑx‖∞,∂B. (A.9)

Using the detailed analysis in [13, 19], it can be shown that |Wn|1 and
∣∣∣LnH̃

∣∣∣
1

are uni-

formly bounded. Since M̃x, Ñx are infinitely continuously differentiable on ∂B, applying
the estimates (A.1) and (A.6) in (A.8) and (A.9), we get the result (A.7). �

Finally, we obtain the convergence of the approximate far field pattern wn,∞, given
by (3.42). Since our approach for computing wn,∞ is analogous to computations on the
exterior region (see §3.5), it is easy to see that for a fixed direction x̂ ∈ ∂B, following
Theorem A.2, |w∞(x̂) − wn,∞(x̂)| is bounded by the estimate in (A.7), with M̃x, Ñx

replaced respectively by M f
x̂ , N

f
x̂ , defined in (3.41).

Since mf (x̂,y), nf (x̂,y) are linear combinations of e−ikx̂.y and ∂e−ikx̂.y/∂n(y), for
y ∈ ∂D, we have for any ` ∈ N, and for any x̂ ∈ ∂B,

|Mx̂|1 ≤ c k, ‖Mx̂‖`,∂B ≤ c` k
`+1,

∣∣∣N f
x̂

∣∣∣
1
≤ c k, ‖N f

x̂‖`,∂B ≤ c` k
`+1. (A.10)

Consequently, using arguments in Theorem A.2, we get the following result.

Theorem A.3 Let w∞ be as in (2.8), for given a data function h ∈ Cr+2(∂D) with
r > 0. Let wn,∞ be given by (3.42). Then, for any ` ∈ N, there exist constants cr, c`,r > 0,
independent of n, such that

‖w∞ − wn,∞‖∞,∂B ≤ cr
1

nr

{
‖W‖r+1,∂B + ‖H‖r+2,∂B + ‖H̃‖r+1,∂B

}
+c`,r

(
1

n

)`+r {
‖W‖∞,∂B + ‖H̃‖∞,∂B

}
, (A.11)

where W is the unique solution of (2.30), and H̃ = 0 (or H) for the Dirichlet (or the
Neumann/Robin) problem.
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bean(4) pea(1,1.0) pea(1,0.25)

NASA alm(9.936) ogive(10) cone sph(27.127)

Figure 4.1: some of the obstacles used in our computation
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Visualisation of scattering of a plane wave uI(x) = eikx.d̂ (with k = 100.531)

propagating in the x-direction (with d̂ = [1 0 0]) by a peanut shaped
sound–soft obstacle of size sixteen times the wavelength λ = 2π/k,
on a yz-plane.

The scattered field is denoted by uS and the total field is u = uI + uS

Figure 4.2: obstacle pea(16λ, 0.25) Figure 4.3: yz−plane through pea(16λ, 0.25)

Figure 4.4: Near Field (real(u)) Figure 4.5:Near Field Intensity (|u|)
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