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A NEW MULTISCALE FINITE ELEMENT METHOD FOR HIGH-CONTRAST

ELLIPTIC INTERFACE PROBLEMS

C.-C. CHU, I.G. GRAHAM, AND T.-Y. HOU

Abstract. We introduce a new multiscale finite element method which is able to accurately capture solutions
of elliptic interface problems with high contrast coefficients by using only coarse quasiuniform meshes, and

without resolving the interfaces. A typical application would be the modelling of flow in a porous medium
containing a number of inclusions of low (or high) permeability embedded in a matrix of high (respectively
low) permeability. Our method is H1- conforming, with degrees of freedom at the nodes of a triangular

mesh and requires the solution of subgrid problems for the basis functions on elements which straddle the
coefficient interface, but uses standard linear approximation otherwise. A key point is the introduction of
novel coefficient-dependent boundary conditions for the subgrid problems. Under moderate assumptions, we
prove that our methods have (optimal) convergence rate of O(h) in the energy norm and O(h2) in the L2

norm where h is the (coarse) mesh diameter and the hidden constants in these estimates are independent of
the “contrast” (i.e. ratio of largest to smallest value) of the PDE coefficient. For standard elements the best

estimate in the energy norm would be O(h1/2−ε) with a hidden constant which in general depends on the
contrast. The new interior boundary conditions depend not only on the contrast of the coefficients, but also
on the angles of intersection of the interface with the element edges.

1. Introduction

In this paper we present a new application of multiscale finite element methods for the classical elliptic
problem in weak form

(1.1)

∫

Ω

A(x)∇u(x) · ∇v(x)dx =

∫

Ω

F (x)v(x)dx , v ∈ H1
0 (Ω) ,

where the solution u ∈ H1(Ω) is required to satisfy a Dirichlet condition on ∂Ω and F is given, on a bounded
domain Ω ⊂ R

2. To concentrate on the essential aspects of this new theory we treat primarily the homogeneous
Dirichlet problem when the boundary of Ω is a convex polygon. (These are not essential restrictions: All our
results are true for smooth boundaries as well. Similar results could be obtained for non-convex polygons,
treated with local mesh refinement. Moreover we state the corresponding results for inhomogeneous boundary
conditions later in the paper).

The coefficient A, which is assumed here to be scalar, will be allowed to jump across a number of smooth
interior interfaces and the aim of the present paper is to propose and analyse a new multiscale finite element
method for this problem on (coarse) meshes which are not required to resolve the interfaces. Our method has
the same rate of convergence (with respect to mesh diameter) as is known for the case when A is globally
smooth (i.e. the rate is not degraded by the loss of solution regularity across the interfaces) and, moreover
(in a way made precise below), this rate of convergence is independent of the range of variation (“contrast”)
of the coefficient function A.

While the method we propose could be used for the case when the interfaces in A are of general geometry,
our proofs will be given for the particular case when Ω contains a finite number of inclusions, each with
smooth closed boundary not intersecting ∂Ω, such as is depicted in Figure 1. Denoting the inclusions by
Ω1, . . . ,Ωm and setting Ω0 = Ω\ ∪m

i=1 Ωi, we assume that the coefficient A is piecewise constant with respect
to the decomposition {Ωi : i = 0, . . . ,m}. (Again there is no essential difficulty in generalising to piecewise
smooth coefficients.) Setting Amin = min{A|Ωi

: i = 1, . . . , s}, we first scale problem (1.1) by dividing by
Amin, yielding the weak form: Find u such that u ∈ H1

0 (Ω), and

(1.2) a(u, v) = (f, v)L2(Ω) for all v ∈ H1
0 (Ω) ,
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where

(1.3) a(u, v) =

∫

Ω

α(x)∇u(x) · ∇v(x)dx ,

with

(1.4) α(x) =
1

Amin
A(x) , f(x) =

1

Amin
F (x) .

Clearly then, α is piecewise constant with respect to the partition {Ωi : i = 0, . . . ,m} and α(x) ≥ 1 for all
x ∈ Ω . Letting αi denote the restriction of α to Ωi, our analysis will focus on the proof of robust optimal
order convergence in each of the two “high contrast” cases, characterised by a large “contrast parameter” α̂

Case I : α̂ := min
i=1,...,m

αi → ∞ , α0 = 1(1.5)

Case II : α̂ := α0 → ∞ , maxi=1,...,m αi ≤ K,(1.6)

for some constant K. In Case I, the inclusions are high permeability compared to the background matrix,
while Case II contains the converse configuration.

Figure 1. A domain with many inclusions

Our method will involve special “multiscale” nodal basis functions on a (coarse) quasiuniform triangular
mesh Th. On elements on which α is constant, these basis functions just coincide with the usual linear hat
functions. Otherwise we pre-compute the basis function by solving (approximately) a homogeneous version
of (1.2) on the relevant elements, subject to special boundary conditions described later in this paper. The
resulting basis functions are then used to define a multiscale finite element solution uMS

H by the usual Galerkin
method. We show that our method satisfies an error estimate of the form

(1.7) |u− uMS
h |H1(Ω) ≤ |u− uMS

h |H1(Ω),α ≤ Ch
[
h|f |2H1/2(Ω) + ‖f‖2

L2(Ω)

]1/2

,

where

|v|2H1(Ω),α = a(v, v) , with a(v, w) =

∫

Ω

α∇v · ∇w ,

and the constant C is independent of h and of the contrast parameter α̂ . This should be compared to the
best result of O(h1/2−ε) (with a hidden constant which generally depends on the contrast) for standard finite
element methods on a mesh which does not resolve the interface. We also devise a non-standard duality
argument which shows that

(1.8) ‖u− uMS
h ‖L2(Ω) ≤ Ch2

[
h|f |2H1/2(Ω) + ‖f‖2

L2(Ω)

]1/2

.

The price to pay for this improved convergence rate is the solution of subgrid problems on elements which
straddle the interface and a slightly worse dependence than normal on the data f on the right hand sides of
(1.7) and (1.8). The local subgrid problems can be done as a preprocessing step before solution of the global
finite element problem. The accuracy needed for these subgrid problems is investigated numerically in §4.

The multiscale finite element method (in which basis functions are computed by solving local homogeneous
PDEs subject to special boundary conditions) has a large literature. The primitive form of this method can
be traced back to the early work of Babus̆ka, Caloz and Osborn [5, 4] who introduced special basis functions
for 1D elliptic problems with rough coefficients.
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In [18], Hou and Wu developed the multiscale finite element method for multi-dimensional problems with
multiscale coefficients. The main idea of the method was to incorporate the small scale features in the
underlying physical problem into the finite element bases locally. Within each coarse grid block, one can
construct the multiscale basis by solving the leading order governing equation locally. The small scales then
interact with the large scales through the variational formulation of the finite element method. Hou and
Wu [18] also identified a key issue in multiscale methods, that is the microscopic boundary condition which
connects the small scale bases to the macroscopic solution. They further performed a convergence analysis
to reveal a resonance error introduced by the microscopic boundary condition [18, 19]. An over-sampling
technique was proposed to effectively reduce the resonance error [18]. The multiscale bases are strongly
localized and adaptive. In many cases, the multiscale bases can be pre-computed and can be used repeatedly
in subsequent computations with different source terms and different boundary conditions. In some situations
the basis functions can be updated adaptively. This leads to significant computational saving in upscaling the
two-phase flows where the elliptic (pressure) equation needs to be solved many times dynamically. Another
attractive feature of the method is the ability to both coarsen (upscale) a fine grid solution and to reconstruct
(downscale) the fine grid solution from a coarse grid solution by using the multiscale bases. This property is
very attractive in many engineering applications.

Most of the convergence analysis of multiscale finite element methods are for the periodic homogenisation
case where, in (1.2), α(x) = α(x/ε), with ε a small parameter, and α a smooth positive-valued periodic
function on a unit cell Y , and the analysis is geared to obtaining optimal convergence, robust with respect to
the “oscillation parameter” ε → 0 (e.g. [18, 19]). However, the method itself is quite general and has been
applied to non-periodic cases with considerable success. For example in [18] one finds an application to (1.2)
for the case when α is a realisation of a random field, both in the isotropic and anisotropic cases and with
highly contrasting media. We also refer to a recent book by Efendiev and Hou [12] for more discussions on
the theory and applications of multiscale finite element methods.

The convergence analysis of the new multiscale finite element method devised in this paper makes no appeal
to homogenisation theory but nevertheless explains why “multiscale”-type basis construction can be beneficial
in more general situations. It turns out that the new interior boundary conditions obtained in the present
work are a genuine generalisation of the “oscillatory” boundary conditions of [18], in the sense that the two
coincide if and only if the interfaces intersect the element edges orthogonally. Some of the arguments used in
this paper have already been developed in the context of domain decomposition methods in [14, 15, 32].

To our knowledge the dependence of the accuracy of numerical methods for elliptic interface problems on
coefficient contrast has not been previously analysed, even though such high contrast problems are ubiquitous
in porous media problems, especially in geophysical and oil recovery applications. We note, however, that
there is substantial literature on the performance of iterative methods (see, e.g. [14] and the references therein)
and on the analysis of a posterior error estimates (see, e.g. [7, 2, 39]) for such high contrast problems, but
this literature does not address the issues considered in the present paper.

In the following section, §2, we explain the main idea behind our method and illustrate the analysis in
the special case when the coarse mesh can be drawn to enclose each of the inclusions Ωi : i = 1, . . . ,m. The
main results of the paper are obtained in §3, where we construct the multiscale basis functions in the case
when the coefficient interface intersects a typical triangular coarse mesh element. Here we present a detailed
analysis, obtaining the estimates (1.7) and (1.8) under certain technical assumptions. Numerical experiments
which illustrate these results are provided in §4. Two new technical results which are crucial to the analysis
are included as appendices: the first is a scaled version of the trace theorem on a triangular annulus, while
the second is a regularity theorem (due to N. Babych, I. Kamotski and V.P. Smyshlyaev of the University of
Bath) for the exact solution of (1.2) in the high-contrast case. These should be of independent interest.

Before we embark on §2, we first discuss relevant existing literature on interface problems of the form (1.1).
The approach that is closest to ours is the immersed finite element (IFE) method of Li, Lin and Wu [27]. This
method considered uniform triangular grids and approximated the interface by a straight line segment when
it intersects a coarse grid element. By matching the jump condition, they created a special basis function
for elements which are cut through by the interface and proved a second order convergence rate in the L2

norm and a first order convergence rate in the H1 semi-norm. On the other hand, the constants in their error
estimate depend strongly on the contrast of the coefficient. It turns out that when the interface intersects an
element in a straight line, our new method coincides with the method of [27]. Thus our results show in fact
robustness with respect to the contrast for the IFE method and hence help explain the rather good numerical
experiments in [27]. The connections between our method and that of [27] are further discussed in §3.2.

Much earlier, Babuška [3] studied the convergence of methods based on a minimization problem equivalent
to (1.1) in which the boundary and jump condition were incorporated in the cost functions. There are many
subsequent works on such penalty methods, for example Barrett and Elliott [6]. Another relevant work is
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due to Chen and Zou [9] who approximated the smooth interface by a polygon and used classical finite
element methods to solve both elliptic and parabolic interface equations. The disadvantage of this approach is
that the mesh must align with the interface. Plum and Wieners [35] studied interface problems with piecewise
constant coefficients and proved (under certain assumptions) optimal a priori estimates which are independent
of the coefficients for standard finite element methods with meshes resolving the interface. Related results for
discontinuous Galerkin methods were given by Dryja in [10]. Unfitted high order finite element methods were
recently studied by Li et. al. in [24], and error estimates which are explicit in both the order of the elements
and the error in the boundary approximation were proved.

There has been a lot of effort in developing accurate and efficient finite difference methods for the interface
problem. Among them, the Immersed Boundary method (IBM) was developed by Peskin [33] for studying
the motion of one or more massless, elastic surfaces immersed in an incompressible, viscous fluid, particularly
in biofluid dynamics problems where complex geometries and immersed elastic membranes are present. The
IBM method employs a uniform Eulerian grid over the entire domain to describe the velocity field of the
fluid and a Lagrangian description for the immersed elastic structure. The interaction between the fluid and
the structure is expressed in terms of the spreading and interpolation operations by use of smoothed delta
functions. We refer to [34] for an extensive review of this method and its various applications. Motivated by
Peskin’s method, Unverdi and Tryggvason have developed a highly successful front tracking method to study
viscous incompressible multiphase flows [38].

Another related work is the Immersed Interface Method (IIM) for elliptic interface problems developed by
LeVeque and Li [23]. The main idea of the IIM method is to use the jump condition across the interface to
modify the finite difference approximation near the interface. When this is done properly, one can achieve a
second order discretization. The IIM method can also be applied to the moving interface problem [17] and
to the irregular domain problem [11]. Several extensions and improvements can be found in the references
[1, 25, 26].

An important development of interface capturing methods is the Ghost Fluid Method (GFM) [13] developed
by Fedkiw, Merriman, Aslam and Osher. The GFM method incorporated the interface jump condition into
the finite difference discretization in a clever way which can be implemented efficiently. The GFM method
has been applied to capture discontinuities in multimedium compressible flow [21] and strong shock impacting
problems [22], with considerable success. The GFM method has been generalized to the elliptic interface
problem in [29] and its convergence property has been analyzed in [30]. Related works include [40, 8]. We
remark that there has been little progress in rigorous convergence theory for finite difference methods for
interface problems. By contrast, the present paper proves the robust convergence of our proposed method.

2. The key idea and a simple application

2.1. The key idea. For any measurable subset of D ⊂ Ω, define the local version of a:

aD(v, w) =

∫

D

α∇v · ∇w .

For a suitable index set Ih(D), let Nh(D) = {xp : p ∈ Ih(D)} denote the nodes of the mesh Th which lie in
D. For any triangular element τ ∈ Th (assumed to contain its boundary), Nh(τ) = {xp : p ∈ Ih(τ)} is the
set containing the three nodes of τ . For each p ∈ Ih(τ) we shall construct nodal basis functions ΦMS

p , whose

restriction ΦMS
p,τ to each τ ∈ T H is required to solve the “subgrid problem”:

(2.1) aτ (ΦMS
p,τ , v) = 0 , for all v ∈ H1

0 (τ) ,

together with a suitable boundary condition:

(2.2) ΦMS
p,τ = φp,τ , on ∂τ , with φp,τ (xq) = δp,q, for all p, q ∈ Ih(τ)

where φp,δτ ∈ C(∂τ) and

(2.3)
∑

p∈Ih(τ)

φp,τ = 1 on ∂τ .

In general for each p ∈ Ih(Ω) the boundary data in (2.2) has to be prescribed and the local problems
(2.1) may have to be solved (e.g. on a subgrid). (We will see that there is a bounded number of these local
problems for each p, independent of the coarse mesh diameter.) However if α is constant on τ then the
boundary condition will be chosen so that ΦMS

p,τ is just the linear hat function on τ centred at xp. Observe
that under conditions (2.1), (2.2) and (2.3),

(2.4)
∑

p∈Ih(τ)

ΦMS
p,τ = 1 on τ .
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From the basis functions we construct the nodal interpolation operator: IMS
h v =

∑
p∈Ih(Ω) v(xp)Φ

MS
p , which

is defined for all v ∈ C(Ω). Note that from (2.4) it follows that

(2.5) IMS
h 1 = 1 on Ω .

The basis functions ΦMS
p which we shall construct will be continuous across element edges and will vanish

on ∂Ω, so that

(2.6) VMS
h := span{ΦMS

p : p ∈ Ih(Ω)} ⊆ H1
0 (Ω) ,

i.e. the method is conforming. Then we define the finite element solution uMS
h ∈ VMS

h of (1.2) by requiring
that a(uMS

h , vMS
h ) = (f, vMS

h )L2(Ω) , for all vMS
h ∈ VMS

h . which gives us the usual optimality estimate:

(2.7) |u− uMS
h |H1(Ω),α ≤ |u− IMS

h u|H1(Ω),α .

Now, to estimate the right-hand side of (2.7), we note that, since the basis functions satisfy the homogeneous
equation (2.1), and since u solves (1.2), the local interpolation error EMS

h := u−IMS
h u satisfies, for all τ ∈ Th,

(2.8) aτ (EMS
h , v) = (f, v)L2(τ) , for all v ∈ H1

0 (τ) .

An estimate for |EMS
h |H1(Ω),α suitable for inserting in the right-hand side of (2.7) can be obtained from the

following lemma.

Lemma 2.1. Suppose D is a Lipschitz subdomain of Ω and suppose that φ ∈ H1(D) satisfies

(2.9) aD(φ, v) = (f, v)L2(D) for all v ∈ H1
0 (D) .

Then for any φ̃ ∈ H1(D) such that the trace of φ̃− φ vanishes on ∂D,

|φ|H1(D),α ≤ |φ̃|H1(D),α + C diam(D)‖f‖L2(D) ,

where C is independent of φ, φ̃, the diameter of D and α̂.

Proof. Let φ∗ be the unique solution of the problem

(2.10) aD(φ∗, v) = 0 for all v ∈ H1
0 (D) ,

such that the trace of φ∗ − φ vanishes on ∂D . Then φ− φ∗ ∈ H1
0 (D) and, by subtracting (2.10) from (2.9),

aD(φ− φ∗, v) = (f, v)L2(D) for all v ∈ H1
0 (D) . Then

|φ− φ∗|2H1(D),α = aD(φ− φ∗, φ− φ∗) = aD(φ, φ− φ∗) = (f, φ− φ∗)L2(D)

≤ ‖f‖L2(D)‖φ− φ∗‖L2(D) ≤ C diam(D)‖f‖L2(D)|φ− φ∗|H1(D),α ,

where in the last step we used the Poincaré-Friedrichs inequality and also α̂ ≥ 1. Hence

|φ|H1(D),α ≤ |φ∗|H1(D),α + C diam(D)‖f‖L2(D).

On the other hand, (2.10) implies the minimality of the energy norm of φ∗, i.e |φ∗|H1(D),α ≤ |φ̃|H1(D),α for all

φ̃ satisfying the same boundary conditions as φ and the result follows. �

Recalling (2.8), and using Lemma 2.1 to bound the right-hand side of (2.7), we then obtain

Theorem 2.2.

(2.11) |EMS
h |H1(τ),α ≤ |ẼMS

h |H1(τ),α + Chτ‖f‖L2(τ) ,

and

(2.12) |u− uMS
h |H1(Ω),α ≤ C

[ ∑

τ∈T H

(
|ẼMS

h |2H1(τ),α + h2
τ‖f‖

2
L2(τ)

)]1/2

,

where ẼMS
h is any function whose trace coincides with the trace of EMS

h on ∂τ and C is a generic constant
independent of Th, f , u and α.

Note that, although simple, Theorem 2.2 represents a genuine extension of standard estimates. For example,
if α is constant on each τ ∈ Th, then the multiscale basis functions coincide with linear basis functions. Setting

ẼMS
h = EMS

h (which now equals the error in linear interpolation) leads to

(2.13) |u− uMS
h |H1(Ω),α ≤ Ch

[ ∑

τ∈Th

ατ |u|
2
H2(τ) + ‖f‖2

L2(Ω)

]1/2

,

which yields the usual O(h) estimate in the energy norm with (a coefficient dependent) asymptotic constant.
However this also demonstrates the possibility that when ατ is large, small |u|2H2(τ) could provide better

5



estimates with respect to α. Our regularity theory (in the Appendix) tells us that this is exactly what does
happen. However a deeper use of Theorem 2.2 may be envisaged when α varies within an element. Then
it turns out to be possible (although not trivial) to define the boundary condition (2.2) in such a way that∑

τ∈Th
|ẼMS

h |2H1(τ),α ≤ Ch2, with constant C independent of α. We explain how this comes about in the

context of a special case in the next subsection. Then in §3 we extend to the more difficult case where the
interface cuts through a mesh element.

From now on we shall make use of the following notational conventions.

Notation 2.3. We shall write g1 . g2, when there exists a constant C which is independent of u, f, h, α such
that g1 ≤ Cg2. Similarly, g1 ∼ g2 means g1 . g2 and g2 . g1.

Notation 2.4. For any suitably smooth function φ defined on τ ∈ TH , and any edge e of τ , we define Ds
eφ,

for s ≥ 1 to be the derivative of φ of order s along e.

2.2. A simple application. In this subsection we assume that each of the inclusions Ωi are enclosed
inside elements of Th. More precisely, for any τ ∈ Th and any sufficiently small ε > 0, let us define
τε = {x ∈ τ : dist(x, ∂τi) ≤ ε} . Then, for each i = 1, . . . ,m, we assume that there exists τi ∈ Th and
εi > 0 such that

(2.14) Ωi ⊆ τi\τ
εi
i .

That is the boundary of Ωi lies at least a distance εi from the boundary of τi. (Note that any element could
contain more than one inclusion.) Our estimates will depend on the following measure of the relative size of
εi:

(2.15) δ := max
i=1,...,m

hτi

εi
.

Note that δ ≥ 1. Then we have the following theorem:

Theorem 2.5. Suppose the boundary condition in (2.2) is chosen to be linear on the boundary of each element
τ ∈ Th. Then, for f ∈ H1/2(Ω),

(i) |u− uMS
h |H1(Ω),α . δ3h

[
h|f |2H1/2(Ω) + ‖f‖2

L2(Ω)

]1/2

,(2.16)

(ii) ‖u− uMS
h ‖L2(Ω) . δ6h2

[
h|f |2H1/2(Ω) + ‖f‖2

L2(Ω)

]1/2

.(2.17)

Proof. We give the proof in Case I (see (1.5)). That means αi ≥ α̂ → ∞ for i = 1, . . . ,m and α0 = 1. The
proof in Case II is dealt with in Remark 2.6.

First consider any element τi ∈ Th which contains an inclusion Ωi. We construct ẼMS
h on τi by first defining

it to be zero on τi\τ
εi
i , equal to EMS

h on ∂τi and then extending into τεi
i , using Lemma A.1 of Appendix A

(scaled to τi). By combining this with standard estimates for linear approximation in 1D, we obtain,

|ẼMS
h |2H1(τi),α

= |ẼMS
h |2

H1(τ
εi
i )

.

(
hτi

εi

)2

h−1
τi

‖EMS
h ‖2

L2(∂τi)
+

(
hτi

εi

)2

hτi
|EMS

h |2H1(∂τi)

. δ2h3
τi

∑

e∈E(τ)

‖D2
eu‖

2
L2(e)

,

where E(τ) denotes the edges of τ . On the other hand if τ ∈ Th contains no inclusion, then with ẼMS
h := EMS

h ,
it is easy to show that this estimate remains true with δ replaced by 1, thus

(2.18) |ẼMS
h |2H1(τ),α . δ2h3

τ

∑

e∈E(τ)

‖D2
eu‖

2
L2(e)

, for all τ ∈ Th .

Recalling (2.12), we now see that (2.18) would allow us to estimate |u − uMS
h |H1(Ω),α in terms of the data

f and certain derivatives of the solution u along edges which (in this case) lie entirely in Ω0. In order to be
able to prove robustness to the contrast α̂, we now estimate these edge derivatives in terms of Sobolev norms
of u in Ω0, which we can in turn estimate independently of α̂, using the regularity theory in the Appendix.
The required technical argument, which we now give, leads to (2.29).

First we recall the trace theorem for polygons (e.g. [16, Theorem 1.5.2.1]), which, after scaling to any
element τ ∈ Th, reads

|v|2H1(e) . h−3
τ ‖v‖2

L2(τ) + h−1
τ |v|2H1(τ) + |v|2H3/2(τ) , for all v ∈ H3/2(τ) .
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Moreover, replacing v by v − γ where γ is an arbitrary constant, and then invoking the Poincaré inequality
on τ , we obtain easily the simpler estimate:

(2.19) |v|2H1(e) . h−1
τ |v|2H1(τ) + |v|2H3/2(τ) for all v ∈ H3/2(τ) and all τ ∈ Th .

Now return to the case where τ = τi, an element which contains an inclusion Ωi. Choose φ to be a C∞

cut-off function which vanishes on τi\τ
εi
i has the value 1 on ∂τi and satisfies ‖Dβφ‖L∞(τi) . ε

−|β|
i for all

multindices β. Then choose any edge e of τi, and any constant γ. Using the fact that φγ is constant on e and
then (2.19), we obtain

(2.20) ‖D2
eu‖

2
L2(e)

= |φ(Deu− γ)|2H1(e) . h−1
τi

|φ(Deu− γ)|2H1(τi)
+ |φ(Deu− γ)|2H3/2(τi)

.

To estimate the right-hand side, we first recall the Poincaré inequality for an annulus (Lemma A.2) and
scale it to τi, to obtain a constant γ ∈ R such that

(2.21) ‖v − γ‖L2(τ
εi
i ) . hτi

|v|H1(τ
εi
i ) , for all v ∈ H1(τεi

i ) ,

with a hidden constant is independent of both hτi
and εi .

Now, to estimate the first term on the right-hand side of (2.20), use the above estimates for the derivatives
of φ, and then (2.21), to obtain

h−1
τi

|φ(Deu− γ)|2H1(τi)
. h−1

τi
ε−2
τi

‖Deu− γ‖2
L2(τ

εi
i )

+ h−1
τi

|u|2
H2(τ

εi
i )

. h−1
τi
δ2|u|2

H2(τ
εi
i )

.(2.22)

Estimation of the second term on the right-hand side of (2.20) is slightly more involved. For any multi-index
β of order 1, we have

(2.23) |φ(Deu− γ)|2H3/2(τi)
.

∑

|β|=1

|(Dβφ)(Deu− γ)|2
H1/2(τ

εi
i )

+
∑

|β|=1

|φDβDeu|
2
H1/2(τ

εi
i )

.

Now for all ψ ∈ C∞(τεi
i ) and v ∈ H1/2(τεi

i ), elementary arguments show:

(2.24) |ψv|2
H1/2(τ

εi
i )

≤ ‖ψ‖2
L∞(τ

εi
i )

|v|2
H1/2(τ

εi
i )

+ hτi
‖∇ψ‖2

L∞(τ
εi
i )

‖v‖2
L2(τ

εi
i )

.

Hence, the first term on the right-hand side of (2.23) is estimated by

(2.25) |(Dβφ)(Deu− γ)|2
H1/2(τ

εi
i )

. ε−2
τi

|Deu− γ|2
H1/2(τ

εi
i )

+ ε−4
τi
hτi

‖Deu− γ‖2
L2(τ

εi
i )

.

Now interpolating (2.21) with the corresponding estimate for ‖Deu− γ‖H1(τ
εi
i ) we obtain

(2.26) |Deu− γ|H1/2(τ
εi
i ) . h1/2

τi
|Deu|H1(τ

εi
i ) .

Combining (2.21) and (2.26) with (2.25), we have

(2.27) |(Dβφ)(Deu− γ)|2
H1/2(τ

εi
i )

. (ε−2
τi
hτi

+ ε−4
τi
h3

τi
)|u|2

H2(τ
εi
i )

. h−1
τi
δ4|u|2

H2(τ
εi
i )

.

The second term on the right-hand side of (2.23) is also estimated by (2.24):

(2.28) |φDβDeu|
2
H1/2(τ

εi
i )

. |u|2
H5/2(τ

εi
i )

+ hτi
ε−2
τi

|u|2
H2(τ

εi
i )

. |u|2
H5/2(τ

εi
i )

+ h−1
τi
δ2|u|2

H2(τ
εi
i )

.

Then combining (2.27) and (2.28) with (2.23) we have

|φ(Deu− γ)|2H3/2(τi)
. h−1

τi
δ4|u|2

H2(τ
εi
i )

+ |u|2
H5/2(τ

εi
i )

.

Combining this with (2.22) and (2.20), we have

‖D2
eu‖

2
L2(e)

. h−1
τi
δ4|u|2

H2(τ
εi
i )

+ |u|2
H5/2(τ

εi
i )

.

By a direct application of (2.19), this estimate also holds (in fact with δ replaced by 1) when τ does not
contain an inclusion , so that

‖D2
eu‖

2
L2(e)

. h−1
τ δ4|u|2H2(τ∩Ω0)

+ |u|2H5/2(τ∩Ω0)
, for all e ∈ E(τ) and all τ ∈ Th .

Combining this with (2.18) yields, for all τ ∈ Th,

(2.29) |ẼMS
h |2H1(τ),α . δ2h2

τ

[
δ4|u|2H2(τ∩Ω0)

+ hτ |u|
2
H5/2(τ∩Ω0)

]
.

Combining with (2.12) and employing the regularity theory from the Appendix yields the result (i).
To obtain (ii), we use a non-standard variant of the usual duality argument. Let w ∈ H1

0 (Ω) be the solution
of

(2.30) a(w, v) = (u− uMS
h , v)L2(Ω) for all v ∈ H1

0 (Ω) ,
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and let wMS
h ∈ VMS

h satisfy:

(2.31) a(wMS
h , vMS

h ) = (u− uMS
h , vMS

h )L2(Ω) for all vMS
h ∈ VMS

h .

Applying (2.16), then the interpolation theorem for H1/2(Ω) and finally the arithmetic-geometric mean in-
equality (ab ≤ a2/2 + b2/2) yields

|w − wMS
h |H1(Ω),α . δ3h

[
h|u− uMS

h |2H1/2(Ω) + ‖u− uMS
h ‖2

L2(Ω)

]1/2

. δ3h
[
h|u− uMS

h |H1(Ω)‖u− uMS
h ‖L2(Ω) + ‖u− uMS

h ‖2
L2(Ω)

]1/2

. δ3h
[
h2|u− uMS

h |2H1(Ω) + ‖u− uMS
h ‖2

L2(Ω)

]1/2

. δ3h
[
h|u− uMS

h |H1(Ω) + ‖u− uMS
h ‖L2(Ω)

]
.(2.32)

Hence , taking v = u− uMS
h in (2.30), we get

‖u− uMS
h ‖2

L2(Ω) = a(w, u− uMS
h ) = a(w − wMS

h , u− uMS
h )

≤ |w − wMS
h |H1(Ω),α|u− uMS

h |H1(Ω),α ,

and comnbining this with (2.32) (and recalling α ≥ 1), we have

‖u− uMS
h ‖2

L2(Ω) ≤ Cδ3h
[
h|u− uMS

h |2H1(Ω),α + |u− uMS
h |H1(Ω),α‖u− uMS

h ‖L2(Ω)

]
(2.33)

for some constant C > 0. Now by the arithmetic-geometric mean inequality again we have

Cδ3h|u− uMS
h |H1(Ω),α‖u− uMS

h ‖L2(Ω) ≤
1

2
C2δ6h2|u− uMS

h |2H1(Ω),α +
1

2
‖u− uMS

h ‖2
L2(Ω)

and substitution into (2.33) yields

1

2
‖u− uMS

h ‖2
L2(Ω) ≤ Cδ3h2|u− uMS

h |2H1(Ω),α +
1

2
C2δ6h2|u− uMS

h |2H1(Ω),α

= Cδ3(1 + (C/2)δ3)h2|u− uMS
h |2H1(Ω),α ,

which, combined with (2.16) leads to the desired result (2.17). �

Remark 2.6. For Case II, we can use the same idea to prove

(i) |u− uMS
h |H1(Ω),α . δ3h

[
h|f |2H1/2(Ω) + ‖f‖2

L2(Ω)

]1/2

,(2.34)

(ii) ‖u− uMS
h ‖L2(Ω) . δ6h2

[
h|f |2H1/2(Ω) + ‖f‖2

L2(Ω)

]1/2

.(2.35)

We construct ẼMS
h as in the proof of Theorem 2.5, and notice that |ẼMS

h |H1(τi),α = α̂1/2|ẼMS
h |H1(τi). The

regularity result in Theorem B.1 leads to (2.34). The same duality argument gives (2.35).
The estimates above can also be extended to the inhomogeneous Dirichlet case. This is discussed in detail

in the more general context in Remark 3.19.

3. Error Analysis for elements which intersect inclusions

Now we want to consider the case that the interface may intersect with the boundaries of some of the mesh
elements. Recalling Theorem 2.2 we have to show that for each element τ , there is a boundary condition for

the multiscale basis functions on ∂τ such that EMS
h := u− IMS

h u has an extension ẼMS
h from ∂τ into τ , with

a suitably bounded energy.
In §3.1 we present some qualitative properties of the exact solution u of (1.2) in the generic case when

the interface intersects two edges of τ . These relate various derivatives of u at the points of edge-interface
intersection, plus controllable remainders . These relations motivate the interior boundary conditions for
the multiscale basis functions which are presented in §3.2. In particular it is explained how the boundary
conditions can be found by solving a 6 × 6 linear system for each element which intersects the interface. In
Theorem 3.9 we estimate EMS

h on each element boundary.
The interior error is then considered in §3.3. First Lemma 3.15 uses the result of Theorem 3.9 to prove the

existence of an extension ẼMS
h of EMS

h with suitably bounded energy and this leads to Theorem 3.16, which
proves a suitable error estimate for the energy norm of EMS

h on each element τ , making use of Theorem 2.2
and the estimate for the extension proved in Theorem 3.9.

The procedure which we describe constructs interior boundary conditions element-by-element and does
not naturally lead to conforming elements. However conformity can be retained by local averaging. This is
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described in §3.4, where the main theorem, Theorem 3.18 is proved. An important observation (discussed in
§3.2) is that in the special case when the interface intersects the element edges orthogonally, our boundary
condition coincides with the “oscillatory boundary conditions” proposed in [18].

3.1. Properties of the exact solution. In this subsection we derive some properties of the exact solution
of (1.2) in an element τ through which an intersection cuts. To reduce some technicalities in the theory we
shall make the following geometrical assumption on elements which intersect the interface.

Assumption 3.1. When the interface Γ intersects an element τ we shall assume that it subdivides τ into
two parts. We label the vertices of τ as x1, x2, x3 in such a way that that Γ intersects ∂τ at points which we
denote yi in the edges x3xi, for i = 1, 2. We let β denote the angle of τ subtended at x3 and we let τ− denote
the part where α ≥ α̂ and τ+ denote the part where α ≤ K (see (1.5), (1.6)). A typical situation is depicted
in Figure 2. Letting r−i and r+i denote, respectively, the length of the line segments ei ∩ τ

− and ei ∩ τ
+, we

shall assume that there exist positive constants 0 ≤ R < R ≤ 1 and 0 < B < π such that, for all meshes
(characterised by mesh parameter h),

(3.1) Rhτ ≤ min{r−i , r
+
i } ≤ max{r−i , r

+
i } ≤ Rhτ for i = 1, 2 and π −B ≥ β ≥ B .

For i = 1, 2 we define θi ∈ (−π/2, π/2) to be the unique angle such that

(3.2) ei = cos θi ni + sin θi ti .

Then we also assume that Γ is not tangential to either of the edges ei, i.e.

(3.3) |θi| ≤ π/2 − T for some T > 0 , ,

The hidden constants in the estimates below may depend on β,R,R, B and T .

t1

t2

n1

θ1

θ2Γ

β

τ+τ−

x3 x1

x2

∂τ

1

e2

e

n2

y1

y2

Figure 2. An interface cutting through an element: Here τ− denotes the part where the
coefficient α is large.

In many cases where the element intersects the interface in a different way, we can always find a refinement
to reduce to cases satisfying Assumption 3.1 , see, e.g. Figure 3.

Now, referring again to Figure 2, for i = 1, 2, we let ei denote the unit vector directed from x3 to xi and let
ni and ti denote, respectively, the unit normal and the unit tangent to Γ at yi. These are uniquely determined
by requiring that ni is directed outward from τ− and that ti = Rπ/2ni, where Rφ is the rotation matrix

Rφ =

[
cosφ − sinφ
sinφ cosφ

]
.

Note also that ei = Rθi
ni. In particular ei = ni if and only if θi = 0.

Later we shall use the easily derived relations:

(3.4) Rφ ni = cosφ ni + sinφ ti and Rφ ti = − sinφ ni + cosφ ti ,
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Γ Γ

Figure 3. After a simple refinement, we can reduce the element to the case we consider.

for i = 1, 2 and any φ. From these it follows that n2 = R−θ2
e2 = R−θ2+β e1 = Rθ1−θ2+β n1 , and,

similarly, t2 = Rθ1−θ2+β t1 . Combining these last two relations with (3.4) yields:

(3.5) n2 = cos(θ2 − θ1 − β) n1 − sin(θ2 − θ1 − β) t1,

and

(3.6) t2 = sin(θ2 − θ1 − β) n1 + cos(θ2 − θ1 − β) t1.

As explained above, we here study how the solution u of (1.2) behaves on ∂τ . This information will be
used to construct suitable internal boundary conditions for multiscale basis functions in §3.2.

Throughout, we denote the restriction of u on τ± by u±. Also, for any unit vector v we let Dvu denote the
derivative of u in the direction v. The boundary conditions derived in the following section will be motivated
by some relationships between the quantities (Dei

u±)(yi), for i = 1, 2, where u is the exact solution of (1.2).
Our first relationship is the following:

Lemma 3.2. Let u be the exact solution of (1.2) and define the vector ε = (ε1, ε2)
T ∈ R

2 by requiring

r−i (Dei
u−)(yi) + r+i (Dei

u+)(yi) = u(xi) − u(x3) + εi , i = 1, 2 .(3.7)

Then

(3.8) |εi| . h3/2
τ

(
‖D2

ei
u−‖L2(ei∩τ−) + ‖D2

ei
u+‖L2(ei∩τ+)

)
, for i = 1, 2.

Proof. This uses straightforward Taylor expansions at the point yi and the interface matching condition
u+(yi) = u−(yi) plus the fact that u± ∈ H2(τ±). �

Now, if u were known at the three node points xi, x2, x3, then, setting εi = 0 in (3.7) would give us two
equations for (approximations of) the four unknown quantities (Dei

u±)(yi), i = 1, 2.
To determine additional equations for these quantities, we use the interface jump conditions for u at y1, y2

to obtain in a straightforward way:

Lemma 3.3. Let u be the exact solution of (1.2). For i = 1, 2,

(3.9)



Dei

u−(yi)

Dei
u+(yi)


 = Abα,θi



Dni

u−(yi)

Dti
u−(yi)




where

(3.10) Abα, θ =

[
cos θ sin θ

α̂ cos θ sin θ

]
.

Proof. The proof is obtained by simply combining the interface conditions:

(3.11) (Dni
u+)(yi) = α̂(Dni

u−)(yi) and (Dti
u+)(yi) = (Dti

u−)(yi), for i = 1, 2.

with (3.2).
�

We can use (3.9) to define a relation between (Dei
u±)(yi), i = 1, 2, provided we have a relation between

(Dn1
u−)(y1), (Dt1u

−)(y1), (Dn2
u−)(y2), and (Dt2u

−)(y2). This is provided by the following lemma.
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Lemma 3.4. Let u be the exact solution of (1.2).

(3.12)



Dn2

u−(y2)

Dt2u
−(y2)


 = Rθ2−θ1−β



Dn1

u−(y1)

Dt1u
−(y1)


 + ε

′ ,

where

‖ε′‖∞ . h1/2
τ

[∥∥De2
Dn1

u−
∥∥2

L2(e2∩τ−)
+
∥∥De1

Dn1
u−
∥∥2

L2(e1∩τ−)

]1/2

.

Proof. From equations (3.5) and (3.6) we have, for all x ∈ τ−,

(3.13)



Dn2

u−(x)

Dt2u
−(x)


 = Rθ2−θ1−β



Dn1

u−(x)

Dt1u
−(x)


 ,

Then, using Taylor expansions and the fact that u− is H2 on each ei ∩ τ−, we obtain the desired estimate. �

Before we move on to the definition of the multiscale basis functions, in Corollary 3.5 we shall collect the
results of Lemmas 3.2, 3.3 and 3.4 in a simpler form. To do this, introduce the 6 × 6 matrix

Mbα,θ1,θ2,β :=




I 0 −Abα,θ1

0 I −Abα,θ2
Rθ2−θ1−β

R1 R2 0


 ,

where

(3.14) R1 =

[
r−1 r+1
0 0

]
and R2 =

[
0 0
r−2 r+2

]
.

Also, for each v ∈ H1
0 (Ω) with suitably well-defined point values at yi, i = 1, 2, we define the vectors

c(v) d(v) ∈ R
6 by

(3.15) c(v) = [0, 0, 0, 0, v(x1) − v(x3), v(x2) − v(x3)]
T ,

and

(3.16) d(v) := [(De1
v−)(y1), (De1

v+)(y1), (De2
v−)(y2), (De2

v+)(y2), (Dn1
v−)(y1), (Dt1v

−)(y1)]
T .

Note that c(v) and d(v) depend linearly on v. Then we have

Corollary 3.5. If u is the exact solution of the problem (1.2), then for each element τ which intersects the
interface as in Assumption 3.1, and with the notation defined there, we have

Mbα,θ1,θ2,β d(u) = c(u) + δ ,

where δ ∈ R
6 is defined by

(3.17) δ =




0

Abα,θ2
ε′

ε


 ,

and ε, ε′ are as defined in Lemmas 3.2 and 3.4.

Proof. This is obtained by writing down: (i) Lemma 3.3 for i = 1; (ii) Lemma 3.3 for i = 2 combined with
Lemma 3.4 and (iii) Lemma 3.2. �

3.2. Novel interior boundary condition and boundary error. We now use the relations derived in the
previous subsection to derive suitable boundary conditions for multiscale basis functions.

For any element τ ∈ Th, let xp, p = 1, 2, 3 denote its nodes. The multiscale basis functions ΦMS
p are found

as solutions to the subgrid problems (2.1) on τ , subject to Dirichlet boundary data φp,τ on ∂τ which has to
be specified, subject to the nodal condition:

(3.18) φp,τ (xq) = δp,q , p, q ∈ {1, 2, 3}

(see (2.2)). If the interface Γ does not intersect τ , then we choose φp,τ on ∂τ to be the linear interpolant of
(3.18) on each edge of τ , and then the solution of (2.1) is also linear on τ . Otherwise (under Assumption 3.1),
our construction for φp,τ (described below) will be continous on ∂τ , linear on each of the intersected edge
segments, {x3yi, yixi, for i = 1, 2} and linear on the third edge x1x2. Because of (3.18), it remains to
specify the gradient of φp,τ on each of the two pieces of the intersected edges. These gradients are computed
by Algorithm 3.7 below. This requires solving two 6 × 6 linear systems with the same coefficient matrices.
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Before we give the algorithm we first establish the solvability of these systems and obtain bounds on their
solution which will be needed later.

Theorem 3.6. Under Assumption 3.1, suppose φ := θ2 − θ1 − β 6= 0 and introduce the 2 × 2 matrix

D := R1Abα,θ1
+ R2Abα,θ2

Rφ.

Then, for all α̂ sufficiently large, D is nonsingular, and Mbα,θ1,θ2,β is nonsingular with

(3.19) (Mbα,θ1,θ2,β)−1 =




I 0 Abα,θ1

0 I Abα,θ2
Rφ

0 0 I







I 0 0

0 I 0

−D−1R1 −D−1R2 D−1



.

Moreover

(3.20) ‖D−1‖∞ . α̂−1h−1
τ (sinφ)−1.

Proof. A tedious but elementary calculation shows that with

E :=




r+1 cos θ1 0

r+2 cos θ2 cosφ −r+2 cos θ2 sinφ


 ,

we have ‖α̂−1D − E‖∞ ≤ Cα̂−1hτ , with constant C independent of θ1, θ2, φ, β and hτ . Since E is
non-singular, standard matrix perturbation theory shows that, for large enough α̂,

‖α̂D−1‖∞ = ‖(α̂−1D)−1‖∞ ≤ C ′‖E−1‖∞

with C ′ also independent of the above parameters. In fact

E−1 =




(r+1 cos θ1)
−1 0

−(r+1 cos θ1 sinφ)−1 cosφ −(r+2 cos θ2 sinφ)−1


 ,

and so (3.20) follows directly, recalling Assumption 3.1. Because D−1 exists, the formula for M−1 is verified
by simple matrix manipulation.

�

This now leads us to Algorithm 3.7 for computing the boundary data φp,τ for the multiscale basis functions
ΦMS

p on τ .

Algorithm 3.7. For p = 1, 2, 3,

(1) Solve the linear system:

(3.21) Mbα,θ1,θ2,β dp = c(φp,τ ) .

(2) Then set

(3.22)





(De1
φp,τ )|x3y1

= (dp)1, (De1
φp,τ )|y1x1

= (dp)2 ,

(De2
φp,τ )|x3y2

= (dp)3, (De2
φp,τ )|y2x2

= (dp)4 .

Remark 3.8. (i) The right hand side c(φp,τ ) in system (3.21) is determined by (3.15) and (3.18). It is
easy to see that c(φ1,τ )+c(φ2,τ )+c(φ3,τ ) = 0, so d1 +d2 +d3 = 0 and only two of the three systems
(3.21) has to be solved. Moreover since the function φ1,τ + φ2,τ + φ3,τ has value 1 at each node of τ
and zero derivative along each x3yi, yixi, i = 1, 2 and along x1x2, it thus satisfies the requirements
of (2.2) and (2.3).

(ii) Since φp,τ is defined to be linear on each ei ∩ τ− and ei ∩ τ+ and to satisfy the nodal condition (3.18),
the continuity of φp,τ at each intersection point yi is guaranteed by the last two equations in (3.21).

(iii) If θi = 0 (i.e. the interface intersects edge ei orthogonally) then the boundary condition computed by
Algorithm 3.7, coincides with the “oscillatory boundary condition”, proposed in [18]. More precisely,
if θ1 = 0, it is easy to see that the first two equations and last two equations of (3.21) imply

(dp)2 = α̂(dp)1 and r−1 (dp)1 + r+1 (dp)2 = φp,τ (x1) − φp,τ (x3)
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and hence

(3.23) (dp)1 =
φp,τ (x1) − φp,τ (x3)

r−1 + α̂ r+1
, (dp)2 = α̂

φp,τ (x1) − φp,τ (x3)

r−1 + α̂ r+1
.

Thus φp,τ is the solution of the reduced elliptic differential equation −(αφ′p,τ )′ = 0 on x3x1, which is
exactly how the “oscillatory” boundary condition is constructed.

(iv) When θi 6= 0 for i = 1, 2 the boundary condition on each ei depends on both θ1 and θ2. In particular,
if p = 1 (respectively 2), the function φp,τ does not necessarily vanish on the edge e2 (respectively e1).

(v) Algorithm 3.7 determines φp,τ and hence ΦMS
p on each τ individually and does not guarantee that

ΦMS
p will be continuous across element edges, so that approximation in span{ΦMS

p : p ∈ Ih(Ω)} may
not be conforming. We resolve this issue later by averaging across element edges (see §3.4).

In the next theorem we show that the nodal interpolant IMS
h u =

∑
p u(p)φp,τ is a good approximation to

u along the boundary of the element τ . Recall the notation EMS
h := u− IMS

h u.

Theorem 3.9. Let u be the exact solution of (1.2). Consider an element τ which intersects the interface as
in Assumption 3.1. Suppose also φ := θ2 − θ1 − β 6= 0 . Then we have, for m = 0, 1

max
i=1,2

{
α̂hm

τ ‖Dm
ei
EMS

h ‖L∞(ei∩τ−) , h
m
τ ‖Dm

ei
EMS

h ‖L∞(ei∩τ+)

}

. h3/2
τ max

i=1,2

|k|=1

[
α̂2‖DkDei

u‖2
L2(ei∩τ−) + ‖DkDei

u‖2
L2(ei∩τ+)

]1/2

.(3.24)

The hidden constant may blow up if φ→ 0 . (See Remark 3.10 below.)

Proof. We give the proof on the assumption that τ± are as depicted in Figure 2 (i.e. α is large in the region
containing x3 and small in the region containing x1, x2). Making use of (3.21) and the fact that c(u) depends
only on the nodal values of u, we have

Mbα,θ1,θ2,β

(
3∑

p=1

u(xp)dp

)
= c(IMS

h u) = c(u) .

Combining this with Corollary 3.5 we obtain

Mbα,θ1,θ2,β

(
d(u) −

3∑

p=1

u(xp)dp

)
= δ .

Hence, using (3.19) and (3.17), we obtain

(3.25)

(
d(u) −

3∑

p=1

u(xp)dp

)
=




I 0 Abα,θ1

0 I Abα,θ2
Rφ

0 0 I







0

Abα,θ2
ε′

D−1(ε −R2Abα,θ2
ε′)



.

Now by (3.16), and (3.22), we see that the first four entries of the left-hand side of (3.25) are
De1

(u − IMS
h u)−(y1),De1

(u − IMS
h u)+(y1),De2

(u − IMS
h u)−(y2), and De2

(u − IMS
h u)+(y2). Examining the

right-hand side of (3.25), we see that the first two entries are

Abα,θ1
D−1(ε −R2Abα,θ2

ε
′) .

Now, recalling Lemmas 3.2, 3.4 and (3.20) we obtain

‖D−1(ε −R2Abα,θ2
ε
′)‖∞ . h1/2

τ (sinφ)−1 max
i=1,2

|k|=1

{
‖DkDei

u‖2
L2(ei∩τ−) + α̂−2‖DkDei

u‖2
L2(ei∩τ+)

}1/2

.

Hence

max
{
α̂|De1

(u− IMS
h u)−(y1)|, |De1

(u− IMS
h u)+(y1)|

}

. h1/2
τ max

i=1,2

|k|=1

[
α̂2‖DkDei

u‖2
L2(ei∩τ−) + ‖DkDei

u‖2
L2(ei∩τ+)

]1/2

.

Similarly, the third and fourth components of (3.25) yield the same estimate for
max

{
α̂|De2

(u− IMS
h u)−(y2)|, |De2

(u− IMS
h u)+(y2)|

}
.
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The estimates (3.24) for m = 1 then readily follow. For example, since IMS
h u is linear on ei ∩ τ−, we have,

for x ∈ ei ∩ τ
−,

α̂|Dei
(u− IMS

h u)(x)| ≤ α̂|(Dei
u)(x) − (Dei

u−)(yi)| + α̂|Dei
(u− IMS

h u)−(yi)|

. h1/2
τ max

i=1,2

|k|=1

[
α̂2‖DkDei

u‖2
L2(ei∩τ−) + ‖DkDei

u‖2
L2(ei∩τ+)

]1/2

.
(3.26)

To obtain the estimate for m = 0, recall that u−IMS
h u vanishes at the nodes, so we can write, for x ∈ e1∩ τ−,

(3.27) (u− IMS
h u)(x) =

∫ x

x3

De1
(u− IMS

h u)(t)dt,

and the required estimates for ‖u − IMS
h u‖L∞(e1∩τ−) follow directly. The remainder of the estimates (3.24)

for m = 0 are similar.
�

Remark 3.10. The critical case φ = θ2 − θ1 − β = 0 in Theorem 3.9 occurs when the unit outward normals
n1 and n2 to Γ at the two intersection points y1, y2 coincide. In this case, if the interface Γ is not a straight
line, then τ may be subdivided into two sub-elements, in each of which φ no longer vanishes and Algorthm
3.7 applies to each of these sub-elements.

However if Γ ∩ τ is a straight line, no such refinement will succeed. Instead (referring to the geometry in
Fig. 2), we may simply subdivide the quadrilateral τ+ into two triangles and combine this with τ− to yield a
new mesh which locally resolves Γ and then discretise using standard linear basis functions on each of these
three elements.

An alternative approach is suggested by the “Immersed Finite Element (IFE) method” of Li, Lin and Wu
[27], where in any case the interface segment τ ∩ Γ is approximated by a straight line and a special finite
element basis Ψp,τ : p = 1, 2, 3 is constructed on τ which is required to be affine on each of τ− and τ+ and to
satisfy the six conditions (with the same geometry as in Assumption 3.1):

Ψp,τ (xq) = δp,q , q = 1, 2, 3 ,(3.28)

Ψ−
p,τ (yi) = Ψ+

p,τ (yi) , i = 1, 2 ,(3.29)

and DnΨ−
p,τ = α̂DnΨ+

p,τ ,(3.30)

where here n denotes the (constant) normal direction to the straight line Γ ∩ τ pointing from τ− to τ+ and
t the corresponding tangential direction (as in Fig. 2). Note that in (3.30), the quantities on each side of the
equation are constant since the Ψ±

p,τ are assumed affine.
The following lemma shows that the immersed finite element algorithm defines a solution to (3.21) even

when Γ ∩ τ is a straight line (so that φ = 0). However the error estimates of Theorem 3.9 are no longer true
in general for the IFE approach, as the following example shows.

Example 3.11. Consider an element τ with vertices (0, 0), (0, h), (h, h) and the interface is the segment
connected by (0, h/2), (h/2, h/2). If we consider α = α̂ on τ−(left part) and α = 1 on τ+(right part), then
the IFE nodal basis function with value 1 at (h, 0) is given by

2 x

(α̂+ 1)h
−
y

h
, on τ− and

2 α̂ (x− h)

(α̂+ 1)h
−
y − h

h
, on τ+ .

The directional derivative along the edge from (0, 0), (h, h) in τ− is
√

2
(bα+1)h−

1√
2h

of O(1/h) but not O(1/(α̂ h)).

Hence the estimate in Theorem 3.9 can not be true.

Lemma 3.12. Suppose Γ ∩ τ is a straight line segment and suppose Ψp,τ is defined via (3.28), (3.29) and
(3.30). Then the vector d(Ψp,τ ) (defined as in (3.16)) provides a solution to system (3.21).

Proof. Using the fact that Ψp,τ is affine on each of τ±, and using also (3.29), we have, for i = 1, 2,

(∇Ψ−
p,τ )T (yi − x3) + (∇Ψ+

p,τ )T (xi − yi) = Ψ−
p,τ (yi) − Ψp,τ (x3) + Ψp,τ (xi) − Ψ+

p,τ (yi)

= Ψp,τ (xi) − Ψp,τ (x3) .

Since r−i ei = (yi − x3) and r+i ei = (xi − yi), and since the gradients ∇Ψ±
p,τ are constant, it follows that

r−i Dei
Ψ−

p,τ (yi) + r+i Dei
Ψ+

p,τ (y1) = Ψp,τ (xi) − Ψp,τ (x3) for i = 1, 2 ,

and so the last two equations of (3.21) are satisfied.
By a similar argument,

(∇Ψ−
p,τ )T (y1 − y2) = Ψ−

p,τ (y1) − Ψ−
p,τ (y2) = Ψ+

p,τ (y1) − Ψ+
p,τ (y2) = (∇Ψ+

p,τ )T (y1 − y2) ,
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and since y1 − y2 is in the direction of t (the tangent direction along Γ), this implies

DtΨ
+
p,τ = DtΨ

−
p,τ on Γ ∩ τ .

Combining this with (3.2) and (3.30), we have

De1
Ψ−

p,τ = cos θ1DnΨ−
p,τ + sin θ1DtΨ

−
p,τ

De1
Ψ+

p,τ = α̂ cos θ1DnΨ−
p,τ + sin θ1DtΨ

−
p,τ ,

and thus the first two equations in (3.21) are satisfied. The verification of the third and fourth equations in
(3.21) is entirely analogous.

�

Remark 3.13. The previous lemma shows that the system (3.21) is consistent when Γ ∩ τ is a straight line,
which is a particular case of φ = 0. Under the general assumption only that φ = 0, and examining the proof
of Theorem 3.6 we see that in this case D = R1Abα,θ1

+ R2Abα,θ2
. The (non)singularity of this for general

choices of α̂, and θi, r
−
i , r

+
i , i = 1, 2 has not yet been analysed.

3.3. Interior Error. The main result in this section is Theorem 3.16, which gives an α− explicit estimate
for the error |u − uMS

h |H1(τ),α, in the case where the interface may cut through τ . This is obtained by an

application of Theorem 2.2, and thus requires that we first show that EMS
h = u−IMS

h u can be extended from
the boundary to the interior of τ in a suitably robust way. This extension is proved in Lemma 3.15, which
requires a further technical assumption on the geometry of Γ ∩ τ .

Assumption 3.14. We impose Assumption 3.1 and we further assume that when Γ intersects any element τ ,
Γ∩τ is star-shaped about x3. That is, introducing polar coordinates with origin x3 and polar angle θ measured
anticlockwise from e1, we assume that each (x, y) ∈ Γ ∩ τ can be written (x, y) = (r(θ) cos θ, r(θ) sin θ), for
θ ∈ [0, β]. Writing also the edge x1x2 as (x, y) = (r∗(θ) cos θ, r∗(θ) sin θ) for a suitable function r∗, we assume
that there exist constants C > 0 and , 1 > C∗ > 0 such that

(3.31) |r′(θ)| ≤ Cr(θ) and r(θ) ≤ C∗r∗(θ) , for all θ ∈ [0, β].

Note that under this assumption, we can integrate the left-hand side of (3.31) to obtain | log(r(θ)/r(0))| ≤
Cβ, and since r(0) = r−1 , we can combine this with (3.1) to obtain

(3.32) r(θ) ∼ hτ for all θ ∈ [0, β] .

Now letting s denote arclength along Γ ∩ τ , it is easily seen that

(3.33) ds =
√

(r(θ))2 + (r′(θ))2dθ ∼ hτdθ.

Moreover, since (3.31) implies r∗(θ) ∼ hτ , we also have

|τ+| =

∫ β

0

∫ r1(θ)

r(θ)

rdrdθ =
1

2

∫ β

0

[
(r∗)2(θ) − r2(θ)

]
dθ ∼ h2

τ .

A similar but simpler argument shows |τ−| ∼ h2
τ . Collecting these relations, we have

(3.34) |Γ ∩ τ | ∼ hτ , |τ±| ∼ h2
τ .

These are needed in the proof of the following result.

Lemma 3.15. Under Assumption 3.14 there exists ẼMS
h ∈ H1(τ) with ẼMS

h = EMS
h on ∂τ and satisfying

(3.35) |ẼMS
h |2H1(τ),α . h2

τ

(
α̂ max

i=1,2,3
‖Dei

EMS
h ‖2

L∞(ei∩τ−) + max
i=1,2,3

‖Dei
EMS

h ‖2
L∞(ei∩τ+)

)
.

Proof. For notational convenience in the proof we make the abbreviations: E = EMS
h , Ẽ = ẼMS

h . We assume
the geometric situation as in Figure 2, so that τ− (the region where α is high) contains the node x3. The case
where τ− contains two nodes is entirely analogous.

Using Assumption 3.14, we can parametrise τ− by introducing local coordinates (t, θ) such that

(3.36) x = t r(θ) cos θ, y = t r(θ) sin θ, t ∈ [0, 1] , θ ∈ [0, β] .

Then we define Ẽ on τ− explicitly by:

(3.37) Ẽ(t, θ) =

(
θ

β

)
E(x3 + tr−2 e2) +

(
1 −

θ

β

)
E(x3 + tr−1 e1) , t ∈ [0, 1] , θ ∈ [0, β] .
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Clearly Ẽ coincides with E on ei ∩ τ−, for each i = 1, 2 and, moreover,

∂Ẽ

∂x
(t, θ) =

((
θ

β

)
r−2 (De2

E)(x3 + tr−2 e2) +

(
1 −

θ

β

)
r−1 (De1

E)(x3 + tr−1 e1)

)
∂t

∂x

+
1

β

(
E(x3 + tr−2 e2) − E(x3 + tr−1 e1)

)
∂θ

∂x
(3.38)

with an analogous formula for ∂Ẽ/∂y. Defining the Jacobian

(3.39) J :=




∂x
∂t

∂x
∂θ

∂y
∂t

∂y
∂θ


 , we have det(J) = t r2(θ)

and (abbreviating r(θ) by r), the partial derivatives of θ and t may then be computed by

(3.40)




∂t
∂x

∂t
∂y

∂θ
∂x

∂θ
∂y


 = J−1 =

1

t r2

[
t(r cos θ + r′ sin θ) t(r sin θ − r′ cos θ)

−r sin θ r cos θ

]
.

Making use of (3.40) and then Assumption 3.14 (which includes Assumption 3.1), the first term on the
right-hand side of (3.38) may be estimated by

(3.41)
hτ

r(θ)

∣∣∣∣cos θ +
r′(θ)

r(θ)
sin θ

∣∣∣∣ max
i=1,2

‖Dei
E‖L∞(ei∩τ−) .

hτ

r(θ)
max
i=1,2

‖Dei
E‖L∞(ei∩τ−) .

Moreover since E(x3) = 0, we have |E(x3 + tr−i ei)| . thτ‖Dei
E‖L∞(ei∩τ−), i = 1, 2, and hence the second

term on the right-hand side of (3.38) may also be bounded exactly as in the right-hand side of (3.41). An

analogous procedure can be applied to ∂Ẽ/∂y, thus yielding, overall,

|∇Ẽ(t, θ)| .
hτ

r(θ)
max
i=1,2

‖Dei
E‖L∞(ei∩τ−) for t ∈ [0, 1], θ ∈ [0, β] .

Therefore, using also (3.39), we obtain the estimate on τ−:

|Ẽ|2H1(τ−),α =

∫

τ−

α̂|∇Ẽ(x, y)|2 dx dy = α̂

∫ 1

0

∫ β

0

|∇Ẽ(t, θ)|2 t r2(θ) dθ dt

. h2
τ α̂ max

i=1,2
‖Dei

E‖2
L∞(ei∩τ−) .(3.42)

Note that we constructed above an explicit expansion Ẽ into τ− whose precise behaviour is quite delicate.
For the extension into τ+, it turns out to be sufficient to apply the inverse trace theorem, which only obtains
the extension implicitly. Since τ+ is a Lipschitz domain, the (inverse) trace theorem (using also (3.34)), gives

an extension Ẽ which satisfies ( since α . 1 on τ+),

|Ẽ|2H1(τ+),α . |Ẽ|2H1(τ+)

. hτ
−1‖Ẽ‖2

L2(∂τ+) + hτ |Ẽ|2H1(∂τ+)

=
∑

i=1,2,3

(
hτ

−1‖E‖2
L2(ei∩τ+) + hτ |E|2H1(ei∩τ+)

)

+ hτ
−1‖Ẽ‖2

L2(Γ∩τ) + hτ |Ẽ|2H1(Γ∩τ)

. h2
τ max

i=1,2,3
‖Dei

E‖2
L∞(ei∩τ+) + hτ

−1‖Ẽ‖2
L2(Γ∩τ) + hτ |Ẽ|2H1(Γ∩τ) ,(3.43)

where in the final estimate we used E(x1) = 0 = E(x2) .

It remains to estimate the final two terms in (3.43). First note that on Γ∩ τ , we can write Ẽ = Ẽ(1, θ), for
some θ ∈ [0, β] and by (3.37) we have (as above),

(3.44) ‖Ẽ‖L∞(Γ∩τ) . max
i=1,2

|E(yi)| . hτ max
i=1,2

‖Dei
E‖L∞(ei∩τ+) .

Moreover, writing θ = θ(s) where s denotes arclength along Γ ∩ τ , we have
∣∣∣∣
d

ds
{Ẽ(1, θ(s))}

∣∣∣∣ =
1

β
|E(y2) − E(y1)|

∣∣∣∣
dθ

ds

∣∣∣∣ . hτ max
i=1,2

‖Dei
E‖L∞(ei∩τ+)

∣∣∣∣
dθ

ds

∣∣∣∣ .
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+η−η

x2

x1 x3

x4

Figure 4. Left: Γ is the curved interface and η− (η+) is the polygon inside τ− (respectively
τ+). Right: Two elements intersected by the interface.

Hence, making use of (3.33) and (3.34), we have

|Ẽ|2H1(Γ∩τ+) . h2
τ max

i=1,2
‖Dei

E‖2
L∞(ei∩τ+)

∫ |Γ∩τ |

0

∣∣∣∣
dθ

ds

∣∣∣∣
2

ds

∼ hτ max
i=1,2

‖Dei
E‖2

L∞(ei∩τ+).(3.45)

The Lemma follows on insertion of (3.44) and (3.45) into (3.43).
�

Theorem 3.16. Let u be the solution of (1.2) and suppose τ is one of the elements which are cut thought by
the interface Γ. Then, under Assumption 3.14,

|EMS
h |2H1(τ),α . h2

τ α̂
2
[
|u|2H2(τ−) + hτ |u|

2
H5/2(τ−)

]

+ h2
τ

[
|u|2H2(τ+) + hτ |u|

2
H5/2(τ+)

]
+ h2

τ ‖f‖2
L2(τ).(3.46)

Remark 3.17. When τ is an element which is not intersected by the interface, the estimate (3.46) still holds
but the terms in |u|H5/2(τ±) are absent.

Proof. From Theorem 2.2 and Lemma 3.15 we have

|EMS
h |2H1(τ),α

. h2
τ

(
α̂ max

i=1,2,3
‖Dei

EMS
h ‖2

L∞(ei∩τ−) + max
i=1,2,3

‖Dei
EMS

h ‖2
L∞(ei∩τ+) + ‖f‖2

L2(τ)

)
.(3.47)

The edge derivatives on the right-hand side of (3.47) may be estimated by Theorem 3.9, yielding

|EMS
h |2H1(τ),α . h3

τ max
i=1,2,3

|k|=1

[
α̂2‖DkDei

u‖2
L2(ei∩τ−) + ‖DkDei

u‖2
L2(ei∩τ+)

]
+ h2

τ‖f‖
2
L2(τ) .(3.48)

Now we adapt the procedure from the proof of Theorem 2.5 to bound the terms in u appearing on the
right-hand side of (3.48). Let η− be a polygon chosen inside τ− with the property that ∂τ ∩ τ− ⊂ ∂η− and
let η+ be chosen analogously (see Figure 4, Left). Clearly we may choose these polygons so that |η±| ∼ |τ±|.

Then, for |k| = 1 and i = 1, 2, we have (cf. (2.19))

‖DkDei
u−‖2

L2(ei∩τ−) = |Dku−|2H1(ei∩τ−)

. h−1
τ |Dku−|2H1(η−) + |Dku−|2H3/2(η−)

. h−1
τ |u−|2H2(τ−) + |u−|2H5/2(τ−).(3.49)

Analogously we have

(3.50) ‖DkDei
u+‖2

L2(ei∩τ+) . h−1
τ |u+|2H2(τ+) + |u+|2H5/2(τ+).

The required result follows by combining (3.49) and (3.50) with (3.48) �

17



3.4. Conforming modification and global error estimate. The multiscale basis functions discussed in
the previous sections were obtained by solving (2.1) on each element τ individually, using a boundary condition
relevant to that particular element. When an interface cuts an element edge there is no guarantee that the
boundary condition will match across that edge, and so the basis constructed in this way may be discontinuous
(i.e. the element may be non-conforming). However, as we now show, it is easy to make the basis functions
continuous by local averaging. Consider the interface crossing an edge belonging to two adjacent elements,
as in Fig. 4 (Right). Let xp denote any one of the nodes of this pair of triangles and denote the boundary
condition on x2x3 (constructed by the method in §3.2) for τ = △x1x2x3 by φp,τ and the analogous boundary
condition for τ ′ = △x4x2x3 by φp,τ ′ . Then we simply define the averaged boundary condition on x2x3 to be

(φp,τ + φp,τ ′)

2
.

Doing this for all edges cut by the interface yields a conforming method. Moreover we can show by a simple
application of the triangle inequality that the new boundary condition yields multiscale basis functions and
an interpolation operator which satisfies the estimate in Theorem 3.9 and hence Theorem 3.16 remains true.
However, the price we pay is that the resulting basis functions may have a slightly bigger support than the
standard linear functions. For example in Fig. 4 (Right), when p = 4, the basis function ΦMS

p will not
necessarily vanish in the triangle x1x2x3.

Theorem 3.18. Suppose Assumption 3.14 holds for each element which is cut through by the interface.
Suppose also that f ∈ H1/2(Ω). Let u be the solution of (1.2). Assume also that h is sufficiently small. Then

(i) |u− uMS
h |H1(Ω),α . h

[
h|f |2H1/2(Ω) + ‖f‖2

L2(Ω)

]1/2

,(3.51)

(ii) ‖u− uMS
h ‖L2(Ω) . h2

[
h|f |2H1/2(Ω) + ‖f‖2

L2(Ω)

]1/2

.(3.52)

Proof. Consider first Case I (see (1.5)). By the optimality of uMS in the energy norm, we get

(3.53) |u− uMS
h |2H1(Ω),α ≤ |EMS

h |2H1(Ω),α =
∑

τ

|EMS
h |2H1(τ),α,

We now employ Theorem 3.16 to estimate the right-hand side. Bearing in mind the regularity estimates
in Theorem B.1 (since ∂Ω is assumed to be a convex polygon), we need to assume here that h is small
enough so that all elements which cross Γ are separated from ∂Ω by at least a fixed distance. (For example,
h ≈ dist(Γ, ∂Ω)/2 would be sufficient). Under this assumption, and bearing in mind Remark 3.17, we have

|u− uMS
h |2H1(Ω),α .

h2

{
α̂2

m∑

i=1

(
|u|2H2(Ωi)

+ h|u|2H5/2(Ωi)

)
+ |u|2H2(Ω0)

+ h|u|2H5/2(Ω0)
+ ‖f‖2

L2(Ω)

}
.(3.54)

The required estimate (3.51) follows from regularity theorem B.1. The estimate (3.52) is derived by adapting
the duality argument used in the proof of Theorem 2.5. The proof in Case II similar. �

Remark 3.19. If u is required to satisfy an inhomogeneous boundary condition g (as described in Remark
B.3) then we have the following estimates for Case I,

(i) |u− uMS
h |H1(Ω),α . h

[
‖f‖2

L2(Ω) + ‖g‖2
H2(Ω0)

+ h(|f |2H1/2(Ω) + |g|2H5/2(Ω0)
)
]1/2

,

(ii) ‖u− uMS
h ‖L2(Ω) . h2

[
‖f‖2

L2(Ω) + ‖g‖2
H2(Ω0)

+ h(|f |2H1/2(Ω) + |g|2H5/2(Ω0)
)
]1/2

,

and, for Case II,

(i) |u− uMS
h |H1(Ω),α . h

[
‖f‖2

L2(Ω) + α̂2‖g‖2
H2(Ω0)

+ h(|f |2H1/2(Ω) + α̂2|g|2H5/2(Ω0)
)
]1/2

,

(ii) ‖u− uMS
h ‖L2(Ω) . h2

[
‖f‖2

L2(Ω) + α̂2‖g‖2
H2(Ω0)

+ h(|f |2H1/2(Ω) + α̂2|g|2H5/2(Ω0)
)
]1/2

,

The latter estimates can be pessimistic in some inhomogeneous Dirichlet cases. For example if u = u0 +C
where u0 enjoys the same estimates as in Theorem B.1, then since IMS

h preserves constants (see (2.5)),

(3.55) |u− uMS
h |H1(Ω),α ≤ |u− IMS

h u|H1(Ω),α = |u0 − IMS
h u0|H1(Ω),α

and the results of Theorem 3.18 are still valid in this case. However if the boundary data g does not have a
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4. Numerical experiments

In this section, we perform three numerical experiments to verify the convergence rates established above.
We consider the weak form of the Dirichlet boundary value problem:

(4.1) −∇ · (α∇u) = f, in Ω, with u = g, on ∂Ω ,

for different domains Ω, piecewise constant function α, source term f and boundary condition g. To compute
the multiscale basis functions, we subdivide each coarse grid element into M uniform triangular sub-elements
and apply the IFE method of [27] for basis function calculation on each coarse element. As discussed in
Remark 3.10, this involves approximating the interface by a straight line in each element of the fine grid which
it intersects. Clearly extending the theoretical results in this paper to this case will require M sufficiently large
relative to h and α. In the following three experiments, we use M = 1024 to ensure the errors in computing
the basis functions are small. At the end of this section we study in more detail how the choice of M affects
the overall error in the method.

Experiment 1 In this experiment, Ω = [−1, 1] × [−1, 1], f = −9 r, g = r3

α0
+
(

1
α1

− 1
α0

)
r30, and

(4.2) α =

{
α1 , r < r0,
α0 , r ≥ r0.

,

where r = (x2 + y2)1/2 and r0 = π/6.28 (see also [27]). The exact solution is

(4.3) u(r, θ) =

{
r3

α1
, r < r0,

r3

α0
+
(

1
α1

− 1
α0

)
r30 , r ≥ r0.

Recalling (1.5) and (1.6) we shall study Case I: α1 = α̂, α0 = 1 and Case II: α1 = 1, α0 = α̂. Notice that
the source term f is independent of α̂. Although this is an inhomogeneous Dirichlet problem, the general
estimates in Remarks 3.19 and B.3 are overly pessimistic for Case II here. In Case II, the exact solution
(4.3) satisfies |u|Hs+2(Ω0) = 1

bα |r
3|Hs+2(Ω0) and |u|Hs+2(Ω1) = |r3|Hs+2(Ω1) for any s ≥ 0, which is sufficient

for α̂-robust optimal convergence. Thus our method still enjoys the error estimates of Theorem 3.18 in both
Cases II and I in this example.

The coarse grid in this case is a uniform triangular grid on Ω. We depict the numerical solutions for both
cases in Fig. 5. The solutions are flat in the region where the coefficient α is high. Fig. 6, shows that the
errors are small but are concentrated along the interface. The errors are presented in Tables 1 and 2. These
show the method is first order in the H1 semi-norm and second order in the L2 norm as predicted by the
theory. (Throughout, we use least squares fitting to estimate the convergence rates.) The independence of α̂
can be observed from Figure 7.
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Figure 5. Numerical solutions uMS
h with h = 1/32 for Experiment 1.

For this experiment our new multiscale finite element method gives much better performance than the
standard linear finite element method (on the same grid). The improvement is more significant when α̂ is very
large, which may be expected since we have proved that our multiscale method converges independently of α̂
whereas the asymptotic constant in the error estimate for the standard finite element method may depend on
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Figure 6. Pointwise errors EMS
h and h = 1/32 for Experiment 1.

h α̂ = 10 α̂ = 100 α̂ = 1000 α̂ = 10000 α̂ = 100000
1/4 8.9457e-2 9.0295e-2 8.9569e-2 8.9489e-2 9.0375e-2
1/8 2.2833e-2 2.2877e-2 2.2881e-2 2.2891e-2 2.2912e-2
1/16 5.7666e-3 5.7703e-3 5.7791e-3 5.7824e-3 5.7808e-3
1/32 1.4548e-3 1.4521e-3 1.4511e-3 1.4517e-3 1.4511e-3
1/64 3.6619e-4 3.6242e-4 3.6482e-4 3.6369e-4 3.6366e-4
rate 1.9837 1.9899 1.9858 1.9865 1.9895

h α̂ = 10 α̂ = 100 α̂ = 1000 α̂ = 10000 α̂ = 100000
1/4 5.1756e-1 5.5251e-1 5.1793e-1 5.2480e-1 5.5458e-1
1/8 2.4868e-1 2.5246e-1 2.4854e-1 2.4858e-1 2.5381e-1
1/16 1.2349e-1 1.2339e-1 1.2355e-1 1.2297e-1 1.2377e-1
1/32 6.2156e-2 6.1687e-2 6.1456e-2 6.1289e-2 6.1355e-2
1/64 3.1374e-2 3.1011e-2 3.0915e-2 3.0651e-2 3.0662e-2
rate 1.0088 1.0343 1.0149 1.0216 1.0402

Table 1. The L2-norm errors (upper) and the H1 semi-norm errors (lower) for the Case I:
α1 = α̂, α0 = 1 in Experiment 1.

α̂. For example, when α̂ = 105, the multiscale finite element method has an L2 norm error about 66 times
smaller than that of the standard linear finite element method, while in the H1 semi-norm the error is better
by a factor of about 15. We have also compared our multiscale finite element method with the IFE method
[27] applied on the coarse grid and we found that our method gives a consistently better performance for all
values of α̂, although the gain is less pronounced compared with that over the standard finite element method.

Experiment 2 In this experiment Ω is the unit disk, α is as defined in (4.2), with r0 = 1/3. f = 0 and
g(x) = x. The exact solution can be obtained analytically:

(4.4) u(x, y) =





−2
(β−1) r2

0
−(β+1)

x , r < 0,

−(β+1)
(β−1) r2

0
−(β+1)

x+
(β−1)r2

0

(β−1) r2
0
−(β+1)

x
x2+y2 , r ≥ r0,

where β = α1/α0. Unlike in Experiment 1, the exact solution depends on the polar angle θ. We investigate
convergence for the case α1 = α̂, α0 = 1, with increasing α̂ (i.e. Case I), using quasi-uniform meshes, with
a typical example shown in Figure 8. A typical numerical solution and pointwise error are shown in Fig. 9.
As in Experiment 1, we can see that the solution is flat in the high conductivity region and that the errors
are small and concentrated along the interface. From Table 3, we can see the convergence rates are very
close to optimal and independent of α̂. Although the theory presented above is for polygonal ∂Ω, the error
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h α̂ = 10 α̂ = 100 α̂ = 1000 α̂ = 10000 α̂ = 100000
1/4 1.2782e-2 9.0781e-3 9.3489e-3 9.2490e-3 9.2439e-3
1/8 3.7991e-3 2.8410e-3 3.0394e-3 2.9212e-3 2.9314e-3
1/16 1.0235e-3 9.3213e-4 9.2752e-4 8.3648e-4 8.5214e-4
1/32 2.7485e-4 2.7843e-4 2.4049e-4 2.2169e-4 2.2716e-4
1/64 7.7605e-5 6.6592e-5 5.4716e-5 5.7664e-5 5.9580e-5
rate 1.8517 1.7533 1.8493 1.8371 1.8245

h α̂ = 10 α̂ = 100 α̂ = 1000 α̂ = 10000 α̂ = 100000
1/4 1.3950e-1 1.2346e-1 1.2486e-1 1.2422e-1 1.2408e-1
1/8 6.7497e-2 5.7930e-2 5.7251e-2 5.7320e-2 5.7267e-2
1/16 3.3704e-2 3.0806e-2 2.6738e-2 2.6893e-2 2.6961e-2
1/32 1.8304e-2 1.4854e-2 1.2806e-2 1.2563e-2 1.2609e-2
1/64 9.9543e-3 7.3327e-3 6.2600e-3 6.0577e-3 6.2529e-3
rate 0.9987 0.9708 0.9982 1.0063 1.0160

Table 2. The L2-norm errors (upper) and the H1 semi-norm errors (lower) for the Case II:
α1 = 1, α0 = α̂ in Experiment 1.
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Figure 7. Figure (a)-(d) show that the errors are not affected by the values of α̂ in Exper-
iment 1. Each line represents the error versus α̂ for fixed h. The values of h are 1/4, 1/8,
1/16, 1/32, 1/64 from top to bottom.

estimates in Remark 3.19 could easily be extended to prove α̂-independent convergence of optimal order for
this experiment, as is observed in the tables.
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Figure 8. Illustration of computation domain and meshes for Experiment 2. The black circle
indicates the interface in the problem.
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Figure 9. Numerical solution uMS
h and pointwise error EMS

h for Experiment 2 with α̂ =
100000 and h = 1/32.

h α̂ = 10 α̂ = 100 α̂ = 1000 α̂ = 10000 α̂ = 100000
1/8 2.2893e-3 4.6732e-3 3.4460e-3 3.3769e-3 3.3855e-3
1/16 7.0721e-4 1.7751e-3 9.0811e-4 8.8256e-4 8.8731e-4
1/32 1.8442e-4 3.1863e-4 2.5463e-4 2.4886e-4 2.8548e-4
1/64 5.2058e-5 7.9585e-5 7.0451e-5 7.0448e-5 7.0659e-5
rate 1.8315 2.0105 1.8671 1.8575 1.8383

h α̂ = 10 α̂ = 100 α̂ = 1000 α̂ = 10000 α̂ = 100000
1/8 7.3816e-2 9.1749e-2 9.0765e-2 9.1247e-2 9.1505e-2
1/16 4.1501e-2 4.6103e-2 4.5586e-2 4.5827e-2 4.5973e-2
1/32 2.2267e-2 2.4132e-2 2.3906e-2 2.3967e-2 2.4874e-2
1/64 1.3250e-2 1.3547e-2 1.2411e-2 1.2333e-2 1.2382e-2
rate 0.8332 0.9213 0.9543 0.9597 0.9543

Table 3. The L2-norm errors (upper) and the H1 semi-norm errors (lower) for Experiment 2.
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Figure 10. Numerical solutions uMS
h for Experiment 3.
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Figure 11. Pointwise errors EMS
h for Experiment 3.

Experiment 3 In this experiment Ω = [−1, 1] × [−1, 1] and we consider the case of two inclusions, with

α =





α1 , when (x− x1)
2 + (y − y1)

2 < r21,
α2 , when (x− x2)

2 + (y − y2)
2 < r22,

α0 , otherwise.

Here we choose f = 1 and g = 0. Since an analytical solution is unknown, we use the solution on the finest
mesh (here with 16641 grid points) as the reference solution to compute the error for solutions on coarser
meshes. We choose (x1, y1) = (1/2, 0), (x2, y2) = (−1/2, 1/2) and r1 = 2/5, r2 = 1/3.

Recalling that (1.5) allows α1 and α2 to approach infinity with different rates, we set α1 = α̂, α2 = 5 α̂ and
α0 = 1 as an example of Case I. For Case II, we let α1 = 1, α2 = 5 and α0 = α̂. The numerical solution and
pointwise error are shown in Fig. 10 and Fig. 11. We can see that the error is still small and concentrated
along the interface. Table 4 and 5 shows our method enjoys a roughly optimal convergence rate and that the
errors are independent of α̂ as predicted by Theorem 3.18.

Discussion on the choice of the number of subgrid elements

Finally we discuss the sensitivity of the error in the overall multiscale method to the choice of M (the
number of subgrid elements) used to compute the basis functions. Here we test how the errors depend on
M in Experiment 1 (Case I), with α̂ = 100, 1000, 10000, and h = 1/4, 1/8, 1/16, 1/32, 1/64 and plot the error
against M in Fig. 12. In each plot there are five groups of three lines, each group corresponds to a different
value of h, with h decreasing from 1/4 (top group) to 1/64 (bottom group). In each group of three lines, the
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h α̂ = 10 α̂ = 100 α̂ = 1000 α̂ = 10000 α̂ = 100000
1/4 2.2150e-2 7.2008e-3 7.0956e-3 7.2309e-3 8.1280e-3
1/8 2.9498e-3 2.5855e-3 2.5863e-3 2.6387e-3 3.1500e-3
1/16 1.0142e-3 7.0168e-4 7.1187e-4 7.5761e-4 1.1063e-3
1/32 1.6523e-4 1.9426e-4 1.5366e-4 1.5484e-4 1.7776e-4
rate 2.2740 1.7518 1.8449 1.8436 1.8054

h α̂ = 10 α̂ = 100 α̂ = 1000 α̂ = 10000 α̂ = 100000
1/4 1.0715e-1 3.5010e-2 3.5559e-2 3.5590e-2 3.5765e-2
1/8 2.2953e-2 1.5407e-2 1.5854e-2 1.6046e-2 1.8413e-2
1/16 1.2119e-2 5.9967e-3 6.7962e-3 7.9550e-3 1.6621e-2
1/32 5.8558e-3 3.1782e-3 2.0319e-3 2.2558e-3 4.0509e-3
rate 1.3502 1.1746 1.3610 1.2951 0.9574

Table 4. The L2-norm errors (upper) and the H1 semi-norm errors (lower) for the Case I:
α1 = α̂, α2 = 5 α̂, α0 = 1 in Experiment 3.

h α̂ = 10 α̂ = 100 α̂ = 1000 α̂ = 10000 α̂ = 100000
1/4 6.6651e-3 1.3188e-3 1.2837e-3 1.2870e-3 1.2343e-3
1/8 7.7081e-4 4.9420e-4 3.3161e-4 3.3314e-4 3.2842e-4
1/16 1.8952e-4 1.6737e-4 6.9212e-5 6.9211e-5 6.6224e-5
1/32 4.9532e-5 5.8600e-5 1.4979e-5 1.5999e-5 1.6192e-5
rate 2.3240 1.5039 2.1524 2.1257 2.1067

h α̂ = 10 α̂ = 100 α̂ = 1000 α̂ = 10000 α̂ = 100000
1/4 5.9426e-2 9.7096e-3 8.7966e-3 8.7811e-3 8.1776e-3
1/8 1.1250e-2 6.9732e-3 4.4793e-3 4.2302e-3 4.4192e-3
1/16 4.7793e-3 5.0584e-3 1.3624e-3 1.2180e-3 1.1965e-3
1/32 3.0188e-3 2.9506e-3 6.1242e-4 4.0833e-4 4.7003e-4
rate 1.4132 0.5618 1.3250 1.5076 1.4248

Table 5. The L2-norm errors (upper) and the H1 semi-norm errors (lower) for the Case II:
α1 = 1, α2 = 5, α0 = α̂ in Experiment 3.
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Figure 12. The sensitivity test of M for Case I in Experiment 1 with α̂ = 100(- - * line),
1000(- - x line), 10000(- - diamond line).The values of h are 1/4, 1/8, 1/16, 1/32, 1/64 from
top to bottom.

dash * line is for α̂ = 100, the dash x line is for α̂ = 1000 and the dash diamond line is for α̂ = 10000. (In the
case of the L2 error, the cases h = 1/32 and 1/64 are almost coincident. )
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From these graphs we can see that the errors decrease as M increases, and with M = 64, the multiscale
finite element method gives an error that is comparable to that using M = 1024 when the coarse mesh size
is less then 1/4 for all α̂. This indicates that, at least in this example, it is possible to use relatively few
subgrid elements to compute the basis function with the desired accuracy, for example by choosing M = 64.
We expect that the use of adaptive subgrid elements may lead to further computational saving in computing
the multiscale basis function.
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Appendix A. Extension theorem and Poincaré inequality on an annulus

Lemma A.1. Extension theorem on an annulus. Consider an equilateral triangle denoted τ , with side
1 depicted in Fig 13, and let τ δ be the closed annulus of uniform width δ bounded by Γ1 and Γ2 as pictured.
Let Γ := Γ1 ∪ Γ2 and let v ∈ H1/2(Γ). Then v has an extension ṽ ∈ H1(τ δ) such that

(A.1) |ṽ|H1(τδ) ≤ C δ−1‖v‖H1/2(Γ),

where C is a generic constant independent of δ and v.

Proof. For this proof only, we use the notation A . B to mean that A ≤ CB with C independent of δ and
u. We use standard tools for Lipschitz domains (as found for example in [31]). Let {Wi}

N
i=1 be an overlapping

open covering of τ δ and let {φi}N
i=1 be a corresponding partition of unity with the properties: (i) Each Wi

is the intersection of τ δ with an open ball of diameter . δ and either Wi ∩ Γ1 = ∅ or Wi ∩ Γ2 = ∅; (ii)
‖∇φi‖L∞(τ) . δ−1; and (iii) each Wi has non empty intersection with at most m Wj for some number m
independent of δ.

δ

τ δ

Γ1

Γ2

Figure 13. The graph of the triangular strip.

Define σi = Wi∩Γ. By property (i), σi is either a straight line segment or a corner segment of Γ. Therefore
there exists a bijective H1 map Fi : R

2 → R
2 such that σ̃i := Fi(σi) is a subinterval of the x-axis in R

2 and
Fi(Wi) is a bounded subset of the upper half plane R

2
+. Since v ◦F−1

i ∈ H1/2(σ̃i) and σ̃i is an open subset of
R, by the Extension Theorem (e.g. [31, Theorem A.4]), we can find an extension function wi on R such that
wi|eσi

= v ◦ F−1
i and

‖wi‖H1/2(R) . ‖v ◦ F−1
i ‖H1/2(eσi) . ‖v‖H1/2(σi)

Then, by the (inverse) Trace Theorem on a half-space (e.g. [31, Lemma 3.36]), we can extend wi to a
function w̃i on the upper half plane R

2
+ such that w̃i ∈ H1(R2

+), w̃i(x, 0) = wi(x) , x ∈ R, and

(A.2) ‖w̃i‖H1(R2
+

) . ‖wi‖H1/2(R) . ‖v‖H1/2(σi).

Now define ṽi = w̃i ◦ Fi and ṽ =
∑N

i=1 φiṽi. Then ṽ = v on Γ and, using property (ii), (iii) and (A.2) , we
obtain

|ṽ|2H1(τδ) ≤
N∑

i=1

|ṽ|2H1(Wi)
.

N∑

i=1

|φiṽi|
2
H1(Wi)

. δ−2
N∑

i=1

‖ṽi‖
2
H1(Wi)

. δ−2
N∑

i=1

‖w̃i‖
2
H1(R2

+
) . δ−2

N∑

i=1

‖v‖2
H1/2(σi)

. δ−2‖v‖2
H1/2(Γ),

as required.
�
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Lemma A.2. Poincaré inequality on an annulus. Let τ δ, δ and Γ = Γ1 ∪ Γ2 be as in Lemma A.1.
Then for all u ∈ H1(τ δ), there exists a constant γ such that

‖u− γ‖L2(τδ) . |u|H1(τδ) ,

where the hidden constant is independent of δ.

Proof. Surprisingly there seems no good source for a proof of this result. However a proof may be easily
constructed by first writing down the estimate

‖u− γ‖2
L2(τδ) . δ‖u− γ‖2

L2(Γ2)
+ δ2|u|H1(τδ) .

This may be found as equation (3.15) in [37] and can then be combined with the estimate (proved in [32,
Lemma 4.3]), that there exists a choice of γ which ensures that

‖u− γ‖2
L2(Γ) . δ−1|u|2H1(τδ) .

(To be precise γ may be chosen as the average of u over any of the edges of τ . ) These two estimates imply
the required result. �

Appendix B. Regularity estimates for high-contrast interface problems

While the Sobolev regularity of the solution u to the interface problem (1.2) is classical, there are relatively
few published results which give estimates for how the Sobolev norms of u depend on the contrast parameter
α̂. An exception is Huang and Zou (c.f.[20]) which gives a partial result in this direction which we generalise in
the following theorem. The proof below was proposed to us by N. Babych, I.V. Kamotski and V.P. Smyshlyaev
of the University of Bath, UK.

Theorem B.1. Let Ω be either a smooth C∞ bounded domain in R
2 or a bounded convex polygon, let Ω

contain inclusions Ωi, i = 1, 2 . . . ,m, each having a C∞ boundary, and define Ω0 = Ω\ ∪m
i=1 Ωm, as described

in §1. Consider problem (1.2) and assume that either Case I or Case II ( (1.5) or (1.6)) holds. In addition,

let Γ̃ denote any closed C∞ contour in Ω0, which encloses all the Ωi and let Ω̃0 be the domain with boundary

Γ ∪ Γ̃ (see Fig. 14 for an illustration in the special case m = 1). Then we have

(B.1) |u|Hs+2(Ωi) .
1

αi
‖f‖Hs(Ω), for all s ≥ 0 , i = 1, 2 . . . ,m .

Moreover

(B.2) |u|H2(Ω0) .
1

α0
‖f‖L2(Ω),

and

(B.3) |u|H2+s(eΩ0)
.

1

α0
‖f‖Hs(Ω), for all s ≥ 0 .

The hidden constants depend on the distance of Γ from ∂Ω.

Remark B.2. While the estimates (B.2) and (B.3) can be recovered from the results in [20], the result (B.1)
can not be found there, because [20] works only with estimates of norms and proves ‖u‖Hs+2(Ωi) . ‖f‖Hs(Ω),

i = 1, . . . ,m. The bounds on the Hs+2-seminorms in (B.1) are sharper in Case I and are essential for the
analysis in the present paper. In Case II the seminorms of u on the left-hand side of (B.2) and (B.3) can even
be replaced by the corresponding norms. However only the estimates on the seminorms are needed in this
paper.

Proof. In the proof, we consider only the he case when Ω is a convex polygon. The case of smooth ∂Ω is
simpler. Also only the case of one inclusion is considered, although the proof for m inclusions is similar. Thus
the geometry which we consider is illustrated in Fig. 14. Also, we shall consider only Case I (1.5), i.e.

(B.4) α̂ = α1 → ∞ , α0 = 1 ,

As we shall explain at the end of the proof, Case II is easy once the proof for Case I is clear.
Thus our required result in Case I is, for all s ≥ 0,

|u|Hs+2(Ωi) .
1

α̂
‖f‖Hs(Ω), i = 1, 2 . . . ,m ,(B.5)

|u|H2(Ω0) . ‖f‖L2(Ω), and |u|H2+s(eΩ0)
. ‖f‖Hs(Ω) .(B.6)

The result is clear for all α̂ ∈ [1, A] for some fixed A so we only have to prove (B.5), (B.6) for α̂ sufficiently
large.
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Γ

Γ̃

∂Ω Ω1

Figure 14. The domain Ω in the special case m = 1. The domain Ω0 is bounded by Γ and

∂Ω while the domain Ω̃0 is bounded by Γ and Γ̃

Before beginning the proof, we recall two classical regularity results for elliptic boundary value problems.
Let s ≥ 0 and let φ ∈ Hs+3/2(Γ). Then

(B.7)





∆z = ω on Ω1

z = φ on Γ
ω ∈ Hs(Ω1)



 =⇒ ‖z‖Hs+2(Ω1) . ‖ω‖Hs(Ω1) + ‖φ‖Hs+3/2(Γ) .

and

(B.8)





∆z = ω on Ω0

z = φ on Γ ,
z = 0 on ∂Ω
ω ∈ Hs(Ω0)





=⇒





‖z‖H2(Ω0) . ‖ω‖L2(Ω0) + ‖φ‖H3/2(Γ)

and
‖z‖Hs+2(eΩ0)

. ‖ω‖Hs(Ω0) + ‖φ‖Hs+3/2(Γ) .





A suitable reference for (B.7) is [28, §2, Thm 5.4]. For the first inequality on the right-hand side of (B.8),
we can construct a proof by first extending φ to a function φ′ ∈ H2(Ω0) which vanishes on ∂Ω and with
‖φ′‖H2(Ω0) . ‖φ‖H3/2(Γ). Then ∆(z−φ′) = ω−∆φ′ on Ω0 and z−φ′ vanishes on ∂Ω0. So using estimates

for elliptic equations on domains with convex corners (for example [16, §3.2]) we obtain the estimate. To
obtain the second inequality on the right-hand side of (B.8), we use interior regularity results (a suitable
reference is [36, Th 11.1]) and then the trace theorem to obtain

‖z‖Hs+3/2(Γ̃) . ‖ω‖Hs(Ω0) + ‖z‖H1(Ω0) . ‖ω‖Hs(Ω0) + ‖φ‖H1/2(Γ) .

Again applying regularity estimates on the smooth domain Ω̃0 ([28, §2, Thm 5.4]), we obtain the required
estimate.

Now the first step in the proof is to introduce a decomposition of the form

(B.9) u = û + ũ ,

where û solves independent Dirichlet problems with homogeneous boundary data on each Ωi:

−αi∆û = f on Ωi, with û = 0 on ∂Ωi i = 0, 1 .

Then, from (B.7) and (B.8) and recalling (B.4), we obtain, for all s ≥ 0 ,

(B.10) ‖û‖H2+s(Ω1) .
1

α̂
‖f‖Hs(Ω1) , ‖û‖H2(Ω0) . ‖f‖L2(Ω0) and ‖û‖H2+s(eΩ0)

. ‖f‖Hs(Ω0) .

Thus û satisfies all the estimates (B.5), (B.6) and the remainder of the proof is concerned with obtaining the
same estimates for ũ. Since ũ = u− û, it follows that

∆ũ = 0 on Ωi, i = 0, 1 , and ũ = 0 on ∂Ω .(B.11)

Since ũ is continuous across Γ, we can define ṽ = ũ|Γ .
For any suitably smooth v defined on Ω, we let ∂vi/∂n denote the normal derivative of v evaluated on Γ,

with value taken from within Ωi, i = 0, 1. (The normal direction is fixed as outward from Ω1.) Then the
usual jump relation for the solution u of the interface problem (1.2) reads: (∂u0/∂n)− α̂(∂u1/∂n) = 0, which
immediately implies that the function ũ satisfies the following equation on Γ:

(B.12)
∂ũ0

∂n
− α̂

∂ũ1

∂n
= G := α̂

∂û1

∂n
−
∂û0

∂n
.
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This may be readily written :

(B.13) (N0 − α̂N1)ṽ = G ,

with Ni denoting appropriate Dirichlet to Neumann maps on Ωi (taking ṽ as Dirichlet data on Γ and using
homogeneous Dirichlet data on ∂Ω).

To analyse (B.13) as α̂ → ∞, we might consider scaling by α̂−1 to obtain a small perturbation of N1.
However, because N1 has a non-trivial kernel (namely the constant functions on Γ, henceforth denoted 〈1〉),
we must study the operator N1 in the orthogonal complement of this space. Thus we introduce

Pv =
1

|Γ|

∫

Γ

v(s) ds ,

the orthogonal projection from L2(Γ) onto 〈1〉 and (I − P), the orthogonal projection onto L2(Γ)⊥ :=
{v ∈ L2(Γ) : Pv = 0}. Then writing

ṽ = P ṽ + (I − P)ṽ =: c̃+ w̃ ,

equation (B.13) may be expressed as the system in 〈1〉 × L2(Γ)⊥:

(B.14)

[
P(N0 − α̂N1)P P(N0 − α̂N1)(I − P)

(I − P)(N0 − α̂N1)P (I − P)(N0 − α̂N1)(I − P)

] [
c̃
w̃

]
=

[
PG

(I − P)G

]
.

Moreover, since PN1 = N1P are null operators on L2(Γ), (B.14) may be rewritten:

(B.15) (P − α̂−1Q)

[
c̃
α̂w̃

]
=

[
PG

(I − P)G

]
,

where

P =

[
PN0P 0

(I − P)N0P −N1

]
and Q =

[
0 PN0(I − P)
0 (I − P)N0(I − P)

]
.

We next show that P is invertible on 〈1〉 × L2(Γ)⊥. Note first that N1 is invertible on L2(Γ)⊥. To analyse
PN0P, consider the boundary value problem:

(B.16) ∆η = 0 in Ω0, with η = 1 on Γ, and η = 0 on ∂Ω,

which has has a unique solution η ∈ H2(Ω0). The linear operator PN0P operates on 〈1〉 as multiplication by
the scalar

γ := P

[
∂η

∂n

]
=

1

|Γ|

∫

Γ

∂η

∂n
ds ,

and this scalar does not vanish, since (by (B.16)),

γ |Γ| =

∫

Γ

∂η

∂n
ds =

∫

∂Ω0

η
∂η

∂n
ds =

∫

Ω0

∇ · (η∇η) dx =

∫

Ω0

|∇η|2 dx > 0 .

Moreover the linear operator (I − P)N0P operates on 〈1〉 as multiplication by the function ρ := (I −
P)(∂η/∂n) = ∂η/∂n− γ ∈ L2(Γ)⊥ . Hence

P =

[
γ 0
ρ −N1

]
and P−1 =

[
γ−1 0

γ−1N−1
1 ρ −N−1

1

]
.

Now combining (B.7) and (B.8) with the Trace Theorem we obtain that N1 : L2(Γ)⊥ ∩ Hs+3/2(Γ) →
L2(Γ)⊥ ∩ Hs+1/2(Γ) is a bounded operator and in fact has a bounded inverse (see, e.g. [28, §2, Th. 5.4]).
Moreover N0 : Hs+3/2(Γ) → Hs+1/2(Γ) is also bounded and it is straightforward to show that P−1Q is a
bounded operator on 〈1〉 ×Hs+3/2(Γ) and that

(B.17)

∥∥∥∥P
−1

[
PG

(I − P)G

]∥∥∥∥
〈1〉×Hs+3/2(Γ)

. ‖G‖Hs+1/2(Γ) .

Hence, considering (B.15) for α̂ sufficiently large, we have the estimate

max{|c̃| , α̂‖w̃‖Hs+3/2(Γ)} . ‖G‖Hs+1/2(Γ) ≤ α̂

∥∥∥∥
∂û1

∂n

∥∥∥∥
Hs+1/2(Γ)

+

∥∥∥∥
∂û0

∂n

∥∥∥∥
Hs+1/2(Γ)

. α̂‖û‖Hs+2(Ω1) + ‖û‖Hs+2(eΩ0)
(B.18)

. ‖f‖Hs(Ω) ,(B.19)

where the last three estimates are obtained from employing the definition of G in (B.12), then the trace
theorem and finally (B.10).
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Now recall that ũ is harmonic on Ω1 and that ũ|Γ =: ṽ = c̃+ w̃, where c̃ ∈ R. Hence, if we define ũ1 on
Ω1 by requiring it to be harmonic and to coincide with w̃ on Γ, we have, by uniqueness, ũ = c̃ + ũ1 on Ω1.
Thus by using (B.7) and then (B.18), we have, for all s ≥ 0,

(B.20) |ũ|Hs+2(Ω1) = |ũ1|Hs+2(Ω1) . ‖w̃‖Hs+3/2(Γ) .
1

α̂
‖f‖Hs(Ω) ,

Combining (B.20) with the first inequality in (B.10) (and recalling (B.4)) then yields the first required estimate
(B.5). To obtain (B.6), we note that (B.18) implies that ‖ṽ‖Hs+3/2(Γ) . ‖f‖Hs(Ω) and hence the required

estimates follow from (B.8).
Finally we remark why the result is easier to prove in Case II, i.e.

α̂ = α0 → ∞ , α1 = 1 .

In this case the analysis of û is unchanged, but in the analysis of ṽ we obtain, instead of (B.13), the equation

(α̂N0 −N1)ṽ = G :=
∂û1

∂n
− α̂

∂û0

∂n
.

Since N0 is invertible the estimate for ṽ can then be obtained by premultiplying this equation by α̂−1N−1
0 and

letting α̂ get sufficiently large, without having to go through the projection procedure leading to the system
(B.14). �

Remark B.3. Here we briefly discuss the case of inhomogeneous Dirichlet conditions. Consider problem (1.2)
but replace u ∈ H1

0 (Ω) by the requirement that u ∈ H1(Ω) with u = g on ∂Ω. For simplicity assume that g is
the restriction to ∂Ω of a function g ∈ Hs+2(Ω0) where g has compact support in Ω0 and with s as large as
we wish. Assume also that there is only one inclusion Ω1. Then an analogous argument as that in Theorem
B.1 can be carried out, but with û now required to satisfy û = g on ∂Ω, so that, in Case I, by (B.8),

‖û‖H2+s(Ω1) .
1

α̂
‖f‖Hs(Ω) , and

‖û‖H2(Ω0) . ‖f‖L2(Ω0) + ‖g‖H2(Ω0) and ‖û‖H2+s(eΩ0)
. ‖f‖Hs(Ω0) + ‖g‖H2+s(Ω0).

The analysis for ũ is as in (B.18), (B.19) and (B.20), leading to the estimates for u:

|u|H2+s(Ω1) .
1

α̂

[
‖f‖Hs(Ω) + ‖g‖Hs+2(Ω0)

]
,

|u|H2(Ω0) . ‖f‖L2(Ω) + ‖g‖H2(Ω0) and |u|H2+s(eΩ) . ‖f‖Hs(Ω) + ‖g‖H2+s(Ω0).

Thus the higher seminorms of u in the inclusions still decay as α̂→ ∞.

However in Case II the seminorms on Ω0 and Ω̃0 do not necessarily decay and the best estimate for general
g is

(B.21) |u|H2+s(Ω1) . ‖f‖Hs(Ω) + ‖g‖Hs+2(Ω0) ,

(B.22) |u|H2(Ω0) .
1

α̂

{
‖f‖L2(Ω) + α̂|g|H2(Ω0)

}
and |u|H2+s(eΩ0)

.
1

α̂

{
‖f‖Hs(Ω) + α̂|g|H2+s(Ω0)

}
.

To give more detail of derivation of the final estimate, note that under the stated assumptions on g, we have
u− g ∈ H1

0 (Ω) and
a(u− g, v) = (f, v)L2(Ω) + α̂(∆g, v)L2(Ω0)

Then applying Theorem B.1, we have the stated estimate. It could be useful to have only the seminorms of
g on the right hand side of (B.22): If the given boundary data g has an extension which is “nearly flat” near
∂Ω then the estimates (B.22) will be decaying as α̂→ ∞. This is the case, for example in Experiment 1 (Case
II) in §4.
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