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Summary
We analyse stability properties of Lur’e systems, that is, feedback intercon-
nections consisting of a linear state-space system in the forward path and
a static nonlinearity in the feedback path. Classical absolute stability the-
ory infers the stability of the Lur’e system by combining assumptions on
frequency-domain properties of the linear system and sector data properties
of the nonlinearity. The influential Aizerman’s conjecture hypothesizes that
if a Lur’e system is stable for all linear output feedback matrices in a given
sector, then it is stable for all nonlinear output feedback maps in the same
sector. While in its original form Aizerman’s conjecture is known to be false,
we show that a complexified version of Aizerman’s conjecture that uses ball
data instead of sector data is true. Then we show that, under slightly more
restrictive assumptions on the nonlinearity, input-to-state stability holds.
This adds to the growing body of work linking the areas of absolute sta-
bility and input-to-state stability. In contrast to most previous work, we
place emphasis on the discrete-time case (although the continuous-time case
is analysed as well), allow nonzero feedthrough and deal with multivariable
systems. A key role in proving input-to-state stability for Lur’e systems
is played by novel estimates involving comparison functions, which allow
us to construct ISS-Lyapunov functions. Finally, we consider discrete-time
input-output Lur’e systems, that is, feedback interconnections consisting of
a linear higher-order matrix difference equation relating input and output
in the forward path and a static nonlinearity in the feedback path. Absolute
stability theory is rarely developed in an input-output setting and when it
is, the results are usually reminiscent of the small-gain theorem. We extend
results from behavioural theory pertaining to relating linear state-space and
input-output systems and obtain a number of new results. We thus ob-
tain extensions of absolute stability and input-to-state stability results to
an unfamiliar, input-output, setting.
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0.1 Notation

Let N0 be the set of integers greater than or equal to 0.

Let X be a vector space over a field F (= R or C). Denote the space of
all functions from N0 to X by XN0 . We can also view XN0 as the space
of all sequences with entries in X. We will interchange these two views
depending on what is more convenient. Note that, by defining addition in
XN0 and scalar multiplication by elements in F pointwise, XN0 becomes a
vector space over F. Similarly, for a linear map M : X → Y , we can define
its action on XN0 pointwise to obtain a linear map M : XN0 → Y N0 .

The left-shift L : XN0 → XN0 is defined by (Lx)(t) = x(t+1) for all t ∈ N0.

For r > 0, z0 ∈ C, define E(z0, r) := {z ∈ C : |z − z0| > r} and denote
E := E(0, 1). Similarly define D(z0, r) := {z ∈ C : |z − z0| < r} and set
D := D(0, 1). We define the punctured disc D′(z0, r) at z0 of radius r
by D′(z0, r) := {z ∈ C : 0 < |z − z0| < r}.

Denote by C the open left half-plane of the complex plane; that is, C :=
{z ∈ C : Re(z) < 0}. Similarly C+ will denote the open right half-plane
of the complex plane; that is, C+ := {z ∈ C : Re(z) > 0}.

For a normed vector space X, a point x0 ∈ X and r > 0, define B(x0, r) :=
{x ∈ X : ‖x − x0‖ < r}. For X = Cm×p and K ∈ X, we will sometimes
write BC(K, r).

Denote by F[z] the ring of polynomials in the complex variable z with coeffi-
cients in F. Denote the field of fractions of the ring F[z] by F(z), we will call
elements in F(z) rational functions. Note that for any rational function
f ∈ F(z), there exists a unique representation f = p

q , where p, q ∈ F[z] have
no common factors and p is monic (that is, the leading coefficient is equal
to 1). If deg p ≤ deg q, then f is said to be proper. If deg p < deg q, then
f is said to be strictly proper. A rational function matrix G ∈ F(z)p×m

is said to be proper (resp. strictly proper) if every element of G is proper
(resp. strictly proper).

In what follows we will use the standard inner product on Fm given by
〈x, y〉 :=

∑m
j=1 xjyj . Note that contrary to some conventions, it is linear in

the first variable. We will also use the norm induced by this inner product
(this is usually known as the 2-norm). For M ∈ Fp×m define ‖M‖ :=
sup{‖Mx‖ : x ∈ Fm, ‖x‖ = 1}. This is the 2-norm induced operator norm.

A square matrix Π ∈ Fm×m is said to be a projection if Π2 = Π. It is
well-known that then the vector space Fm can be decomposed in the direct
sum Fm = im Π ⊕ ker Π. We call Π an orthogonal projection if im Π is
orthogonal to ker Π, that is, for ξ ∈ im Π and µ ∈ ker Π, we have 〈ξ, µ〉 = 0.
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If P ∈ Fn×n is self-adjoint, then we will say that the function V : Fn → R
defined by V (ξ) := 〈Pξ, ξ〉 is a quadratic form.

We will use the shorthand In for n× n identity matrices; the subscript will
be omitted, when it can easily be inferred from context.

Let T : X → X be a bounded linear operator on a Banach space X. We
define the spectrum of T , from here on σ (T ), to be the set of points λ in
the complex plane for which λI − T is not bijective. If X = Fn, then the
spectrum of T coincides with the set of its eigenvalues.

Let A and B be two sets. The Minkowski sum A+B of A and B is defined
as A+B := {a+ b : a ∈ A, b ∈ B}.

Consider an open set Ω ⊆ C and f : Ω → C ∪ {∞}. We say that f is
holomorphic in Ω if it is complex differentiable at every point of Ω. We
say that f is meromorphic in Ω if it is holomorphic in Ω \ P , where - for
some index set I - we can write P = ∪α∈I{zα} ⊆ Ω with zα’s isolated. We
call zα’s the poles of f . These definitions can be extended in the obvious
way to matrix maps F : Ω→ (C ∪ {∞})p×m.

Consider a function V : Fn → R. We define its gradient ∇V : Fn → Fn as
(∇V (ξ))i = ∂V

∂ξi
(ξ) for 1 ≤ i ≤ n.

For 0 < ω ≤ ∞, we denote by C([0, ω),Fn) the set of all continuous
maps x : [0, ω) → Fn and we set C(Fn) := ∪ω∈(0,∞]C([0, ω),Fn). Similarly,
we denote by C1([0, ω),Fn) the set of all continuously differentiable maps
x : [0, ω)→ Fn and we set C1(Fn) := ∪ω∈(0,∞]C

1([0, ω),Fn).

We will say that a map f : Fp → Fm is locally Lipschitz if for each
ξ ∈ Fp, there exist r, L > 0 such that ‖f(ξ1)− f(ξ2)‖ ≤ L ‖ξ1 − ξ2‖ for all
ξ1, ξ2 ∈ BF(ξ, r).

For u ∈ (Fm)N0 , we define ‖u‖∞ := supt∈N0
‖u(t)‖ and we denote by l∞(Fm)

the set of all u ∈ (Fm)N0 such that ‖u‖∞ <∞. It is well-known that l∞(Fm)
with the norm ‖·‖∞ is a Banach space.

For 0 < ω ≤ ∞, we denote by AC([0, ω),Fm) the set of all absolutely con-
tinuous maps u : [0, ω) → Fm and set AC(Fm) := ∪ω∈(0,∞]AC([0, ω),Fm)
We will use the phrase “almost everywhere” (abbreviated as “a.e.”) in the
measure-theoretic sense.

For u : [0, ω)→ Fm, where 0 < ω ≤ ∞, we set ‖u‖∞ := ess supt∈[0,ω) ‖u(t)‖.
We denote by L∞([0, ω),Fm) the set of all maps u : [0, ω) → Fm such that
‖u‖∞ < ∞ and we set L∞(Fm) := ∪ω∈(0,∞]L

∞([0, ω),Fm). We also define
L∞loc(Fm) := {u ∈ L∞(Fm) : ess supt∈[0,ω)∩K ‖u(t)‖ < ∞ ∀ compactK ⊂
[0,∞)}.
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Symbol Use

Lowercase Latin alphabet letters will be used for vectors in Rm and ele-
ments in (Fm)N0 , [0,∞),N0,C. The letter t will almost exclusively be used
to denote the time variable: in discrete-time t ∈ N0 and in continuous-time
t ∈ [0,∞). In some instances ei’s will be used to denote the standard basis
in Fm. As is common, f, g, h will all be used to represent functions.

Uppercase Latin alphabet letters will be used for elements in sets F[z]p×m,
F(z)p×m and Fp×m.

Lowercase Greek letters α, β, σ and γ will be used for K, K∞ and KL func-
tions (for definitions see Chapter 5). Other Greek letters will be used for
elements in Fm, except for (i) θ, which will denote an element in the interval
[0, 2π) or a particular map in Part III, (ii) ε, which will denote an element
in (0,∞), and (iii) ω, which will denote an element in (0,∞].
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Chapter 1

Introduction

In this thesis we link two well-established areas of nonlinear control theory:
absolute stability and input-to-state stability (from now on, ISS). Classical
absolute stability theory, the origins of which date back to the late 1940s
and the seminal paper by Lur’e and Postnikov [44], is concerned with Lur’e
systems: that is, feedback interconnections consisting of a linear state-space
system in the forward path and a nonlinearity in the feedback path. In
continuous-time these can be represented as

ẋ(t) = Ax(t) +Bf(y(t)), y(t) = Cx(t) +Df(y(t)), (1.1)

where A,B,C,D are real matrices of appropriate dimensions and f is a non-
linearity. Absolute stability of Lur’e systems has been studied extensively
and forms an integral part of nonlinear control theory, see e.g. Vidyasagar
[56], Khalil [36] or Haddad and Chellaboina [23] for textbook treatments in
the continuous-time setting (the latter includes a chapter on the discrete-
time case as well) and Haddad and Bernstein [22], Gonzaga [18], Alamo
[3] or Ahmad [1] for some publications in the discrete-time setting. Also,
an overview of the area is provided in Liberzon’s survey article [40], which
collects just shy of 500 references from work on absolute stability theory.
We should note that in literature the nonlinearity f is often time-varying;
the assumptions in stability results then have to hold uniformly in the time
variable.

An important landmark, the celebrated Aizerman’s conjecture from [2], has
been a major influence on the development of absolute stability theory and,
arguably, its starting point. In the single-input single-output setting it hy-
pothesizes that if, for a given linear system (A,B,C,D), the Lur’e intercon-
nection is globally asymptotically stable for all linear output feedbacks F
that satisfy the sector condition a ≤ F ≤ b, then, in fact, the Lur’e intercon-
nection is globally asymptotically stable for all nonlinear output feedback

9



CHAPTER 1. INTRODUCTION

maps f that satisfy the same sector condition aξ2 ≤ f(ξ)ξ ≤ bξ2 for all
ξ ∈ R, see Figure 1.1. While a counterexample to the classical Aizerman’s

0

bξ

aξ

f(ξ)

Figure 1.1: Sector condition

conjecture was constructed by Pliss [46] and Fitts [15], it was shown in
Hinrichsen and Pritchard [25] that a stability radius version of Aizerman’s
conjecture holds true over the complex field. This modified conjecture plays
a prominent role in the present thesis and a version of it is the first re-
sult we present that is of some novelty, see Propositions 4.2.1 and 8.2.1
for the discrete-time and the continuous-time cases, respectively. A slightly
simplified version of our results states that if, for a given multivariable lin-
ear system (A,B,C,D), the Lur’e interconnection is globally asymptotically
stable for all complex linear output feedback maps F that satisfy the norm
condition ‖Fξ‖ < r ‖ξ‖ for some r > 0 and for all ξ ∈ Cp \ {0}, then,
in fact, the Lur’e interconnection is globally asymptotically stable for all
nonlinear output feedback maps f that satisfy the same norm condition
‖f(ξ)‖ < r ‖ξ‖ for all ξ ∈ Rp. This result displays some differences in our
overall approach from previous work: (i) we adopt an Aizerman viewpoint
in our results, (ii) we allow nonzero feedthrough and consider multivariable
systems, and (iii) we analyse both the discrete-time and the continuous-time
cases. As a corollary we obtain a result strongly reminiscent of the classical
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circle criterion for multivariable systems, see Propositions 4.3.2 and 8.4.1
for the discrete-time and the continuous-time cases respectively. Note that,
in contrast to existing work, we develop our results over the complex field
as well as the real field and thus allow complex-valued nonlinearities.

While our absolute stability results are of some novelty and offer interesting
perspectives on a classical hypothesis, the main results of this thesis pertain
to input-to-state stability. ISS theory has been developed over the last 25
years and it provides a natural stability framework for nonlinear systems
with inputs, merging, in a sense, Lyapunov and input-output approaches to
stability and encapsulating the robustness of a globally asymptotically stable
equilibrium with respect to bounded disturbances. See Jiang and Wang [31]
and Sontag [52] for an overview of ISS in discrete-time and continuous-
time, respectively. Recent developments demonstrate that, under slightly
stronger assumptions than those in results from absolute stability theory,
we in fact obtain ISS, see Arcak and Teel [7], Jayawardhana, Logemann and
Ryan [29, 30], Bruin, Doris, van de Wouw, Heemels and Nijmeijer [12] and
Yang, Zhang and Huang [63]. In line with the above references, we study
Lur’e systems with forcing, however we also admit nonzero feedthrough and
consider both the discrete-time case

x(t+ 1) = Ax(t) +B(f(y(t)) + d(t))

y(t) = Cx(t) +D(f(y(t)) + d(t))
(1.2)

and the continuous-time case

ẋ(t) = Ax(t) +B(f(y(t)) + d(t))

y(t) = Cx(t) +D(f(y(t)) + d(t)).
(1.3)

Here the forcing d could represent a target trajectory or a disturbance. The
main results in this thesis are Aizerman-like ISS criteria for Lur’e systems
with forcing (1.2) and (1.3). These state that if, for a given multivariable
linear system (A,B,C,D), the Lur’e interconnection is ISS for all complex
linear output feedback maps F that satisfy the norm condition ‖Fξ‖ < r ‖ξ‖
for some r > 0 and for all ξ ∈ Cp\{0}, then, in fact, the Lur’e interconnection
is ISS for all nonlinear output feedback maps f that satisfy a similar norm
condition ‖f(ξ)‖ < r ‖ξ‖ − α(‖ξ‖) for an appropriate comparison function
α and for all ξ ∈ Rp, see Theorems 5.3.1 and 9.2.1. We stress that the
class of comparison functions allowed above is quite wide and that it admits
functions that increase slowly. In the continuous-time setting we obtain
a number of results from Jayawardhana, Logemann and Ryan [29, 30] as
consequences, see Corollaries 9.3.2 and 9.3.3.

A central tool for proving ISS in previous work that derives ISS criteria
from assumptions similar to ones made in absolute stability results is a
Lyapunov characterization of input-to-state stability (see e.g. Sontag [52]
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CHAPTER 1. INTRODUCTION

for the continuous-time result or Jiang and Wang [31, 32] for the discrete-
time result). In Arcak and Teel [7] and Jayawardhana, Logemann and Ryan
[29, 30] an ISS-Lyapunov function is constructed by combining a quadratic
form obtained from the positive real lemma with a quadratic form obtained
from solving a Lyapunov equation associated to the underlying linear system
(A,B,C,D). This is where our approach differs - while we do construct an
ISS-Lyapunov function to prove ISS, we use the bounded real lemma for a
quadratic form instead. This allows us to analyse different classes of systems
and requires new methods of estimation to be developed, which results in a
treatment of K∞ functions (see §5.1) and novel results in Lemma 5.1.11 and
Proposition 5.1.15.

Lastly, we will also consider linear discrete-time input-output systems de-
fined by higher-order difference equations

k∑
j=0

Pjy(t+ j) =
k∑
j=0

Qju(t+ j), (1.4)

where Pj ’s and Qj ’s are matrices of appropriate dimensions. By closing the
feedback loop via u(t) := f(y(t)) + d(t), where f is some nonlinearity and d
is a forcing, which could represent e.g. a target trajectory or a disturbance,
we obtain a class of input-output Lur’e systems

k∑
j=0

Pjy(t+ j) =
k∑
j=0

Qj(f(y(t+ j)) + d(t+ j)). (1.5)

Some absolute stability aspects of the continuous-time single-input single-
output (from here on, SISO) counterpart of (1.5) have been studied in Brock-
ett and Willems [10], where a Popov criterion type result is obtained. Other
approaches include Haddad and Chellaboina [23], Desoer and Vidyasagar
[14], who study classical input-output systems (that is, causal maps from
the input space to the output space) in the context of absolute stability.
Their results revolve around the small-gain theorem and norm approxima-
tions, and they typically establish classical input-output stability in the lp

sense. We obtain a different class of results by applying behavioural theory
to the study of (1.4). The main role is played by an extension of known
results from behavioural theory, which relate tuples (u, y) that satisfy (1.5)
to triples (u, x, y) that satisfy

x(t+ 1) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t),

for an appropriate linear state-space system (A,B,C,D), see Theorem 11.4.5
and its corollaries. It allows us to apply, in effect, Lyapunov techniques
from Part I of the thesis to input-output Lur’e systems (1.5) and obtain
both absolute stability results, see Propositions 12.1.7, 12.1.10 and Corollary
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12.1.8, as well as input-to-output stability results, see Theorem 12.1.13 and
Corollaries 12.1.14, 12.1.15.

This thesis is structured as follows: in Part I we analyse discrete-time Lur’e
systems (1.2). We state some preliminary results on quadratic forms and
stabilizing linear output feedback matrices in §2 and §3 before applying them
to absolute stability problems in §4 and to ISS problems in §5. In Part II we
analyse continuous-time Lur’e systems (1.3). The results on quadratic forms
and linear output feedback matrices are collected in §7 and then applied to
studying absolute stability in §8, while §9 is concerned with ISS questions.
Finally, in Part III we study discrete-time input-output Lur’e systems (1.5).
We state and prove preliminary results on realization theory in §11. This is
then applied to absolute stability and input-to-output stability problems in
§12. We collect some proofs and state some unused, yet interesting, results
in the appendix.
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Part I

Stability of discrete-time
Lur’e systems
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Since the general ideas of Part I of this thesis were already explained in the
Introduction, we shall not repeat ourselves, but will instead explain how
this part is organized. Chapter 2 starts with a short section, §2.1, which
defines linear state-space systems. Then we exhibit two ways of construct-
ing quadratic functions for stability analysis: one from bounded real lemma
in §2.2 and one from output injection in §2.3. Then in §2.4 we state and
prove a result on ω-limit sets. Chapter 3 is devoted to analysing stabiliz-
ing linear output feedback matrices. After the definition and some simple
consequences in §3.1, we relate a ball condition to the bounded real prop-
erty, the positive real property and the complex stability radius (see Lemma
3.2.7, Proposition 3.2.12 and Corollary 3.2.17, respectively). We then use an
equivalence of a ball condition and the bounded real property to construct a
quadratic form, which will be used in both absolute stability and ISS anal-
ysis, see Lemma 3.2.8. In Chapter 4 we analyse the absolute stability of
Lur’e systems without forcing and obtain a result that proves the complex-
ified version of Aizerman’s conjecture, see Proposition 4.2.1. This is in turn
then used to prove a result similar to the classical circle criterion, see Propo-
sition 4.3.2. In Chapter 5 we finally turn to ISS of Lur’e systems and obtain
- in Theorem 5.3.1 - sufficient conditions for ISS from assumptions similar
to the ones made in the complexified version of Aizerman’s conjecture. It is
then used to provide sufficient conditions for ISS from assumptions similar
to the ones made in the circle criterion, see Proposition 5.4.1. We state
which results are original, provide references to similar existing work and
discuss possible future avenues of exploration in §6.

We should remark that since existing similar work [7, 29, 30] is conducted
in a continuous-time setting, we defer detailed comparisons with our results
to Part II, where we analyse continuous-time systems.

17
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Chapter 2

Preliminaries

In this chapter we collect preliminaries on linear state-space systems. After
defining linear state-space systems and their behaviours in §2.1, we will look
at the quadratic forms offered to us by the use of the bounded real lemma
and the positive real lemma in §2.2 and by the use of an output injection in
§2.3. Finally, we will note some ω-limit set properties in §2.4.

2.1 Linear state-space systems

Definition 2.1.1. We call a matrix quadruple of dimensions (A,B,C,D) ∈
Fn×n × Fn×m × Fp×n × Fp×m a linear state-space system or sometimes,
a linear system. The set of all linear systems of this format are denoted by
Σ(m,n, p;F).

The transfer function of (A,B,C,D), usually denoted by G, is defined as
C(zI −A)−1B +D ∈ F(z)p×m.

We say that a linear state-space system (A,B,C,D) ∈ Σ(m,n, p;F) is con-
trollable if rank

(
B AB . . . An−1

)
= n and we say that it is observable if

rank
(
C∗ A∗C∗ . . . A∗n−1C∗

)∗
= n. We will sometimes say that a con-

trollable and observable linear system is minimal. If there exists K ∈ Fm×n
such that σ (A+BK) ⊆ D, then we say that (A,B,C,D) is stabilizable.
We say that (A,B,C,D) is detectable if (A∗, C∗, B∗, D∗) is stabilizable.

Somewhat unusually for stability analysis, we will make use of the notion of
a behaviour; we introduce it for linear systems first. Recall the definition of
the left-shift operator L from §0.1.

Definition 2.1.2. For (A,B,C,D) ∈ Σ(m,n, p;F) we define the behaviour
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of the linear state-space system (A,B,C,D) as

B(A,B,C,D) :=
{

(u, x, y) ∈ (Fm)N0 × (Fn)N0 × (Fp)N0 :

Lx = Ax+Bu

y = Cx+Du
}
.

We call an element (u, x, y) ∈ B(A,B,C,D) a trajectory.

Note that the above definition of a trajectory is simply saying that (u, x, y) ∈
B(A,B,C,D) are such that

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t) ∀ t ∈ N0.

The concept of a behaviour allows us to easily apply quadratic forms ob-
tained from linear techniques (e.g. Lemmas 2.2.1, 3.2.8, 3.2.13) to both
absolute stability analysis (see the proof of Proposition 4.2.1) and ISS anal-
ysis (see the proof of Theorem 5.3.1).

2.2 Bounded real lemma

Existing ISS results for Lur’e systems from [7, 29, 30] are proved using an
ISS-Lyapunov function obtained by the use of the positive real lemma. This
result, which is sometimes called the Kalman-Yakubovich-Popov lemma, al-
lows one to guarantee the existence of a quadratic form that is useful in sta-
bility analysis by assuming a frequency-domain condition for a controllable
and observable state-space system. Moreover, Lyapunov functions obtained
by similar methods are known to be useful for absolute stability analysis of
Lur’e systems, see e.g. [22, 23, 36]. Instead of the positive real lemma we
will use the bounded real lemma to construct a quadratic form, which will
be used in both absolute stability and ISS analysis. This approach allows
us to obtain stability results for new classes of systems. Moreover, we prove
the bounded real lemma for stabilizable and detectable linear state-space
systems, which allows us to relax the common assumption that the under-
lying linear state-space system of a Lur’e system must be controllable and
observable.

Before we move on to the main part of this section, we state a lemma that
will be useful for the analysis of quadratic forms.

Lemma 2.2.1. Consider a positive semi-definite matrix P = P ∗ ∈ Fn×n
and define a quadratic form V : Fn → [0,∞) by V (ξ) := 〈Pξ, ξ〉.
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Then V −1(0) = kerP . Moreover, there exists a projection Π: Fn → Fn such
that ker Π = kerP and V (ξ) ≥ c ‖Πξ‖2 for all ξ ∈ Fn.

Proof. By the complex and real spectral theorems (see e.g. [8]), there exists
M ∈ Fn×n such that M∗PM is a diagonal matrix and such that M−1 = M∗.
We can then rewrite 〈Pξ, ξ〉 = 〈M∗PMµ, µ〉, where µ = M∗ξ. Since M∗PM
is diagonal, if ξ ∈ V −1(0), then µ ∈ kerM∗PM , which in turn gives us
ξ ∈ kerP , so that V −1(0) ⊆ kerP . On the other hand, kerP ⊆ V −1(0)
follows trivially from the definition of V and hence we have V −1(0) = kerP .

Let Π be the orthogonal projection onto (kerP )⊥ along kerP = V −1(0)
(see e.g. §6 from [8] for the construction of Π). Then ker Π = V −1(0).
Moreover since P = PΠ and P = P ∗, it follows that V (ξ) = V (Πξ) for all
ξ ∈ Fn. Finally, since ker Π = V −1(0), the seminorm ξ 7→

√
V (ξ) becomes

a norm once restricted to (V −1(0))⊥ = (kerP )⊥ = im Π. Hence there exists
a positive c such that V (ξ) = V (Πξ) ≥ c ‖Πξ‖2 for all ξ ∈ Fn, completing
the proof.

Definition 2.2.2. The Hardy space H∞(E,Cp×m) is the space of all
bounded analytic functions F : E→ Cp×m with the norm given by

‖F‖H∞ = sup
z∈E
‖F (z)‖ .

We will usually use the shorthand H∞ for H∞(E,Cp×m).

Consider a linear state-space system (A,B,C,D) and denote its transfer
function by G. The bounded real lemma is a name given to a set of results
that provide characterization of the properties ‖G‖H∞ < 1 and ‖G‖H∞ ≤ 1
in terms of existence of solutions to certain matrix equations. More pre-
cisely, it states that under the above assumptions, one can construct matri-
ces P,W,L (with P self-adjoint) that satisfy the bounded real equations

A∗PA− P + C∗C = −L∗L,
A∗PB + C∗D = −L∗W,
B∗PB +D∗D = I −W ∗W.

There seems to be no definitive version of the bounded real lemma in the
literature. Haddad and Chellaboina [23], Anderson and Vongpanitlerd [5]
and Anderson [4] assume strict inequality ‖G‖H∞ < 1 and that the un-
derlying linear system is controllable and observable and infer that P > 0.
Haddad and Bernstein [22] assume nonstrict inequality ‖G‖H∞ ≤ 1 and
that the underlying linear system is controllable and observable and infer
that P > 0. Finally, Wimmer [62]) relaxes the minimality of (A,B,C,D) to
stabilizability and detectability at the price of only being able to guarantee
that P ≥ 0 and making an additional assumption on the transfer function of
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(A,B,C,D). We will use the latter two versions of the bounded real lemma
in this thesis.

Lemma 2.2.3. Consider a stabilizable and detectable system (A,B,C,D) ∈
Σ(m,n, p,F) and denote its transfer function by G. Assume that ‖G‖H∞ ≤ 1
and ‖G(z0)‖ < 1 for some z0 ∈ C with |z0| = 1.

Then there exist matrices L, W and a positive semi-definite P = P ∗ ∈ Fn×n
such that

A∗PA− P + C∗C = −L∗L,
A∗PB + C∗D = −L∗W,
B∗PB +D∗D = I −W ∗W.

Proof. By stabilizability, detectability and ‖G‖H∞ ≤ 1 we have σ (A) ⊆ D.
Hence we can apply Theorem 5.3 from Wimmer [62] (technically Wimmer
only proves it for the case, when the underlying field is complex, but an
inspection reveals that it can be extended to the real field as well) to see
that there exists a positive semi-definite P = P ∗ ∈ Fn×n such that I −
D∗D−B∗PB is positive definite and such that P is a solution of the Riccati
equation

A∗PA− P + (A∗PB + C∗D)[I −D∗D −B∗PB]−1(B∗PA+D∗C)

+ C∗C = 0.

Since I −D∗D −B∗PB is positive definite, there exists W = W ∗ > 0 such
that W ∗W = I−D∗D−B∗PB (see e.g. Theorem 7.27 from [8]). The proof
is then complete if we set L := −(W ∗)−1(B∗PA+D∗C).

We provide a full proof of the continuous-time counterpart of Lemma 2.2.3,
see Lemma 7.3.1 and its proof in Appendix §C. We remark that the assump-
tion “‖G(z0)‖ < 1 for some z0 ∈ C with |z0| = 1” is similar to the assump-
tion made in the continuous-time case, namely “‖D‖ = limz→∞ ‖G(z)‖ <
‖G‖H∞”, see Lemma 7.3.1.

We will also use the more common version of the bounded real lemma,
which assumes that the linear system is minimal, but allows us to omit the
assumption that there exists z0 ∈ C with |z0| = 1 such that ‖G(z0)‖ < 1.

Lemma 2.2.4. Consider a controllable and observable system (A,B,C,D) ∈
Σ(m,n, p,F) and assume that its transfer function G satisfies ‖G‖H∞ ≤ 1.

Then there exist matrices L, W and a positive semi-definite P = P ∗ ∈ Fn×n
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such that

A∗PA− P + C∗C = −L∗L,
A∗PB + C∗D = −L∗W,
B∗PB +D∗D = I −W ∗W.

Proof. In the real case this is Lemma 3.1 from [22] and an inspection of their
proof reveals that it can be easily extended to the complex case.

The bounded real lemma allows us to construct a quadratic form that will
be useful in stability analysis.

Lemma 2.2.5. Consider a stabilizable and detectable system (A,B,C,D) ∈
Σ(m,n, p,F) and denote its transfer function by G. Assume that G ∈ H∞
and that there exists z0 ∈ C with |z0| = 1 such that ‖G(z0)‖ < ‖G‖H∞.

Then there exists a positive semi-definite P = P ∗ ∈ Fn×n such that the
quadratic form V : Fn → [0,∞) defined by V (ξ) := 〈Pξ, ξ〉 satisfies

V (x(t+ 1))− V (x(t)) ≤ ‖u(t)‖2 − ‖G‖−2H∞ ‖y(t)‖2

for all t ∈ N0 and for all trajectories (u, x, y) ∈ B(A,B,C,D).

Moreover there exists a projection Π: Fn → Fn and a positive c such that
ker Π ⊆ kerC and V (ξ) ≥ c ‖Πξ‖2 for all ξ ∈ Fn.

Proof. Set ρ := ‖G‖−1H∞ and consider the (stabilizable and detectable) linear
state-space system (A, ρB,C, ρD). Its transfer function ρG satisfies the
assumptions of Lemma 2.2.3, so there exist matrices L,W and a positive
semi-definite P = P ∗ ∈ Fn×n such that

A∗PA− P + C∗C = −L∗L, (2.2.1a)

ρA∗PB + ρC∗D = −L∗W, (2.2.1b)

ρ2B∗PB + ρ2D∗D = I −W ∗W. (2.2.1c)

Now define V (ξ) := 〈Pξ, ξ〉, pick an arbitrary (u, x, y) ∈ B(A,B,C,D) and
use the difference equations for state and output to obtain

V (x(t+ 1))− V (x(t)) = 〈P (Ax(t) +Bu(t)), Ax(t) +Bu(t)〉
− 〈Px(t), x(t)〉

= 〈(A∗PA− P )x(t), x(t)〉+ 〈A∗PBu(t), x(t)〉
+ 〈x(t), A∗PBu(t)〉+ 〈B∗PBu(t), u(t)〉 .
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Therefore, by using equations (2.2.1a) - (2.2.1c), we can obtain

V (x(t+ 1))− V (x(t)) =

=− ‖Cx(t)‖2 − ‖Lx(t)‖2 − 〈Du(t), Cx(t)〉 − 1

ρ
〈Wu(t), Lx(t)〉

− 〈Cx(t), Du(t)〉 − 1

ρ
〈Lx(t),Wu(t)〉

− ‖Du(t)‖2 +
1

ρ2
‖u(t)‖2 − 1

ρ2
‖Wu(t)‖2

=−
∥∥∥∥Lx(t) +

1

ρ
Wu(t)

∥∥∥∥2 +
1

ρ2
‖u(t)‖2 − ‖y(t)‖2

≤ 1

ρ2
‖u(t)‖2 − ‖y(t)‖2

for all t ∈ N0. Thus ρ2V satisfies the required estimate.

Now, by Lemma 2.2.1, we know that V −1(0) = kerP and that there exists
a projection Π: Fn → Fn and a positive c such that ker Π = kerP = V −1(0)
and V (ξ) ≥ c ‖Πξ‖2 for all ξ ∈ Fn. Pick ξ ∈ V −1(0) and use equation
(2.2.1a) to see that

0 = 〈PAξ,Aξ〉 = −‖Cξ‖2 − ‖Lξ‖2 .

Hence ξ ∈ kerC and consequently ker Π = V −1(0) ⊆ kerC completing the
proof.

An almost identical line of reasoning leads us to the following lemma.

Lemma 2.2.6. Consider a controllable and detectable system (A,B,C,D) ∈
Σ(m,n, p,F) and assume that its transfer function G ∈ H∞.

Then there exists a positive semi-definite P = P ∗ ∈ Fn×n such that the
quadratic form V : Fn → [0,∞) defined by V (ξ) := 〈Pξ, ξ〉 satisfies

V (x(t+ 1))− V (x(t)) ≤ ‖u(t)‖2 − ‖G‖−2H∞ ‖y(t)‖2

for all t ∈ N0 and for all trajectories (u, x, y) ∈ B(A,B,C,D).

Moreover there exists a projection Π: Fn → Fn and a positive c such that
ker Π ⊆ kerC and V (ξ) ≥ c ‖Πξ‖2 for all ξ ∈ Fn.

Our focus in this section is the bounded real lemma, however, as mentioned
at the start of this section, it is the positive real lemma, which seems to
be used more often in stability analysis of Lur’e systems. In §2.3 we will
compare the respective quadratic forms, so we now state the relevant positive
real lemma results.
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Definition 2.2.7. Consider a linear system (A,B,C,D) ∈ Σ(m,n,m;F)
with an equal number of inputs and outputs, and denote its transfer function
by G. We say that G is (discrete-time) positive real, if (G(z))∗+G(z) ≥ 0
for all z ∈ E which are not poles of G(z).

We say that G is strictly positive real if there exists ρ > 1 such that
G(zρ) is positive real.

We say that G is strongly positive real if it is strictly positive real and
D∗ +D > 0, where D := lims→∞G(s).

Some consequences of these definitions are collected in the appendix, see
§A.1. The following version of the positive real lemma is proved in [28].

Lemma 2.2.8 (Positive real lemma). Consider a controllable and observable
(A,B,C,D) ∈ Σ(m,n,m,R) and denote its transfer function G.

Then G is positive real if and only if there exist matrices L, W and a positive
definite P = P ∗ ∈ Rn×n such that:

A∗PA− P = −LL∗,
A∗PB − C∗ = −LW,

D +D∗ −B∗PB = W ∗W.

Much like the bounded real lemma, the positive real lemma can be used to
construct a quadratic form useful in stability analysis. We relegate the proof
of the following result to the appendix, see §A.1.

Lemma 2.2.9. Consider a controllable and observable linear state-space
system (A,B,C,D) ∈ Σ(m,n,m,F) and assume that its transfer function G
is positive real.

Then there exists a positive definite P = P ∗ ∈ Fn×n such that the quadratic
form V : Fn → [0,∞) defined by V (ξ) := 〈Pξ, ξ〉 satisfies

V (x(t+ 1)) ≤ V (x(t)) +
1

2

[
‖u(t) + y(t)‖2 − ‖u(t)− y(t)‖2

]
for all t ∈ N0 and for all trajectories (u, x, y) ∈ B(A,B,C,D).

Note that the quadratic forms V obtained from Lemmas 2.2.9 and 2.2.5 offer
very different estimates on V (x(t + 1)) − V (x(t)). However the following
result establishes a link between positive real and bounded real (that is,
‖G‖H∞ ≤ 1) transfer functions.

Lemma 2.2.10. Let G ∈ F(z)m×m; the following are equivalent:

(a) G is positive real,

(b) I +G is invertible and
∥∥(I −G)(I +G)−1

∥∥
H∞
≤ 1.
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Proof. First we note that if G is positive real, then 2 ·Re 〈(I +G(z))ξ, ξ〉 =
〈(2I +G(z) +G(z)∗)ξ, ξ〉 > 0 for all ξ ∈ Fm \ {0} and for all z ∈ E, which
implies that I+G(z) is invertible for all z ∈ E and hence I+G is invertible.

Thus it now suffices to show that if I + G is invertible, then G is positive
real if, and only if,

∥∥(I −G)(I +G)−1
∥∥
H∞
≤ 1. To this end, set F :=

(I −G)(I +G)−1 and note that G = (I − F )(I + F )−1. Thus G is positive
real if, and only if,

(I − F (z))(I + F (z))−1 +
[
(I − F (z))(I + F (z))−1

]∗ ≥ 0 ∀ z ∈ E.
(2.2.2)

Premultiply this by (I + F (z))∗ and postmultiply by I + F (z) (note that
these two operations do not change the positive definiteness of the matrix
on the left hand side of inequality (2.2.2)) to see that G is positive real if,
and only if,

(I + F (z))∗(I − F (z)) + (I + F (z))∗(I − F (z)) ≥ 0 ∀ z ∈ E.

This simplifies to

I ≥ (F (z))∗F (z) ∀ z ∈ E
⇐⇒ ‖ξ‖2 ≥ ‖F (z)ξ‖2 ∀ ξ ∈ Fm, ∀ z ∈ E
⇐⇒ 1 ≥ ‖F‖H∞ .

Results similar to this lemma are known: see Anderson [4], Guiver [20] or
Hinrichsen and Pritchard [25]. The map G 7→ (I−G)(I+G)−1 is sometimes
called the Cayley transform.

2.3 Output injection

In this section we obtain a quadratic form via a technique sometimes called
“an output injection”. In the continuous-time setting, this is a well-known
technique, see the references provided in §7.4.

Lemma 2.3.1. Consider (A,B,C,D) ∈ Σ(m,n, p;F) and assume that it is
detectable. Then there exists a positive definite P = P ∗ ∈ Fn×n and δ > 0
such that the quadratic form V : Fn → [0,∞) defined by V (ξ) := 〈Pξ, ξ〉
satisfies

V (x(t+ 1))− V (x(t)) ≤ −δ ‖x(t)‖2 + ‖y(t)‖2 + ‖u(t)‖2

for all t ∈ N0 and for all (u, x, y) ∈ B(A,B,C,D).
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Proof. By detectability of (C,A), there exists H ∈ Fn×m such that σ(A +
HC) ⊂ D. It is a well-known fact from linear algebra that σ (M) = σ (M∗),
where overline denotes the complex conjugation (see e.g. Proposition 4.4.4v)
from [9]).

Hence there exists a solution Q = Q∗ > 0 of the discrete-time Lyapunov
equation

(A+HC)∗Q(A+HC)−Q = −I. (2.3.1)

Now consider the quadratic form VQ(ξ) := 〈Qξ, ξ〉. We can use equation
(2.3.1) to see that:

VQ(x(t+ 1))− VQ(x(t))

= 〈(A∗QA−Q)x(t), x(t)〉+ 〈QAx(t), Bu(t)〉
+ 〈QBu(t), Ax(t)〉+ 〈QBu(t), Bu(t)〉

=− ‖x(t)‖2 − 〈QAx(t), HCx(t)〉
− 〈QHCx(t), HCx(t)〉 − 〈QHCx(t), Ax(t)〉
+ 〈QAx(t), Bu(t)〉+ 〈QBu(t), Ax(t)〉+ 〈QBu(t), Bu(t)〉

for all t ∈ N0 and (u, x, y) ∈ B(A,B,C,D). Our aim now is to estimate the
right hand side of this expression in such a way that we do not accrue more
than a “−1/2 ‖x(t)‖2” term in total. To this end, we substitute Cx(t) =
y(t)−Du(t) and apply the Cauchy-Schwarz inequality, the property of the
operator norm ‖Mξ‖ ≤ ‖M‖ ‖ξ‖ and the simple inequality ab = a

c bc ≤
1
c2
a2 + c2b2 to see that there exist positive δ, c1, c2 such that

VQ(x(t+ 1))− VQ(x(t)) ≤ −δ ‖x(t)‖2 + c1 ‖y(t)‖2 + c2 ‖u(t)‖2

for all t ∈ N0 and (u, x, y) ∈ B(A,B,C,D). The function 1
max{c1,c2}VQ has

all the sought properties.

2.4 ω-limit set

Typically, ω-limit sets are defined for initial value problems, however we use
them in a slightly unusual context, so it will be useful to define an ω-limit
set for an element v ∈ (Fm)N0 .

Definition 2.4.1. For v ∈ (Fm)N0 we define the ω-limit set of v, denoted
Ωv, by

Ωv := {ξ ∈ Fm : ∃(tj)j∈N0 ⊂ N0 s.t. tj →∞ and v(tj)→ ξ as j →∞}.
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For a point ξ ∈ Fm and a nonempty set S ⊂ Fm we define the distance
between ξ and S as

dist(ξ,S) := inf{‖ξ − µ‖ : µ ∈ S}.

Lemma 2.4.2. Consider a bounded v ∈ (Fm)N0; then Ωv is nonempty and

lim
t→∞

dist(v(t),Ωv) = 0.

Proof. Since v is bounded, by the Bolzano-Weierstrass theorem, there exists
a convergent subsequence of (v(t))t∈N0 . Its limit is clearly in Ωv, so that Ωv

is indeed nonempty.

Now suppose on the contrary, that limt→∞ dist(v(t),Ωv) = 0 does not hold.
Then there exists ε > 0 and a subsequence (tj)j∈N0 of N0 such that tj →∞
and dist(v(tj),Ωv) > ε for all j ∈ N0. However, by the Bolzano-Weierstrass
theorem, (v(tj))j∈N0 has a convergent subsequence, so there exists a sub-
sequence (tji)i∈N0 of (tj)j∈N0 such that tji → ∞ and limi→∞ v(tji) = ξ
for some ξ ∈ Fm. Hence, by definition, ξ ∈ Ωv which in turn contradicts
dist(v(tji),Ωv) > ε for all i ∈ N0 and thus completes the proof.
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Chapter 3

Stabilization by linear
output feedback

This short chapter is concerned with the study of linear output feedback
matrices of state-space systems (A,B,C,D). In §3.1 we define what these are
and note a simple consequence, sometimes called the loop shift technique, see
Lemma 3.1.4. In §3.2 we introduce the set SC (A,B,C,D), which contains
all linear output feedback matrices that stabilize (A,B,C,D). As we will
see in Proposition 3.2.12, balls of stabilizing output feedback matrices being
contained in SC (A,B,C,D) (from here on, we will reference this as the ball
condition) provide us with an alternative characterization of the bounded
real property ‖G‖H∞ ≤ 1. In combination with the bounded real lemma,
the ball condition provides us with a quadratic form, which will turn out
to be useful for stability analysis in later chapters, see Lemma 3.2.8. Then,
in Proposition 3.2.12, we observe that the ball condition also admits an
equivalent positive-real characterization. Finally, we note a connection with
the complex stability radius in Corollary 3.2.16.

3.1 Linear output feedback

Consider a linear state-space system (A,B,C,D) ∈ Σ(m,n, p;F) and de-
note its transfer function by G. Pick K ∈ Fm×p and consider a trajectory
(u, x, y) ∈ B(A,B,C,D). If we set v := u−Ky, then

Lx = Ax+Bu = Ax+Bv +BKy (3.1.1)

y = Cx+Du = Cx+Dv +DKy. (3.1.2)

If we assume that I −DK is invertible, then we can rewrite (3.1.2) as

y = (Ip −DK)−1Cx+ (Ip −DK)−1Dv
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and in turn substitute this in (3.1.1) to obtain

Lx =
[
A+BK(Ip −DK)−1C

]
x+

[
B +BK(Ip −DK)−1D

]
v.

Hence if we define

AK := A+BK(Ip −DK)−1C, BK := B +BK(Ip −DK)−1D,

CK := (Ip −DK)−1C, DK := (Ip −DK)−1D,
(3.1.3)

then

Lx = AKx+BKv (3.1.4)

y = CKx+DKv. (3.1.5)

This straightforward observation is at the basis of the loop shifting tech-
nique, see e.g. Green and Limebeer [19], and motivates the following defini-
tion.

Definition 3.1.1. Consider (A,B,C,D) ∈ Σ(m,n, p;F). We define the set
AC(A,B,C,D) of admissible output feedback matrices by

AC(A,B,C,D) := {K ∈ Fm×p : det(Ip −DK) 6= 0}.

Note that AC(A,B,C,D) only depends on the matrix D, so we will usually
write AC(D) instead.

We note the following straightforward consequence of Sylvester’s determi-
nant theorem.

Lemma 3.1.2. Let D ∈ Fp×m, K ∈ Fm×p; then det(Ip − DK) 6= 0 if,
and only if, det(Im −KD) 6= 0. In particular, K ∈ AC(D) if, and only if,
D ∈ AC(K).

This lemma allows us to make an observation on transfer functions, which
will be useful below.

Lemma 3.1.3. Consider a state-space system (A,B,C,D) ∈ Σ(m,n, p;F)
and denote its transfer function by G.

Then for all K ∈ AC(D), we have

(Ip −GK)−1G = G(Im −KG)−1.

Proof. Since K ∈ AC(D) and D = G(∞), det(Ip −G(∞)K) 6= 0. Hence as
Ip −GK is a rational matrix function, it is invertible in F(z)p×p and hence
(Ip−GK)−1 exists. Also, by Lemma 3.1.2, D ∈ AC(K) and thus, identically
as above (Im −KG)−1, exists.

Clearly G(Im−KG) = (Ip−GK)G; multiply this on the left by (Ip−GK)−1

and on the right by (Im −KG)−1 to obtain

(Ip −GK)−1G = G(Im −KG)−1.
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For a given state-space system (A,B,C,D) with transfer function G ∈
F(z)p×m and with K ∈ AC(D), let us define

GK := (Ip −GK)−1G = G(Im −KG)−1.

Note that for K ∈ AC(D) we can also define this for a constant matrix:

DK := (Ip −DK)−1D = D(Im −KD)−1, (3.1.6)

where Lemma 3.1.3 implies the equality of the two different representations.

Remark: note that (Ip −GK)−1G might be well-defined even if we do not
require K ∈ AC(D), however if we do not require this, then (Ip −GK)−1G
does not correspond to the transfer function of a linear state-space system.
Hence we will always require that K ∈ AC(D), when we write down GK .

From now on we will always define AK , BK , CK , DK by equation (3.1.3).

Lemma 3.1.4 (Loop shift lemma). Consider (A,B,C,D) ∈ Σ(m,n, p;F),
denote its transfer function by G and assume K ∈ AC(D).

(a) A trajectory (u, x, y) ∈ B(A,B,C,D) if, and only if, (u − Ky, x, y) ∈
B(AK , BK , CK , DK).

(b) The transfer function of (AK , BK , CK , DK) is GK .

(c) The linear system (A,B,C,D) is stabilizable and detectable if, and only
if, (AK , BK , CK , DK) is.

Proof. (a): necessity follows from (3.1.4) and (3.1.5). Sufficiency can be
obtained by reversing the implications that lead from equations (3.1.1) and
(3.1.2) to equations (3.1.4) and (3.1.5). This is straightforward, so we omit
the details.

(b): by the definition of the transfer function, we only need to check that

CK(zIn −AK)−1BK +DK = G(z)(Im −KG(z))−1. (3.1.7)

Note that, by Lemma 3.1.2, D ∈ AC(K). Equation (3.1.7) can then be
obtained via a long calculation which uses det(Ip−GK) 6= 0, (Ip−DK)−1D
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= D(Im −KD)−1, Lemma 3.1.3 and equation (3.1.6) numerous times:

CK(zIn −AK)−1BK +DK =

=CK
[
zIn −A−BKDC

]−1
B(Im −KD)−1 +DK

=CK
[
zIn −A−B(Im −KD)−1KC

]−1
B(Im −KD)−1 +DK

=CK

[
In − (zIn −A)−1B(Im −KD)−1︸ ︷︷ ︸KC

]−1
× (zIn −A)−1B(Im −KD)−1︸ ︷︷ ︸

+DK

=CK(zIn −A)−1B(Im −KD)−1

×
[
Im −KC(zIn −A)−1B(Im −KD)−1

]−1
+DK

=(Ip −DK)−1[G(z)−D] [(Im −KD)−K(G(z)−D)]−1 +DK

=(Ip −DK)−1 [G(z)−D +D(Im −KG(z))] (Im −KG(z))−1

=G(z)(Im −KG(z))−1.

(c): by the Hautus Lemma for stabilizability and detectability (see e.g. The-

orem 4.5.6 from [37]), it is sufficient to show that rank
(
λIn −AK BK

)
= n

and rank

(
λIn −AK

CK

)
= n for all λ ∈ E. Now pick λ ∈ E and sup-

pose there exists v ∈ Fn such that v∗(λIn − AK) = 0n and v∗BK = 0m.
Since BK = B(Im − KD)−1, we obtain 0m = v∗BK(Im − KD) = v∗B.
Consequently, λv∗ = v∗AK = v∗A + v∗BK(Ip − DK)−1C = v∗A, so
that v∗(λIn − A) = 0n and v∗B = 0m. Thus by the stabilizability of
(A,B,C,D), we must have v = 0n, so that rank

(
λIn −AK BK

)
= n,

whence (AK , BK , CK , DK) is stabilizable. The converse can be proven in
a similar manner or by applying a loop shift of −K. Detectability can be
shown in an almost identical way, so we omit the details.

Before embarking on the study of stabilizing output feedback matrices, we
prove a result on “consecutive loop shifts”.

Lemma 3.1.5. Consider (A,B,C,D) ∈ Σ(m,n, p;F) and denote its trans-
fer function by G. Let K,M ∈ Fm×p and assume that K ∈ AC(D).

Then M ∈ AC(DK) if, and only if, K + M ∈ AC(D). Furthermore, if one

of these holds, then
(
GK
)M

= GK+M .

Proof. Since K ∈ AC(D), the matrix I −DK is invertible, so we have

(I −DK)−1(I −DK −DM) = I − (I −DK)−1DM = I −DKM.
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Hence I − DK − DM is invertible if, and only if, I − DKM is. Since
DK = DK , we see that M ∈ AC(DK) if, and only if, M +K ∈ AC(D).

If either M ∈ AC(DK) or K + M ∈ AC(D) holds, then, by the first part
of this lemma, both statements hold. Hence GK , GK+M are well-defined.
Moreover, a simple calculation shows us that

GK+M = (I −G(K +M))−1G

= (I −GK −GM))−1(I −GK)(I −GK)−1G

= (I −GKM)−1GK

= (GK)M .

3.2 Stabilization by linear output feedback

In this section we will define a concept that plays a central role in this
thesis: the set of stabilizing output feedback matrices. For a stabilizable
and detectable state-space system (A,B,C,D), it consists of all matrices K
such that the state-space system (AK , BK , CK , DK), where the matrices are
given by equation (3.1.3), is asymptotically stable, that is, σ(AK) ⊆ D. We
will explore the consequences of assuming a “ball condition”, namely, that a
matrix ball (in the norm sense) is contained in the set of stabilizing output
feedback matrices. As we will see in Lemma 3.2.7, this ball condition admits
an equivalent characterization in terms of an inequality involving the Hardy
norm of the transfer function of (A,B,C,D). Via the bounded real lemma,
we will, in Lemma 3.2.8, construct a quadratic form, which will lead to
absolute stability and ISS results in Chapters 4 and 5. Finally, we will also
note some connections between the ball condition, a positive real condition
and an inequality involving the stability radius as developed by Hinrichsen
and Pritchard in e.g. [25].

Definition 3.2.1. Consider a linear system (A,B,C,D) ∈ Σ(m,n, p;F)
and denote its transfer function by G. We define the (discrete-time) set of
stabilizing linear output feedback matrices of (A,B,C,D) as

SC (A,B,C,D) := {K ∈ AC(D) : GK ∈ H∞p×m(E;Cp×m)}.

Since D = lim|z|→∞G(z), we can see that the transfer function G describes
SC (A,B,C,D) completely. Hence we will write SC (G) for SC (A,B,C,D).

We note the following well-known fact, see e.g. Theorem 2 from [42].

Lemma 3.2.2. Consider a linear state-space system (A,B,C,D) and de-
note its transfer function by G.
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Then σ (A) ⊆ D if, and only if, (A,B,C,D) is stabilizable and detectable,
and G ∈ H∞.

As a simple consequence, we obtain the following result.

Lemma 3.2.3. Consider a stabilizable and detectable system (A,B,C,D) ∈
Σ(m,n, p;F) and assume that its transfer function G is in H∞.

Then there exists a positive c and a ∈ (0, 1) such that

‖x(t)‖ ≤ cat ‖x(0)‖+ c max
0≤s≤t

‖u(s)‖

for all t ∈ N0 and for all (u, x, y) ∈ B(A,B,C,D).

Proof. By Lemma 3.2.2, we have σ (A) ⊆ D. The required estimate then
follows from the observation that

x(t) = Atx(0) +
t−1∑
s=0

At−1−sBu(s)

for all t ∈ N0 and for all (u, x, y) ∈ B(A,B,C,D).

Before we go on to prove the main result of this section, we need the following
useful lemma on matrices.

Lemma 3.2.4. Let D ∈ Fp×m \ {0}.

(a) If M ∈ Fm×p and det(Ip −DM) = 0, then 1
‖D‖ ≤ ‖M‖ .

(b) There exists M ∈ Fm×p such that ‖D‖ = 1
‖M‖ and det(Ip −DM) = 0.

Proof. (a): since det(Ip − DM) = 0, there exists ξ ∈ Fp \ {0} such that
(Ip −DM)ξ = 0. Hence DMξ = ξ, so that ‖DM‖ ≥ 1. Combine this with
the well-known operator norm inequality ‖DM‖ ≤ ‖D‖ ‖M‖, to obtain
1
‖M‖ ≤ ‖D‖.

(b): let ξ ∈ Fm \ {0} be such that ‖ξ‖ = 1 and ‖Dξ‖ = ‖D‖ and define

M := ‖D‖−2 ξξ∗D∗. Then we can use the definition of the operator norm,
the homogeneity of norms and ‖Dξ‖ = ‖D‖ to obtain

‖M‖ = sup
‖µ‖=1

‖Mµ‖ = sup
‖µ‖=1

1

‖D‖2
‖ξξ∗D∗µ‖

= sup
‖µ‖=1

|ξ∗D∗µ|
‖D‖2

‖ξ‖ =
1

‖D‖2

∣∣∣∣ξ∗D∗ Dξ‖D‖
∣∣∣∣

=
1

‖D‖
.
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It is easy to see that (Ip−DM)Dξ = Dξ
(

1− η∗η

‖η‖2

)
= 0, where we have set

η := Dξ 6= 0. Therefore det(Ip −DM) = 0, showing that M is the sought
matrix.

A somewhat obvious consequence of Lemma 3.1.5 is the following result.

Lemma 3.2.5. Consider (A,B,C,D) ∈ Σ(m,n, p;F), denote its transfer
function by G and let K ∈ AC(D).

Then SC (G) + {−K} = SC
(
GK
)
, where “+” is the Minkowski sum (see

§0.1 for the obvious definition).

Proof.

SC (G) + {−K} ={M ∈ AC(D) : GM ∈ H∞p×m}+ {−K}
={M −K ∈ Cm×p : M ∈ AC(D), GM ∈ H∞p×m}
={M ∈ Cm×p : M +K ∈ AC(D), GM+K ∈ H∞p×m}

[by Lemma 3.1.5]

={M ∈ Cm×p : M ∈ AC(DK), (GK)M ∈ H∞p×m}
=SC

(
GK
)
.

Recall that, for K ∈ Fm×p, we use the following notation to denote the ball
of complex matrices of radius r around K:

BC(K, r) := {M ∈ Cm×p : ‖M −K‖ < r}.

The observation BC(K, r) = BC(0, r) + {K}, where 0 = 0m×p, gives us a
simple corollary of Lemma 3.2.5.

Corollary 3.2.6. Consider (A,B,C,D) ∈ Σ(m,n, p;F), denote its transfer
function by G and let K ∈ Fm×p. Then

BC(K, r) ⊆ SC (G) ⇐⇒ BC(0, r) ⊆ SC
(
GK
)

We are now ready to prove the main result of this section, which provides
an equivalent characterization of the ball condition BC(K, r) ⊆ SC (G).

Lemma 3.2.7. Consider (A,B,C,D) ∈ Σ(m,n, p;F), denote its transfer
function by G and let K ∈ Fm×p. Then

BC(K, r) ⊆ SC (G) ⇐⇒
∥∥GK∥∥

H∞
≤ 1

r
.
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Proof. By Corollary 3.2.6, it suffices to show that BC(0, r) ⊆ SC
(
GK
)

if,
and only if,

∥∥GK∥∥
H∞
≤ 1

r . Thus, without loss of generality, it suffices to

show that BC(0, r) ⊆ SC (G) ⇐⇒ ‖G‖H∞ ≤
1
r .

Let us first show that BC(0, r) ⊆ SC (G) implies ‖G‖H∞ ≤
1
r . To this end,

suppose on the contrary, that ‖G‖H∞ > 1
r . Then there exists |z0| > 1 with

‖G(z0)‖ > 1
r . Hence, by Lemma 3.2.4 (b), there exists M ∈ Cm×p with

‖M‖ = 1
‖G(z0)‖ < r and det(I −G(z0)M) = 0. However as M ∈ BC(0, r) ⊆

SC (G), we have GM ∈ H∞ and we can use the triangle inequality and
matrix algebra to obtain∥∥(I −GM)−1

∥∥
H∞
≤
∥∥(I −GM)−1 − I

∥∥
H∞

+ 1

=
∥∥(I −GM)−1GM

∥∥
H∞

+ 1

≤
∥∥GM∥∥

H∞
‖M‖+ 1 <∞.

This contradicts det(I − G(z0)M) = 0 and thus completes the first half of
the proof.

Let us now show that ‖G‖H∞ ≤
1
r implies BC(0, r) ⊆ SC (G). Pick M ∈

Cm×p\SC (G) so that either det(I−GM) = 0 or the rational function matrix
(I −GM)−1 is defined, but the Hardy norm of GM is infinity. If the former
holds, then pick any z0 ∈ E and note that, by Lemma 3.2.4 (a),

‖M‖ ≥ 1

‖G(z0)‖
≥ 1

‖G‖H∞
≥ r,

so that in turn M /∈ BC(0, r). If however the latter holds, then there ex-
ists z0 ∈ E ∪ {∞} such that limz→z0

∥∥(I −G(z)M)−1G(z)
∥∥ = ∞. Since

‖G(z)‖ ≤ 1
r for all z ∈ E, this implies det(I −G(z0)M) = 0. As before, by

Lemma 3.2.4 (a),

‖M‖ ≥ 1

‖G(z0)‖
≥ 1

‖G‖H∞
≥ r,

so that again M 6∈ BC(0, r). Hence in both cases we have (Cm×p \ SC (G))∩
BC(0, r) = ∅ and so BC(0, r) ⊂ SC (G) which concludes the second, and final,
part of the proof.

Lemma 3.2.7 implies that the largest matrix ball centered on K ∈ Fm×p
and contained in SC (G) has radius

∥∥GK∥∥−1
H∞

. This observation shows that
SC (G) is closely related to the stability radius as defined in the work of
Hinrichsen and Pritchard, see [25, 27]. We elaborate on this connection in
Corollary 3.2.17.

We now use Lemma 3.2.7 to obtain a quadratic form from the ball condition
BC(K, r) ⊆ SC (G).
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Lemma 3.2.8. Consider a stabilizable and detectable linear state-space sys-
tem (A,B,C,D) ∈ Σ(m,n, p;F) and denote its transfer function by G. As-
sume that, for some K ∈ Fm×p and r > 0, we have BC(K, r) ⊆ SC (G) and
that there exists z0 ∈ C with |z0| = 1 such that

∥∥GK(z0)
∥∥ < 1

r .

Then there exists a positive semi-definite P = P ∗ ∈ Fn×n such that the
quadratic form V : Fn → [0,∞) defined by V (ξ) := 〈Pξ, ξ〉 satisfies

V (x(t+ 1))− V (x(t)) ≤ ‖u(t)−Ky(t)‖2 − r2 ‖y(t)‖2

for all t ∈ N0 and for all trajectories (u, x, y) ∈ B(A,B,C,D).

Moreover, there exists a projection Π: Fn → Fn and a positive c such that
ker Π ⊆ kerC and V (ξ) ≥ c ‖Πξ‖2 for all ξ ∈ Fn.

Proof. By Lemma 3.1.4, we know that (AK , BK , CK , DK) is stabilizable
and detectable. Note that, by Lemma 3.2.7, we have

∥∥GK∥∥
H∞
≤ 1

r , so
- in combination with our assumption that there exists |z0| = 1 such that∥∥GK(z0)

∥∥ < 1
r - we can apply Lemma 2.2.5 to see that there exists a positive

semi-definite P = P ∗ ∈ Fn×n such that the quadratic form V (ξ) := 〈Pξ, ξ〉
satisfies

V (x(t+ 1))− V (x(t)) ≤ ‖u(t)‖2 −
∥∥GK∥∥−2

H∞
‖y(t)‖2

≤ ‖u(t)‖2 − r2 ‖y(t)‖2

for all t ∈ N0 and for all trajectories (u, x, y) ∈ B(AK , BK , CK , DK). More-
over, there exists a projection Π: Fn → Fn and a positive c such that
ker Π ⊆ kerC and V (ξ) ≥ c ‖Πξ‖2 for all ξ ∈ Fn.

Finally, we use Lemma 3.1.4 to see that if (u, x, y) ∈ B(A,B,C,D), then
(u−Ky, x, y) ∈ B(AK , BK , CK , DK), which in turn completes the proof.

Similarly, we obtain a version of the above for minimal systems.

Lemma 3.2.9. Consider a controllable and observable linear state-space
system (A,B,C,D) ∈ Σ(m,n, p;F), denote its transfer function by G, and
- for some K ∈ Fm×p and r > 0 - assume that BC(K, r) ⊆ SC (G).

Then there exists a positive definite P = P ∗ ∈ Fn×n such that the quadratic
form V : Fn → [0,∞) defined by V (ξ) := 〈Pξ, ξ〉 satisfies

V (x(t+ 1))− V (x(t)) ≤ ‖u(t)−Ky(t)‖2 − r2 ‖y(t)‖2

for all t ∈ N0 and for all trajectories (u, x, y) ∈ B(A,B,C,D).

Moreover, there exists a projection Π: Fn → Fn and a positive c such that
ker Π ⊆ kerC and V (ξ) ≥ c ‖Πξ‖2 for all ξ ∈ Fn.
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In Chapter 4 we will prove a proposition that is similar to a well-known result
in absolute stability theory, the circle criterion. Our main tool in the proof
of said proposition will be Lemma 3.2.8 and thus, essentially, the bounded
real lemma. To the best of the author’s knowledge this is a nonstandard
route as the circle criterion is typically proved using the positive real lemma,
see Haddad and Bernstein [22] or Haddad and Chellaboina [23]. A drawback
of this approach is that in order to apply the positive real lemma one has
to assume that the underlying linear system is minimal. The use of the
bounded real lemma will allow us to relax this assumption in our version of
the circle criterion, Proposition 4.3.2.

We know from Lemma 2.2.10 that a bounded real property is related to
a positive real property. This will enable us to relate the ball condition
BC(K, r) ⊆ SC (G) to a positive real condition. First, we need the following
lemma.

Lemma 3.2.10. Consider (A,B,C,D) ∈ Σ(m,n,m,F), denote its transfer
function by G and let λ ∈ C \ {0} be such that λI ∈ AC(D).

Then ‖G‖H∞ ≤
1
|λ| if, and only if, I + 2λGλI is positive real.

Proof. Since λI ∈ AC(D), we have det(I − λD) 6= 0 and hence I − λG is
invertible. Set F := (I + λG)(I − λG)−1 and note that −λG = (I − F )(I +
F )−1. By Lemma 2.2.10,

∥∥(I − F )(I + F )−1
∥∥
H∞
≤ 1 if, and only if, F is

positive real. The observation that F = I + 2λGλI completes the proof.

It is interesting to note that the same technique gives us a slightly stronger
result.

Corollary 3.2.11. Consider (A,B,C,D) ∈ Σ(m,n,m,F), denote its trans-
fer function by G and let K ∈ Fm×m be such that K ∈ AC(D).

Then ‖KG‖H∞ ≤ 1 if, and only if, I + 2KGK is positive real.

Lemmas 3.2.7 and 3.2.10 allow us to relate the ball condition BC(K, r) ⊆
SC (G) to a bounded real and to a positive real property.

Proposition 3.2.12. Consider (A,B,C,D) ∈ Σ(m,n,m,F), denote its
transfer function by G and let r > 0, K ∈ Fm×m. Then the following
are equivalent:

(a) BC(K, r) ⊂ SC (G),

(b)
∥∥GK∥∥

H∞
≤ 1

r ,

(c) there exists λ ∈ C such that |λ| = r, λI +K ∈ AC(D) and I + 2λGλI+K

is positive real.
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Proof. The equivalence of (a) and (b) is the statement of Lemma 3.2.7.

The equivalence of (a) and (c) follows from Lemmas 3.2.10 and 3.1.5 as long
as we can show the existence of λ ∈ C such that |λ| = r and λI+K ∈ AC(D).
We proceed to do this.

By Lemma 3.1.5, λI + K ∈ AC(D) if, and only if, λI ∈ AC(DK) which in
turn is equivalent to det(I−λDK) 6= 0. However det(I−λDK) is a nonzero
polynomial and a nonzero polynomial can only have a finite number of zeros.
Hence there exists λ ∈ C with |λ| = r and λI ∈ AC(DK).

We demonstrated in Lemma 3.2.8, the proof of which combined Lemma
3.2.7 and the bounded real lemma, that, by assuming the ball condition
BC(K, r) ⊆ SC (G), we can obtain a quadratic form V that provides us with
an estimate on V (x(t+1))−V (x(t)) for trajectories (u, x, y) ∈ B(A,B,C,D).
We now compare it with the quadratic form obtained from the same ball
condition, however for the proof we use instead Proposition 3.2.12 and the
positive real lemma. Note that this lemma will not be used in this thesis,
so we relegate its proof to the appendix, see §A.1.

Lemma 3.2.13. Consider a controllable and observable linear state-space
system (A,B,C,D) ∈ Σ(m,n,m;R), denote its transfer function by G and
- for some K ∈ Fm×m and r > 0 - assume that BC(K, r) ⊆ SC (G).

Then there exists a positive-definite P = P ∗ ∈ Fn×n such that the quadratic
form V : Fn → [0,∞) defined by V (ξ) := 〈Pξ, ξ〉 satisfies

V (x(t+ 1))− V (x(t)) ≤ ‖u(t)−Ky(t)‖2 − r2 ‖y(t)‖2

for all t ∈ N0 and for all trajectories (u, x, y) ∈ B(A,B,C,D).

If we compare the above lemma with Lemma 3.2.8, then we can see that
the quadratic forms obtained from the ball condition BC(K, r) ⊆ SC (G)
and either the bounded real lemma or the positive real lemma both offer us
precisely the same estimates on V (x(t + 1)) − V (x(t)). The bounded real
lemma allows us to relax the controllability and observability conditions to
stabilizability and detectability. Hence we will favour it over the positive
real lemma in this thesis.

It is interesting to note a connection between SC (G) and the well-known
concept (especially in the continuous-time setting) of the structured stability
radius.

Definition 3.2.14. Consider (A,B,C, 0) ∈ Σ(m,n, p;F) with σ (A) ⊆ D.
The (discrete-time) complex structured stability radius of A with
respect to weights B and C is defined as

rC(A;B,C) := inf{‖M‖ : M ∈ Cm×p and σ(A+BMC) 6⊆ D}.
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It is a measure of how robust to perturbations is the simple family of per-
turbed systems

x(t+ 1) = (A+BMC)x(t).

Proposition 2.1 from [27] gives us the following result.

Proposition 3.2.15. Consider (A,B,C, 0) ∈ Σ(m,n, p,C) and denote by
G its transfer function. Then

rC(A;B,C) = ‖G‖−1H∞ .

This leads us to the following equivalences.

Corollary 3.2.16. Consider (A,B,C, 0) ∈ Σ(m,n, p,F), denote its transfer
function by G and let K ∈ Fm×p. Then the following are equivalent:

(a) BC(K, r) ⊆ SC (G),

(b)
∥∥GK∥∥

H∞
≤ 1

r ,

(c) rC(AK ;BK , CK) ≥ r.

Corollary 3.2.17. Consider (A,B,C, 0) ∈ Σ(m,n, p;F). Then we have
rC(A;B,C) = sup{r ≥ 0 : BC(K, r) ⊆ SC (G)}.

Before moving on to stability analysis of Lur’e systems we note two inter-
esting properties of SC (G).

Lemma 3.2.18. SC (G) is an open set.

Proof. If M ∈ SC (G), then, by Corollary 3.2.7, BC

(
M,
∥∥GM∥∥−1) ⊆ SC (G).

If we set

M := {K ∈ Cm×m : K +K∗ is negative definite},

then we can obtain an alternative characterization of positive real functions.
Since the following lemma is not used in this document, we relegate its proof
to the appendix.

Lemma 3.2.19. Consider G ∈ F(z)m×m.

M ⊆ SC (G) if, and only if, G is positive-real.
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Chapter 4

Absolute stability of Lur’e
systems

In this chapter we will be demonstrating how the tools we have developed
in the previous two chapters can be used to obtain absolute stability results
for Lur’e systems

x(t+ 1) = Ax(t) +Bf(y(t)),

y(t) = Cx(t) +Df(y(t)) ∀ t ∈ N0.
(4.1)

We already mentioned in the Introduction that our approach is inspired by
the complexified Aizerman’s conjecture, which was proved (in a continuous-
time setting for D = 0) in Hinrichsen and Pritchard [25]. It states that if the
Lur’e interconnection is globally asymptotically stable for all complex linear
output feedback matrices F that satisfy the norm condition ‖F (ξ)‖ < r ‖ξ‖
for some r > 0 and for all ξ ∈ Cp\{0}, then, in fact, the Lur’e interconnection
is globally asymptotically stable for all nonlinear output feedback maps
f that satisfy the same norm condition ‖f(ξ)‖ < r ‖ξ‖. By combining
quadratic forms obtained from Lemmas 2.3.1 and 3.2.8 we will prove an
extension of this result in a discrete-time setting, see Proposition 4.2.1, which
we will sometimes refer to as the Aizerman version of the circle criterion.

We will also consider a well-known result in absolute stability theory, the
circle criterion. It states that if the underlying linear system (A,B,C,D) is
controllable and observable and if its transfer function G is such that - for
some matrices K1,K2 - the rational function matrix (I−K2G)(I−K1G)−1 is
strongly positive real, then the Lur’e system (4.1) is globally asymptotically
stable for all nonlinearities f that satisfy 〈f(ξ)−K1ξ, f(ξ)−K2ξ〉 ≤ 0,
see e.g. Theorem 5.1 from Haddad and Bernstein [22]. Usually the circle
criterion is proved using a Lyapunov function obtained from the positive real
lemma, however we prove it using Proposition 4.2.9 and hence, in effect, the
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bounded real lemma. We also remark that one can obtain a version of the
circle criterion by using Proposition 4.2.1 and thus relax the assumptions
on the underlying linear system to stabilizability and detectability, however
due to an extra condition this introduces, we do not do it in this thesis.

We note that typically absolute stability theory is concerned with Lur’e sys-
tems, where the nonlinearities f are time-dependent. However our ultimate
aim is the study of input-to-state stability, where time-invariant nonlinear-
ities are used. Moreover, most results in this chapter extend, in trivial
manner, to time-dependent nonlinearities f as long as the assumptions on
them are satisfied uniformly in the time variable. The only exception is
Proposition 4.2.1 (b) and its corollaries.

This chapter is organized as follows. In §4.1 we define precisely what we
mean by a Lur’e system and collect some notions of stability that we will
be interested in. §4.2 is then devoted to proving the Aizerman version of
the circle criterion and discussing some of its consequences as well as some
of the assumptions made in its statement. We note a consequence, a result
strongly reminiscent of the circle criterion, in §4.3.

4.1 Lur’e systems

Definition 4.1.1. Consider (A,B,C,D) ∈ Σ(m,n, p,F) and let f : Fp →
Fm be some map. We say that (A,B,C,D, f) is a Lur’e system.

We define its behaviour B(A,B,C,D, f) as

B(A,B,C,D, f)

:=
{

(x, y) ∈ (Fn)N0 × (Fp)N0 : (f ◦ y, x, y) ∈ B(A,B,C,D)
}
.

A pair (x, y) ∈ B(A,B,C,D, f) is called a trajectory.

Our definition of the behaviour of (A,B,C,D, f) merely states that if a
trajectory (x, y) ∈ B(A,B,C,D, f), then

x(t+ 1) = Ax(t) +Bf(y(t))

y(t) = Cx(t) +Df(y(t)) ∀ t ∈ N0.
(4.1.1)

Note that, for a general f and a given ξ ∈ Fn, we cannot guarantee that there
exist trajectories (x, y) ∈ B(A,B,C,D, f) such that x(0) = ξ. Neither can
we guarantee that if a trajectory exists, that it is unique. Existence depends
on the surjectivity of the inverse of I − Df ; while uniqueness depends on
the injectivity of the inverse of I −Df .

We will be considering the following three notions of stability.
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Definition 4.1.2. Consider a Lur’e system (A,B,C,D, f).

1. If there exists a positive c such that

‖x(t)‖ ≤ c ‖x(0)‖
‖y(t)‖ ≤ c ‖x(0)‖ ∀ t ∈ N0

and for all (x, y) ∈ B(A,B,C,D, f), then we say that the Lur’e system
(A,B,C,D, f) is globally stable.

2. If (A,B,C,D, f) is globally stable and if

lim
t→∞

x(t) = 0 and lim
t→∞

y(t) = 0

for all (x, y) ∈ B(A,B,C,D, f), then we say that the Lur’e system
(A,B,C,D, f) is globally asymptotically stable.

3. If (A,B,C,D, f) is globally stable and if there exist c > 0 and a ∈ (0, 1)
such that

‖x(t)‖ ≤ cat ‖x(0)‖
‖y(t)‖ ≤ cat ‖x(0)‖ ∀ t ∈ N0

and for all (x, y) ∈ B(A,B,C,D, f), then we say that the Lur’e system
(A,B,C,D, f) is globally exponentially stable.

4.2 Aizerman version of the circle criterion

We now apply the quadratic form obtained from a ball condition in Lemma
3.2.8 to stability analysis of Lur’e systems. Recall the shorthand DK :=
(I −DK)−1D.

Proposition 4.2.1 (Aizerman version of the circle criterion). Consider
a Lur’e system (A,B,C,D, f), assume that the underlying linear system
(A,B,C,D) ∈ Σ(m,n, p;F) is stabilizable and detectable and denote its
transfer function by G. For K ∈ Fm×p and r > 0, assume that BC(K, r) ⊆
SC (G) and that there exists z0 ∈ C with |z0| = 1 such that

∥∥GK(z0)
∥∥ < 1

r .

(a) If
∥∥DK

∥∥ < 1
r and

‖f(ξ)−Kξ‖ ≤ r ‖ξ‖ ∀ ξ ∈ Fp, (4.2.1)

then the Lur’e system (A,B,C,D, f) is globally stable.

(b) If f is continuous,
∥∥DK

∥∥ < 1
r and

‖f(ξ)−Kξ‖ < r ‖ξ‖ ∀ ξ ∈ Fp \ {0}, (4.2.2)

then the Lur’e system (A,B,C,D, f) is globally asymptotically stable.

43 4.2. AIZERMAN VERSION OF THE CIRCLE CRITERION



CHAPTER 4. ABSOLUTE STABILITY OF LUR’E SYSTEMS

(c) If there exists δ > 0 such that

‖f(ξ)−Kξ‖ ≤ (r − δ) ‖ξ‖ ∀ ξ ∈ Fp, (4.2.3)

then the Lur’e system (A,B,C,D, f) is globally exponentially stable.

Note that if F ∈ BC(K, r), then clearly ‖Fξ −Kξ‖ < r ‖ξ‖ for all ξ ∈ Fp.
Hence Proposition 4.2.1 (b) can be interpreted as saying that if the Lur’e
system (A,B,C,D, F ) is globally asymptotically stable for all complex lin-
ear output feedback matrices F such that ‖Fξ −Kξ‖ < r ‖ξ‖, then the
Lur’e system (A,B,C,D, f) is globally asymptotically stable for all non-
linear output feedback maps f such that ‖f(ξ)−Kξ‖ < r ‖ξ‖. Therefore,
Proposition 4.2.1 (b) can be seen as saying that the Aizerman conjecture is
true over the complex field. For a similar result in a continuous-time set-
ting, see Theorem 5.6.22 from Hinrichsen and Pritchard [25]. Indeed, their
work has inspired our results in this section with the only real novelty being
Proposition 4.2.1 (a) and the extension to systems with feedthrough. We
defer a detailed comparison to Part II, where we consider continuous-time
Lur’e systems.

Proof of Proposition 4.2.1. By Lemma 3.2.8, there exists a positive semi-
definite matrix P = P ∗ ∈ Fn×n such that the function V : Fn → [0,∞)
given by V (ξ) := 〈Pξ, ξ〉 satisfies

V (x(t+ 1))− V (x(t)) ≤ ‖u(t)−Ky(t)‖2 − r2 ‖y(t)‖2 ∀ t ∈ N0

and for all (u, x, y) ∈ B(A,B,C,D). Moreover, it guarantees the existence
of a projection Π: Fn → Fn and c1 > 0 such that ker Π ⊆ kerC and V (ξ) ≥
c1 ‖Πξ‖2 for all ξ ∈ Fn. On the other hand, there exists c2 > 0 such that
V (ξ) ≤ c2 ‖ξ‖2 for all ξ ∈ Fn. By definition, (x, y) ∈ B(A,B,C,D, f) if, and
only if, (f ◦ y, x, y) ∈ B(A,B,C,D), so that

V (x(t+ 1))− V (x(t)) ≤ ‖f(y(t))−Ky(t)‖2 − r2 ‖y(t)‖ ∀ t ∈ N0

(4.2.4)

and for all (x, y) ∈ B(A,B,C,D, f).

Proof of (a): (4.2.4) and (4.2.1) allow us to estimate

V (x(t+ 1))− V (x(t)) ≤ ‖f(y(t))−Ky(t)‖2 − r2 ‖y(t)‖ ≤ 0 ∀ t ∈ N0

(4.2.5)

and for all (x, y) ∈ B(A,B,C,D, f). Hence t 7→ V (x(t)) is a nonincreasing
function, so that V (x(t)) ≤ V (x(0)) ≤ c2 ‖x(0)‖2 for all t ∈ N0. Since

ker Π ⊆ kerC, it follows that CΠ = C, so - upon setting c3 :=
√

c2
c1

- we
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have

‖Cx(t)‖ = ‖CΠx(t)‖ ≤ ‖C‖ ‖Πx(t)‖

≤ ‖C‖ 1
√
c1

√
V (x(t)) ≤ c3 ‖C‖ ‖x(0)‖ ∀ t ∈ N0

(4.2.6)

and for all (x, y) ∈ B(A,B,C,D, f).

Define (AK , BK , CK , DK) by equation (3.1.3). Then, by Lemma 3.1.4, we
know that (x, y) ∈ B(A,B,C,D, f) if, and only if, (f ◦ y − Ky, x, y) ∈
B(AK , BK , CK , DK), so that y(t) = CKx(t) + DK [f(y(t)) − Ky(t)] for all
t ∈ N0 and for all (x, y) ∈ B(A,B,C,D, f). Taking norms and using CK =
(I−DK)−1C and

∥∥DK
∥∥ < 1

r alongside assumption (4.2.1) shows that there
exists a positive c4 such that

‖y(t)‖ ≤ c4 ‖Cx(t)‖ ≤ c3c4 ‖C‖ ‖x(0)‖ ∀ t ∈ N0 (4.2.7)

and for all (x, y) ∈ B(A,B,C,D, f).

Thus the proof of (a) is complete if we can show that ‖x(t)‖ ≤ c ‖x(0)‖
for some positive c. By Lemma 3.1.4, we know that (AK , BK , CK , DK)
is a stabilizable and detectable system and moreover, as K ∈ SC (G), we
have GK ∈ H∞. Therefore, we can apply Lemma 3.2.3, to see that that
there exists a positive c5 such that ‖x(t)‖ ≤ c5 ‖x(0)‖+ c5 max0≤s≤t ‖u(s)‖
for all t ∈ N0 and for all (u, x, y) ∈ B(AK , BK , CK , DK). Since (x, y) ∈
B(A,B,C,D, f) if, and only if, (f ◦ y−Ky, x, y) ∈ B(AK , BK , CK , DK), we
can use (4.2.7) and (4.2.1) to obtain

‖x(t)‖ ≤ c5 ‖x(0)‖+ c5 max
0≤s≤t

‖f(y(s))−Ky(s)‖

≤ c5(1 + rc3c4 ‖C‖) ‖x(0)‖ ,

which completes the proof of (a).

Proof of (b): by (a) we already know that there exists a positive c such that
‖x(t)‖ ≤ c ‖x(0)‖ and ‖y(t)‖ ≤ c ‖x(0)‖, so that (A,B,C,D, f) is globally
stable. Hence we only need to show global attractivity of 0. To this end, let
(x, y) ∈ B(A,B,C,D, f). We note that it is sufficient to show that

lim
t→∞

y(t) = 0. (4.2.8)

Indeed, if (4.2.8) holds, then f(y(t))−Ky(t)→ 0 as t→∞, which combined
with the asymptotic stability of AK and the fact that (f ◦ y −Ky, x, y) ∈
B(AK , BK , CK , DK) implies limt→∞ x(t) = 0.

To establish (4.2.8), recall that y is bounded. Thus by Lemma 2.4.2, the
omega limit set Ωy of y is nonempty and dist(y(t),Ωy) → 0 as t → ∞.
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Consequently, it suffices to show that Ωy = {0}. Consider ξ ∈ Ωy, so that
there exists a sequence (tk)k∈N0 in N0 such that tk → ∞ and y(tk) → ξ
as k → ∞. Since t 7→ V (x(t)) is a non-negative non-increasing function,
limt→∞ V (x(t)) exists. In particular V (x(tk+1))−V (x(tk))→ 0 as k →∞.
We now use (4.2.4) for t = tk, continuity of f and let k →∞ to obtain

0 ≤ ‖f(ξ)−Kξ‖2 − r2 ‖ξ‖2 .

Together with (4.2.2) this implies ξ = 0, completing the proof of statement
(b).

Proof of (c): this can be shown using exponential weighting arguments, see
e.g. Theorem 15 from Jayawardhana, Logemann and Ryan [30], however we
will exhibit an alternative proof that uses Lyapunov arguments.

First, recall equation (4.2.4) and use assumption (4.2.3) to obtain

V (x(t+ 1))− V (x(t)) ≤ (r − δ)2 ‖y(t)‖ − r2 ‖y(t)‖ ≤ −δ2 ‖y(t)‖2

for all t ∈ N0 and for all (x, y) ∈ B(A,B,C,D, f).

Since (A,B,C,D) is detectable, Lemma 2.3.1 guarantees the existence of a
positive definite matrix Q = Q∗ ∈ Fn×n and a positive δ1 > 0 such that the
function U : Fn → [0,∞) defined by U(ξ) := 〈Qξ, ξ〉 satisfies

U(x(t+ 1))− U(x(t)) ≤ −δ1 ‖x(t)‖2 + ‖y(t)‖2 + ‖u(t)‖2

for all t ∈ N0 and for all (u, x, y) ∈ B(A,B,C,D). Therefore by the definition
of a trajectory of a Lur’e system, the simple estimate ‖f(ξ)‖ ≤ (‖K‖+r) ‖ξ‖
and inequality 2a2 + 2b2 ≥ (a+ b)2, we have

U(x(t+ 1))− U(x(t)) ≤ −δ1 ‖x(t)‖2 + ‖y(t)‖2 + ‖f(y(t))‖2

≤ −δ1 ‖x(t)‖2 + (1 + 2 ‖K‖2 + 2r2) ‖y(t)‖2

for all t ∈ N0 and for all (x, y) ∈ B(A,B,C,D, f). Thus if we set b :=
δ2

1+2‖K‖2+2r2
, δ2 := δ1b and define W := bU + V , then

W (x(t+ 1))−W (x(t)) ≤ −δ2 ‖x(t)‖2 (4.2.9)

for all t ∈ N0 and for all (x, y) ∈ B(A,B,C,D, f). Obviously, W is positive
definite and so ξ 7→

√
W (ξ) defines a norm on Fn. Hence there exist positive

constants c6 and c7 such that c6 ‖ξ‖2 ≤W (ξ) ≤ c7 ‖ξ‖2 for all ξ ∈ Fn. If we
combine this with estimate (4.2.9), then we obtain

W (x(t+ 1)) ≤
(

1− δ2
c7

)
W (x(t))
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for all t ∈ N0 and for all (x, y) ∈ B(A,B,C,D, f). Upon setting c8 :=√
c7/c6 and a :=

√
1− δ2/c7 < 1, we obtain that, for every (x, y) ∈

B(A,B,C,D, f),

‖x(t)‖ ≤ c8at ‖x(0)‖ ∀ t ∈ N0,

completing the proof of statement (c).

By picking K = 0 in the Aizerman version of the circle criterion and by using
Lemma 3.2.7 to see that BC(0, r) ⊆ SC (G) is equivalent to ‖G‖H∞ ≤

1
r , we

obtain the following corollary, which resembles the small-gain theorem.

Corollary 4.2.2. Consider a Lur’e system (A,B,C,D, f), assume that the
underlying linear system (A,B,C,D) ∈ Σ(m,n, p;F) is stabilizable and de-
tectable and let its transfer function G be such that there exists z0 ∈ C with
|z0| = 1 such that ‖G(z0)‖ < ‖G‖H∞.

(a) If

‖G‖H∞ ‖f(ξ)‖ ≤ ‖ξ‖ ∀ ξ ∈ Fp,

and if ‖D‖ supξ∈Fp
‖f(ξ)‖
‖ξ‖ < 1, then the Lur’e system (A,B,C,D, f) is

globally stable.

(b) If f is continuous,

‖G‖H∞ ‖f(ξ)‖ < ‖ξ‖ ∀ ξ ∈ Fp \ {0},

and if ‖D‖ supξ∈Fp
‖f(ξ)‖
‖ξ‖ < 1, then the Lur’e system (A,B,C,D, f) is

globally asymptotically stable.

(c) If

‖G‖H∞ sup
ξ∈Fp

‖f(ξ)‖
‖ξ‖

< 1,

then the Lur’e system (A,B,C,D, f) is globally exponentially stable.

Statement (c) is a time-invariant version of the small gain theorem (see
Theorem 3.1 from Haddad and Bernstein [22]), but extended to cases, where
the underlying linear system is only stabilizable and detectable (as opposed
to controllable and observable), although we do require an extra assumption
on the unit circle.

Note that the statements of Proposition 4.2.1 and Corollary 4.2.2 are simpler
for Lur’e systems that have no feedthrough in the underlying linear system
as the inequalities involving DK and D, respectively, are automatically sat-
isfied.
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It follows from Lemma 3.2.7 that if BC(K, r) ⊆ SC (G), then
∥∥GK∥∥

H∞
≤ 1

r

and hence in particular
∥∥DK

∥∥ ≤ 1
r . However, to satisfy assumptions of

Proposition 4.2.1 (a) and (b), we need to have
∥∥DK

∥∥ < 1
r and there must

exist |z0| = 1 such that
∥∥GK(z0)

∥∥ < 1
r .

The following example shows that there exists a Lur’e system (A,B,C,D, f)
such that

∥∥DK
∥∥ = 1

r and
∥∥GK(z0)

∥∥ = 1
r for all |z0| = 1 and the conclusions

of the Aizerman version of the circle criterion (a) and (b) do not hold.

Example 4.2.3. Consider the controllable and observable linear system((
0 −1
−1

2 0

)
,

(
1 0
0 0

)
,

(
1 0
0 0

)
,

(
0 0
0 2

))
∈ Σ(2, 2, 2;R)

and note that ‖D‖ = 2 and the transfer function G is given by

(
z

z2− 1
2

0

0 2

)
.

Therefore, we have ‖G‖H∞ = 2, so that BC
(
0, 12
)
⊆ SC (G) and clearly

‖G(z0)‖ = 2 for all |z0| = 1.

Let us now define f : R2 → R2 by

f(ξ) :=

(
0 0
0 1

2

)
ξ.

It is easy to check that f satisfies ‖f(ξ)‖ ≤ 1
2 ‖ξ‖ for all ξ ∈ R2. However, if

we write down the output equation for a trajectory (x, y) ∈ B(A,B,C,D, f),
then we obtain(

y(t)1
y(t)2

)
=

(
1 0
0 0

)(
x(t)1
x(t)2

)
+

(
0 0
0 2

)(
0 0
0 1

2

)(
y(t)1
y(t)2

)
=

(
x(t)1

0

)
+

(
0

y(t)2

)
.

Hence y(t)2 is arbitrary, so we cannot hope to extend the Aizerman version
of the circle criterion to incorporate the case when both

∥∥DK
∥∥ = 1

r and∥∥GK(z0)
∥∥ = 1

r for all |z0| = 1.

We note the following equivalent characterizations of the statement
∥∥DK

∥∥ <
1
r .

Lemma 4.2.4. Consider (A,B,C,D) ∈ Σ(m,n, p;F) and denote its trans-
fer function by G. Assume that for some K ∈ Fm×p and r > 0 we have
BC(K, r) ⊆ SC (G).

Then
∥∥DK

∥∥ < 1
r if, and only if, the map z 7→

∥∥GK(z)
∥∥ with domain E is

not the constant function 1
r .
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Proof. Sufficiency is trivial, so we only need to prove necessity.

By Proposition 3.2.12,
∥∥GK∥∥

H∞
≤ 1

r , so that
∥∥DK

∥∥ ≤ 1
r . Thus we are done

if we can rule out the possibility
∥∥DK

∥∥ = 1
r . To this end, suppose on the

contrary that 1
r =

∥∥DK
∥∥ = limz→∞

∥∥GK(z)
∥∥. Pick ξ ∈ Cm such that ‖ξ‖ =

1 and
∥∥DKξ

∥∥ =
∥∥DK

∥∥. Set µ := 1
‖DKξ‖D

Kξ, and define a map g : E → C
by g(z) :=

〈
GK(z)ξ, µ

〉
. Since

∥∥GK∥∥
H∞

<∞, the rational function matrix

GK does not have poles in E, so g is analytic in E. Hence if we define a
map h on D by h(z) := g

(
z−1
)

for z 6= 0 and h(0) := limz→∞ g(z), then h is
analytic on D. Now let us use the Cauchy-Schwarz inequality to infer that
for all z ∈ D we have

|h(z)| = |g(z−1)|
= |
〈
GK(z−1)ξ, µ

〉
|

≤
∥∥GK(z−1)

∥∥ ‖ξ‖ ‖µ‖
≤
∥∥GK∥∥

H∞
≤ 1

r
. (4.2.10)

However, by the choice of µ and ξ, |h(0)| = limz→∞
∥∥GK(z)

∥∥ =
∥∥DK

∥∥ = 1
r .

If we combine this with (4.2.10), then we see that |h| attains its maximum in
the interior of D. Thus, by the maximum modulus principle (see e.g. §16.2
from Priestley [48]), |h| is constant in D. Since |h(0)| = 1

r , this means that
|h(z)| = 1

r in D. Substitute this in (4.2.10) to see that
∥∥GK(z)

∥∥ = 1
r for all

z ∈ E, which contradicts the assumptions of this lemma and thus completes
the proof.

The above characterization allows us to obtain a simple restatement of the
Aizerman version of the circle criterion for SISO Lur’e systems.

Corollary 4.2.5. Consider a Lur’e system (A,B,C,D, f) and assume that
the underlying linear system (A,B,C,D) ∈ Σ(1, n, 1;F) is stabilizable and
detectable, and that its transfer function g is not a constant (that is, g ∈
F(z) \ F). For k ∈ F and r > 0, assume that BC(k, r) ⊆ SC (g) and that
there exists z0 ∈ C with |z0| = 1 such that

∣∣gk(z0)∣∣ < ∥∥gk∥∥H∞.

(a) If

‖f(ξ)− kξ‖ ≤ r ‖ξ‖ ∀ ξ ∈ F,

then the Lur’e system (A,B,C,D, f) is globally stable.

(b) If f is continuous and

‖f(ξ)− kξ‖ < r ‖ξ‖ ∀ ξ ∈ F \ {0},

then the Lur’e system (A,B,C,D, f) is globally asymptotically stable.
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(c) If there exists δ > 0 such that

‖f(ξ)− kξ‖ ≤ (r − δ) ‖ξ‖ ∀ ξ ∈ F,

then the Lur’e system (A,B,C,D, f) is globally exponentially stable.

We will now look at some examples that demonstrate that the Aizerman
version of the circle criterion is not a conservative result.

We will consider linear systems of the form (a, b, c, 0) ∈ Σ(1, 1, 1,C) so that
the requirement

∥∥DK
∥∥ < 1

r is satisfied automatically. Also, we will assume

K = 0, so that r = ‖g‖−1H∞ . Since g(z) = bc
z−a , we have g ∈ H∞ if, and only if,

a ∈ D and if so, then ‖g‖H∞ = |bc|
1−|a| giving us r = 1−|a|

|bc| . Moreover, if a 6= 0,

then clearly there will exist z0 ∈ C with |z0| = 1 such that ‖g(z0)‖ < ‖g‖H∞ .
For our examples we will take b = c = 1 and a = 1

2 , so that r = 1
2 and the

evolution of the state is given by

x(t+ 1) =
1

2
x(t) + f(x(t)) ∀ t ∈ N0.

Example 4.2.6. Let ε > 0 and define f1 : R→ R by

f1(ξ) :=

(
1

2
+ ε

)
ξ.

It is obvious that |x(t + 1)| = (1 + ε)|x(t)| = . . . = (1 + ε)t+1|x(0)| for all
(x, y) ∈ B(12 , 1, 1, 0, f1), so that the Lur’e system (12 , 1, 1, 0, f1) is not globally
stable.

Example 4.2.7. Define f2 : R→ R by

f2(ξ) :=
1

2
ξ.

Since ‖f(ξ)‖ = 1
2 ‖ξ‖ for all ξ ∈ R, Aizerman version of the circle criterion

(a) shows us that the Lur’e system (12 , 1, 1, 0, f2) is globally stable. However
x(t) = x(0) for all t ∈ N0 and for all (x, y) ∈ B(12 , 1, 1, 0, f2), so that the
Lur’e system (12 , 1, 1, 0, f2) is not globally asymptotically stable.

Example 4.2.8. Define f3 : R→ R by

f3(ξ) =

{
0, if |ξ| ≥ 1

ξ(12 − |ξ|), if |ξ| < 1.

Since ‖f3(ξ)‖ < 1
2 ‖ξ‖ for all ξ ∈ R, Aizerman version of the circle criterion

(b) implies that the Lur’e system (12 , 1, 1, 0, f3) is globally asymptotically
stable. We now show that it is not globally exponentially stable. To this
end, suppose on the contrary that the Lur’e system (12 , 1, 1, 0, f3) is globally
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exponentially stable. Then there exist constants c > 0 and a ∈ (0, 1) such
that |x(t)| ≤ cat|x(0)| for all t ∈ N0 and for all (x, y) ∈ B(12 , 1, 1, 0, f3). Pick
ε > 0 such that (1 + ε)a < 1; by global asymptotic stability of (12 , 1, 1, 0, f3),
there exists t ∈ N0 such that |x(t)| < (1 − (1 + ε)a). Hence |x(t + 1)| =
|x(t)|(1 − |x(t)|) > |x(t)|(1 + ε)a. Since we already noted that |x(t + 1)| <
|x(t)| < 1− (1 + ε)a, we can repeat this procedure to see that for all k ∈ N
we have

|x(t+ k)| > |x(t)|(1 + ε)kak.

Combine this with global exponential stability to see that for all k ∈ N
and for all (x, y) ∈ B(12 , 1, 1, 0, f3) we must have cat+k|x(0)| ≥ |x(t + k)| >
|x(t)|(1 + ε)kak. Hence

cat|x(0)| ≥ |x(t)|(1 + ε)k

for all k ∈ N and for all (x, y) ∈ B(12 , 1, 1, 0, f3), which is a contradiction:
pick any trajectory with x(0) 6= 0 (and therefore x(t) 6= 0 for all t ∈ N0).
Thus (12 , 1, 1, 0, f3) is not globally exponentially stable.

Finally we note an adaptation of the Aizerman version of the circle criterion
to the case when the underlying linear system is controllable and observable.
Its proof is identical in everything except it uses Lemma 3.2.9 instead of
Lemma 3.2.8. Note that in this version of the result we do not need to
assume that there exists |z0| = 1 such that

∥∥GK(z0)
∥∥ < 1

r .

Proposition 4.2.9. Consider a Lur’e system (A,B,C,D, f), assume that
the underlying linear system (A,B,C,D) ∈ Σ(m,n, p;F) is controllable and
observable and denote its transfer function by G. Let K ∈ Fm×p, r > 0 and
assume that BC(K, r) ⊆ SC (G).

(a) If
∥∥DK

∥∥ < 1
r and

‖f(ξ)−Kξ‖ ≤ r ‖ξ‖ ∀ ξ ∈ Fp,

then the Lur’e system (A,B,C,D, f) is globally stable.

(b) If f is continuous,
∥∥DK

∥∥ < 1
r and

‖f(ξ)−Kξ‖ < r ‖ξ‖ ∀ ξ ∈ Fp \ {0},

then the Lur’e system (A,B,C,D, f) is globally asymptotically stable.

(c) If there exists δ > 0 such that

‖f(ξ)−Kξ‖ ≤ (r − δ) ‖ξ‖ ∀ ξ ∈ Fp,

then the Lur’e system (A,B,C,D, f) is globally exponentially stable.
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4.3 “Standard” version of the circle criterion

In this section we will state and prove another corollary of Proposition 4.2.1,
the statement of which resembles the classical circle criterion, see Theorem
5.1 from [22]. First, we need a lemma.

Lemma 4.3.1. Let L ∈ Fm×p be left-invertible and set L] := (L∗L)−1L∗.
Then

(a) LL] is the orthogonal projection onto imL,

(b)
∥∥LL]∥∥ = 1, and

(c) for any δ > 0 there exists δ1 > 0 such that

‖ξ‖2 − δ
∥∥∥L]ξ∥∥∥2 ≤ (1− δ1)2 ‖ξ‖2 ∀ ξ ∈ imL.

Proof. (a) is well-known as LL] is the Moore-Penrose pseudoinverse of L,
see Proposition 6.1.6. from [9], and (b) follows trivially from (a).

To obtain (c), we note that imL = (kerL∗)⊥ = (kerL])⊥. Clearly, there
exists c > 0 such that

∥∥L]ξ∥∥ ≥ c ‖ξ‖ for all ξ ∈ (kerL])⊥ and without loss
of generality we can assume that 1− δc2 > 0. Thus

‖ξ‖2 − δ
∥∥∥L]ξ∥∥∥2 ≤√(1− δc2)

2
‖ξ‖2 ∀ ξ ∈ imL.

With this is hand, we can now prove the following.

Proposition 4.3.2 (“Standard” Version of the Circle Criterion). Consider
a Lur’e system (A,B,C,D, f) and assume that the underlying linear system
(A,B,C,D) ∈ Σ(m,n, p;F) is controllable and observable and denote its
transfer function by G. Let K1,K2 ∈ Fm×p and assume that K1 ∈ AC(D),
(I −K2G)(I −K1G)−1 is positive real and that - for K := 1

2(K1 +K2) and
L := 1

2(K1 −K2) - we have
∥∥LDK

∥∥ < 1.

(a) If ker(K1 −K2) = {0} and if

Re 〈f(ξ)−K1ξ, f(ξ)−K2ξ〉 ≤ 0 ∀ ξ ∈ Fp, (4.3.1)

then the Lur’e system (A,B,C,D, f) is globally stable.

(b) If

Re 〈f(ξ)−K1ξ, f(ξ)−K2ξ〉 < 0 ∀ ξ ∈ Fp \ {0}, (4.3.2)

then the Lur’e system (A,B,C,D, f) is globally asymptotically stable.

52 4.3. “STANDARD” VERSION OF THE CIRCLE CRITERION



CHAPTER 4. ABSOLUTE STABILITY OF LUR’E SYSTEMS

(c) If for some positive δ we have

Re 〈f(ξ)−K1ξ, f(ξ)−K2ξ〉 ≤ −δ ‖ξ‖2 ∀ ξ ∈ Fp, (4.3.3)

then the Lur’e system (A,B,C,D, f) is globally exponentially stable.

Proof. By rewriting K1 and K2 in terms of K and L, we obtain

Re 〈f(ξ)−K1ξ, f(ξ)−K2ξ〉 = Re 〈f(ξ)− (K + L)ξ, f(ξ)− (K − L)ξ〉
= ‖f(ξ)−Kξ‖2 + Re 〈f(ξ)−Kξ,Lξ〉
− Re 〈Lξ, f(ξ)−Kξ〉 − ‖Lξ‖2

= ‖f(ξ)−Kξ‖2 − ‖Lξ‖2 ∀ ξ ∈ Fp.
(4.3.4)

Note that for (b) and (c) this implies that kerL = {0}, while in (a) we
explicitly assume kerL = {0}. Therefore we always have kerL = {0}. Thus
L∗L is invertible and L] := (L∗L)−1L∗ ∈ Fp×m is a left-inverse of L.

We can then check that

(I −K2G)(I −K1G)−1 = (I −K1G+ 2LG)(I −K1G)−1

= I + 2LGK1 ,

so, by Lemma 2.2.10,
∥∥−LGK1(I + LGK1)−1

∥∥
H∞
≤ 1. On the other hand,

−LGK1(I + LGK1)−1 = L(−L]L)GK1(I − L(−L]L)GK1)−1 = (LGK1)−LL
]
.

Hence by Proposition 3.2.12, we see that BC(−LL], 1) ⊆ SC
(
LGK1

)
. This

suggests looking at a state-space system that has transfer function LGK1 .

Consider (x, y) ∈ B(A,B,C,D, f); then, by Lemma 3.1.4, we have

x(t+ 1) = AK1x(t) +BK1(f(y(t))−K1y(t))

y(t) = CK1x(t) +DK1(f(y(t))−K1y(t))

for all t ∈ N0. Left-multiplication by L of the output equation and the use
of I = L]L then gives us

x(t+ 1) =AK1x(t) +BK1

(
f(L]Ly(t))−K1L

]Ly(t)
)

Ly(t) =LCK1x(t) + LDK1

(
f(L]Ly(t))−K1L

]Ly(t)
)

∀ t ∈ N0.

Define g(ξ) := f(L]ξ) − K1L
]ξ, so that (x, y) ∈ B(A,B,C,D, f) if, and

only if, (x, Ly) ∈ B(AK1 , BK1 , LCK1 , LDK1 , g). Since L is left-invertible, it
thus suffices to show that - under the assumptions (4.3.1), (4.3.2) and (4.3.3)
respectively - the Lur’e system (AK1 , BK1 , LCK1 , LDK1 , g) is globally stable,
globally asymptotically stable and globally exponentially stable respectively.
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We will now do just that by applying the Aizerman version of the circle
criterion to the Lur’e system (AK1 , BK1 , LCK1 , LDK1 , g).

We have already checked that BC(−LL], 1) ⊆ SC
(
LGK1

)
and Lemma 3.1.4

together with an application of the Hautus tests for stabilizability and de-
tectability shows that (AK1 , BK1 , LCK1 , LDK1) (which is clearly a realiza-
tion of LGK1) is stabilizable and detectable. Observe that

(
LGK1

)−LL]

= LG(I −K1G)−1
(
I + LG(I −K1G)−1

)−1
= LGK ,

so that we obtain
∥∥(LDK

)∥∥−LL]

< 1.

Thus to apply Proposition 4.2.9, we only need to check that g satisfies
appropriate inequalities. By definition of g and equation (4.3.4), we have

∥∥∥g(ξ) + LL]ξ
∥∥∥2 =

∥∥∥f(L]ξ)−K1L
]ξ + LL]ξ

∥∥∥2
=
∥∥∥f(L]ξ)−KL]ξ

∥∥∥2
= Re

〈
f(L]ξ)−K1L

]ξ, f(L]ξ)−K2L
]ξ
〉

+
∥∥∥LL]ξ∥∥∥2

(4.3.5)

for all ξ ∈ Fm.

Thus the use of equation (4.3.1) and Lemma 4.3.1 (b) allows us to establish
the required inequality, so that we can apply Proposition 4.2.9 (a) to the
Lur’e system (AK1 , BK1 , LCK1 , LDK1 , g) to complete the proof of (a).

Now to prove (b) we consider two separate cases: if ξ /∈ kerL], then the
use of equations (4.3.5) and (4.3.2) combined with Lemma 4.3.1 (b) gives us∥∥g(ξ) + LL]ξ

∥∥2 < ∥∥LL]ξ∥∥2 ≤ ‖ξ‖2, while if ξ ∈ kerL], then g(ξ)+LL]ξ = 0.

Thus
∥∥g(ξ) + LL]ξ

∥∥2 < ‖ξ‖2 for all ξ ∈ Fm \ {0}. Hence an application of
Proposition 4.2.9 (b) to the Lur’e system (AK1 , BK1 , LCK1 , LDK1 , g) com-
pletes the proof of (b).

Finally, to prove (c), we use Lemma 4.3.1 (a) to infer that we can decompose
ξ ∈ Fm as ξ = ξ1 + ξ2, where ξ1 ∈ imL and ξ2 ∈ (imL)⊥ = kerL] (the last
equality follows from Theorem 2.4.3 from [9]). Then the use of equations
(4.3.5), (4.3.3) and an application of Lemma 4.3.1 (c) shows us that there
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exists δ1 > 0 such that∥∥∥g(ξ) + LL]ξ
∥∥∥2 =

∥∥∥g(ξ1) + LL]ξ1

∥∥∥2
≤
∥∥∥LL]ξ1∥∥∥2 − δ ∥∥∥L]ξ1∥∥∥

≤ (1− δ1)2 ‖ξ1‖2

≤ (1− δ1)2 ‖ξ‖2 ∀ ξ ∈ Fm.

Hence an application of Proposition 4.2.9 (c) completes the proof of (c).

We remark that one can obtain a counterpart of Proposition 4.3.2 for sta-
bilizable and detectable systems by using Proposition 4.2.1 instead of 4.2.9.
However then one has to introduce an extra condition in Proposition 4.3.2,
namely that - for H := (I −K2G)(I −K1G)−1 - there exists |z0| = 1 such
that H(z0) + H(z0)

∗ > 0. The sufficiency of this assumption follows from
the strict version of Lemma 2.2.10 (applied to the constant matrix H(z0)).
Since this result is not used in the present document and it introduces no
other new ideas, we omit it.

We can see that Proposition 4.3.2 is similar to the well-known circle criterion.
In fact, Theorem 5.1 from Haddad and Bernstein [22] is equivalent to a time-
variant version of Proposition 4.3.2 (c). This equivalence is not obvious as
they make stronger assumptions on (I − K2G)(I − K1G)−1, but weaker
assumptions on the nonlinearity f . However, one can check that these two
assumptions imply that a related Lur’e system satisfies assumptions made
in Proposition 4.3.2 and vice versa, which can then be used to show that
these two results are equivalent. This is a lengthy calculation, so we will not
perform it here.

55 4.3. “STANDARD” VERSION OF THE CIRCLE CRITERION



CHAPTER 4. ABSOLUTE STABILITY OF LUR’E SYSTEMS

56 4.3. “STANDARD” VERSION OF THE CIRCLE CRITERION



Chapter 5

Input-to-state stability of
Lur’e systems

In this chapter we finally reach the crux of Part I. We will see that under
assumptions similar to the ones we made in absolute stability results, that
is, Propositions 4.2.1 and 4.3.2, we in fact obtain input-to-state stability
(from now on, ISS) of Lur’e systems with forcing

x(t+ 1) = Ax(t) +B(f(y(t)) + d(t))

y(t) = Cx(t) +D(f(y(t)) + d(t)) ∀ t ∈ N0.

Introduced by Sontag in [50] (1989), ISS is a recent notion of stability, which
provides a natural framework for stability analysis of nonlinear systems with
inputs, merging, in a sense, Lyapunov and input-output approaches to sta-
bility. ISS has attracted a great deal of interest and its properties have been
analysed in numerous papers, for an overview in discrete-time setting see
Jiang and Wang [31], for an overview in continuous-time see Sontag [52].

There has been some interest in proving ISS for continuous-time Lur’e sys-
tems from assumptions that are similar to ones made in absolute stability
theory, see e.g. Arcak and Teel [7], Jayawardhana, Logemann and Ryan [29]
and [30], Bruin et al. [12]. All of the above make use of the ISS-Lyapunov
function characterization of ISS and construct an appropriate ISS-Lyapunov
function. [7, 30, 29] use the positive real lemma and output injection to ob-
tain two quadratic forms, which are then used as building blocks for an
ISS-Lyapunov function. [12] analyses a standard Lur’e-Postnikov Lyapunov
function to obtain a result resembling the Popov criterion. Our approach
is inspired by the former of these two, however there are major differences:
(i) we use the bounded real lemma instead of the positive real lemma and
hence our results apply to a different class of systems (we will obtain some
of the results from [29, 30] as corollaries in Part II, where we deal with
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continuous-time systems), (ii) we allow nonzero feedthrough and multivari-
able systems and (iii) we consider the discrete-time case. Due to the use
of the bounded real lemma to construct a quadratic form, we need new
methods of estimation in establishing that our construction is indeed an
ISS-Lyapunov function. Therefore we include a treatment of K∞ functions
and prove some novel results for them, see Lemma 5.1.11 and Proposition
5.1.15.

Finally, we will note that, under the assumptions made in the small-gain
theorem, we can obtain a stronger version of ISS, which we call exponential
input-to-state stability. Moreover, this result can be obtained without the
use of ISS-Lyapunov functions.

This chapter is organized as follows: we introduce comparison function
classes K,K∞ and KL in §5.1 and then prove some results on estimates
involving comparison functions. In §5.2 we introduce Lur’e systems with
forcing and define ISS for them. We also note an ISS-Lyapunov character-
ization of ISS. Then in §5.3 and §5.4 we state and prove results that guar-
antee ISS under assumptions similar to the ones made in absolute stability
results from Chapter 4, see Theorem 5.3.1 and Proposition 5.4.1. Finally, in
§5.5 we consider exponential ISS and show that it is guaranteed under the
assumptions made in the small-gain theorem.

5.1 Function classes K,K∞ and KL

In this section we introduce three standard classes of comparison functions:
K, K∞ and KL. These function classes are convenient for defining stability
concepts for nonautonomous differential equations (see e.g. §4.5, §4.8 and
§4.9 from [36]) and are central in defining ISS. We will also prove some
properties of K∞ functions, which will then be used in ISS analysis.

Contrary to the rest of this document, in §5.1 we will sometimes use the
symbols x and y to donate elements in [0,∞).

We denote by K ⊂ C([0,∞)) the set of continuous functions which are
strictly increasing and are zero at zero:

K := {α ∈ C([0,∞)) : α is strictly increasing and α(0) = 0} .

We denote by K∞ the set of K functions which are not bounded:

K∞ :=
{
α ∈ K : lim

s→∞
α(s) =∞

}
.

Finally, we denote by (discrete-time)-KL the set of functions in two vari-
ables, β : [0,∞) × N0 → [0,∞) with the following properties: if β ∈ KL,
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then, for each fixed t, β(·, t) ∈ K and, for each fixed s, the function β(s, ·)
is non-increasing and limt→∞ β(s, t) = 0.

Remark: the set of discrete-KL functions is just the obvious adaptation of
the usual KL functions to discrete-time systems.

The following properties of K and K∞ functions are straightforward, so we
omit the proofs.

Lemma 5.1.1. K is closed under addition, multiplication, composition and
taking the minimum (or maximum) of a finite number of K functions.

Lemma 5.1.2. K∞ is closed under addition, multiplication, composition
and taking the minimum (or the maximum) of a finite number of K∞ func-
tions; moreover, it is also closed under inversion.

From here on we will use the lattice notation for minima and maxima:
a ∨ b := max{a, b} and a ∧ b := min{a, b}. It is convenient to use these
shorthands when dealing with K functions.

Lemma 5.1.3. Let α ∈ K and suppose that a, b ≥ 0.

Then α(a ∧ b) = α(a) ∧ α(b) and α(a ∨ b) = α(a) ∨ α(b).

Consider functions U, V : Fn → [0,∞). We will say that U and V are K∞-
equivalent, denoted U ∼ V , if there exist α1, α2 ∈ K∞ such that

α1(U(ξ)) ≤ V (ξ) ≤ α2(U(ξ)) ∀ ξ ∈ Fn.

Lemma 5.1.4. K∞-equivalence is an equivalence relation.

Proof. Reflexivity and transitivity are trivial. Now suppose U ∼ V , so that
there exist α1, α2 ∈ K∞ such that α1(U(ξ)) ≤ V (ξ) ≤ α2(U(ξ)) for all ξ ∈
Fn. By Lemma 5.1.2, α−11 , α−12 ∈ K∞. Since K∞ functions are increasing,
we have U(ξ) ≤ α−11 (V (ξ)) and α−12 (V (ξ)) ≤ U(ξ), which completes the
proof.

We now record some results that will be useful in arguments involving K∞
functions.

Lemma 5.1.5. If α1, α2 ∈ K∞, then α1+α2 and α1∨α2 are K∞-equivalent.

Proof. This follows from the observation that a∨ b ≤ a+ b ≤ 2(a∨ b) for all
a, b ≥ 0.

The following result is Lemma B.1 from Jiang and Wang [31], however we
present an alternative proof as the proof presented in the article omitted
some details and was difficult to penetrate.
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Lemma 5.1.6. If α ∈ K∞, then there exists α1 ∈ K∞ such that α1 ≤ α on
[0,∞) and such that id− α1 ∈ K∞.

Proof. Let us set

α1(x) := min
s∈[0,x]

{
α(s) +

1

2
(x− s)

}
and let us prove that it has all the required properties. Note that continuous
functions over compact intervals attain their minima, so α1 is well-defined.

0 ≤ α1 ≤ α on [0,∞):

that α1 ≤ α on [0,∞) follows from the evaluation of α(s)+ 1
2(x−s) at s = x.

0 ≤ α1 follows from the estimate α(s) + 1
2(x− s) ≥ 0 + 0, when s ∈ [0, x].

α1 is strictly increasing:

let us fix x ≥ 0, δ > 0 and set m ∈ [0, x + δ] to be such that α1(x + δ) =
α(m)+ 1

2(x+δ−m). If m = x+δ, then α1(x+δ) = α(x+δ) > α(x) ≥ α1(x).
If m ∈ [x, x+ δ), then α1(x+ δ) = α(m) + 1

2(x+ δ −m) > α(m) ≥ α(x) ≥
α1(x). Finally, if m ∈ [0, x), then α1(x + δ) = α(m) + 1

2(x − m) + 1
2δ ≥

α1(x) + 1
2δ > α1(x).

α1 is continuous:

fix x ≥ 0 and δ > 0; straightforward estimations then give us

α1(x+ δ) = min
s∈[0,x+δ]

{
α(s) +

1

2
(x+ δ − s)

}
= min

s∈[0,x]

{
α(s) +

1

2
(x+ δ − s)

}
∧ min
s∈[x,x+δ]

{
α(s) +

1

2
(x+ δ − s)

}
=

(
α1(x) +

1

2
δ

)
∧ min
s∈[x,x+δ]

{
α(s) +

1

2
(x+ δ − s)

}
≤ α1(x) +

1

2
δ.

Since x and δ were arbitrary, this shows right-continuity of α1.

Similarly, for x > 0 and x− δ ≥ 0 (also δ > 0), we can see that

α1(x) = min
s∈[0,x−δ]

{
α(s) +

1

2
(x− δ − s) +

1

2
δ

}
∧ min
s∈[x−δ,x]

{
α(s) +

1

2
(x− s)

}
=

(
α1(x− δ) +

1

2
δ

)
∧ min
s∈[x−δ,x]

{
α(s) +

1

2
(x− s)

}
≤α1(x− δ) +

1

2
δ.
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This shows that α1 is left-continuous and hence it must be continuous.

α1 ∈ K∞:

by combining the above properties, we have α1 ∈ K, so we only need to
show that limx→∞ α1(x) =∞. This follows from

α1(2x) = min
s∈[0,2x]

{
α(s) + x− 1

2
s

}
= min

s∈[0,x]

{
α(s) + x− 1

2
s

}
∧ min
s∈[x,2x]

{
α(s) + x− 1

2
s

}
[as α ∈ K] ≥ min

s∈[0,x]

{
x− 1

2
s

}
∧ min
s∈[x,2x]

{
α(x) + x− 1

2
s

}
=

1

2
x ∧ α(x).

Since α ∈ K∞, this shows that limx→∞ α1(x) =∞.

id− α1 ∈ K∞:

Clearly id−α1 is a continuous function and (id−α1)(0) = 0. The estimate
α1(x) = mins∈[0,x]

{
α(s) + 1

2(x− s)
}
≤ 0+ 1

2x shows that (id−α1)(x) ≥ 1
2x,

so that limx→∞(id−α1)(x) =∞. Hence we only need to show that id−α1

is strictly increasing.

This follows from the observation that, for y > x, we have

(id− α1)(y)− (id− α1)(x)

=
1

2
y − min

s∈[0,y]

{
α(s)− 1

2
s

}
− 1

2
x+ min

s∈[0,x]

{
α(s)− 1

2
s

}
≥ 1

2
(y − x) + 0,

where we have used the observation that both minima are ≤ 0 and the
smaller one is being subtracted from the larger one. This completes the
proof.

We now state and prove a few more simple results on estimates involving
K∞ functions.

Lemma 5.1.7. Let α, γ ∈ K∞ and assume that id − α ∈ K∞. Then there
exist α̃, γ̃ ∈ K∞ such that α̃ < id on (0,∞) and

(id− α)(x) + γ(y) ≤ α̃(x) ∨ γ̃(y)

for all x, y ≥ 0.
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Proof. Set α̃ := 1
2 id+ 1

2(id−α) and γ̃ := (id−α) ◦α−1 ◦ (2γ) + γ. Then, by
Lemma 5.1.2, α̃, γ̃ ∈ K∞. Moreover it is easy to see that α̃ = id− 1

2α < id
on (0,∞).

Now, if γ(y) ≤ 1
2α(x), then

(id− α)(x) + γ(y) ≤ (id− α)(x) +
1

2
α(x)

= α̃(x)

≤ α̃(x) ∨ γ̃(y).

If however γ(y) > 1
2α(x), then x < α−1(2γ(y)), so that

(id− α)(x) + γ(y) < γ̃(y)

≤ α̃(x) ∨ γ̃(y).

This completes the proof.

Lemma 5.1.8. If α ∈ K∞ and ε > 0, then there exists k > 0 such that

α(x+ y) ≤ α ((1 + ε)x) + α(ky)

for all x, y ≥ 0. In particular k = 1 + 1
ε works.

Remark: This result cannot be extended to ε = 0. Consider e.g. s 7→ s2.

Proof. It suffices to find k > 0 such that x+y ≤ (1+ε)x∨ky for all x, y ≥ 0.
Note that

(x+ y) + ε(x+ y) = (1 + ε)x+ ε

(
1 +

1

ε

)
y.

Hence either x+ y ≤ (1 + ε)x or ε(x+ y) ≤ ε
(
1 + 1

ε

)
y. Thus k = 1 + 1

ε has
the required properties.

Lemma 5.1.9. If α ∈ K∞, then there exists γ ∈ K∞ such that

xy ≤ xα(x) + γ(y) ∀x, y ≥ 0.

Proof. If y ≤ α(x), then xy ≤ xα(x); and if y > α(x), then x < α−1(y), so
that xy < yα−1(y). Hence γ(y) := yα−1(y) satisfies all the requirements.

For what is to come, it will be useful to single out the following subset of
K∞.
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Definition 5.1.10. If α ∈ K∞ is such that, for all ε > 0,

lim
x→∞
{α((1 + ε)x)− α(x)} =∞, (GC)

then we say that α satisfies the growth condition (GC). We denote the set
of all K∞ functions that satisfy the growth condition (GC) by KGC

∞ .

Note that if a > 0, then the function α(x) := xa is in KGC
∞ , while the function

γ(x) := log(1 + x) is not.

KGC
∞ functions admit the following characterization.

Lemma 5.1.11. α ∈ KGC
∞ if, and only if, for each ε > 0, there exists

η ∈ K∞ such that

α(x− y) ≤ α ((1 + ε)x)− η(y) ∀x ≥ y ≥ 0.

Remark: we emphasize that η depends on ε.

Proof. We show necessity first. Let ε > 0; then, by our assumption, there
exists η ∈ K∞ such that

η(y) ≤ α
((

1 +
ε

2

)
x
)
− α(x− y),

for all x ≥ y ≥ 0. Now fix y ≥ 0; then for x large enough we have ε
2x ≥

(1 + ε)y, so that

lim
x→∞
{α((1 + ε)x)− α(x)} = lim

x→∞
{α((1 + ε)(x− y))− α(x− y)}

≥ lim
x→∞
{α
((

1 +
ε

2

)
x
)
− α(x− y)}

≥ η(y).

Since y was arbitrary, we must have limx→∞{α((1 + ε)x) − α(x)} = ∞,
whence α ∈ KGC

∞ .

To prove sufficiency, assume that (GC) holds. Set ∆ := {(x, y) ∈ R × R :
x ≥ y ≥ 0} and consider the continuous function g : ∆→ [0,∞) given by

g(x, y) := α ((1 + ε)x)− α(x− y).

Also, define η : [0,∞)→ [0,∞) by

η(y) := inf
x∈[y,∞)

g(x, y) = inf
x∈[0,∞)

g(y + x, y).

By (GC), for each fixed y ≥ 0, we have limx→∞ g(x, y) =∞. Therefore, by
continuity of g, the set G(y) := {x ≥ 0 : g(y + x, y) = η(y)} is non-empty
and compact for all y ≥ 0. We now define l(y) := minG(y), so that

η(y) = g(y + l(y), y) ∀ y ≥ 0. (5.1.1)
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It is easy to see that η satisfies the required inequality, so it suffices to show
that η ∈ K∞.

To this end, we note that g ≥ 0 and g(0, 0) = 0, so η(0) = 0. To show that
η is strictly increasing, fix y ≥ 0, δ > 0 and set a := l(y + δ). Then

η(y + δ) = min
x∈[0,a]

g(y + δ + x, y + δ)

= min
x∈[0,a]

[α ((1 + ε)(y + δ + x))− α(x)] . (5.1.2)

Now, for every x ≥ 0, we have α ((1 + ε)(y + δ + x))−α(δ+ x) = g(y+ δ+
x, y) ≥ η(y), and hence α ((1 + ε)(y + δ + x))−α(x) ≥ η(y)+α(δ+x)−α(x).
If we use this in equation (5.1.2), then we obtain

η(y + δ) ≥ η(y) + min
x∈[0,a]

[α(δ + x)− α(x)] > η(y),

where the second, strict, inequality follows from the fact that α is continuous
and strictly increasing. Since y ≥ 0 and δ > 0 were arbitrary, we have shown
that η is strictly increasing.

We proceed to prove that η(y)→∞ as y →∞. This follows from

lim
y→∞

η(y) = lim
y→∞

inf
x∈[0,∞)

[α ((1 + ε)(y + x))− α(x)]

≥ lim
y→∞

inf
x∈[0,∞)

[α ((1 + ε)(y + x))− α(y + x)]

= lim inf
x→∞

[α((1 + ε)x)− α(x)]

= lim
x→∞

[α((1 + ε)x)− α(x)]

=∞.

Thus it only remains to prove that η is continuous. It is well-known that
continuity and sequential continuity are equivalent, so we pick y ≥ 0 and
let (yi)i∈N0 be a sequence in [0,∞) such that yi → y as i→∞. Hence it is
sufficient to show that

lim sup
i→∞

η(yi) ≤ η(y) ≤ lim inf
i→∞

η(yi). (5.1.3)

Set xi := yi + l(y) ≥ yi; then the continuity of g and equation (5.1.1)
guarantee that limi→∞ g(xi, yi) = g(y+l(y), y) = η(y). Now η(yi) ≤ g(xi, yi)
for all i ∈ N and thus,

lim sup
i→∞

η(yi) ≤ lim sup
i→∞

g(xi, yi) = lim
i→∞

g(xi, yi) = η(y), (5.1.4)

giving us the first inequality.
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To prove the second one, for j ∈ N, we define ηj := infi≥j η(yi). Thus, for
every j ∈ N, there exists an integer ij ≥ j such that η(yij )− ηj ≤ 1

j . Upon
setting zj := yij , we have limj→∞ zj = y, so that

lim
j→∞

η(zj) = lim
j→∞

ηj = lim inf
i→∞

η(yi). (5.1.5)

Hence, by equation (5.1.1), it follows that, for all j ∈ N,

η(zj) = g(l(zj) + zj , zj) ≥ α ((1 + ε)(l(zj) + zj))− α(l(zj) + zj).

Boundedness of (η(zj))j∈N0
together with the growth condition (GC) implies

that (l(zj))j∈N0
is bounded. Thus, there exists a convergent subsequence

(l(zjk))k∈N0
and we denote its limit by l. By equation (5.1.5), we have that

lim
k→∞

zjk = y and lim
k→∞

η (zjk) = lim inf
i→∞

η(yi),

and thus, by equation (5.1.1) and by the continuity of g, we have

lim inf
i→∞

η(yi) = lim
k→∞

g (zjk + l(zjk), zjk) = g(y + l, y) ≥ η(y).

Together with equation (5.1.4) this shows that (5.1.3) holds, which in turn
completes the proof.

The following lemma shows how we will use this result.

Lemma 5.1.12. Let α ∈ K∞ and define α̃ ∈ K∞ by α̃(s) :=
√
sα(
√
s).

Then for every ε > 0 there exists η ∈ K∞ such that

α̃(s1 − s2) ≤ α̃((1 + ε)s1)− η(s2) ∀ s1 ≥ s2 ≥ 0.

Proof. It is easy to check that α̃ ∈ KGC
∞ . The proof is then complete after

an application of Lemma 5.1.11.

Let us now state and prove some other results that will be useful in the
stability analysis of Lur’e systems.

Lemma 5.1.13. If α ∈ K and β ∈ KL, then α ◦ β ∈ KL.

Proof. We need to check that for fixed t ∈ N0 the function (α ◦ β)(·, t) is in
K and that for fixed s ∈ [0,∞) we have limt→∞(α ◦ β)(s, t) = 0.

By definition, for a fixed t ∈ N0, the function β(·, t) is in K and, by Lemma
5.1.1, a composition of a K function with a K function is in K, which gives
us the first statement.

The second statement follows from the continuity of α:

lim
t→∞

(α ◦ β)(s, t) = α
(

lim
t→∞

β(s, t)
)

= α(0) = 0.
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The following result will be useful for an ISS version of the circle criterion,
see Proposition 5.4.1.

Lemma 5.1.14. Let α ∈ K∞, L ∈ Fm×p be left-invertible and set L] :=
(L∗L)−1L∗. Then there exists α1 ∈ K∞ with α1 < id on (0,∞) such that∥∥∥LL]ξ∥∥∥2 − ∥∥∥L]ξ∥∥∥α(∥∥∥L]ξ∥∥∥) ≤ (‖ξ‖ − α1(‖ξ‖))2 ∀ξ ∈ Fm.

Proof. By Lemma 4.3.1, we know that LL] is the orthogonal projection onto
imL. Let us decompose Fm = im(L)⊕ im(L)⊥ and, for an arbitrary ξ ∈ Fm,
write ξ = ξ1+ξ2, where ξ1 ∈ im(L) and ξ2 ∈ im(L)⊥. Hence

∥∥LL]ξ∥∥ = ‖ξ1‖.
Moreover, as imL = (kerL∗)⊥ = (kerL])⊥ (use e.g. Theorem 2.4.3 from [9]
for the first equality), there exists c > 0 such that

∥∥L]ξ∥∥ =
∥∥L]ξ1∥∥ ≥ c ‖ξ1‖

for all ξ ∈ Fm. Thus, upon noting that ‖ξ‖2 = ‖ξ1‖2 + ‖ξ2‖2, we have∥∥∥LL]ξ∥∥∥2 − ∥∥∥L]ξ∥∥∥α(∥∥∥L]ξ∥∥∥) ≤ ‖ξ‖2 − ‖ξ2‖2 − c ‖ξ1‖α (c ‖ξ1‖) (5.1.6)

for all ξ ∈ Fm.

On the other hand, if α1 ∈ K∞, then

(‖ξ‖ − α1(‖ξ‖))2 = ‖ξ‖2 − 2 ‖ξ‖α1(‖ξ‖) + α1(‖ξ‖)2

≥ ‖ξ‖2 − 2 ‖ξ‖α1(‖ξ‖)

for all ξ ∈ Fm. Hence, in view of estimate (5.1.6), it suffices to find α1 ∈
K∞ such that 2 ‖ξ‖α1(‖ξ‖) ≤ ‖ξ2‖2 + c ‖ξ1‖α(c ‖ξ1‖) for all ξ ∈ Fm. Or,
equivalently,

2
√
s21 + s22 · α1

(√
s21 + s22

)
≤ cs1α(cs1) + s22 (5.1.7)

for all s1, s2 ≥ 0. We define α1 ∈ K∞ by α1(s) := 1
4 ·
(
cα(cs/2) ∧ s/2

)
for

s ≥ 0. Clearly, α1 < id on (0,∞). Moreover, since (s1 + s2)
2 ≥ s21 + s22 and

s1 + s2 ≤ 2s1 ∨ 2s2 for all s1, s2 ≥ 0, we have

2
√
s21 + s22 · α1

(√
s21 + s22

)
≤ 2(s1 + s2)α1(s1 + s2)

≤ (4s1 ∨ 4s2) · α(2s1 ∨ 2s2)

≤ 4s1α1(2s1) + 4s2α1(2s2)

= cs1α(cs1) ∧ s21 + cs2α(cs2) ∧ s22
≤ cs1α(cs1) + s22

for all s1, s2 ≥ 0, which completes the proof.

The following result will only be used in Part II.
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Proposition 5.1.15. Let α ∈ K∞ and suppose there exists c1 > 0 such that
α(s) ≤ c1s for all s ∈ [0,∞). Then there exist, f ∈ C ([0,∞), [0, c1]) and
η ∈ K∞ such that

η(s) ≤ s2f(s2) ≤ sα(s) ∀ s ∈ [0,∞)

and
∫∞
0 f(s) ds =∞.

Proof. First define f̃ : (0,∞)→ (0, c1] by f̃(s) := α(
√
s)√
s

. As a composition of

continuous functions, f̃ is itself continuous. Thus we can define a continuous
function f ∈ C([0,∞), [0, c1]) by

f(s) :=

{
s ∧ f̃(s), if s > 0

0, if s = 0.

Then s2f(s2) = s3 ∧ sα(s) for all s ≥ 0. Hence, if we define η ∈ K∞ by
η(s) := s3 ∧ sα(s), then η(s) ≤ s2f(s2) ≤ sα(s) for all s ≥ 0.

The proof is completed by observing that∫ ∞
0

f(s) ds ≥
∫ ∞
0

f̃(s) ds >

∫ ∞
α−1(1)

f̃(s) ds >

∫ ∞
α−1(1)

α(α−1(1))√
s

ds =∞.

5.2 Input-to-state stability

In this section we define ISS for Lur’e systems

x(t+ 1) = Ax(t) +B(f(y(t)) + d(t))

y(t) = Cx(t) +D(f(y(t)) + d(t)).
(5.2.1)

It is well-known that ISS is equivalent to the existence of a continuously
differentiable ISS-Lyapunov function, see Jiang and Wang [31]. However,
in the main result of this chapter, Theorem 5.3.1, we construct an ISS-
Lyapunov function for (5.2.1), which could have a discontinuous derivative.
Since we are working in discrete-time, the assumption that the ISS-Lyapunov
function should be continuously differentiable seems surplus to requirements.
Indeed, in Proposition 5.2.4 we show that the existence of a continuous ISS-
Lyapunov function with a possibly discontinuous derivative still guarantees
ISS of (5.2.1).

Definition 5.2.1. Consider a Lur’e system (A,B,C,D, f), where the under-
lying linear system (A,B,C,D) ∈ Σ(m,n, p;F). We define the behaviour
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with disturbances of (A,B,C,D, f) as

Bd(A,B,C,D)

:=
{

(d, x, y) ∈ (Fm)N0 × (Fn)N0 × (Fp)N0

: (f ◦ y + d, x, y) ∈ B(A,B,C,D)
}
.

The behaviour with disturbances of (A,B,C,D, f) thus consists of triples
(d, x, y) ∈ (Fm)N0 × (Fn)N0 × (Fp)N0 that satisfy (5.2.1).

Definition 5.2.2. Consider a Lur’e system (A,B,C,D, f), where the un-
derlying linear system (A,B,C,D) ∈ Σ(m,n, p;F). It is said to be (globally)
input-to-state stable if there exist β ∈ KL and γ ∈ K such that for all
trajectories (d, x, y) ∈ Bd(A,B,C,D, f) with d ∈ l∞(Fm) we have

‖x(t)‖ ≤ β(‖x(0)‖ , t) + γ(‖d‖∞) ∀ t ∈ N0. (5.2.2)

Note that, via Lemma 5.1.5, equation (5.2.2) is equivalent to

‖x(t)‖ ≤ β(‖x(0)‖ , t) ∨ γ(‖d‖∞) ∀ t ∈ N0. (5.2.3)

We now introduce ISS-Lyapunov functions. In contrast to existing discrete-
time work (see e.g. [31, 32]), we do not require ISS-Lyapunov functions to
be continuously differentiable.

Definition 5.2.3. Consider a Lur’e system (A,B,C,D, f), where the under-
lying linear system (A,B,C,D) ∈ Σ(m,n, p;F). A function V : Fn → [0,∞)
is called an ISS-Lyapunov function for (A,B,C,D, f) if V and ‖.‖ are
K∞-equivalent and if there exist α, σ ∈ K∞ such that for all trajectories
(d, x, y) ∈ Bd(A,B,C,D, f) we have

V (x(t+ 1))− V (x(t)) ≤ −α(‖x(t)‖) + σ(‖d(t)‖) ∀ t ∈ N0. (5.2.4)

The existence of an ISS-Lyapunov function implies ISS.

Proposition 5.2.4. If there exists an ISS-Lyapunov function for a Lur’e
system (A,B,C,D, f), then the Lur’e system (A,B,C,D, f) is ISS.

Proof. Let V be an ISS-Lyapunov function for (A,B,C,D, f). By the K∞-
equivalence of V and ‖.‖ and the alternative characterization of ISS property
given in equation (5.2.3), it suffices to show that there exist β ∈ KL and
γ ∈ K∞ such that

V (x(t+ 1)) ≤ β(V (x(0)), t) ∨ γ(‖d‖∞) ∀ t ∈ N0
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and for all (d, x, y) ∈ Bd(A,B,C,D, f) with d ∈ l∞(Fm).

Since V is an ISS-Lyapunov function, there exist α, σ ∈ K∞ such that

V (x(t+ 1))− V (x(t)) ≤ −α(V (x(t))) + σ(‖d(t)‖) ∀ t ∈ N0

and for all (d, x, y) ∈ Bd(A,B,C,D, f). Furthermore, by Lemma 5.1.6,
we can assume - without loss of generality - that id − α ∈ K∞. Lemma
5.1.7 shows us that there exist ρ, γ ∈ K∞ with ρ < id on (0,∞) such that
(id−α)(s1) +σ(s2) ≤ ρ(s1)∨γ(s2) for all s1, s2 ≥ 0. Hence we can estimate

V (x(t+ 1)) ≤ (id− α) (V (x(t)) + σ(‖d‖∞)

≤ ρ(V (x(t))) ∨ γ(‖d‖∞)

≤ ρ
(
ρ(V (x(t− 1))) ∨ γ(‖d‖∞)

)
∨ γ(‖d‖∞)

≤ ρ2(V (x(t− 1))) ∨ γ(‖d‖∞)

...

≤ ρt+1(V (x(0))) ∨ γ(‖d‖∞) (5.2.5)

for all t ∈ N0 and for all (d, x, y) ∈ Bd(A,B,C,D, f) with d ∈ l∞(Fm).

Thus we are done if we can show that β(s, t) := ρt+1(s) defines a KL func-
tion. But this is straightforward: by Lemma 5.1.1, β(·, t) is a K function for
each fixed t ∈ N0. Now fix s > 0; then 0 < ρt(s) < ρt−1(s) < . . . < ρ(s) < s,
so the sequence (ρt(s))t∈N0 is decreasing and bounded from below. There-
fore it has a limit, which must be a fixed point of ρ. Since ρ < id on (0,∞),
this fixed point is 0. Thus β(s, ·) is decreasing and limt→∞ β(s, t) = 0, which
completes the proof.

5.3 Ball condition assumptions

In this and the following section we will obtain the main results in this part
of the thesis. We will see that under assumptions similar to the ones we
made in absolute stability results, that is, Propositions 4.2.1 and 4.3.2, we
in fact obtain ISS of Lur’e systems with forcing

x(t+ 1) = Ax(t) +B(f(y(t)) + d(t))

y(t) = Cx(t) +D(f(y(t)) + d(t)) ∀ t ∈ N0.
(5.3.1)

Similarly as in Chapter 4, we will first obtain a result that resembles Aiz-
erman’s conjecture, see Theorem 5.3.1, which will then be used to obtain a
result that resembles the circle criterion, see Proposition 5.4.1. As in the
absolute stability case, we will conduct stability analysis by using quadratic
forms obtained from: (i) a “ball condition” and the bounded real lemma,
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and (ii) output injection. We will use K∞ results from §5.1 to prove that a
suitable combination of the two quadratic forms is an ISS-Lyapunov function
for the Lur’e system (5.3.1).

Theorem 5.3.1. Consider a Lur’e system (A,B,C,D, f), assume that the
underlying state-space system (A,B,C,D) ∈ Σ(m,n, p;F) is stabilizable and
detectable and denote its transfer function by G. Furthermore, let r > 0,
K ∈ Fm×p and assume that BC(K, r) ⊆ SC (G) and that there exists z0 ∈ C
with |z0| = 1 such that

∥∥GK(z0)
∥∥ < 1

r .

If there exists α ∈ K∞ such that

‖f(ξ)−Kξ‖ ≤ r ‖ξ‖ − α(‖ξ‖) ∀ ξ ∈ Fp, (5.3.2)

then the Lur’e system (A,B,C,D, f) is ISS.

Proof. In view of Proposition 5.2.4, it suffices to find an ISS-Lyapunov func-
tion for the Lur’e system (A,B,C,D, f). We will do this in two steps - firstly
we will obtain a quadratic form from the condition BC(K, r) ⊆ SC (G) and
then we will obtain and modify a quadratic form obtained via output injec-
tion. The sum of these two will be the eventual ISS-Lyapunov function for
(A,B,C,D, f).

Since BC(K, r) ⊆ SC(G) and since there exists |z0| = 1 such that
∥∥GK(z0)

∥∥ <
1
r , by Lemma 3.2.8, there exists a positive semi-definite P = P ∗ ∈ Fn×n such
that the function V : Fn → [0,∞) defined by V (ξ) := 〈Pξ, ξ〉 satisfies

V (x(t+ 1))− V (x(t)) ≤ ‖u(t)−Ky(t)‖2 − r2 ‖y(t)‖2 ∀ t ∈ N0

and for all (u, x, y) ∈ B(A,B,C,D). By the definition of the behaviour with
disturbances of (A,B,C,D, f), we thus have

V (x(t+ 1))− V (x(t)) ≤ ‖f(y(t))−Ky(t) + d(t)‖2 − r2 ‖y(t)‖2 (5.3.3)

for all t ∈ N0 and for all (d, x, y) ∈ Bd(A,B,C,D, f).

Using equation (5.3.2) we can estimate

‖f(ξ)−Kξ‖2 − r2 ‖ξ‖2 ≤ −2α(‖ξ‖)r ‖ξ‖+ α(‖ξ‖)2

≤ −2α(‖ξ‖)r ‖ξ‖+ α(‖ξ‖)r ‖ξ‖
= −r ‖ξ‖α(‖ξ‖) ∀ ξ ∈ Fp.

By Lemma 5.1.9, there exists γ̃ ∈ K∞ such that s1s2 ≤ 1
4s1α(s1) + γ̃(s2) for

all s1, s2 ≥ 0. Therefore, if we define γ ∈ K∞ by γ(s) := 2rγ̃(s) + s2 and
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use (5.3.2) alongside the Cauchy-Schwarz inequality, then we can estimate

‖f(ξ)−Kξ + µ‖2 − r2 ‖ξ‖2 ≤‖f(ξ)−Kξ‖2 + 2 ‖f(ξ)−Kξ‖ ‖µ‖
+ ‖µ‖2 − r2 ‖ξ‖2

≤− r ‖ξ‖α(‖ξ‖) + 2r ‖ξ‖ ‖µ‖+ ‖µ‖2

≤− r

2
‖ξ‖α(‖ξ‖) + γ(‖µ‖)

for all ξ ∈ Fp, µ ∈ Fm. If we use this estimate in (5.3.3), then we obtain

V (x(t+ 1))− V (x(t)) ≤ −r
2
‖y(t)‖α(‖y(t)‖) + γ(‖d(t)‖) ∀ t ∈ N0

and for all (d, x, y) ∈ Bd(A,B,C,D, f). Upon defining α1 ∈ K∞ by α1(s) :=
(r/2)

√
sα(
√
s) for all s ≥ 0, it follows that

V (x(t+ 1))− V (x(t)) ≤ −α1

(
‖y(t)‖2

)
+ γ(‖d(t)‖) ∀ t ∈ N0 (5.3.4)

and for all (d, x, y) ∈ Bd(A,B,C,D, f).

Now we obtain a quadratic form from output injection and then modify
it. Since (A,B,C,D) is detectable, we can use Lemma 2.3.1 to see that
there exists a positive definite Q = Q∗ ∈ Fn×n and δ > 0 such that the
function U1 : Fn → [0,∞) defined by U1(ξ) = 〈Qξ, ξ〉 satisfies U1(x(t +
1)) − U1(x(t)) ≤ −δ ‖x(t)‖2 + ‖y(t)‖2 + ‖u(t)‖2 for all t ∈ N0 and for all
(u, x, y) ∈ B(A,B,C,D). Thus we can use the definition of a behaviour with
disturbances of (A,B,C,D, f) to see that

U1(x(t+ 1))− U1(x(t)) ≤ −δ ‖x(t)‖2 + ‖y(t)‖2 + ‖f(y(t)) + d(t)‖2 (5.3.5)

for all t ∈ N0 and for all (d, x, y) ∈ Bd(A,B,C,D, f). We now use assump-
tion (5.3.2) as well as the simple estimate ‖ξ1 + ξ2‖2 ≤ 2 ‖ξ1‖2 + 2 ‖ξ2‖2
to arrive at ‖ξ‖2 + ‖f(ξ) + µ‖2 ≤ (4 ‖K‖2 + 4r2 + 1) ‖ξ‖2 + 2 ‖µ‖2 for all
ξ ∈ Fp, µ ∈ Fm. If we set c1 := 4 ‖K‖2 + 4r2 + 1 and δ1 := δ

max{c1,2} , then

equation (5.3.5) implies that the function U2 := 1
max{c1,2}U1 satisfies

U2(x(t+ 1))− U2(x(t)) ≤ −δ1 ‖x(t)‖2 + ‖y(t)‖2 + ‖d(t)‖2 (5.3.6)

for all t ∈ N0 and for all (d, x, y) ∈ Bd(A,B,C,D, f).

We will now construct a function W , using U2 so that V + W is an ISS-
Lyapunov function. Thus we want to find W such that there exist η1, γ1 ∈
K∞ that satisfy

W (x(t+ 1))−W (x(t)) ≤ −η1(‖x(t)‖) + α1(‖y(t)‖) + γ1(‖d(t)‖),

for all t ∈ N0 and for all (d, x, y) ∈ Bd(A,B,C,D, f).
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Let us now define W . Pick c2 ≥ δ1 such that U2(ξ) ≤ c2 ‖ξ‖2 for all ξ ∈ Fn

and choose b > 1 such that a := b
(

1− δ1
2c2

)
< 1. Note that a ≥ b/2 > 0.

Now, by Lemma 5.1.12, there exists η ∈ K∞ such that

α1(s1 − s2) ≤ α1(bs1)− η(s2) (5.3.7)

for all s1 ≥ s2 ≥ 0. Furthermore, Lemma 5.1.8 guarantees the existence of
k > 1 such that

α(as1 + s2) ≤ α1(s1) + α1(ks2) (5.3.8)

for all s1, s2 ≥ 0. We now set c := 1
2bk and define W : Fn → [0,∞) by

W (ξ) := α1 (cU2(ξ)). The use of estimates (5.3.6) and (5.3.7) gives us

W (x(t+ 1)) =α1 (cU2(x(t+ 1)))

≤α1

(
c
[
U2(x(t))− δ1 ‖x(t)‖2 + ‖y(t)‖2 + ‖d(t)‖2

])
≤α1

(
bc
[
U2(x(t))− δ1 ‖x(t)‖2 /2 + ‖y(t)‖2 + ‖d(t)‖2

])
− η

(
cδ1 ‖x(t)‖2 /2

)
for all t ∈ N0 and for all (d, x, y) ∈ Bd(A,B,C,D, f). By our choice of a, we

see that b
(
U2(ξ)− δ1

2 ‖ξ‖
2
)
≤ aU2(ξ) for all ξ ∈ Fn. For δ2 := cδ1/2, this

implies that

W (x(t+ 1)) ≤ α1

(
acU2(x(t)) + bc ‖y(t)‖2 + bc ‖d(t)‖2

)
− η

(
δ2 ‖x(t)‖2

)
(5.3.9)

for all t ∈ N0 and for all (d, x, y) ∈ Bd(A,B,C,D, f). The use of estimate
(5.3.8) as well as α1(s1 + s2) ≤ α1(2s1 ∨ 2s2) ≤ α1(2s1) + α1(2s2) for all
s1, s2 ≥ 0 gives us

α1

(
acU2(x(t)) + bc ‖y(t)‖2 + bc ‖d(t)‖2

)
≤ α1(cU2(x(t))) + α1

(
bck ‖y(t)‖2 + bck ‖d(t)‖2

)
≤W (x(t)) + α1(‖y(t)‖2) + α1(‖d(t)‖2)

for all t ∈ N0 and for all (d, x, y) ∈ Bd(A,B,C,D, f). In combination with
(5.3.9), this yields

W (x(t+ 1))−W (x(t)) ≤ −η(δ2 ‖x(t)‖2) + α1(‖y(t)‖2) + α1(‖d(t)‖2)

for all t ∈ N0 and for all (d, x, y) ∈ Bd(A,B,C,D, f). This and the estimate
(5.3.4) shows that V +W is an ISS-Lyapunov function for the Lur’e system
(A,B,C,D, f), provided we prove that V +W is K∞-equivalent to ‖·‖. This
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is straightforward. Since V is a positive semi-definite quadratic form and U2

is a positive definite quadratic form, there exist positive c3, c4 and c5 such
that 0 ≤ V (ξ) ≤ c3 ‖ξ‖2 and c4 ‖ξ‖2 ≤ U2(ξ) ≤ c5 ‖ξ‖2 for all ξ ∈ Fn. Thus

α1(cc4 ‖ξ‖2) ≤ V (ξ) +W (ξ) ≤ c3 ‖ξ‖2 + α1(cc5 ‖ξ‖2)

for all ξ ∈ Fn, which completes the proof.

If F ∈ BC(K, r), then we can define α ∈ K∞ by α(s) := (r − ‖F −K‖)s
to see that Theorem 5.3.1 implies the Lur’e system (A,B,C,D, F ) is ISS.
Hence Theorem 5.3.1 can be interpreted as stating that if the Lur’e system
(A,B,C,D, F ) is ISS for all complex linear feedback matrices F such that
‖Fξ −Kξ‖ < r ‖ξ‖, then the Lur’e system (A,B,C,D, f) is ISS for all
nonlinear output feedback maps f such that ‖f(ξ)−Kξ‖ < r ‖ξ‖ − α(‖ξ‖)
for some α ∈ K∞. Thus Theorem 5.3.1 is an Aizerman-like result, but for
input-to-state stability.

By picking K = 0 in Theorem 5.3.1 and by using Lemma 3.2.7 to see that
BC(0, r) ⊆ SC (G) is equivalent to ‖G‖H∞ ≤

1
r , we obtain the following

corollary, which can be seen as a small-gain version of Theorem 5.3.1.

Corollary 5.3.2. Consider a Lur’e system (A,B,C,D, f), assume that the
underlying state-space system (A,B,C,D) ∈ Σ(m,n, p;F) is stabilizable and
detectable and let its transfer function by G be such that there exists z0 ∈ C
with |z0| = 1 such that ‖G(z0)‖ < ‖G‖H∞.

If there exists α ∈ K∞ such that

‖G‖H∞ ‖f(ξ)‖ ≤ ‖ξ‖ − α(‖ξ‖) ∀ ξ ∈ Fp,

then the Lur’e system (A,B,C,D, f) is ISS.

Note that the assumptions in Theorem 5.3.1 on α cannot be relaxed as
illustrated by the following example.

Example 5.3.3. Define α ∈ K \ K∞ by α(s) := 1
2 − e−s and f : R →

R by f(ξ) := 1
2ξ − sgn(ξ)α(|ξ|). Note that the linear state-space system

(12 , 1, 1, 0) ∈ Σ(1, 1, 1;R) has transfer function g(z) = 1
z− 1

2

, so that ‖g‖H∞ =

2 and therefore BC(0, 12) ⊆ SC (g). Also, one can check that ‖g(i)‖ < 2.
However, there does not exist α1 ∈ K∞ such that |f(ξ)| ≤ 1

2 |ξ| − α1(|ξ|)
and hence we cannot apply Theorem 5.3.1. Moreover, the Lur’e system
(12 , 1, 1, 0, f) is described by

x(t+ 1) =
1

2
x(t) + f(x(t)) + d(t),

so that, if we pick d(t) = 1 + ε for some positive ε, then x(t+ 1) ≥ x(t) + ε.
Hence (12 , 1, 1, 0, f) is not ISS and demonstrates that the assumption (5.3.2)
cannot be relaxed to allow α ∈ K.

73 5.3. BALL CONDITION ASSUMPTIONS



CHAPTER 5. INPUT-TO-STATE STABILITY OF LUR’E SYSTEMS

We note that the assumptions on the underlying linear state-space system in
Theorem 5.3.1 are identical to the ones in the Aizerman version of the circle
criterion (Proposition 4.2.1). On the other hand, the assumption on the
nonlinearity, (5.3.2), is stronger than assumption (4.2.2) in (b) from Propo-
sition 4.2.1, which guarantees global asymptotic stability of (A,B,C,D, f),
yet weaker than assumption (4.2.3) in (c) from Proposition 4.2.1, which
guarantees global exponential stability of (A,B,C,D, f). In particular, the
latter observation means that the conditions on (A,B,C,D, f) that guar-
antee global exponential stability are sufficient for input-to-state stability.
Moreover, we shall see in §5.5 that these assumptions guarantee an even
stronger version of stability that we will call exponential input-to-state sta-
bility.

Sector-bounded nonlinearities f have been considered in previous work on
ISS for continuous-time SISO Lur’e systems, see Theorem 17 from Jayaward-
hana, Logemann and Ryan [29]. The following corollary of Theorem 5.3.1
is an extension of the discrete-time counterpart of Theorem 17 from [29] (to
be precise, it is an extension of Theorem 17 under hypothesis (H1), where
we borrow a label from [29]).

Corollary 5.3.4. Consider a real SISO Lur’e system (A, b, c, d, f), assume
that the underlying linear system is stabilizable and detectable and denote its
transfer function by g. Let k1 < k2, assume that k1 6= d−1 and that 1−k2g

1−k1g is

positive real. Moreover, assume that, for k := 1
2(k1+k2), there exists z0 ∈ C

with |z0| = 1 such that
∣∣gk(z0)∣∣ < ∥∥gk∥∥H∞.

If there exists α ∈ K∞ such that

k1ξ
2 + ξα(|ξ|) ≤ f(ξ)ξ ≤ k2ξ2 − ξα(|ξ|) ∀ ξ ∈ R, (5.3.10)

then the Lur’e system (A, b, c, d, f) is ISS.

Proof. Let us set r := 1
2(k2 − k1) > 0. Note that (5.3.10) implies ξα(|ξ|) ≤

rξ2 or, equivalently, α(|ξ|) ≤ r|ξ| for all ξ ∈ R. Moreover, the assumption
(5.3.10) can be rewritten as

−rξ2 + ξα(|ξ|) ≤ (f(ξ)− kξ)ξ ≤ rξ2 − ξα(|ξ|) ∀ξ ∈ R.

Therefore, |f(ξ)− kξ||ξ| ≤ (r|ξ| − α(|ξ|)) |ξ|, so that

|f(ξ)− kξ| ≤ r|ξ| − α(|ξ|) ∀ ξ ∈ R.

On the other hand,

1− k2g
1− k1g

= 1− 2rg−k1 = 1− 2rgk−r

and since k1 6= d−1, we have k1 = k − r ∈ AC(d), so that, by Proposition
3.2.12, BC(k, r) ⊆ SC (g). Hence we can apply Theorem 5.3.1 to see that
(A, b, c, d, f) is indeed ISS.
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The sector condition (5.3.10) admits the intuitively appealing visualization
depicted in Figure 5.1. In the figure we have picked α(s) := min{s,

√
s},

which clearly increases sublinearly. There are numerous characterizations
of positive realness, some of which can be especially simple and sometimes
- for a given linear state-space system - can be determined experimentally,
see e.g. Lemma 6.1 and the discussion in §7.1 from Kailath [34].

0

k2 ξ

k1 ξ

f(ξ)

k2 ξ−α(|ξ|)

k1 ξ+α(|ξ|)

Figure 5.1: A sector bounded nonlinearity

We note that, by assuming that the underlying linear system is controllable
and observable, we can drop an assumption on the transfer function in The-
orem 5.3.1. We omit the proof of the following result as it is identical to the
proof of Theorem 5.3.1, except that it uses Lemma 3.2.9 instead of Lemma
3.2.8.

Proposition 5.3.5. Consider a Lur’e system (A,B,C,D, f), assume that
the underlying state-space system (A,B,C,D) ∈ Σ(m,n, p;F) is stabilizable
and detectable and let its transfer function G - for some r > 0 and K ∈ Fm×p
- satisfy BC(K, r) ⊆ SC (G).

If there exists α ∈ K∞ such that

‖f(ξ)−Kξ‖ ≤ r ‖ξ‖ − α(‖ξ‖) ∀ ξ ∈ Fp,
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then the Lur’e system (A,B,C,D, f) is ISS.

5.4 Positive real assumptions

A corollary of Proposition 5.3.5 is a result that makes assumptions similar
to the ones in the circle criterion, Proposition 4.3.2.

Proposition 5.4.1. Consider a Lur’e system (A,B,C,D, f) and assume
that the underlying linear system (A,B,C,D) ∈ Σ(m,n, p;F) is controllable
and observable and denote its transfer function by G. Let K1,K2 ∈ Fm×p
and assume that K1 ∈ AC(D) and that (I − K2G)(I − K1G)−1 is positive
real.

If there exists α ∈ K∞ such that

Re 〈f(ξ)−K1ξ, f(ξ)−K2ξ〉 ≤ −‖ξ‖α(‖ξ‖) ∀ ξ ∈ Fp, (5.4.1)

then the Lur’e system (A,B,C,D, f) is ISS.

Proof. We note that we will have to repeat some computations from the
proof of Proposition 4.3.2.

By rewriting K1 and K2 in terms of K and L, we obtain

Re〈f(ξ)−K1ξ, f(ξ)−K2ξ〉
= Re 〈f(ξ)− (K + L)ξ, f(ξ)− (K − L)ξ〉
= ‖f(ξ)−Kξ‖2 + Re 〈f(ξ)−Kξ,Lξ〉
− Re 〈Lξ, f(ξ)−Kξ〉 − ‖Lξ‖2

= ‖f(ξ)−Kξ‖2 − ‖Lξ‖2 ∀ ξ ∈ Fp. (5.4.2)

Note that in conjunction with equation (5.4.1) this implies kerL = {0}.
Thus L∗L is invertible and L] := (L∗L)−1L∗ ∈ Fp×m is a left inverse of L.

We can check that

(I −K2G)(I −K1G)−1 = (I −K1G+ 2LG)(I −K1G)−1

= I + 2LGK1 ,

so that, by Lemma 2.2.10, we have
∥∥−LGK1(I + LGK1)−1

∥∥
H∞
≤ 1. On the

other hand, −LGK1(I + LGK1)−1 = L(−L]L)GK1(I − L(−L]L)GK1)−1 =

(LGK1)−LL
]
. Hence a use of Proposition 3.2.12 implies that BC(−LL], 1) ⊆

SC
(
LGK1

)
. This suggests considering a state-space system that has transfer

function LGK1 .
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Consider (d, x, y) ∈ Bd(A,B,C,D, f), so that, by Lemma 3.1.4, we have

x(t+ 1) = AK1x(t) +BK1(f(y(t))−K1y(t) + d(t))

y(t) = CK1x(t) +DK1(f(y(t))−K1y(t) + d(t))

for all t ∈ N0. Left-multiplication by L of the output equation and the use
of I = L]L gives us

x(t+ 1) = AK1x(t) +BK1(f(L]Ly(t))−K1L
]Ly(t) + d(t))

Ly(t) = LCK1x(t) + LDK1(f(L]Ly(t))−K1L
]Ly(t) + d(t)

for all t ∈ N0. Define g : Fm → Fm by g(ξ) := f(L]ξ) − K1L
]ξ. Then

we can see that (d, x, y) ∈ Bd(A,B,C,D, f) if, and only if, (d, x, y) ∈
Bd(AK1 , BK1 , LCK1 , LDK1 , g). Since L is left-invertible, it thus suffices to
show that the Lur’e system (AK1 , BK1 , LCK1 , LDK1 , g) is ISS.

We have already checked that BC(−LL], 1) ⊆ SC
(
LGK1

)
and Lemma 3.1.4

together with an application of the Hautus tests for stabilizability and de-
tectability shows that (AK1 , BK1 , LCK1 , LDK1) (which is clearly a realiza-
tion of LGK1) is stabilizable and detectable.

Thus we are only left with checking that the relevant inequality holds for g.
The use of the definition of g together with equation (5.4.2) shows us that∥∥∥g(ξ) + LL]ξ

∥∥∥2 =
∥∥∥f(L]ξ)−K1L

]ξ + LL]ξ
∥∥∥2

=
∥∥∥f(L]ξ)−KL]ξ

∥∥∥2
= Re

〈
f(L]ξ)−K1L

]ξ, f(L]ξ)−K2L
]ξ
〉

+
∥∥∥LL]ξ∥∥∥2

≤ −α
(∥∥∥L]ξ∥∥∥)∥∥∥L]ξ∥∥∥+

∥∥∥LL]ξ∥∥∥2
for all ξ ∈ Fm. By Lemma 5.1.14, we know that there exists α1 ∈ K∞ with
α1 < id on (0,∞) such that∥∥∥LL]ξ∥∥∥2 − α(∥∥∥L]ξ∥∥∥)∥∥∥L]ξ∥∥∥ ≤ (‖ξ‖ − α1(‖ξ‖))2

for all ξ ∈ Fm. Thus ∥∥∥g(ξ) + LL]ξ
∥∥∥ ≤ ‖ξ‖ − α1(‖ξ‖)

for all ξ ∈ Fm and hence an application of Proposition 5.3.5 implies that the
Lur’e system (AK1 , BK1 , LCK1 , LDK1 , g) is ISS, which in turn implies that
the Lur’e system (A,B,C,D, f) is ISS. This completes the proof.
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As before, one can obtain 5.4.1, when the underlying linear system is stabi-
lizable and detectable, but then an additional assumption has to be made,
namely that - for H := (I −K2G)(I −K1G)−1 - there exists |z0| = 1 such
that H(z0) +H(z0)

∗ > 0.

We note that the assumptions on the linear state-space system in Proposition
5.4.1 are identical to the ones in the circle criterion, Proposition 4.3.2. On
the other hand, the assumption on the nonlinearity, (5.4.1), is stronger than
in Proposition 4.3.2 (b), which guarantees global asymptotic stability of
(A,B,C,D, f), yet weaker than in Proposition 4.3.2 (c), which guarantees
global exponential stability of (A,B,C,D, f). In particular, we see that
assumptions that guarantee global exponential stability in Proposition 4.3.2
also guarantee input-to-state stability and, as we shall see in §5.5, even
exponential input-to-state stability.

If we pick K1 = 0, then we obtain a simple corollary of Proposition 5.4.1. It
is interesting to note that it is a discrete-time version of Theorem 3.5 from
[29] (more precisely, it is a version of Theorem 3.5 under hypothesis (H3),
where we borrow the label from [30]). We make a more precise comparison
in continuous-time, see Corollary 9.3.3.

Corollary 5.4.2. Consider a Lur’e system (A,B,C,D, f) and assume that
the underlying linear system (A,B,C,D) ∈ Σ(m,n, p;F) is controllable and
observable and denote its transfer function by G. Let K ∈ Fm×p and assume
that I −K2G is positive real.

If there exists α ∈ K∞ such that

Re 〈f(ξ), f(ξ)−K2ξ〉 ≤ −‖ξ‖α(‖ξ‖) ∀ ξ ∈ Fp,

then the Lur’e system (A,B,C,D, f) is ISS.

Finally, we note that we can use Proposition 5.4.1 to obtain an alternative
proof of Corollary 5.3.4.

Corollary 5.4.3. Consider a SISO Lur’e system (A, b, c, d, f) and assume
that the underlying linear system (A, b, c, d) ∈ Σ(1, n, 1;R) is controllable
and observable and denote its transfer function by g. Let k1 < k2, assume
that k1 6= d−1 and that 1−k2g

1−k1g is positive real.

If there exists α ∈ K∞ such that

k1ξ
2 + ξα(|ξ|) ≤ f(ξ)ξ ≤ k2ξ2 − ξα(|ξ|) ∀ ξ ∈ R,

then the Lur’e system (A, b, c, d, f) is ISS.

Proof. Let us set k := 1
2(k1 + k2) and r := 1

2(k2 − k1) > 0. Then, as in the
proof of Corollary 5.3.4, we have α(|ξ|) ≤ r|ξ| and

|f(ξ)− kξ| ≤ r|ξ| − α(|ξ|) ∀ ξ ∈ R.
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If we use this and equation (5.4.2), then we obtain

Re 〈f(ξ)− k1ξ, f(ξ)− k2ξ〉 = |f(ξ)− kξ|2 − r2|ξ|2

≤ −2r|ξ|α(|ξ|) + α(|ξ|)2

≤ −r|ξ|α(|ξ|) ∀ ξ ∈ R.

Hence we can apply Proposition 5.4.1 to infer that (A, b, c, d, f) is ISS.

5.5 Exponential ISS

In this section we note that exponential weighting arguments allow us to
prove that if we strengthen the assumptions of Theorem 5.3.1 by picking
α(s) = δs, for some positive δ, then we obtain a stronger version of stability,
which we will call exponential input-to-state stability. It is also interesting to
note that in contrast to most ISS-related results, this can be proved without
ISS-Lyapunov function techniques. Therefore, these results might generalize
to the infinite-dimensional setting.

Definition 5.5.1. Consider a Lur’e system (A,B,C,D, f), where the un-
derlying linear system (A,B,C,D) ∈ Σ(m,n, p;F). It is said to be (globally)
exponentially input-to-state stable if there exist c1, c2 > 0 and a ∈ (0, 1)
such that for all (d, x, y) ∈ Bd(A,B,C,D, f) with d ∈ l∞(Fm) we have

‖x(t)‖ ≤ c1at ‖x(0)‖+ c2 ‖d‖∞ ∀ t ∈ N0.

We define a family of operators (πT )T∈N0 on (Fm)N0 as

(πTu)(t) :=

{
u(t) if t ≤ T
0 otherwise.

For u ∈ (Fm)N0 , we define ‖u‖2 :=
√∑∞

j=0 ‖u(j)‖2 and we denote by l2(Fm)

the set of all u ∈ (Fm)N0 such that ‖u‖2 <∞. It is well-known that l2(Fm)
with the norm ‖·‖2 is a Banach space.

The following result will be important for us.

Lemma 5.5.2. Consider a stabilizable and detectable linear state-space sys-
tem (A,B,C,D) ∈ Σ(m,n, p;F) and assume that its transfer function, G,
is in H∞. Then there exists c > 0 such that

‖πty‖2 ≤ c ‖x(0)‖+ ‖G‖H∞ ‖πtu‖2

for all t ∈ N0 and for all (u, x, y) ∈ B(A,B,C,D).
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Proof. Let us define an input-output map G : (Fm)N0 → (Fp)N0 by

(Gu)(0) = Du(0)

(Gu)(t) =

t−1∑
j=0

CAt−1−jBu(j) +Du(t), for t ∈ N.

It is well-known that the restriction of G to l2(Fm) is a bounded map with
respect to the l2 norms. Moreover, if we denote by ‖·‖2,2 the l2-norm in-
duced operator norm, then ‖G‖2,2 = ‖G‖H∞ , see e.g. Theorem 2.3.28 from
Hinrichsen and Pritchard [25].

Now note that if (u, x, y) ∈ B(A,B,C,D), then y(t) = CAtx(0) + (Gu)(t).
Therefore, if we define w ∈ (Fp)N0 by w(t) := CAtx(0), then πty = πtw +
G(πtu) for all t ≥ 0. Since (A,B,C,D) is stabilizable and detectable, and
since G ∈ H∞, by Lemma 3.2.2, we have σ (A) ⊆ D, so that we can define

c :=
√∑∞

j=0 ‖CAt‖
2 <∞. This gives us the required estimate:

‖πty‖2 ≤ ‖πtw‖2 + ‖G‖2,2 ‖πtu‖2
≤ c ‖x(0)‖+ ‖G‖H∞ ‖πtu‖2 .

We use this result and the exponential weighting technique to obtain the
following result. Note that the assumptions are the same as in Theorem
5.3.1, except that we pick α(s) := δs and do not require there to exist
z0 ∈ C with |z0| = 1 such that

∥∥GK(z0)
∥∥ < 1

r .

Proposition 5.5.3. Consider a Lur’e system (A,B,C,D, f), assume that
the underlying state-space system (A,B,C,D) ∈ Σ(m,n, p;F) is stabilizable
and detectable and denote its transfer function by G. Furthermore, let r > 0,
K ∈ Fm×p and assume that BC(K, r) ⊆ SC (G).

If, for some δ > 0,

‖f(ξ)−Kξ‖ ≤ (r − δ) ‖ξ‖ ∀ ξ ∈ Fp, (5.5.1)

then the Lur’e system (A,B,C,D, f) is exponentially ISS.

Proof. By Lemma 3.2.7, we have
∥∥GK∥∥

H∞
≤ 1

r , so, by the continuity of

entries of G, there exists s > 1 small enough, so that supz∈s−1E
∥∥GK(z)

∥∥ <
1
r−δ . If we set GKs (z) := GK( zs ), then, equivalently,

∥∥GKs ∥∥H∞ < 1
r−δ . Note

that, if we define (AK , BK , CK , DK) by (3.1.3), then GKs is the transfer
function of (sAK , sBK , CK , DK), which - via the use of the Hautus test -
is easily seen to be stabilizable and detectable. Therefore, by Lemma 5.5.2,
there exists a positive c1 such that

‖πty‖2 ≤ c1 ‖x(0)‖+
∥∥GKs ∥∥H∞ ‖πtu‖2 (5.5.2)
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for all t ∈ N0 and for all (u, x, y) ∈ B(sAK , sBK , CK , DK).

Now let us pick an arbitrary (d, x, y) ∈ Bd(A,B,C,D, f). Then (f ◦ y +
d, x, y) ∈ B(A,B,C,D) and hence, by Lemma 3.1.4,

x(t+ 1) = AKx(t) +BK(f(y(t))−Ky(t) + d(t))

y(t) = CKx(t) +DK(f(y(t))−Ky(t) + d(t)).

If we multiply the first equation by st+1, the second one by st and define
fs ∈ (Fm)N0 , ds ∈ (Fm)N0 , xs ∈ (Fn)N0 and ys ∈ (Fp)N0 by fs(t) := stf(y(t)),
ds(t) := std(t), xs(t) := stx(t) and ys(t) := sty(t), then

xs(t+ 1) = (sAK)xs(t) + (sBK)(fs(t)−Kys(t) + ds(t))

ys(t) = CKxs(t) +DK(fs(t)−Kys(t) + ds(t)),

so that (fs − Kys + ds, xs, ys) ∈ B(sAK , sBK , CK , DK). Hence, by (5.5.2)
and the triangle inequality, we have

‖πtys‖2 ≤ c1 ‖xs(0)‖+
∥∥GKs ∥∥H∞ ‖πt(fs −Kys + ds)‖2

≤ c1 ‖xs(0)‖+
∥∥GKs ∥∥H∞ ‖πt(fs −Kys)‖2 +

∥∥GKs ∥∥H∞ ‖πtds‖2
for all t ∈ N0. By assumption (5.5.1), we have ‖πt(fs −Kys)‖2 ≤ (r −

δ) ‖πtys‖2, whence if we set c2 := c1
1−‖GK

s ‖H∞ (r−δ) and c3 :=
‖GK

s ‖H∞
1−‖GK

s ‖H∞ (r−δ) ,

then

‖πtys‖2 ≤ c2 ‖xs(0)‖+ c3 ‖πtds‖2 (5.5.3)

for all t ∈ N0.

Note that, since (sAK , sBK , CK , DK) is stabilizable, detectable and since
its transfer function GKs is in H∞, we have σ (sAK) ⊆ D and hence we

can set c4 := supt∈N0

∥∥(sAK)t
∥∥ < ∞ and c5 :=

√∑∞
j=0 ‖(sAK)j‖2 < ∞.

Now, since (fs−Kys + ds, xs, ys) ∈ B(sAK , sBK , CK , DK), we have xs(t) =
(sAK)txs(0) +

∑t−1
j=0(sAK)t−1−j(sBK) (fs(j)−Kys(j) + ds(j)) for all t ∈

N0. Therefore, we can use the definitions of fs, ys, ds, the triangle inequality,
assumption (5.5.1) and Hölder’s inequality to obtain

‖xs(t)‖ =

∥∥∥∥∥∥(sAK)txs(0) +
t−1∑
j=0

(sAK)t−1−j(sBK)sj(f(y(j))−Ky(j) + d(j))

∥∥∥∥∥∥
≤ c4 ‖xs(0)‖+

t−1∑
j=0

∥∥(sAK)t−1−j(sBK)
∥∥ (∥∥sjry(j)

∥∥+
∥∥sjd(j))

∥∥)
≤ c4 ‖xs(0)‖+ ‖sBK‖

t−1∑
j=0

∥∥(sAK)t−1−j
∥∥ (r ‖ys(j)‖+ ‖ds(j)‖)

≤ c4 ‖xs(0)‖+ ‖sBK‖ c5(r ‖πt−1ys‖2 + ‖πt−1ds‖2).
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Since xs(0) = x(0) and σ (sAK) ⊆ D, the use of (5.5.2) shows us that, if we
set c6 := c4 + ‖sBK‖ c5rc2 and c7 := ‖sBK‖ c5(1 + rc3), then

‖xs(t)‖ ≤ c6 ‖xs(0)‖+ c7 ‖πt−1ds‖2 . (5.5.4)

We now set c8 :=
√

s−2

1−s−2 and estimate the l2 norm of ds as

s−t ‖πt−1ds‖2 =

√√√√ t−1∑
j=0

s2j−2t ‖d(j)‖2

≤ ‖d‖∞

√√√√ ∞∑
i=1

s−2i = c8 ‖d‖∞ .

Finally, by using the definition of xs and (5.5.4), we obtain

‖x(t)‖ ≤ c6s−t ‖x(0)‖+ c7c8 ‖d‖∞

for all t ∈ N0. Since the constants c6, c7, c8 and s do not depend on the
particular trajectory (d, x, y) ∈ Bd(A,B,C,D, f), we conclude that the Lur’e
system (A,B,C,D, f) is exponentially ISS.

It is interesting to note that if we pick K = 0 in Proposition 5.5.3, then it
shows that the assumptions made in the small-gain theorem actually guar-
antee exponential ISS.

Corollary 5.5.4. Consider a Lur’e system (A,B,C,D, f), assume that the
underlying state-space system (A,B,C,D) ∈ Σ(m,n, p;F) is stabilizable and
detectable, and denote its transfer function by G. If

‖G‖H∞ · sup
ξ∈Fp\0

‖f(ξ)‖
‖ξ‖

< 1,

then the Lur’e system (A,B,C,D, f) is exponentially ISS.

We can also obtain an exponential ISS adaptation of the “standard” version
of circle criterion.

Corollary 5.5.5. Consider a Lur’e system (A,B,C,D, f) and assume that
the underlying linear system (A,B,C,D) ∈ Σ(m,n, p;F) is stabilizable and
detectable and denote its transfer function by G. Let K1,K2 ∈ Fm×p and
assume that K1 ∈ AC(D) and that (I −K2G)(I −K1G)−1 is positive real.

If there exists δ > 0 such that

Re 〈f(ξ)−K1ξ, f(ξ)−K2ξ〉 ≤ −δ ‖ξ‖2 ∀ ξ ∈ Fp, (5.5.5)

then the Lur’e system (A,B,C,D, f) is exponentially ISS.
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We omit the proof, as it is similar to the proof of Proposition 5.4.1, but we
note that the key step in the proof is showing that, for any δ ≥ 0, there
exists δ1 ∈ (0, 1) such that∥∥∥LL]ξ∥∥∥2 − δ ∥∥∥L]ξ∥∥∥2 ≤ (1− δ1) ‖ξ‖2 ∀ξ ∈ Fm, (5.5.6)

where L := 1
2(K1 −K2) is left invertible with left-inverse L] = (L∗L)−1L∗

and LL] is the orthogonal projection onto imL. As in the proof of Lemma
5.1.14, an arbitrary ξ ∈ Fm can be decomposed as ξ = ξ1 + ξ2, where
ξ1 ∈ imLL] = (kerLL])⊥ and ξ2 ∈ kerLL] = kerL]. Hence there exists

c > 0 such that
∥∥L]ξ∥∥2 ≥ c ‖ξ1‖2 for all ξ ∈ Fm. Without loss of generality,

δc < 1, whence∥∥∥LL]ξ∥∥∥2 − δ ∥∥∥L]ξ∥∥∥2 ≤ ‖ξ1‖2 − δc ‖ξ1‖2
≤ (1− δc) ‖ξ‖2 ∀ξ ∈ Fm,

which shows that (5.5.6) holds with δ1 := δc.
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Chapter 6

Notes, references and future
work

6.1 Notes and references

The main result in Part I is Theorem 5.3.1, which shows that Lur’e sys-
tems with forcing are ISS under assumptions similar to ones made in results
from absolute stability analysis and to the best of author’s knowledge this
result is new. Proving ISS from assumptions typical of absolute stability
results is not a novel idea: this has been pursued in a continuous-time set-
ting in Arcak and Teel [7], Jayawardhana, Logemann and Ryan [29, 30]
and Bruin et al. [12], however we stress that Theorem 5.3.1 is more than
just a discrete-time counterpart of known results. As indicated previously,
we use the bounded real lemma instead of the positive real lemma for the
construction of quadratic forms, which allows us to obtain stability results
for different classes of systems. We also analyse multivariable systems with
feedthrough. Part II of this thesis deals with continuous-time systems and
we defer detailed comparisons with [7, 29, 30, 12] until then.

K∞ results from §5.1 played a prominent role in proving Theorem 5.3.1
as they were used to establish crucial estimates in proving that a certain
function was in fact an ISS-Lyapunov function for the Lur’e system at hand.
While some of these results are standard, Lemmas 5.1.11 and 5.1.12 seem
to be original results, and they seem to pave the way for a novel technique
of constructing ISS-Lyapunov functions. We should remark that there are
sources, which provide a comprehensive overview of comparison function
results and techniques made accessible by them, see e.g. Kellett [35].

Proposition 5.5.3, which proves exponential ISS under the assumptions of the
small-gain theorem seems to be new, however, its proof introduces no new
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techniques and a similar result was proved in the continuous-time setting in
Jayawardhana et al. [30].

The main result in §4 is Proposition 4.2.1, which proves that a certain version
of Aizerman’s conjecture holds true. This viewpoint is inspired by Theorem
5.6.22 from Hinrichsen and Pritchard [25], which is the continuous-time
version of Proposition 4.2.1 (b) for systems with no feedthrough. However,
Proposition 4.2.1 (a) - (c) shows a transition of modes of stability as we
change the assumptions on the nonlinearity while Examples 4.2.6, 4.2.7 and
4.2.8 show that this transition is, in a sense, conservative.

6.2 Future work

As mentioned in §6.1, we have proved new results on comparison functions,
which, in essence, has provided us with a new way of constructing ISS-
Lyapunov functions. It seems plausible that this construction could be ap-
plied to other absolute stability results, e.g. the Popov criterion. Bruin et
al. [12] have already obtained a Popov-like criterion that guarantees ISS in
a continuous-time setting. However, they seem to be using a classical Lur’e-
Postnikov Lyapunov function, which is then shown to be an ISS-Lyapunov
function for the system at hand under suitable assumptions. It would be
interesting to see whether any of these assumptions could be relaxed by
using the technique we used in the proof of Theorem 5.3.1, namely tak-
ing a quadratic form V and then composing it with another function h to
construct part of an ISS-Lyapunov function.

In §5.5 we saw that, under the assumptions made in the small-gain theorem,
we obtain a stronger version of ISS, namely exponential ISS. Moreover, we
were able to prove the key result, Proposition 5.5.3, without the use of ISS-
Lyapunov functions. Therefore, it seems plausible that a version of this
result would hold in the infinite-dimensional setting.

In the statement of the bounded real lemma, we introduced the assumption
that there exists |z0| = 1 such that ‖G(z0)‖ < 1. We have not found an
example that would demonstrate the necessity of this assumption for the
conclusions of Lemma 2.2.3 to hold. It would be interesting to determine
whether it is needed for the bounded real lemma.

Finally, an obvious next step to take is to see whether we can obtain
continuous-time counterparts of results in Part I. That is the content of
Part II.
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Stability of continuous-time
Lur’e systems
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In this part of the thesis we seek continuous-time counterparts to results
from Part I. We will be concerned with continuous-time Lur’e systems with
forcing: that is, systems with a linear state-space system (A,B,C,D) in
the forward path and a static nonlinearity f alongside a forcing d in the
feedback path

ẋ(t) = Ax(t) +B(f(y(t)) + d(t)),

y(t) = Cx(t) +D(f(y(t)) + d(t)),
(7.1)

where the forcing d could represent e.g. a disturbance or a target trajectory.

Similarly as in Part I, we will first consider standard Lur’e systems, that is,

ẋ(t) = Ax(t) +Bf(y(t)),

y(t) = Cx(t) +Df(y(t)),
(7.2)

and obtain absolute stability results for them. Lur’e systems (7.2) have
been studied extensively in the literature, see Haddad and Chellaboina [23],
Vidyasagar [56] or Khalil [36] for textbook treatments. An overview of the
area is presented in the survey article Liberzon [40], which collects almost
500 references on absolute stability theory. We should note that in the
literature the nonlinearity f is often assumed to be time-variant, whereupon
the same stability results as in the time-invariant case are obtained as long
as assumptions on f are satisfied uniformly with respect to the time variable.

It is well-known that for Lur’e systems without feedthrough (that is, D = 0)
a complexified version of Aizerman’s conjecture holds. More precisely, Hin-
richsen and Pritchard in [25] prove that if, for a given multivariable linear
system (A,B,C, 0), the Lur’e interconnection (7.2) is globally asymptoti-
cally stable for all complex linear output feedback maps F that satisfy the
norm condition ‖Fξ‖ < r ‖ξ‖ for some r > 0 and for all ξ ∈ Cp \ {0},
then, in fact, the Lur’e interconnection is globally asymptotically stable for
all nonlinear output feedback maps f that satisfy the same norm condition
‖f(ξ)‖ < r ‖ξ‖ for all ξ ∈ Fp\{0} (here F = R or C, either of which is allowed
to be the underlying field of the system (7.2)). We offer a slight extension
of their results to systems with nonzero feedthrough, which demonstrates a
transition of modes of stability as we change the assumptions on the non-
linearity f , see Proposition 8.2.1. It is then used to prove a version of the
well-known circle criterion, see Proposition 8.4.1. As in the discrete-time
setting, we use the bounded real lemma instead of (the more commonly
used) positive real lemma.

After this, we will turn our attention to input-to-state stability of Lur’e
systems with forcing (7.1). Recent developments demonstrate that, under
slightly stronger assumptions than those made in results from absolute sta-
bility theory, we in fact obtain ISS. For example, a result sometimes called
the positivity theorem (see Haddad and Chellaboina [23]) guarantees global
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asymptotic stability of the Lur’e system (7.2) as long as the transfer function
of the underlying linear state-space system (A,B,C,D) is strictly positive
real and the nonlinearity f satisfies 〈f(ξ), ξ〉 ≤ 0 for all ξ ∈ Rp. Now, Arcak
and Teel [7] obtain ISS of the Lur’e system (7.1) by strengthening the as-
sumption on f to (i) 〈f(ξ), ξ〉 ≤ −‖ξ‖α(‖ξ‖) for some α ∈ K∞ and for all
ξ ∈ Rp, and (ii) 〈f(ξ), ξ〉 ≥ ‖f(ξ)‖ for all ‖ξ‖ ≥ r, where r is some positive
constant.

Jayawardhana, Logemann and Ryan [29] prove a number of results, including
one, which resembles the circle criterion (see e.g. [23, 36]). More precisely,
if we set G to be the transfer function of (A,B,C,D), then they assume
that, for some real numbers a < b and δ > 0, the rational function matrix
(I+ bG)(I+aG)−1 + δI is positive real and that G(I+aG)−1 ∈ H∞. Upon
adding an assumption that the nonlinearity satisfies 〈aξ − f(ξ), bξ − f(ξ)〉 ≤
0, they obtain ISS of the Lur’e system (7.1).

Other notable approaches are Bruin et al. [12], who look to ensure ISS from
assumptions typically seen in Popov’s criterion and Yang et al. [63], who
consider Lur’e descriptor systems and formulate their results in terms of
linear matrix inequalities.

We will follow in the footsteps of the above work in obtaining ISS results
from assumptions similar to those typically seen in absolute stability theory,
however we will be taking an Aizerman’s conjecture viewpoint. The main
result in this part of the thesis, Theorem 9.2.1, states roughly that if, for a
given linear state-space system (A,B,C,D), the Lur’e interconnection (7.1)
is globally asymptotically stable for all complex linear output feedback maps
F that satisfy the norm condition ‖Fξ‖ < r ‖ξ‖ for some positive r and for
all ξ ∈ Cp \ {0}, then the Lur’e interconnection is input-to-state stable for
all nonlinear output feedback maps f that, for some α ∈ K∞, satisfy the
norm condition ‖f(ξ)‖ ≤ r ‖ξ‖−α(‖ξ‖) for all ξ ∈ Fp. As a corollary we will
obtain a result, which resembles the circle criterion and allows us to obtain
a number of results from [29] as corollaries, see Proposition 9.3.1 and the
subsequent Corollaries 9.3.2 and 9.3.3.

We should remark that much of the presentation in this part of the the-
sis mirrors its discrete-time counterparts. Therefore, we will at times omit
proofs that do not require development of new techniques. Also, commen-
tary will sometimes be brief, if the reasoning given in Part I is unchanged.

This part of the thesis is organized as follows. In Chapter 7 we collect all
the preliminaries and it is close in content and presentation to Chapter 2
from Part I: we introduce linear systems, describe how to obtain quadratic
forms from the bounded real lemma and output injection, and note a fact
on ω-limit sets. However, in contrast to Chapter 2, we derive some results
on differentiating functions arising from quadratic forms in §7.2. Also, we
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condense the continuous-time equivalent of Chapter 3 to §7.6 as the results
and the proofs are similar. After this, we devote Chapter 8 to absolute sta-
bility results and the presentation is parallel to its discrete-time counterpart,
Chapter 4: we introduce Lur’e systems in §8.1 and then proceed to obtain
stability criteria from ball condition assumptions in §8.2 and positive-real as-
sumptions in §8.4. Chapter 9 is the main chapter in this part of the thesis as
it deals with input-to-state stability of continuous-time Lur’e systems with
forcing. Again, the presentation mirrors its discrete-time counterpart and
we obtain ISS results from ball assumptions in §9.2 and from positive-real
assumptions in §9.3.
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Chapter 7

Preliminaries

In this chapter we collect the preliminaries required for the rest of Part
II. In §7.1 we define linear state-space systems and their behaviours. After
devoting §7.2 to results on differentiating functions that arise from quadratic
forms we describe methods of constructing quadratic forms. In §7.3 we
use the bounded real lemma and the positive real lemma, while §7.4 is
devoted to the technique of “output injection”. In §7.5 we introduce a
slightly nonstandard notion of an ω-limit set for a function and prove one
result on it. Then in §7.6 we state the continuous-time counterparts to
results on linear output feedback from Chapter 3.

7.1 Linear state-space systems

Definition 7.1.1. We call a matrix quadruple (A,B,C,D) ∈ Fn×n×Fn×m×
Fp×n×Fp×m an m-input, p-output linear state-space system. The set
of all linear systems of this format is denoted by Σ(m,n, p;F).

We note that definitions of controllability and observability are unchanged
in the continuous-time setting, we do need to amend the definitions of sta-
bilizability and detectability however. If there exists K ∈ Fm×n such that
σ (A+BK) ⊆ C−, then we say that (A,B,C,D) is stabilizable. We say
that (A,B,C,D) is detectable if (A∗, C∗, B∗, D∗) is stabilizable.

As in Part I, behaviours provide a convenient language for what we have in
mind.

Definition 7.1.2. Consider (A,B,C,D) ∈ Σ(m,n, p;F). We define the
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behaviour of the linear state-space system (A,B,C,D) as

B(A,B,C,D) :=

{
(u, x, y) ∈ L∞loc(Fm)×AC(Fn)× L∞loc(Fp) :

ẋ(t) = Ax(t) +Bu(t) a.e.

y(t) = Cx(t) +Du(t)

}
.

This notation does not use different symbols for discrete-time behaviours
and continuous-time behaviours, but hopefully that will not cause confusion
as we will exclusively use continuous-time behaviours in Part II.

As a straightforward consequence of this definition, we note the following
lemma.

Lemma 7.1.3. Consider (A,B,C,D) ∈ Σ(m,n, p;F) and let (u, x, y) ∈
B(A,B,C,D). Then for any t ≥ t1 ≥ 0 we have

x(t) = eA(t−t1)x(t1) +

∫ t

t1

eA(t−s)Bu(s) ds.

7.2 Functions arising from quadratic forms

We will now make some observations that will be useful for analysis of
functions arising from quadratic forms.

Consider x ∈ AC(Fn) and a function V : Fn → [0,∞). For asymptotic sta-
bility we are usually concerned with finding V such that it is a Lyapunov
function, or equivalently, such that d

dtV (x(t)) ≤ 0. If the underlying field is
real (F = R), then this derivative admits the following useful characteriza-
tion: d

dtV (x(t)) = 〈∇V (x(t)), ẋ(t)〉, where ∇V is the gradient of V . We will
sometimes write ∇R for ∇.

We now develop a similar expression for the case when the underlying field
is complex. We do this in the obvious way, by identifying Cn with Rn×Rn,
which we identify in turn with R2n. This is straightforward yet somewhat
nonstandard so we spell out the (arguably) trivial details.

We define a bijective map φ in the following way:

φ : Cn −→ Rn × Rn

ξ 7−→ (Re ξ, Im ξ),

where the real and imaginary parts of ξ are taken entrywise. In a slight
abuse of notation we will sometimes use φ for the map between Cm and
Rm × Rm as well as between Cm+n and Rm+n × Rm+n.
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Lemma 7.2.1. Consider the map φ : Cn → Rn × Rn defined by φ(ξ) :=
(Re ξ, Im ξ). Then

〈φ(ξ1), φ(ξ2)〉R2n = Re 〈ξ1, ξ2〉Cn (7.2.1)

for all ξ1, ξ2 ∈ Cn.

Proof. This is a simple check: let a1, a2, b1, b2 ∈ Rn be such that φ(ξ1) =
(a1, b1) and φ(ξ2) = (a2, b2). Then we can calculate

Re 〈ξ1, ξ2〉Cn =
1

2
[〈a1 + ib1, a2 + ib2〉Cn + 〈a2 + ib2, a1 + ib1〉Cn ]

= 〈a1, a2〉Rn + 〈b1, b2〉Rn +

+
1

2
[−i 〈a1, b2〉Rn + i 〈b1, a2〉Rn − i 〈a2, b1〉Rn + i 〈b2, a1〉Rn ]

= 〈a1, a2〉Rn + 〈b1, b2〉Rn

= 〈φ(ξ1), φ(ξ2)〉R2n ,

where we have used 〈a, b〉Rn = 〈b, a〉Rn .

Note that Lemma 7.2.1 shows that, for the standard 2-norms on Cn and
R2n, φ is an isometry: ‖φ(ξ)‖R2n = ‖ξ‖Cn for all ξ ∈ Cn.

Definition 7.2.2. We say that a function V : Cn → R is continuously
differentiable if it is continuously differentiable in the R2n sense, that is,
if V ◦ φ−1 : Rn × Rn → R is continuously differentiable.

Definition 7.2.3. Suppose that a function V : Cn → R is continuously
differentiable. Let φ be the bijection between Cn and Rn × Rn we defined
above. We then define the complex gradient ∇CV : Cn → Cn of V by
∇CV = φ−1 ◦

[
∇R(V ◦ φ−1)

]
◦ φ.

The utility of the above definitions can be seen in the following lemma.

Lemma 7.2.4. Consider a continuously differentiable V : Fn → R and
x ∈ AC(Fn). Then V ◦ x ∈ AC(R) and

d

dt
V (x(t)) = Re 〈(∇FV )(x(t)), ẋ(t)〉Fn a.e.

Proof. A composition of a continuously differentiable function with an ab-
solutely continuous function is an absolutely continuous function, see e.g.
Theorem 3.68 from Leoni [39]. This proves the first statement.

If F = R, then the second statement follows directly from an application of
the chain rule.
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If F = C, then we use the previously defined map φ to obtain functions
whose domain and image spaces are real:

d

dt
V (x(t)) =

d

dt

(
(V ◦ φ−1) ◦ (φ ◦ x)

)
(t)

[by the chain rule] =

〈(
∇R(V ◦ φ−1)

)
(φ(x(t))),

d

dt
(φ ◦ x)(t)

〉
Rn×Rn

= 〈φ (∇CV ) (x(t)), φ(ẋ(t))〉Rn×Rn

[by Lemma 7.2.1] = Re 〈∇CV (x(t)), ẋ(t)〉Cn .

We will usually be concerned with quadratic forms V given by V (ξ) :=
〈Pξ, ξ〉, so it is be convenient to describe d

dtV (x(t)) for such V .

Lemma 7.2.5. Consider a matrix P = P ∗ ∈ Fn×n and a quadratic form V :
Fn → R defined by V (ξ) := 〈Pξ, ξ〉. Then V is continuously differentiable
and ∇FV = 2P .

Proof. If F = R, then straightforward differentiation and the use of P T =
P ∗ = P gives us ∇RV (ξ) = 2Pξ.

If F = C, then the calculation of ∇CV is slightly more complicated. For

a, b ∈ Rn, we set ∇aV (a + ib) :=
(
∂V (a+ib)

∂a1
, ∂V (a+ib)

∂a2
, . . . , ∂V (a+ib)

∂an

)
and

∇bV (a+ ib) :=
(
∂V (a+ib)

∂b1
, ∂V (a+ib)

∂b2
, . . . , ∂V (a+ib)

∂bn

)
to see that - for ξ = a+ ib

- the complex gradient can be written as ∇CV (ξ) = (∇a + i∇b)V (a+ ib).

Now fix l ∈ {1, 2, . . . , n} and use P ∗ = P to calculate

∂V

∂al
(a+ ib) =

∂

∂al

∑
j,k

Pjk(ak + ibk)(aj + ibj)

=
∑
j

Pjl(aj + ibj) +
∑
k

Plk(ak + ibk)

=[P (a+ ib)]l + [P (a+ ib)]l

and

∂

∂bl
V (a+ ib) =

∂

∂bl

∑
j,k

Pjk(ak + ibk)(aj + ibj)

=i
∑
j

Pjl(aj + ibj)− i
∑
k

Plk(ak + ibk)

=i[P (a+ ib)]l − i[P (a+ ib)]l.

Hence ∇aV (a+ib) = P (a+ ib)+P (a+ib) and i∇bV (a+ib) = −P (a+ ib)+
P (a+ ib), which in turn means that ∇CV (ξ) = 2Pξ for all ξ ∈ Cn.
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Hence we have shown that ∇FV = 2P and thus V is continuously differen-
tiable, which completes the proof.

We combine Lemmas 7.2.4 and 7.2.5 in the following result.

Corollary 7.2.6. Consider a matrix P = P ∗ ∈ Fn×n and a quadratic form
V : Fn → R defined by V (ξ) := 〈Pξ, ξ〉. Then V is continuously differen-
tiable. Moreover, if x ∈ AC(Fn), then V ◦ x ∈ AC(R) and

d

dt
V (x(t)) = Re 〈2Px(t), ẋ(t)〉Fn a.e.

7.3 Bounded real lemma

The ISS results for Lur’e systems from Arcak and Teel [7], Jayawardhana,
Logemann and Ryan [29, 30] are proved using an ISS-Lyapunov function
obtained from the positive real lemma, which guarantees the existence of a
quadratic form useful for stability analysis by assuming a frequency-domain
condition for a controllable and observable linear state-space system. The
utility of such quadratic forms has also been demonstrated in absolute sta-
bility analysis, see Haddad and Bernstein [21], Haddad and Chellaboina
[23].

In Chapters 8 and 9 we will perform stability analysis in both the absolute
stability and ISS setting using a quadratic form obtained from the bounded
real lemma. This approach will enable us to obtain stability results for new
classes of systems.

As in the discrete-time setting, we will prove the bounded real lemma for sta-
bilizable and detectable linear state-space systems, which relaxes a common
assumption made in the bounded real lemma, namely that the underlying
linear system is controllable and observable: see Lemma 7.3.1.

We define the (continuous-time) Hardy space H∞(C+;Cp×m) as the set of
all bounded analytic functions G : C+ → Cp×m with the norm given by

‖G‖H∞ = sup
s∈C+

‖G(s)‖ .

Lemma 7.3.1 (Bounded Real Lemma). Consider a stabilizable and de-
tectable linear system (A,B,C,D) ∈ Σ(m,n, p;F) and assume that its trans-
fer function G satisfies ‖G‖H∞ ≤ 1 and ‖D‖ < 1.

Then there exist matrices L,W and a positive semi-definite P = P ∗ ∈ Fn×n
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such that

A∗P + PA = −C∗C − L∗L
PB = −C∗D − L∗W
D∗D = I −W ∗W.

We should note that there are various versions of the bounded real lemma,
but most of them assume the strict inequality ‖G‖H∞ < 1 (e.g. Theorem
3.7.1 from Green and Limebeer [19] or Theorem 5.3.25 from Hinrichsen and
Pritchard [25]). To the best of the author’s knowledge Lemma 7.3.1 in its
present form is only claimed in Remark 5.3.27 from [25], where the proof is
postponed to the unpublished second volume and in its present form it is
only proved in the case when D = 0 in Theorem 3.3 from Hinrichsen and
Pritchard [24]. Seeing as this result is central to our arguments, we prove
this version of the bounded real lemma in the appendix, see §C.

We now use it to obtain a quadratic form that we will use in stability anal-
ysis.

Lemma 7.3.2. Consider a stabilizable and detectable linear state-space sys-
tem (A,B,C,D) ∈ Σ(m,n, p;F) and assume that, for some positive r, its
transfer function G satisfies ‖D‖ < ‖G‖H∞ ≤

1
r .

Then there exists a positive semi-definite P = P ∗ ∈ Fn×n such that the
quadratic form V : Fn → [0,∞) defined by V (ξ) := 〈Pξ, ξ〉 satisfies

d

dt
V (x(t)) ≤ ‖u(t)‖2 − r2 ‖y(t)‖2 a.e.

for all (u, x, y) ∈ B(A,B,C,D).

Moreover, there exists a projection Π: Fn → Fn and a positive c such that
ker Π ⊆ kerC and V (ξ) ≥ c ‖Πξ‖2 for all ξ ∈ Fn.

Proof. Set ρ := ‖G‖−1H∞ and consider the (stabilizable and detectable) lin-
ear state-space system (A, ρB,C, ρD), whose transfer function ρG satisfies
‖ρG‖H∞ = 1. Apply Lemma 7.3.1, to see that there exist matrices L,W
and a positive semi-definite P = P ∗ ∈ Fn×n such that

A∗P + PA = −C∗C − L∗L, (7.3.1a)

ρPB = −ρC∗D − L∗W, (7.3.1b)

ρ2D∗D = I −W ∗W. (7.3.1c)

Now, consider the positive semi-definite quadratic form U(ξ) := 〈Pξ, ξ〉.
We pick an arbitrary trajectory (u, x, y) ∈ B(A,B,C,D). By Corollary
7.2.6, U is continuously differentiable, U ◦ x is absolutely continuous and
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d
dtU(x(t)) = Re 〈2Px(t), ẋ(t)〉 almost everywhere. The use of bounded real
equations (7.3.1a) - (7.3.1c) and the technique of completing the square gives
us

d

dt
U(x(t)) = Re 〈2Px(t), Ax(t) +Bu(t)〉

= 〈(A∗P + PA)x(t), x(t)〉+ 〈x(t), PBu(t)〉+ 〈PBu(t), x(t)〉

=− ‖Cx(t)‖2 − ‖Lx(t)‖2 − 〈Cx(t), Du(t)〉 − 1

ρ
〈Lx(t),Wu(t)〉

− 〈Du(t), Cx(t)〉 − 1

ρ
〈Wu(t), Lx(t)〉

=−
∥∥∥∥Lx(t) +

1

ρ
Wu(t)

∥∥∥∥2 +
1

ρ2
‖Wu(t)‖2

− ‖Cx(t) +Du(t)‖2 + ‖Du(t)‖2

=−
∥∥∥∥Lx(t) +

1

ρ
Wu(t)

∥∥∥∥2 +
1

ρ2
‖u(t)‖2 − ‖y(t)‖2

≤ 1

ρ2
‖u(t)‖2 − ‖y(t)‖2 a.e.

Thus V := ρ2U has all the required properties.

Now, by Lemma 2.2.1, we know that V −1(0) = kerP and that there exists
a projection Π: Fn → Fn and a positive c such that ker Π = kerP = V −1(0)
and V (ξ) ≥ c ‖Πξ‖2 for all ξ ∈ Fn. Pick ξ ∈ V −1(0) and use equation
(7.3.1a) to see that

0 = 〈Pξ,Aξ〉+ 〈Aξ, Pξ〉 = −‖Cξ‖2 − ‖Lξ‖2 .

Hence ξ ∈ kerC and consequently ker Π = V −1(0) ⊆ kerC completing the
proof.

As mentioned at the start of this section, the positive real lemma seems
to be used more frequently in absolute stability analysis. In §7.6 we will
make comparisons between the two quadratic forms, so we state the relevant
positive real lemma results here.

Definition 7.3.3. A rational function matrix G ∈ F(s)m×m is said to be
(continuous-time) positive real if (G(s))∗ +G(s) ≥ 0 for all s ∈ C+ which
are not poles of G(s).

We say that G is strictly positive real if there exists a positive ε such
that G(s− ε) is positive real.

We say that G is strongly positive real if it is strictly positive real and
D∗ +D > 0, where D := lims→∞G(s).
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Lemma 7.3.4 (Positive Real Lemma). Consider a controllable and observ-
able (A,B,C,D) ∈ Σ(m,n,m;R) and denote by G its transfer function.

Then G is (continuous-time) positive real if and only if there exist matrices
L, W and a positive definite matrix P ∗ = P > 0 such that:

A∗P + PA = −L∗L,
PB − C∗ = −L∗W,
D +D∗ = W ∗W.

Proof. This is Theorem 5.13 from [23].

It is interesting to note that even though the complex field equivalent of
Lemma 7.3.4 is claimed in the unpublished [26] (Corollary 9.4.15), we were
not able to locate a published reference.

We can use the positive real lemma to construct a quadratic form useful in
stability analysis. We relegate its proof to the appendix, see §A.2.

Lemma 7.3.5. Consider a controllable and observable linear state-space
system (A,B,C,D) ∈ Σ(m,n,m;F) and denote by G its transfer function.

If G is positive real, then there exists a positive definite P = P ∗ ∈ Fn×n such
that the quadratic form V : Fn → [0,∞) defined by V (ξ) := 〈Pξ, ξ〉 satisfies

d

dt
V (x(t)) ≤ 1

2

[
‖u(t) + y(t)‖2 − ‖u(t)− y(t)‖2

]
a.e.

for all (u, x, y) ∈ B(A,B,C,D).

Finally, we note a well-known relation between positive real and bounded
real functions due to the Moebius transform (sometimes called the Cayley
transform).

Lemma 7.3.6. Consider G ∈ F(s)m×m; the following are equivalent

(a) G is positive real,

(b) I +G is invertible and
∥∥(I −G)(I +G)−1

∥∥
H∞
≤ 1.

Proof. in slightly different language this is Theorem 4 from [4], but it can
also be derived directly in the same way as we did in discrete-time in Lemma
2.2.10.

100 7.3. BOUNDED REAL LEMMA



CHAPTER 7. PRELIMINARIES

7.4 Output injection

We now obtain a quadratic form using a technique sometimes called “an
output injection”. For real SISO systems without feedthrough, this con-
struction is employed in Angeli [6], Arcak and Teel [7] and Jayawardhana,
Logemann and Ryan [30].

Lemma 7.4.1. Consider a detectable (A,B,C,D) ∈ Σ(m,n, p;F). Then
there exists a positive definite Q = Q∗ ∈ Fn×n such that, for some δ > 0,
the quadratic form V : Fn → [0,∞) defined by V (ξ) := 〈Qξ, ξ〉 satisfies

d

dt
V (x(t)) ≤ −δ ‖x(t)‖2 + ‖y(t)‖2 + ‖u(t)‖2 a.e.

for all (u, x, y) ∈ B(A,B,C,D).

Proof. By detectability of (C,A), there exists H ∈ Fn×m such that σ(A +
HC) ⊂ C . It is a well-known fact from linear algebra that σ(M) = σ(M∗),
where overline denotes the complex conjugation, see Proposition 4.4.4v)
from [9].

Hence there exists a solution Q = Q∗ > 0 of the continuous-time Lyapunov
equation

(A+HC)∗Q+Q(A+HC) = −I. (7.4.1)

Now consider the positive definite quadratic form VQ(ξ) := 〈Qξ, ξ〉 and pick
an arbitrary trajectory (u, x, y) ∈ B(A,B,C,D). By Corollary 7.2.6, VQ is
continuously differentiable, VQ◦x is absolutely continuous and d

dtVQ(x(t)) =
Re 〈2Qx(t), ẋ(t)〉 almost everywhere. Now we can use equation (7.4.1) to see
that

d

dt
VQ(x(t)) =

1

2
[〈2Qx(t), Ax(t)〉+ 〈2Qx(t), Bu(t)〉

+ 〈Ax(t), 2Qx(t)〉+ 〈Bu(t), 2Qx(t)〉]
= 〈Qx(t), (A+HC)x(t)〉 − 〈Qx(t), HCx(t)〉+ 〈Qx(t), Bu(t)〉
〈(A+HC)x(t), Qx(t)〉 − 〈HCx(t), Qx(t)〉+ 〈Bu(t), Qx(t)〉

=− ‖x(t)‖2 − 〈Qx(t), H(y(t)−Du(t))〉+ 〈Qx(t), Bu(t)〉
− 〈H(y(t)−Du(t)), Qx(t)〉+ 〈Bu(t), Qx(t)〉 a.e.

Now an application of the Cauchy-Schwarz inequality, subsequent use of the
property of the operator norm that ‖Mξ‖ ≤ ‖M‖ ‖ξ‖ and finally the use
of the simple inequality ab = a

c bc ≤
1
c2
a2 + c2b2 shows us that there exist

positive δ, c1, c2 - independent of (u, x, y) - such that

d

dt
VQ(x(t)) ≤ −δ ‖x(t)‖2 + c1 ‖y(t)‖2 + c2 ‖u(t)‖2 a.e.

We can then see that 1
max{c1,c2}VQ has all the required properties.
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7.5 ω-limit sets

ω-limit sets are usually defined for initial value problems, however for our
intended application in the proof of Proposition 8.2.1 it is more convenient
to define and use the ω-limit set of a function x : [0,∞)→ Fn.

Definition 7.5.1. Let x : [0,∞)→ Fn be some map. We define the ω-limit
set of x as

Ωx :=

{
ξ ∈ Fn : ∃ (tk)k∈N0 ⊆ [0,∞) s.t. lim

k→∞
tk =∞ and lim

k→∞
x(tk) = ξ

}
.

Recall that for a nonempty S ⊆ Fn and ξ ∈ Fn we defined the distance
between S and ξ as

dist(ξ,S) := inf{‖ξ − µ‖ : µ ∈ S}.

Lemma 7.5.2. Let x : [0,∞) → Fn be a bounded map, so that there exists
c > 0 such that ‖x(t)‖ ≤ c for all t ∈ [0,∞). Then Ωx is nonempty and

lim
t→∞

dist (x(t),Ωx) = 0.

Proof. Since x is bounded, by the Bolzano-Weierstrass theorem for finite-
dimensional vector spaces, there is a convergent subsequence of (x(t))t∈N0 .
Its limit is clearly in Ωx, so that Ωx is indeed nonempty.

Now suppose on the contrary, that limt→∞ dist(x(t),Ωx) = 0 does not hold.
Then there exists ε > 0 and a subset {tk}k∈N0 of [0,∞) with limk→∞ tk =∞
such that dist(x(tk),Ωx) > ε for all k ∈ N0. However, by the Bolzano-
Weierstrass theorem, x(tk) has a convergent subsequence, or, in other words,
there exists a subset (tkj )j∈N0 of (tk)k∈N0 such that limj→∞ tkj =∞ and such
that limj→∞ x(tkj ) = ξ for some ξ ∈ Fn. Hence, by definition, ξ ∈ Ωx which
in turn contradicts our initial assumption.

7.6 Stabilization by output feedback

This section replicates the results of Chapter 3 for the continuous-time set-
ting.

Important! We will not write down explicit proofs for any of the results
in this section and any commentary will be brief. The reason is that these
results follow in the same way as the corresponding results in Chapter 3 and
the motivation for them is similar.

We will first introduce the technique of loop shifting, see Lemma 7.6.5. Then
we will define the set of stabilizing output feedback matrices SC (A,B,C,D)
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and see how the ball condition BC(K, r) ⊆ SC (A,B,C,D) can be character-
ized using a bounded real condition, see Lemma 7.6.12. This will be used to
obtain a quadratic form from the ball condition in Corollary 7.6.13. Finally,
we will note a connection with the complex stability radius in Corollary
7.6.17.

Definition 7.6.1. Consider a linear system (A,B,C,D) ∈ Σ(m,n, p;F).
We define the set AC(A,B,C,D) of admissible output feedback matri-
ces for (A,B,C,D) as

AC(A,B,C,D) := {K ∈ Cm×p : det(Ip −DK) 6= 0}.

Note that AC(A,B,C,D) only depends on the matrix D, so we will usually
write AC(D) instead.

We re-state some consequences of the definition of AC.

Lemma 7.6.2. Let D ∈ Fp×m and N ∈ Fm×p.

Then det(Ip −DN) 6= 0 ⇐⇒ det(Im −ND) 6= 0.

Corollary 7.6.3. N ∈ AC(D) ⇐⇒ D ∈ AC(N).

Lemma 7.6.4. Consider a state-space system (A,B,C,D) ∈ Σ(m,n, p;F)
and denote its transfer function by G.

Then for all K ∈ AC(D), we have

(Ip −GK)−1G = G(Im −KG)−1.

In view of this lemma, for a given state-space system (A,B,C,D) with
transfer function G ∈ F(z)p×m and for K ∈ AC(D), we (again) define

GK := (Ip −GK)−1G = G(Im −KG)−1.

Note that for K ∈ AC(D) we can also define this operation for a constant
matrix:

DK := (Ip −DK)−1D = D(Im −KD)−1. (7.6.1)

Remark: note that (Ip − GK)−1G might be well-defined even if we do
not require K ∈ AC(D), however in this case (Ip − GK)−1G is not the
transfer function of any state-space system, so we shall always require that
K ∈ AC(D) when we write down GK .

Recall that for K ∈ AC(D) we can define

AK := A+BK(Ip −DK)−1C, BK := B +BK(Ip −DK)−1D,

CK := (Ip −DK)−1C, DK := (Ip −DK)−1D.
(7.6.2)
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One can then check that for (u, x, y) ∈ B(A,B,C,D) we have Ax + Bu =
AKx+BK [u−Ky] and Cx+Du = CKx+DK [u−Ky]. This observation
gives rise to the following lemma.

Lemma 7.6.5. Consider a linear system (A,B,C,D) ∈ Σ(m,n, p;F) and
denote its transfer function by G. Let K ∈ AC(D) and let (AK , BK , CK , DK)
be defined by equation (7.6.2).

(a) A trajectory (u, x, y) ∈ B(A,B,C,D) if, and only if, (u − Ky, x, y) ∈
B(AK , BK , CK , DK).

(b) The transfer function of (AK , BK , CK , DK) is GK .

(c) The linear system (A,B,C,D) is controllable and observable if, and only
if, (AK , BK , CK , DK) is.

(d) The linear system (A,B,C,D) is stabilizable and detectable if, and only
if, (AK , BK , CK , DK) is.

Lemma 7.6.6. Consider a linear system (A,B,C,D) ∈ Σ(m,n, p;F) and
denote its transfer function by G. Let K,M ∈ Fm×p and K ∈ AC(D).

Then M ∈ AC(DK) ⇐⇒ K + M ∈ AC(D). Furthermore, if one of these

holds, then
(
GK
)M

= GK+M .

Definition 7.6.7. Consider a linear system (A,B,C,D) ∈ Σ(m,n, p;F) and
denote its transfer function by G. We define the (continuous-time) set of
stabilizing linear output feedback matrices of (A,B,C,D) as

SC (A,B,C,D) := {K ∈ AC(D) : GK ∈ H∞(C+;Cp×m)}.

Since D = lim|z|→∞G(z), the transfer function G describes SC (A,B,C,D)
completely. Hence we will write SC (G) for SC (A,B,C,D).

We note the following well-known fact.

Lemma 7.6.8. Consider a linear state-space system (A,B,C,D) and de-
note its transfer function by G.

Then σ (A) ⊆ C− if, and only if, (A,B,C,D) is stabilizable and detectable,
and G ∈ H∞.

Recall the following useful lemma on matrices.

Lemma 7.6.9. Let D ∈ Fp×m with D 6= 0p×m. Then

(a) If M ∈ Fm×p and det(Ip −DM) = 0, then

1

‖D‖
≤ ‖M‖ ;
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(b) There exists M ∈ Fm×p such that ‖D‖ = 1
‖M‖ and det(Ip −DM) = 0.

Lemma 7.6.10. Consider a linear system (A,B,C,D) ∈ Σ(m,n, p;F), de-
note its transfer function by G and assume that K ∈ AC(D).

Then SC (G)−K = SC
(
GK
)
.

Remark: Of course, SC (G)−K := {M −K : M ∈ SC (G)}.

Corollary 7.6.11. Consider a linear system (A,B,C,D) ∈ Σ(m,n, p;F)
and let K ∈ Fm×p. Then

BC(K, r) ⊆ SC (G) ⇐⇒ BC(0, r) ⊆ SC
(
GK
)
.

As in Part I, an important role in construction of quadratic forms for sta-
bility analysis is played by the following lemma. It implies that the largest
matrix ball centered on K ∈ Fm×p and contained in SC (G) has radius∥∥GK∥∥−1

H∞
. This demonstrates that SC (G) is closely related to the stability

radius as defined in the work of Hinrichsen and Pritchard, see [25]. We will
elaborate on this connection in Corollary 7.6.17.

Lemma 7.6.12. Consider a linear system (A,B,C,D) ∈ Σ(m,n, p;F) and
denote its transfer function by G.

Then BC(K, r) ⊆ SC (G) ⇐⇒
∥∥GK∥∥

H∞
≤ 1

r .

The following result is a simple corollary, which assumes the ball condition
BC(K, r) ⊆ SC (G) and constructs a quadratic form using the bounded real
lemma.

Corollary 7.6.13. Consider a stabilizable and detectable linear state-space
system (A,B,C,D) ∈ Σ(m,n, p;F), denote its transfer function by G and
let r > 0, K ∈ Fm×p. Furthermore, assume that BC(K, r) ⊆ SC (G) and∥∥DK

∥∥ < ∥∥GK∥∥
H∞

.

Then there exists a positive semi-definite P = P ∗ ∈ Fn×n such that the
quadratic form V : Fn → [0,∞) defined by V (ξ) := 〈Pξ, ξ〉 satisfies

d

dt
V (x(t)) ≤ ‖u(t)−Ky(t)‖2 − r2 ‖y(t)‖2 a.e.

for all (u, x, y) ∈ B(A,B,C,D).

Moreover, there exists a projection Π: Fn → Fn and a positive c such that
ker Π ⊆ kerC and V (ξ) ≥ c ‖Πξ‖2 for all ξ ∈ Fn.

In Chapter 8 we will prove a proposition that is similar to a well-known result
in absolute stability theory, the circle criterion. Our main tool in proving
this result will be Corollary 7.6.13 and thus, essentially, the bounded real
lemma. To the best of the author’s knowledge this is a nonstandard route
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as the circle criterion is typically proved using the positive real lemma, see
e.g. Haddad and Bernstein [21], Anderson and Vongpanitlerd [5] or Khalil
[36]. As a consequence of the use of the positive real lemma in the standard
proofs of the circle criterion, it is generally assumed that the underlying
linear system is real (that is, F = R) and minimal. The use of the bounded
real lemma will allow us to relax these assumptions in our version of the
circle criterion, see Proposition 8.4.1.

We know from Lemma 7.3.6 that the bounded real property is related to
the positive real property, which leads to the following proposition.

Proposition 7.6.14. Consider (A,B,C,D) ∈ Σ(m,n,m;R), denote its
transfer function by G and let r > 0, K ∈ Rm×m. The following are equiv-
alent:

(a) BC(K, r) ⊆ SC (G),

(b)
∥∥GK∥∥

H∞
≤ 1

r ,

(c) there exists λ ∈ C such that |λ| = r, λI +K ∈ AC(D) and I + 2λGλI+K

is positive real.

This proposition allows us to compare the quadratic form obtained from the
ball condition BC(K, r) ⊆ SC (G) and the bounded real lemma to the one
obtained from the same ball condition BC(K, r) ⊆ SC (G), but the positive
real lemma.

Lemma 7.6.15. Consider a controllable and observable linear state-space
system (A,B,C,D) ∈ Σ(m,n,m;R), denote its transfer function by G and
let r > 0, K ∈ Rm×m. Furthermore assume that BC(K, r) ⊆ SC (G).

Then there exists a positive definite P = P ∗ ∈ Rn×n such that the quadratic
form V : Rn → [0,∞) defined by V (ξ) := 〈Pξ, ξ〉 satisfies

d

dt
V (x(t)) ≤ ‖u(t)−Ky(t)‖2 − r2 ‖y(t)‖2 a.e.

for all (u, x, y) ∈ B(A,B,C,D).

Thus one can use either the bounded real lemma or the positive real lemma
to obtain quadratic forms from the ball condition BC(K, r) ⊆ SC (G): both
approaches provide identical estimates on d

dtV (x(t)). However, the positive
real lemma seems more restrictive in that we have to assume both the mini-
mality of the state-space system and an equal number of inputs and outputs,
hence we elect to use the bounded real lemma in this thesis.

Finally, we note a connection between SC (G) and the well-known concept
of the structured stability radius.
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Definition 7.6.16. Consider a linear state-space system (A,B,C, 0) ∈
Σ(m,n, p;F) with σ (A) ⊆ C−. We define the (continuous-time) complex
structured stability radius of A with respect to weights B and C
as

rC(A;B,C) := inf{‖K‖ : K ∈ Cm×p and σ(AK) 6⊆ C−}.

Corollary 7.6.17. Consider a stabilizable and detectable (A,B,C, 0) ∈
Σ(m,n, p;F). Then BC(0, r) ⊆ SC (G) ⇐⇒ rC(A;B,C) ≥ r. Moreover,
rC(A;B,C) = sup{r ≥ 0 : BC(0, r) ⊆ SC (G)}.
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Chapter 8

Absolute stability of Lur’e
systems

We will now put the tools developed in Chapter 7 to use in absolute stability
analysis of Lur’e systems

ẋ(t) = Ax(t) +Bf(y(t))

y(t) = Cx(t) +Df(y(t)).
(8.1)

Similarly as in Part I, our approach is inspired by the complexified Aizer-
man’s conjecture, which was proved for systems with no feedthrough, that
is, D = 0, in Hinrichsen and Pritchard [25]. It states that if the Lur’e in-
terconnection (8.1) is globally asymptotically stable for all complex linear
output feedback matrices F that satisfy the norm condition ‖F (ξ)‖ < r ‖ξ‖
for some r > 0 and for all ξ ∈ Cp \ {0}, then the Lur’e interconnection is
globally asymptotically stable for all nonlinear output feedback maps f that
satisfy the same norm condition ‖f(ξ)‖ < r ‖ξ‖. We will use the quadratic
forms obtained from Lemma 7.4.1 and Corollary 7.6.13 to prove an exten-
sion of this result in Proposition 8.2.1, which we will sometimes refer to as
the Aizerman version of the circle criterion.

We will also consider the well-known circle criterion, which is a stability
criterion for Lur’e interconnections, where the underlying linear system
(A,B,C,D) is controllable and observable and - for some matrices K1, K2

- its transfer function G is such that (I −K2G)(I −K1G)−1 is strongly pos-
itive real. The circle criterion then states that if the nonlinearity f satisfies
〈f(ξ)−K1ξ, f(ξ)−K2ξ〉 ≤ 0, then the Lur’e system (8.1) is globally asymp-
totically stable, see e.g. Theorem 5.1 from Haddad and Bernstein [21]. The
circle criterion is usually proved by using a quadratic form obtained from
the positive real lemma, however we prove it by using the Aizerman version
of the circle criterion and hence, in effect, the bounded real lemma, which
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allows us to relax the assumptions on the underlying nonlinear system to
stabilizability and detectability.

Finally, we note that most results in this chapter extend easily to time-
dependent nonlinearities as long as the relevant assumptions are satisfied
uniformly in the time variable. The only exception is Proposition 8.2.1 (b)
and its corollaries.

This chapter is organized as follows. In §8.1 we define Lur’e systems and
discuss a related initial value problem. Then we define the notions of sta-
bility we will be interested in. After this, in §8.2, we prove the Aizerman
version of the circle criterion and discuss some of its consequences as well
as some of the assumptions made in its statement. We note a straightfor-
ward consequence of it in §8.3 and a more substantial consequence, which
resembles the classical circle criterion in §8.4.

8.1 Lur’e systems

If we assume that I −Df is bijective, then the Lur’e system (8.1) gives rise
to the initial value problem

ẋ(t) = Ax(t) +Bf ◦ (I −Df)−1(Cx(t)), x(0) = ξ ∈ Fn. (8.1.1)

Standard ordinary differential equations theory (see e.g. §4.6 from Loge-
mann and Ryan [43]) guarantees the existence of a unique maximal so-
lution of (8.1.1) as long as f ◦ (I − Df)−1 is locally Lipschitz. That is,
there exists a continuously differentiable x, defined on some maximal inter-
val [0, ω) ⊆ [0,∞), such that if x1 is any other solution of (8.1.1), defined
on [0, ω1) ⊆ [0,∞), then [0, ω1) ⊆ [0, ω) and x1 = x on [0, ω1). The unique
solution x with the above property is called the maximal solution. Further-
more, it is well-known that, if x : [0, ω)→ Fn is a maximal solution of (8.1.1)
and if ω <∞, then

lim
t→ω
‖x(t)‖ =∞. (8.1.2)

Definition 8.1.1. Consider (A,B,C,D) ∈ Σ(m,n, p;F) and let f : Fp →
Fm be locally Lipschitz. If I − Df is bijective and (I − Df)−1 is locally
Lipschitz then we call the quintuple (A,B,C,D, f) a Lur’e system.
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We define the behaviour of Lur’e system (A,B,C,D, f) as

B(A,B,C,D, f) :=

{
(x, y) ∈ C1(Fn)× C(Fp) :

x is a maximal solution of (8.1.1) and

y(t) = Cx(t) +Df(y(t))

}
.

In the case of zero feedthrough (that is, D = 0), the assumptions made in
the definition of a Lur’e system simplify considerably.

A straightforward consequence of this definition is the following result.

Lemma 8.1.2. Consider a Lur’e system (A,B,C,D, f).

If (x, y) ∈ B(A,B,C,D, f), then (f ◦ y, x, y) ∈ B(A,B,C,D).

We note that, when x is continuously differentiable, the estimate in Corollary
7.2.6 holds for all t on the interval of definition of x. Therefore, so do the
estimates obtained in Corollaries 7.4.1 and 7.6.13.

We will be exploring the following stability properties.

Definition 8.1.3. Consider a Lur’e system (A,B,C,D, f).

1. If there exists a positive c such that

‖x(t)‖ ≤ c ‖x(0)‖
‖y(t)‖ ≤ c ‖x(0)‖ ∀ t ∈ [0, ω)

and for all (x, y) ∈ B(A,B,C,D, f), where [0, ω) is the maximal in-
terval of solution of the initial value problem (8.1.1), then we say that
the Lur’e system (A,B,C,D, f) is (continuous-time) globally stable.
Note that, this then implies ω =∞.

2. If (A,B,C,D, f) is globally stable and if

lim
t→∞

x(t) = 0 and lim
t→∞

y(t) = 0

for all (x, y) ∈ B(A,B,C,D, f), then we say that the Lur’e system
(A,B,C,D, f) is (continuous-time) globally asymptotically stable.

3. If (A,B,C,D, f) is globally stable and if there exist positive a and c
such that

‖x(t)‖ ≤ ce−at ‖x(0)‖
‖y(t)‖ ≤ ce−at ‖x(0)‖ ∀ t ∈ [0,∞)
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and for all (x, y) ∈ B(A,B,C,D, f), the we say that the Lur’e system
(A,B,C,D, f) is (continuous-time) globally exponentially stable.

8.2 Aizerman version of the circle criterion

We will now apply the quadratic form obtained from the ball condition
BC(K, r) ⊆ SC (G) to the stability analysis of Lur’e systems. Recall the
shorthand DK := (I −DK)−1D.

Proposition 8.2.1 (Aizerman version of the circle criterion). Consider
a Lur’e system (A,B,C,D, f); assume that the underlying linear system
(A,B,C,D) ∈ Σ(m,n, p;F) is stabilizable and detectable and denote its
transfer function by G. Let K ∈ Fm×p, r > 0 and assume that BC(K, r) ⊆
SC (G).

(a) If
∥∥DK

∥∥ < ∥∥GK∥∥
H∞

and

‖f(ξ)−Kξ‖ ≤ r ‖ξ‖ ∀ ξ ∈ Fp, (8.2.1)

then the Lur’e system (A,B,C,D, f) is globally stable.

(b) If
∥∥DK

∥∥ < ∥∥GK∥∥
H∞

and

‖f(ξ)−Kξ‖ < r ‖ξ‖ ∀ ξ ∈ Fp \ {0}, (8.2.2)

then the Lur’e system (A,B,C,D, f) is globally asymptotically stable.

(c) If there exists δ > 0 such that

‖f(ξ)−Kξ‖ ≤ (r − δ) ‖ξ‖ ∀ ξ ∈ Fp, (8.2.3)

then the Lur’e system (A,B,C,D, f) is globally exponentially stable.

Note that if F ∈ BC(K, r), then clearly ‖Fξ −Kξ‖ < r ‖ξ‖ for all ξ ∈ Fp.
Hence Proposition 8.2.1 (b) can be interpreted as saying that if the Lur’e
system (A,B,C,D, F ) is globally asymptotically stable for all complex linear
output feedback matrices F such that ‖Fξ −Kξ‖ < r ‖ξ‖, then the Lur’e
system (A,B,C,D, f) is globally asymptotically stable for all nonlinear out-
put feedback maps f such that ‖f(ξ)−Kξ‖ < r ‖ξ‖. Hence Proposition
8.2.1 (b) can be seen as saying that Aizerman’s conjecture is true over the
complex field. Note that this is not a new observation as an identical state-
ment (although for systems with no feedthrough) is Theorem 5.6.22 from
Hinrichsen and Pritchard [25]. Indeed, their work has inspired and guided
our results in this section and (arguably) the only real novelty in this section
is Proposition 8.2.1 (a) and the extension to systems with feedthrough. The
latter rests on proving a version of the bounded real lemma (Lemma 7.3.1),
which seems to be unavailable in the literature.

112 8.2. AIZERMAN VERSION OF THE CIRCLE CRITERION



CHAPTER 8. ABSOLUTE STABILITY OF LUR’E SYSTEMS

Proof of Proposition 8.2.1. By Corollary 7.6.13, there exists a positive semi-
definite matrix P = P ∗ ∈ Fn×n such that the quadratic form V : Fn →
[0,∞) given by V (ξ) := 〈Pξ, ξ〉 satisfies

d

dt
V (x(t)) ≤ ‖u(t)−Ky(t)‖2 − r2 ‖y(t)‖2

for all (u, x, y) ∈ B(A,B,C,D). Moreover, there exists a projection Π: Fn →
Fn and a positive c1 such that ker Π ⊆ kerC and V (ξ) ≥ c1 ‖Πξ‖2 for all
ξ ∈ Fn. We note that since ker Π ⊆ kerC, it follows that CΠ = C and hence

‖Cξ‖2 = ‖CΠξ‖2 ≤ ‖C‖2 ‖Πξ‖2 ≤ ‖C‖
2

c1
V (ξ) ∀ξ ∈ Fn. (8.2.4)

Also, by Lemma 8.1.2,

d

dt
V (x(t)) ≤ ‖f(y(t))−Ky(t)‖2 − r2 ‖y(t)‖ (8.2.5)

for all (x, y) ∈ B(A,B,C,D, f).

Let us first prove that trajectories in B(A,B,C,D, f) are global. To this
end, we pick (x, y) ∈ B(A,B,C,D, f) and set [0, ω) to be the domain of x.
In all cases (a) - (c), inequality (8.2.5) implies that d

dtV (x(t)) ≤ 0, so that
V (x(t)) ≤ V (x(0)) for all t ∈ [0, ω). By the definition of V , there exists
c2 > 0 such that V (ξ) ≤ c2 ‖ξ‖2 for all ξ ∈ Fn, so that, by (8.2.4),

‖Cx(t)‖2 ≤ ‖C‖
2

c1
V (x(t)) ≤ ‖C‖

2

c1
V (x(0)) ≤ c3 ‖x(0)‖2 ∀ t ∈ [0, ω),

(8.2.6)

where we have set c3 := ‖C‖2c2
c1

. Since y(t) = (I −Df)−1(Cx(t)) and since

(I − Df)−1 is Lipschitz continuous, y is bounded. Moreover, as ẋ(t) =
Ax(t) + Bf(y(t)) and as f is Lipschitz continuous, by Gronwall’s lemma,
x(t) is bounded for all finite t. Therefore, equation (8.1.2) implies that
ω =∞.

Let us now prove (a). Equation (8.2.5) and assumption (8.2.1) give us

d

dt
V (x(t)) ≤ ‖f(y(t))−Ky(t)‖2 − r2 ‖y(t)‖ ≤ 0 ∀ t ∈ [0,∞) (8.2.7)

and for all (x, y) ∈ B(A,B,C,D, f). Let us define (AK , BK , CK , DK) ∈
Σ(m,n, p;F) by (7.6.2). By Lemmas 7.6.5 and 8.1.2, we know that if (x, y) ∈
B(A,B,C,D, f), then (f ◦ y − Ky, x, y) ∈ B(AK , BK , CK , DK), so that
y(t) = CKx(t) + DK [f(y(t)) −Ky(t)] for all t ∈ [0,∞) and for all (x, y) ∈
B(A,B,C,D, f). Taking norms and using CK = (I−DK)−1C and

∥∥DK
∥∥ <
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1
r alongside assumption (8.2.1) and estimate (8.2.6) shows that there exists
a positive c4 such that

‖y(t)‖ ≤ c4 ‖Cx(t)‖ ≤
√
c3c4 ‖C‖ ‖x(0)‖ ∀ t ∈ [0,∞) (8.2.8)

and for all (x, y) ∈ B(A,B,C,D, f).

Thus we are done if we can show that ‖x(t)‖ ≤ c ‖x(0)‖ for some positive c.
To this end, recall that if (x, y) ∈ B(A,B,C,D, f), then (f ◦ y−Ky, x, y) ∈
B(AK , BK , CK , DK) and use Lemma 7.1.3 to see that

x(t) = eAKtx(0) +

∫ t

0
eAK(t−s)BK [f(y(s))−Ky(s)] ds ∀ t ∈ [0,∞).

By Lemma 7.6.5, we know that (AK , BK , CK , DK) is stabilizable and de-
tectable; since GK ∈ H∞, Lemma 7.6.8 then implies that σ(AK) ⊂ C− and
hence there exists a positive c5 such that

∥∥eAKt
∥∥ +

∫∞
0

∥∥eAKs
∥∥ ds ≤ c5 for

all t ∈ [0,∞). Therefore, the use of (8.2.8) gives us

‖x(t)‖ ≤ c5 ‖x(0)‖+ c5 ‖BK‖ sup
0≤s≤t

‖f(y(s))−Ky(s)‖

≤ (c5 + c5 ‖BK‖ rc3c4 ‖C‖) ‖x(0)‖ ∀ t ∈ [0,∞),

which completes the proof of (a).

To prove (b) we pick an arbitrary (x, y) ∈ B(A,B,C,D, f). By (a), we
already know (A,B,C,D, f) is globally stable, so that there exists c6 > 0
such that ‖x(t)‖ ≤ c6 ‖x(0)‖ and ‖y(t)‖ ≤ c6 ‖x(0)‖. Moreover, by Lemma
8.1.2, (f ◦ y, x, y) ∈ B(A,B,C,D). Since x is continuously differentiable, for
arbitrary t ≥ 0 and τ > 0, the fundamental theorem of calculus gives us

‖x(t+ τ)− x(t)‖ =

∥∥∥∥∫ t+τ

t
Ax(s) +Bf(y(s)) ds

∥∥∥∥
≤ τc6

(
‖A‖ ‖x(0)‖+ ‖B‖ (‖K‖+ r) ‖y(0)‖

)
,

so that x is uniformly continuous. Now as (I − Df)−1 is locally Lips-
chitz, there exists L > 0 such that

∥∥(I −Df)−1(ξ1)− (I −Df)−1(ξ2)
∥∥ ≤

L ‖ξ1 − ξ2‖ for all ξ1, ξ2 ∈ BF (0, c6 ‖x(0)‖). Since y(t) = (I −Df)−1(Cx(t))
and x(t) ∈ BF(0, c6 ‖x(0)‖) for all t ≥ 0, the uniform continuity of x also
implies the uniform continuity of y.

We will first show that limt→∞ y(t) = 0. By Lemma 7.5.2, we know that
limt→∞ dist(y(t),Ωy) = 0, so it suffices to show that Ωy = {0}. For this
we employ an argument borrowed from [30]. Suppose on the contrary, that
there exists a nonzero ξ0 ∈ Ωy and pick ε > 0 such that 0 /∈ BF(ξ0, ε).
Hence, by continuity of f , there exists c7 > 0 such that ‖f(ξ)−Kξ‖2 −
r2 ‖ξ‖2 ≤ −c7 for all ξ ∈ BF(ξ0, ε). Furthermore let (tk)k∈N0 ⊆ [0,∞) be
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such that limk→∞ tk = ∞ and limk→∞ y(tk) = ξ0; set m ∈ N0 to be such
that ‖y(tk)− ξ0‖ ≤ ε/2 for all k ≥ m. By the Bolzano-Weierstrass theorem,
we can assume, without loss of generality, that (x(tk))k∈N0 converges and we
denote this limit by χ. Now note that by equation (8.2.5) and assumption
(8.2.2), the function t 7→ V (x(t)) is decreasing and bounded from below by 0,
so it converges to a limit. By uniform continuity of x and y, there exists τ > 0
such that we have ‖x(t+ τ1)− x(t)‖ ≤ ε/2 and ‖y(t+ τ1)− y(t)‖ ≤ ε/2 for
all t ≥ 0 and for all 0 ≤ τ1 ≤ τ . Thus, by (8.2.5), we have

(V ◦ x)′(tk + τ1) ≤ −c7 ∀ k ≥ m, ∀ τ1 ∈ [0, τ ] (8.2.9)

and hence integration gives us

V (x(tk + τ1)) ≤ −c7τ1 + V (x(tk))

for all k ≥ m. This however contradicts the convergence of t 7→ V (x(t)) and
in turn shows that limt→∞ y(t) = 0.

Finally, note that by Lemma 7.1.3 for any t > t1 ≥ 0 we have

x(t) = eAK(t−t1)x(t1) +

∫ t

t1

eAK(t−s)BK [f(y(s))−Ky(s)] ds.

As in (a), σ(AK) ⊂ C− and by continuity of f we have limt→∞ f(y(t)) −
Ky(t) = 0. Hence limt→∞ x(t) = 0, which completes the proof of (b).

Finally, (c) can be proved using exponential weighting arguments similar to
the ones used in the proof of Theorem 15 from [30], however we will exhibit
an alternative proof that uses the quadratic form given by Lemma 7.4.1.

First, recall equation (8.2.5) and use assumption (8.2.3) to obtain

d

dt
V (x(t)) ≤ ‖f(y(t))−Ky(t)‖2 − r2 ‖y(t)‖ ≤ −δ ‖y(t)‖2 ∀ t ∈ [0,∞)

and for all (x, y) ∈ B(A,B,C,D, f).

Now, by Lemmas 8.1.2 and 7.4.1, there exists a positive definite Q ∈ Fn×n
such that, for some δ1 > 0, the function U : Fn → [0,∞) defined by U(ξ) :=
〈Qξ, ξ〉 satisfies

d

dt
U(x(t)) ≤ −δ1 ‖x(t)‖2 + ‖y(t)‖2 + ‖f(y(t))‖2 ∀ t ∈ [0,∞)

and for all (x, y) ∈ B(A,B,C,D, f). We can use the simple estimate
‖f(ξ)‖ ≤ (‖K‖+ r) ‖ξ‖ to see that if we set b := δ

1+(‖K‖+r)2 and δ2 := δ1b,

then

d

dt
(bU + V ) (x(t)) ≤ −δ2 ‖x(t)‖2 ∀ t ∈ [0,∞)
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and for all (x, y) ∈ B(A,B,C,D, f). Define h(t) := (bU +V )(x(t)) and note
that, by definitions of U and V , there exist positive c8 and c9 such that
c8 ‖x(t)‖2 ≤ h(t) ≤ c9 ‖x(t)‖2. Therefore,

ẋ(t) ≤ −δ2 ‖x(t)‖2 ≤ −δ2
c9
h(t) ∀ t ∈ [0,∞)

and subsequently, by Gronwall’s inequality, h(t) ≤ h(0)e−at for all t ≥ 0,
where a := δ2/c9. Hence

‖x(t)‖2 ≤ c9
c8
e−at ‖x(0)‖2 ∀t ∈ [0,∞)

and an application of estimate (8.2.8) completes the proof.

Note that for systems with no feedthrough, the Aizerman version of the
circle criterion takes a slightly simpler form. Also, we will not pursue this
here, but time-variant versions of Proposition 8.2.1 (a) and (c) hold as long
as the nonlinearity f satisfies the relevant assumptions uniformly in the time
variable.

By pickingK = 0 and by using Lemma 7.6.12 to see that BC(0, r) ⊆ SC (G) is
equivalent to ‖G‖H∞ ≤

1
r , we obtain the following corollary, which resembles

the small-gain theorem.

Corollary 8.2.2. Consider a Lur’e system (A,B,C,D, f), assume that the
underlying linear system (A,B,C,D) ∈ Σ(m,n, p;F) is stabilizable and de-
tectable and denote its transfer function by G.

(a) If ‖D‖ < ‖G‖H∞ and

‖G‖H∞ ‖f(ξ)‖ ≤ ‖ξ‖ ∀ ξ ∈ Fp,

then the Lur’e system (A,B,C,D, f) is globally stable.

(b) If ‖D‖ < ‖G‖H∞ and

‖G‖H∞ ‖f(ξ)‖ < ‖ξ‖ ∀ ξ ∈ Fp \ {0},

then the Lur’e system (A,B,C,D, f) is globally asymptotically stable.

(c) If

‖G‖H∞ sup
ξ∈Fp

‖f(ξ)‖
‖ξ‖

< 1,

then the Lur’e system (A,B,C,D, f) is globally exponentially stable.
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Statement (c) is a time-invariant extension of the small gain theorem to
the case when the underlying state-space system is only stabilizable and
detectable. For a standard version of the small-gain theorem, see Theorem
3.1 from Haddad and Bernstein [21].

The following examples demonstrate that Proposition 8.2.1 is not conserva-
tive.

Example 8.2.3. Consider the stabilizable and detectable one-dimensional
SISO system (−1, 1, 1, 0) ∈ Σ(1, 1, 1;R). We can calculate G(s) = 1

s+1 , so
that ‖G‖H∞ = 1 and thus BC(0, 1) ⊆ SC (G). Thus the Aizerman version of
the circle criterion (a) shows us that if the nonlinearity f satisfies |f(ξ)| ≤ |ξ|
for all ξ ∈ R, then the Lur’e system (−1, 1, 1, 0, f) is globally stable. Indeed,
we can pick f(ξ) := ξ to obtain

ẋ(t) = 0,

which defines a Lur’e system that is globally stable, but not globally asymp-
totically stable.

Example 8.2.4. Again, consider the stabilizable and detectable SISO sys-
tem (−1, 1, 1, 0) ∈ Σ(1, 1, 1;R); we know that BC(0, 1) ⊆ SC (G). Now set

f(ξ) := ξ−min
{
ξ2, ξ2

}
and note that, upon considering ξ close to 0, we can

see there does not exist a δ > 0 such that |f(ξ)| < (1 − δ)|ξ|. Thus we can
apply the Aizerman version of circle criterion (b) to infer asymptotic sta-
bility of (−1, 1, 1, 0, f), but not the Aizerman version of the circle criterion
(c). Indeed, one can check that if x(0) = 1/2, then the unique solution of
the initial value problem

ẋ(t) = −x(t) + f(x(t)) ∀ t ∈ [0,∞), x(0) = 1/2

is given by x(t) = 1
2+t , which clearly does not decay exponentially.

Note that the statements (a) - (c) of Proposition 8.2.1 indicate a gradual
change in modes of stability: for a given underlying linear system, stronger
assumptions on the nonlinearity f result in a stronger mode of stability.

8.3 A note on matrix stability

We now note a simple consequence of the Aizerman version of the circle
criterion applied to matrix stability theory. Recall the definition of the
structured complex stability radius

rC(A;B,C) := inf{‖K‖ : K ∈ Cm×p and σ(AK) 6⊆ C−}.
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It is well-known that there exists a “destabilizing” output feedback matrix
F ∈ Cm×p of minimal norm, that is, A+BFC is not globally asymptotically
stable and ‖F‖ = rC(A;B,C). The following corollary of Aizerman version
of the circle criterion shows that the application of a “destabilizing” output
feedback matrix of minimal norm results in a marginally stable closed-loop
system. Somewhat surprisingly, this result does not seem to be available in
the literature.

Corollary 8.3.1. Consider (A,B,C, 0) ∈ Σ(m,n, p;F) with σ(A) ⊆ C− and
let F ∈ Cm×p be such that σ(A+BFC) 6⊆ C− and ‖F‖ = rC(A;B,C). Then
σ(A+BFC) ⊆ C− and all λ ∈ σ(A+BFC) with Reλ = 0 are semisimple.

Proof. This follows from the Aizerman version of the circle criterion (a)
applied to the Lur’e system (A,B,C, 0, F ).

8.4 “Standard” version of the circle criterion

Using the Aizerman version of the circle criterion we now obtain a result
that is reminiscent of the circle criterion (compare with Theorem 5.1 from
Haddad and Bernstein [21]).

Proposition 8.4.1. Consider a Lur’e system (A,B,C,D, f) and assume
that the underlying linear system (A,B,C,D) ∈ Σ(m,n, p;F) is stabilizable
and detectable and denote its transfer function by G. Let K1,K2 ∈ Fm×p
and assume that K1 ∈ AC(D), (I −K2G)(I −K1G)−1 is positive real and
that - for K := 1

2(K1 +K2) and L := 1
2(K1 −K2) - we have

∥∥LDK
∥∥ < 1.

(a) If ker(K1 −K2) = {0} and if

Re 〈f(ξ)−K1ξ, f(ξ)−K2ξ〉 ≤ 0 ∀ ξ ∈ Fp, (8.4.1)

then the Lur’e system (A,B,C,D, f) is globally stable.

(b) If

Re 〈f(ξ)−K1ξ, f(ξ)−K2ξ〉 < 0 ∀ ξ ∈ Fp, (8.4.2)

then the Lur’e system (A,B,C,D, f) is globally asymptotically stable.

(c) If for some positive δ we have

Re 〈f(ξ)−K1ξ, f(ξ)−K2ξ〉 ≤ −δ ‖ξ‖2 ∀ ξ ∈ Fp, (8.4.3)

then the Lur’e system (A,B,C,D, f) is globally exponentially stable.
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Remark: note that the requirement
∥∥LDK

∥∥ < 1 is satisfied trivially if
D = 0.

We omit the proof of Proposition 8.4.1 as it follows, mutatis mutandis, in
the same way as Proposition 4.3.2.

Also, Proposition 8.4.1 (c), when restricted to controllable and observable
underlying linear systems, is equivalent to Theorem 5.1 from Haddad and
Bernstein [21], however much like in the discrete-time case and for the same
reasons, this is not straightforward to demonstrate, so we omit a detailed
comparison.
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Chapter 9

Input-to-state stability of
Lur’e systems

In this chapter we finally arrive at the essence of Part II. We will see that
under assumptions similar to the ones we made in absolute stability results,
namely Propositions 8.2.1 and 8.4.1, we in fact obtain input-to-state stability
(from here onwards, ISS) of Lur’e systems with forcing

ẋ(t) = Ax(t) +B(f(y(t)) + d(t))

y(t) = Cx(t) +D(f(y(t)) + d(t)).
(9.1)

As mentioned previously, ISS is a recent notion of stability, which provides
a natural framework for stability analysis of nonlinear systems with inputs.
Ever since its inception in Sontag [50] (1989), ISS has been a busy area of
research as evidenced by the growing body of work collected in the overview
article Sontag [52], which collects 128 references to ISS-related papers.

Recall the introduction of Part II, which describes a number of approaches
to proving ISS for Lur’e systems under assumptions similar to those made in
absolute stability results. All of them make use of the ISS-Lyapunov function
characterization of ISS and construct an appropriate ISS-Lyapunov function.
[7, 29, 30] use the positive real lemma and output injection to obtain two
quadratic forms, which are then combined into an ISS-Lyapunov function.
[12] analyses a standard Lur’e-Postnikov Lyapunov function. We will follow
in the footsteps of the above work in obtaining ISS results, however we will
use the bounded real lemma instead of the positive real lemma for one of
our quadratic forms. As a consequence, our results will apply to a different
class of systems and we will have to develop new estimates involving com-
parison functions to establish that our construction yields an ISS-Lyapunov
function, see Theorem 9.2.1. It will turn out that, by making precisely the
same assumptions on the underlying state-space system (A,B,C,D) as in
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Proposition 8.2.1, but assuming that, for some α ∈ K∞, the norm condition
‖f(ξ)‖ ≤ r ‖ξ‖ − α(‖ξ‖) is satisfied for all ξ ∈ Fp, we in fact obtain ISS
of (9.1). As a corollary we will obtain a result, which resembles the circle
criterion and allows us to obtain a number of results from Jayawardhana et
al. [29] as corollaries, see Proposition 9.3.1 and the subsequent Corollaries
9.3.2 and 9.3.3.

Finally, we will introduce a stronger version of ISS that we call exponential
input-to-state stability. It will turn out that under the assumptions made
in the small-gain theorem we obtain exponential ISS.

This chapter is organized as follows: we introduce Lur’e systems with forcing
and define ISS in §9.1. We also note an ISS-Lyapunov characterization of
ISS. Then in §9.2 and 9.3 we state and prove results that guarantee ISS
under assumptions similar to the ones made in absolute stability results in
Chapter 8. Finally, in §5.5 we introduce exponential ISS and show that it
is guaranteed under the assumptions made in the small-gain theorem.

9.1 Input-to-state stability

If we assume that I −Df is invertible, then - for a prescribed d ∈ L∞loc(Fm)
- the Lur’e system with forcing (9.1) gives rise to the initial value problem

ẋ(t) = Ax(t) +Bf ◦ (I −Df)−1(Cx(t) +Dd(t)) +Bd(t)

x(0) = ξ ∈ Fn. (9.1.1)

Standard ordinary differential equations theory (see e.g. Appendix C from
Sontag [51]) tells us that, as long as f and (I −Df)−1 are locally Lipschitz,
(9.1.1) admits a unique maximal solution x ∈ AC(Fn). That is, it admits
x ∈ AC(Fn), defined on some maximal interval [0, ω) ⊆ [0,∞), such that it
solves (9.1.1) almost everywhere and such that if x1 is any other solution
of (9.1.1), defined on [0, ω1) ⊆ [0,∞), then [0, ω1) ⊆ [0, ω) and x1 = x on
[0, ω1). The unique solution x with the above property is called the maximal
solution. Furthermore, it is well-known that, if x : [0, ω)→ Fn is a maximal
solution of (9.1.1) and if ω < 0, then

lim
t→ω
‖x(t)‖ =∞.

For a more detailed treatment, see the Appendix, §D.

Definition 9.1.1. Consider a Lur’e system (A,B,C,D, f) with the under-
lying linear system (A,B,C,D) ∈ Σ(m,n, p;F) and f : Fp → Fm. We define
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the behaviour with disturbances of (A,B,C,D, f) as

Bd(A,B,C,D, f) :=

{
(d, x, y) ∈ L∞loc(Fm)×AC(Fn)× L∞loc(Fn) :

x is a maximal solution of (9.1.1) and

y(t) = Cx(t) +D(f(y(t)) + d(t))

}
.

The following lemma is a simple consequence of the definition of trajectories.

Lemma 9.1.2. Consider a Lur’e system (A,B,C,D, f). If (d, x, y) ∈
Bd(A,B,C,D, f), then (f ◦ y + d, x, y) ∈ B(A,B,C,D).

For t ≥ 0 we define a family of projection operators πt : L
∞
loc([0,∞),Fm) →

L∞loc([0,∞),Fm) as

(πtd)(s) :=

{
d(s), when s ≤ t,
0, when s > t.

We now define ISS for Lur’e systems. We denote by (continuous-time)-KL
the set of functions in two variables, β : [0,∞) × [0,∞) → [0,∞) with the
following properties: if β ∈ KL, then, for each fixed t, β(·, t) ∈ K and, for
each fixed s, the function β(s, ·) is non-increasing and limt→∞ β(s, t) = 0.

Definition 9.1.3. Let (A,B,C,D, f) be a Lur’e system. We say that it
is (globally) input-to-state stable if there exist β ∈ KL and γ ∈ K such
that for all (d, x, y) ∈ Bd(A,B,C,D, f) we have

‖x(t)‖ ≤ β(‖x(0)‖ , t) + γ(‖πtd‖∞) ∀ t ∈ [0,∞). (9.1.2)

Here we have assumed that trajectories (d, x, y) ∈ Bd(A,B,C,D, f) are
global. Even if we did not do that, one can see that the estimate (9.1.2)
would force any maximal solution of the initial value problem (9.1.1) to be
global.

Remark: equation (9.1.2) is equivalent to

‖x(t)‖ ≤ β(‖x(0)‖ , t) + γ( sup
0≤s≤t

‖d(s)‖).

Recall that we call two functions U, V : Fn → [0,∞) K∞-equivalent if there
exist α, γ ∈ K∞ such that α(U(ξ)) ≤ V (ξ) ≤ γ(U(ξ)) for all ξ ∈ Fn.

As in discrete-time, there exists a useful dissipation characterization of ISS.
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Definition 9.1.4. Let (A,B,C,D, f) be a Lur’e system with (A,B,C,D) ∈
Σ(m,n, p;F). A positive-definite continuously differentiable function V :
Fn → [0,∞) is said to be an ISS-Lyapunov function for (A,B,C,D, f)
if V and ‖·‖Fn are K∞-equivalent and if there exist α, γ ∈ K∞ such that

d

dt
V (x(t)) ≤ −α(‖x(t)‖) + γ(‖d(t)‖) a.e.

for all (d, x, y) ∈ Bd(A,B,C,D, f).

We omit the proof of the following theorem, which says that the existence of
an ISS-Lyapunov function implies ISS. In slightly different frameworks this
has been proved in Sontag [50] and Logemann and Ryan [43].

Theorem 9.1.5. Consider a Lur’e system (A,B,C,D, f). If there exists
an ISS-Lyapunov function for it, then (A,B,C,D, f) is ISS.

It is interesting to note that the converse result is true as well, see Lin,
Sontag and Wang [41].

9.2 Ball condition assumptions

We are now ready to prove our main result of this part, an ISS criterion
under assumptions similar to the ones made in the Aizerman version of the
circle criterion. We will achieve this by combining quadratic forms obtained
from (i) a “ball condition” and the bounded real lemma, and (ii) output
injection.

Theorem 9.2.1. Consider a Lur’e system (A,B,C,D, f) and assume that
the underlying state-space system (A,B,C,D) ∈ Σ(m,n, p;F) is stabilizable
and detectable, and assume that its transfer function G satisfies

∥∥DK
∥∥ <∥∥GK∥∥

H∞
. Furthermore, let r > 0, K ∈ Fm×p and assume that BC(K, r) ⊆

SC (G).

If there exists α ∈ K∞ such that

‖f(ξ)−Kξ‖ ≤ r ‖ξ‖ − α(‖ξ‖) ∀ ξ ∈ Fp, (9.2.1)

then the Lur’e system (A,B,C,D, f) is input-to-state stable.

Remark: the assumption
∥∥DK

∥∥ < ∥∥GK∥∥
H∞

is satisfied, for example, if
D = 0.

Proof. By Theorem 9.1.5, it is sufficient to exhibit an ISS-Lyapunov function
for (A,B,C,D, f). We do this by constructing two functions V and W and
then showing that V +W is an ISS-Lyapunov function.
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Since BC(K, r) ⊆ SC(G), Corollary 7.6.13 provides us with the existence
of a positive semi-definite P = P ∗ ∈ Fn×n such that the quadratic form
V : Fn → [0,∞) defined by V (ξ) = 〈Pξ, ξ〉 satisfies

d

dt
V (x(t)) ≤ ‖u(t)−Ky(t)‖2 − r2 ‖y(t)‖2 a.e.

for all (u, x, y) ∈ B(A,B,C,D).

Hence, by Lemma 9.1.2, for arbitrary (d, x, y) ∈ Bd(A,B,C,D, f) we have

d

dt
V (x(t)) ≤ ‖f(y(t)) + d(t)−Ky(t)‖2 − r2 ‖y(t)‖2 a.e. (9.2.2)

Using (9.2.1) we can estimate

‖f(ξ)−Kξ‖2 − r2 ‖ξ‖2 ≤ −2α(‖ξ‖)r ‖ξ‖+ α(‖ξ‖)2

≤ −2α(‖ξ‖)r ‖ξ‖+ α(‖ξ‖)r ‖ξ‖
= −r ‖ξ‖α(‖ξ‖) ∀ ξ ∈ Fp.

Thus, by the Cauchy-Schwarz inequality as well as Lemma 5.1.9, there exists
γ ∈ K∞ such that

‖f(ξ)−Kξ + µ‖2−r2 ‖ξ‖2

≤‖f(ξ)−Kξ‖2 + 2 ‖f(ξ)−Kξ‖ ‖µ‖
+ ‖µ‖2 − r2 ‖ξ‖2

≤− r ‖ξ‖α(‖ξ‖) + 2r ‖ξ‖ ‖µ‖+ ‖µ‖2

≤− r

2
‖ξ‖α(‖ξ‖) + γ(‖µ‖) ∀ ξ ∈ Fp, µ ∈ Fm.

If we use this estimate in (9.2.2), then we obtain

d

dt
V (x(t)) ≤ −r

2
‖y(t)‖α(‖y(t)‖) + γ(‖d(t)‖) a.e. (9.2.3)

for all (d, x, y) ∈ Bd(A,B,C,D, f).

On the other hand, (A,B,C,D) is detectable, so Lemma 7.4.1 guarantees
the existence of a positive definite Q = Q∗ ∈ Fn×n and δ1 > 0 such that
the quadratic form U1 : Fn → [0,∞) defined by U1(ξ) = 〈Qξ, ξ〉 satis-
fies d

dtU1(x(t)) ≤ −δ1 ‖x(t)‖2 + ‖y(t)‖2 + ‖u(t)‖2 almost everywhere for all
trajectories (u, x, y) ∈ B(A,B,C,D). Equivalently, by Lemma 9.1.2, for
(d, x, y) ∈ Bd(A,B,C,D, f), we have

d

dt
U1(x(t)) ≤ −δ1 ‖x(t)‖2 + ‖y(t)‖2 + ‖f(y(t)) + d(t)‖2 a.e. (9.2.4)

Set c1 := 4 ‖K‖2 + 4r2 + 1 and use (9.2.1) as well as ‖ξ1 + ξ2‖2 ≤ 2 ‖ξ1‖2 +
2 ‖ξ2‖2 repeatedly to arrive at the estimate ‖ξ‖2 + ‖f(ξ) + µ‖2 ≤ c1 ‖ξ‖2 +
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2 ‖µ‖2 for all ξ ∈ Fp, µ ∈ Fm. Using equation (9.2.4) we can thus see that -
for δ := δ1

max{c1,2} - the function U := 1
max{c1,2}U1 satisfies

d

dt
U(x(t)) ≤ −δ ‖x(t)‖2 + ‖y(t)‖2 + ‖d(t)‖2 a.e. (9.2.5)

for all (d, x, y) ∈ Bd(A,B,C,D, f).

We will now complete the proof by constructing a function h : [0,∞) →
[0,∞) such that V + h ◦ U is an ISS-Lyapunov function for (A,B,C,D, f).
We will specify the function h later, but we will require it to have two
properties, which will be used in the estimations below. When we finally
define an appropriate h, we will then check that it has said properties. We
require h to satisfy:

h ∈ C1([0,∞)) (9.2.6)

∃ c2 > 0 such that 0 ≤ h′(s) ≤ c2 ∀ s ∈ [0,∞). (9.2.7)

Now let us analyse the properties of h ◦ U . Since h and U are both con-
tinuously differentiable we can use the chain rule to see that so is h ◦ U
and moreover [∇F(h ◦ U)](ξ) = h′(U(ξ))∇FU(ξ) for all ξ ∈ Fn. We now use
Lemma 7.2.4 as well as equations (9.2.7), (9.2.3) and (9.2.5) to obtain

d

dt

(
V+h ◦ U

)
(x(t))

≤− r

2
‖y(t)‖α(‖y(t)‖) + γ(‖d(t)‖)

+ h′(U(x(t)))[−δ ‖x(t)‖2 + ‖y(t)‖2 + ‖d(t)‖2] a.e. (9.2.8)

for all (d, x, y) ∈ Bd(A,B,C,D, f).

Recall that it suffices to find h such that V + h ◦ U is an ISS-Lyapunov
function for (A,B,C,D, f). In view of equation (9.2.8), it is sufficient to
find h satisfying (9.2.6) and (9.2.7) such that for some η, γ1 ∈ K∞ we have

h′(U(x(t)))[−δ ‖x(t)‖2+‖y(t)‖2+‖d(t)‖2]− r
2
‖y(t)‖α(‖y(t)‖)+γ(‖d(t)‖)

≤ −η(‖x(t)‖) + γ1(‖d(t)‖) a.e. (9.2.9)

for all (d, x, y) ∈ Bd(A,B,C,D, f). We now make a change in notation,
which goes against the conventions established this far in the present doc-
ument. However, we believe it is the easiest way to do the proof at hand.
From here until the end of this proof x will be an element of Fn, y ∈ Fp and
d ∈ Fm. Now, by (9.2.9), the proof of this theorem is complete if we can
find h satisfying (9.2.6) and (9.2.7), such that V + h ◦ U is K∞-equivalent
to ‖·‖Fn and such that for some η, γ1 ∈ K∞ we have

h′(U(x))[−δ ‖x‖2 + ‖y‖2 + ‖d‖2]− r

2
‖y‖α(‖y‖) + γ(‖d‖)

≤ −η(‖x‖) + γ1(‖d‖)
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for all x ∈ Fn, d ∈ Fm and for y ∈ Fp with y = Cx+D(f(y)+d) (equivalently,
y = (I −Df)−1(Cx+Dd)).

Set γ1(s) := γ(s) + c2s
2 + γ2(s) for γ2 ∈ K∞ to be determined later, to see

that h has to satisfy

η(‖x‖) + ‖y‖2 h′(U(x)) ≤ δ ‖x‖2 h′(U(x)) +
r

2
‖y‖α(‖y‖) + γ2(‖d‖)

(9.2.10)

for all x ∈ Fn, d ∈ Fm and for y = Cx+D(f(y) + d). The key idea now is
the observation that it is clearly sufficient to satisfy both

η(‖x‖) ≤ δ

2
‖x‖2 h′(U(x)) and (9.2.11)

‖y‖2 h′(U(x)) ≤ max

{
δ

2
‖x‖2 h′(U(x)),

r

2
‖y‖α(‖y‖)

}
+ γ2(‖d‖) (9.2.12)

for all x ∈ Fn, d ∈ Fm and for y = Cx+D(f(y) + d).

We will first look to satisfy inequality (9.2.12). If ‖y‖2 ≤ δ
2 ‖x‖

2, then

‖y‖2 h′(U(x)) ≤ δ
2 ‖x‖

2 h′(U(x)) and thus inequality (9.2.12) holds. Hence

it is sufficient to find h such that for ‖y‖2 > δ
2 ‖x‖

2 we have

‖y‖2 h′(U(x)) ≤ r

2
‖y‖α(‖y‖) + γ2(‖d‖) (9.2.13)

for all x ∈ Fn, d ∈ Fm and for y := Cx + D(f(y) + d). Since ‖y‖2 >
δ
2 ‖x‖

2, if we set c3 := r
2

√
δ
2 and c4 :=

√
δ
2 , then we obtain r

2 ‖y‖α(‖y‖) >
c3 ‖x‖α (c4 ‖x‖). Moreover, we can use

∥∥DK
∥∥ < 1

r (since (A,B,C,D) is
stabilizable and detectable, this follows from Lemmas 7.6.5 and 7.6.12) to see
that there exist positive constants c5, c6 such that ‖y‖2 ≤ c5 ‖x‖2 + c6 ‖d‖2.
Set γ2(s) := c2c6s

2 to see that we have (9.2.13) as long as

c5 ‖x‖h′(U(x)) ≤ c3α(c4 ‖x‖) (9.2.14)

for all x ∈ Fn. We will now define h′ that satisfies (9.2.14) in two steps.
By the definition of U , we know that there exist positive constants c7, c8
such that c7 ‖x‖2 ≤ U(x) ≤ c8 ‖x‖2 for all x ∈ Fn. Now set h̃′ : (0,∞) →(

0, rc3c4c5

√
c7
c8

]
to be

h̃′(s) :=
c3
√
c7α

(
c4
√
s√

c8

)
c5
√
s

and define a (clearly continuous) function h′ : [0,∞)→
[
0, rc3c4c5

√
c7
c8

]
as

h′(s) :=

{
min{s, h̃′(s)} for s > 0,

0 for s = 0.
(9.2.15)
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If we then define h in the obvious way as h(v) :=
∫ v
0 h
′(s) ds, then it satisfies

both (9.2.6) and (9.2.7). We can also check that this h satisfies (9.2.14).
The case x = 0 follows trivially, so assume x ∈ Fn \ {0}. Then

h′(U(x)) ≤ h̃′(U(x)) =

c3
√
c7α

(
c4
√
U(x)√
c8

)
c5
√
U(x)

≤
c3
√
c7α

(
c4
√
c8‖x‖√
c8

)
c5
√
c7 ‖x‖

=
c3α(c4 ‖x‖)
c5 ‖x‖

and inequality (9.2.14) follows.

Moreover, we can see that

δ

2
‖x‖2 h′(U(x)) ≥ δ

2
‖x‖2 ·min

c7 ‖x‖2 ,
c3
√
c7α

(
c4
√
U(x)√
c8

)
c5
√
U(x)


≥ min

δc72
‖x‖4 ,

δc3
√
c7 ‖x‖α

(
c4
√
c7√
c8
‖x‖
)

2c5
√
c8

 , (9.2.16)

which is clearly a K∞ function and thus (9.2.11) is satisfied if we define
η ∈ K∞ in the obvious way as the map on the right hand side of (9.2.16).

Hence the proof is complete, if we can show that V +h◦U is K∞-equivalent
to ‖·‖Fn . From the construction of V , we know that there exists a positive
constant c9 such that 0 ≤ V (x) ≤ c9 ‖x‖2 for all x ∈ Fn. It is then easy

to obtain V (x) + h(U(x)) ≤ c9 ‖x‖2 +
∫ c8‖x‖2
0 c2 ds = c9 ‖x‖2 + c2c8 ‖x‖2

for all x ∈ Fn. For a lower bound, define σ : [0,∞) → [0,∞) by σ(v) :=∫ c7v2
0 h′(s) ds and note that h(U(x)) ≥ σ(‖x‖). Thus we only need to show

that σ ∈ K∞. Notice that, by the first fundamental theorem of calculus, σ
is a continuous function and since h′ > 0 on (0,∞), σ is strictly increasing,
so that σ ∈ K. Now σ ∈ K∞ follows from

∫ ∞
0

h′(s) ds =

∫ ∞
0

min

s, c3
√
c7α

(
c4
√
s√

c8

)
c5
√
s

 ds

>

∫ ∞
1

min

1,
c3
√
c7α

(
c4√
c8

)
c5
√
s

 ds =∞.
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As the following example shows we cannot relax the assumption α ∈ K∞ in
Theorem 9.2.1 to α ∈ K.

Example 9.2.2. Consider the stabilizable and detectable linear system from
Example 8.2.3 - (−1, 1, 1, 0) ∈ Σ(1, 1, 1;R) - and recall that its transfer
function G was such that BC(0, 1) ⊆ SC (G). Now consider the deadzone
nonlinearity

f(ξ) :=


ξ + 1, if ξ < −1

0, if − 1 ≤ ξ ≤ 1

ξ − 1, if ξ > 1.

Note that for every α ∈ K with α(s) ≤ min{1, s}, (for example, α(s) :=
1− e−s) we have

|f(ξ)| ≤ |ξ| − α(|ξ|),

while there clearly does not exist α ∈ K∞ such that this inequality holds. If
we then pick forcing d such that d(t) = 2 for all t ≥ 0 and x(0) ≥ −1, then
ẋ(t) ≥ 1 and thus the Lur’e system (−1, 1, 1, 0, f) is not ISS.

If F ∈ BC(K, r), then we can define α ∈ K∞ by α(s) := (r − ‖F −K‖)s
to see that Theorem 9.2.1 implies the Lur’e system (A,B,C,D, F ) is ISS.
Hence Theorem 9.2.1 states that if the Lur’e system (A,B,C,D, F ) is ISS
for all complex linear feedback matrices F such that ‖Fξ −Kξ‖ < r ‖ξ‖,
then the Lur’e system (A,B,C,D, f) is ISS for all nonlinear output feedback
maps f such that ‖f(ξ)−Kξ‖ < r ‖ξ‖ − α(‖ξ‖) for some α ∈ K∞.

By picking K = 0 in Theorem 9.2.1 and by using Lemma 7.6.12 to see
that BC(0, r) ⊆ SC (G) is equivalent to ‖G‖H∞ ≤

1
r , we obtain a small-gain

version of Theorem 9.2.1.

Corollary 9.2.3. Consider a Lur’e system (A,B,C,D, f), assume that the
underlying state-space system (A,B,C,D) ∈ Σ(m,n, p;F) is stabilizable and
detectable and denote its transfer function by G.

If there exists α ∈ K∞ such that

‖G‖H∞ ‖f(ξ)‖ ≤ ‖ξ‖ − α(‖ξ‖) ∀ ξ ∈ Fp,

then the Lur’e system (A,B,C,D, f) is ISS.

Example 9.2.4. Consider forced oscillations

z̈(t) + 4ż(t) + 5z(t) + f(z(t), ż(t)) + d(t) = 0,

which can be modelled by a Lur’e system, where the underlying linear state-
space system is((

0 1
−5 −4

)
,

(
0
−1

)(
1 0
0 1

)(
0
0

))
∈ Σ(2, 1, 2;R).
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One can check that the transfer function is given by G(s) = 1
s2+4s+5

(
1
s

)
and hence ‖G‖H∞ = 1/3.598 (see Example 5.3.12 from [25]). Therefore, by
Theorem 9.2.1, the forced oscillations are ISS as long as there exists α ∈ K∞
such that the nonlinearity f satisfies

‖f(ξ, η)‖ ≤ 3.598× ‖(ξ, η)‖ − α(‖(ξ, η)‖) ∀ (ξ, η) ∈ R2.

As a special case consider the forced Liénard system, where f(ξ, η) = (g(ξ)−
4)η, so that

z̈(t) + g(z(t))ż(t) + 5z(t) + d(t) = 0. (9.2.17)

Thus in particular if |g(ξ)− 4| < 3.5 for all ξ ∈ R, then the Liénard system
(9.2.17) is ISS.

Recall Proposition 8.2.1 (b), which guarantees the asymptotic stability of
certain unforced Lur’e systems. Theorem 9.2.1 demonstrates that under
only slightly stronger assumptions (yet weaker than Proposition 9.2.1 (c),
which guarantee global exponential stability) we obtain the much stronger
input-to-state stability of the associated class of forced Lur’e systems.

The construction of the ISS-Lyapunov function W = h ◦ U + V is inspired
by a similar technique used in [7, 30, 29], however the context and hence
the technical details are different. [7, 30, 29] use the positive real lemma to
obtain V , while we use the bounded real lemma. Hence while the function
U is (essentially) identical to the one used in [7, 30, 29], the estimates that
we require h ◦U to satisfy are different. The key novelty is the construction
of an appropriate h that satisfies inequality (9.2.10).

In previous work on ISS for Lur’e systems one can find SISO results for sys-
tems with a sector-bounded nonlinearity. Therefore, it is interesting to note
that the following corollary is an extension of Theorem 17 from Jayaward-
hana, Logemann and Ryan [30] (we should note that they admit set-valued
nonlinearities, but the rest of the statement is unchanged). More precisely,
if we use the shorthand established in [30], then our corollary is an extension
of Theorem 17 as it reads under hypothesis (H1)).

Corollary 9.2.5. Consider a SISO Lur’e system (A, b, c, d, f) and assume
that the underlying linear system (A, b, c, d) ∈ Σ(1, n, 1;R) is stabilizable and
detectable and denote its transfer function by g. Let k1 < k2, assume that
k1 6= d−1 and 1−k2g

1−k1g is positive real.

If there exists α ∈ K∞ such that

k1ξ
2 + ξα(|ξ|) ≤ f(ξ)ξ ≤ k2ξ2 − ξα(|ξ|) ∀ ξ ∈ R,

then the Lur’e system (A, b, c, d, f) is ISS.
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We omit the proof of this result as it is identical, mutatis mutandis, to the
proof of Corollary 5.3.4. We direct the reader to Figure 5.1 for a visual rep-
resentation of a sector condition, where we have picked α(s) := min{s,

√
s}.

Another appealing feature of Corollary 9.2.5 is that there are a number of
characterizations of the positive real property, which in the SISO case can
be especially simple, see §7.1 from Kailath [34] or §5.8 from Haddad and
Chellaboina [23].

9.3 Positive real assumptions

As in the section on absolute stability, we can use Theorem 9.2.1 to obtain
a result reminiscent of the circle criterion. It will allow us to obtain as
corollaries a number of results from Jayawardhana et al. [29, 30].

Proposition 9.3.1. Consider a Lur’e system (A,B,C,D, f) and assume
that the underlying linear system (A,B,C,D) ∈ Σ(m,n, p;F) is stabilizable
and detectable and denote its transfer function by G. Let K1,K2 ∈ Fm×p
and assume that (I −K2G)(I −K1G)−1 is positive real and that - for K :=
1
2(K1 +K2) and L := 1

2(K1 −K2) - we have
∥∥LDK

∥∥ < 1.

If there exists α ∈ K∞ such that

Re 〈f(ξ)−K1ξ, f(ξ)−K2ξ〉 ≤ −‖ξ‖α(‖ξ‖) ∀ ξ ∈ Fp, (9.3.1)

then the Lur’e system (A,B,C,D, f) is ISS.

Remark: note that the requirement
∥∥LDK

∥∥ < 1 is satisfied trivially if
D = 0.

We omit the proof of Proposition 9.3.1 as it is identical, mutatis mutandis,
to the proof of Proposition 5.4.1.

The following result is a restatement of Theorem 17 from [30]. The only
change is that we work with differential equations instead of differential
inclusions that allow set valued nonlinearities f .

Corollary 9.3.2 (Theorem 17 from [30], hypotheses (H1)). Consider a
Lur’e system (A, b, c, 0, f) and assume that the underlying linear system
(A, b, c, 0) ∈ Σ(1, n, 1;R) is controllable and observable and denote its trans-
fer function by G. Let b > 0 and assume that I + bG is positive real.

If there exists α ∈ K∞ and a positive δ < b such that

|ξ|α(|ξ|) ≤ −f(ξ)ξ ≤ (b− δ)ξ2 ∀ ξ ∈ R,

then the Lur’e system (A, b, c, 0, f) is ISS.
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Proof. Pick K1 = 0, K2 = −b, so that, by Proposition 9.3.1, it suffices to
show that there exists α1 ∈ K∞ such that

(f(ξ) + bξ)f(ξ) ≤ −|ξ|α1(|ξ|) ∀ ξ ∈ R.

This follows from the two inequalities in the assumptions. We rewrite them
as |ξ|α(|ξ|) ≤ −f(ξ)ξ and δξ2 ≤ ξ(f(ξ) + bξ) and multiply to obtain (note
that numbers on both sides of the inequalities are non-negative, so multipli-
cation does not change the sign of the inequality)

δ|ξ|α(|ξ|) ≤ −f(ξ)(f(ξ) + bξ) ∀ ξ ∈ R.

Notice that Corollary 9.2.5 is an extension of Corollary 9.3.2.

A related result (although in the multi-input multi-output setting) appears
in Jayawardhana et al. [29] as Theorem 3.5 under hypothesis (H3). We
should remark that they also look at differential inclusions instead of differ-
ential equations.

Corollary 9.3.3 (Theorem 3.5 from [29], hypothesis (H3)). Consider a
Lur’e system (A,B,C, 0, f) and assume that the underlying linear system
(A,B,C, 0) ∈ Σ(m,n,m;R) is controllable and observable and denote its
transfer function by G. Let b and δ be positive and assume that the rational
function matrix δ

bI +G is positive real.

If there exists φ ∈ K∞ such that

max

{
‖ξ‖φ(‖ξ‖), 1

b
‖f(ξ)‖2

}
≤ −〈ξ, f(ξ)〉 ∀ ξ ∈ Rm,

then the Lur’e system (A,B,C, 0, f) is ISS.

Proof. Note that I+ b
δG is positive real if, and only if, δbI+G is positive real.

Hence, if we pick K1 = 0 and K2 = − b
δ I, by Proposition 9.3.1, it suffices to

show that there exists α ∈ K∞ such that
〈
f(ξ), f(ξ) + b

δ ξ
〉
≤ −‖ξ‖α(‖ξ‖)

for all ξ ∈ Rp. We pick α := b(1−δ)
δ φ and estimate

〈f(ξ), bξ〉 ≤ −max

{
δ

1− δ
‖ξ‖α(ξ), ‖f(ξ)‖2

}
≤ −δ ‖ξ‖α(ξ)− δ ‖f(ξ)‖2 ∀ ξ ∈ Rp.

Thus
〈
f(ξ), f(ξ) + b

δ ξ
〉
≤ −‖ξ‖α(‖ξ‖) for all ξ ∈ Rp, which completes the

proof.
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9.4 Exponential ISS

In this section we note that exponential weighting arguments allow us to
prove that if in the assumptions of Theorem 9.2.1 we pick α(s) = δs for
some positive δ, then we in fact obtain a stronger version of stability that
we will call exponential input-to-state stability. It is also interesting to note
that in contrast to most ISS-related results, this can be proved without
Lyapunov function techniques. Therefore, these results might generalize to
the infinite-dimensional setting.

Definition 9.4.1. Consider a Lur’e system (A,B,C,D, f). We say that it is
(globally) exponentially input-to-state stable if there exist c1, c2, a > 0
such that for all (d, x, y) ∈ Bd(A,B,C,D, f) we have

‖x(t)‖ ≤ c1e−at ‖x(0)‖+ c2 ‖πtd‖∞ ∀ t ∈ [0,∞).

We use this result and the exponential weighting technique to obtain the
following result. Note that the assumptions are the same as in Theorem
9.2.1, except that we pick α(s) := δs.

We omit the proof of the following proposition as it is identical, mutatis
mutandis, to the proof of its discrete-time counterpart, Proposition 5.5.3.

Proposition 9.4.2. Consider a Lur’e system (A,B,C,D, f), assume that
the underlying state-space system (A,B,C,D) ∈ Σ(m,n, p;F) is stabilizable
and detectable and denote its transfer function by G. Furthermore, let r > 0,
K ∈ Fm×p and assume that BC(K, r) ⊆ SC (G).

If, for some δ > 0,

‖f(ξ)−Kξ‖ ≤ (r − δ) ‖ξ‖ ∀ ξ ∈ Fp,

then the Lur’e system (A,B,C,D, f) is exponentially ISS.

As in the discrete-time setting, if we pick K = 0 in Proposition 9.4.2, then it
shows that the assumptions made in the small-gain theorem actually guar-
antee exponential ISS.

Corollary 9.4.3. Consider a Lur’e system (A,B,C,D, f), assume that the
underlying state-space system (A,B,C,D) ∈ Σ(m,n, p;F) is stabilizable and
detectable and denote its transfer function by G. If

‖G‖H∞ · sup
ξ∈Fp\0

‖f(ξ)‖
‖ξ‖

< 1,

then the Lur’e system (A,B,C,D, f) is exponentially ISS.
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Chapter 10

Notes, references and future
work

10.1 Notes and references

The main result in Part II was Theorem 9.2.1, which showed that Lur’e
systems with forcing are ISS under assumptions similar to ones made in
results from absolute stability analysis and to the best of author’s knowledge
this result is new. Proving ISS from assumptions typical of absolute stability
results is not a novel idea: (i) Arcak and Teel [7] consider Lur’e systems
similar to ones for which the positivity theorem holds (see Theorem 4.1
from Haddad and Bernstein [21]), (ii) Jayawardhana, Logemann and Ryan
[29, 30] obtain a number of ISS results (including the one in (i)) under various
assumptions for Lur’e systems with set-valued nonlinearities, (iii) Bruin et
al. [12] obtain an ISS version of the Popov criterion. However, unlike
[7, 29, 30], we used the bounded real lemma instead of the positive real
lemma for the construction of quadratic forms, which resulted in Theorem
9.2.1 - an Aizerman-like ISS result that seems to be quite general, since we
obtained in Corollary 9.3.3 a result from [30] and we extended a result from
[29] in Corollary 9.2.5. Also, it enabled us to consider Lur’e systems with
nonzero feedthrough.

Theorem 9.2.1 also allowed us to prove an ISS version of the well-known
circle criterion in Proposition 9.3.1, which seems to be a novelty.

Proposition 9.4.2, which proves exponential ISS under the assumptions of
the small-gain theorem seems to be new, however, its proof introduces no
new techniques and a similar result was proved in Jayawardhana et al. [30].

Chapter 8 on absolute stability results consisted of slight refinements of
known absolute stability results, see Corollary 8.2.2 and Proposition 8.4.1.
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However, these were proved in a new way by using another slight extension
of a known result from Hinrichsen and Pritchard [25], the Aizerman ver-
sion of the circle criterion. Apart from the intuitively appealing Aizerman
perspective, it displayed in its statements (a) - (c) a transition of modes
of stability as we change the assumptions on the nonlinearity. Examples
8.2.3 and 8.2.4 then showed that this transition is, in a sense, conservative.
Moreover, by restricting output feedback maps in Lur’e systems to matrices,
we used Proposition 8.2.1 (a) to prove the seemingly novel Corollary 8.3.1.

10.2 Future work

There are three interesting avenues for exploration that we have not taken
due to time constraints.

It is well-known that a stability concept, called integral input-to-state sta-
bility (from here on, iISS) is equivalent to the existence of an iISS-Lyapunov
function, which for a Lur’e system (A,B,C,D, f) is a function V : Fn →
[0,∞) that is K∞-equivalent to ‖·‖ and that satisfies

d

dt
V (x(t)) ≤ −ρ(‖x(t)‖) + γ(‖d(t)‖)

for all t and for all trajectories (d, x, y) ∈ B(A,B,C,D, f), where γ ∈
K∞, but ρ is only a continuous positive-definite function. Clearly, an ISS-
Lyapunov function is an iISS-Lyapunov function, so, under the assumptions
made in Theorem 9.2.1, we obtain iISS. However, it would be interesting to
see whether the assumption on the nonlinearity, namely

‖f(ξ)−Kξ‖ ≤ r ‖ξ‖ − α(‖ξ‖) ∀ ξ ∈ Fp,

could be relaxed from α ∈ K∞ to α ∈ K. We thank an anonymous conference
paper referee for this suggestion.

The proof of Theorem 9.2.1 introduced a new way of providing estimates to
establish that a function is an ISS-Lyapunov function, in effect allowing us
to construct novel classes of ISS-Lyapunov functions. It would be interesting
to see if this construction could be applied to other absolute stability results,
e.g. the Popov criterion. Bruin et al. [12] have already obtained a Popov-
like criterion that guarantees ISS in a continuous-time setting. However,
they seem to be using a classical Lur’e-Postnikov Lyapunov function, which
is then shown to be an ISS-Lyapunov function for the system at hand under
suitable assumptions. It would be interesting to see whether any of these
assumptions could be relaxed by using our techniques.

Finally, the proof of the main exponential ISS result, Proposition 9.4.2, did
not make use of ISS-Lyapunov functions, therefore it seems likely that it
could be generalized to the infinite-dimensional setting.
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Part III

Stability of discrete-time
input-output Lur’e systems
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In Part III of this thesis we will consider linear discrete-time input-output
systems defined by higher-order difference equations

k∑
j=0

Pjy(t+ j) =

k∑
j=0

Qju(t+ j), (11.1)

where Pj ’s and Qj ’s are matrices of appropriate dimensions. Input-output
systems of this form are obtained by modelling digital filters and computer
controlled systems where the inputs and outputs are periodically sampled,
see Desoer and Vidyasagar [14], Gabel and Roberts [16].

By closing the feedback loop via u(t) := f(y(t)), where f is some nonlinear-
ity, we obtain a class of input-output Lur’e systems

k∑
j=0

Pjy(t+ j) =
k∑
j=0

Qjf(y(t+ j)), (11.2)

which arise naturally from input-output systems (11.1) and can also model
linear multistep methods from numerical analysis, see e.g. Coughlan, Hill
and Logemann [11]. Input-output stability properties of related input-
output systems are studied in Desoer and Vidyasagar [14] and Zames [64].
However, their results revolve around the small-gain theorem and norm ap-
proximations, and they typically establish input-to-output stability in the
lp sense (1 ≤ p ≤ ∞).

Similarly as in Parts I and II, we will first analyse the absolute stability
of input-output Lur’e systems (11.2) and obtain original results guarantee-
ing global asymptotic stability by combining frequency-domain assumptions
with assumptions on the nonlinearity f .

After that we will consider forcing d and study input-output Lur’e systems
with forcing

k∑
j=0

Pjy(t+ j) =

k∑
j=0

Qj(f(y(t+ j)) + d(t+ j)), (11.3)

where the forcing could represent a target trajectory or a disturbance. We
will obtain a class of results, which guarantee input-to-output stability (this
is a notion of stability that extends input-to-state stability to an input-
output setting) by, again, combining frequency domain assumptions with
assumptions on the nonlinearity f .

A major role in this part of the thesis is played by a result that we will call
the realization theorem. Consider the input-output system (11.1), define
P (z) :=

∑k
j=0 Pjz

j and Q(z) :=
∑k

j=0Qjz
j , assume that P is invertible

and P−1Q is proper. It is well-known from behavioural theory that there
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exists a state-space system (A,B,C,D) such that, for each tuple (u, y) that
satisfies (11.1), there exists x such that (u, x, y) ∈ B(A,B,C,D), see Willems
[58]. This has clear implications for stability analysis: if y satisfies (11.2),
then there exists x such that (f ◦ y, x, y) ∈ B(A,B,C,D) or, equivalently,
(x, y) ∈ B(A,B,C,D, f). Therefore, one would expect to be able to obtain
stability criteria for input-output Lur’e systems (11.2) and (11.3) by using
absolute stability and ISS results from Part I as long as we can establish an
appropriate connection between the initial values of y and the initial values
of x. This connection will follow from the realization theorem, which will
establish a linear relationship between the initial values of u and y that
satisfy (11.1) and the initial value of x such that (u, x, y) ∈ B(A,B,C,D),
see Theorem 11.4.8.

Finally, we will briefly consider image input-output systems given by

u(t) =

k∑
j=0

Sjv(t+ j)

y(t) =

k∑
j=0

Tjv(t+ j),

(11.4)

where Sj ’s and Tj ’s are matrices of appropriate dimensions. They are closely
related to input-output systems of the form (11.1). We will also study the
associated Lur’e system

f(y(t)) =
k∑
j=0

Sjv(t+ j)

y(t) =
k∑
j=0

Tjv(t+ j),

(11.5)

where f is some nonlinearity. In the continuous-time setting systems of
this form have been studied in Brockett and Willems [10], where results re-
sembling the Popov criterion are obtained. Using the relationship between
input-output systems (11.4) and (11.1), we will be able to obtain stabil-
ity results similar to the Aizerman version of the circle criterion and the
standard version of the circle criterion.

This part of the thesis is organized as follows. We will initially analyse linear
input-output systems (11.1) in Chapter 11, where we will collect preliminar-
ies from realization theory and prove the realization theorem. This will be
applied to input-output Lur’e systems (11.2), (11.3) and image input-output
Lur’e systems (11.5) in Chapter 12.
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Chapter 11

Linear input-output systems

In this chapter we will study linear input-output systems defined by higher-
order difference equations

k∑
j=0

Pjy(t+ j) =

k∑
j=0

Qju(t+ j), (11.1)

where Pj ’s and Qj ’s are matrices of appropriate dimensions. Our main
goal will be to prove the realization theorem as outlined in the introduc-
tion of Part III. We will initially introduce linear input-output systems in
§11.1, where we will also provide a characterization of tuples (u, y) that
satisfy (11.1). After that, in §11.2, we will prove some results pertain-
ing to Z-transforms of tuples that satisfy (11.1) and of triples (u, x, y) ∈
B(A,B,C,D). After collecting some facts from realization theory in §11.3,
we will prove the realization theorem in §11.4. Finally, we will briefly con-
sider image input-output systems given by

u(t) =

k∑
j=0

Sjv(t+ j)

y(t) =

k∑
j=0

Tjv(t+ j),

(11.2)

where Sj ’s and Tj ’s are matrices of appropriate dimensions. In §11.5 we
will prove that there is a close relationship between tuples (u, y) that satisfy
(11.1) and triples (u, v, y) that satisfy (11.2).
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11.1 Linear input-output systems

We will be considering input-output systems of the form

k∑
j=0

Pjy(t+ j) =

l∑
j=0

Qju(t+ j) ∀ t ∈ N0, (11.1.1)

where Pj ∈ Fp×p for 0 ≤ j ≤ k and Qj ∈ Fp×m for 0 ≤ j ≤ l. If we set

P (z) :=
∑k

j=0 Pjz
j and Q(z) :=

∑l
j=0Qjz

j , then (11.1.1) can be described
more concisely as P (L)y = Q(L)u, where L is the left-shift operator (see
§0.1). If we consider the initial value problem

P (L)y =Q(L)u, (11.1.2)

u ∈ (Fm)N0 , y(0), y(1), . . . , y(k − 1) ∈ Fp,

then we instantly see the need to impose some conditions on the polynomial
matrices P,Q to obtain the existence of solutions. For example, consider

P =

(
z 1
0 0

)
and Q = I2, so that the initial value problem is

(
1 0
0 0

)
y(t+ 1) +

(
0 1
0 0

)
y(t) = u(t) ∀ t ∈ N0, y(0) = ξ ∈ F2.

If we pick u(t) =

(
0
1

)
for all t ∈ N0, then it clearly has no solutions, no

matter what ξ ∈ F2 we pick. Moreover, let us pick u(t) =

(
1
0

)
for all t ≥ 0

and ξ =

(
0
0

)
. Then y1 ∈ (F2)N0 defined as y1(0) =

(
0
0

)
and y1(t) =

(
1
0

)
for

t ≥ 1 solves the initial value problem (11.1.2). However, so does y2 ∈ (F2)N0

defined as y2(2t) =

(
0
0

)
and y2(2t + 1) =

(
1
1

)
for all t ≥ 0. Hence we

can see that solutions are not necessarily unique, when they exist. The
assumption detP 6= 0 is sufficient for the existence of at least one solution
of the initial value problem (11.1.1) for some initial conditions, see Theorem
8.3 from [17]. Hence we will restrict our attention to input-output systems
that satisfy this condition.

Another desirable property for an input-output system is causality - we do
not want y(t) to depend on u(t + 1). In other words, the present should
not depend on the future. Consider P = I2 and Q(z) = zI2; then the
input-output system (11.1.1) reads

y(t) = u(t+ 1) ∀ t ∈ N0
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and hence the system is not causal. Again, this is not obvious, but a con-
dition that ensures causality is that P−1Q ∈ F(z)p×m should be proper,
see e.g. Proposition 8.6 from [60]. The above considerations motivate the
following definition.

Definition 11.1.1. Let P ∈ F[z]p×p and Q ∈ F[z]p×m be such that detP 6=
0 and P−1Q ∈ F(z)p×m is proper. We call the tuple (P,Q) a (discrete-time)
input-output system and we write (P,Q) ∈ IO(m, p;F).

We define the behaviour B(P,Q) of an input-output system (P,Q) as the
set of all tuples (u, y) ∈ (Fm)N0 × (Fp)N0 that satisfy

P (L)y = Q(L)u.

We call a tuple (u, y) ∈ B(P,Q), a trajectory.

For a tuple (u, y) ∈ B(P,Q), we usually refer to u as the input and y as the
output. Aspects of input-output systems of this form have been studied in
§6.7 from [51] and in a slightly different form in [13]. There is more work in
the continuous-time setting, see §3 from [47] and [58].

It is useful to note a characterization of trajectories in B(P,Q). Theorems
11.1.2, 11.1.3 and 11.1.4 can be proved in the same way as the corresponding
continuous-time results from §3 in [47]. We omit the proofs as we only use
them in one place: the proof of Lemma 11.2.7.

We will make use of the following shorthand. Let P ∈ F[z]p×p be given by
P (z) =

∑k
j=0 Pjz

j for some Pj ∈ Fp×p. For m ∈ N0, we define a polynomial

matrix P (m) ∈ F[z]p×p by P (m)(z) :=
∑k

j=0 Pjj
mzj .

Theorem 11.1.2. Consider a polynomial matrix P ∈ C[z]p×p and assume
that detP 6= 0 and that detP (z) = c

∏N
i=1(z−λi)ni, where λi 6= λj for i 6= j.

Then y ∈ kerP (L) if, and only if,

y(t) =
N∑
i=1

ni−1∑
j=0

bijt
jλti, (11.1.3)

where the vectors bij ∈ Cp satisfy the relations

ni−1∑
j=k

(
j

k

)
P (j−k)(λi)bij = 0 (11.1.4)

for all 1 ≤ i ≤ N , 0 ≤ k ≤ ni − 1.

The dimension of kerP (L) is deg detP .

By noting that zeros of real polynomials come in complex conjugate pairs,
we could obtain a counterpart of Theorem 11.1.2 for the case when F = R.
However, for our purposes the complex version will suffice.
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Theorem 11.1.3. Consider an input-output system (P,Q) ∈ IO(m, p;C),
where detP (z) = c

∏N
i=1(z − λi)ni and let the partial fractions expansion of

P−1Q be given by

(P−1Q)(z) = A0 +
N∑
i=1

ni∑
j=1

Aij
(z − λi)j

,

where Aij ∈ Cp×m. Let u ∈ (Cm)N0 be given and define y ∈ (Cp)N0

y(0) := A0u(0)

y(t) := A0u(t) +
N∑
i=1

ni∑
j=1

Aij

t−1∑
k=0

(
t− k − 1

j − 1

)
λt−k−ji u(k) for t ≥ 1.

(11.1.5)

Then (u, y) ∈ B(P,Q).

These two results allow us to characterize B(P,Q).

Theorem 11.1.4. Consider an input-output system (P,Q) ∈ IO(m, p;F)
and set Bi/o(P,Q) :=

{
(u, yi/o) : u ∈ (Fm)N0 and yi/o is given by (11.1.5)

}
and Bhom(P,Q) := {(0, yhom) : yhom is of the form (11.1.3)}. Then

B(P,Q) = Bi/o(P,Q) + Bhom(P,Q).

Note that while in Theorem 11.1.4 we allow F = R, in general yi/o and yhom
will be in (Cp)N0 .

Theorem 11.1.4 essentially says that given a u ∈ (Fm)N0 , every solution of
P (L)y = Q(L)u can be written as

y(0) =
N∑
i=1

bi0 +A0u(0), and

y(t) =

N∑
i=1

ni−1∑
j=0

bijt
jλti +A0u(t) +

N∑
i=1

ni∑
j=1

Aij

t−1∑
k=0

(
t− k − 1

j − 1

)
λt−k−ji u(k),

(11.1.6)

for t ≥ 1, where bij ’s satisfy equation (11.1.4).

We define a family of operators (πT )T∈N0 on (Fm)N0 as

(πTu)(t) =

{
u(t) if t ≤ T
0 otherwise.
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Corollary 11.1.5. Consider (P,Q) ∈ IO(m, p;F) and let (u, y) ∈ B(P,Q).
Then for all T ∈ N0 there exists yT ∈ (Cp)N0 such that

P (L)yT = Q(L)(πTu)

and yT (t) = y(t) for all t ≤ T .

Proof. By Theorem 11.1.4, there exist matrices Aij ∈ Cp×m and vectors
bij ∈ Cp such that y is given by (11.1.6). Moreover, bij ’s satisfy (11.1.4).
Define

yT (0) =
N∑
i=1

bi0 +A0(πTu)(0), and

yT (t) =

N∑
i=1

ni−1∑
j=0

bijt
jλti

+A0(πTu)(t) +
N∑
i=1

ni∑
j=1

Aij

t−1∑
k=0

(
t− k − 1

j − 1

)
λt−k−ji (πTu)(k),

for t ≥ 1. Then, by Theorem 11.1.4,

P (L)yT = Q(L)(πTu).

Since (πTu)(t) = u(t) for t ≤ T , we have yT (t) = y(t) for all t ≤ T .

Note that in Corollary 11.1.5 we cannot say that (πTu, yT ) ∈ B(P,Q) as yT
could be complex even if F = R. It would be desirable to obtain real yT if
F = R, however that would involve developing real counterparts to Theorems
11.1.3 and 11.1.4, which is quite involved. Fortunately the present, complex,
version of Corollary 11.1.5 will turn out to be enough for our purposes, see
the proof of Corollary 11.4.3.

11.2 The Z-transform

We will define the Z-transform, state some standard results without proof
(they can all be completed by using standard power series theory) and finally
describe the Z-transforms of trajectories in behaviours of both linear state-
space systems and linear input-output systems.

Definition 11.2.1. For y ∈ (Fp)N0 we define the Z-transform of y as

ŷ(z) :=
∑
i∈N0

y(i)z−i (11.2.1)

for all z ∈ C for which this series converges.
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For y ∈ (Fp)N0 , set ry := lim supi→∞ ‖y(i)‖
1
i . It is well-known that there ex-

ists a radius of convergence for power series and thus we obtain the following
lemma.

Lemma 11.2.2. Consider y ∈ (Fp)N0. If ry < ∞, then the series (11.2.1)
converges absolutely for all |z| > ry and diverges for all |z| < ry.

In light of Lemma 11.2.2, we will say that y ∈ (Fp)N0 is Z-transformable if
ry <∞. Note that this is equivalent to saying that the series ŷ(z) converges
absolutely on E(0, ry). It follows from the theory of absolutely convergent
series that if y1, y2 are Z-transformable, then so is y1 + y2. Also, clearly, for
a matrix M ∈ Fm×p, if y is Z-transformable, then so is My.

The following lemma shows that the Z-transform is injective.

Lemma 11.2.3. Let y, w ∈ (Fp)N0 be Z-transformable. If ŷ(z) = ŵ(z) on
the intersection of the two regions of convergence, then y = w.

The following characterization of the Z-transform of a left-shift of a given
sequence y ∈ (Fp)N0 is well-known.

Lemma 11.2.4. Let y ∈ (Fp)N0 be Z-transformable. Then for any j ∈ N,
Ljy is Z-transformable and

(L̂jy)(z) = zj ŷ(z)−
j−1∑
k=0

y(k)zj−k. (11.2.2)

Another powerful property of the Z-transform is that a convolution in the
time-domain corresponds to multiplication in the Z-transform domain (this
is sometimes called the frequency domain). We will use this powerful obser-
vation in the following way.

Lemma 11.2.5. Let G ∈ F(z)p×m be proper and assume that its Laurent
series expansion around ∞ is given by G(z) =

∑
i∈N0

Giz
−i, where Gi ∈

Fp×m; let u ∈ (Fm)N0 be Z-transformable.

Then y ∈ (Fp)N0 is Z-transformable and given by

y(t) :=
t∑

k=0

Gt−ku(k) ∀t ∈ N0

if, and only if, ŷ(z) = G(z)û(z).

With the preliminaries out of the way, we will now apply Z-transforms to
study trajectories in linear state-space and input-output systems.

Lemma 11.2.6. Consider (A,B,C,D) ∈ Σ(m,n, p;F), denote its transfer
function by G and let u ∈ (Fm)N0 be Z-transformable.
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Then (u, x, y) ∈ B(A,B,C,D) if, and only if, x and y are Z-transformable
and

x̂(z) = (zI −A)−1Bû(z) + (zI −A)−1zξ

ŷ(z) = G(z)û(z) + C(zI −A)−1zξ

for some ξ ∈ Fn.

Proof. We note that - for an arbitrary u ∈ (Fm)N0 - (u, x, y) ∈ B(A,B,C,D)
if, and only if, for some ξ ∈ Fn we have

x(t) := Atξ +
t−1∑
k=0

At−1−kBu(k)

y(t) := CAtξ +Du(t) +
t−1∑
k=0

CAt−1−kBu(k) ∀ t ∈ N0.

(11.2.3)

Now let us prove sufficiency. As u is Z-transformable, equation (11.2.3) and
straightforward estimates imply that if (u, y, x) ∈ B(A,B,C,D), then rx
and ry are finite, so that x and y are Z-transformable. Since Lx = Ax+Bu
and y = Cx+Du, an application of Lemma 11.2.4 then gives us

x̂(z) = (zI −A)−1Bû(z) + (zI −A)−1zx(0)

ŷ(z) = G(z)û(z) + C(zI −A)−1zx(0),

which completes the proof of sufficiency.

To prove necessity, we recall a standard result on Neumann series: (zI −
A)−1 =

∑
i∈N0

Aiz−(i+1) for all |z| > ‖A‖. Thus

x̂(z) =

∑
i∈N0

AiBz−(i+1)

 û(z) +
∑
i∈N0

Aiz−iξ

ŷ(z) =

∑
i∈N0

(CAiz−(i+1)B +D)

 û(z) + C
∑
i∈N0

Aiz−iξ,

so, by Lemma 11.2.5, we see that x and y satisfy equation (11.2.3). Hence
(u, x, y) ∈ B(A,B,C,D) as required.

Note that the sufficiency part of Lemma 11.2.6 is a generalization of equation
(14) from §2.3.3 in [34].

We now similarly study the Z-transforms of trajectories of input-output
systems. Consider an input-output system (P,Q) ∈ IO(m, p;F), where
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P (z) =
∑degP

j=0 Pjz
j and Q(z) =

∑degQ
j=0 Qjz

j . For (u, y) ∈ B(P,Q), we
define a polynomial vector θu,y ∈ F[z]p by

θu,y(z) :=

degP∑
i=1

zi

degP∑
j=i

Pjy(j − i)

− degQ∑
i=1

zi

degQ∑
j=i

Qju(j − i)

 . (11.2.4)

It will play an important role in describing Z-transforms of trajectories in
B(P,Q).

Lemma 11.2.7. Consider (P,Q) ∈ IO(m, p;F), where P (z) =
∑degP

j=0 Pjz
j

and Q(z) =
∑degQ

j=0 Qjz
j.

If (u, y) ∈ B(P,Q) is such that u is Z-transformable, then so is y. Moreover,
for θu,y defined by (11.2.4), we have

ŷ(z) = (P−1Q)(z)û(z) + P−1(z)θu,y(z).

Proof. As (u, y) ∈ B(P,Q), by (11.1.6), we know that - for some matrices
Aij ∈ Cp×m and vectors bij ∈ Cp - y is given by

y(0) =
N∑
i=1

bi0 +A0u(0) and

y(t) =

N∑
i=1

ni−1∑
j=0

bijt
jλti +A0u(t) +

N∑
i=1

ni∑
j=1

Aij

t−1∑
k=0

(
t− k − 1

j − 1

)
λt−k−ji u(k)

for all t ≥ 1. We omit the details, but via a straightforward estimation,
one can check that ry is finite and hence y is Z-transformable. Thus, by
Lemma 11.2.4, so is P (L)y and the region of convergence of its Z-transform
is E(0, ry), so that

(P̂ (L)y)(z) =

degP∑
j=0

Pj(L̂jy)

=

degP∑
j=0

Pjz
j ŷ(z)−

degP∑
j=0

Pj

j−1∑
k=0

y(k)zj−k

= P (z)ŷ(z)−
degP∑
j=0

Pj

j−1∑
k=0

y(k)zj−k

= P (z)ŷ(z)−
degP∑
i=1

zi
degP∑
j=i

Pjy(j − i) ∀ z ∈ E(0, ry).
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Similarly, we obtain

(Q̂(L)u(z) =

degQ∑
j=0

Qj(L̂ju)

=

degQ∑
j=0

Qjz
j û(z)−

degQ∑
j=0

Qj

j−1∑
k=0

u(k)zj−k

= Q(z)û(z)−
degQ∑
j=0

Qj

j−1∑
k=0

u(k)zj−k

= Q(z)û(z)−
degQ∑
i=1

zi
degQ∑
j=i

Qju(j − i) ∀z ∈ E(0, ru).

Let θu,y be defined by equation (11.2.4). Since P (L)y = Q(L)u, we thus
have

P (z)ŷ(z) = Q(z)û(z) + θu,y(z) ∀ z ∈ E(0, r),

where r = max{ry, ru}.

Finally, since P has a finite number of zeros, P−1 has only a finite number
of poles and hence, for some r1 > 0, P−1(z) is defined on E(0, r1). Without
loss of generality, r ≥ r1 and thus

ŷ(z) = (P−1Q)(z)û(z) + P−1(z)θu,y(z) ∀ z ∈ E(0, r).

11.3 Realization theory

We now collect standard terminology and facts from realization theory.
These will be used in §11.4 to prove the realization theorem (see Theorem
11.4.8). Moreover, some results will be used in §11.5 to describe behaviours
of image input-output systems.

Definition 11.3.1. Consider a rational function matrix G ∈ F(z)p×m. A
state-space system (A,B,C,D) ∈ Σ(m,n, p;F) is said to be a realization
of G if G(z) = C(zI−A)−1B+D. The order of the realization (A,B,C,D)
is defined as n.

This definition is standard, however we overload the word “realization” as
we are primarily interested in input-output systems rather than rational
function matrices.

Definition 11.3.2. Consider an input-output system (P,Q) ∈ IO(m, p;F).
A state-space system (A,B,C,D) ∈ Σ(m,n, p;F) is said to be a realization

149 11.3. REALIZATION THEORY



CHAPTER 11. LINEAR INPUT-OUTPUT SYSTEMS

of (P,Q) if (P−1Q)(z) = C(zI −A)−1B +D. The order of the realization
(A,B,C,D) is again n.

Note that a realization of an input-output system (P,Q) is also a realization
of the rational function matrix P−1Q. The following result is well known.

Theorem 11.3.3. A rational function matrix G is realizable if, and only if,
it is proper.

Proof. This is Theorem 21.9 from [13] combined with the well-known fact
that the transfer function of a linear state-space system is proper.

Remark: [13] actually only deals with the case F = R, but the extension
to C follows mutatis mutandis. This remark applies also to the other results
that will be cited from [13].

Corollary 11.3.4. Input-output systems are realizable.

Definition 11.3.5. Let a rational function matrix G ∈ F(z)p×m be proper;
its McMillan degree is defined as the minimal order among all realizations
(A,B,C,D) of G.

Similarly, consider an input-output system (P,Q) ∈ IO(m, p;F). We define
its McMillan degree as the McMillan degree of P−1Q.

Definition 11.3.6. Consider a proper G ∈ F(z)p×m and let (A,B,C,D)
be a realization of G. If the order of the realization (A,B,C,D) is equal to
the McMillan degree of G, then we call the state-space system (A,B,C,D)
a minimal realization of G.

Given an input-output system (P,Q), we say that (A,B,C,D) is a minimal
realization of (P,Q) if it is a minimal realization of P−1Q.

Recall that a realization is minimal if, and only if, it is controllable and
observable (see e.g. Theorem 21.13 from [13]).

While irrelevant for the arguments that follow, it is interesting to note that
any two minimal realizations of a given proper rational function matrix (or
of a given input-output system) are unique up to similarity transforms (see
e.g. Theorem 21.16 from [13]).

We now gather some facts about polynomial matrices.

Definition 11.3.7. We call a polynomial matrix V ∈ F[z]p×p unimodular
if detV = a, for some a ∈ F \ {0}.

Lemma 11.3.8. The unimodular elements of F[z]p×p are precisely the poly-
nomial matrices that are invertible in F[z]p×p.

Proof. This is Proposition 4.16 from [38].
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Notation: we will write UF[z]p×p for the unimodular elements of F[z]p×p.
Here “U” stands for “units”, which is standard notation in algebra, see e.g.
p. 83 from [38].

Definition 11.3.9. Suppose that polynomial matrices P , P1 and R are such
that P = RP1. We say that R is a left divisor of P and we say that P is
a right multiple of R.

Definition 11.3.10. Consider P ∈ F[z]p×p and Q ∈ F[z]p×m. A polynomial
matrix R ∈ F[z]p×p is said to be the greatest common left divisor of P
and Q if

(a) R is a left divisor of both P and Q,

(b) R is a right multiple of every common left divisor of P and Q.

Lemma 11.3.11. Consider P ∈ F[z]p×p and Q ∈ F[z]p×m. Suppose there
exists a greatest common left divisor R ∈ F[z]p×p of P and Q.

Then the set of all greatest common left divisors of P and Q is {RV : V ∈
UF[z]p×p}.

Proof. This is Lemma 2 from §4.1, [55].

Theorem 11.3.12. Consider P ∈ F[z]p×p and Q ∈ F[z]p×m.

There exists a greatest common left divisor R of P and Q. Moreover there
exist polynomial matrices X and Y - of appropriate dimensions - such that

PX +QY = R. (11.3.1)

Proof. This is Theorem 7 from §4.1, [55].

Equation (11.3.1) is sometimes called the left Bezout identity.

Definition 11.3.13. Consider P ∈ F[z]p×p and Q ∈ F[z]p×m. They are
said to be left coprime if every greatest common left divisor of P and Q
is unimodular.

By Theorem 11.3.12, equivalently, P and Q are left coprime if there exist
polynomial matrices X and Y of appropriate dimensions such that PX +
QY = I.

It is interesting to note that controllability of a linear state-space system
(A,B,C,D) is equivalent to zI −A and B being left coprime.

Lemma 11.3.14. If a state-space system (A,B,C,D) ∈ Σ(m,n, p;F) is
controllable, then there exist polynomial matrices X ∈ F[z]n×n and Y ∈
F[z]m×n such that

(zI −A)X +BY = I.
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Proof. This follows immediately if one combines Lemma 3.3.7 from [51] (this
result is sometimes known as the Hautus Lemma or the Hautus controlla-
bility criterion) and Theorem 22.10 from [13].

Similarly we can define a greatest common right divisor.

Definition 11.3.15. Suppose that polynomial matrices S, S1 and R are
such that S = S1R. We say that R is a right divisor of S and we say that
S is a left multiple of R.

Definition 11.3.16. Consider S ∈ F[z]m×m and T ∈ F[z]p×m. A poly-
nomial matrix R ∈ F[z]m×m is said to be the greatest common right
divisor of S and T if

(a) R is a right divisor of both S and T ,

(b) R is a left multiple of every common right divisor of S and T .

Lemma 11.3.17. Consider S ∈ F[z]m×m and T ∈ F[z]p×m. Suppose there
exists a greatest common right divisor R ∈ F[z]m×m of S and T .

Then the set of all greatest common right divisors of S and T is {RV : V ∈
UF[z]m×m}.

Proof. This is Lemma 2 from §4.1, [55].

Theorem 11.3.18. Consider S ∈ F[z]m×m and Q ∈ F[z]p×m.

There exists a greatest common right divisor R of S and T . Moreover there
exist polynomial matrices X and Y - of appropriate dimensions - such that

XS + Y T = R. (11.3.2)

Proof. This is Theorem 7 from §4.1, [55].

Equation (11.3.2) is sometimes called the right Bezout identity.

Definition 11.3.19. Consider S ∈ F[z]m×m and T ∈ F[z]p×m. They are
said to be right coprime if every greatest common right divisor of S and
T is unimodular.

By Theorem 11.3.18, equivalently, S and T are right coprime if there exist
polynomial matrices X and Y - of appropriate dimensions - such that XS+
Y T = I.

It is reassuring to know that rational function matrices always admit left
coprime and right coprime factorisations.

Lemma 11.3.20. Consider a rational function matrix G ∈ F(z)p×m. There
exist
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• left coprime P ∈ F[z]p×p and Q ∈ F[z]p×m such that P−1Q = G,

• and right coprime S ∈ F[z]m×m and T ∈ F[z]p×m such that TS−1 = G.

Proof. We only prove (a) as (b) can be proved in an identical manner. We
first construct a factorisation P−1Q = G and then use it to construct a
factorisation P−11 Q1 = G with P1 and Q1 left coprime.

We can write an arbitrary entry Gij of G as Gij = nij/dij , where nij , dij ∈
F[z] are coprime polynomials. Denote the least common multiple of dij ’s by
d. Then clearly Gij = (1/d) · nij · (d/dij) and d/dij is a polynomial. Hence
we can define a polynomial matrix Q ∈ F[z]p×m given by Qij := nij · (d/dij)
and P := d · Ip to see that P−1Q = G. We now construct a left coprime
factorization of G.

Let R be a greatest common left divisor of P and Q. Then by Lemma 11.3.11
there exist polynomial matrices X and Y - of appropriate dimensions - such
that the left Bezout identity holds: PX +QY = R. Since R is a left divisor
of both P and Q, there exist P1 and Q1 such that P = RP1 and Q = RQ1.
Moreover as P is invertible, so is R and thus P1X+Q1Y = I, so that P1 and
Q1 are left coprime. Finally P−11 Q1 = (RP1)

−1RQ1 = P−1Q = G, which
completes the proof.

The main reason for considering input-output systems (P,Q) with P and Q
left coprime is the following lemma.

Lemma 11.3.21. Consider an input-output system (P,Q) ∈ IO(m, p;F)
and assume that P and Q are left coprime. Then deg detP is equal to the
McMillan degree of (P,Q).

Proof. Suppose P−1Q is strictly proper. Then by Theorem 22.18 from [13]
the McMillan degree of (P,Q) is equal to deg detP .

We now make the straightforward extension to the case when P−1Q is only
proper. Set D := lim|z|→∞(P−1Q)(z), so that P−1Q−D = P−1(Q−PD) is
strictly proper. Note that (A,B,C,D) is a realization of (P,Q) if, and only
if, (A,B,C, 0) is a realization of (P,Q−PD). Thus the McMillan degree of
(P,Q) is the same as the McMillan degree of (P,Q − PD), so the proof is
complete if we can show that P and Q− PD are left coprime.

This is straightforward. Since P and Q are left coprime, there exist poly-
nomial matrices X and Y such that PX + QY = I, which is equivalent to
P (X+DY )+(Q−PD)Y = I. An application of Theorem 11.3.12 completes
the proof as X +DY is clearly a polynomial matrix.

In the light of this lemma we can see that the degree of detP will play a
crucial role. Hence we need to develop a bit of theory to keep track of it.
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Consider a rational function r ∈ F(z). Then there exist polynomials p, q ∈
F[z] such that r = p

q . The integer deg r := deg p − deg q is said to be the
degree of r. It is straightforward to check that the degree of a rational
function r does not depend on the choice of p and q. Now consider a rational
function matrix M . The highest degree of the rational functions in the a-th
row, denoted by ra(M), is called the a-th row degree of M .

Lemma 11.3.22. If (P,Q) ∈ IO(m, p;F), then ra(P ) ≥ ra(Q) for all 1 ≤
a ≤ p.

Proof. Consider an arbitrary a ∈ {1, . . . , p}. Since P−1Q is proper, we have

ra(P ) ≥ ra(P (P−1Q)) = ra(Q).

Consider P ∈ F[z]p×p, then upon considering the Leibniz formula for deter-
minants one can see that deg detP ≤

∑p
a=1 ra(P ). We say that the square

matrix P is row reduced if this inequality is an equality.

It is reassuring to know that polynomial matrices can always be put into a
row reduced form.

Lemma 11.3.23. Let P ∈ F[z]p×p and assume that detP 6= 0. Then there
exists V ∈ UF[z]p×p such that V P is row reduced and deg V P ≤ degP .

Proof. With the obvious changes to generalize it to the case when we deal
with the complex field and when we deal with row reduction instead of
column reduction, this is Theorem 1 from [45].

We note that if detP = 0 then the conclusions of the previous lemma do

not hold as

(
s 0
0 0

)
clearly cannot be put into row reduced form.

11.4 Behaviours of input-output systems

We are now fully equipped to continue with our objective of proving the
realization theorem. Initially, in §11.4.1 we will do it for a class of input-
output systems for which this problem admits a considerably simpler solu-
tion. Then, in §11.4.2, we will solve the general case.

11.4.1 Behaviours of simple input-output systems

In this subsection we will prove the realization theorem for trajectories with
Z-transformable inputs u, see Proposition 11.4.2. After that we will use
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Corollary 11.1.5 to extend it to trajectories with non-Z-transformable inputs
u.

Definition 11.4.1. Consider an input-output system (P,Q) ∈ IO(m, p;F),
set k := degP and let P (z) =

∑k
j=0 Pjz

j . If P and Q are left coprime and
detPk 6= 0, then we say that (P,Q) is a simple input-output system.
We write IOs(m, p;F) for the set of simple input-output systems.

The significance of assumption detPk 6= 0 is evident in the proof of the main
result of this subsection, Proposition 11.4.2. It allows us to find the order
of a minimal realization of (P,Q).

Notation: for v ∈ (Fm)N0 and k ∈ N0 \ {0}, we define vk ∈ (Fm)k to be the
first k vectors in v, that is, vk := (v(0), v(1), . . . , v(k − 1)).

Proposition 11.4.2. Consider (P,Q) ∈ IOs(m, p;F) and set k := degP .

(a) The McMillan degree of (P,Q) is pk = deg detP .

(b) Let (A,B,C,D) be a minimal realization of (P,Q). Then for each
(u, y) ∈ B(P,Q) with a Z-transformable u there exists a unique x ∈
(Fpk)N0 such that (u, x, y) ∈ B(A,B,C,D).

(c) Moreover, there exists a linear map φ : (Fm)k × (Fp)k → Fpk such that,
for all (u, y) ∈ B(P,Q) with a Z-transformable u and for the correspond-
ing x such that (u, x, y) ∈ B(A,B,C,D), we have φ(uk, yk) = x(0).

(d) Finally, if F = C, but P and Q are real polynomial matrices, then the
image of the restriction of φ to (Rm)k × (Rp)k is contained in Rpk.

Remark: statement (c) is simply saying that x(0) depends linearly on the
first k values of u and y.

Remark: while statement (d) might seem out of place, it is needed for the
later extension to non-Z-transformable trajectories. We will analyse non-
Z-transformable trajectories (u, y) ∈ B(P,Q) by using Corollary 11.1.5 to
obtain projections (πTu, yT ) ∈ B(P,Q). However, Corollary 11.1.5 is only
available over the complex field. Statement (d) will allow us to work around
this inconvenience, for details see the proof of Corollary 11.4.3.

Proof of Proposition 11.4.2. Let us write P (z) =
∑k

j=0 Pjz
j and Q(z) =∑k

j=0Qjz
j for appropriate matrices Pj and Qj .

Since detPk 6= 0, it follows that deg detP = pk. Hence, by Lemma 11.3.21,
the McMillan degree of (P,Q) is pk, which proves (a).

Consider an arbitrary trajectory (u, y) ∈ B(P,Q) with a Z-transformable u.
Then by Lemma 11.2.7, y is Z-transformable and on some E(0, r1) we have

ŷ(z) = (P−1Q)(z)û(z) + P−1(z)θu,y(z),
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where θu,y ∈ F[z]p is given by

θu,y(z) :=

k∑
i=1

zi

 k∑
j=i

Pjy(j − i)

− k∑
i=1

zi

 k∑
j=i

Qju(j − i)

 .
Here we have used the fact that degQ ≤ degP = k (this follows from the
properness of P−1Q) and - for degQ < j ≤ k - defined Qj := 0, so the sums
are easier to write down.

By Lemma 11.2.6 and the fact that (A,B,C,D) is a realization of (P,Q),
a trajectory (u, x, w) ∈ B(A,B,C,D) if, and only if, x and w are Z trans-
formable and

x̂(z) = (zI −A)−1Bû(z) + (zI −A)−1zx(0)

ŵ(z) = (P−1Q)(z)û(z) + C(zI −A)−1zx(0).

By the properness of P−1Q, by the Neumann series expansion of (zI−A)−1

and regardless of x(0), if we define x̂ and ŵ as above, then they are Z-
transformable. Moreover, by the injectivity of the Z-transform, (u, x, y) ∈
B(A,B,C,D) as long as there exists x(0) ∈ Fpk such that

P−1(z)θu,y(z) = C(zI −A)−1zx(0)

on E(0, r2) for some r2 > 0. By multiplying from the left by P (z) we see
that, equivalently, we are looking for x(0) ∈ Fpk such that

k∑
i=1

zi

 k∑
j=i

(Pjy(j − i)−Qju(j − i))

 = P (z)C(zI −A)−1zx(0) (11.4.1)

on E(0, r2).

Let us define a pk-dimensional vector subspace of F[z]p, P := {q ∈ F[z]p :
deg q ≤ k, q(0) = 0}, and a linear map

ψ1 : (Fm)k × (Fp)k → P

(ξ0, . . . , ξk−1, µ0, . . . , µk−1) 7→
k∑
i=1

zi

 k∑
j=i

(Pjξj−i −Qjµj−i)

 .
Now consider - for 1 ≤ i ≤ pk - the polynomial vectors qi(z) := P (z)C(zI −
A)−1zei ∈ F[z]p, where e1, e2, . . . , epk are the standard basis vectors of Fpk.
We claim that if qi’s are a basis of P, then the proof of this result is complete.

Indeed, if qi’s are a basis of P, then the following linear map

ψ2 : Fpk → P
ξ 7→ P (z)C(zI −A)−1ξ
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is a vector space isomorphism. Therefore ψ2 is invertible and, since (11.4.1)
reads ψ1(u

k, yk) = ψ2(x(0)), the required x(0) ∈ Fpk is given by x(0) =
(ψ−12 ◦ψ1)(u

k, yk), which proves (b). As ψ1 and ψ−12 are both linear maps, so
is their composition φ := ψ−12 ◦ψ1; this proves (c). Finally, if P andQ are real
polynomial matrices, then ψ1

(
(Rm)k × (Rp)k

)
⊆ P ∩ R[z]p and ψ2(Rpk) =

P ∩ R[z]p, whence φ
(
(Rm)k × (Rp)k

)
= (ψ−12 ◦ ψ1)

(
(Rm)k × (Rp)k

)
⊆ Rpk,

completing the proof of (d).

We will now check that qi’s form a basis of P by first establishing that qi’s
are in P and then that qi’s are linearly independent.

By controllability of (A,B,C,D) and Lemma 11.3.14, we know that there
exist polynomial matrices X ∈ F[z]pk×pk and Y ∈ F[z]m×pk such that (zI −
A)X(z) +BY (z) = I. Multiply this from the left by P (z)C(zI −A)−1 and
use C(zI −A)−1B = (P−1Q)(z)−D to obtain

P (z)C(zI −A)−1 = P (z)CX(z) + P (z)
[
(P−1Q)(z)−D

]
Y (z)

= P (z)CX(z) +Q(z)Y (z)− P (z)DY (z).

Thus P (z)C(zI − A)−1 ∈ F[z]p×pk. Since qi(z) = P (z)C(zI − A)−1zei, we
thus have qi ∈ F[z]p and qi(0) = 0. Moreover note that

lim
|z|→∞

z−kP (z)C(zI −A)−1 = PkC lim
|z|→∞

(zI −A)−1 = 0.

Hence degP (z)C(zI −A)−1 ≤ k − 1, so that indeed qi ∈ P.

Thus we are done if we show that q1, q2, . . . qpk are linearly independent.
To this end suppose that there exist scalars λ1, λ2, . . . , λpk ∈ F such that∑pk

i=1 λizP (z)C(zI − A)−1ei = 0 for all z ∈ C. If we let ξ :=
∑pk

i=1 λiei,

then, by the invertibility of zP (z), this is equivalent to C
(
I − A

z

)−1
ξ = 0

for all z ∈ E(0, r) for some r > 0. The Neumann series for |z| > ‖A‖, give us(
I − A

z

)−1
=
∑∞

j=0
Aj

zj
, so that

∑∞
j=0

CAjξ
zj

= 0 and hence 0 = Cξ = CAξ =

CA2ξ = . . ., which gives us 
C
CA

...
CApk−1

 ξ = 0.

However (A,B,C,D) is observable, so we must have ξ = 0 and thus λi’s are
all 0. This in turn implies that qi’s are linearly independent and completes
the proof.

Of course, arbitrary trajectories in B(P,Q) might consist of elements that
are not Z-transformable. To prove a counterpart of Proposition 11.4.2 for
arbitrary trajectories, we will consider possibly non-Z-transformable inputs
u and then set them equal to 0 after a finite time T ∈ N0.
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Corollary 11.4.3. Let (P,Q) ∈ IOs(m, p;F) and set k := degP .

1. The McMillan degree of (P,Q) is pk = deg detP .

2. Let (A,B,C,D) be a minimal realization of (P,Q). Then for each
(u, y) ∈ B(P,Q) there exists a unique x ∈ (Fpk)N0 such that (u, x, y) ∈
B(A,B,C,D).

3. Moreover, there exists a linear map φ : (Fm)k × (Fp)k → Fpk such
that, for all (u, y) ∈ B(P,Q) and for the corresponding x such that
(u, x, y) ∈ B(A,B,C,D), we have φ(uk, yk) = x(0).

Proof. (a) follows from Lemma 11.3.21, so we proceed to prove (b) and (c).

First, let us consider the case F = C and set φ : (Cm)k × (Cp)k → Cpk to
be the map, the existence of which is guaranteed by Proposition 11.4.2. Let
T ∈ N0, pick (u, y) ∈ B(P,Q) and set uT := πTu. By Corollary 11.1.5,
we know that there exists yT ∈ (Cp)N0 such that the trajectory (uT , yT ) ∈
B(P,Q) and

yT (t) = y(t) ∀ t ≤ T. (11.4.2)

Since uT is clearly Z-transformable, the use of Proposition 11.4.2 shows
us that there exists xT ∈ (Cpk)N0 such that (uT , xT , yT ) ∈ B(A,B,C,D).
Moreover, by our choice of φ, we have xT (0) = φ(ukT , y

k
T ).

We now define x ∈ (Cpk)N0 by

x(t) :=

{
xk−1(t), for t ≤ k − 1

xt(t), for t ≥ k.

Since uk = (u(0), u(1), . . . , u(k − 1)) = ukk−1 and yk = (y(0), y(1), . . . , y(k −
1)) = ykk−1, we have x(0) = xk−1(0) = φ(ukk−1, y

k
k−1) = φ(uk, yk). Therefore,

if we prove that (u, x, y) ∈ B(A,B,C,D), then we have (b) and (c). Clearly,
it suffices to check that

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t) ∀ t ∈ N0.

If t ≤ k − 2, then this follows from the definition of x, equation (11.4.2),
(uk−1, yk−1) ∈ B(P,Q) and the observation that, for t ≤ k − 2, we have
uk−1(t) = u(t):

x(t+ 1) = xk−1(t+ 1) = Axk−1(t) +Buk−1(t) = Ax(t) +Bu(t)

y(t) = yk−1(t) = Cxk−1(t) +Duk−1(t) = Cx(t) +Du(t).
(11.4.3)
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If t ≥ k − 1, then equation (11.4.3) still holds, provided that we show
xt+1(t) = xt(t). Since u, ut and ut+1 agree up to time k − 1, as do y, yt and
yt+1, we have

xt(0) = φ(ukt , y
k
t ) = φ(uk, yk) = φ(ukt+1, y

k
t+1) = xt+1(0).

Moreover, xt(t) and xt+1(t) are given by (11.2.3), so, since ut and ut+1 agree
up to time t, we indeed have xt(t) = xt+1(t), which completes the proof of
(b).

The only difference of the proof of the case F = R is that we need to check
that x ∈ (Rpk)N0 . Since x(0) = φ(uk, yk) and since uk ∈ (Rm)k, yk ∈ (Rp)k,
Proposition 11.4.2 (d) implies that x(0) ∈ Rpk. Thus, by characterization
(11.2.3), x(t) ∈ Rpk for all t ∈ N0, which completes the proof.

11.4.2 Behaviours of input-output systems

In this subsection we will demonstrate that the conclusions of Corollary
11.4.3 are true even if we remove the assumption detPk 6= 0, see Theorem
11.4.8.

We will build towards the realization theorem, namely Theorem 11.4.8, in a
series of steps. We will first introduce a realization called the observer-form
realization and observe in Theorem 11.4.5 that, under some extra assump-
tions, it almost proves the realization theorem. In Corollaries 11.4.6 and
11.4.7 we will relax these extra assumptions and the realization theorem
will follow.

Lemma 11.4.4 (The observer-form realization). Consider an input-output
system (P,Q) ∈ IO(m, p;F), assume that P is row reduced and that P−1Q is
strictly proper. Set n :=

∑p
a=1 ra(P ) and define a block diagonal polynomial

matrix Ψ ∈ F[z]p×n by

Ψ(z) :=
zr1(P )−1 . . . z 1 0 . . . 0

0 zr2(P )−1 . . . z 1 . . . 0
. . .

0 0 . . . zrp(P )−1 . . . z 1

 ,

(11.4.4)

where the matrix block is empty if the corresponding row degree is 0.

Then there exists a realization (A,B,C, 0) ∈ Σ(m,n, p;F) of (P,Q) such
that (

Ψ(z) 0
0 I

)(
zI −A B
−C 0

)
=

(
P (z) Q(z)
−I 0

)(
C 0
0 I

)
. (11.4.5)
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Proof. The relevant linear state-space system is constructed on pp. 413 -
417 from [34]. Equation (38) on p. 417 from [34] is precisely our claim.

Theorem 11.4.5. Consider (P,Q) ∈ IO(m, p;F) and set k := degP . As-
sume that P is row reduced, that P−1Q is strictly proper and set n :=
deg detP .

(a) There exists a realization (A,B,C, 0) ∈ Σ(m,n, p;F) of (P,Q).

(b) For each (u, y) ∈ B(P,Q) with a Z-transformable u, there exists a unique
x ∈ (Fn)N0 such that (u, x, y) ∈ B(A,B,C, 0).

(c) Moreover, there exists a linear map φ : (Fm)k × (Fp)k → Fpk such that,
for all (u, y) ∈ B(P,Q) and for the corresponding x such that (u, x, y) ∈
B(A,B,C,D), we have φ(uk, yk) = x(0).

(d) Finally, if F = C, but P and Q are real polynomial matrices, then the
image of the restriction of φ to (Rm)k × (Rp)k is contained in Rpk.

Remark: note that the conclusions of (a) are not surprising at all, the
important piece of information there is that the order of the realization
(A,B,C, 0) is deg detP .

Proof. By row reducedness of P , we have n =
∑p

a=1 ra(P ), so we can define
Ψ ∈ F[z]p×n as in (11.4.4) to see that, by Lemma 11.4.4, there exists a
realization (A,B,C, 0) ∈ Σ(m,n, p;F) of (P,Q) such that (11.4.5) holds.
This completes the proof of (a). We note for further use that the top left
entry of (11.4.5) gives us

zΨ(z) = P (z)C(zI −A)−1z. (11.4.6)

Let us write P (z) =
∑k

j=0 Pjz
j and Q(z) =

∑k
j=0Qjz

j , for appropriate
matrices Pj and Qj . Now consider a trajectory (u, y) ∈ B(P,Q) with a Z-
transformable u. Then, by Lemma 11.2.7, y is Z-transformable and on some
E(0, r1) we have

ŷ(z) = (P−1Q)(z)û(z) + P−1(z)θu,y(z),

where θu,y ∈ F[z]p is given by

θu,y(z) :=
k∑
i=1

zi

 k∑
j=i

Pjy(j − i)

− k∑
i=1

zi

 k∑
j=i

Qju(j − i)

 .
Here we have used the fact that degQ ≤ degP = k (this follows from
Lemma 11.3.22) and - for degQ < j ≤ k - defined Qj := 0, so the sums are
easier to write down.
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By Lemma 11.2.6, (u, x, w) ∈ B(A,B,C, 0) if, and only if, x and w are
Z-transformable and

x̂(z) = (zI −A)−1Bû(z) + (zI −A)−1zx(0)

ŵ(z) = (P−1Q)(z)û(z) + C(zI −A)−1zx(0).

By the strict properness of P−1Q and by the Neumann series expansion of
(zI − A)−1, if we define x̂ and ŵ as above, then they are Z-transformable.
Moreover, by the injectivity of the Z-transform, (u, x, y) ∈ B(A,B,C, 0) as
long as there exists x(0) ∈ Fn such that P−1(z)θu,y(z) = C(zI −A)−1zx(0).
Hence, by (11.4.6), equivalently we have to find x(0) ∈ Fn such that

θu,y(z) = zΨ(z)x(0).

It is convenient to define γi,j(u, y) := Pjy(j − i) − Qju(j − i), so that this
reads

θu,y(z) =
k∑
i=1

zi
k∑
j=i

γi,j(u, y) =


zr1(P ) . . . z2 z 0 . . . 0

0 zr2(P ) . . . z2 z . . . 0
. . .

0 0 . . . zrp(P ) . . . z2 z

x(0).

(11.4.7)

Now note crucially that if ra(θu,y) ≤ ra(P ) for all a ∈ {1, . . . , p}, then there
is a unique x(0) that satisfies equation (11.4.7) and it is given by

x(0) =

∣∣∣∣∣∣∣∣∣∣

∑k
j=r1(P )[γr1(P ),j(u, y)]1∑k

j=r1(P )−1[γr1(P )−1,j(u, y)]1
...∑k

j=1[γ1,j(u, y)]1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑k
j=r2(P )[γr2(P ),j(u, y)]2∑k

j=r2(P )−1[γr2(P )−1,j(u, y)]2
...∑k

j=1[γ1,j(u, y)]2

∣∣∣∣∣∣∣∣∣∣
...∣∣∣∣∣∣∣∣∣∣

∑k
j=rp(P )[γrp(P ),j(u, y)]p∑k

j=rp(P )−1[γrp(P )−1,j(u, y)]p
...∑k

j=1[γ1,j(u, y)]p

∣∣∣∣∣∣∣∣∣∣

(11.4.8)
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Here subscripts for vectors in Fp denote the respective elements of the vector.
Since γi,j ’s depend linearly on the first k − 1 values of u and y, equation
(11.4.8) defines the required linear map φ. Thus (b) and (c) follow provided
that ra(θu,y) ≤ ra(P ).

To prove this, set ea to be the a-th basis vector of the canonical basis for Fp
(or, depending on the context, for Fm) and note that e∗aM is the a-th row
of a matrix M ; this shorthand will be useful in what is to come. We can
now use Lemma 11.3.22 to estimate

ra(θu,y) = max

i ∈ {1, . . . , k} : e∗a

 k∑
j=i

Pjy(j − i)−Qju(j − i)

 6= 0


≤max

{
i ∈ {1, . . . , k} : e∗aPj 6= 01×p or

e∗aQj 6= 01×m for some i ≤ j ≤ k
}

= max {i ∈ {1, . . . , k} : e∗aPj 6= 01×p for some i ≤ j ≤ k}
= max {i ∈ {1, . . . , k} : e∗aPi 6= 01×p}
=ra(P ).

(d) follows from equation (11.4.8).

The conclusions of Theorem 11.4.5 extend to trajectories, which might not
be Z-transformable. Mutatis mutandis, the proof follows along the same
lines as the proof of Corollary 11.4.3, so we omit it.

Corollary 11.4.6. Consider (P,Q) ∈ IO(m, p;F) and set k := degP .
Assume that P is row reduced, that P−1Q is strictly proper and set n :=
deg detP .

(a) There exists a realization (A,B,C, 0) ∈ Σ(m,n, p;F) of (P,Q).

(b) For each (u, y) ∈ B(P,Q), there exists a unique x ∈ (Fn)N0 such that
(u, x, y) ∈ B(A,B,C, 0).

(c) Moreover, there exists a linear map φ : (Fm)k × (Fp)k → Fpk such that,
for all (u, y) ∈ B(P,Q) and for the corresponding x such that (u, x, y) ∈
B(A,B,C,D), we have φ(uk, yk) = x(0).

Now we will obtain a version of the above result for input-output systems,
where P is not necessarily row reduced and where P−1Q is not necessarily
strictly proper.

Corollary 11.4.7. Consider (P,Q) ∈ IO(m, p;F) and set k := degP , n :=
deg detP .

(a) There exists a realization (A,B,C,D) ∈ Σ(m,n, p;F) of (P,Q).
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(b) For each (u, y) ∈ B(P,Q), there exists a unique x ∈ (Fn)N0 such that
(u, x, y) ∈ B(A,B,C,D).

(c) Moreover, there exists a linear map φ : (Fm)k×(Fp)k → Fn such that, for
each (u, y) ∈ B(P,Q) and for the corresponding x such that (u, x, y) ∈
B(A,B,C,D), we have φ(uk, yk) = x(0).

Proof. Let us set D := lim|z|→∞(P−1Q)(z). It is straightforward to verify
that

(u, y) ∈ B(P,Q) ⇐⇒ (u, y −Du) ∈ B(P,Q− PD). (11.4.9)

By Lemma 11.3.23 there exists a unimodular V such that V P is row reduced
and such that deg V P ≤ degP = k. Moreover, (V P )−1(V (Q − PD)) =
P−1(Q−PD) is a strictly proper rational function matrix and deg detV P =
deg detP = n. Hence we can apply Corollary 11.4.6 to the input-output
system (V P, V (Q−PD)) ∈ IO(m, p;F) to see that there exists a realization
(A,B,C, 0) ∈ Σ(m,n, p;F) of (V P, V (Q− PD)) such that for each (u, y) ∈
B(V P, V (Q − PD)) there exists a unique x ∈ (Fn)N0 such that (u, x, y) ∈
B(A,B,C, 0). Moreover, if we set l := deg V P ≤ k, then there exists a linear
map ψ : (Fm)l × (Fp)l → Fn such that, for all (u, y) ∈ B(V P, V (Q − PD))
and for the corresponding x such that (u, x, y) ∈ B(A,B,C, 0), we have
ψ(ul, yl) = x(0).

It is easy to see that (A,B,C,D) is a realization of (P,Q), which proves
(a). Now pick an arbitrary trajectory (u, y) ∈ B(P,Q). Then (u, y −Du) ∈
B(P,Q−PD) = B(V P, V (Q−PD)), where the equality of behaviours follows
from the unimodularity of V . Hence there exists a unique x ∈ (Fn)N0 such
that (u, x, y−Du) ∈ B(A,B,C, 0) and thus (u, x, y) ∈ B(A,B,C,D), which
gives us (b). Moreover, by the definition of ψ, we have x(0) = ψ(ul, yl −
Dul). Since k ≥ l, we can define a linear map φ : (Fm)k × (Fp)k → Fn by
φ(uk, yk) := ψ(ul, yl −Dul), which completes the proof of (c).

We can guarantee that (A,B,C,D) is a minimal realization, if we assume
that P and Q are left coprime.

Theorem 11.4.8 (Realization theorem). Consider an input-output system
(P,Q) ∈ IO(m, p;F), set k := degP , n := deg detP and assume that P and
Q are left coprime.

(a) The McMillan degree of (P,Q) is n.

(b) Let (A,B,C,D) be a minimal realization of (P,Q). Then for each tra-
jectory (u, y) ∈ B(P,Q) there exists a unique x ∈ (Fn)N0 such that
(u, x, y) ∈ B(A,B,C,D),
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(c) Moreover, there exists a linear map φ : (Fm)k×(Fp)k → Fn such that, for
each (u, y) ∈ B(P,Q) and for the corresponding x such that (u, x, y) ∈
B(A,B,C,D), we have φ(uk, yk) = x(0).

Proof. By Corollary 11.4.7, there exists a realization (A,B,C,D) of (P,Q) of
degree n such that for each (u, y) ∈ B(P,Q) there exists a unique x ∈ (Fn)N0

such that (u, x, y) ∈ B(A,B,C,D). Moreover, there exists a linear map
φ : (Fm)k × (Fp)k → Fn such that, for each (u, y) ∈ B(P,Q) and for the
corresponding x such that (u, x, y) ∈ B(A,B,C,D), we have φ(uk, yk) =
x(0). By Lemma 11.3.21, (A,B,C,D) is a minimal realization, so we only
need to extend the above conclusions to any minimal realization of (P,Q).
Since minimal realizations are unique up to a similarity transform (see e.g.
Theorem 21.16 from [13]), this follows in a straightforward manner and we
do not spell out the details.

Theorem 11.4.8 contains elements of novelty. Statement (a) is well-known
(see e.g. §6.4 from Kailath [34]), but - to author’s best knowledge - the
only available proof of (b) is in the continuous-time setting (see Theorem
5.1 from [57], which has a short proof that we found difficult to penetrate)
and (c) seems to be a new observation.

We finish this subsection with a characterization of trajectories in B(P,Q),
where P and Q are not necessarily left coprime.

Proposition 11.4.9. Consider (P,Q) ∈ IO(m, p;F) and let R be a greatest
common left divisor of P and Q, so that the left Bezout identity (11.3.1)
holds: PX + QY = R. Set P1 and Q1 to be the polynomial matrices that
satisfy P = RP1 and Q = RQ1 respectively.

Then P1 and Q1 are left coprime and

B(P,Q) = B(P1, Q1)⊕ [(−Y (L), X(L)) kerR(L)] .

Proof. Since P is invertible, so is R; we here use the fact that P, P1, R ∈
F[z]p×p. Hence we can left-multiply the Bezout identity by R−1 to obtain

P1X +Q1Y = I, (11.4.10)

which implies that P1 and Q1 are left coprime.

Let us now show that

B(P,Q) = B(P1, Q1)⊕ [(−Y (L), X(L)) kerR(L)] .

“⊆”: Let (u, y) ∈ B(P,Q) and set v := P1(L)y − Q1(L)u. We can see that
v ∈ kerR(L) as

R(L)v = R(L)P1(L)y −R(L)Q1(L)u

= P (L)y −Q(L)u = 0.
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Hence we can decompose (u, y) as

(u, y) = (u+ Y (L)v, y −X(L)v) + (−Y (L), X(L))v,

so it remains to check that (u+ Y (L)v, y−X(L)v) ∈ B(P1, Q1). But this is
a straightforward calculation:

P1(L)[y −X(L)v]−Q1(L)[u+ Y (L)v] =

= P1(L)y −Q1(L)u− [P1(L)X(L) +Q1(L)Y (L)]v

= P1(L)y −Q1(L)u− v
= 0.

It remains to show that the sum is direct. If there exist two such de-
compositions, then - upon considering their difference - there also exists
(u1, y1) ∈ B(P1, Q1) such that (u1, y1) ∈ (−Y (L), X(L)) kerR(L). Hence
there exists v ∈ kerR(L) such that (u1, y1) = (−Y (L), X(L))v. But we can
use the Bezout identity to see that this v must satisfy

v = P1(L)X(L)v +Q1(L)Y (L)v = P1(L)y1 −Q1(L)u1 = 0,

so that (u1, y1) = (−Y (L), X(L))v = (0, 0). Therefore we conclude that the
decomposition is unique and the sum - direct.

“⊇”: Let (u, y) ∈ B(P1, Q1) and v ∈ kerR(L). Then

P (L)(y +X(L)v) = R(L)P1(L)y + P (L)X(L)v

= R(L)Q1(L)u+R(L)v −Q(L)Y (L)v

= Q(L)(u− Y (L)v),

which shows that (u − Y (L)v, y + X(L)v) ∈ B(P,Q) and completes the
proof.

Example 11.4.10. Consider P (z) = z2 − 2z and Q(z) = z − 2 so that
(P,Q) ∈ IO(1, 1;R). A greatest common (left) divisor of P and Q is R(z) =
z − 2 and

kerR(L) =
{
y ∈ FN0 : y(t) = 2ty(0)

}
.

We can check that the (left) Bezout identity reads (z2−2)·0+(z−2)·1 = z−2,
so - for P1(z) = z and Q1(z) = 1 - we have P = RP1 and Q = RQ1. Thus,
by Proposition 11.4.9, (u, y) ∈ B(P,Q) if, and only if, there exists ξ ∈ F
such that

y(t+ 1) = u(t) + 2t+1ξ ∀ t ∈ N0.
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11.5 Behaviours of image input-output systems

In this section we turn our attention to a class of input-output systems that
we will call image input-output systems. Under the name “image repre-
sentations”, the behaviours of their continuous-time counterparts have been
explored in §6.6 from Polderman and Willems [47]. As we will see in Lem-
mas 11.5.2 and 11.5.3, the trajectories of behaviours of image input-output
systems are closely related to trajectories in behaviours of input-output sys-
tems.

Definition 11.5.1. Let S ∈ F[z]m×m and T ∈ F[z]p×m be such that detS 6=
0 and TS−1 ∈ F(z)p×m is proper. We call the tuple (S, T ) a (discrete-time)
image input-output system and we write (S, T ) ∈ IOim(m, p;F).

We define the behaviour B(S, T ) of an image input-output system (S, T )
as the set of all triples (u, v, y) ∈ (Fm)N0 × (Fm)N0 × (Fp)N0 such that

u = S(L)v

y = T (L)v.

Lemma 11.5.2. Let (P,Q) ∈ IO(m, p;F) and (S, T ) ∈ IOim(m, p;F) be
such that P−1Q = TS−1. If (u, v, y) ∈ B(S, T ), then (u, y) ∈ B(P,Q).

Proof. Since (u, v, y) ∈ B(S, T ), we have u = S(L)v and y = T (L)v. Hence,
by using QS = PT , we can check that P (L)y = (PT )(L)v = (QS)(L)v =
Q(L)u, which in turn means that (u, y) ∈ B(P,Q) as required.

We can obtain a partial converse of this result by assuming more regularity
on (P,Q) and (S, T ).

Lemma 11.5.3. Let (P,Q) ∈ IO(m, p;F) and (S, T ) ∈ IOim(m, p;F) be such
that P−1Q = TS−1. Assume further that P and Q are left coprime while
S and T are right coprime. If (u, y) ∈ B(P,Q), then there exists a unique
v ∈ (Fm)N0 such that (u, v, y) ∈ B(S, T ). It is given - for some polynomial
matrices X,Y - by v = X(L)u+ Y (L)y.

Remark: the proof of this lemma uses ideas from the proof of Lemma 6.4.2
in [34].

Proof. Since P and Q are left coprime and S and T are right coprime, by
Theorems 11.3.12 and 11.3.18, there exist polynomial matrices X1, Y1, X2, Y2
of appropriate dimensions such that the Bezout identities hold: PX1+QY1 =
Ip and X2S + Y2T = Im. Now pick an arbitrary (u, y) ∈ B(P,Q) and set
v := X2(L)u + Y2(L)y. We will show that (u, v, y) ∈ B(S, T ) and hence
X2, Y2 are the sought polynomial matrices.
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Note that T (L)v = (TX2)(L)u + (TY2)(L)y and S(L)v = (SX2)(L)u +
SY2(L)y. We will now obtain alternative expressions for TX2, TY2, SX2

and SY2. Using the Bezout identities, it is straightforward to check that(
X2 Y2
−Q P

)(
S −Y1
T X1

)
=

(
Im Y2X1 −X2Y1
0 Ip

)
. (11.5.1)

We now note that(
Im Y2X1 −X2Y1
0 Ip

)(
Im X2Y1 − Y2X1

0 Ip

)
=

(
Im 0
0 Ip

)
.

Hence - upon setting X3 := SX2Y1 − SY2X1 − Y1 and Y3 := TX2Y1 −
TY2X1 +X1 - we have(

X2 Y2
−Q P

)(
S X3

T Y3

)
=

(
X2 Y2
−Q P

)(
S −Y1
T X1

)(
Im X2Y1 − Y2X1

0 Ip

)
=

(
Im 0
0 Ip

)
.

This in turn means that we also have(
S X
T Y

)(
X2 Y2
−Q P

)
=

(
Im 0
0 Ip

)
, (11.5.2)

which allows us to verify that

T (L)v =(TX2)(L)u+ (TY2)(L)y

=(Y Q)(L)u+ y − (Y P )(L)y

=y + Y (L) [Q(L)u− P (L)y]

=y

and

S(L)v =(SX2)(L)u+ (SY2)(L)y

=u+ (XQ)(L)u− (XP )(L)y

=u+X(L) [Q(L)u− P (L)y]

=u,

so that (u, v, y) ∈ B(S, T ) as claimed.

We are left with checking the uniqueness of v. Suppose that (u, v1, y) ∈
B(S, T ) and (u, v2, y) ∈ B(S, T ). Then S(L)(v1 − v2) = u − u = 0 and
T (L)(v1−v2) = y−y = 0. Hence, by right coprimeness of S and T , we have

0 = X2(L)(S(L)(v1 − v2)) + Y2(L)(T (L)(v1 − v2))
= (X2S + Y2T )(L)(v1 − v2)
= v1 − v2.
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Remark: equation (11.5.1) can be used to obtain other polynomial matrix
identities in the spirit of equation (11.5.2). For example, in a similar way
we can see that(

Im −Y2X1

0 Ip

)(
X2 Y2
−Q P

)(
S X1

T Y1

)(
Im Y1X2

0 Ip

)
=

(
Im 0
0 Ip

)
,

which in turn (after a lengthy calculation) implies that Y1 and X2 commute:
Y1X2 = X2Y1. These ideas come from the proof of Lemma 6.4.2 from [34].
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Chapter 12

Stability of input-output
Lur’e systems

In this chapter we will put Theorem 11.4.8 to use in stability analysis of
Lur’e systems arising from the linear input-output systems introduced in
the previous chapter. We will initially consider input-output Lur’e systems

k∑
j=0

Pjy(t+ j) =
k∑
j=0

Qjf(y(t+ j)). (12.1)

These arise when modelling digital filters, sampled systems and linear mul-
tistep methods from numerical analysis, see Coughlan, Hill and Logemann
[11]. Using Theorem 11.4.8, we will be able to obtain absolute stability
results that resemble the ones from Parts I and II.

The use of Theorem 11.4.8 will allow us to construct a state-space system
(A,B,C,D) such that for each y, which satisfies (12.1), there exists x such
that (x, y) ∈ B(A,B,C,D, f). We will use this idea to obtain a number of
stability results for input-output Lur’e systems (12.1); these will be stated
using only data from the input-output Lur’e system.

First, we will use this to obtain in Proposition 12.1.7 an input-output Aizer-
man version of the circle criterion: it will turn out that if the input-output
Lur’e system (12.1) is globally asymptotically stable for all complex linear
output feedback matrices F that satisfy the norm condition ‖F (ξ)‖ < r ‖ξ‖
for some r > 0 and for all ξ ∈ Cp \ {0}, then the input-output Lur’e system
(12.1) is globally asymptotically stable for all nonlinear output feedback
maps f that satisfy the same norm condition ‖f(ξ)‖ < r ‖ξ‖. This result
will then lead to corollaries in much the same way as in Parts I and II.

After absolute stability analysis of (12.1), we will turn our attention to forced
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input-output Lur’e systems

k∑
j=0

Pjy(t+ j) =
k∑
j=0

Qj(f(y(t+ j)) + d(t+ j)). (12.2)

Similarly as above, Theorem 11.4.8 will enable us to apply ISS results from
Part I to obtain stability criteria guaranteeing an appropriate generalization
of input-to-state stability to a setting without a notion of state. As in Parts
I and II, this will lead to an Aizerman-like result, see Theorem 12.1.13.

Finally, in §12.2 we will briefly treat image input-output Lur’e systems in a
similar way, see Proposition 12.2.3.

Stability properties of input-output feedback systems have been studied in
Desoer and Vidyasagar [14] and Zames [64]. The results proved there depend
on norm approximations and as a result establish input-to-output stability
in the lp sense (1 ≤ p ≤ ∞). These can then be used to obtain asymptotic or
exponential stability results via the technique of exponential weighting. In
contrast, the use of Theorem 11.4.8 allows us to analyse stability of trajec-
tories satisfying (12.1) and (12.2) in a state-space setting, where Lyapunov
methods are available.

12.1 Input-output Lur’e systems

In this section we will analyse input-output Lur’e systems (12.1) and (12.2).
We will first analyse the existence and uniqueness of solutions of an initial
value problem induced by (12.1) in §12.1.1. Then we will obtain absolute
stability results for (12.1) in §12.1.2 and, after introducing an appropriate
ISS counterpart in an input-output setting, stability results for (12.2) in
§12.1.3.

Definition 12.1.1. Let (P,Q) ∈ IO(m, p;F); if P and Q are left coprime
and f is a map f : Fp → Fm, then we say that (P,Q, f) is an input-output
Lur’e system.

We define the behaviour B(P,Q, f) of the input-output Lur’e system
(P,Q, f) as

B(P,Q, f) :=
{
y ∈ (Fp)N0 : (f ◦ y, y) ∈ B(P,Q)

}
.

Set P (z) =
∑k

j=0 Pjz
j and Q(z) =

∑k
j=0Qjz

j , where k := degP and where
we have defined Qj := 0 for degQ < j ≤ degP (recall that degP ≥ degQ
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by properness of P−1Q). If y ∈ B(P,Q, f), then this simply means that

k∑
j=0

Pjy(t+ j) =

k∑
j=0

Qjf(y((t+ j)) (12.1.1)

for all t ∈ N0.

Note that, for a general f , we cannot guarantee that the behaviour of an
input-output Lur’e system is nonempty or, if it is nonempty, uniqueness of
solutions given the first few values of y(i). Hence we will briefly look at the
initial value problem corresponding to equation (12.1.1) and exhibit a few
simple conditions when we can guarantee the existence or uniqueness of its
solutions.

12.1.1 Existence and uniqueness of initial value problems de-
fined by input-output systems

Let (P,Q, f) be an input-output Lur’e system, where (P,Q) ∈ IO(m, p;F).
Set k := degP and write P (z) =

∑k
j=0 Pjz

j and Q(z) =
∑k

j=0Qjz
j , where

we have defined Qj := 0 for degQ < j ≤ degP (degP ≥ degQ by the
properness of P−1Q). Now consider the related initial value problem

k∑
j=0

Pjy(t+ j) =

k∑
j=0

Qjf(y(t+ j)) ∀ t ∈ N0, yk = ξ ∈ (Fp)k. (IVP)

If we define g : Fp → Fp by g(ξ) := Pkξ−Qkf(ξ), then a sufficient condition
for existence of solutions of (IVP) for all initial conditions is surjectivity of
g and a sufficient condition for existence of a unique solution is bijectivity of
g. Note that pre-multiplication of both sides of the equation in (IVP) by an
invertible matrix T does not change surjectivity and bijectivity properties
of the corresponding map Tg - this will be used in Proposition 12.1.5.

We will now apply well-known results from Renardy and Rogers [49], to
obtain sufficient conditions for surjectivity and bijectivity of g.

Definition 12.1.2. A function h : Fp → Fp is called coercive if

Re 〈h(ξ), ξ〉
‖ξ‖

→ ∞ as ‖ξ‖ → ∞.

A function h : Fp → Fp is called monotone if

Re 〈h(ξ)− h(µ), ξ − µ〉 ≥ 0 for all ξ, µ ∈ Fp. (12.1.2)

We say that h is strictly monotone if the inequality (12.1.2) is strict
whenever ξ 6= µ.

171 12.1. INPUT-OUTPUT LUR’E SYSTEMS



CHAPTER 12. STABILITY OF INPUT-OUTPUT LUR’E SYSTEMS

The real versions of the following two results are Theorems 10.40 and 10.37
from [49]. The extensions to the complex case are straightforward, so we
omit them.

Theorem 12.1.3. Let h : Fp → Fp be continuous and coercive. Then h is
surjective.

Theorem 12.1.4. Let h : Fp → Fp be continuous, strictly monotone and
coercive. Then h is bijective.

As a corollary we can now provide sufficient conditions for the existence and
uniqueness of solutions of the initial value problem (IVP).

Proposition 12.1.5. Let (P,Q, f) be an input-output Lur’e system with
(P,Q) ∈ IO(m, p;F). Let k := degP , write P (z) =

∑k
j=0 Pjz

j and Q(z) =∑k
j=0Qjz

j, and consider the initial value problem (IVP). If there exists an

invertible matrix T ∈ Fp×p such that

1

‖ξ‖
Re 〈TPkξ − TQkf(ξ), ξ〉 → ∞ as ‖ξ‖ → ∞,

then the initial value problem (IVP) has a solution y ∈ B(P,Q, f) for any
initial conditions. If there exists an invertible matrix T ∈ Fp×p such that

Re 〈TPk(ξ − µ)− TQk(f(ξ)− f(µ)), ξ − µ〉 > 0 ∀ ξ, µ ∈ Fp, ξ 6= µ,

then the initial value problem (IVP) has a unique solution y ∈ B(P,Q, f)
for any initial conditions.

In what is to follow we will not care about the existence and uniqueness of
solutions of the initial value problem (IVP). Instead, our stability results
will hold for all trajectories y ∈ B(P,Q, f). However, Proposition 12.1.5 is
a reassuring result to know and we will show in a remark after our main
absolute stability result, Proposition 12.1.7, that - under its assumptions -
existence of solutions of the initial value problem (IVP) is guaranteed.

12.1.2 Absolute stability

Recall two shorthands: for y ∈ (Fp)N0 , we write yk = (y(0), y(1), . . . , y(k −
1)) ∈ (Fp)k and, for D ∈ Fp×m,K ∈ Fm×p, we write DK = (I −DK)−1D.

We will be concerned with the following stability concepts.

Definition 12.1.6. Consider an input-output Lur’e system (P,Q, f) and
set k := degP . We say that (P,Q, f) is

(a) globally stable, if there exists c > 0 such that

‖y(t)‖ ≤ c
∥∥∥yk∥∥∥ ∀ t ∈ N0 ∀ y ∈ B(P,Q, f);
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(b) globally asymptotically stable, if it is globally stable and

lim
t→∞

y(t) = 0 ∀ y ∈ B(P,Q, f);

(c) globally exponentially stable, if there exist c > 0 and a ∈ (0, 1) such
that

‖y(t)‖ ≤ cat
∥∥∥yk∥∥∥ ∀ t ∈ N0 ∀ y ∈ B(P,Q, f).

Now the use of Theorem 11.4.8 and Proposition 4.2.1 gives us a short proof
of the input-output Aizerman version of the circle criterion.

Proposition 12.1.7. Consider an input-output Lur’e system (P,Q, f) with
(P,Q) ∈ IO(m, p;F). Set D := lim|z|→∞(P−1Q)(z), let K ∈ Fm×p, r > 0
and assume that BC(K, r) ⊆ SC

(
P−1Q

)
.

(a) If
∥∥DK

∥∥ < 1/r and

‖f(ξ)−Kξ‖ ≤ r ‖ξ‖ ∀ ξ ∈ Fp, (12.1.3)

then the input-output Lur’e system (P,Q, f) is globally stable.

(b) If f is continuous,
∥∥DK

∥∥ < 1/r and

‖f(ξ)−Kξ‖ < r ‖ξ‖ ∀ξ ∈ Fp \ {0}, (12.1.4)

then the input-output Lur’e system (P,Q, f) is globally asymptotically
stable.

(c) If there exists δ ∈ (0, r) such that

‖f(ξ)−Kξ‖ ≤ (r − δ) ‖ξ‖ ∀ξ ∈ Fp, (12.1.5)

then the input-output Lur’e system (P,Q, f) is globally exponentially
stable.

Proof. Set n := deg detP and k := degP ; by Theorem 11.4.8 we know
that there exists a controllable and observable realization (A,B,C,D) ∈
Σ(m,n, p;F) of (P,Q). Also, for each (u, y) ∈ B(P,Q) there exists a unique
x ∈ (Fn)N0 such that (u, x, y) ∈ B(A,B,C, 0). Moreover, there exists a
linear map φ : (Fm)k × (Fp)k → Fn such that x(0) = φ(uk, yk).

Since P−1Q is the transfer function of (A,B,C,D), we can apply Proposition
4.2.9 to the Lur’e system (A,B,C,D, f).

(a) If f satisfies (12.1.3), then (A,B,C,D, f) is globally stable, so that, for
some c1 > 0 we have ‖y(t)‖ ≤ c1 ‖x(0)‖ for all (x, y) ∈ B(A,B,C,D, f).
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(b) If f satisfies (12.1.4), then (A,B,C,D, f) is globally asymptotically sta-
ble, so it is globally stable and limt→∞ y(t) = 0 for all trajectories
(x, y) ∈ B(A,B,C,D, f).

(c) If f satisfies (12.1.5), then (A,B,C,D, f) is globally exponentially sta-
ble, so there exists a ∈ (0, 1) and c2 such that ‖y(t)‖ ≤ c2a

t ‖x(0)‖ for
all (x, y) ∈ B(A,B,C,D, f).

Note that if y ∈ B(P,Q, f), then (f ◦ y, y) ∈ B(P,Q), so that there exists
x ∈ (Fn)N0 such that (f ◦ y, x, y) ∈ B(A,B,C,D) or, equivalently, (x, y) ∈
B(A,B,C,D, f). Therefore, in view of the above application of Proposition
4.2.9, it suffices to show that there exists a positive c3 such that

‖x(0)‖ ≤ c3
∥∥∥yk∥∥∥

for all y ∈ B(P,Q, f) and for the corresponding x such that (f ◦ y, x, y) ∈
B(A,B,C,D). This is straightforward. By linearity of φ, there exists a
positive c4 such that

‖x(0)‖ ≤ c4
k−1∑
j=0

(‖f(y(j))‖+ ‖y(j)‖)

and the observation that ‖f(ξ)‖ ≤ (r + ‖K‖) ‖ξ‖ completes the proof.

It is interesting to note that, under the assumptions of Proposition 12.1.7,
the initial value problem (IVP) admits solutions for any initial conditions
as long as Pk is invertible (here k := degP and P (z) =

∑k
j=0 Pjz

j , Q(z) =∑k
j=0Qjz

j). Note that, in all cases, the assumptions of Proposition 12.1.7
imply that there exists δ1 > 0 such that∥∥DK(f(ξ)−Kξ)

∥∥ ≤ (1− δ1) ‖ξ‖ (12.1.6)

for all ξ ∈ Fp. Furthermore, by using PkD = Qk, we can check that, for
T ∈ Fp×p, we have

1

‖ξ‖
Re 〈TPkξ − TQkf(ξ), ξ〉

=
1

‖ξ‖
Re 〈T (Pk −QkK)ξ − TQk(f(ξ)−Kξ), ξ〉

=
1

‖ξ‖
Re 〈TPk [(I −DK)ξ −D(f(ξ)−Kξ)] , ξ〉

=
1

‖ξ‖
Re
〈
TPk(I −DK)

[
ξ −DK(f(ξ)−Kξ)

]
, ξ
〉
.
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If we now pick T = (I − DK)−1P−1k , then the use of (12.1.6) and the
Cauchy-Schwarz inequality gives us

1

‖ξ‖
Re 〈TPkξ − TQkf(ξ), ξ〉 ≥ ‖ξ‖ − (1− δ1) ‖ξ‖ = δ1 ‖ξ‖

for all ξ ∈ Fp. Hence, by Proposition 12.1.5, the initial value problem (IVP)
has a solution for all initial conditions.

Similarly, if we pick T = (I −DK)−1P−1k , then we can check that

1

‖ξ − µ‖2
Re 〈TPk(ξ − µ)− TQk(f(ξ)− f(µ)), ξ − µ〉

= 1−
〈
DK [(f(ξ)−Kξ)− (f(µ)−Kµ)], ξ − µ

〉
≥ 1− 1

r

‖(f(ξ)−Kξ)− (f(µ)−Kµ)‖
‖ξ − µ‖

.

Hence, by Proposition 12.1.5, we see that the initial value problem (IVP) has
a unique solution for all initial conditions as long as the map ξ 7→ f(ξ)−Kξ
is Lipschitz continuous with Lipschitz constant strictly less than r.

By pickingK = 0 in the input-output Aizerman version of the circle criterion
and by using Lemma 3.2.7 to see that BC(0, r) ⊆ SC

(
P−1Q

)
is equivalent to∥∥P−1Q∥∥

H∞
≤ 1

r , we obtain the following corollary, statement (c) of which
is the small-gain theorem.

Corollary 12.1.8. Consider an input-output Lur’e system (P,Q, f) with
(P,Q) ∈ IO(m, p;F) and set D := lim|z|→∞(P−1Q)(z).

(a) If ∥∥P−1Q∥∥
H∞
‖f(ξ)‖ ≤ ‖ξ‖ ∀ ξ ∈ Fp,

and if ‖D‖ supξ∈Fp
f(ξ)
‖ξ‖ < 1, then the input-output Lur’e system (P,Q, f)

is globally stable.

(b) If f is continuous,∥∥P−1Q∥∥
H∞
‖f(ξ)‖ < ‖ξ‖ ∀ξ ∈ Fp \ {0},

and if ‖D‖ supξ∈Fp
f(ξ)
‖ξ‖ < 1, then the input-output Lur’e system (P,Q, f)

is globally asymptotically stable.

(c) If ∥∥P−1Q∥∥
H∞

sup
ξ∈Fp

‖f(ξ)‖
ξ

< 1

then the input-output Lur’e system (P,Q, f) is globally exponentially
stable.
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Note that if lim|z|→∞ P
−1Q(z) = 0, then the inequalities involving D and

DK in Corollary 12.1.8 and Proposition 12.1.7 are automatically satisfied.

Example 12.1.9. We borrow an example from §1.2 in Hinrichsen and
Pritchard [25], the Samuelson-Hicks multiplier-accelerator model. It models
the evolution of total national income depending on consumer expenditure,
investment and government expenditure. If we assume that the model has
an equilibrium point, then the linearization around it is given by

y(t+ 2) = cy(t+ 1) + l(y(t+ 1)− y(t)), (12.1.7)

where we are assuming, for simplicity, that the government expenditure is
constant. Here c is assumed to be a constant between 0 and 1 related to
consumer behaviour, while l is a parameter that a government might hope
to influence. We will show that Corollary 12.1.8 can be used to guarantee
stability for a range of parameter l values without finding explicit solutions.
We model (12.1.7) by a SISO input-output Lur’e system (p, q, f), where
p(z) = z2 − cz, q(z) = z − 1 and f(ξ) = lξ. Clearly,

q(z)

p(z)
=

z − 1

z(z − c)
= 1− 1− c

z − c
,

so that
∥∥∥ qp∥∥∥H∞ ≥ 1 − 1−c

−1−c = 2
1+c . Therefore, by Corollary 12.1.8 (a), we

see that stable national income can be achieved by making sure that

|l| ≤ 1 + c

2
.

These values of l might be counterproductive if the government intends to
increase the national income, but it is nevertheless interesting to know.

Similarly, one can obtain an input-output version of the MIMO circle crite-
rion; for simplicity, we only state it for input-output Lur’e systems, where
the underlying linear system has a strictly proper transfer function. Since
the proof does not require new techniques, we omit it.

Proposition 12.1.10. Consider an input-output Lur’e system (P,Q, f)
with (P,Q) ∈ IO(m, p;F) and define G := P−1Q. Assume that G is strictly
proper and that for some K1,K2 ∈ Fm×p the rational function matrix (I −
K2G)(I −K1G)−1 is positive real.

(a) If ker(K1 −K2) = {0} and if

Re 〈f(ξ)−K1ξ, f(ξ)−K2ξ〉 ≤ 0 ∀ ξ ∈ Fp,

then the input-output Lur’e system (P,Q, f) is globally stable.
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(b) If

Re 〈f(ξ)−K1ξ, f(ξ)−K2ξ〉 < 0 ∀ ξ ∈ Fp \ {0},

then the input-output Lur’e system (P,Q, f) is globally asymptotically
stable.

(c) If, for some positive δ, we have

Re 〈f(ξ)−K1ξ, f(ξ)−K2ξ〉 ≤ −δ ‖ξ‖2 ∀ ξ ∈ Fp,

then the input-output Lur’e system (P,Q, f) is globally exponentially
stable.

12.1.3 Input-to-output stability

We will now introduce input-to-output stability, which captures the notion
of input-to-state stability in our setting, where there is no state. Similarly
as in §12.1.2, this will allow us to obtain stability results resembling the ones
in Chapter 5.

Definition 12.1.11. Consider an input-output Lur’e system (P,Q, f) and
let (P,Q) ∈ IO(m, p;F). We define the behaviour with disturbances
Bd(P,Q, f) of the input-output Lur’e system (P,Q, f) as

Bd(P,Q, f) :=
{

(d, y) ∈ (Fm)N0 × (Fp)N0 : (f ◦ y + d, y) ∈ B(P,Q)
}
.

A notion of stability for systems with inputs and outputs has been explored
by Sontag and Wang in [53], however they assume that there is a state as
well and the initial state features in the definition of said stability notion
instead of initial values of y. Since input-output Lur’e systems (P,Q, f)
have no inherent notion of state, we prefer to use a stability notion defined
in terms of only the data of (P,Q, f) and its behaviour with disturbances.

Definition 12.1.12. Consider an input-output Lur’e system (P,Q, f) with
(P,Q) ∈ IO(m, p;F) and set k := degP . We say that (P,Q, f) is input-to-
output stable if there exist β ∈ KL and γ ∈ K∞ such that

‖y(t)‖ ≤ β
(∥∥∥yk∥∥∥ , t)+ γ(‖d‖∞) ∀ t ∈ N0

and for all (d, y) ∈ Bd(P,Q, f) with d ∈ l∞(Fm).

The combination of Theorem 11.4.8 and Proposition 5.3.5 leads us to the
following result.
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Theorem 12.1.13. Consider an input-output Lur’e system (P,Q, f) with
(P,Q) ∈ IO(m, p;F). Assume that for some K ∈ Fm×p, r > 0 we have
BC(K, r) ⊆ SC

(
P−1Q

)
and that there exists α ∈ K∞ such that

‖f(ξ)−Kξ‖ ≤ r ‖ξ‖ − α(‖ξ‖) ∀ ξ ∈ Fp. (12.1.8)

Then the input-output Lur’e system (P,Q, f) is input-to-output stable.

Proof. Set n := deg detP ; by Theorem 11.4.8, there exists a controllable
and observable realization (A,B,C,D) ∈ Σ(m,n, p;F) of (P,Q). Also, for
each (u, y) ∈ B(P,Q), there exists a unique x ∈ (Fn)N0 such that (u, x, y) ∈
B(A,B,C,D). Moreover, there exists a linear map φ : (Fm)k × (Fp)k → Fn
such that x(0) = φ(uk, yk).

Now as BC(K, r) ⊆ SC((P−1Q)(z)) = SC(C(zI −A)−1B+D), we can apply
Proposition 5.3.5 to see that the Lur’e system (A,B,C,D, f) is input-to-
state stable. Hence there exist β ∈ KL and γ ∈ K∞ such that for each
(d, x, y) ∈ Bd(A,B,C,D, f) with d ∈ l∞(Fm) we have

‖x(t)‖ ≤ β(‖x(0)‖ , t) + γ(‖d‖∞) ∀ t ∈ N0.

By definition, (d, x, y) ∈ Bd(A,B,C,D, f) if, and only if, (f ◦ y + d, x, y) ∈
B(A,B,C,D). Thus we obtain

‖x(t)‖ ≤ β(‖x(0)‖ , t) + γ(‖d‖∞) (12.1.9)

for all t ∈ N0 and for all (f ◦ y + d, x, y) ∈ B(A,B,C,D) with d ∈ l∞(Fm).

Now recall that if (d, y) ∈ Bd(P,Q, f), then (f ◦ y+ d, y) ∈ B(P,Q), so that,
there exists x such that (f ◦ y + d, x, y) ∈ B(A,B,C,D) and x(0) = φ(fk +
dk, yk), where we have set fk := (f(y(0)), f(y(1)), . . . , f(y(k − 1))) ∈ (Fp)k.
Hence

‖x(t)‖ ≤ β
(∥∥∥φ(fk + dk, yk)

∥∥∥ , t)+ γ(‖d‖∞) (12.1.10)

for all t ∈ N0 and for all (d, y) ∈ Bd(P,Q, f), where x is such that (f ◦
y + d, x, y) ∈ B(A,B,C,D). The use of (12.1.8) shows us that ‖f(ξ)‖ ≤
(‖K‖ + r) ‖ξ‖ for all ξ ∈ Fp, so that

∥∥fk∥∥ ≤ (‖K‖ + r)
∥∥yk∥∥. Therefore,

by the linearity of φ, there exists c1 > 0 such that
∥∥φ(fk + dk, yk)

∥∥ ≤
c1(
∥∥yk∥∥ +

∥∥dk∥∥). Since, for a fixed t ∈ N0, the function β(·, t) is a K
function, we can use (12.1.10) to see that

‖x(t)‖ ≤ β
(∥∥∥φ(fk + dk, yk)

∥∥∥ , t)+ γ(‖d‖∞)

≤ β
(
c1

(∥∥∥yk∥∥∥+
∥∥∥dk∥∥∥) , t)+ γ(‖d‖∞)

≤ β
(

2c1

∥∥∥yk∥∥∥ , t)+ β
(

2c1

∥∥∥dk∥∥∥ , t)+ γ(‖d‖∞)

≤ β
(

2c1

∥∥∥yk∥∥∥ , t)+ β (2c1k ‖d‖∞ , 0) + γ(‖d‖∞) (12.1.11)
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for all t ∈ N0 and for all (d, y) ∈ Bd(P,Q, f), where x is such that (f ◦
y + d, x, y) ∈ B(A,B,C,D). Since (s, t) 7→ β(2c1s, t) is a KL function and
s 7→ β(2c1ks, 0) + γ(s) is a K∞ function, the proof of Theorem 12.1.13
will be complete if we can show that there exist α1, α2 ∈ K∞ such that
‖y(t)‖ ≤ α1(‖x(t)‖) + α2(‖d‖∞) for all (f ◦ y + d, x, y) ∈ B(A,B,C,D).

To prove this, we consider two cases. If D = 0, then

‖y(t)‖ ≤ ‖C‖ ‖x(t)‖ ∀ t ∈ N0,

for all (f ◦ y + d, x, y) ∈ B(A,B,C,D) and the desired conclusion fol-
lows. If however D 6= 0, then, by Lemma 3.1.4, (f ◦ y − Ky + d, x, y) ∈
B(AK , BK , CK , DK), where the matrices are given by (3.1.3). Moreover,
since BC(K, r) ⊆ SC (G), by Lemma 3.2.7, we have ‖DK‖ ≤ 1

r . Therefore,
taking the norms of the output equation for a trajectory (f◦y−Ky+d, x, y) ∈
B(AK , BK , CK , DK) and using the assumption (12.1.8) shows us that there
exists a positive c2 such that

‖y(t)‖ ≤ ‖CK‖ ‖x(t)‖+ ‖DK‖ ‖f(y(t))−Ky(t)‖+ ‖DK‖ ‖d(t)‖

≤ c2 ‖x(t)‖+
1

r
(r ‖y(t)‖ − α(‖y(t)‖)) + c2 ‖d‖∞ ∀ t ∈ N0.

Hence we can estimate

‖y(t)‖ ≤ α−1(rc2 ‖x(t)‖+ rc2 ‖d‖∞)

≤ α−1(2rc2 ‖x(t)‖) + α−1(2rc2 ‖d‖∞)

for all t ∈ N0 and for all (f ◦ y + d, x, y) ∈ B(A,B,C,D). Since α−1 ∈ K∞,
this completes the proof.

Before illustrating this result with an example, we will obtain a corollary,
which resembles the small-gain theorem. For this, we pick K = 0 and note
that the ball condition BC(0, r) ⊆ SC

(
P−1Q

)
is equivalent to the inequality∥∥P−1Q∥∥

H∞
≤ 1

r .

Corollary 12.1.14. Consider an input-output Lur’e system (P,Q, f) with
(P,Q) ∈ IO(m, p;F). If there exists α ∈ K∞ such that∥∥P−1Q∥∥

H∞
‖f(ξ)‖ ≤ ‖ξ‖ − α(‖ξ‖) ∀Fp,

then the input-output Lur’e system (P,Q, f) is input-to-output stable.

We also note a result, which resembles the classical SISO circle criterion for
input-output systems, see Theorem 10 in Chapter 5 from [14]. We omit its
proof as it follows in the same way as Corollary 5.3.4.

179 12.1. INPUT-OUTPUT LUR’E SYSTEMS



CHAPTER 12. STABILITY OF INPUT-OUTPUT LUR’E SYSTEMS

Corollary 12.1.15. Consider a SISO input-output Lur’e system (p, q, f)

with (p, q) ∈ IO(1, 1;R). Let k1 < k2, assume that k1 6= lim|z|→∞
q(z)
p(z) and

that 1−k2g
1−k1g is positive real.

If there exists α ∈ K∞ such that

k1ξ
2 + ξα(|ξ|) ≤ f(ξ)ξ ≤ k2ξ2 − ξα(|ξ|) ∀ ξ ∈ R, (12.1.12)

then the input-output Lur’e system (P,Q, f) is input-to-output stable.

Recall that the sector condition (12.1.12) can be visualized, see Figure 5.1.

12.2 Image input-output Lur’e systems

Recall Lemma 11.5.3, which related behaviours of image input-output sys-
tems to those of input-output systems. In this brief section we will introduce
image input-output Lur’e systems and illustrate how one can use Lemma
11.5.3 to obtain stability results for them.

Definition 12.2.1. Let (S, T ) ∈ IOim(m, p;F), assume that S and T are
right coprime and let f : Fp → Fm be some map. We say that (S, T, f) is
an image input-output Lur’e system.

We define the behaviour B(S, T, f) of the image input-output Lur’e
system (S, T, f) as

B(S, T, f) :=
{

(y, v) ∈ (Fp)N0 × (Fm) : (f ◦ y, v, y) ∈ B(S, T )
}
.

Consider an image input-output Lur’e system (S, T, f), where (S, T ) ∈
IOim(m, p;F), and set S(z) =

∑k
j=0 Sjz

j and T (z) =
∑k

j=0 Tjz
j , where

k := degS and where we have set Tj = 0 for deg T < j ≤ degS (deg T ≤
degS as TS−1 is proper). If (y, v) ∈ B(S, T, f), then this simply means that

f(y(t)) =
k∑
j=0

Sjv(t+ j) and y(t) =

k∑
j=0

Tjv(t+ j) ∀ t ∈ N0.

We will be concerned with the following notions of stability.

Definition 12.2.2. We will say that an image input-output Lur’e system
(S, T, f) with (S, T ) ∈ IOim(m, p;F) is:

(a) globally stable, if there exist c > 0 and k ∈ N0 such that

‖y(t)‖ ≤ c
∥∥∥yk∥∥∥

‖v(t)‖ ≤ c
∥∥∥yk∥∥∥ ∀ t ∈ N0, ∀ y ∈ B(S, T, f);
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(b) globally asymptotically stable, if it is globally stable and

lim
t→∞

y(t) = 0 and lim
t→∞

v(t) = 0 ∀ (y, v) ∈ B(S, T, f);

(c) globally exponentially stable, if there exist c > 0, k ∈ N0 and
a ∈ (0, 1) such that

‖y(t)‖ ≤ cat
∥∥∥yk∥∥∥

‖v(t)‖ ≤ cat
∥∥∥yk∥∥∥ ∀ t ∈ N0 ∀ y ∈ B(S, T, f).

Note that for an input-output Lur’e system (P,Q, f) the related stability
concepts only involved yk, where k = degP , and it would be desirable to
have a similar condition here. Inspection of the proof of Proposition 12.2.3
reveals that this would be possible if, for the given (S, T ) ∈ IOim(m, p;F),
we could construct (P,Q) ∈ IO(m, p;F) such that P−1Q = TS−1, P and Q
are left coprime and degP ≤ degS. While this seems plausible, the author
has not been able to find a reference.

Proposition 12.2.3. Let (S, T, f) be an image input-output Lur’e system
with (S, T ) ∈ IOim(m, p;F), and define D := lim|z|→∞(TS−1)(z). Assume
that, for some K ∈ Fm×p, r > 0, we have BC(K, r) ⊆ SC

(
TS−1

)
.

(a) If
∥∥DK

∥∥ < 1/r and

‖f(ξ)−Kξ‖ ≤ r ‖ξ‖ ∀ ξ ∈ Fp, (12.2.1)

then the image input-output Lur’e system (S, T, f) is globally stable.

(b) If
∥∥DK

∥∥ < 1/r, f is continuous and

‖f(ξ)−Kξ‖ < r ‖ξ‖ ∀ξ ∈ Fp \ {0}, (12.2.2)

then the image input-output Lur’e system (S, T, f) is globally asymptot-
ically stable.

(c) If there exists δ ∈ (0, r) such that

‖f(ξ)−Kξ‖ ≤ (r − δ) ‖ξ‖ ∀ξ ∈ Fp, (12.2.3)

then the image input-output Lur’e system (S, T, f) is globally exponen-
tially stable.

Proof. We prove only (a) as (b) and (c) can be proved in an almost identical
manner. By Lemma 11.3.20, there exist left coprime polynomial matrices
P ∈ F[z]p×p and Q ∈ F[z]p×m such that P−1Q = TS−1. Now BC(K, r) ⊆
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SC(TS−1) = SC(P−1Q), so we can apply Proposition 12.1.7 to the input-
output Lur’e system (P,Q, f) to see that it is globally stable. Hence, for
k := degP , there exists c > 0 such that ‖w(t)‖ ≤ c

∥∥wk∥∥ for all w ∈
B(P,Q, f) or, equivalently, for all (f ◦ w,w) ∈ B(P,Q). By Lemma 11.5.2,
if (y, v) ∈ B(S, T, f), then (f ◦ y, y) ∈ B(P,Q), so that

‖y(t)‖ ≤ c
∥∥∥yk∥∥∥ ,

which is one of the two sought bounds. To obtain the other, we use Lemma
11.5.3 to see that there exist polynomial matrices X and Y such that if
(y, v) ∈ B(S, T, f), then v = X(L)(f ◦ y) + Y (L)y. Since ‖f(y(t))‖ ≤
(‖K‖ + r) ‖y(t)‖ ≤ c(‖K‖ + r)

∥∥yk∥∥, we conclude that there exists c1 > 0
such that

‖v(t)‖ ≤ c1
∥∥∥yk∥∥∥

for all (y, v) ∈ B(S, T, f), which completes the proof.

One can easily see that the technique employed in the proof of Proposition
12.2.3 can be extended to other results on input-output Lur’e systems, in-
cluding the ones on input-to-output stability. However, their proofs require
no new ideas and this thesis has seen enough repetition as it is, so we will
omit them.
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Chapter 13

Notes, references and future
work

13.1 Notes and references

The main result in Chapter 11 is Theorem 11.4.8, which consists of three
statements (a) to (c). Statement (a) is a standard result from realization
theory and (b) is a known result from the theory of behaviours, see e.g.
Theorems 2 and 3 from Willems [58]. However the proof of this result is
difficult to locate as [58] omits it. Instead the proof is said to be similar
to that of two results available in the literature. The first is Theorem 5.1
from Willems [57], where continuous-time systems are considered, however
the proof there is short and difficult to penetrate. The second is from the
PhD thesis van der Schaft [54], however its text seems to be unavailable.
We also note that statement (c) from Theorem 11.4.8 does not seem to
be available in the literature and it is crucial for our stability results for
input-output Lur’e systems. By relating input-output trajectories to state-
space trajectories, Theorem 11.4.8 allows us to essentially use Lyapunov
techniques in analysing input-output Lur’e systems.

Lemma 11.5.3, which relates behaviours of input-output and image input-
output systems, seems to be somewhat novel as it is not, in its present
form, mentioned in Willems’ papers on discrete-time behaviours: Willems
[58, 59, 60]. At the same time, it is well-known that image input-output
behaviours are related to linear, time-invariant differential systems, which
are in turn related to input-output systems, see §6.6 from Willems [47] or
Willems [61].

In Chapter 12 we apply Theorem 11.4.8 and Lemma 11.5.3 to obtain a
number of novel stability results for input-output Lur’e systems and image
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input-output systems. As mentioned in the introduction to Part III, input-
output stability properties of related input-output systems are studied in
Desoer and Vidyasagar [14] and Zames [64]. However, their results revolve
around the small-gain theorem and norm approximations, and they typically
establish input-to-output stability in the lp sense (1 ≤ p ≤ ∞).

13.2 Future work

In §12 we obtained stability results for input-output Lur’e systems (P,Q, f)
and a crucial assumption was that P and Q are left-coprime - this allowed
us to conclude in Theorem 11.4.8 that the realization (A,B,C,D) of (P,Q)
is controllable and observable. Therefore we were able to apply Proposition
4.2.1 in the stability analysis of (P,Q, f). Since Proposition 4.2.1 only re-
quires the state-space system to be stabilizable and detectable, it seems the
assumption that P and Q are left-coprime could be relaxed. The observer-
form realization that we use in Theorem 11.4.8 is always going to be observ-
able (see p. 417 from Kailath [34]), so it seems that an appropriately relaxed
condition on the left-coprimeness of P and Q could result in a realization
(A,B,C,D) that is only stabilizable. Recall the Hautus tests for control-
lability (namely, rank

(
zI −A B

)
is full for all z ∈ C) and stabilizability

(namely, rank
(
zI −A B

)
is full for all z ∈ E). If we compare this with an

alternative characterization of left coprimeness (see e.g. Lemma 6.3.6 from
[34]): rank

(
P (z) Q(z)

)
is full for all z ∈ C, then we arrive at the following

guess.

Conjecture: the results from §12.1 hold true for input-output Lur’e systems
(P,Q, f) even if we replace the assumption that P and Q are left coprime
with the assumption that rank

(
P (z) Q(z)

)
is full for all z ∈ E.

The statement of Proposition 11.4.9 hints at another possible extension of
results from §12.1. It asserts that an input-output system (P,Q), where
P and Q are not left coprime, admits the following decomposition of its
behaviour. If R is the greatest common left divisor of P and Q and if X
and Y are polynomial matrices that satisfy the (left) Bezout identity

PX +QY = R,

then there exist left coprime polynomial matrices P1, Q1 such that RP1 =
P,RQ1 = Q and such that

B(P,Q) = B(P1, Q1)⊕ [−Y (L), X(L)] kerR(L).

Since P−11 Q1 = P−1Q, it suggests that we could be able to obtain the results
from §12.1 by making sure that the trajectories in [−Y (L), X(L)] kerR(L)
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satisfy appropriate stability criteria. A characterization of kerR(L) is pro-
vided by Theorem 11.1.2 and it is clear that all trajectories y ∈ kerR(L)
will be such that y(t) → 0 as t → ∞ if, and only if, the zeros of detR all
lie in D. One can check that this condition is equivalent to P and Q being
such that rank

(
P (z) Q(z)

)
is full for all z ∈ E. Hence we arrive at the

same guess as above.

Conjecture: the results from §12.1 hold true for input-output Lur’e systems
(P,Q, f) even if we replace the assumption that P and Q are left coprime
with the assumption that rank

(
P (z) Q(z)

)
is full for all z ∈ E.

Interestingly, the two lines of thought that lead to this conjecture suggest
completely different ways of proving it. The first one would require us to
prove that the relaxed condition on P and Q provides us with a realization of
(P,Q) that is stabilizable and observable, so that results from Part I can still
be used. The second would use the decomposition of B(P,Q) from Propo-
sition 11.4.9, namely that B(P,Q) = B(P1, Q1) ⊕ [−Y (L), X(L)] kerR(L).
Here, P1 and Q1 are left coprime and such that P−11 Q1 = P−1Q; hence
stability results for input-output Lur’e systems can be applied to B(P1, Q1).
Therefore, we would have to prove that kerR(L) consists of y such that
y(t)→ 0 as t→∞.

This latter approach could also translate to image input-output systems. If
we could obtain a counterpart of Proposition 11.4.9 for image input-output
systems, then the behaviour of (S, T ) ∈ IOim(m, p;F) would probably admit
a decomposition B(S, T ) = B(S1, T1)⊕N , where S1 and T1 are right coprime
and N is a linear subspace of (Fm)N0 × (Fp)N0 such that (u, y) ∈ N satisfy
u(t)→ 0 and y(t)→ 0 as t→∞. This leads us to the following.

Conjecture: the results from §12.1 hold true for image input-output Lur’e
systems (S, T, f) even if we replace the assumption that S and T are right

coprime with the assumption that rank

(
S(z)
T (z)

)
is full for all z ∈ E.

Finally, we would like to note that Part III rests on realization theorems
(Theorem 11.4.8 and Lemma 11.5.3) combined with stability results from
Part I. Therefore, it seems likely that, if one developed appropriate coun-
terparts of the realization theorems for continuous-time setting, much of the
material in Part III could be obtained for continuous-time counterparts of
input-output Lur’e systems and image input-output Lur’e systems.
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Appendix A

Results involving the
positive real lemma

A.1 In discrete-time

We note a consequence of the positive real property: if G ∈ F(z)m×m is
positive real, then it cannot have poles or zeros in E. In particular a positive
real function is holomorphic on E. We first note a useful lemma.

Lemma A.1.1. Let M ∈ Cm×m.

Then 〈Mη, η〉 = 0 ∀ η ∈ Cm if and only if M = 0m×m.

Proof. “If” part is trivial. To prove “Only if”, let ν1, ν2, . . . , νm be the
standard basis for Cm and pick any j, k ∈ {1, 2, . . . ,m}. Let r ≥ 0, θ ∈
[0, 2π) and set ξ = rνj + eiθνk. Then by our assumption

0 = 〈M(rνj + eiθνk), rνj + eiθνk〉 = r2Mjj + re−iθMkj + reiθMjk +Mkk.

It is easy to see that this can only be true for all r ≥ 0, θ ∈ [0, 2π) if
Mjj = Mkj = Mjk = Mkk = 0, which in turn completes the proof.

Lemma A.1.2. Consider a positive real G ∈ F(z)m×m.

Then all entries of G(z) are analytic in E, moreover G(z) has no poles or
zeros in E.

Proof. Since the entries of G are rational functions, they are holomorphic at
every point in the complex plane which is not a pole of G. Every function,
holomorphic in an open set, is analytic (see e.g. [48] §14.9), so every entry
of G is analytic in C except for poles of G. Hence it suffices to show that
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G has no poles in E (as a rational function clearly cannot have an essential
singularity).

To this end consider an arbitrary z0 ∈ E. If we define the Laurent series
of a matrix function entrywise, then on some punctured disc D′(z0, a) the
matrix rational function G can be written as G(z) =

∑∞
j=kMj(z−z0)j where

Mj ∈ Cm×m for j ≥ k and Mk 6= 0m×m. Here we have used that F ⊆ C
and that k > −∞ as G is a rational function matrix and hence cannot have
an essential singularity. Note that k < 0 means that G has a pole at z0,
whereas k > 0 means that G has a zero at z0; we will now rule out both of
these possibilities.

Define

h : C× Cm → C
(z, ξ) 7→ 〈G(z)ξ, ξ〉

Then in a neighbourhood of z0, h(z, ξ) =
〈
(z − z0)kMkξ, ξ

〉
+ o((z − z0)k),

where o : C → C is such that lims→0 o(s)/s = 0. Since the number of poles
of G is finite, they are isolated; also E is open, so for r > 0 small enough the
punctured disc D′(z0, 2r) contains no poles of G, is contained in E and has
the Laurent series expansion as above (that is, 2r < a). Now parametrize the
points on the boundary of the disc D(z0, r) z(r, θ) := z0+reiθ for θ ∈ [0, 2π).
If we evaluate h on this circle, then

r−kh(z(r, θ), ξ) = eikθ 〈Mkξ, ξ〉+
o(rkeikθ)

rk
. (A.1.1)

Since Mk 6= 0m×m, in view of Lemma A.1.1, there exists ξ0 ∈ Cm such
that 〈Mkξ0, ξ0〉 6= 0. Suppose now that k 6= 0. Set z1 := 〈Mkξ0, ξ0〉 and
pick θ0 ∈ [0, 2π) such that eikθ0 = − z1

|z1| (note that this is possible precisely

because k 6= 0). Substitute this back in (A.1.1) to obtain

r−kh(z(r, θ0), ξ0) = −|z1|+
o(rkeikθ0)

rk
.

Since limr→0 o(r
keikθ0)/rk = 0, there exists r0 > 0 such that h(z(r0, θ0), ξ0)+

h(z(r0, θ0), ξ0) < 0. This however leads to a contradiction with G(z) +
(G(z))∗ ≥ 0, because

0 > h(z(r0, θ0), ξ0) + h(z(r0, θ0), ξ0)

= 〈[G(z(r0, θ0)) +G(z(r0, θ0))
∗]ξ0, ξ0〉 ≥ 0.

Hence we must have k = 0 and this completes the proof.

We now prove the quadratic form estimate obtained from the positive real
lemma.
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Lemma 2.2.9. Consider a controllable and observable linear state-space
system (A,B,C,D) ∈ Σ(m,n,m,F) and assume that its transfer function G
is positive real.

Then there exists a positive definite P = P ∗ ∈ Fn×n such that the positive-
definite function defined by V (ξ) := 〈Pξ, ξ〉 satisfies

V (x(t+ 1)) ≤ V (x(t)) +
1

2

[
‖u(t) + y(t)‖2 − ‖u(t)− y(t)‖2

]
for all t ∈ N0 and for all trajectories (u, x, y) ∈ B(A,B,C,D).

Proof. By the positive real lemma, there exists a positive definite P = P ∗ ∈
Fn×n and matrices L and W such that:

A∗PA− P = −L∗L (A.1.2a)

A∗PB − C∗ = −L∗W (A.1.2b)

D +D∗ −B∗PB = W ∗W. (A.1.2c)

Let us now perform Lyapunov analysis with the positive definite function
V (ξ) := 〈Pξ, ξ〉. The use of difference equations for the state and output as
well as multiple uses of the equations (A.1.2) yield:

V (x(t+ 1))− V (x(t)) =

= 〈P (Ax(t) +Bu(t)), Ax(t) +Bu(t)〉
− 〈Px(t), x(t)〉

= 〈(A∗PA− P )x(t), x(t)〉+ 〈A∗PBu(t), x(t)〉
+ 〈x(t), A∗PBu(t)〉+ 〈B∗PBu(t), u(t)〉

=− 〈L∗Lx(t), x(t)〉+ 〈(C∗ − L∗W )u(t), x(t)〉
+ 〈x(t), (C∗ − L∗W )u(t)〉
+ 〈(D +D∗ −W ∗W )u(t), u(t)〉

=− ‖Lx(t) +Wu(t)‖2 + 〈u(t), Cx(t)〉
+ 〈Cx(t), u(t)〉+ 〈(D +D∗)u(t), u(t)〉

=− ‖Lx(t) +Wu(t)‖2 + 〈y(t), u(t)〉
+ 〈u(t), y(t)〉
≤ 〈y(t), u(t)〉+ 〈u(t), y(t)〉

=
1

2

[
‖u(t) + y(t)‖2 − ‖u(t)− y(t)‖2

]
for all t ∈ N0 and for all trajectories (u, x, y) ∈ B(A,B,C,D).

Lemma 3.2.13. Consider a controllable and observable state-space system
(A,B,C,D) ∈ Σ(m,n, p;R), denote its transfer function by G and assume
that BC(K, r) ⊆ SC (G).

199 A.1. IN DISCRETE-TIME



APPENDIX A. RESULTS INVOLVING THE POSITIVE REAL LEMMA

Then there exists a positive-definite P = P ∗ ∈ Fn×n such that the function
V : Fn → [0,∞) defined by V (ξ) := 〈Pξ, ξ〉 satisfies

V (x(t+ 1))− V (x(t)) ≤ ‖u(t)−Ky(t)‖2 − r2 ‖y(t)‖2

for all t ∈ N0 and for all trajectories (u, x, y) ∈ B(A,B,C,D).

We will use Proposition 3.2.12 to relate the assumption BC(K, r) ⊆ SC (G)
to the positive realness of I + 2λGλI+K , which will then allow us to use the
positive real lemma to define the sought quadratic form. For this, we first
need a preliminary result about the trajectories of the state-space system
that has I + 2λGλI+K as its transfer function.

Lemma A.1.3. Consider a linear system (A,B,C,D) ∈ Σ(m,n,m;F) and
denote its transfer function by G. Let K,λI+K ∈ AC(D), λ ∈ C\{0} and,
for N := λI +K, define (AN , BN , CN , DN ) as in equation (3.1.3). Then

(a) the transfer function of (AN , BN , 2λCN , I + 2λDN ) is I + 2λGN ,

(b) if (u, x, y) ∈ B(A,B,C,D), then (u − λy − Ky, x, u + λy − Ky) ∈
B(AN , BN , 2λCN , I + 2λDN ),

(c) if (A,B,C,D) is controllable and observable, then (AN , BN , 2λCN , I +
2λDN ) is controllable and observable.

Proof. By Lemma 3.1.4 (b), we know that the transfer function of the linear
system (AN , BN , CN , DN ) is GN , that is CN (sI − AN )−1BN + DN = GN .
Hence we obtain 2λCN (sI − AN )−1BN + 2λDN + I = 2λGN + I, which is
exactly what we are after in (a).

By Lemma 3.1.4 (a), we know that if (u, x, y) ∈ B(A,B,C,D), then (u −
λy −Ky, x, y) ∈ B(AN , BN , CN , DN ), which in turn means that

x(t+ 1) =ANx(t) +BN [u(t)− λy(t)−Ky(t)]

y(t) =CNx(t) +DN [u(t)− λy(t)−Ky(t)] ∀ t ∈ N0.

Multiply the output equation by 2λ and then add u(t) − λy(t) −Ky(t) to
obtain

u(t) + λy(t)−Ky(t)

= 2λCNx(t) + (I + 2λDN )(u(t)− λy(t)−Ky(t)) ∀ t ∈ N0,

which in turn shows that (u−λy−Ky, x, u+λy−Ky) ∈ B(AN , BN , 2λCN , I+
2λDN ) as required.

Finally, the last claim is a straightforward verification, which uses the Hau-
tus test for controllability and observability alongside the fact that λ 6=
0.
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Proof of Lemma 3.2.13. By Proposition 3.2.12, we know that there exists
λ ∈ C such that |λ| = r, λI + K ∈ AC(D) and I + 2λGλI+K is positive
real. Now by Lemma A.1.3, we know that (AN , BN , 2λCN , I + 2λDN ) is
controllable and observable, and its transfer function is I+2λGλI+K . Hence
Lemma 2.2.8 guarantees the existence of a positive-definite P = P ∗ ∈ Fn×n
such that the positive definite function V : Fn → [0,∞) defined by V (ξ) :=
〈Pξ, ξ〉 satisfies

V (x(t+ 1)) ≤ V (x(t)) +
1

2

[
‖u(t) + y(t)‖2 − ‖u(t)− y(t)‖2

]
∀ t ∈ N0

and for all (u, x, y) ∈ B(AN , BN , 2λCN , I + 2λDN ). On the other hand, by
Lemma A.1.3, we know that if (u, x, y) ∈ B(A,B,C,D), then (u − λy −
Ky, x, u+ λy −Ky) ∈ B(AN , BN , 2λCN , I + 2λDN ). Thus we have

V (x(t+ 1))− V (x(t)) ≤ 1

2

[
‖2u(t)− 2Ky(t)‖2 − ‖−2λy(t)‖2

]
= 2

[
‖u(t)−Ky(t)‖2 − r2 ‖y(t)‖2

]
∀ t ∈ N0

and for all (u, x, y) ∈ B(A,B,C,D). Thus V
2 has the required properties.

Recall the shorthand

M := {K ∈ Cm×m : K +K∗ is negative definite}.

Lemma 3.2.19. Consider G ∈ F(z)m×m.

M ⊂ SC (G) if, and only if, G is positive-real.

Proof. First, we will show that M =
⋃
r>0 BC(−rI, r).

⊂: Consider M ∈ M. Then there exists c > 0 such that 〈(M +M∗)ξ, ξ〉 ≤
−c ‖ξ‖2 for all ξ ∈ Fm. Hence for all r > 0 and ξ ∈ Fm we have

‖(M + rI)ξ‖2 − r2 ‖ξ‖2 = ‖Mξ‖2 + r 〈(M +M∗)ξ, ξ〉

≤
(
‖M‖2 − rc

)
‖ξ‖2 .

Thus if we pick r > ‖M‖2
c , then ‖(M + rI)ξ‖ < r ‖ξ‖ for all ξ ∈ Fm, so that

‖M + rI‖ < r and consequently M ∈ BC(−rI, r).

⊃: Let r > 0 and consider M ∈ BC(−rI, r). Then ‖rI +M‖ < r and hence,
by the Cauchy-Schwarz inequality and the properties of the operator norm,
we have

〈(M +M∗)ξ, ξ〉 = 〈[(M + rI) + (M + rI)∗]ξ, ξ〉 − 2r ‖ξ‖2

≤ 2 ‖M + rI‖ ‖ξ‖ ‖ξ‖ − 2r ‖ξ‖2

< ‖ξ‖2 (2r − 2r) = 0
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for all ξ ∈ Fm \ {0}. Hence M ∈M, which shows that BC(−rI, r) ⊆M.

Secondly, we note that G is positive real if, and only if, rG + I is posi-
tive real for all r > 0. Indeed, G being positive real clearly implies that
rG + I is positive real for any r > 0, so we only need to prove the other
implication. To this end, suppose on the contrary, that rG + I is pos-
itive real for all r > 0, but G is not positive real. Then there exists
z ∈ E and ξ ∈ Fm \ {0} such that 〈(G(z) + (G(z))∗)ξ, ξ〉 < 0 and set
c := 〈(G(z) + (G(z))∗)ξ, ξ〉. Now pick r big enough so that rc < −2 ‖ξ‖2 to
obtain 〈(rG(z) + I + (rG(z) + I)∗)ξ, ξ〉 = cr+2 ‖ξ‖2 < 0, which contradicts
the positive realness of rG+ I and hence completes the proof of the claim.

With the above two equivalences in mind we can see that it now suffices to
show that BC(−rI, r) ⊆ SC (G) if, and only if, 2rG + I is positive real. By
Proposition 3.2.12, it is in turn sufficient to show that 2rG + I is positive
real if, and only if,

∥∥G−rI∥∥
H∞
≤ 1

r for all r > 0. We note that if 2rG + I
is positive real, then −1 /∈ σ (2rG(z) + I) and hence, by Lemma 2.2.10,
2rG+ I is positive real if, and only if,

1 ≥
∥∥(I − (I + 2rG))(I + (I + 2rG))−1

∥∥
H∞

= r
∥∥G−rI∥∥

H∞
.

Lemma 3.2.18. Let G ∈ F(z)p×m; then SC (G) is an open set.

Proof. Let K ∈ SC (G), then GK ∈ H∞. If we set r :=
∥∥GK∥∥−1

H∞
, then

Lemma 3.2.7 tells us that BC(K, r) ⊆ SC (G), which completes the proof.

A.2 In continuous-time

Lemma 7.3.5. Consider a controllable and observable linear state-space
system (A,B,C,D) ∈ Σ(m,n,m;F) and denote by G its transfer function.

If G is positive real, then there exists a positive definite P = P ∗ ∈ Fn×n such
that the quadratic form V : Fn → [0,∞) defined by V (ξ) := 〈Pξ, ξ〉 satisfies

d

dt
V (x(t)) ≤ 1

2

[
‖u(t) + y(t)‖2 − ‖u(t)− y(t)‖2

]
a.e.

for all (u, x, y) ∈ B(A,B,C,D).

Proof. By Lemma 7.3.4, we know that there exist matrices L, W and a
positive definite matrix P ∗ = P > 0 such that:

A∗P + PA = −L∗L, (A.2.1a)

PB − C∗ = −L∗W, (A.2.1b)

D +D∗ = W ∗W. (A.2.1c)
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Consider the positive definite quadratic form V (ξ) := 〈Pξ, ξ〉 and pick an
arbitrary trajectory (u, x, y) ∈ B(A,B,C,D). By Corollary 7.2.6, V is con-
tinuously differentiable, V ◦ x is absolutely continuous and d

dtV (x(t)) =
Re 〈2Px(t), ẋ(t)〉 almost everywhere. We then use the positive real equa-
tions (A.2.1a) - (A.2.1c) and the technique of completing the square to
obtain

d

dt
V (x(t)) = Re 〈2Px(t), Ax(t) +Bu(t)〉

= 〈[A∗P + PA]x(t), x(t)〉+ 2 〈x(t), PBu(t)〉
=− ‖Lx(t)‖2 + 〈x(t), (C∗ − L∗W )u(t)〉

+ 〈(C∗ − L∗W )u(t), x(t)〉
=− ‖Lx(t)‖2 + 〈Cx(t), u(t)〉 − 〈Lx(t),Wu(t)〉

+ 〈u(t), Cx(t)〉 − 〈Wu(t), Lx(t)〉
=− ‖Lx(t) +Wu(t)‖2

+ 〈Cx(t) +Du(t), u(t)〉+ 〈u(t), Cx(t) +Du(t)〉
≤ 〈y(t), u(t)〉+ 〈u(t), y(t)〉

=
1

2

[
‖u(t) + y(t)‖2 − ‖u(t)− y(t)‖2

]
a.e.

Lemma 7.6.15. Consider a controllable and observable linear state-space
system (A,B,C,D) ∈ Σ(m,n, p;F), denote its transfer function by G and
let r > 0, K ∈ Fm×p. Furthermore assume that BC(K, r) ⊆ SC (G).

Then there exists a positive definite P = P ∗ ∈ Fn×n such that the function
V : Fn → [0,∞) defined by V (ξ) = 〈Pξ, ξ〉 satisfies

d

dt
V (x(t)) ≤ ‖u(t)−Ky(t)‖2 − r2 ‖y(t)‖2 a.e.

for all (u, x, y) ∈ B(A,B,C,D).

We will use Proposition 7.6.14 to relate the assumption BC(K, r) ⊆ SC (G)
to the positive realness of I + 2λGλI+K , which will then allow us to use the
positive real lemma to define the sought quadratic form. For this, we first
need a preliminary result about the trajectories of the state-space system
that has I + 2λGλI+K as its transfer function.

Lemma A.2.1. Consider (A,B,C,D) ∈ Σ(m,n,m;F), let K ∈ AC(D),
λ ∈ C \ {0} and for N := λI + K define (AN , BN , CN , DN ) as in equation
(7.6.2).

(a) The transfer function of (AN , BN , 2λCN , I + 2λDN ) is I + 2λGλI+K .

(b) If (u, x, y) ∈ B(A,B,C,D), then (u − λy − Ky, x, u + λy + Ky) ∈
B(AN , BN , 2λCN , I + 2λDN ).
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(c) If (A,B,C,D) is controllable and observable, then (AN , BN , 2λCN , I +
2λDN ) is controllable and observable.

Proof. By Lemma 7.6.5 (b), we know that the transfer function of the linear
system (AN , BN , CN , DN ) is GN , that is CN (sI − AN )−1BN + DN = GN .
Hence we obtain 2λCN (sI − AN )−1BN + 2λDN + I = 2λGN + I, which is
exactly what we are after in (a).

By Lemma 7.6.5 (a), we know that if (u, x, y) ∈ B(A,B,C,D), then (u −
λy −Ky, x, y) ∈ B(AN , BN , CN , DN ), which in turn means that

ẋ(t) =ANx(t) +BN (u(t)− λy(t)−Ky(t))

y(t) =CNx(t) +DN (u(t)− λy(t)−Ky(t)) a.e.

Multiply the output equation by 2λ and then add u(t) − λy(t) −Ky(t) to
obtain

u(t) + λy(t)−Ky(t)

= 2λCNx(t) + (I + 2λDN )(u(t)− λy(t)−Ky(t)) a.e.

which in turn shows us that the trajectory (u− λy−Ky, x, u+ λy−Ky) ∈
B(AN , BN , 2λCN , I + 2λDN ) as required.

Finally, the last claim is a straightforward verification, which uses the Hau-
tus test for controllability and observability alongside the fact that λ 6=
0.

Proof of Lemma 7.6.15. By Proposition 7.6.14, we know that there exists
there exists λ ∈ C\{0} such that |λ| = r, λI+K ∈ AC(D) and I+2λGλI+K

is positive real. By Lemma A.2.1 (c), we know that - for N := λI +K and
(AN , BN , CN , DN ) defined as in equation (7.6.2) - the state-space system
(AN , BN , 2λCN , I + 2λDN ) is controllable and observable. Hence we can
apply Lemma 7.3.5 to see that there exists a positive definite matrix P =
P ∗ ∈ Fn×n such that the function V : Fn → [0,∞) defined by V (ξ) := 〈Pξ, ξ〉
satisfies

d

dt
V (x(t)) ≤ 1

2

[
‖u1(t) + y1(t)‖2 − ‖u1(t)− y1(t)‖2

]
a.e. (A.2.2)

for all (u1, x1, y1) ∈ B(AN , BN , 2λCN , I + 2λDN ).

Now, by Lemma A.2.1 (a), we know that if (u, x, y) ∈ B(A,B,C,D), then
(u−λy−Ky, x, u+λy−Ky) ∈ B(AN , BN , 2λCN , I+ 2λDN ) and hence the
estimate (A.2.2) must hold, so that

d

dt
V (x(t)) ≤1

2

[
‖2u(t)− 2Ky(t)‖2 − ‖2λy(t)‖2

]
=2
[
‖u(t)−Ky(t)‖2 − r2 ‖y(t)‖2

]
a.e.
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for all (u, x, y) ∈ B(A,B,C,D). Thus 1
2V has the required properties.
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Appendix B

An alternative proof of
Lemma 5.1.11

Lemma 5.1.11. α ∈ K∞ satisfies the growth condition (GC) if, and only
if, for each ε > 0 there exists η ∈ K∞ such that

α(x− y) ≤ α ((1 + ε)x)− η(y) ∀x ≥ y ≥ 0.

Remark: we emphasize that η depends on ε.

Proof. “⇐=” part of the proof is identical to the one presented in the main
body of the thesis, so we omit it.

=⇒:

Let us set η̃(y) := infx∈[y,∞){α((1 + ε)x) − α(x − y)}; it then satisfies the
required inequality and in the first proof of Lemma 5.1.11 we further showed
that η̃ is continuous. The present proof does not use the continuity of η̃;
instead we construct η ∈ K∞ that is closely related to η̃ and that has the
sought properties. Let us first note some properties of η̃.

Let us first show that η̃(0) = 0. Since α is a K∞ function, we have α((1 +
ε)x) − α(x) ≥ 0 for all x, ε > 0. Hence η̃(0) ≥ 0. On the other hand
α((1 + ε)0)− α(0) = 0, so that η̃(0) ≤ 0.

Now, we will show that limy→∞ η̃(y) =∞. This follows from

lim
y→∞

η̃(y) = lim
y→∞

inf
x∈[y,∞)

{α((1 + ε)x)− α(x− y)}

≥ lim
y→∞

inf
x∈[y,∞)

{α((1 + ε)x)− α(x)}

= lim inf
x→∞

{α((1 + ε)x)− α(x)}.
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However α satisfies the growth condition (GC), so that limx→∞{α((1+ε)x)−
α(x)} =∞. It is a well known fact that if the limit exists, so does the limit
inferior and moreover it is equal to the limit. Hence limy→∞ η̃(y) =∞.

Let us now show that η̃ is strictly increasing. Since α satisfies the growth con-
dition (GC), for each y ≥ 0 there exists k(y) ≥ 0 such that infx∈[y,∞){α((1+
ε)x) − α(x − y)} = infx∈[y,k(y)]{α((1 + ε)x) − α(x − y)}. Let us now fix
y ≥ 0, δ > 0 and set a := k(y + δ) ∨ k(y). Then

η̃(y + δ) =: inf
x∈[y+δ,∞)

{α((1 + ε)x)− α(x− y − δ)}

= inf
x∈[y+δ,a]

{α((1 + ε)x)− α(x− y) + α(x− y)− α(x− y − δ)}

≥ inf
x∈[y+δ,a]

{α((1 + ε)x)− α(x− y)}

+ inf
x∈[y+δ,a]

{α(x− y)− α(x− y − δ)}

[as α is continuous, the infimum on [y + δ, a] is a minimum]

= inf
x∈[y+δ,a]

{α((1 + ε)x)− α(x− y)}

+ min
x∈[y+δ,a]

{α(x− y)− α(x− y − δ)}

≥ inf
x∈[y,∞)

{α((1 + ε)x)− α(x− y)}

+ min
x∈[y+δ,a]

{α(x− y)− α(x− y − δ)}

[as α is continuous and strictly increasing]

>η̃(y) + 0.

As y and δ were arbitrary, η̃ is strictly increasing.

Now notice that α(x− y) ≤ α ((1 + ε)x)− η̃(y) for all x ≥ y ≥ 0. Hence it
suffices to construct η ∈ K∞ such that η ≤ η̃.

What follows is inspired by [33], §16 A, B, where a decomposition of an
increasing function is obtained: every (not necessarily strictly) increasing
function can be written as a sum of a continuous function and a jump
function which contains all its discontinuities. Unfortunately we want to
work over the non-open interval [0,∞) and also find a continuous function
that is smaller that η̃, but still goes to infinity as its argument goes to infinity,
hence we cannot use the results from [33] directly. Since the concepts we
will use here are only used in the present proof, we will - contrary to the
usual practice - introduce some definitions mid-proof.

We say that σ̃ : [0,∞) → R is an elementary increasing jump function if
there exist real numbers a ≤ b ≤ c with a < b or b < c and a discontinuity
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point t such that for x ∈ [0,∞) we can write

σ̃(x) =


a if x < t,

b if x = t,

c if x > t.

Note that this definition allows us to describe a discontinuity at 0. We
further say that s̃ : [0,∞)→ R is an increasing jump function if there exist
elementary increasing jump functions {σ̃k}k∈N0 such that

s̃(x) =
∑
k∈N0

σ̃k(x) ∀x ∈ [0,∞).

Note that for a strictly increasing f : [0,∞)→ R the following concepts are
well-defined:

f(x+) := lim
y→x,y>x

f(y), for x ∈ [0,∞)

f(x−) := lim
y→x,y<x

f(y), for x ∈ (0,∞),

f(0−) :=f(0).

Moreover, it is easy to see that f(x−) ≤ f(x) ≤ f(x+), with equalities if
and only if f is continuous at x.

We will not prove the following claim as it is well-known, see e.g. [33].

Claim 1. Let f : [0,∞) → R be increasing. Then f is discontinuous at a
countable set of points.

Claim 2. Let f : [0,∞)→ R be strictly increasing and assume that f(0) = 0
and limx→∞ f(x) =∞. Then there exists g ∈ K∞ such that g ≤ f .

Proof. We will first obtain a representation of an increasing function as a
sum of a continuous function and a jump function, then we will modify
the constructed functions to obtain a continuous function with the required
properties. This decomposition is inspired by a similar approach in [33] §16
B p.525 - 526.

Let {ti}i∈N0 be the countable set of discontinuities of f (we know that it is
countable by Claim 1) and set

σi(x) :=


0, for x < ti,

f(ti)− f(ti−) for x = ti,

f(ti+)− f(ti−) for x > ti.
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Note that f − σi is continuous at ti and, by considering (f − σi)|[0,ti] and
(f − σi)|[ti,∞), we can easily see that f − σi is strictly increasing. Hence
we can show inductively that fn := f −

∑n
i=0 σi is strictly increasing and

continuous at t0, t1, . . . , tn. Since fn(0) = 0, this implies that fn(x) ≥ 0 for
all x ≥ 0 and hence

∑n
i=0 σi(x) ≤ f(x) for all x ≥ 0 and for all t ∈ N0. As

σi ≥ 0, the following map

s : [0,∞)→ [0,∞)

x 7→
∑
i∈N0

σi(x),

is well-defined. Moreover s(x) ≤ f(x) for all x ≥ 0, s(0) = 0 and as a
pointwise limit of increasing functions, s is increasing as well.

Now let us set φ := f − s. First, let us show that φ is indeed an increasing
and continuous function.

φ is the pointwise limit of increasing functions fn and hence it is increasing
as well. Since φ is increasing, we know that φ(x+) ≥ φ(x−), so it suffices to
show that φ(x+) ≤ φ(x−). If f is continuous at x, then for y < x < z (as s
is increasing) we have s(z) ≥ s(y) and f(x+) = f(x−). Hence

φ(x+) =f(x+)− lim
z→x,z>x

s(z)

=f(x−)− lim
z→x,z>x

s(z)

≤f(x−)− lim
y→x,y<x

s(y) = φ(x−).

If, on the other hand, f is discontinuous at x, we can without loss of gener-
ality assume that t0 = x and hence for z ≥ x ≥ y,

s(z)− s(y) =
∑
i∈N0

σi(z)− σi(y) ≥ σ0(z)− σ0(y) = f(x+)− f(x−).

By taking limits as z → x, z > x and as y → x, y < x, we obtain φ(x+) ≤
φ(x−). Thus for all cases φ(x+) = φ(x−) and hence φ is continuous. Hence
we have obtained a decomposition f = φ+ s, where s is an increasing jump
function and φ is continuous and increasing.

We are now ready to finally construct g ∈ K∞ such that g ≤ f on [0,∞).
Set

σ̃i(x) :=


0, for x < ti

[f(ti+)− f(ti−)]ξ for x = ti + ξ, ξ ∈ [0, 1]

f(ti+)− f(ti−), for x > ti + 1,

and define s̃ :=
∑

i∈N0
σ̃i. Note that σ̃i is continuous and increasing for

each i; moreover σ̃i ≤ σi, with σ̃i(x+ 1) ≥ σi(x). This in turn implies that

210



APPENDIX B. AN ALTERNATIVE PROOF OF LEMMA 5.1.11

s̃(x+ 1) ≥ s(x) for all x ≥ 0. Finally we can also show that s̃ is continuous:
on [0, k] we have

∑
i∈N0
|σ̃i(x)| ≤

∑
i∈N0
|σi(x)| ≤ f(k), so by the Weierstrass

M-test s̃|[0,k] is continuous as the uniform limit of continuous functions. As
k was arbitrary, we conclude that s̃ is a continuous function.

Let us now set g := φ+ s̃. Then it is continuous, g(0) = 0 and g ≤ f (recall
that f = φ+s). Moreover g(x+1) = φ(x+1)+s̃(x+1) ≥ φ(x)+s(x) = f(x),
so that limx→∞ g(x) = ∞. Thus we only need to show that g is strictly
increasing. Let y > x; then g(y) − g(x) = φ(y) − φ(x) + s̃(y) − s̃(x). Both
φ and s̃ are increasing, so we are done unless φ(y) = φ(x) and s̃(y) = s̃(x).
But then, by definition of s̃ and s, f has no discontinuities on [x, y] and
hence s|[x,y] is a constant function, so that φ|[x,y] = f |[x,y] − s|[x,y] is strictly
increasing, as f is. This contradicts φ(y) = φ(x) and hence g must be
strictly increasing, which completes the proof of claim.

Now we obtain the required η by applying Claim 2 to η̃. This completes the
proof of Lemma 5.1.11.

211



APPENDIX B. AN ALTERNATIVE PROOF OF LEMMA 5.1.11

212



Appendix C

The bounded real lemma

Lemma 7.3.1. Consider a stabilizable and detectable linear state-space sys-
tem (A,B,C,D) ∈ Σ(m,n, p;F) and assume that its transfer function G
satisfies ‖G‖H∞ ≤ 1 and ‖D‖ < 1.

Then there exist matrices L,W and a positive semi-definite P = P ∗ ∈ Fn×n
such that

A∗P + PA = −C∗C − L∗L
PB = −C∗D − L∗W
D∗D = I −W ∗W.

We will prove this result in three steps: firstly we will prove it for controllable
and observable systems with ‖G‖H∞ < 1, then we will relax the assumptions
on the linear system to stabilizability and detectability and finally we will
extend the result to the case when ‖G‖H∞ = 1.

We will use Riccati equation theory to prove this statement, so it is useful
to record the following.

Lemma C.0.1. Consider a linear system (A,B,C,D) ∈ Σ(m,n, p;F) such
that ‖D‖ < 1. The following statements are equivalent:

(a) There exist matrices L,W and a positive definite (resp. semi-definite)
P = P ∗ ∈ Fn×n that solve the bounded real equations

A∗P + PA = −C∗C − L∗L (C.0.1a)

PB = −C∗D − L∗W (C.0.1b)

D∗D = I −W ∗W. (C.0.1c)
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(b) There exists a positive definite (resp. semi-definite) P = P ∗ ∈ Fn×n
that solves the algebraic Riccati equation

A∗P + PA+ C∗C + (PB + C∗D)(I −D∗D)−1(B∗P +D∗C) = 0.
(C.0.2)

Proof. We first show that (a) implies (b). Since ‖D‖ < 1, we have W ∗W =
I−D∗D > 0 or equivalently ‖Wξ‖ > 0 for all ξ ∈ Fm \{0}. This shows that
W is invertible, so that from equation (C.0.1b) we obtain L∗ = −(PB +
C∗D)W−1. Equation (C.0.1a) now shows that the required Riccati equation
has a solution.

We can show that (b) implies (a) in a very similar manner. Since I −D∗D
is positive definite and self-adjoint, it admits a positive definite self-adjoint
square root, say W , so that I − D∗D = W ∗W . Thus after setting L :=
−(W ∗)−1(B∗P +D∗C) we now have shown that both (C.0.1b) and (C.0.1c)
hold. The Riccati equation (C.0.2) then is precisely the last bounded real
equation (C.0.1a).

We also record an easy, yet nonstandard result that will be useful later on.

Lemma C.0.2. Let X,Y, Z, U be matrices whose dimensions are such that(
X Y
Z U

)
is a block-matrix. Then σ

((
X Y
Z U

))
= σ

((
X −Y
−Z U

))
.

Proof. This follows from the observation(
X Y
Z U

)(
ξ
µ

)
= λ

(
ξ
µ

)
⇐⇒

(
X −Y
−Z U

)(
−ξ
µ

)
= λ

(
−ξ
µ

)
.

We now proceed to carefully proving the algebraic Riccati equation version
of the bounded real lemma. The following version of it is easy to find
over the real field, however over the complex field the author could only find
Theorem 5.3.25 from [25], which was stated without proof (it was postponed
to volume 2 of the book, which has not yet been published).

Lemma C.0.3. Consider a controllable and detectable linear state-space
system (A,B,C,D) ∈ Σ(m,n, p;C) and assume that its transfer function G
satisfies ‖G‖H∞ < 1.

Then there exists a positive semi-definite P = P ∗ ∈ Fn×n such that

A∗P + PA+ C∗C + (PB + C∗D)(I −D∗D)−1(B∗P +D∗C) = 0

and such that σ
(
A+B(I −D∗D)−1(D∗C +B∗P )

)
⊆ C−.

If (C,A) is an observable pair, then P is positive definite.
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Proof. We modify the proof of Theorem 20.1.1 from [37] to systems with
feedthrough.

By our assumption, ‖G‖H∞ < 1, so that in particular ‖G(s)‖ < 1 for all
s ∈ iR. Set H(s) := I − G(−s̄)∗G(s) and check that for s ∈ iR and for
ξ ∈ Fm \ {0} we have 〈H(s)ξ, ξ〉 = ‖ξ‖2 − ‖G(s)ξ‖2 > 0. In other words,
H > 0 on iR and hence in particular has no zeros on iR.

Now let us rewrite H(s) as

H(s) = I −D∗D +
(
−D∗C B∗

) [
sI −

(
A 0
C∗C −A∗

)]−1(
B
C∗D

)
.

Using the easy observation that R := I−D∗D > 0 and equation 6.3.14 from
[37] we can thus see that

H(s)−1 = R−1 +R−1
(
−D∗C B∗

)
[sI −N ]−1

(
B
C∗D

)
R−1,

where

N :=

(
A+BR−1D∗C −BR−1B∗

C∗C + C∗DR−1D∗C −(A∗ + C∗DR−1B∗)

)
.

We will now verify that N has no eigenvalues on iR. To this end suppose

we have s0 ∈ iR and ξ, µ ∈ Fn such that N

(
ξ
µ

)
= s0

(
ξ
µ

)
. Consider

H(s)R−1
(
−D∗C B∗

)(ξ
µ

)
=

{
R+

(
−D∗C B∗

) [
sI −

(
A 0
C∗C −A∗

)]−1(
B
C∗D

)}

×R−1
(
−D∗C B∗

)(ξ
µ

)
=
(
−D∗C B∗

){
I +

[
sI −

(
A 0
C∗C −A∗

)]−1
×
(
−BR−1D∗C BR−1B∗

−C∗DR−1D∗C C∗DR−1B∗

)}(
ξ
µ

)

=
(
−D∗C B∗

) [
sI −

(
A 0
C∗C −A∗

)]−1
(sI −N)

(
ξ
µ

)
=(s− s0)

(
−D∗C B∗

) [
sI −

(
A 0
C∗C −A∗

)]−1(
ξ
µ

)
,

215



APPENDIX C. THE BOUNDED REAL LEMMA

so that H(s0)R
−1 (−D∗C B∗

)(ξ
µ

)
= 0. However, since we have already

established positivity of H on iR, this means that
(
−D∗C B∗

)(ξ
µ

)
= 0,

or equivalently D∗Cξ +B∗µ = 0. Therefore

s0

(
ξ
µ

)
= N

(
ξ
µ

)
=

(
Aξ

C∗Cξ −A∗µ

)
.

By stabilizability and detectability and G ∈ H∞, we know that σ(A) ⊆ C−.
Since s0 ∈ iR, this implies ξ = 0, which in turn implies s0µ = −A∗µ. Thus
as σ(A∗) = σ(A) ⊆ C−, we infer µ = 0, so that N indeed has no eigenvalues
on iR.

Now, by Theorem 7.6.1 from [37], we know that as long as the tuple (A +
BR−1D∗C, BR−1B∗) is a controllable pair, the algebraic Riccati equation

A∗X +XA+ C∗C + (XB + C∗D)R−1(B∗X +D∗C) = 0

admits a self-adjoint solution if and only if the partial multiplicities corre-
sponding to the real eigenvalues of

M := i

(
A+BR−1D∗C BR−1B∗

−C∗C − C∗DR−1D∗C −(A∗ + C∗DR−1B∗)

)
are all even (equivalently, if M has a real eigenvalue λ0, then all the sizes
of Jordan blocks corresponding to λ0 are even). However we already know
that N has no eigenvalues on iR and thus by Lemma C.0.2 we know that
the matrix (

A+BR−1D∗C BR−1B∗

−C∗C − C∗DR−1D∗C −(A∗ + C∗DR−1B∗)

)
has no eigenvalues on the imaginary axis, whence M has no eigenvalues on
the real axis.

Let us now show that the pair (A + BR−1D∗C, BR−1B∗) is controllable.
To this end suppose that there exist ξ ∈ Fn and s ∈ C such that ξ∗(sI−A−
BR−1D∗C) = 0 and ξ∗BR−1B∗ = 0. Then post-multiplication of the latter
equation by ξ gives us

〈
R−1B∗ξ,B∗ξ

〉
= 0, so that - by positive definiteness

of R−1 - we have ξ∗B = 0. This in turn implies that ξ∗(sI − A) = 0, so
that by the Hautus test of controllability (see e.g. Theorem 4.3.3 from [37])
ξ = 0, whence another application of the Hautus test of controllability shows
that (A+BR−1D∗C, BR−1B∗) is indeed a controllable pair.

Now an application of Theorem 7.5.1 from [37] shows that the minimal
solution of (C.0.2) P− satisfies σ

(
A+BR−1(D∗C +B∗P−)

)
⊆ C−.
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Thus we are only left with proving that P− is positive semi-definite. Set
T := −C∗C − (C∗D + P−B)R−1(B∗P− +D∗C), so that P− is a solution of
the Lyapunov equation A∗P− + P−A = T . By equation (5.3.3) from [37],
P− then satisfies P− = −

∫∞
0 eA

∗tTeAt dt and hence P− is easily seen to be
positive semi-definite.

Moreover if (C,A) is observable, then by using R−1 > 0 we can see that
P− = −

∫∞
0 eA

∗tTeAt dt ≥
∫∞
0 eA

∗tC∗CeAt dt. Hence for all ξ ∈ ker(P−)

we have 0 = 〈P−ξ, ξ〉 ≥
∫∞
0

∥∥CeAtξ∥∥2 dt ≥ 0, so that CeAtξ = 0 for all
t ∈ [0,∞). Repeated evaluation at 0 and differentiation then shows that
CAnξ = 0 for all t ∈ N0, which by observability of (C,A) implies that ξ = 0
and thus P− > 0 as required. This completes the proof.

Now we extend the above result to the case when the linear state-space
system (A,B,C,D) is only stabilizable and detectable.

Lemma C.0.4. Consider a stabilizable and detectable linear state-space sys-
tem (A,B,C,D) ∈ Σ(m,n, p;F) and assume that its transfer function G
satisfies ‖G‖H∞ < 1.

Then there exists a positive semi-definite P = P ∗ ∈ Fn×n such that

A∗P + PA+ C∗C + (PB + C∗D)(I −D∗D)−1(B∗P +D∗C) = 0

and such that σ
(
A+B(I −D∗D)−1(D∗C +B∗P )

)
⊆ C−.

Proof. For F = R, this is Theorem 3.7.1 from [19] (we use the fact that
stabilizability, detectability and G ∈ H∞ imply σ(A) ⊂ C−).

We thus proceed with proving this for F = C.

It is well known (see e.g. Proposition 4.5.1 from [37]) that there exists an
invertible matrix T ∈ Fn×n, such that

T−1AT =

(
A1 A2

0 A3

)
, T−1B =

(
B1

0

)
,

where (A1, B1) is a controllable pair and - by Proposition 4.5.2 from [37] -
we have σ(A3) ⊂ C−.

Now suppose we have found the required solution P of the bounded real
Riccati equation. Set R := I −D∗D and write CT =

(
C1 C2

)
and

T ∗PT =

(
P1 P2

P ∗2 P3

)
,

where the sizes of Pi’s and Ci’s are compatible with the sizes of Ai’s and
where the structure of P is determined by the fact that it is self-adjoint.
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Then we can see that if we multiply the Riccati bounded real equation from
the left by T ∗ and from the right by T , then it is equivalent to(

A∗1 0
A∗2 A∗3

)(
P1 P2

P ∗2 P3

)
+

(
P1 P2

P ∗2 P3

)(
A1 A2

0 A3

)
+

(
C∗1
C∗2

)(
C1 C2

)
+

[(
P1 P2

P ∗2 P3

)(
B1

0

)
+

(
C∗1
C∗2

)
D

]
R−1

×
[(
B∗1 0

)(P1 P2

P ∗2 P3

)
+D∗

(
C1 C2

)]
= 0.

Thus we can see that finding a solution P to the required bounded real
Riccati equation is equivalent to finding P2 and self-adjoint P1, P3 that
solve

A∗1P1 + P1A1 + C∗1C1

+ (P1B1 + C∗1D)R−1(B∗1P1 +D∗C1) = 0 (C.0.3)

A∗1P2 + P1A2 + P2A3 + C∗1C2

+ (P1B1 + C∗1D)R−1(B∗1P2 +D∗C2) = 0 (C.0.4)

A∗2P2 +A∗3P3 + P ∗2A2 + P3A3 + C∗2C2

+ (P ∗2B1 + C∗2D)R−1(B∗1P2 +D∗C2) = 0 (C.0.5)

and such that

(
P1 P2

P ∗2 P3

)
is positive semi-definite.

First we aim to use Lemma C.0.3 to solve equation (C.0.3). One can easily
check that C(sI −A)−1B+D = C1(sI −A1)

−1B1 +D and by our choice of
(A1, B1, C1) we know that (A1, B1) is controllable, so we only need to check
that (C1, A1) is detectable. This however follows from σ(A1) ∪ σ(A3) =
σ(A) ⊆ C−, as thus sI − A1 has full rank for all s ∈ C+, so that by the
Hautus test for detectability (C1, A1) is a detectable pair.

Hence we can now apply Lemma C.0.3 to infer that there exists a positive
semi-definite P1 = P ∗1 ∈ Fn1×n1 (here n1 is the size of A1) that solves (C.0.3)
and such that σ

(
A1 +B1R

−1(D∗C1 +B∗1P1)
)
⊆ C−.

Now equation (C.0.4) can be rewritten as(
A∗1 + (P1B1 + C∗1D)R−1B∗1

)
P2 + P2A3 +M1 = 0,

where M1 := P1A2 + C∗1 + (P1B1 + C∗1D)R−1D∗C2. Since σ (−A3) ∩
σ
(
A∗1 + (P1B1 + C∗1D)R−1B∗1

)
⊆ C+ ∩ C− = ∅, standard Sylvester’s equa-

tion theory (use e.g. Propositions 7.2.4 and 7.2.3 from [9]) says that there
exists a solution P2 of (C.0.4). Hence we are only left with solving

A∗3P3 + P3A3 +M2 = 0,
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where M2 := A∗2P2+P ∗2A2+C∗2C2+(P ∗2B1+C∗2D)R−1(B∗1P2+D∗C2). This
is a Lyapunov equation (note that M∗2 = M2) and hence - as σ(A3) ⊆ C− -
it admits a self-adjoint solution P3.

We have now found solutions P1, P2, P3 to equations (C.0.3), (C.0.4) and
(C.0.5), so the self-adjoint matrix

P = (T ∗)−1
(
P1 P2

P ∗2 P3

)
T−1

solves the algebraic Riccati equation

A∗P + PA+ C∗C + (PB + C∗D)R−1(B∗P +D∗C) = 0.

Thus if we set M3 := C∗C + (PB + C∗D)R−1(B∗P + D∗C) ≥ 0, then P
also solves the Lyapunov equation

A∗P + PA+M3 = 0

and since M3 is positive semi-definite, then so is P .

Finally we observe that a straightforward calculation gives us

A+BR−1(D∗C +B∗P )

= T

(
A1 +B1R

−1(D∗C1 +B∗1P1) A2 +B1R
−1B∗1P2

0 A3

)
T−1,

so that σ
(
A+BR−1(D∗C +B∗P )

)
= σ

(
A1 +B1R

−1(D∗C1 +B∗1P1)
)
∪

σ (A3) ⊆ C− thus completing the proof.

Now we use perturbation theory of algebraic Riccati equations to extend the
conclusions to the case when ‖G‖H∞ = 1.

Lemma C.0.5. Consider a stabilizable and detectable linear state-space sys-
tem (A,B,C,D) ∈ Σ(m,n, p;F) and assume that its transfer function G
satisfies ‖G‖H∞ ≤ 1 and ‖D‖ < 1.

Then there exists a positive semi-definite P = P ∗ ∈ Fn×n such that

A∗P + PA+ C∗C + (PB + C∗D)(I −D∗D)−1(B∗P +D∗C) = 0 (C.0.6)

and such that σ
(
A+B(I −D∗D)−1(D∗C +B∗P )

)
⊆ C−.

Proof. Note that for ρ < 1, the stabilizable and detectable linear system
(A,B, ρC, ρD) ∈ Σ(m,n, p;F) is a realization of ρG and ‖ρG‖H∞ = ρ < 1.
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We can set Rρ := I − ρ2D∗D > 0, so that - by Lemma C.0.4 - for each
0 < ρ < 1 there exists a positive semi-definite solution Pρ = P ∗ρ ∈ Fn×n of

PρBR
−1
ρ B∗Pρ − (A∗ + ρ2D∗CR−1ρ B∗)Pρ − Pρ(A+ ρ2BR−1ρ D∗C)

+ ρ4C∗DR−1ρ D∗C = 0.

As ‖D‖ < 1, the matrix I −D∗D is invertible and hence, by continuity of
matrix inversion, limρ→1R

−1
ρ = R−11 = (I −D∗D)−1. It is also easy to see

that ρC → C and ρD → D as ρ→ 1.

Now consider the case F = C. By Theorem 11.1.1 from [37] equation (C.0.6)
thus admits self-adjoint solutions as long as (A + BR−11 D∗C, BR−11 B∗)
is stabilizable tuple (Theorem 11.1.1 assumes “sign controllability” of this
matrix pair, but it is easy to see from its definition on p. 155 of [37] that
stabilizability implies sign controllability).

To this end we note that stabilizability of (A + BR−11 D∗C, BR−11 B∗) is
equivalent to rank(sI −A−BR−11 D∗C, BR−11 B∗) = n for all s ∈ C+. Now
suppose on the contrary, that there exists s ∈ C+ and ξ ∈ Cn \ {0} such
that ξ∗(sI − A−BR−11 D∗C, BR−11 B∗) = 0. Then ξ∗BR−11 B∗ = 0, so that〈
R−11 B∗ξ,B∗ξ

〉
= 0. As ‖D‖ < 1, we see that R−11 > 0 and hence B∗ξ = 0

or equivalently ξ∗B = 0. Thus we obtain 0 = ξ∗(sI − A − BR−11 D∗C) =
ξ∗(sI − A), so that ξ∗(sI − A,B) = 0 contradicting the stabilizability of
(A,B) and in turn proving the stabilizability of (A+BR−11 D∗C, BR−11 B∗).

Hence as mentioned above, we can apply Theorem 11.1.1 from [37] to infer
that (C.0.6) has a self-adjoint solution P .

Now §11.4 from [37] says that Theorem 11.1.1 holds for the real case as well
and thus, in exactly the same way as for F = C, we obtain a real symmetric
solution Q of the Riccati equation (C.0.6).

As a corollary we obtain Lemma 7.3.1.
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Appendix D

On an initial value problem

In this section we will show that,as long as we assume that f and (I−Df)−1

are locally Lipschitz, for a prescribed d ∈ L∞loc(Fm), the initial value problem

ẋ(t) = Ax(t) +Bf ◦ (I −Df)−1(Cx(t) +Dd(t)) +Bd(t)

x(0) = ξ ∈ Fn (D.0.1)

admits a unique solution x ∈ AC(Fn), defined on some maximal interval
[0, ω) ⊆ [0,∞). This follows from an application of Theorem 54 from Ap-
pendix C in [51], so we only need check that the map g : [0,∞) × Fn → Fn
defined by g(t, ξ) := Aξ+Bf ◦ (I −Df)−1(Cξ+Dd(t)) +Bd(t) satisfies its
conditions:

1. for each ξ ∈ Fn there is a real number r > 0 and a locally integrable
α : [0,∞)→ [0,∞) such that

‖g(t, ξ1)− g(t, ξ2)‖ ≤ α(t) ‖ξ1 − ξ2‖ (D.0.2)

for all t ∈ [0,∞) and for all ξ1, ξ2 ∈ BC(ξ, r),

2. for each fixed ξ ∈ Fn there is a locally integrable function β : [0,∞)→
[0,∞) such that

‖g(t, ξ)‖ ≤ β(t) a.e. (D.0.3)

Let us define a locally Lipschitz function h(µ) := Bf ◦ (I − Df)−1(µ), so
that g(t, ξ) = Aξ + h(Cξ +Dd(t)) +Bd(t).

We will now check that condition 1. is satisfied. Let ξ ∈ Fn and pick any
r > 0. Since h is locally Lipschitz, we can define α : [0,∞)→ [0,∞) by

α(t) := ‖A‖+ sup
ξ1,ξ2∈B(ξ,r)

‖h(Cξ1 +Dd(t))− h(Cξ2 +Dd(t))‖
‖ξ1 − ξ2‖

,
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so that (D.0.2) is clearly satisfied. We will now verify that α is locally
integrable. To this end, pick a compact K ⊆ [0,∞). Since d ∈ L∞loc(Fm),
it is essentially bounded on K and hence there exist µ ∈ Fp and ρ > 0
such that Dd(t) ∈ B(µ, ρ) for almost all t ∈ K. As h is locally Lipschitz,
there exists l > 0 such that ‖h(µ1)− h(µ2)‖ ≤ l ‖µ1 − µ2‖ for all µ1, µ2 ∈
B(µ+ Cξ, ρ+ r). Hence we can estimate

α(t) ≤ ‖A‖+ l ‖C‖ a.e. on K

so that α is clearly integrable on K. Since K was an arbitrary compact set,
we conclude that α is locally integrable as required.

To check condition 2., for a fixed ξ ∈ Fn, we define β(t) := ‖A‖ ‖ξ‖+h(Cξ+
Dd(t)) + Bd(t). Let K ⊆ [0,∞) be a compact set. Since d ∈ L∞loc(Fm), Dd
is essentially bounded on K, so that there exists r > 0 such that Dd(t) ∈
B(0, r) and Bd(t) ∈ B(0, r) (note that the two balls lie in different spaces)
for almost all t ∈ K. Thus, as h is locally Lipschitz, there exists c > 0 such
that β(t) ≤ ‖A‖ ‖ξ‖+c for almost all t ∈ K and hence β is clearly integrable
on K. Since K was an arbitrary compact set, we conclude that β is locally
integrable as required.

Thus we can apply Theorem 54 from Appendix C in [51] and hence, for each
ξ ∈ Fn, there exists a solution x of (D.0.1), called the maximal solution,
defined on some nonempty interval [0, ω) ⊆ [0,∞) such that if x1 is any
other solution of (D.0.1), defined on [0, ω1) ⊆ [0,∞), then [0, ω1) ⊆ [0, ω)
and x = x1 on [0, ω1). It is well-known that, if x : [0, ω)→ Fn is a maximal
solution of (D.0.1) and if ω < 0, then

lim
t→ω
‖x(t)‖ =∞.
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