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Summary

We study a number of issues in sampled-data control of linear systems. We investigate
the relationship between the continuous-time finite-dimensional feedback systems and
the corresponding sampled-data systems obtained by sample-and-hold operations with
a constant sampling period. Using state-space methods, we show that the sampled-
data system recovers the state stability of the continuous-time feedback system as the
sampling period goes to zero. State feedback systems and dynamic output feedback
systems are considered. We explore sampled-data feedback systems with time-varying
sampling period. It is shown that, applying an adaptive law for adjusting the sam-
pling period, we can achieve the stability of the sampled-data feedback systems. State
feedback, static and dynamic output feedback are considered. We solve tracking and
disturbance rejection problems for stable infinite-dimensional systems, using a simple
low-gain discrete-time controller suggested by the internal model principle, with ref-
erence signals which are finite sums of sinusoids, and disturbance signals which are
asymptotic to finite sums of sinusoids. The results are given for both input-output
systems and state space systems. We present adaptive low-gain control strategies for
tracking constant reference signals for infinite-dimensional, well-posed, exponentially
stable, linear systems.
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List of symbols.

N Set of natural numbers {1, 2, . . .}.
Z, R, C Ring of integers, fields of real numbers and complex numbers.

Z+ Non-negative integers {0} ∪ N.

Re z, Im z Real and imaginary parts of a complex number z.

R+ {s ∈ R : s ≥ 0}.
Cα Open right half-plane {s ∈ C : Re s > α} for α ∈ R.

C− Open left half-plane {s ∈ C : Re s < 0}.
N {1, . . . ,N} for N ∈ N.

B(λ, r) {s ∈ C : |s − λ| < r}.
Eρ {s ∈ C : |s| > ρ}.
cl(U) The closure of U ⊂ C.

λ The complex of conjugate of λ ∈ C.

L Laplace transform.

Z Z-transform.

Let X,Y be Banach spaces.

B(X,Y ) The set of all bounded linear operators from X to Y .

B(X) The set of all bounded linear operators from space X to X.

A∗ Self-adjoint operator of A ∈ B(X).

σ(A), %(A) Spectrum and resolvent of A ∈ B(X).

r(A) Spectral radius of A ∈ B(X).

Lb(R+,X) The set of bounded X-valued Lebesgue measurable functions with

the sup-norm ‖ · ‖∞.

H∞(Ω,X) {f : Ω → X | f is holomorphic and bounded}, where Ω ⊂ C is open.

H∞
< (E1,X)

⋃
0<γ<1

H∞(Eγ ,X).

H2(Cα,X) {f : Cα → X | f is holomorphic and sup
x>α

∫ ∞

−∞
‖f(x + iσ)‖2dσ < ∞}.

`1
α(Z+,X) Weighted `1-space {v : Z+ → X | (v(k)α−k)k∈Z+ ∈ `1(Z+,X)}

for α > 0.
ˆ̀1
α(X) {Z (g) : g ∈ `1

α(Z+,X)} ⊂ H∞(Eα,X).

Lq
β(R+,X) Exponentially weighted Lq-space {f ∈ Lq

loc(R+,X) : f(·)e−β · ∈
Lq(R+,X)} for 1 ≤ q < ∞ and β ∈ R.
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Chapter 1

Introduction

Since digital computing equipment offers many benefits, such as accuracy, speed, small
size and low price, it has been used more and more to implement feedback controls.
Therefore, the analysis and synthesis of sampled-data systems (or digital control sys-
tems) have been of continuing interest for several decades (see [1], [2], [12], [17], [84],
[85], to name just a few references).
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Figure 1-1: Sampled-data systems.

We use the specific class of linear feedback systems shown in Figure 1-1 to give a short
introduction to sampled-data systems. In a sampled-data system, a continuous-time
plant G is controlled, via sample and hold operations, by a discrete-time controller
Kτ which is normally a microprocessor or the central processing unit of a digital com-
puter. Sampled-data systems are hybrid systems which involve both continuous-time
and discrete-time signals.

The sampling operator Sτ is the mathematical model of a digital-to-analog (D/A) con-
vertor which converts a continuous-time signal to a discrete-time signal. In many
practical situations, Sτ is the ideal sampling operator which samples periodically at
sampling points 0, τ, 2τ, 3τ, . . ., i.e.,

uc(k) = (Sτe)(k) := e(kτ) , ∀k ∈ Z+ ,
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Figure 1-2: Sample-hold discretization.

where τ > 0 is the so-called sampling period. The operator Hτ is the mathematical
model for an analog-to-digital (A/D) convertor. In this thesis, Hτ is the zero-order
hold operator: it produces a piecewise constant signal by holding a discrete-time signal
constant during the sampling intervals, that is,

(Hτyc)(t) := yc(k) , ∀t ∈ [kτ, (k + 1)τ) .

As for the exogenous signals in Figure 1-1, r denotes the reference signal, d1 denotes a
plant input disturbance and d2 denotes a plant output disturbance.

This thesis explores how to design a discrete-time controller for a given continuous-time
plant such that one or several of the following goals are achieved for the sampled-data
feedback system:

• exponential stability,

• input-output stability,

• the output y of the closed-loop system (approximately) tracks certain reference
signals r and (approximately) rejects certain external disturbances d1 and d2.

One approach to discrete-time controller design for sampled-data systems, called indi-
rect sampled-data control, is to first design a continuous-time controller K to achieve
specific performance goals (for example, stability of the state, input-output stability)
using continuous-time design methods. A discrete-time controller is obtained by dis-
cretization of K. There are many methods for this purpose (see, for example, Kowal-
czuk [30]). One commonly used method is the so-called sample-hold discretization
illustrated in Figure 1-2. Here the discretization Kτ of K is given by Kτ := SτKHτ . A
natural and important question in indirect sampled-data control is whether continuous-
time stability and/or performance is recovered as τ → 0.

In practice, there are several potential technical disadvantages to indirect sampled-data
control. For example, the use of indirect sampled-data control may lead to very small
sampling period, so that practical implementation may be too expensive or may not
even be feasible. Another approach to sampled-data controller design, called direct
sampled-data control, is to design the discrete-time controller Kτ directly (see [2], [10],
[19] and [57], to name a few references). The obvious advantage is that it solves
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the problem without approximation. The disadvantage is that this approach is more
difficult since sampled-data systems are time-varying .

In this thesis, we focus on a number of issues in indirect sampled-data control: stabiliza-
tion of linear finite-dimensional systems (Chapters 3-5) and (approximate) tracking and
disturbance rejection for stable infinite-dimensional systems using low-gain controllers
(Chapters 6 and 7).

This thesis is organised as follows: Chapter 2 contains some preliminaries used through-
out the thesis. In Chapter 3, we study the sampled-data systems obtained from state
feedback controlled continuous-time systems by sample-hold discretization. We discuss
the relationship between exponential growths, transient bounds and trajectories of the
continuous-time state feedback system and the corresponding sampled-data system.

In Chapter 4, we extend the results in Chapter 3 to dynamic output feedback systems.
We also use state-space method to show that, for an exponentially stable dynamic
output feedback system, if the sampling period τ is sufficiently small, then the corre-
sponding sampled-data system is exponentially stable and input-output stable in the
sense that the Lp-norm of the output is bounded by the sum of the W 1,p-norm of the
input for 1 ≤ p ≤ ∞ and the Euclidean norm of the initial data.

In Chapter 5, we study sampled-data state feedback systems with time-varying sam-
pling period. We develop an approach, which is based on an adaptive law for adjusting
the sampling period, to achieve the stability of the state feedback sampled-data sys-
tems. This adaptive approach is extended to static and dynamic output feedback.

In Chapter 6, we first show that, for power stable infinite-dimensional discrete-time
systems, the application of a certain discrete-time low-gain controller (depending on
only one gain parameter) leads to a stable closed-loop system which asymptotically
tracks reference signal r of the form r(k) =

∑N
j=1 λk

j rj where rj ∈ C
p and λj ∈ C

with |λj | = 1 for j = 1, . . . ,N . The closed-loop system also rejects disturbance signals
which are asymptotically equal to signals of this form. The discrete-time results are
used to derive results on approximate tracking and disturbance rejection for a large
class of infinite-dimensional systems, using sampled-data control. The reference signals
are finite sums of sinusoids, and disturbance signals are asymptotic to finite sums of
sinusoids. The results are given for both input-output systems and state space systems.
For purpose of illustration, a number of examples and simulations are included.

One of the main issues in low-gain control as developed in Chapter 6 is the tuning
of the gain parameter. For the case of integral control, this issue is addressed in
Chapter 7: after a detailed analysis of adaptive discrete-time low-gain integral control
of infinite-dimensional, multivariable, discrete-time, power-stable systems, the discrete-
time results are applied in the development of adaptive sampled-data low-gain control
for infinite-dimensional, multivariable, well-posed, exponentially stable systems.

Finally, we mention that some of the results from Chapters 6 and 7 have been submitted
for publication ([24]-[27]). Another manuscript containing results from Chapters 4 and
5 is in preparation [20].
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Chapter 2

Preliminaries

In this chapter, we collect a number of preliminary results used in this thesis.

2.1 Exponential rates, exponential growth and transient

bounds

We consider the following continuous-time linear system

ẋ(t) = Ax(t) , ∀t ≥ 0 ; x(0) = x0 ∈ R
n , (2.1)

where A ∈ R
n×n.

Definition 2.1.1. A number α ∈ R is said to be an exponential rate of system (2.1)
(or of A) if there exists M ≥ 1 such that

‖eAt‖ ≤ Meαt , ∀t ≥ 0 . (2.2)

We define the exponential growth ω of system (2.1) (or of A) by

ω := inf{α : α is an exponential rate of system (2.1) (or of A)} .

We say that system (2.1) is exponentially stable if and only if ω < 0. 3

It is well known that
ω = max{Re λ : λ ∈ σ(A)} ,

where σ(A) is the spectrum of A.

Trajectories of an exponentially stable linear system may temporarily move a long way
from the origin before approaching it as t → ∞. From a practical point of view, if the
“state excursions” are very large, the stable system actually behaves like an unstable
one. We use the concept of transient bound as to quantify the transient behaviour. This
concept was introduced by Hinrichsen and Pritchard (see [18, Section 5.5, p. 648]).
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Definition 2.1.2. If α is an exponential rate of system (2.1), then

M(α) := inf{M ≥ 1 : (2.2) holds}

is the transient bound of system (2.1), associated with the exponential rate α. 3

It is clear that
ω < α ≤ β =⇒ M(β) ≤ M(α) . (2.3)

Remark 2.1.3. Hinrichsen and Pritchard also discussed the interplay between expo-
nential rates and the associated transient bounds. They showed that if ω < α < β and
M(β) > 1, then M(β) < M(α) (see [18], p. 650). 3

The following proposition seems to be new.

Proposition 2.1.4. Let ω be the exponential growth of system (2.1). The function

(ω,∞) → [1,∞) , α 7→ M(α)

is continuous.

Proof. Let x( · ;x0) denote the solution of system (2.1) and let α > ω. First we show
left continuity. There exists δ1 > 0 such that α − 2δ1 > ω. By the definition of the
transient bound, we have

‖x(t;x0)‖ = ‖eAtx0‖ ≤ M(α − 2δ1) e−δ1te(α−δ1)t‖x0‖ , ∀t ≥ 0 , ∀x0 ∈ R
n . (2.4)

By (2.3), M(α) ≤ M(α − 2δ1). Trivially, there exists T ≥ 0 such that

M(α − 2δ1)e−δ1t ≤ M(α) , ∀t ≥ T .

Hence, it follows from (2.4) that

‖x(t;x0)‖ ≤ M(α)e(α−δ1)t‖x0‖ , ∀t ≥ T , ∀x0 ∈ R
n . (2.5)

For every ε > 0, there exists δ2 ∈ (0, δ1) such that, if δ ∈ (0, δ2), then

M(α)eδT ≤ M(α) + ε .

Hence, for every δ ∈ (0, δ2),

‖x(t;x0)‖ ≤ M(α) eδte(α−δ)t‖x0‖
≤ M(α)eδT e(α−δ)t‖x0‖
≤ (M(α) + ε)e(α−δ)t‖x0‖ , ∀t ∈ [0, T ] , ∀x0 ∈ R

n . (2.6)

Combining (2.5) and (2.6), we see that if δ ∈ (0, δ2), then

‖x(t;x0)‖ ≤ (M(α) + ε)e(α−δ)t‖x0‖ , ∀t ≥ 0 , ∀x0 ∈ R
n .
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Therefore, we conclude that, for every ε > 0, there exists δ2 > 0 such that if δ ∈ (0, δ2),
then

M(α) ≤ M(α − δ) ≤ M(α) + ε ,

where the first inequality follows from (2.3). Hence the mapping α 7→ M(α) is left
continuous.

It remains to show right continuity. We consider two cases.

Case 1: M(α) = 1.

Then we have
‖x(t;x0)‖ ≤ eαt‖x0‖ , ∀t ≥ 0 , ∀x0 ∈ R

n .

It is clear that

‖x(t;x0)‖ ≤ e(α+δ)t‖x0‖ , ∀t ≥ 0 , ∀x0 ∈ R
n , ∀δ > 0 .

Thus M(α + δ) = M(α) = 1 for all δ > 0, showing the right continuity in this case.

Case 2: M(α) > 1.

Seeking a contradiction, suppose that the function α 7→ M(α) is not right continuous.
Then, by (2.3), there exist M < M(α) and a sequence (δk)k∈Z+ ⊂ (0,∞) satisfying
limk→∞ δk = 0, such that M(α + δk) ≤ M for all k ∈ Z+. By the definition of the
transient bound, we have

‖x(t;x0)e−δkt‖ ≤ M(α + δk)eαt‖x0‖ ≤ Meαt‖x0‖ , ∀t ≥ 0 , ∀x0 ∈ R
n , ∀k ∈ Z+ .

Letting k → ∞, we see that

‖x(t;x0)‖ ≤ Meαt‖x0‖ , ∀t ≥ 0 , ∀x0 ∈ R
n ,

contradicting the definition of M(α). This proves the right continuity in this case. 2

2.2 Power stability, power rates and power growth

Let X be a Banach space and let A ∈ B(X), a bounded linear operator on X. It is
well known that

r(A) = lim
k→∞

‖Ak‖1/k , (2.7)

where r(A) denotes the spectral radius of A (see, for example, [66, Theorem 18.9,
p. 360]). We say that A is power stable if and only if limk→∞ Ak = 0.

The following theorem is well-known. We provide a proof for completeness.

Proposition 2.2.1. The following statements are equivalent:

(1) A ∈ B(X) is power stable;

7



(2) there exist ρ ∈ (0, 1) and M ≥ 1 such that ‖Ak‖ ≤ Mρk for all k ∈ Z+;

(3) r(A) < 1;

(4) z 7→ (zI − A)−1 ∈ H∞
< (E1,B(X)).

Proof. We first show (1) ⇒ (3). If limk→∞ Ak = 0, then there exists k0 ∈ Z+ such that
‖Ak0‖ =: q ∈ [0, 1). Hence

‖Ak0n‖1/(k0n) ≤ (‖Ak0‖n)1/(k0n) = ‖Ak0‖1/k0 = q1/k0 < 1 , ∀n ∈ Z+ .

Letting n → ∞ and using (2.7) proves that r(A) < 1.

We next show (3) ⇒ (2). Assume that r(A) < 1. Let ρ ∈ (r(A), 1). By (2.7),
there exists k0 ∈ Z+ such that ‖Ak‖1/k ≤ ρ if k ≥ k0. Choosing M ≥ 1 such that
‖Ak‖1/k ≤ M1/kρ if k = 0, . . . , k0, we conclude that Statement (2) holds.

Trivially, (2) ⇒ (1). Finally, we show that (3) ⇔ (4). Assume that r(A) < 1. There
exists α ∈ (r(A), 1) such that cl(Eα) is contained in the resolvent set of A. Note that
limz→∞(zI − A)−1 = 0. Hence (zI − A)−1 is bounded for all z ∈ Eβ for some β > 1.
Clearly, z 7→ (zI −A)−1 is bounded on the compact annulus cl(Eα) \Eβ, showing that
z 7→ (zI−A)−1 is bounded on Eα. Moreover, it is a standard result that z 7→ (zI−A)−1

is holomorphic at every point of the resolvent set of A (see, for example, [29], p. 389,
Theorem 7.5-2) so that z 7→ (zI − A)−1 is holomorphic on Eα. We conclude that
z 7→ (zI − A)−1 ∈ H∞(Eα,B(X)). The proof for (4) ⇒ (3) can be found in [31,
Lemma 1]. 2

Remark 2.2.2. Logemann showed that if z 7→ (zI − A)−1 ∈ H∞(E1,B(X)), then
r(A) < 1 (see [31, Lemma 1]). This assumption is weaker than Statement (4). 3

Consider the discrete-time system

x(k + 1) = Ax(k) , ∀k ∈ Z+ ; x(0) = x0 ∈ X . (2.8)

Definition 2.2.3. A number ρ > 0 is said to be a power rate of system (2.8) (or of A)
if there exists M ≥ 1 such that

‖Ak‖ ≤ Mρk , ∀k ∈ Z+ .

The power growth of system (2.8) (or of A) is defined to be

inf{ρ : ρ is a power rate of system (2.8) (or of A)} .

We say that system (2.8) is power stable if and only if A is power stable. 3

Invoking (2.7) and a routine argument, it can be shown that r(A) is equal to the power
growth of system (2.8).

8



2.3 Properties of sampling and hold operators

In this section, we discuss the boundedness properties of the sampling and hold oper-
ators Sτ and Hτ , which are fundamental in the study of sampled-data systems.

Let F (R+, Cn) and F (Z+, Cn) denote the spaces of all C
n-valued functions defined on

R+ and Z+, respectively.

Definition 2.3.1. Let τ > 0 denote the sampling period. We define the ideal sampling
operator Sτ : F (R+, Cn) → F (Z+, Cn) by

(Sτu)(k) := u(kτ) , ∀k ∈ Z+ .

The (zero-order) hold operator Hτ : F (Z+, Cn) → F (R+, Cn) is defined by

(Hτv)(t) := v(k) , ∀t ∈ [kτ, (k + 1)τ) ,

that is, Hτ converts the discrete-time signal v into a piecewise continuous function by
holding it constant over the sampling intervals. 3

Let Lb(R+, Cn) denote the space of bounded Lebesgue measurable functions with the
sup-norm ‖·‖∞ on R+ and let C(R+, Cn) denote the space of continuous functions from
R+ to C

n. The following proposition shows that Hτ has the nice property that, by
suitable scaling, it is norm preserving from `p(Z+, Cn) to Lp(R+, Cn) for all 1 ≤ p ≤ ∞.

Proposition 2.3.2. For 1 ≤ p ≤ ∞, Hτ : `p(Z+, Cn) → Lp(R+, Cn) is bounded.
Moreover,

‖Hτv‖Lp = τ1/p‖v‖`p , ∀v ∈ `p(Z+, Cn) , ∀1 ≤ p < ∞ ,

and
‖Hτv‖L∞ = ‖v‖`∞ , ∀v ∈ `∞(Z+, Cn) .

Thus Hτ : `∞(Z+, Cn) → L∞(R+, Cn) is an isometry.

The sampling operator Sτ : Lb(R+, Cn) → `∞(Z+, Cn) is bounded and of norm 1.

The proof is simple and can be found in [2, Theorem 9.3.1, p. 211]. A counter-example
given in the proof of [2, Theorem 9.3.1] shows that the sampling operator Sτ is not well
defined from Lp(R+, Cn) ∩ C(R+, Cn) to `p(Z+, Cn) for 1 ≤ p < ∞:

Example 2.3.3. Define u : R+ → R+ by

u(t) :=
∞∑

k=1

vk(t) , where vk(t) :=

 1 − 2k2

τ
|t − kτ | , if |t − kτ | <

τ

2k2

0 , otherwise
,

as shown in Figure 2-1. It is clear that u ∈ Lp(R+, R) ∩ C(R+, R) for 1 ≤ p < ∞.
However, Sτu /∈ `p since (Sτu)(k) = 1 for all k ∈ N.
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Figure 2-1: Function u.

We next show that Sτ is bounded from the Sobolev spaces W 1,p(R+, Cn) to `p(Z+, Cn)
for 1 ≤ p ≤ ∞.

Definition 2.3.4. For p ∈ [1,∞], we define

W 1,p(R+, Cn) := {u : R+ → C
n | u is absolutely continuous , u, u̇ ∈ Lp(R+, Cn)} ,

where u̇ denotes the classical derivative of u (which exists almost everywhere). The
W 1,p-norm is defined by

‖u‖W 1,p :=
(∫ ∞

0
‖u(s)‖pds +

∫ ∞

0
‖u̇(s)‖pds

)1/p

, for p ∈ [1,∞) ,

‖u‖W 1,∞ := max{‖u‖L∞ , ‖u̇‖L∞} .

3

Theorem 2.3.5. The sampling operator Sτ is bounded from W 1,p(R+, Cn) to
`p(Z+, Cn) for every 1 ≤ p ≤ ∞. In particular,

‖Sτu‖`p ≤ M(p, n, τ)‖u‖W 1,p , ∀u ∈ W 1,p(R+, Cn) ,

where

M(p, n, τ) =

{
21− 1

p
√

n(τp−1 + τ−1)
1
p , p ∈ [1,∞)

1 , p = ∞
.

Proof. If p = ∞, then, by Proposition 2.3.2,

‖Sτu‖`∞ ≤ ‖u‖L∞ ≤ ‖u‖W 1,∞ , ∀u ∈ W 1,∞(R+, Cn) .

Assume that p ∈ [1,∞) and let u ∈ W 1,p(R+, Cn). Writing u = (u1, . . . , un)T , it follows
that uj ∈ W 1,p(R+, C) for j = 1, . . . , n. Define a mapping f : R

n
+ → C

n by

f((t1, . . . , tn)T ) := (u1(t1), . . . , un(tn))T .

By the continuity of |uj | on R+ and the mean-value theorem of integration, there exist

10



ξj,k ∈ [kτ, (k + 1)τ ] such that

|uj(ξj,k)| =
1
τ

∫ (k+1)τ

kτ
|uj(s)|ds , ∀k ∈ Z+ , ∀j = 1, . . . , n . (2.9)

Trivially,
(α2

1 + . . . + α2
n)1/2 ≤ α1 + . . . + αn , ∀α1, . . . , αn ≥ 0 . (2.10)

Moreover, a routine application of the Cauchy-Schwarz inequality (in R
n) yields that

n∑
j=1

αj ≤
√

n

 n∑
j=1

α2
j

1/2

, ∀α1, . . . , αn ≥ 0 . (2.11)

Setting ξk := (ξ1,k, . . . , ξn,k)T for k ∈ Z+, by (2.9)–(2.11), we have

‖f(ξk)‖ =

 n∑
j=1

|uj(ξj,k)|2
1/2

≤
n∑

j=1

|uj(ξj,k)|

=
1
τ

∫ (k+1)τ

kτ

 n∑
j=1

|uj(s)|
 ds

≤
√

n

τ

∫ (k+1)τ

kτ
‖u(s)‖ds , ∀k ∈ Z+ . (2.12)

The fundamental theorem of calculus for absolutely continuous functions shows,

uj(ξj,k) − uj(kτ) =
∫ ξj,k

kτ
u̇j(s)ds , ∀k ∈ Z+ , ∀j = 1, . . . , n . (2.13)

Consequently, by (2.10), (2.11) and (2.13),

‖f(ξk) − u(kτ)‖ =

 n∑
j=1

|uj(ξj,k) − uj(kτ)|2
1/2

≤
n∑

j=1

|uj(ξj,k) − uj(kτ)|

≤
n∑

j=1

∫ ξj,k

kτ
|u̇j(s)|ds

≤
∫ (k+1)τ

kτ

n∑
j=1

|u̇j(s)|ds

≤ √
n

∫ (k+1)τ

kτ
‖u̇(s)‖ds , ∀k ∈ Z+ . (2.14)
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Since p ∈ [1,∞), the function R+ → R+ : x 7→ xp is convex. Hence(
α + β

2

)p

≤ αp + βp

2
, ∀α, β ≥ 0 ,

that is,
(α + β)p ≤ 2p−1(αp + βp) , ∀α, β ≥ 0 . (2.15)

Using (2.12), (2.14), (2.15) and the Hölder’s inequality, we obtain that, for k ∈ Z+

‖u(kτ)‖p ≤ (‖f(ξk) − u(kτ)‖ + ‖f(ξk)‖)p
≤ 2p−1(‖f(ξk) − u(kτ)‖p + ‖f(ξk)‖p)

≤ 2p−1

[
np/2

(∫ (k+1)τ

kτ
‖u̇(s)‖ds

)p

+ τ−pnp/2

(∫ (k+1)τ

kτ
‖u(s)‖ds

)p]

≤ 2p−1np/2

[
τp−1

∫ (k+1)τ

kτ
‖u̇(s)‖pds + τ−1

∫ (k+1)τ

kτ
‖u(s)‖pds

]

≤ 2p−1np/2(τp−1 + τ−1)

(∫ (k+1)τ

kτ
‖u̇(s)‖pds +

∫ (k+1)τ

kτ
‖u(s)‖pds

)
.

Therefore,

‖Sτu‖p
`p =

∞∑
k=0

‖u(kτ)‖p

≤ 2p−1np/2(τp−1 + τ−1)
∞∑

k=0

(∫ (k+1)τ

kτ
‖u̇(s)‖pds +

∫ (k+1)τ

kτ
‖u(s)‖pds

)
= 2p−1np/2(τp−1 + τ−1)‖u‖p

W 1,p ,

showing that ‖Sτu‖`p ≤ 21−(1/p)√n(τp−1 + τ−1)1/p‖u‖W 1,p . 2

2.4 Infinite-dimensional well-posed systems

In this section, we recall briefly some facts about admissible control and observation
operators, infinite-dimensional well-posed linear systems, their input-output operators
and transfer functions, which will be useful in Chapter 6 and 7. For the details,
we refer to Salamon [67, 68], Staffans [72, 74, 75], Staffans and Weiss [76], or Weiss
[80, 81, 83, 82]. These papers offer equivalent definitions of well-posed systems but
formulate them quite differently.

The class of well-posed systems captures the systems-theoretic properties of linearity,
time-invariance, and causality together with natural continuity properties. It is the
largest class of infinite-dimensional systems for which there exists a well-developed
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state-space and frequency-domain theory. It includes many distributed parameter sys-
tems and all time-delay systems which are of interest in applications. Every well-posed
system has a well-defined transfer function.

Throughout this section, we consider a well-posed system Σ with state-space X, input
space U , and output space Y (all Hilbert spaces), generating operators (A,B,C), input-
output operator G and transfer function G. Here A is the generator of a strongly
continuous semigroup (C0-semigroup) T on X, B ∈ B(U,X−1), and C ∈ B(X1, Y ),
where X1 denotes the domain of A, as an operator defined on X, endowed with the
graph norm ‖x‖1 := ‖x‖ + ‖Ax‖, and X−1 denotes the completion of X with respect
to the norm ‖x‖−1 := ‖(βI − A)−1x‖. The number β is in the resolvent set %(A) of
A. It can be verified that different choices of β lead to equivalent norms. We have
X1 ↪→ X ↪→ X−1. It is known that T restricts to a C0-semigroup on X1 and extends
to a C0-semigroup on X−1 with the exponential growth constant being the same on all
three spaces X1, X and X−1. The generator of the restricted (extended) semigroup is a
restriction (extension) of A. The restricted/extended semigroups and their generators
will be denoted by the same symbols T and A, respectively.

The control operator B is admissible, that is, for every t ≥ 0, there exists bt ≥ 0 such
that ∥∥∥∥∫ t

0
T(t − s)Bu(s)ds

∥∥∥∥ ≤ bt‖u‖L2 , ∀u ∈ L2([0, t], U) , (2.16)

and the observation operator C is also admissible, that is, for every t ≥ 0, there exists
ct ≥ 0 such that ∫ t

0
‖CT(t)z‖2dt ≤ ct‖z‖2 , ∀z ∈ X1 .

It follows from (2.16) that (sI−A)−1B ∈ B(U,X) for all s ∈ %(A). The control operator
B is said to be bounded if B ∈ B(U,X) (and unbounded otherwise), whilst C is called
bounded if it can be extended such that C ∈ B(X,Y ) (and unbounded otherwise).

The so-called Λ-extension of C is defined by

CΛz := lim
λ→∞ , λ∈R

Cλ(λI − A)−1z , ∀z ∈ dom(CΛ) ,

where dom(CΛ) is the set of all z ∈ X for which the above limit exists. Clearly,
X1 ⊂ dom(CΛ). For each z ∈ X, T(t)z ∈ dom(CΛ) for almost all t ≥ 0 and CΛTz ∈
L2

α(R+, Y ) for all α > ω(T), where

ω(T) := lim
t→∞

1
t

ln ‖T(t)‖

denotes the exponential growth constant of T. The transfer function G satisfies

G(s) − G(η)
s − η

= −C(sI − A)−1(ηI − A)−1B , ∀s, η ∈ Cω(T) , s 6= η , (2.17)

and G ∈ H∞(Cα,B(U, Y )) for every α > ω(T). Moreover, the input-output operator
G : L2

loc(R+, U) → L2
loc(R+, Y ) is continuous and shift-invariant; for every α > ω(T),

13



G ∈ B(L2
α(R+, U), L2

α(R+, Y )) and

(L (Gu))(s) = G(s)(L (u))(s) , ∀s ∈ Cα , ∀u ∈ L2
α(R+, U) .

where L (u) denotes the Laplace transform of function u.

For x0 ∈ X and u ∈ L2
loc(R+, U), let x and y denote the state and output functions of a

well-posed system Σ, respectively, corresponding to the initial condition x(0) = x0 ∈ X
and the input function u. Then

x(t) = T(t)x0 +
∫ t

0
T(t − s)Bu(s)ds , ∀t ≥ 0 ,

and x(t) − (ηI − A)−1Bu(t) ∈ dom(CΛ) for almost all t ≥ 0. Moreover,

ẋ(t) = Ax(t) + Bu(t) ; x(0) = x0 ∈ X , for a.a. t ≥ 0 , (2.18a)
y(t) = CΛ[x(t) − (ηI − A)−1Bu(t)] + G(η)u(t) , for a.a. t ≥ 0 , (2.18b)

where η ∈ Cω(T) is arbitrary. The differential equation (2.18a) has to be interpreted in
X−1. We identify Σ and (2.18) and refer to (2.18) as a well-posed system. We say that
(2.18) is exponentially stable if T is exponentially stable, i.e., ω(T) < 0.

The well-posed system (2.18) is said to be regular if there exists a linear operator D
such that

lim
s→∞,s∈R

G(s)u = Du , ∀u ∈ U .

In this case, by the uniform boundedness theorem, D ∈ B(U, Y ), and D is called the
feedthrough operator of (2.18b). Moreover, x(t) ∈ dom(CΛ) for almost all t ≥ 0, the
output equation (2.18b) can be simplified as

y(t) = CΛx(t) + Du(t) , for a.a. t ≥ 0 ,

im[(sI − A)−1B] ⊂ dom(CΛ) for all s ∈ %(A), and

G(s) = CΛ(sI − A)−1B + D , ∀s ∈ Cω(T) .

2.5 Notes and references

While Theorem 2.3.5 should be well known, we could not find it in the literature. Our
proof here is elementary and seems to be new. Kannai and Weiss showed that Sτ is
bounded from W s,2(R, C) to `2(Z, C) for all s > 1/2 (see [23, Proposition 2.1]). Note
that in their result, s is allowed to take non-integer values. In this respect, their result
is more general than Theorem 2.3.5. On the other hand, in Theorem 2.3.5, the domain
of Sτ is W 1,p, where p is allowed to be in the interval [1,∞], not just for p = 2. Closely
related to Theorem 2.3.5 is a result by Chen and Francis: they proved that the sampling
operator preceded by a filter F , i.e., SτF , is bounded from Lp(R+, Cn) to `p(Z+, Cn)
for all 1 ≤ p ≤ ∞ (see [1, Theorem 1] or [2, Theorem 9.3.2, p. 212]).
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Chapter 3

Indirect sampled-data control:
state feedback

Consider the finite-dimensional continuous-time state feedback system

ẋ(t) = Ax(t) + Bu(t) ; x(0) = x0 ∈ R
n , (3.1a)

u(t) = Fx(t) , (3.1b)

where A ∈ R
n×n, B ∈ R

n×m and F ∈ R
m×n.

Let τ > 0 be the sampling period. Using sampling and hold in (3.1b), we obtain the
corresponding sampled-data feedback system

ẋ(t) = Ax(t) + Bu(t) ; x(0) = x0 ∈ R
n , (3.2a)

u(t) = Fx(kτ) , ∀t ∈ [kτ, (k + 1)τ) . (3.2b)

In this chapter, we introduce the concepts of exponential rate, exponential growth
and transient bound associated with a particular exponential rate for the sampled-
data feedback system (3.2). In Section 3.1, it is shown that the exponential growth of
system (3.2) approaches the exponential growth of system (3.1) as τ → 0. In Section
3.2, we derive that the limit superior (as τ → 0) of the transient bound of system
(3.2) associated with the exponential rate α of (3.2) is less than the transient bound of
(3.1) associated with α. Section 3.3 deals with the convergence of the solution of the
sampled-data system (3.2) as τ → 0.

Throughout this chapter, let x( · ;x0, τ) denote the unique solution of the sampled-data
system (3.2).

3.1 Exponential growth

First we generalize Definition 2.1.1 to the sampled-data system (3.2).
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Definition 3.1.1. A number α ∈ R is said to be an exponential rate of system (3.2) if
there exists M ≥ 1 such that

‖x(t;x0, τ)‖ ≤ Meαt‖x0‖ , ∀t ≥ 0 , ∀x0 ∈ R
n . (3.3)

We define the exponential growth ωs(τ) of system (3.2) by

ωs(τ) = inf{α : α is an exponential rate of system (3.2)} .

We say that system (3.2) is exponentially stable if and only if ωs(τ) < 0. 3

By the variation-of-parameters formula, the solution x( · ;x0, τ) of (3.2) satisfies

x(kτ + θ;x0, τ) =
(

eAθ +
∫ θ

0
eAsdsBF

)
x(kτ ;x0, τ) , ∀θ ∈ [0, τ ] , ∀k ∈ Z+ . (3.4)

Define xk := x(kτ ;x0, τ) for all k ∈ Z+. It follows from (3.4) with θ = τ that

xk+1 = ∆τxk = ∆k+1
τ x0 , ∀k ∈ Z+ , (3.5)

where
∆τ := eAτ +

∫ τ

0
eAsdsBF . (3.6)

We know that the spectral radius r(∆τ ) of ∆τ is the power growth of system (3.5).

Theorem 3.1.2. The number ρ > 0 is a power rate of system (3.5) if and only if
(ln ρ)/τ is an exponential rate of system (3.2). Consequently,

ωs(τ) =
1
τ

ln(r(∆τ )) .

Proof. If ρ is a power rate of system (3.5), then there exists M1 ≥ 1 such that

‖∆k
τ‖ ≤ M1ρ

k , ∀k ∈ Z+ .

Setting M2 := maxθ∈[0,τ ] ‖eAθ +
∫ θ
0 eAsdsBF‖, it follows from (3.4) and (3.5) that

‖x(kτ + θ;x0, τ)‖ ≤
∥∥∥∥eAθ +

∫ θ

0
eAsdsBF

∥∥∥∥ ‖xk‖ ≤ M2‖∆k
τ‖‖x0‖ ≤ M1M2ρ

k‖x0‖ .

Case 1: ρ ≥ 1.

Then, since ρθ/τ ≥ 1,

‖x(kτ + θ;x0, τ)‖ ≤ M1M2ρ
kρθ/τ‖x0‖ = M1M2e

((ln ρ)/τ)(kτ+θ)‖x0‖ ,

∀θ ∈ [0, τ) , ∀k ∈ Z+ , ∀x0 ∈ R
n .
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Case 2: 0 < ρ < 1.

Then, since ρ(θ/τ)−1 ≥ 1,

‖x(kτ + θ;x0, τ)‖ ≤ M1M2ρ
−1ρ(kτ+θ)/τ‖x0‖ = M1M2ρ

−1e((ln ρ)/τ)(kτ+θ)‖x0‖ ,

∀θ ∈ [0, τ) , ∀k ∈ Z+ , ∀x0 ∈ R
n ,

Combining the above two cases, we conclude that (ln ρ)/τ is an exponential rate of
system (3.2).

Conversely, if (ln ρ)/τ is an exponential rate of system (3.2), then, by Definition 3.1.1
and (3.5), there exists M ≥ 1 such that

‖∆k
τx

0‖ = ‖x(kτ ;x0, τ)‖ ≤ Mρk‖x0‖ , ∀k ∈ Z+ , ∀x0 ∈ R
n ,

showing that ‖∆k
τ‖ ≤ Mρk for all k ∈ Z+. This proves that ρ is a power rate of system

(3.5). Taking infima, we have

ωs(τ) = ln(r(∆τ ))/τ . 2

Remark 3.1.3. It is clear that α is an exponential rate of (3.2) if and only if eατ is a
power rate of (3.5). 3

Corollary 3.1.4. We have

lim
t→∞x(t;x0, τ) = 0 , ∀x0 ∈ R

n ,

if and only if ωs(τ) < 0.

Proof. The sufficiency is obvious. For the necessity, assume that lim
t→∞x(t;x0, τ) = 0 for

all x0 ∈ R
n. Hence, by (3.5),

lim
k→∞

x(kτ ;x0, τ) = lim
k→∞

∆k
τx

0 = 0 , ∀x0 ∈ R
n ,

showing that limk→∞ ∆k
τ = 0. Therefore, it follows from Theorem 2.2.1 that r(∆τ ) < 1.

By Theorem 3.1.2, it follows that ωs(τ) < 0. 2

Let ωc denote the exponential growth of (3.1). Observe that when τ tends to 0, system
(3.2) seems to approximate system (3.1). Does ωs(τ) tend to ωc as τ → 0? The
following theorem shows that the answer is yes.

Theorem 3.1.5. Let ωc and ωs(τ) denote the exponential growths of state feedback
system (3.1) and corresponding sampled-data system (3.2), respectively. Then

lim
τ→0

ωs(τ) = lim
τ→0

1
τ

ln(r(∆τ )) = ωc ,

where ∆τ is defined in (3.6).

17



Proof. We show first that

lim sup
τ→0

1
τ

ln(r(∆τ )) ≤ ωc . (3.7)

Using the power series expansion of eAt, we obtain

∆τ = eAτ +
∫ τ

0
eAsdsBF = I + τ(A + BF + P (τ)) , (3.8)

where

P (τ) =
τ

2
A(A + BF ) +

τ2

3!
A2(A + BF ) + . . . +

τ j−1

j!
Aj−1(A + BF ) + . . . .

Let λτ ∈ σ(∆τ ). By (3.8), we see that λτ is of the form λτ = 1 + τµτ , where µτ ∈
σ(A + BF + P (τ)). Hence,

|λτ |2 = |1 + τµτ |2 = (1 + τRe µτ )2 + (τ Im µτ )2 = 1 + τ(2Re µτ + τ |µτ |2) . (3.9)

By the definition of ωc, σ(A + BF ) ⊂ {s ∈ C : Re s ≤ ωc}. Note that limτ→0 P (τ) = 0.
By perturbation theory, the mapping A 7→ σ(A) is continuous in the sense of [18] (see
[18, Corollary 4.2.1, p. 399]). In particular, for every ε > 0, there exists τ1 = τ1(ε) > 0
such that

σ(A + BF + P (τ)) ⊂
{

s ∈ C : Re s < ωc +
ε

4

}
, ∀τ ∈ (0, τ1) .

Hence, 2Re µτ < 2ωc + ε/2 for all τ ∈ (0, τ1). Consequently, there exists τ2 ∈ (0, τ1)
such that

2Re µτ + τ |µτ |2 < 2ωc + ε , ∀τ ∈ (0, τ2) .

Thus, by (3.9), |λτ |2 < 1 + τ(2ωc + ε) for all τ ∈ (0, τ2). Hence

r(∆τ )2 < 1 + τ(2ωc + ε) , ∀τ ∈ (0, τ2) .

Then

ln(r(∆τ ))
τ

=
ln(r(∆τ )2)

2τ
<

ln(1 + τ(2ωc + ε))
2τ

= ωc +
ε

2
+ E(τ) , ∀τ ∈ (0, τ2)

where limτ→0 E(τ) = 0. Therefore, for every ε > 0, there exists τ3 ∈ (0, τ2) such that

ln r(∆τ )
τ

< ωc + ε , ∀τ ∈ (0, τ3) ,

showing that (3.7) is true.

Furthermore, we claim that

lim inf
τ→0

1
τ

ln(r(∆τ )) ≥ ωc . (3.10)

18



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

t

||
x(

t;
x0

)|
|

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

t

||
x(

t;
x0

,τ
)|

|

Figure 3-1: Indirect sampled-data state feedback control.

It follows from perturbation theory that, for every ε > 0, there exist τ4 = τ4(ε) > 0
and µ̃τ ∈ σ(A + BF + P (τ)) such that

Re µ̃τ > ωc − ε

2
, ∀τ ∈ (0, τ4) .

Let λ̃τ := 1 + τ µ̃τ . By (3.8), we know that λ̃τ ∈ σ(∆τ ). By (3.9),

r(∆τ )2 ≥ |λ̃τ |2 > 1 + 2τRe µ̃τ > 1 + τ(2ωc − ε) , ∀τ ∈ (0, τ4) .

Using the same argument as above, for every ε > 0, there exists τ5 ∈ (0, τ4) such that

ln r(∆τ )
τ

> ωc − ε , ∀τ ∈ (0, τ5) .

showing that (3.10) is true. Combining (3.7) and (3.10), we have limτ→0 ln(r(∆τ ))/τ =
ωc. Invoking Theorem 3.1.2 completes the proof. 2

The following corollary is a direct consequence of Theorem 3.1.5.

Corollary 3.1.6. Assume that the state feedback system (3.1) is exponentially stable.
Then there exists τ∗ > 0 such that, for all τ ∈ (0, τ∗), the sampled-data feedback system
(3.2) is exponentially stable.

We give a simple example to illustrate Corollary 3.1.6.

Example 3.1.7. The continuous-time state feedback system is given by

ẋ(t) =

(
−1 1

−2 3

)
x(t) +

(
0

1

)
u(t) ; x(0) = x0 =

(
−1

2

)
,

u(t) = (2,−5)x(t) .
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Figure 3-2: Instability occurs when τ = 0.45.

It is easy to check that the above system is exponentially stable. Let x( · ;x0) and
x( · ;x0, τ) denote the solutions of the above system and the corresponding sampled-
data system, respectively. Figure 3-1 illustrates the effect of sampling with constant
sampling period τ = 0.2. Simulations shows that, at τ ≈ 0.44, the sampled-data system
is not exponentially stable, as shown in Figure 3-2.

3.2 Transient bounds

In this section, we will discuss the relation between the transient bounds of the state
feedback system (3.1) and the transient bounds of the corresponding sampled-data
feedback system (3.2).

Definition 3.2.1. If α is an exponential rate of system (3.2), then the number

Ms(α, τ) := inf{M ≥ 1 : (3.3) holds}

is said to be the transient bound of (3.2), associated with the exponential rate α and
the sampling period τ . 3

It is clear that
ωc < α < β =⇒ Ms(β, τ) ≤ Ms(α, τ) . (3.11)

Using the same argument as in the proof of Proposition 2.1.4, we can show that for
fixed sampling period τ , the function (ωs(τ),∞) → [1,∞), α 7→ Ms(α, τ) is continuous.

Let Mc(α) denote the transient bound of (3.1), associated with the exponential rate α
of (3.1). The following theorem is the main result of this section.

Theorem 3.2.2. For every β > ωc and every M > Mc(β), there exists τ∗ = τ∗(β,M)
> 0 such that, for all τ ∈ (0, τ∗), β is an exponential rate of the sampled-data feedback
system (3.2) and Ms(β, τ) < M .
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We need two more lemmas to prove this theorem.

Lemma 3.2.3. For A ∈ R
n×n, B ∈ R

n×m and F ∈ R
m×n,

e(A+BF )t = eAt +
∫ t

0
eAsBFe(A+BF )(t−s)ds , ∀t ≥ 0 .

Proof. Let x0 ∈ R
n and set x(t) := e(A+BF )tx0 for all t ≥ 0. Then

ẋ = (A + BF )x = Ax + BFx .

Regarding BFx as a forcing term and using the variation-of-parameters formula, we
have

x(t) = eAtx0 +
∫ t

0
eAsBFx(t − s)ds , ∀t ≥ 0 ,

showing that

e(A+BF )tx0 = eAtx0 +
∫ t

0
eAsBFe(A+BF )(t−s)ds x0 , ∀t ≥ 0 .

This holds for all x0 ∈ R
n and thus the claim follows. 2

The following lemma is a version of the discrete-time Gronwall Lemma.

Lemma 3.2.4. Let a ∈ R and b ≥ 0. If the sequence f : Z+ → R satisfies

f(k) ≤ a + b
k−1∑
j=0

f(j) , ∀k ∈ N ,

then
f(k) ≤ (1 + b)k−1(a + bf(0)) , ∀k ∈ N .

Proof. We use strong induction. When k = 1, we have f(1) ≤ a + bf(0) by our
hypothesis, thus the claim is true for k = 1. For N ≥ 2, assume the claim is true for
k = 1, 2, . . . ,N − 1. Since b ≥ 0,

f(N) ≤ a + b
N−1∑
j=0

f(j)

≤ a + bf(0) + b(a + bf(0))
N−1∑
j=1

(1 + b)j−1

= a + bf(0) + (a + bf(0))[(1 + b)N−1 − 1]
= (1 + b)N−1(a + bf(0)) .

Therefore the claim holds for k = N . 2
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Proof of Theorem 3.2.2. Define Vτ ,Wτ ∈ R
n×n by

Vτ := e(A+BF )τ ,

Wτ :=
∫ τ

0
eAsBF

(
I − e(A+BF )(τ−s)

)
ds =

∫ τ

0
eA(τ−s)BF

(
I − e(A+BF )s

)
ds .

Define xk := x(kτ ;x0, τ) for all k ∈ Z+, where x( · ;x0, τ) denotes the solution of (3.2).
By Lemma 3.2.3 and (3.5), we obtain

xk+1 = Vτxk + Wτxk , ∀k ∈ Z+ . (3.12)

Considering k 7→ Wτxk as a forcing term, it follows from the discrete-time variation-
of-parameters formula that

xk = V k
τ x0 +

k−1∑
j=0

V k−j−1
τ Wτxj , ∀k ∈ N . (3.13)

Let β > ωc and M > Mc(β). By Proposition 2.1.4, there exists α ∈ (ωc, β) such that
M > Mc(α). Since α is an exponential rate of system (3.1),

‖V k
τ ‖ = ‖e(A+BF )kτ‖ ≤ Mc(α)eαkτ , ∀k ∈ Z+ .

Consequently, by (3.13),

‖xk‖ ≤ Mc(α)eατk‖x0‖ + Mc(α)‖Wτ‖
k−1∑
j=0

eατ(k−j−1)‖xj‖ , ∀k ∈ N ,

or, equivalently,

e−ατk‖xk‖ ≤ Mc(α)‖x0‖ + Mc(α)e−ατ ‖Wτ‖
k−1∑
j=0

e−ατj‖xj‖ , ∀k ∈ N .

Set a := Mc(α)‖x0‖, b := Mc(α)e−ατ ‖Wτ‖ and f(k) := e−ατk‖xk‖ for k ∈ Z+. Apply-
ing Lemma 3.2.4 yields

e−ατk‖xk‖ ≤ (1 + b)k−1(a + bf(0)) ≤ ebk(a + b‖x0‖) , ∀k ∈ N ,

since 1 + b ≤ eb. Hence,

‖xk‖ ≤ e(ατ+b)kMc(α)(1 + ‖Wτ‖e−ατ )‖x0‖ , ∀k ∈ Z+ . (3.14)

Let τ0 > 0. Note that there exists N ≥ 0 such that

‖eA(τ−s)BF‖‖I − e(A+BF )s‖ ≤ 2Ns , ∀τ, s ∈ [0, τ0] .
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Therefore
‖Wτ‖ ≤

∫ τ

0
2Nsds ≤ Nτ2 , ∀τ ∈ (0, τ0] . (3.15)

Defining α̂(τ) := α + NMc(α)e−ατ τ , we have

ατ +b = ατ +Mc(α)e−ατ ‖Wτ‖ ≤ ατ +NMc(α)e−ατ τ2 = α̂(τ)τ , ∀τ ∈ (0, τ0] . (3.16)

By (3.4) and (3.14)–(3.16),

‖x(kτ + θ;x0, τ)‖ ≤
∥∥∥∥eAθ +

∫ θ

0
eAsdsBF

∥∥∥∥ ‖xk‖

≤ e‖A‖τ (1 + ‖BF‖τ)eα̂(τ)(kτ+θ)e−α̂(τ)θMc(α)(1 + Ne−αττ2)‖x0‖ ,

∀θ ∈ [0, τ) , ∀τ ∈ (0, τ0] , ∀k ∈ Z+ .

Since α̂(τ) ≥ α for all τ > 0, it is clear that e−α̂(τ)θ ≤ e|α|τ for all τ > 0 and all
θ ∈ [0, τ). Setting

C(τ) := Mc(α)(1 + ‖BF‖τ)(1 + Ne−αττ2)e(‖A‖+|α|)τ ,

we conclude that

‖x(t;x0, τ)‖ ≤ C(τ)eα̂(τ)t‖x0‖ , ∀t ≥ 0 , ∀τ ∈ (0, τ0] , ∀x0 ∈ R
n . (3.17)

By our choice of α and β, we have ωc < α < β. By Theorem 3.1.5 and the definition
of α̂(τ) , there exists τ1 ∈ (0, τ0) such that if τ ∈ (0, τ1), then

ωs(τ) < α < α̂(τ) < β , ∀τ ∈ (0, τ1) , (3.18)

showing that β is an exponential rate of system (3.2). Note that C(τ) > Mc(α) for all
τ > 0 and limτ→0 C(τ) = Mc(α). Hence, since Mc(α) < M , there exists τ∗ ∈ (0, τ1)
such that if τ ∈ (0, τ∗), then C(τ) < M . It follows from (3.17) that

Ms(α̂(τ), τ) ≤ C(τ) < M , ∀τ ∈ (0, τ∗) .

By (3.11) and (3.18), we obtain that

Ms(β, τ) ≤ Ms(α̂(τ), τ) < M , ∀τ ∈ (0, τ∗) . 2

3.3 Convergence as the sampling period tends to 0

Let x( · ;x0) denote the solution of the continuous-time state feedback system (3.1). By
Theorem 3.1.5, we know that the exponential growth ωs(τ) of the sampled-data system
(3.2) converges to the exponential growth ωc of (3.1) as τ → 0. In this context, it is
natural to ask: Does x( · ;x0, τ) converge to x( · ;x0) as τ → 0? The answer is positive.
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Theorem 3.3.1. Let Ω ⊂ R
n be bounded. Then, for every T > 0,

lim
τ→0

sup
t∈[0,T ]
x0∈Ω

‖x(t;x0, τ) − x(t;x0)‖ = 0 . (3.19)

Moreover, if ωc < 0, then

lim
τ→0

sup
t≥0

x0∈Ω

‖x(t;x0, τ) − x(t;x0)‖ = 0 . (3.20)

Proof. Let Ω ⊂ R
n be bounded. We first prove that (3.19) holds for every T > 0.

Define V,W : [0, τ ] → R
n×n by

V (θ) := e(A+BF )θ ,

W (θ) :=
∫ θ

0
eAsBF

(
I − e(A+BF )(θ−s)

)
ds .

Trivially,

x(kτ + θ;x0) = e(A+BF )(kτ+θ)x0 = V (θ)V (τ)kx0 , ∀θ ∈ [0, τ) , ∀k ∈ Z+ .

By (3.4), (3.5) and Lemma 3.2.3, we have

x(kτ + θ;x0, τ) = [V (θ) + W (θ)]x(kτ ;x0, τ)
= [V (θ) + W (θ)][V (τ) + W (τ)]kx0

= [V (θ) + W (θ)][V (τ)k + Z(τ)]x0 , ∀θ ∈ [0, τ) , ∀k ∈ Z+ ,

where Z(τ) := [V (τ) + W (τ)]k − V (τ)k. It follows that

‖x(kτ + θ;x0, τ) − x(kτ + θ;x0)‖
≤ ‖V (θ) + W (θ)‖‖Z(τ)‖‖x0‖ + ‖W (θ)‖‖V (τ)‖k‖x0‖

≤ (‖V (θ)‖ + ‖W (θ)‖)
k−1∑

j=0

(
k

j

)
‖V (τ)‖j‖W (τ)‖k−j

 ‖x0‖

+ ‖W (θ)‖‖V (τ)‖k‖x0‖ , ∀θ ∈ [0, τ) , ∀k ∈ Z+ . (3.21)

Let τ ∈ (0, τ0) for some τ0 > 0. By an argument identical to that leading to (3.15), we
conclude that there exists M1 ≥ 0 such that

‖W (θ)‖ ≤ M1θ
2 ≤ M1τ

2 , ∀θ ∈ [0, τ ] . (3.22)

Fix T > 0 and let t ∈ [0, T ]. Then t := kτ + θ for some k ∈ Z+ and some θ ∈ [0, τ).
Trivially, kτ ≤ T . Setting M2 := e‖A+BF‖T , we have

‖V (θ)‖j ≤ e‖A+BF‖jθ ≤ e‖A+BF‖kτ ≤ M2 , ∀j = 0, . . . , k , ∀θ ∈ [0, τ ] . (3.23)
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Consequently, by (3.22) and (3.23),

k−1∑
j=0

(
k

j

)
‖V (τ)‖j‖W (τ)‖k−j ≤

k−1∑
j=0

k!
j!(k − j)!

M2M
k−j
1 τ2(k−j)

≤ M2

k−1∑
j=0

(kτ)(k−j)

(k − j)!
(M1τ)(k−j)

≤ M2

k−1∑
j=0

(TM1τ)(k−j)

(k − j)!

= M2

k∑
j=1

(TM1τ)j

j!

≤ M2(eTM1τ − 1) . (3.24)

Therefore, combining (3.21)–(3.24), we conclude that there exists M3 ≥ 0 such that

‖x(t;x0, τ) − x(t;x0)‖ ≤ [M2
2 (eTM1τ − 1) + M1M2τ

2eTM1τ ]‖x0‖
≤ M3τ‖x0‖ , ∀τ ∈ (0, τ0] , ∀t ∈ [0, T ] .

As a consequence, (3.19) follows.

Finally assume that ωc < 0. Let α ∈ (ωc, 0). By Theorem 3.1.5, there exists τ1 > 0 such
that if τ ∈ (0, τ1), then ωs(τ) < α. Let τ ∈ (0, τ1). It follows from the boundedness of
Ω that there exists M ≥ 0 such that

‖x(t;x0)‖ ≤ Meαt , ‖x(t;x0, τ)‖ ≤ Meαt , ∀t ≥ 0 , ∀x0 ∈ Ω .

Since α < 0, for every ε > 0, there exists T > 0 such that

‖x(t;x0)‖ ≤ ε

2
, ‖x(t;x0, τ)‖ ≤ ε

2
, ∀t ≥ T , ∀x0 ∈ Ω .

Hence,
sup
t≥T
x0∈Ω

‖x(t;x0, τ) − x(t;x0)‖ ≤ ε .

Invoking (3.19), we conclude that, for every ε > 0, there exists τ2 ∈ (0, τ1) such that

sup
t≥0

x0∈Ω

‖x(t;x0, τ) − x(t;x0)‖ ≤ ε , ∀τ ∈ (0, τ2) .

showing that (3.20) is true. 2

The following simple example shows that (3.20) is not true if ωc ≥ 0.
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Example 3.3.2. Consider

ẋ(t) = x(t) + u(t) ; x(0) = x0 ∈ R ,

u(t) = x(t) .

Obviously, x(t;x0) = e2tx0 for t ≥ 0 and

x(kτ + θ;x0, τ) = (2eθ − 1)(2eτ − 1)kx0 , ∀θ ∈ [0, τ) , ∀k ∈ Z+ .

Then

|x(kτ ;x0) − x(kτ ;x0, τ)| = |e2kτ − (2eτ − 1)k||x0| , ∀k ∈ Z+ .

We see that, for all τ > 0 and all x0 ∈ R with x0 6= 0, |x(kτ ;x0)− x(kτ ;x0, τ)| goes to
∞ as k → ∞.

3.4 Notes and references

We remark that Corollary 3.1.6 can be obtained as a consequence of [9, Theorem
1]. However, we found the proof given in [9] is difficult to penetrate. We emphasize
that Theorem 3.1.5 does not follow from results in [9]. To the best of our knowledge,
Theorem 3.1.5 is new.

Theorem 3.2.2 is implicitly contained in [9, Theorem 1]. Whilst we found the proof in
[9] difficult to penetrate, it partly inspired the above proof of Theorem 3.2.2.

Logemann, Rebarber and Townley [39] showed that Corollary 3.1.6 is still true in the
infinite-dimensional case if one of the following assumptions hold:

• the input operator B is bounded, i.e., B ∈ B(U,X), and F ∈ B(U,X) is compact,
where X is the state space and U is the input space (both Hilbert spaces) (see
[39, Theorem 3.1]).

• the input operator B is unbounded, F ∈ B(U,X) is compact and the semigroups
generated by A is analytic (see [39, Theorem 4.8]).

Whether Theorem 3.1.5 extends to infinite-dimensional systems is an open problem.
We note that the proof of Theorem 3.1.5 relies on certain properties of the spectrum
of a matrix A and on the convergence of the Taylor series of eAt: it certainly does not
generalize to interesting infinite-dimensional situations in a straight forward way.

26



Chapter 4

Indirect sampled-data control:
dynamic output feedback

In this chapter, we extend the results in Chapter 3 to dynamic output feedback. More-
over, using state-space methods, the input-output stability of sampled-data systems is
investigated.

4.1 Exponential growth and transient bounds

Consider the continuous-time dynamic feedback system shown in Figure 4-1. The plant
Σp is given by

ẋp(t) = Apxp(t) + Bpup(t) ; xp(0) = x0
p ∈ R

np , (4.1a)
yp(t) = Cpxp(t) + Dpup(t) , (4.1b)

where Ap ∈ R
np×np , Bp ∈ R

np×m, Cp ∈ R
p×np and Dp ∈ R

p×m. The controller Σc is of
the form

ẋc(t) = Acxc(t) + Bcuc(t) ; xc(0) = x0
c ∈ R

nc , (4.2a)
yc(t) = Ccxc(t) + Dcuc(t) , (4.2b)

where Ac ∈ R
nc×nc , Bc ∈ R

nc×p, Cc ∈ R
m×nc and Dc ∈ R

m×p. We use the output yp of
Σp as the input for Σc, and the output yc of Σc as the input for Σp, i.e.,

uc = yp , up = yc , (4.3)

to obtain a feedback interconnection of (4.1) and (4.2).

In order for the closed-loop system to be well-posed, we assume that the matrix I−DcDp

is invertible. Then I − DpDc is also invertible, with

(I − DpDc)−1 = I + Dp(I − DcDp)−1Dc .
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Figure 4-1: Continuous-time dynamic feedback system

Set
Ep := (I − DcDp)−1 , Ec := (I − DpDc)−1 . (4.4)

It is convenient to define

x :=

(
xp

xc

)
, A :=

(
Ap 0

0 Ac

)
, B :=

(
Bp 0

0 Bc

)
,

C :=

(
Cp 0

0 Cc

)
, D :=

(
Dc I

I Dp

)
, E :=

(
Ep 0

0 Ec

)
.

Consequently, by a routine calculation†, the continuous-time dynamic output feedback
system given by (4.1)–(4.3) can be written as

ẋ(t) = (A + BEDC)x(t) ; x(0) = x0 :=

(
x0

p

x0
c

)
∈ R

np+nc . (4.5)

We now consider the sample-hold discretization of Σc. Let τ > 0 be the sampling
period and let the input uc in (4.2a) be given by uc = Hτv, where v is a function:
Z+ → R

m. By the variation-of-parameters formula, we obtain that

xc((k + 1)τ) = eAcτxc(kτ) +
∫ τ

0
eAcsds Bcv(k) ; xc(0) = x0

c ∈ R
nc , (4.6a)

yc(kτ) = Ccxc(kτ) + Dcv(k) . (4.6b)

We use the discrete-time system (4.6) to control the continuous-time system (4.1) by
sampled-data feedback, i.e., we consider the feedback interconnection of (4.1) and (4.6)
given by

v(k) = yp(kτ) , up(kτ + θ) = yc(kτ) , ∀θ ∈ [0, τ) , ∀k ∈ Z+ . (4.7)

The sampled-data feedback system given by (4.1), (4.6) and (4.7) has a unique solution

†See Appendix A.4.1.
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which will be denoted by(
xp(kτ + θ;x0, τ)

xc(kτ ;x0, τ)

)
, ∀θ ∈ [0, τ) , ∀k ∈ Z+ .

For convenience, sometimes we write xp(·) := xp( · ;x0, τ) and xc(kτ) := xc(kτ ;x0, τ).
Consequently, a routine calculation† yields the following sampled-data feedback equa-
tions

xp(kτ + θ) = eApθxp(kτ) +
∫ θ

0
eApsdsBpEp[DcCpxp(kτ) + Ccxc(kτ)] , (4.8a)

∀θ ∈ [0, τ) , ∀k ∈ Z+ ; xp(0) = x0
p ∈ R

np ,

xc((k + 1)τ) = eAcτxc(kτ) +
∫ τ

0
eAcsdsBcEc[Cpx(kτ) + DpCcxc(kτ)] , (4.8b)

∀k ∈ Z+ ; xc(0) = x0
c ∈ R

nc .

Definition 4.1.1. A number α ∈ R is said to be an exponential rate of system (4.8) if
there exists M ≥ 1 such that∥∥∥∥∥

(
xp(kτ + θ;x0, τ)

xc(kτ ;x0, τ)

)∥∥∥∥∥ ≤ Meα(kτ+θ)‖x0‖ , ∀θ ∈ [0, τ) , ∀k ∈ Z+ , ∀x0 ∈ R
np+nc .

(4.9)

We define the exponential growth ωd(τ) of system (4.8) by

ωd(τ) := inf{α : α is an exponential rate of system (4.8)} .

System (4.8) is said to be exponentially stable if and only if ωd(τ) < 0. 3

Letting θ ↗ τ in (4.8), it follows from the continuity of the terms depending on θ in
(4.8) that (

xp((k + 1)τ)

xc((k + 1)τ)

)
= ∆τ

(
xp(kτ)

xc(kτ)

)
= ∆k+1

τ x0 , ∀k ∈ Z+ . (4.10)

where ∆τ ∈ R
(np+nc)×(np+nc) is defined by

∆τ := eAτ +
∫ τ

0
eAsds BEDC . (4.11)

Theorem 4.1.2. A number ρ is a power rate of (4.10) if and only if (ln ρ)/τ is an
exponential rate of (4.8). Consequently,

ωd(τ) =
1
τ

ln(r(∆τ )) .

†See Appendix A.4.3 with σ = −1, ε = 1, r = 0, d = 0, Ac replaced by eAcτ and Bc replaced byR τ

0
eAcsds.
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Proof. By (4.8), we have(
xp(kτ + θ)

xc(kτ)

)
= Q(θ)

(
xp(kτ)

xc(kτ)

)
, ∀θ ∈ [0, τ) , ∀k ∈ Z+ , (4.12)

where Q : [0, τ) → R
(np+nc)×(np+nc) is defined by

Q(θ) :=

eApθ +
∫ θ

0
eApsdsBpEpDcCp

∫ θ

0
eApsdsBpEpCc

0 I

 . (4.13)

Assume that ρ is a power rate of (4.10), so that there exists M ≥ 1 such that

‖∆k
τ‖ ≤ Mρk , ∀k ∈ Z+ .

By (4.10) and (4.12),∥∥∥∥∥
(

xp(kτ + θ)

xc(kτ)

)∥∥∥∥∥ ≤ M1‖∆k
τ‖‖x0‖ ≤ M1Mρk‖x0‖ , ∀k ∈ Z+ , ∀θ ∈ [0, τ) ,

where M1 := max
θ∈[0,τ ]

‖Q(θ)‖.

Case 1: ρ ≥ 1.∥∥∥∥∥
(

xp(kτ + θ;x0, τ)

xc(kτ ;x0, τ)

)∥∥∥∥∥ ≤ M1Mρ(kτ+θ)/τ‖x0‖ = M1Me((ln ρ)/τ)(kτ+θ)‖x0‖ ,

∀θ ∈ [0, τ) , ∀k ∈ Z+ , ∀x0 ∈ R
np+nc .

Case 2: 0 < ρ < 1.∥∥∥∥∥
(

xp(kτ + θ;x0, τ)

xc(kτ ;x0, τ)

)∥∥∥∥∥ ≤ M1Mρ−1ρ(kτ+θ)/τ‖x0‖ = M1Mρ−1e((ln ρ)/τ)(kτ+θ)‖x0‖ ,

∀θ ∈ [0, τ) , ∀k ∈ Z+ , ∀x0 ∈ R
np+nc .

Combining the two cases above, we conclude that (ln ρ)/τ is an exponential rate of
system (4.8).

Conversely, assume that (ln ρ)/τ is an exponential rate of (4.8). It follows from (4.9)
with θ = 0 that there exists M2 ≥ 1 such that∥∥∥∥∥

(
xp(kτ ;x0, τ)

xc(kτ ;x0, τ)

)∥∥∥∥∥ ≤ M2e
((ln ρ)/τ)kτ‖x0‖ = M2ρ

k‖x0‖ , ∀k ∈ Z+ ; ∀x0 ∈ R
np+nc .
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Consequently, by (4.10),

‖∆k
τx

0‖ ≤ M2ρ
k‖x0‖ , ∀k ∈ Z+ , ∀x0 ∈ R

np+nc ,

showing that ‖∆k
τ‖ ≤ M2ρ

k for all k ∈ Z+. Thus ρ is a power rate of (4.10).

Clearly, r(∆τ ) is the power growth of system (4.10). Taking infima, we have ωd(τ) =
ln(r(∆τ ))/τ . 2

Corollary 4.1.3. For system (4.8),

lim
k→∞

(
xp(kτ + θ;x0, τ)

xc(kτ ;x0, τ)

)
= 0 , ∀θ ∈ [0, τ) , ∀x0 =

(
x0

p

x0
c

)
∈ R

np+nc , (4.14)

if and only if ωd(τ) < 0.

Proof. The sufficiency is obvious. For the necessity, assume that (4.14) holds. By
(4.10), it is clear that

lim
k→∞

∆k
τx

0 = lim
k→∞

(
xp(kτ ;x0, τ)

xc(kτ ;x0, τ)

)
= 0 , ∀x0 ∈ R

np+nc .

Since this holds for all x0 ∈ R
np+nc , limk→∞ ∆k

τ = 0. It follows from Theorem 2.2.1
that r(∆τ ) < 1. By Theorem 4.1.2, we know that ωd(τ) < 0. Therefore (4.8) is
exponentially stable. 2

Let Mc(α) denote the transient bound of system (4.5) associated with the exponential
rate α of (4.5). If α is an exponential rate of (4.8), then the number

Md(α, τ) := inf{M ≥ 1 : (4.9) holds}

is said to be the transient bound of (4.8), associated with the exponential rate α and the
sampling period τ . The theorems on exponential growth and transient bounds in the
state feedback case (see Theorem 3.1.5 and Theorem 3.2.2) still hold in the dynamic
output feedback case.

Theorem 4.1.4. Let ωc and ωd(τ) denote the exponential growths of system (4.5) and
system (4.8), respectively. Then,

lim
τ→0

ωd(τ) = lim
τ→0

1
τ

ln(r(∆τ )) = ωc . (4.15)

where ∆τ is given by (4.11).

For every α > ωc and every M > Mc(α), there exists τ∗ = τ∗(α,M) such that, for all
τ ∈ (0, τ∗), α is an exponential rate of system (4.8), and Md(α, τ) < M .
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Proof. Note that (4.5) can be written as a state feedback system

ẋ(t) = Ax(t) + Bu(t) ; x(0) = x0 ∈ R
np+nc , (4.16a)

u(t) = Fx(t) , (4.16b)

where F := EDC. Applying sampling and hold in (4.16b), we obtain the corresponding
sampled-data state feedback system

ẋ(t) = Ax(t) + Bu(t) ; x(0) = x0 ∈ R
np+nc , (4.17a)

u(t) = Fx(kτ) , ∀t ∈ [kτ, (k + 1)τ) ; ∀k ∈ Z+ . (4.17b)

Let x( · ;x0, τ) denote the solution of (4.17). Using the variation-of-parameters formula,
we obtain the discrete-time system

x((k + 1)τ ;x0, τ) = ∆τx(kτ ;x0, τ) , ∀k ∈ Z+ ; x(0;x0, τ) = x0 , (4.18)

where ∆τ is defined in (4.11). It follows from Theorem 3.1.5 that

lim
τ→0

1
τ

ln(r(∆τ )) = ωc .

Invoking Theorem 4.1.2 proves that (4.15) holds.

Let α > ωc and M > Mc(α). By (4.15) and Theorem 3.2.2, there exists τ1 = τ1(α,M) >
0 such that if τ ∈ (0, τ1), then α is an exponential rate of system (4.8) and system (4.17),
and Ms(α, τ) < M , where Ms(α, τ) is the transient bound of (4.17) associated with α.
Let τ ∈ (0, τ1). Note that the dynamics of discrete-time systems (4.10) and (4.18) are
both governed by ∆τ . Thus,∥∥∥∥∥
(

xp(kτ ;x0, τ)

xc(kτ ;x0, τ)

)∥∥∥∥∥ = ‖x(kτ ;x0, τ)‖ ≤ Ms(α, τ)eαkτ ‖x0‖ , ∀k ∈ Z+ , ∀x0 ∈ R
np+nc .

(4.19)

By (4.12) and (4.19), we have∥∥∥∥∥
(

xp(kτ + θ;x0, τ)

xc(kτ ;x0, τ)

)∥∥∥∥∥ ≤ ‖Q(θ)‖
∥∥∥∥∥
(

xp(kτ ;x0, τ)

xc(kτ ;x0, τ)

)∥∥∥∥∥
≤ ‖Q(θ)‖Ms(α, τ)eαkτ ‖x0‖
≤ ‖Q(θ)‖e|α|τMs(α, τ)eα(kτ+θ)‖x0‖ ,

∀θ ∈ [0, τ) , ∀k ∈ Z+ , ∀x0 ∈ R
np+nc ,

where Q(θ) is defined in (4.13). Therefore,

Md(α, τ) ≤ ‖Q(θ)‖e|α|τMs(α, τ) , ∀θ ∈ [0, τ) .

Noting that limτ→0 ‖Q(θ)‖e|α|τ = 1 for all θ ∈ [0, τ) and Ms(α, τ) < M , it follows that
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Figure 4-2: Indirect sampled-data control with exogenous inputs.

there exists τ∗ ∈ (0, τ1) such that if τ ∈ (0, τ∗), then Md(α, τ) < M . 2

The following corollary follows immediately from (4.15) in Theorem 4.1.4.

Corollary 4.1.5. If the continuous-time dynamic feedback system (4.5) is exponentially
stable, then there exists τ∗ > 0 such that, for all τ ∈ (0, τ∗), the sampled-data system
(4.8) is exponentially stable.

4.2 Input-output stability

In this section, we discuss the input-output properties of sampled-data systems. Con-
sider the sampled-data feedback interconnection of continuous-time plant (4.1) and
discrete-time controller (4.6) given by

up(kτ + θ) = yc(kτ) + d(kτ + θ) , ∀θ ∈ [0, τ) , ∀k ∈ Z+ , (4.20a)
v(k) = yp(kτ) + r(kτ) , ∀k ∈ Z+ , (4.20b)

as shown in Figure 4-2. Throughout this section, we assume that

d ∈ W 1,q(R+, Rm) , r ∈ W 1,q(R+, Rp) ,

for some 1 ≤ q < ∞, or

d ∈ Lb(R+, Rm) , r ∈ Lb(R+, Rp) ,

where Lb(R+, Rm) denotes the space of R
m-valued bounded Lebesgue measurable func-

tions equipped with the sup-norm ‖ · ‖∞.

The sampled-data feedback system given by (4.1), (4.6) and (4.20a) has a unique solu-
tion which will be denoted by(

xp(kτ + θ;x0, d, r, τ)

xc(kτ ;x0, d, r, τ)

)
, ∀θ ∈ [0, τ) , ∀k ∈ Z+ , where x0 :=

(
x0

p

x0
c

)
.
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For convenience, we write

xp(·) := xp( · ;x0, d, r, τ) , xc(kτ) := xc(kτ ;x0, d, r, τ) .

By a routine calculation†, xp and xc satisfy the following sampled-data feedback equa-
tions

xp(kτ + θ)

= eApθxp(kτ) +
∫ θ

0
eApsdsBpEp[DcCpxp(kτ) + Ccxc(kτ)]

+
∫ kτ+θ

kτ
eAp(kτ+θ−s)Bpd(s) ds +

∫ θ

0
eApsdsBpEpDc[Dpd(kτ) + r(kτ)] ,

∀θ ∈ [0, τ) , ∀k ∈ Z+ ; xp(0) = x0
p ∈ R

n , (4.21a)
xc((k + 1)τ)

= eAcτxc(kτ) +
∫ τ

0
eAcsdsBcEc[Cpxp(kτ) + DpCcxc(kτ)]

+
∫ τ

0
eAcsdsBcEc[Dpd(kτ) + r(kτ)] , ∀k ∈ Z+ ; xc(0) = x0

c ∈ R
nc , (4.21b)

where Ep and Ec are defined in (4.4). Setting R : Z+ → R
np+nc by

R(k) :=


∫ (k+1)τ

kτ
eAp[(k+1)τ−s]Bpd(s) ds +

∫ τ

0
eApsdsBpEpDc[Dpd(kτ) + r(kτ)]∫ τ

0
eAcsdsBcEc[Dpd(kτ) + r(kτ)]

 ,

(4.22)
a routine calculation† gives(

xp(kτ)

xc(kτ)

)
= ∆k

τx
0 +

k−1∑
j=0

∆k−j−1
τ R(j) , ∀k ∈ N . (4.23)

where ∆τ is defined in (4.11).

The following theorem is the main result of this section.

Theorem 4.2.1. Assume the continuous-time feedback system (4.5) is exponentially
stable. There exists τ0 > 0 such that if τ ∈ (0, τ0), then the sampled-data system, given
by (4.1), (4.6) and (4.20a) (as shown in Figure 4-2), is input-output stable in the sense
that, for all τ ∈ (0, τ0), there exists M ≥ 0 such that∥∥∥∥∥

(
yp

w

)∥∥∥∥∥
Lq

≤ M(‖x0‖ + ‖d‖W 1,q + ‖r‖W 1,q) ,

∀x0 ∈ R
np+nc , ∀d ∈ W 1,q(R+, Rm) , ∀r ∈ W 1,q(R+, Rp) ,

†See Appendix A.4.3 with σ = −1, ε = 1, Ac replaced by eAcτ and Bc replaced by

Z τ

0

eAcsds.

34



for 1 ≤ q < ∞, and∥∥∥∥∥
(

yp

w

)∥∥∥∥∥
∞

≤ M(‖x0‖ + ‖d‖∞ + ‖r‖∞) ,

∀x0 ∈ R
np+nc , ∀d ∈ Lb(R+, Rm) , ∀r ∈ Lb(R+, Rp) ,

where yp and w are the outputs of the sampled-data system shown in Figure 4-2.

Proof. Note that w = HτSτyc. By a routine calculation†, we have(
yp(kτ + θ)

w(kτ + θ)

)
=

(
Cpxp(kτ + θ) + Dpup(kτ + θ)

Ccxc(kτ) + Dcv(k)

)

= Q(θ)

(
xp(kτ)

xc(kτ)

)
+

(
G(k, θ)

DcEc[Dpd(kτ) + r(kτ)]

)
, (4.24)

∀θ ∈ [0, τ) , ∀k ∈ Z+ ,

where Q : [0, τ) → R
(p+m)×(np+nc) is defined by

Q(θ) :=Cpe
Apθ +

(
Cp

∫ θ

0
eApsdsBp + Dp

)
EpDcCp

(
Cp

∫ θ

0
eApsdsBp + Dp

)
EpCc

DcEcCp Cc + DcEcDpCc


(4.25)

and

G(k, θ) := Cp

∫ kτ+θ

kτ
eAp(kτ+θ−s)Bpd(s)ds + Cp

∫ θ

0
eApsdsBpEpDc[Dpd(kτ) + r(kτ)]

+ Dpd(kτ + θ) + DpEpDc[Dpd(kτ) + r(kτ)] . (4.26)

Recall that ∆τ and R(j) are defined in (4.11) and (4.22), respectively, and define
Π1,Π2,Π3 : R+ → R

m+p by

Π1(kτ + θ) := Q(θ)∆k
τx

0 , (4.27a)

Π2(kτ + θ) :=


0 , k = 0

Q(θ)
k−1∑
j=0

∆k−j−1
τ R(j) , k ∈ N

, (4.27b)

Π3(kτ + θ) :=

(
G(k, θ)

DcEc[Dpd(kτ) + r(kτ)]

)
. (4.27c)

†See Appendix A.4.3 with σ = −1, ε = 1, Ac replaced by eAcτ and Bc replaced by

Z τ

0

eAcsds.
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Combining (4.23) and (4.24), we obtain that(
yp(t)

w(t)

)
= Π1(t) + Π2(t) + Π3(t) , ∀t ∈ R+ . (4.28)

It follows from Theorem 4.1.4 and the exponential stability of system (4.5) that there
exists τ0 > 0 such that, for all τ ∈ (0, τ0), ∆τ is power stable. Hence, setting ∆ :=
(∆k

τ )k∈Z+ , we conclude that ∆ ∈ `q(Z+, R(np+nc)×(np+nc)) for all 1 ≤ q ≤ ∞.

Let 1 ≤ q < ∞ and τ ∈ (0, τ0). Clearly,

‖Π1‖Lq ≤
( ∞∑

k=0

∫ (k+1)τ

kτ
M q

1 ‖∆k
τ‖q ‖x0‖q dt

)1/q

= M1τ
1/q
0 ‖∆‖`q‖x0‖ , ∀x0 ∈ R

np+nc , (4.29)

where M1 := maxθ∈[0,τ0] ‖Q(θ)‖. Let d ∈ W 1,q(R+, Rm) and r ∈ W 1,q(R+, Rp). To
estimate Π2, define S : Z+ → R

np and M2 ≥ 0 by

S(k) :=
∫ (k+1)τ

kτ
eAp[(k+1)τ−s]Bpd(s)ds and M2 := max

t∈[0,τ0]
‖eAptBp‖ .

It follows from the Hölder’s inequality that

‖S‖`q =

( ∞∑
k=0

∥∥∥∥∥
∫ (k+1)τ

kτ
eAp((k+1)τ−s)Bpd(s)ds

∥∥∥∥∥
q)1/q

≤
(

M q
2 τ q−1

∞∑
k=0

∫ (k+1)τ

kτ
‖d(s)‖qds

)1/q

= M2τ
1−1/q
0 ‖d‖Lq ≤ M2τ

1−1/q
0 ‖d‖W 1,q . (4.30)

Setting
M3 := max{M2‖EpDc‖, max

t∈[0,τ0]
‖eActBcEc‖} ,

by (4.22), we see that

‖R(k)‖ ≤ ‖S(k)‖ +
∥∥∥∥∫ τ

0
eApsdsBpEpDc[Dpd(kτ) + r(kτ)]

∥∥∥∥
+
∥∥∥∥∫ τ

0
eAcsdsBcEc(Dpd(kτ) + r(kτ))

∥∥∥∥
≤ ‖S(k)‖ + 2τ0M3(‖Dp‖‖d(kτ)‖ + ‖r(kτ)‖) , ∀k ∈ Z+ . (4.31)

Moreover, by Theorem 2.3.5, there exists M4 ≥ 0 such that

‖Sτd‖`q ≤ M4‖d‖W 1,q , ‖Sτ r‖`q ≤ M4‖r‖W 1,q . (4.32)
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Consequently, combining (4.30) and (4.31) yields

‖R‖`q ≤ ‖S‖`q + 2τ0M3(‖Dp‖‖Sτd‖`q + ‖Sτ r‖`q) ≤ M5(‖d‖W 1,q + ‖r‖W 1,q) ,

where M5 := max{M2τ
1−1/q
0 + 2τ0M3M4‖Dp‖, 2τ0M3M4}. It follows from the power

stability of ∆τ that

‖∆ ? R‖`q ≤ ‖∆‖`1‖R‖`q ≤ M5‖∆‖`1(‖d‖W 1,q + ‖r‖W 1,q) . (4.33)

Therefore, by (4.27b) and (4.33),

‖Π2‖Lq ≤ M1

( ∞∑
k=0

∫ (k+2)τ

(k+1)τ
‖(∆ ? R)(k)‖qdt

)1/q

= M1τ
1/q‖∆ ? R‖`q ≤ M1M5τ

1/q
0 ‖∆‖`1(‖d‖W 1,q + ‖r‖W 1,q) . (4.34)

Finally, by (4.26) and (4.27c), for all θ ∈ [0, τ) and for all k ∈ Z+,

‖Π3(kτ + θ)‖

≤
∥∥∥∥Cp

∫ kτ+θ

kτ
eAp(kτ+θ−s)Bpd(s)ds

∥∥∥∥+ ‖Dp‖‖d(kτ + θ)‖+(∥∥∥∥Cp

∫ θ

0
eApsdsBpEpDc

∥∥∥∥+ ‖DpEpDc‖ + ‖DcEc‖
)

(‖Dp‖‖d(kτ)‖ + ‖r(kτ)‖)

≤ M2‖Cp‖
∫ (k+1)τ

kτ
‖d(s)‖ds + ‖Dp‖‖d(kτ + θ)‖+

(τ0M3‖Cp‖ + ‖DpEpDc‖ + ‖DcEc‖) (‖Dp‖‖d(kτ)‖ + ‖r(kτ)‖) . (4.35)

By the Hölder’s inequality,[ ∞∑
k=0

(∫ (k+1)τ

kτ
‖d(s)‖ds

)q]1/q

≤ τ q−1

( ∞∑
k=0

∫ (k+1)τ

kτ
‖d(s)‖qds

)1/q

≤ τ q−1
0 ‖d‖W 1,q . (4.36)

Hence, by (4.32), (4.35), (4.36) and a routine argument, there exists M6 ≥ 0 such that

‖Π3‖Lq ≤ M6(‖d‖W 1,q + ‖r‖W 1,q) . (4.37)

Combining (4.28), (4.29), (4.34) and (4.37), we conclude that there exists M ≥ 0 such
that if τ ∈ (0, τ0), then∥∥∥∥∥

(
yp

w

)∥∥∥∥∥
Lq

≤ ‖Π1‖Lq + ‖Π2‖Lq + ‖Π3‖Lq ≤ M(‖x0‖ + ‖d‖W 1,q + ‖r‖W 1,q)

∀x0 ∈ R
np+nc , ∀d ∈ W 1,q(R+, Rm) , ∀r ∈ W 1,q(R+, Rp) .
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Using a similar argument, we can show that∥∥∥∥∥
(

yp

w

)∥∥∥∥∥
L∞

≤ M(‖x0‖ + ‖d‖∞ + ‖r‖∞) ,

∀x0 ∈ R
np+nc , ∀d ∈ Lb(R+, Rm) , ∀r ∈ Lb(R+, Rp) .

2

Remark 4.2.2. (1) The constant M does not depend on τ ∈ (0, τ0).

(2) If Dp = 0, i.e., if the plant (4.1) is strictly causal, then we only need to assume
d ∈ Lq(R+, Rm), r ∈ W 1,q(R+, Rp) (1 ≤ q < ∞) for Theorem 4.2.1 to hold (with
‖d‖W 1,q replaced by ‖d‖Lq ). 3

Corollary 4.2.3. Assume the continuous-time dynamic feedback system (4.5) is expo-
nentially stable. Consider the sampled-data system given by (4.1), (4.6) and (4.20a),
as shown in Figure 4-2. If d ∈ W 1,q(R+, Rm) and r ∈ W 1,q(R+, Rp), 1 ≤ q < ∞, then,
for sufficiently small τ > 0,

lim
t→0

(
yp(t)

w(t)

)
= 0 , ∀x0 ∈ R

np+nc ,

where yp, w are the outputs of the sampled-data system, as shown in Figure 4-2.

Proof. By (4.28), we have∥∥∥∥∥
(

yp(t)

w(t)

)∥∥∥∥∥ ≤ ‖Π1(t)‖ + ‖Π2(t)‖ + ‖Π3(t)‖ , ∀t ≥ 0 ,

where Π1, Π2 and Π3 are defined in (4.27). It is sufficient to show that lim
t→∞Πj(t) = 0

for j = 1, 2, 3 if τ is sufficiently small.

It follows from Theorem 4.1.4 and the exponential stability of system (4.5) that there
exists τ0 > 0 such that, for all τ ∈ (0, τ0), ∆τ is power stable, where ∆τ is defined in
(4.11). Let τ ∈ (0, τ0) and set M1 := maxθ∈[0,τ0] ‖Q(θ)‖, where Q is defined in (4.25).
By (4.27a),

‖Π1(kτ + θ)‖ ≤ M1‖∆k
τ‖‖x0‖ , ∀θ ∈ [0, τ) , ∀k ∈ Z+ ,

showing that limt→∞ ‖Π1(t)‖ = 0 for all x0 ∈ R
np+nc.

Let 1 ≤ q < ∞ and let d ∈ W 1,q(R+, Rm) and r ∈ W 1,q(R+, Rp). By (4.33), (∆ ? R) ∈
`q(Z+, Rnp+nc), where ∆ := (∆k

τ )k∈Z+ and R is defined in (4.22). By (4.27b),

‖Π2(kτ + θ)‖ ≤ M‖(∆ ? R)(k − 1)‖ , ∀θ ∈ [0, τ) , ∀k ∈ N ,

showing that limt→∞ ‖Π2(t)‖ = 0.
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Finally,∫ kτ+θ

kτ
‖eAp(kτ+θ−s)Bpd(s)‖ds ≤ M2

∫ (k+1)τ

kτ
‖d(s)‖ds , ∀θ ∈ [0, τ) , ∀k ∈ Z+ .

where M2 := maxt ∈ [0, τ0]‖eAptBp‖. It follows from (4.36) that(∫ (k+1)τ

kτ
‖d(s)‖ds

)
k∈Z+

∈ `q(Z+, R) ,

showing that∫ kτ+θ

kτ
‖eAp(kτ+θ−s)Bpd(s)‖ds → 0 as k → ∞ , ∀θ ∈ [0, τ) .

Moreover, since d ∈ W 1,q(R+, Rm) and r ∈ W 1,q(R+, Rp), for 1 ≤ q < ∞, we have

lim
t→∞ d(t) = lim

k→∞
d(kτ) = lim

k→∞
r(kτ) = 0 , (4.38)

(see Theorem A.3.1 in the Appendix A.3). Hence, by (4.35) and (4.38), we conclude
that limt→∞ Π3(t) = 0. 2

4.3 Notes and references

It was shown in Logemann et al. [39] that Corollary 4.1.5 can be extended to infinite-
dimensional systems under certain conditions (see [39, Theorem 6.1]). Similar to the
remarks of last chapter, whether Theorem 4.1.4 extends to infinite-dimensional systems
is an open problem, since in the proof of Theorem 4.1.4, we use Theorem 3.1.5 which
relies on certain properties of the spectrum of a matrix A and on the convergence of the
Taylor series of eAt: it certainly does not generalize to interesting infinite-dimensional
situations in a straight forward way.

We have proved Theorem 4.2.1 using a state-space approach. Chen and Francis proved
a similar result (see [1, Theorem 4] and [2, Theorem 9.4.1, p. 219]) using input-output
methods, where it is assumed that the exogenous inputs are in Lp(R+, Rn) instead
of W 1,p(R+, Rn) for 1 ≤ p < ∞. However, since the sampling operator does not
necessarily map Lp(R+, Rn) to `p(R+, Rn) for 1 ≤ p < ∞, Chen and Francis used a
filter F such that the composition Sτ ◦ F is bounded from Lp(R+, Rn) to `p(R+, Rn).
By Theorem 2.3.5, Sτ is bounded from W 1,p(R+, Rn) to `p(R+, Rn) for 1 ≤ p < ∞. In
the light of this, the conditions on exogenous inputs in [1] (and [2]) and in Theorem
4.2.1 are the same. More importantly, in [1] and [2] it is required that the plant and
controller are strictly causal (in particular ruling out static output feedback), whilst
we allow for feedthroughs D and Dc in the plant and controller.
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Chapter 5

Indirect sampled-data control
with variable sampling period

In this chapter, we study indirect sampled-data control with variable sampling period:
we consider (pre-specified) time-varying sampling period as well as sampling period
which is updated on the basis of an adaptation rule.

5.1 Time-varying sampling period

In this section, we consider indirect sampled-data control with time-varying sampling
period. This is relevant in some practical digital control applications, where computer
overloading, networks, communication errors, etc. may cause delays and sampling pe-
riod jitter. Moreover, the analysis of sampled-data systems with time-varying sampling
period is important in the context of problems where the sampling period is determined
by an adaptive feedback mechanism.

Consider the continuous-time state feedback system again

ẋ(t) = Ax(t) + Bu(t) ; x(0) = x0 ∈ R
n , (5.1a)

u(t) = Fx(t) , (5.1b)

where A ∈ R
n×n, B ∈ R

n×m and F ∈ R
m×n.

Let t := (tk)k∈Z+ be a sequence of sampling points, where

t0 = 0 , tk+1 > tk , ∀k ∈ Z+ , tk → ∞ as k → ∞ . (5.2)

The sampling period τk := tk+1−tk is not constant anymore, and becomes time-varying.
We use sampling and hold in (5.1b) to obtain the corresponding sampled-data feedback
system

ẋ(t) = Ax(t) + Bu(t) ; x(0) = x0 ∈ R
n , (5.3a)

u(t) = Fx(tk) , ∀t ∈ [tk, tk+1) . (5.3b)
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Define
τ := lim inf

k→∞
{τk} , τ := lim sup

k→∞
{τk} .

Let x( · ;x0, t) denote the solution of (5.3). The variation-of-parameters formula yields

x(tk + θ;x0, t) =
(

eAθ +
∫ θ

0
eAsdsBF

)
x(tk;x0, t) , ∀θ ∈ [0, τk) ,∀k ∈ Z+ . (5.4)

Set xk := x(tk;x0, t) for all k ∈ Z+. It follows from (5.4) with θ = τk that

xk+1 = ∆kxk , ∀k ∈ Z+ , (5.5)

where
∆k := eAτk +

∫ τk

0
eAsdsBF .

Set D := {(k, l) ∈ Z+ × Z+ : k ≥ l}. The matrices (∆k)k∈Z+ generate an evolution
operator Φ(·, ·) : D → R

n×n, satisfying

Φ(k, l) =

{
In , if k = l

∆k−1∆k−2 · · ·∆l , if k > l
. (5.6)

For every l ∈ Z+ and every z ∈ R
n, the solution of the initial value problem

xk+1 = ∆kxk , k ≥ l ; xl = z

is given by
k 7→ Φ(k, l)z , k ≥ l .

Definition 5.1.1. A number ρ > 0 is said to be a power rate of (5.5), if for every
l ∈ Z+, there exists Ml ≥ 1 such that

‖Φ(k, l)‖ ≤ Mlρ
k−l , ∀k ≥ l .

3

Let ωc denote the exponential growth of (5.1).

Theorem 5.1.2. Let α > ωc. Assume that supk∈Z+
{τk} < ∞ and τ > 0. There exists

τ∗ > 0 such that, if τ ∈ (0, τ∗), then the following statements hold:

(1) If ωc ≥ 0, then ρ = eατ is a power rate of system (5.5).

(2) If ωc < 0, then ρ = eατ is a power rate of system (5.5).

Proof. Let α > ωc and β ∈ (ωc, α), where we choose α < 0 if ωc < 0. We know that
A + BF − βI is exponentially stable. There exists P = P T with P > 0 such that

(A + BF − βI)T P + P (A + BF − βI) = −I ,
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(see, for example, [71, Theorem 18, p. 231]). Thus

(A + BF )T P + P (A + BF ) = 2βP − I . (5.7)

Define a new norm ‖ · ‖P on R
n by setting

‖z‖2
P := 〈z, Pz〉 , ∀z ∈ R

n .

Note that ‖ · ‖P is equivalent to the Euclidean norm ‖ · ‖, i.e, there exist λ,Λ > 0 such
that

λ‖z‖2 ≤ ‖z‖2
P ≤ Λ‖z‖2 , ∀z ∈ R

n . (5.8)

(Possible choices for λ and Λ are the smallest and largest eigenvalues of P , respectively.)
To prove that ρ is a power rate of system (5.5), we need to show that for every l ∈ Z+,
there exists Ml ≥ 1 such that

‖ρ−(k−l)Φ(k, l)‖P ≤ Ml , ∀k ≥ l .

It is sufficient to prove that there exists Nl ≥ l such that (‖ρ−(k−l)Φ(k, l)‖P )k≥Nl
is

non-increasing, i.e.,

‖ρ−(k+1−l)Φ(k + 1, l)‖P ≤ ‖ρ−(k−l)Φ(k, l)‖P , ∀k ≥ Nl .

To this end, by (5.6) and since ρ > 0, it is sufficient to prove that ‖ρ−1∆k‖P ≤ 1 for
almost all k ∈ Z+ (a.a. k ∈ Z+), that is,

‖ρ−1∆kz‖2
P − ‖z‖2

P ≤ 0 , a.a. k ∈ Z+ , ∀z ∈ R
n .

Using the power series expansion of eAt,

∆k = I + τk(A + BF ) + τ2
k Γ(τk) , ∀k ∈ Z+ , (5.9)

where

Γ(τk) :=
1
2
A(A + BF ) +

τk

3!
A2(A + BF ) + . . . +

τ j
k

(j + 2)!
Aj+1(A + BF ) + . . . .

Fix τ0 > 0 and only consider sequences (τk)k∈Z+ such that supk∈Z+
τk ≤ τ0. There

exists M ≥ 0 such that ‖Γ(τk)‖ ≤ M for all k ∈ Z+. Let z ∈ R
n. By (5.7), (5.9) and

the Cauchy-Schwarz inequality,

‖ρ−1∆kz‖2
P − ‖z‖2

P

= ρ−2〈∆kz, P∆kz〉 − 〈z, Pz〉
≤ ρ−2〈[I + τk(A + BF )]z, P [I + τk(A + BF )]z〉 − 〈z, Pz〉 + O(τ2

k )‖z‖2

≤ (ρ−2 − 1)〈z, Pz〉 + ρ−2τk〈z, [(A + BF )T P + P (A + BF )]z〉 + O(τ2
k )‖z‖2

= (ρ−2 − 1)‖z‖2
P + ρ−2τk(2β‖z‖2

P − ‖z‖2) + O(τ2
k )‖z‖2

= [ρ−2(1 + 2βτk) − 1]‖z‖2
P − ρ−2τk‖z‖2 + O(τ2

k )‖z‖2 , ∀k ∈ Z+ . (5.10)
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We first prove Statement (1). Assume that ωc ≥ 0. There exists µ > 1 such that
0 < βµ ≤ α. Setting ρ = eατ , we have

ρ−2(1 + 2βτk) − 1 = e−2ατ (1 + 2βτk) − 1
= [1 − 2ατ + O(τ2)](1 + 2βτk) − 1
≤ [1 − 2βµτ + O(τ2)](1 + 2βτk) − 1
≤ (−2β)(µτ − τk) − 4β2µτkτ + O(τ 2) , ∀k ∈ Z+ . (5.11)

By the definition of τ , τk ≤ µτ for almost all k ∈ Z+. Consequently, by (5.10) and
(5.11), we have

‖e−ατ ∆kz‖2
P − ‖z‖2

P ≤ (−2β)(µτ − τk)‖z‖2
P + O(τ2)‖z‖2

P − e−2ατ τk‖z‖2

+ O(τ2
k )‖z‖2 , a.a. k ∈ Z+ . (5.12)

Define

K1 := {k ∈ Z+ : (5.12) holds, τk ≤ τ} , K2 := {k ∈ Z+ : (5.12) holds, τ < τk ≤ µτ} .

Then K1 ∪ K2 is co-finite in Z+ (i.e., Z+ \ (K1 ∪ K2) is finite).

Case 1: k ∈ K1.

It follows from (5.12) and the positivity of β that

‖e−ατ∆kz‖2
P − ‖z‖2

P ≤ [(−2β)(µ − 1)τ + O(τ2)]‖z‖2
P + [−e−2ατ τk + O(τ2

k )]‖z‖2 .

Since β > 0 and µ > 1, there exists τ∗ ∈ (0, τ0) such that if τ ∈ (0, τ∗) (and hence
τk ∈ (0, τ∗)), then ‖e−ατ∆kz‖2

P − ‖z‖2
P ≤ 0 for all k ∈ K1.

Case 2: k ∈ K2.

By (5.8) and (5.12),

‖e−ατ∆kz‖2
P − ‖z‖2

P

≤ (−2β)(µτ − τk)‖z‖2
P +

[
−1

2
e−2ατ τk + ΛO(τ2)

]
‖z‖2 +

[
−1

2
e−2ατ τk + O(τ2

k )
]
‖z‖2

≤ (−2β)(µτ − τk)‖z‖2
P +

[
−1

2
e−2ατ τ + O(τ2)

]
‖z‖2 +

[
−1

2
e−2ατ τk + O(τ2

k )
]
‖z‖2 .

Consequently, there exists τ∗∗ ∈ (0, τ∗) such that if τ ∈ (0, τ∗∗) (and hence τk ∈
(0, µτ∗∗)), then ‖e−ατ∆kz‖2

P − ‖z‖2
P ≤ 0 for all k ∈ K2. Combining the above two

cases, if τ ∈ (0, τ∗∗), then ‖e−ατ∆kz‖2
P −‖z‖2

P ≤ 0 for almost all k ∈ Z+. Hence eατ is
a power rate of (5.5) if τ is sufficiently small. This finishes the proof of Statement (1).

To prove Statement (2), assume that ωc < 0, so that ωc < β < α < 0. There exists
θ ∈ (0, 1) such that βθ ≤ α. Setting ρ = eατ , a straightforward calculation shows that

e−2ατ (1 + 2βτk) − 1 ≤ (−2β)(θτ − τk) − 4β2θτkτ + O(τ2) , ∀k ∈ Z+ . (5.13)
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By the definition of τ and τ ,

θτ ≤ τk ≤ 3
2
τ , a.a. k ∈ Z+ .

Consequently, by (5.10) and (5.13), we have

‖e−ατ∆kz‖2
P − ‖z‖2

P

≤ (−2β)(θτ − τk)‖z‖2
P + O(τ2)‖z‖2

P − e−2ατ τk‖z‖2 + O(τ2
k )‖z‖2

≤ (−2β)(θτ − τk)‖z‖2
P − e−2ατ τk‖z‖2 + O(τ2

k )‖z‖2 , a.a. k ∈ Z+ .

Since β < 0, we conclude that there exists τ∗ > 0 such that if τ ∈ (0, τ∗) (and hence
τk ∈ (0, (3/2)τ∗)), we have

‖e−ατ∆kz‖2
P − ‖z‖2

P ≤ 0 , a.a. k ∈ Z+ ,

showing that eατ is a power rate of (5.5) if τ is sufficiently small. 2

Alternatively, we have a second proof for Theorem 5.1.2.

Alternative proof of Theorem 5.1.2. Let α > ωc and β ∈ (ωc, α), where we choose
α < 0 if ωc < 0. There exists M ≥ 1 such that

‖e(A+BF )tz‖ ≤ Meβt‖z‖ , ∀t ≥ 0 , ∀z ∈ R
n .

We introduce a new norm | · | on R
n by setting

|z| := sup
t≥0

‖e−βte(A+BF )tz‖ , ∀z ∈ R
n .

It is clear that
‖z‖ ≤ |z| ≤ M‖z‖ , ∀z ∈ R

n , (5.14)

showing that | · | is equivalent to the Euclidean norm ‖ · ‖. Moreover,

|e(A+BF )tz| = sup
s≥0

‖e−βse(A+BF )(t+s)z‖

= eβt sup
s≥0

‖e−β(t+s)e(A+BF )(t+s)z‖

≤ eβt sup
s≥0

‖e−βse(A+BF )sz‖

= eβt|z| , ∀z ∈ R
n , ∀t ≥ 0 . (5.15)

Similar to the first proof of Theorem 5.1.2, if we can show that there exists ρ > 0 such
that

|ρ−1∆kz| − |z| ≤ 0 , a.a. k ∈ Z+ , ∀z ∈ R
n ,
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for sufficiently small τ , then ρ a power rate of (5.5). To this end, define W : R+ → R
n×n

by

W (t) :=
∫ t

0
eAsBF

(
I − e(A+BF )(t−s)

)
ds .

Fix τ0 > 0 and only consider (τk)k∈Z+ such that supk→∞ τk ≤ τ0. Then there exists
M1 ≥ 1 such that

‖eAsBF‖‖I − e(A+BF )(τk−s)‖ ≤ 2M1(τk − s) , ∀s ∈ [0, τk] , ∀k ∈ Z+ .

Therefore,

‖W (τk)‖ ≤
∫ τk

0
2M1(τk − s)ds ≤ M1τ

2
k , ∀k ∈ Z+ . (5.16)

By Lemma 3.2.3, we know that

∆k = e(A+BF )τk + W (τk) , ∀k ∈ Z+ . (5.17)

First, we assume that ωc ≥ 0. By (5.14)–(5.17), we obtain

|e−ατ∆kz| − |z| ≤ e−ατ |e(A+BF )τkz| + e−ατ |W (τk)z| − |z|
≤ (eβτk−ατ + e−ατM‖W (τk)‖ − 1)|z|
≤ (e−(ατ−βτk) + e−ατMM1τ

2
k − 1)|z| , ∀k ∈ Z+ . (5.18)

Choose γ1 > 0 such that β + γ1 < α. By the definition of τ ,

τk ≤ α

β + γ1
τ , a.a. k ∈ Z+ .

Consequently,
βτk ≤ (β + γ1)τk ≤ ατ , a.a. k ∈ Z+ .

Invoking the fact that e−t ≤ 1 − te−t for all t ≥ 0, it follows from (5.18) that

|e−ατ∆kz| − |z|
≤

(
−(ατ − βτk)e−(ατ−βτk) + e−ατMM1τ

2
k

)
|z|

=
(
− [ατ − (β + γ1)τk] e−(ατ−βτk) − γ1e

−(ατ−βτk)τk + e−ατMM1τ
2
k

)
|z|

≤
(
− [ατ − (β + γ1)τk] e−(ατ−βτk) − γ1e

−ατ0
τk + MM1τ

2
k

)
|z| , a.a. k ∈ Z+ .

Hence if τ is sufficiently small, then |e−ατ∆kz| − |z| ≤ 0 for almost all k ∈ Z+. This
completes the proof of Statement (1).

Next we assume that ωc < 0, so that ωc < β < α < 0. Invoking (5.14)–(5.17) and the
same argument used to obtain (5.18), we conclude that

|e−ατ∆kz| − |z| ≤ (e−(ατ−βτk) + e−ατMM1τ
2
k − 1)|z| , ∀k ∈ Z+ .
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Choose γ2 > 0 such that β + γ2 < α. By the definition of τ and τ ,

α

β + γ2
τ ≤ τk ≤ 3

2
τ , a.a. k ∈ Z+ .

Consequently,
βτk ≤ (β + γ2)τk ≤ ατ , a.a. k ∈ Z+ .

Since e−t ≤ 1 − te−t for all t ≥ 0, it follows that

|e−ατ∆kz| − |z|
≤

(
−(ατ − βτk)e−(ατ−βτk) + e−ατMM1τ

2
k

)
|z|

=
(
− [ατ − (β + γ2)τk] e−(ατ−βτk) − γ2e

−(ατ−βτk)τk + e−ατMM1τ
2
k

)
|z|

≤
(
− [ατ − (β + γ2)τk] e−(ατ−βτk) − γ2e

βτ0
τk + e−ατMM1τ

2
k

)
|z| , a.a. k ∈ Z+ .

Hence, if τ is sufficiently small, then |e−ατ∆kz| − |z| ≤ 0 for almost all k ∈ Z+. This
proves Statement (2). 2

Definition 5.1.3. A number α is said to be an exponential rate of (5.3) if there exists
a constant M ≥ 1 such that

‖x(t;x0, t)‖ ≤ Meαt‖x0‖ , ∀t ≥ 0 , ∀x0 ∈ R
n .

We say that system (5.3) is exponentially stable if it has a negative exponential rate. 3

The following theorem shows that an exponential rate of the continuous-time feedback
system (5.1) is also an exponential rate of the sampled-data system (5.3) under certain
conditions.

Theorem 5.1.4. Let α > ωc. Assume that limk→∞ τk = τ∞ ∈ (0,∞). If τ∞ is
sufficiently small, then α is an exponential rate of (5.3).

Proof. By assumption, τ = τ = τ∞. Let α > ωc, where we choose α < 0 if ωc < 0.
It follows from Theorem 5.1.2 that there exists τ∗ > 0 such that if τ∞ ∈ (0, τ∗), then
eατ∞ is a power rate of (5.5). Assume that τ∞ ∈ (0, τ∗).

We first assume that ωc < 0, so that α ∈ (ωc, 0). For sufficiently small ε > 0, eα(τ∞+ε)

is also an power rate of (5.5). Hence there exists M ≥ 1 such that

‖x(tk;x0, t)‖ = ‖Φ(k, 0)x0‖ ≤ Meα(τ∞+ε)k‖x0‖ , ∀k ∈ Z+ , ∀x0 ∈ R
n . (5.19)

where Φ(·, ·) is defined in (5.6). There exists N ∈ N such that τk ≤ τ∞ + ε for all
k ≥ N , that is, tk+1 − tk ≤ τ∞ + ε for all k ≥ N . Summing over k, we obtain

tk − tN ≤ (k − N)(τ∞ + ε) , ∀k ≥ N . (5.20)
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Since α < 0, by (5.19) and (5.20),

‖x(tk;x0, t)‖ ≤ Meα(τ∞+ε)Neα(τ∞+ε)(k−N)‖x0‖
≤ Meα(τ∞+ε)Neα(tk−tN )‖x0‖
= Meα[(τ∞+ε)N−tN ]eαtk‖x0‖ , ∀k ≥ N , ∀x0 ∈ R

n . (5.21)

Set

γ := sup
k∈Z+

{τk} and M1 := max
t∈[0,γ]

∥∥∥∥eAt +
∫ t

0
eAsdsBF

∥∥∥∥ . (5.22)

Case 1: t ≥ tN .

Then t ∈ [tk, tk+1) for some k ≥ N . By (5.4) and (5.21), we obtain that

‖x(t;x0, t)‖ ≤ M1‖x(tk;x0, t)‖
≤ M1Meα[(τ∞+ε)N−tN ]e−α(t−tk)eαt‖x0‖
≤ M2e

αt‖x0‖ , ∀x0 ∈ R
n ,

where M2 := MM1e
α[(τ∞+ε)N−tN ]e−αγ .

Case 2: t ∈ [0, tN ).

Then t ∈ [tk, tk+1) for some k ∈ {0, 1, . . . ,N − 1}. Set

M3 := M1e
−αtN max{‖Φ(k, 0)‖ : k ∈ {0, 1, . . . ,N − 1}} .

By (5.4), we have

‖x(t;x0, t)‖ ≤ M1‖x(tk;x0, t)‖ ≤ M1‖Φ(k, 0)‖‖x0‖
≤ M1‖Φ(k, 0)‖e−αtN eαt‖x0‖
≤ M3e

αt‖x0‖ , ∀x0 ∈ R
n .

By the two cases above, we see that α is an exponential rate of (5.3) if τ∞ is sufficiently
small.

If ωc ≥ 0, then for sufficiently small ε > 0, eα(τ∞−ε) is also a power rate of (5.5). There
exists Ñ ∈ N such that τk ≥ τ∞ − ε for all k ≥ Ñ , that is, tk+1 − tk ≥ τ∞ − ε for all
k ≥ Ñ . Summing over k, we obtain

(k − Ñ)(τ∞ − ε) ≤ tk − tÑ , ∀k ≥ Ñ .

Consequently, since α > 0 and eα(τ∞−ε) is also a power rate of (5.5), there exists M̃ ≥ 1
such that

‖x(tk;x0, t)‖ ≤ M̃eα(τ∞−ε)Ñeα(τ∞−ε)(k−Ñ)‖x0‖
≤ M̃eα(τ∞−ε)Ñeα(tk−tÑ )‖x0‖
= M̃eα[(τ∞−ε)Ñ−tÑ ]eαtk‖x0‖ , ∀k ≥ Ñ , ∀x0 ∈ R

n . (5.23)
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Case 1: t ≥ tÑ .

Then t ∈ [tk, tk+1) for some k ≥ Ñ . Set M̃2 := M̃M1e
α[(τ∞−ε)Ñ−tÑ ]eαγ , where γ and

M1 are defined in (5.22). By (5.4) and (5.23), we obtain that

‖x(t;x0, t)‖ ≤ M1‖x(tk;x0, t)‖
≤ M1M̃eα[(τ∞−ε)Ñ−tÑ ]e−α(t−tk)eαt‖x0‖
≤ M̃2e

αt‖x0‖ , ∀x0 ∈ R
n .

Case 2: t ∈ [0, tÑ ).

Then t ∈ [tk, tk+1) for some k ∈ {0, 1, . . . , Ñ − 1}. Set

M̃3 := M1 max{‖Φ(k, 0)‖ : k ∈ {0, 1, . . . , Ñ − 1}} .

By (5.4), we have

‖x(t;x0, t)‖ ≤ M1‖x(tk;x0, t)‖ ≤ M1‖Φ(k, 0)‖‖x0‖
≤ M1‖Φ(k, 0)‖eαt‖x0‖
≤ M̃3e

αt‖x0‖ , ∀x0 ∈ R
n .

By the two cases above, we see that α is an exponential rate of (5.3) if τ∞ is sufficiently
small. 2

We state and prove the following theorem, which is crucial to the proof of Theorem
5.2.2, the main result of next section.

Theorem 5.1.5. Assume that the continuous-time feedback system (5.1) is exponen-
tially stable. If (τk)k∈Z+ satisfies the conditions

lim
k→∞

τk = 0 and inf
k∈N

{τkk
α} > 0 for some α ∈ (0, 1) , (5.24)

then the solution (xk)k∈Z+ of (5.5) is in `1(Z+, Rn).

Proof. It follows from the exponential stability of (5.1) that there exists P = P T , P > 0
such that

(A + BF )T P + P (A + BF ) = −I (5.25)

(see, for example, [71, Theorem 18, p. 231]). We define a norm ‖ · ‖P on R
n by setting

‖z‖2
P := 〈z, Pz〉, as in the proof of Theorem 5.1.2. Thus there exist λ,Λ > 0 such that

λ‖z‖2 ≤ ‖z‖2
P ≤ Λ‖z‖2 , ∀z ∈ R

n . (5.26)

Using the power series expansion of eAt,

∆k = I + τk(A + BF ) + τ2
k Γ(τk) , ∀k ∈ Z+ ,
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where

Γ(τk) :=
1
2
A(A + BF ) +

τk

3!
A2(A + BF ) + . . . +

τ j
k

(j + 2)!
Aj+1(A + BF ) + . . . .

The convergence of (τk)k∈Z+ implies (τk)k∈Z+ is bounded. Hence, the sequence
(‖Γ(τk)‖)k∈Z+ is bounded. Therefore, by the Cauchy-Schwarz inequality and (5.25),
there exists M1 ≥ 0 such that

‖xk+1‖2
P − ‖xk‖2

P = 〈∆kxk, P∆kxk〉 − 〈xk, Pxk〉
≤ τk〈xk,

[
(A + BF )T P + P (A + BF )

]
xk〉 + M1τ

2
k‖xk‖2

≤ −τk‖xk‖2 + M1τ
2
k‖xk‖2 , ∀k ∈ Z+ . (5.27)

Since limk→∞ τk = 0, there exists N ∈ Z+ such that

−τk‖xk‖2 + M1τ
2
k‖xk‖2 ≤ −τk

2
‖xk‖2 , ∀k ≥ N .

Consequently, it follows from (5.26) and (5.27) that

‖xk+1‖2
P ≤ ‖xk‖2

P − τk

2
‖xk‖2 ≤

(
1 − τk

2Λ

)
‖xk‖2

P , ∀k ≥ N . (5.28)

Hence

‖xk‖2
P ≤

k−1∏
j=N

(
1 − τj

2Λ

) ‖xN‖2
P , ∀k ≥ N + 1 . (5.29)

If xk0 = 0 for some k0 ≥ N , then it follows from (5.28) that xk = 0 for all k ≥ k0. Thus
(xk)k∈Z+ ∈ `1(Z+, Rn). Assume now that xk 6= 0 for all k ≥ N . By (5.28), we see that
1 − τk/(2Λ) > 0 for all k ≥ N . Moreover, since M := infk∈N{τkk

α} > 0, τk ≥ M/kα

for all k ∈ N. Thus
0 < 1 − τk

2Λ
≤ 1 − M

2Λkα
, ∀k ≥ N .

Therefore, by (5.29), we obtain

‖xk‖P ≤
k−1∏

j=N

(
1 − M

2Λjα

) 1
2

 ‖xN‖P , ∀k ≥ N + 1 . (5.30)

Define v : Z+ → R+ by

v(k) :=
N+k∏
j=N

(
1 − M

2Λjα

) 1
2

.

By (5.26) and (5.30), in order to show that (xk)k∈Z+ ∈ `1(Z+, Rn), it suffices to show
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that v ∈ `1(Z+, R). Invoking the inequality 1 − t ≤ e−t for t ∈ R, we have

l∑
k=0

v(k) =
(

1 − M

2ΛNα

) 1
2

+
(

1 − M

2ΛNα

) 1
2
(

1 − M

2Λ(N + 1)α

)1
2

+ . . . +
N+l∏
j=N

(
1 − M

2Λjα

) 1
2

≤ exp
(
− M

4ΛNα

)
+ exp

[
−M

4Λ

(
1

Nα
+

1
(N + 1)α

)]

+ . . . + exp

−M

4Λ

N+l∑
j=N

(
1
jα

)
≤ exp

(
− M

4ΛNα

)
+ exp

(
− 2M

4Λ(N + 1)α

)
+ . . . + exp

(
− (l + 1)M

4Λ(N + l)α

)
, ∀l ∈ Z+ . (5.31)

Since α ∈ (0, 1), it follows that

exp
(
− M(l + 1)

4Λ(N + l)α

)
≤ 1/l2 ,

for sufficiently large l. Hence, the right-hand side of (5.31) converges to a finite limit
as l → ∞, showing that v ∈ `1(Z+, R). 2

5.2 Adaptation of the sampling period

By Corollary 3.1.6, we know that if the continuous-time state feedback system is expo-
nentially stable, then the corresponding sampled-data system with constant sampling
period is also exponentially stable, provided that the sampling period τ > 0 is suffi-
ciently small. The problem is that it is difficult to estimate how small the sampling
period has to be in order to achieve stability of the sampled-data system. In this
section, we first develop an approach for state feedback systems which is based on an
adaptive law for adjusting the sampling period. We then extend this approach to static
output feedback systems and dynamic output feedback systems.

Throughout this section, let (βk)k∈Z+ be such that

β0 = 0 , βk+1 > βk , ∀k ∈ Z+ , βk → ∞ as k → ∞ .

Let (δk)k∈Z+ be a positive sequence, i.e., δk > 0 for all k ∈ Z+. Define the function

ϕ : R+ → Z+ , z 7→ max{j ∈ Z+ : βj ≤ z} .

Trivially, z ∈ [βϕ(z), βϕ(z)+1) for all z ∈ R+.
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5.2.1 State feedback

Consider the continuous-time state feedback system

ẋ(t) = Ax(t) + Bu(t) ; x(0) = x0 ∈ R
n , (5.32a)

u(t) = Fx(t) , (5.32b)

where A ∈ R
n×n, B ∈ R

n×m and F ∈ R
m×n. Let t := (tk)k∈Z+ be the sampling points

satisfying (5.2). Set τk := tk+1 − tk for k ∈ Z+. We use sampling and hold in (5.32b)
to obtain that

ẋ(t) = Ax(t) + Bu(t) ; x(0) = x0 ∈ R
n , (5.33a)

u(t) = Fx(tk) , ∀t ∈ [tk, tk+1) . (5.33b)

We generate the sampling points (tk)k∈Z+ by the following recursive adaptive law

t0 := 0 , k0 := 0 , σ0 := ‖x0‖ ,

σj+1 := σj + ‖x(tj+1)‖ ,

tj := tkl
+ (j − kl)δl , j = kl + 1, . . . , kl+1 ,

where kl+1 ≥ kl + 1 is such that
σkl+1−1 < βϕ(σkl

)+1 , σkl+1
≥ βϕ(σkl

)+1 .

Or, if such a kl+1 does not exist, then
tj := tkl

+ (j − kl)δl , j > kl .


Adaptive strategy (AS1).

In the latter case, we set
kl+j := kl , ∀j ∈ N ,

and say that the sequence (kj)j∈Z+ is ultimately constant. The adaptation of the
sampling period terminates in finite time if and only if (kj)j∈Z+ is ultimately constant.

The idea of (AS) is that the βk are thresholds and the δk are possible sampling periods.
Note that (σj)j∈Z+ is non-decreasing and each σj lies in an interval given by two
consecutive thresholds: if σj+1 lies in an interval different from the interval containing
σj , then the algorithm changes the sampling period; otherwise, the same sampling
period is used.

System (5.33) combined with the adaptive strategy (AS1) has a unique solution, de-
noted by x( · ;x0). Of course, x( · ;x0) depends on (βk)k∈Z+ and (δk)k∈Z+ , but since
these two sequences are fixed, we do not indicate the dependence of x(·;x0) on (βk)k∈Z+

and (δk)k∈Z+ . Note that

σk =
k∑

j=0

‖x(tj ;x0)‖ , ∀k ∈ Z+ . (5.34)

In Figure 5-1, which illustrates strategy (AS1) for the adaptation of the sampling points,
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Figure 5-1: Illustration of adaptive strategy (AS1).

we have

k0 = 0 , k1 = 3 , kj = 4 , ∀j ≥ 2 ;
tj = jδ0 , ∀j = 1, 2, 3 ; t4 = t3 + δ1 ; tj = t4 + (j − 4)δ2 , ∀j ≥ 5 .

Lemma 5.2.1. The sequence (kj)j∈Z+ is ultimately constant if and only if the sequence
(σj)j∈Z+ is bounded.

Proof. By (AS1), the sequence (kj)j∈Z+ is ultimately constant if and only if there exists
l ∈ Z+, such that

σkl+j ∈ [βϕ(σkl
), βϕ(σkl

)+1) , ∀j ∈ Z+ .

The existence of such a number l is equivalent to the boundedness of (σj)j∈Z+ . 2

Theorem 5.2.2. Assume that the continuous-time state feedback system (5.32) is ex-
ponentially stable and that the positive sequence (δk)k∈Z+ satisfies

lim
k→∞

δk = 0 and inf
k∈N

{δkkα} > 0 for some α ∈ (0, 1) . (5.35)

Then, for any x0 ∈ Rn, the following statements hold for the closed-loop system given
by (5.33) and (AS1):

(1) the adaptation of the sampling period terminates in finite time;

(2) limt→∞ x(t;x0) = 0, x( · ;x0) ∈ L1(R+, Rn) and (x(tk;x0))k∈Z+ ∈ `1(Z+, Rn),
where x( · ;x0) is the solution of the adaptive system given by (5.33) and (AS1).

Proof. We first show that (σj)j∈Z+ is bounded. Seeking a contradiction, suppose
(σj)j∈Z+ is unbounded. By Lemma 5.2.1, we know that (kj)j∈Z+ is not ultimately
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constant, so that limj→∞ kj = ∞. By (AS1), the sampling period τj := tj+1 − tj
satisfies

τj = δl , ∀j = kl, . . . , kl+1 − 1 , ∀l ∈ Z+ ,

and kl ≥ l for all l ∈ Z+. Thus,

τjj
α = δlj

α ≥ δll
α , ∀j = kl, . . . , kl+1 − 1 , ∀l ∈ Z+ ,

showing that
inf
k∈N

{τkk
α} ≥ inf

k∈N

{δkkα} > 0 , ∀l ∈ Z+ .

Moreover, since limk→∞ δk = 0, it is easy to see that limk→∞ τk = 0. Therefore, it
follows from Theorem 5.1.5 that (x(tk;x0))k∈Z+ ∈ `1(Z+, Rn). By (5.34), we see that
(σj)j∈Z+ is bounded, contradicting our supposition. Consequently, the supposition is
wrong, showing that (σj)j∈Z+ is bounded. Invoking Lemma 5.2.1 completes the proof
of Statement (1).

To prove Statement (2), we set

δ̄ := sup
k∈Z+

δk < ∞ and M := sup
t∈[0,δ̄]

∥∥∥∥eAt +
∫ t

0
eAsBFds

∥∥∥∥ .

Since (σj)j∈Z+ is bounded, by (5.34), we conclude that (x(tk;x0))k∈Z+ ∈ `1(Z+, Rn).
Thus limk→∞ x(tk;x0) = 0 for all x0 ∈ R

n. By the variation-of-parameters formula, we
have

‖x(tk + θ;x0)‖ ≤ M‖x(tk;x0)‖ , ∀θ ∈ [0, τk) , ∀x0 ∈ R
n .

Consequently,
lim
t→∞x(t;x0) = 0 , ∀x0 ∈ R

n .

Moreover,

‖x‖L1 =
∞∑

k=0

∫ tk+1

tk

‖x(t;x0)‖dt ≤ Mδ̄

∞∑
k=0

‖x(tk;x0)‖ = Mδ̄‖(x(tk;x0))k∈Z+‖`1 < ∞ ,

showing that x ∈ L1(R+, Rn). 2

To illustrate Theorem 5.2.2, we present two numerical simulations.

Example 5.2.3. Let the matrices A,B and F in system (5.32) be given by

A =

(
−1 1

−2 3

)
, B =

(
0

1

)
, F =

(
2 −5

)
. (5.36)

Then
σ(A) = {1 ±

√
2} , σ(A + BF ) = {−1,−2} ,
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Figure 5-2: Sampled-data control with adaptive sampling period for Example 5.2.3 (at starred
points, the sampling period is adapted).

showing that A is unstable, whilst F stabilizes the pair (A,B). Set

βk := 2k , δk :=
0.7

(k + 1)1/3
; ∀k ∈ Z+ ,

and initial condition x0 := (2, 3)T . Clearly, (δk)k∈Z+ satisfies condition (5.35) with
α = 1/2. Hence, the conclusions of Theorem 5.2.2 are true. Figure 5-2 shows ‖x(t;x0)‖
and τj = tj+1 − tj for j ∈ Z+ when the adaptive sampled-data strategy (AS1) applied
to system (5.33), with A, B and F given by (5.36).

Next we consider a 2-input/2-output linear system.

Example 5.2.4. Assume that A,B and F in system (5.32) are given by

A =

1 1 0

0 0 1

0 2 −1

 , B =

0 1

1 1

0 0

 , F =

(
2 −1 −2

−2 0 0.5

)
.

Then
σ(A) = {1, 1,−2} , σ(A + BF ) = {−1,−1 ± i} .

Set
βk := 100k , δk :=

1.5
(k + 1)1/2

; ∀k ∈ Z+ ,

and the initial condition x0 := (1, 2, 3)T . Clearly, (δk)k∈Z+ satisfies condition (5.35)
with α = 1/2. Hence, the conclusions of Theorem 5.2.2 are true. The result is illus-
trated by Figure 5-3.

Remark 5.2.5. If the assumptions of Theorem 5.2.2 hold, then there exists N ∈ Z+

such that the adaptation of the sampling period terminates after tkN
and the constant
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Figure 5-3: Sampled-data control with adaptive sampling period for Example 5.2.4 (at starred
points, the sampling period is adapted).

sampling period δN is used from t = tkN
onwards, i.e.,

tj = tkN
+ (j − kN )δN , ∀j ≥ kN .

Moreover, by Theorem 5.2.2,

∆j−kN
kN

x(tN ;x0) = x(tj ;x0) → 0 as j → ∞ .

However, ∆kN
may not be power stable, since N depends on x0 and thus ∆j

kN
may not

go to 0 as j → ∞. To see this, consider Example 5.2.3, where we still set βk := 2k and
δk := 0.7/(k + 1)1/3. The two eigenvalues λ1, λ2 of ∆0 = eAδ0 +

∫ δ0
0 eAsBF are

λ1 ≈ 0.5493 , λ2 ≈ −3.9359 .

Let v denote a normalized eigenvector of ∆0 corresponding to λ1. With x0 := v, it
follows trivially that

‖∆j
0x

0‖ = ‖λj
1v‖ ∈ (β0, β1) = (0, 2) , ∀j ∈ Z+ ,

showing that no adaptation takes place, implying that N = 0, i.e., kN = k0 = 0. Whilst

lim
j→∞

x(tj ;x0) = lim
j→∞

∆j
0x

0 = lim
j→∞

λj
1v = 0 ,

∆0 is not power stable. 3
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5.2.2 Static output feedback

Consider the static output feedback system

ẋ(t) = Ax(t) + Bu(t) ; x(0) = x0 ∈ R
n , (5.37a)

y(t) = Cx(t) , (5.37b)
u(t) = Ky(t) , (5.37c)

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n and K ∈ R

m×p. The system (5.37) is exponen-
tially stable if and only if A + BKC is exponentially stable.

Let t := (tk)k∈Z+ be sampling points satisfying (5.2). Using sampling and hold in
(5.37c), we obtain

ẋ(t) = Ax(t) + Bu(t) ; x(0) = x0 ∈ R
n , (5.38a)

y(t) = Cx(t) , (5.38b)
u(t) = Ky(tk) , ∀t ∈ [tk, tk+1) . (5.38c)

Let x( · ;x0, t) denote the solution of system (5.38) and set τk := tk+1 − tk for k ∈ Z+.
The variation-of-parameters formula yields

x(tk + θ;x0, t) =
(

eAθ +
∫ θ

0
eAsdsBKC

)
x(tk;x0, t) , ∀θ ∈ [0, τk] . (5.39)

It is easy to see that

x(tk+1;x0, t) =
(

eAτk +
∫ τk

0
eAsdsBKC

)
x(tk;x0, t) , ∀k ∈ Z+ . (5.40)

Note that (5.37), (5.38) and (5.40) are special cases of (5.1), (5.3) and (5.5), respectively,
with F = KC. Hence, the lemma below follows immediately from Theorem 5.1.5.

Lemma 5.2.6. Assume that the static output feedback system (5.37) is exponentially
stable. If (τk)k∈Z+ satisfies (5.24), then (x(tk;x0, t))k∈Z+ ∈ `1(Z+, Rn).

We now develop an adaptive strategy for the generation of the sampling points (tk)k∈Z+ .
Instead of using state information as in (AS1), we now use output information, i.e., we
replace (AS1) by

t0 := 0 , k0 := 0 , σ0 := ‖y(0)‖ = ‖Cx0‖ ,

σj+1 := σj + ‖y(tj+1)‖ ,

tj := tkl
+ (j − kl)δl , j = kl + 1, . . . , kl+1 ,

where kl+1 ≥ kl + 1 is such that
σkl+1−1 < βϕ(σkl

)+1 , σkl+1
≥ βϕ(σkl

)+1 .

Or, if such a kl+1 does not exist, then
tj := tkl

+ (j − kl)δl , j > kl .


Adaptive strategy (AS2).
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System (5.38) combined with the adaptive strategy (AS2) has a unique solution, de-
noted by x( · ;x0). Since (βk)k∈Z+ and (δk)k∈Z+ are fixed, we do not indicate the
dependence of x( · ;x0) on these two sequences. Note that

σk =
k∑

j=0

‖y(tj)‖ , ∀k ∈ Z+ . (5.41)

By (AS2), it is clear that Lemma 5.2.1 still holds, i.e., the sequence (kj)j∈Z+ is ulti-
mately constant if and only if the sequence (σj)j∈Z+ is bounded.

Definition 5.2.7. A number τ > 0 is said to be pathological relative to A ∈ R
n×n if

there exist k ∈ Z \ {0} and λ, µ ∈ σ(A) ∩ cl(C0) such that

τ(λ − µ) = 2kπi .

Otherwise, τ is said to be non-pathological relative to A. We say a positive sequence
(τj)j∈Z+ is pathological relative to A if there exists j ∈ Z+ such that τj is pathological
relative to A. On the other hand, (τj)j∈Z+ is said to be non-pathological relative to A,
if τj is non-pathological relative to A for all j ∈ Z+. 3

Theorem 5.2.8. Assume that the continuous-time static output feedback system (5.37)
is exponentially stable and that the positive sequence (δk)k∈Z+ satisfies

lim
k→∞

δk = 0 and inf
k∈N

{δkkα} > 0 for some α ∈ (0, 1) .

For all x0 ∈ R
n, the following statements hold for the closed-loop system given by (5.38)

and (AS2):

(1) the adaptation of the sampling period terminates in finite time;

(2) if (δk)k∈Z+ is non-pathological relative to A, the limt→∞ x(t;x0) = 0, x( · ;x0) ∈
L1(R+, Rn) and (x(tk;x0))k∈Z+ ∈ `1(Z+, Rn), where x( · ;x0) is the solution of
the adaptive system given by (5.38) and (AS2).

Proof. We first show that (σj)j∈Z+ is bounded. Seeking a contradiction, suppose
(σj)j∈Z+ is unbounded. By Lemma 5.2.1, we know that (kj)j∈Z+ is not ultimately
constant, so that limj→∞ kj = ∞. By (AS2), the sampling period τj := tj+1 − tj
satisfies

τj = δl , ∀j = kl, . . . , kl+1 − 1 ; ∀l ∈ Z+ ,

and kl ≥ l for all l ∈ Z+. Thus,

τjj
α = δlj

α ≥ δll
α , ∀j = kl, . . . , kl+1 − 1 ; ∀l ∈ Z+ ,

showing that
inf
k∈N

{τkk
α} ≥ inf

k∈N

{δkkα} > 0 , ∀l ∈ Z+ .
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Moreover, since limk→∞ δk = 0, it is easy to see that limk→∞ τk = 0. Therefore, by
Lemma 5.2.6, (x(tk;x0))k∈Z+ ∈ `1(Z+, Rn). It follows from (5.38b) that (y(tk))k∈Z+ ∈
`1(Z+, Rp). Clearly, by (5.41), (σj)j∈Z+ is bounded, contradicting our supposition.
Consequently, the supposition is wrong, showing that (σj)j∈Z+ is bounded. Invoking
Lemma 5.2.1 completes the proof of Statement (1).

Statement (1) implies there exists N ∈ Z+ such that the sampling period δN =: τ is
used from t = tkN

onwards, i.e.,

tj = tkN
+ (j − kN )τ , ∀j ≥ kN .

Since system (5.37) is exponentially stable, the pair (C,A) is detectable. By assump-
tion, τ is non-pathological relative to A. Therefore the pair (C, eAτ ) is discrete-time
detectable (see Theorem A.2.2 in the Appendix). Hence there exists H ∈ R

n×p such
that eAτ + HC is power stable. By (5.40), we obtain that

x(tj+1;x0) = eAτx(tj ;x0) + BτKCx(tj;x0)
= (eAτ + HC)x(tj;x0) + (BτK − H)y(tj) , ∀j ≥ kN , (5.42)

where Bτ =
∫ τ
0 eAsdsB. Since (σj)j∈Z+ is bounded, by (5.41), (y(tk))k∈Z+ ∈ `1(Z+, Rp).

It follows from (5.42) and the power stability of eAτ + HC that (x(tk;x0))k∈Z+ ∈
`1(Z+, Rn). Invoking (5.39), it follows from an argument identical to that used in the
proof of Theorem 5.2.2 that x ∈ L1(R+, Rn) and limt→∞ x(t;x0) = 0. 2

Remark 5.2.9. For (δk)k∈Z+ , define D ⊂ R
n×n by

D := {A ∈ R
n×n : (δk)k∈Z+ is non-pathological relative to A} .

By Theorem A.1.1 and Corollary A.1.2 in the Appendix, we know that D is dense in
R

n×n, and that additionally if limk→∞ δk = 0, then D is also open. Hence, given a
positive sequence (δk)k∈Z+ with limk→∞ δk = 0, the probability that a randomly chosen
matrix A ∈ R

n×n has the property that (δk)k∈Z+ is pathological relative to A is zero.
3

5.2.3 Dynamic output feedback

Finally, consider the dynamic output feedback system, where the plant is given by

ẋp = Apxp + Bpup ; xp(0) = x0
p ∈ R

np , (5.43a)
yp = Cpxp + Dpup , (5.43b)

where Ap ∈ R
np×np , Bp ∈ R

np×m, Cp ∈ R
p×np and Dp ∈ R

p×m. The controller is of the
form

ẋc = Acxc + Bcuc ; xc(0) = x0
c ∈ R

nc , (5.44a)
yc = Ccxc + Dcuc , (5.44b)
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where Ac ∈ R
nc×nc , Bc ∈ R

nc×p, Cc ∈ R
m×nc and Dc ∈ R

m×p. We use the output yp of
(5.43) as the input for (5.44), and the output yc of (5.44) as the input for (5.43), i.e.,

uc = yp , up = yc , (5.45)

to obtain the feedback interconnection of (5.43) and (5.44). In order for the feedback
system to be well-posed, we assume that the matrix I − DcDp is invertible. Then
I − DpDc is also invertible, with

(I − DpDc)−1 = I + Dp(I − DcDp)−1Dc .

For convenience, set

Ep := (I − DcDp)−1 , Ec := (I − DpDc)−1 .

and

x :=

(
xp

xc

)
, A :=

(
Ap 0

0 Ac

)
, B :=

(
Bp 0

0 Bc

)
,

C :=

(
Cp 0

0 Cc

)
, D :=

(
Dc I

I Dp

)
, E :=

(
Ep 0

0 Ec

)
.

Then, by a routine calculation†, the continuous-time dynamic feedback system given
by (5.43)–(5.45) can be written as

ẋ = (A + BEDC)x ; x(0) = x0 =

(
x0

p

x0
c

)
∈ R

np+nc . (5.46)

Let t := (tk)k∈Z+ be sampling points satisfying (5.2). Set τk := tk+1 − tk for k ∈ Z+.
Let the input uc in (5.44a) be given by

uc(t) = v(k) , t ∈ [tk, tk+1) ,

where v is a function Z+ → R
p. By the variation-of-parameters formula, we obtain

from (5.44) that

xc(tk+1) = eAcτkxc(tk) +
∫ τk

0
eAcsdsBcv(k) ; xc(0) = x0

c ∈ R
nc , (5.47a)

yc(tk) = Ccxc(tk) + Dcv(k) , ∀k ∈ Z+ . (5.47b)

We consider the sampled-data feedback interconnection given by

v(k) = yp(tk) , up(tk + θ) = yc(tk) , ∀θ ∈ [0, τk) , ∀k ∈ Z+ . (5.48)

†See Appendix A.4.1.
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The sampled-data feedback system given by (5.43), (5.47) and (5.48) has a unique
solution which will be denoted by(

xp(tk + θ;x0, t)

xc(tk;x0, t)

)
, ∀θ ∈ [0, τk) , ∀k ∈ Z+ .

For convenience, we write

xp(·) := xp(·;x0, t) and xc(tk) := xc(tk;x0, t) .

By the variation-of-parameters formula and a routine calculation†, we obtain that

(
xp(tk + θ)

xc(tk+1)

)
=


(

eApθ 0

0 eAcτk

)
+


∫ θ

0
eApsds 0

0
∫ τk

0
eAcsds

BEDC


(

xp(tk)

xc(tk)

)
,

(5.49)

∀θ ∈ [0, τk] , ∀k ∈ Z+ ;

(
xp(0)

xc(0)

)
= x0 ∈ R

np+nc .

Setting

∆k := eAτk +
∫ τk

0
eAsdsBEDC ,

it follows from (5.49) with θ = τk that(
xp(tk+1)

xc(tk+1)

)
= ∆k

(
xp(tk)

xc(tk)

)
, ∀k ∈ Z+ . (5.50)

A simple calculation yields(
yc(tk)

yp(tk)

)
=

(
EpDcCp EpCc

EcCp EcDpCc

)(
xp(tk)

xc(tk)

)
= EDC

(
xp(tk)

xc(tk)

)
. (5.51)

Corollary 5.2.10. Assume that the continuous-time system (5.46) is exponentially
stable. If (τk)k∈Z+ satisfies (5.24), then((

xp(tk)

xc(tk)

))
k∈Z+

∈ `1(Z+, Rnp+nc) .

†See Appendix A.4.3 with σ = −1, ε = 1, r = 0, d = 0, Ac replaced by eAcτ and Bc replaced byZ τ

0

eAcsds.
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Proof. Note that (5.46) can be written as the state feedback system

ẋ(t) = Ax(t) + Bu(t) ; x(0) = x0 ∈ R
np+nc , (5.52a)

u(t) = EDCx(t) . (5.52b)

With sampling points t = (tk)k∈Z+ , we apply sampling and hold in (5.52b) to obtain
the sampled-data system

ẋ(t) = Ax(t) + Bu(t) ; x(0) = x0 ∈ R
np+nc ,

u(t) = EDCx(tk) , ∀t ∈ [tk, tk+1) .

Let x(·;x0, t) denote its solution. Using the variation-of-parameters formula, we obtain

x(tk+1;x0, t) = ∆kx(tk;x0, t) , ∀k ∈ Z+ ; x(0;x0, t) = x0 . (5.53)

By Theorem 5.1.5, we know that (x(tk;x0, t))k∈Z+ ∈ `1(Z+, Rnp+nc). Noting the dy-
namics of systems (5.50) and (5.53) are both governed by ∆k, it follows that

x(tk;x0, t) =

(
xp(tk)

xc(tk)

)
, ∀k ∈ Z+ ,

showing that

((
xp(tk)

xc(tk)

))
k∈Z+

∈ `1(Z+, Rnp+nc). 2

Similar to (AS1), we consider the following adaptive strategy

t0 := 0 , k0 := 0 , σ0 := ‖yp(0)‖ + ‖yc(0)‖ ,

σj+1 := σj + ‖yp(tj+1)‖ + ‖yc(tj+1)‖ ,

tj := tkl
+ (j − kl)δl , j = kl + 1, . . . , kl+1 ,

where kl+1 ≥ kl + 1 is such that
σkl+1−1 < βϕ(σkl

)+1 , σkl+1
≥ βϕ(σkl

)+1 .

Or, if such a kl+1 does not exist, then
tj := tkl

+ (j − kl)δl , j > kl .


Adaptive strategy (AS3).

System (5.49) combined with the adaptive strategy (AS3) has a unique solution, de-
noted by (

xp(tk + θ;x0)

xc(tk;x0)

)
, ∀θ ∈ [0, τk) , k ∈ Z+ .

Since (βk)k∈Z+ and (δk)k∈Z+ are fixed, we do not indicate the dependence on these two
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sequences. Note that

σk =
k∑

j=0

(‖yp(tj)‖ + ‖yc(tj)‖) , ∀k ∈ Z+ . (5.54)

By (AS3), it is clear that Lemma 5.2.1 still holds, i.e., the sequence (kj)j∈Z+ is ulti-
mately constant if and only if the sequence (σj)j∈Z+ is bounded.

Theorem 5.2.11. Assume that the continuous-time dynamic output feedback system
(5.46) is exponentially stable and that the positive sequence (δk)k∈Z+ satisfies

lim
k→∞

δk = 0 and inf
k∈N

{δkkα} > 0 for some α ∈ (0, 1) .

For all initial condition x0 ∈ R
np+nc, the following statements hold for the closed-loop

system given by (5.49) and (AS3):

(1) the adaptation of the sampling period terminates in finite time;

(2) if (δk)k∈Z+ is non-pathological relative to A = diag(Ap, Ac), then

lim
t→∞xp(t;x0) = 0 and lim

k→∞
xc(tk;x0) = 0 ,

where (
xp(tk + θ;x0)

xc(tk;x0)

)
, ∀θ ∈ [0, τk) , k ∈ Z+

is the solution of the adaptive system given by (5.49) and (AS3). Moreover, xp ∈
L1(R+, Rnp), (xp(tk;x0))k∈Z+ ∈ `1(Z+, Rnp) and (xc(tk;x0))k∈Z+ ∈ `1(Z+, Rnc).

Proof. We first show that (σj)j∈Z+ is bounded. Seeking a contradiction, suppose
(σj)j∈Z+ is unbounded. By Lemma 5.2.1, we know that (kj)j∈Z+ is not ultimately
constant, so that limj→∞ kj = ∞. By (AS2), the sampling period τj := tj+1 − tj
satisfies

τj = δl , ∀j = kl, . . . , kl+1 − 1 ; ∀l ∈ Z+ ,

and kl ≥ l for all l ∈ Z+. Thus,

τjj
α = δlj

α ≥ δll
α , ∀j = kl, . . . , kl+1 − 1 ; ∀l ∈ Z+ ,

showing that
inf
k∈N

{τkk
α} ≥ inf

k∈N

{δkkα} > 0 , ∀l ∈ Z+ .

Moreover, since limk→∞ δk = 0, it is easy to see that limk→∞ τk = 0. Therefore, by
Theorem 5.2.10, ((

xp(tk;x0)

xc(tk;x0)

))
k∈Z+

∈ `1(Z+, Rnp+nc) .
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It follows from (5.51) that((
yp(tk)

yc(tk)

))
k∈Z+

∈ `1(Z+, Rp+m) .

Clearly, by (5.54), (σj)j∈Z+ is bounded, contradicting our supposition. Consequently,
the supposition is wrong, showing that (σj)j∈Z+ is bounded. Invoking Lemma 5.2.1
completes the proof of Statement (1).

Now Statement (1) implies that there exists N ∈ Z+ such that the sampling period
δN =: τ is used from time t = tkN

onwards, i.e.,

tj = tkN
+ (j − kN )τ , ∀j ≥ kN .

By (5.54) and boundedness of (σj)j∈Z+ , we know that

(yp(tk))k∈Z+ ∈ `1(Z+, Rp) , (yc(tk))k∈Z+ ∈ `1(Z+, Rm) . (5.55)

Since system (5.46) is exponentially stable, i.e., A + BEDC is exponentially stable,
the pair (EDC,A) is detectable. By assumption, τ is non-pathological relative to A.
Therefore the pair (EDC, eAτ ) is discrete-time detectable (see Theorem A.2.2 in the
Appendix). Hence there exists H ∈ R

(np+nc)×(m+p) such that eAτ + HEDC is power
stable. By (5.50) and (5.51),(

xp(tk+1;x0)

xc(tk+1;x0)

)
= eAτ

(
xp(tk;x0)

xc(tk;x0)

)
+ BτEDC

(
xp(tk;x0)

xc(tk;x0)

)

= (eAτ + HEDC)

(
xp(tk;x0)

xc(tk;x0)

)
+ (Bτ − H)

(
yc(tk)

yp(tk)

)
, ∀k ≥ kN ,

where Bτ =
∫ τ
0 eAsdsB. By (5.55) and the power stability of eAτ + HEDC, we see

that
(xp(tk;x0))k∈Z+ ∈ `1(Z+, Rnp) , (xc(tk;x0))k∈Z+ ∈ `1(Z+, Rnc) ,

showing that limk→∞ xp(tk;x0) = limk→∞ xc(tk;x0) = 0. Invoking (5.49) and using
an argument similar to that in the proof of Theorem 5.2.2, we conclude that that
xp ∈ L1(R+, Rn) and limt→∞ xp(t;x0) = 0. 2

5.3 Notes and references

Sampled-data control with time-varying sampling period arises when the output is
not available at equidistant sampling points due to errors. Moreover, the analysis
of sampled-data systems with time-varying sampling period is useful in the context of
problems where the sampling period is determined by an adaptive feedback machanism.
In the literature, it was also considered in the following situations:

63



• For sampled-data high-gain stabilization problems, Owens [58] gave an example
to show that using constant sampling period, implementing a high-gain discrete-
time adaptive controller to a high-gain stabilizable continuous-time plant does
not lead to the stability of the closed-loop system. He presented an adaptive
law to adjust the sampling period. Sampled-data control of high-gain stabilizable
systems using adaptive sampling period is also studied by Ilchmann and Townley
[21].

• Motivated by the high-gain results in [21] and [58], Özdemir and Townley [59],
in the context of infinite-dimensional systems, analysed a low-gain sampled-data
integral control scheme involving adaptation of the sampling period.

• If a continuous-time system is controllable/observable, then the discrete-time sys-
tem obtained by sample-hold discretization is also controllable/observable pro-
vided that the sampling period τ satisfies the so-called “Kalman-Ho-Narenda”
criterion (see, for example, [2, Theorem 3.2.1, p. 41]). But if the uncertainty of
the system is large, then a very small τ may have to be chosen to satisfy this
condition: too small to be practically feasible. Kreisselmeier [28] showed that
applying sample-hold discretization with a periodic sampling pattern to a con-
trollable/observable continuous-time system leads to a controllable/observable
discrete-time system, provided certain mild conditions are satisfied.

To the best of our knowledge, all the results in this chapter are new. We remark
that Theorem 5.1.5 is crucial to the development of Section 5.2. A journal publication
containing the main results of Section 5.2 is in preparation [20].
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Chapter 6

Low-gain tracking and
disturbance rejection for
infinite-dimensional systems by
sampled-data control

There has been much interest in low-gain integral control over the last thirty years.
The following principle has become well established: an application of the integra-
tor (ε/s)I to an asymptotically stable, finite-dimensional continuous-time plant, with
square transfer function matrix G(s), leads to an asymptotically stable closed-loop
system which achieves asymptotic tracking of arbitrary constant reference signals, pro-
vided that the gain parameter ε > 0 is sufficiently small and the eigenvalues of the
steady-state matrix G(0) have positive real parts. This result has been proved by
Davison [8] and Lunze [48] using state-space methods and by Grosdidier et al. [14] and
Morari [55] using frequency-domain methods (see also the book by Lunze [49, Chap-
ter 10] and the textbook by Morari and Zafiriou [56, Theorem 14.3-2, p. 362]). The
low-gain integral control approach has been successfully applied to industrial control
problems (see, for example, Coppus et al. [5]).

The above tuning integrator result has been extended by Hämäläinen and Pohjolainen
[15], Logemann et al. [33], Logemann and Owens [38], Logemann and Townley [44]
Pohjolainen [61, 62], Pohjolainen and Lätti [63] and Rebarber and Weiss [65] to various
classes of (abstract) infinite-dimensional continuous-time systems. Furthermore, in [15]
and [65], the tuning integrator has been further developed into a tuning regulator which
achieves asymptotic tracking and disturbance rejection of signals of the form

N∑
j=1

eiωjtwj , ωj ∈ R , wj ∈ C
m ,

for large classes of stable infinite-dimensional systems.

The aim of this chapter is to solve tracking and disturbance rejection problems for a
certain class of stable infinite-dimensional systems using low-gain sampled-data control
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Figure 6-1: Discrete-time closed-loop system.

(that is, to obtain sampled-data versions of the tuning regulator results in [15] and [65]).
In Section 6.1, we first design a simple discrete-time low-gain controller (depending on
only one gain parameter) for a power stable infinite-dimensional discrete-time plant
such that the closed-loop system is power stable and the output of the closed-loop
system tracks the reference signal r of the form r(k) =

∑N
j=1 λk

j rj where rj ∈ C
p and

λj ∈ C with |λj | = 1 for j ∈ N , and rejects disturbance signal d satisfies limk→∞(d(k)−∑N
j=1 λk

j dj) = 0, where dj ∈ C
m. The discrete-time results are used in Section 6.2 to

derive results on approximate tracking and disturbance rejection for a large class of
infinite-dimensional systems with impulse responses given by Borel measures. The
reference signals are finite sums of sinusoids, and disturbance signals are asymptotic to
finite sums of sinusoids. In Section 6.3, we conclude the chapter by extending the results
in Section 6.2 to exponentially stable well-posed systems with transfer functions which
are holomorphic and bounded in some half plane {s ∈ C : Re s > α}, where α < 0, by
using suitable low-pass filters.

6.1 Low-gain control of discrete-time systems

6.1.1 Preliminaries

Consider the following discrete-time closed-loop feedback system

ŷp = P(d̂1 + ŷc) , ŷc = K(r̂ − ŷ) , ŷ = ŷp + d̂2 , (6.1)

as shown in Figure 6-1, where ŷ denotes the Z-transform of y. Let Ω ⊂ C be open and
let QΩ denote the quotient field of H∞(Ω, C), i.e., QΩ = {n/d : n, d ∈ H∞(Ω, C), d 6= 0}.
For (P,K) ∈ Q

p×m
Ω × Q

m×p
Ω such that det(I + PK) 6= 0, we set

F (P,K) :=

(
(I + PK)−1 P(I + KP)−1

K(I + PK)−1 (I + KP)−1

)
. (6.2)

The feedback system (6.1) is called `q-stable for 1 ≤ q ≤ ∞ if there exists M ≥ 0 such
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that

‖yp‖`q +‖yc‖`q ≤ M(‖r‖`q +‖d1‖`q +‖d2‖`q) , ∀r, d2 ∈ `q(Z+, Cp) , ∀d1 ∈ `q(Z+, Cm) .

We observe that system (6.1) is `q-stable if F (P,K) ∈ ˆ̀1(C(m+p)×(m+p)). It is a
standard result that (6.1) is `2-stable if and only if F (P,K) ∈ H∞(E1, C

(m+p)×(m+p))
(see [60, Theorem 3.2.1, p. 45]).

Definition 6.1.1. A left-coprime factorization of P ∈ Q
p×m
Ω (over H∞(Ω, C)) is a pair

(D,N) ∈ H∞(Ω, Cp×p) × H∞(Ω, Cp×m) such that

(1) detD 6≡ 0,

(2) P = D−1N,

(3) D,N are left coprime, i.e., there exist X ∈ H∞(Ω, Cp×p), Y ∈ H∞(Ω, Cm×p)
satisfying DX + NY = I.

A right-coprime factorization of P ∈ Q
p×m
Ω (over H∞(Ω, C)) is a pair (N,D) ∈

H∞(Ω, Cp×m) × H∞(Ω, Cm×m) such that

(1) detD 6≡ 0,

(2) P = ND−1,

(3) N,D are right coprime, i.e., there exist X ∈ H∞(Ω, Cm×p), Y ∈ H∞(Ω, Cm×m)
satisfying XN + YD = I. 3

Remark 6.1.2. It follows from [70, Theorem 1] that P ∈ Q
p×m
E1

and K ∈ Q
m×p
E1

admit
left and right coprime factorizations (over H∞(E1, C)) if system (6.1) is `2-stable. 3

An application of a standard result in fractional representation theory (see [79, Lemma
3.1]) gives the following necessary and sufficient algebraic condition for closed-loop
stability in terms of coprime factors.

Proposition 6.1.3. Let P ∈ Q
p×m
Ω and K ∈ Q

m×p
Ω . Assume that there exist a left-

coprime factorization (DP,NP) of P and a right-coprime factorization (NK,DK) of
K (both over H∞(Ω, C)). Then F (P,K) ∈ H∞(Ω, C(m+p)×(m+p)) if and only if the
matrix NPNK + DPDK has an inverse in H∞(Ω, Cp×p), i.e., if and only if

inf
z∈Ω

|det[NP(z)NK(z) + DP(z)DK(z)]| > 0 .

Proposition 6.1.4 ([3, Lemma 3.1]). Assume that G ∈ ˆ̀1(Cm×m). Then G has an
inverse in ˆ̀1(Cm×m) if and only if

inf
z∈E1

|detG(z)| > 0 .
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The next result will be an important tool in the proof of Theorem 6.1.9, the main
theorem of this section, and it is also interesting in its own right.

Proposition 6.1.5. Assume that the feedback system (6.1) is `2-stable. Let (DP,NP)
be a left-coprime factorization of P ∈ Q

p×m
E1

and let (NK,DK) be a right-coprime fac-
torization of K ∈ Q

m×p
E1

(both over H∞(E1, C)). Assume that DP,DK ∈ ˆ̀1(Cp×p),
NP ∈ ˆ̀1(Cp×m) and NK ∈ ˆ̀1(Cm×p). Then F (P,K) ∈ ˆ̀1(C(m+p)×(m+p)). In particu-
lar, (6.1) is `q-stable for 1 ≤ q ≤ ∞.

Proof. By hypothesis, it is clear that NPNK + DPDK ∈ ˆ̀1(Cp×p). Since system (6.1)
is `2-stable, i.e., F (P,K) ∈ H∞(E1, C

(m+p)×(m+p)), by Proposition 6.1.3,

inf
z∈E1

|det[NP(z)NK(z) + DP(z)DK(z)]| > 0 .

Therefore, it follows from Proposition 6.1.4 that (NPNK + DPDK)−1 ∈ ˆ̀1(Cp×p). It
is easy to see that

(I + PK)−1 = DK(NPNK + DPDK)−1DP ,

so that (I + PK)−1 ∈ ˆ̀1(Cp×p). By simple calculations, we obtain

K(I + PK)−1 = NK(NPNK + DPDK)−1DP ∈ ˆ̀1(Cm×p) ,

P(I + KP)−1 = (I + PK)−1P = DK(NPNK + DPDK)−1NP ∈ ˆ̀1(Cp×m) ,

(I + KP)−1 = I − K(I + PK)−1P

= I − NK(NPNK + DPDK)−1NP ∈ ˆ̀1(Cm×m) .

Hence F (P,K) ∈ ˆ̀1(C(m+p)×(m+p)). 2

The following frequency-response result for transfer functions in ˆ̀1(Cp×m) will be useful
for understanding the asymptotic behaviour of the closed-loop system.

Lemma 6.1.6. Let G be a discrete-time input-output operator with impulse response
g and transfer function G and let u be a function: Z+ → C

m, λ ∈ cl(E1), v ∈ C
m.

(1) If g ∈ `1(Z+, Cp×m) and limn→∞(u(n) − λnv) = 0, then

lim
n→∞[(Gu)(n) − λnG(λ)v] = 0 .

(2) If there exist β ∈ (0, 1) and M ≥ 0 such that g ∈ `1
β(Z+, Cp×m) and

‖u(n) − λnv‖ ≤ Mβn , ∀n ∈ Z+ ,

then there exists L ≥ 0 such that

‖(Gu)(n) − G(λ)λnv‖ ≤ Lβn , ∀n ∈ Z+ .
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Proof. Since g ∈ `1(Z+, Cp×m),

‖G(z)‖ =

∥∥∥∥∥
∞∑

k=0

g(k)z−k

∥∥∥∥∥ ≤
∞∑

k=0

‖g(k)‖|z|−k ≤
∞∑

k=0

‖g(k)‖ < ∞ , ∀z ∈ cl(E1) ,

so that G(z) is well defined for z ∈ cl(E1). Define v : Z+ → C
m by v(k) := λkv. Since

λ ∈ cl(E1), |λ|−k ≤ 1 for all k ∈ Z+. Therefore,

‖(Gu)(n) − λnG(λ)v‖ =

∥∥∥∥∥
n∑

k=0

g(k)u(n − k) −
∞∑

k=0

λn−kg(k)v

∥∥∥∥∥
≤
∥∥∥∥∥

n∑
k=0

g(k)(u(n − k) − v(n − k))

∥∥∥∥∥ + ‖v‖
∞∑

k=n+1

|λ|n−k‖g(k)‖

≤ ‖(G(u − v))(n)‖ + ‖v‖
∞∑

k=n

‖g(k)‖ , ∀n ∈ Z+ . (6.3)

We proceed to prove Statement (1). By hypothesis, limk→∞(u(k) − v(k)) = 0 and
g ∈ `1(Z+, Cp×m). There exists M1 ≥ 0 such that ‖u(k) − v(k)‖ ≤ M1 for all k ∈ Z+.
Moreover, for ε > 0, there exists k0 ∈ Z+ such that

‖u(k) − v(k)‖ ≤ ε

2‖g‖`1
,

∞∑
j=k

‖g(j)‖ ≤ ε

2M1
; ∀k ≥ k0 ,

Then, for n ≥ 2k0,

‖(G(u − v))(n)‖ ≤
k0∑

k=0

‖g(k)‖‖(u − v)(n − k)‖ +
n∑

k=k0+1

‖g(k)‖‖(u − v)(n − k)‖

≤ ε

2‖g‖`1

k0∑
k=0

‖g(k)‖ + M1

n∑
k=k0+1

‖g(k)‖

≤ ε ,

showing that
lim

n→∞ ‖G(u − v)(n)‖ = 0 . (6.4)

A combination of (6.3), (6.4) and the fact that limn→∞
∑∞

k=n ‖g(k)‖ = 0 yields State-
ment (1).

To prove Statement (2), we set M2 :=
∑∞

k=0 β−k‖g(k)‖ < ∞. By hypothesis, there
exists M ≥ 0 such that

‖(u − v)(n)‖ ≤ Mβn , ∀n ∈ Z+ .
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Since β ∈ (0, 1) and by (6.3), we have

β−n‖(Gu)(n) − G(λ)λnv‖ ≤ β−n
n∑

k=0

‖g(k)‖‖(u − v)(n − k)‖ + β−n‖v‖
∞∑

k=n

‖g(k)‖

≤ β−n
n∑

k=0

‖g(k)‖Mβn−k + ‖v‖
∞∑

k=n

β−k‖g(k)‖

≤ M

∞∑
k=0

β−k‖g(k)‖ + ‖v‖
∞∑

k=0

β−k‖g(k)‖

≤ MM2 + ‖v‖M2 , ∀n ∈ Z+ .

Hence ‖(Gu)(n) − G(λ)λnv‖ ≤ M2(M + ‖v‖)βn for all n ∈ Z+. 2

The following result shows that Lemma 6.1.6 applies in particular to input-output
operators with transfer functions in H∞

< (E1, C
p×m).

Proposition 6.1.7. For 0 < α < β, H∞(Eα, Cp×m) ⊂ ˆ̀1
β(Cp×m).

Proof. Let 0 < α < β and f ∈ H∞(Eα, C). To prove H∞(Eα, Cp×m) ⊂ ˆ̀1
β(Cp×m), it is

sufficient to show that f ∈ ˆ̀1
β(C). Since f is holomorphic and bounded on Eα, f can

be written as

f(z) =
∞∑

k=0

akz
−k , ∀z ∈ Eα ,

where ak ∈ C. Taking ρ ∈ (α, β), we have

f(ρeiθ) =
∞∑

k=0

akρ
−ke−ikθ , ∀θ ∈ [0, 2π) .

By Parseval’s formula (see, for example, [66, Theorem 10.22, p. 211]), we have

∞∑
k=0

|ak|2ρ−2k =
1
2π

∫ 2π

0
|f(ρeiθ)|2dθ ≤

(
sup

θ∈[0,2π]
|f(ρeiθ)|

)2

< ∞ .

By the Hölder’s inequality,

∞∑
k=0

|ak|β−k ≤
( ∞∑

k=0

|ak|2ρ−2k

)1/2( ∞∑
k=0

(ρ/β)2k

)1/2

< ∞ ,

showing that f ∈ ˆ̀1
β(C). 2

Remark 6.1.8. Consider a discrete-time state-space system

xp(k + 1) = Apxp(k) + Bpup(k) , (6.5a)
yp(k) = Cpxp(k) + Dpup(k) , (6.5b)
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evolving on a Banach space X, where Ap ∈ B(X), Bp ∈ B(Cm,X), Cp ∈ B(X, Cp) and
Dp ∈ B(Cm, Cp). The transfer function P of (6.5) is given by

P(z) = Cp(zI − Ap)−1Bp + Dp .

System (6.5) is called power stable if Ap is power stable. By Proposition 2.2.1, the power
stability of (6.5) implies that P ∈ H∞

< (E1, C
p×m). Hence, it follows from Proposition

6.1.7 that Lemma 6.1.6 applies to power stable systems of the form (6.5). 3

6.1.2 Main results

The following asymptotic tracking theorem is the main result of this section. It is the
discrete-time counterpart of a continuous-time result due to Rebarber and Weiss [65],
which is a partial extension of the main results in Hämäläinen and Pohjolainen [15].

Theorem 6.1.9. Consider the feedback system (6.1) with K replaced by Kε defined in
(6.6). Let N ∈ N. For j ∈ N , let λj ∈ C, |λj | = 1 be such that λj 6= λk for j, k ∈ N ,
j 6= k. Assume that P ∈ ˆ̀1(Cp×m) and Kε is given by

Kε(z) := ε

K0(z) +
N∑

j=1

Kj

z − λj

 , (6.6)

where K0 ∈ ˆ̀1(Cm×p) and Kj ∈ C
m×p. If

σ[λ̄jP(λj)Kj ] ⊂ C0 , ∀j ∈ N , (6.7)

and

lim sup
z→λj , z∈E1

∥∥∥∥P(z) − P(λj)
z − λj

∥∥∥∥ < ∞ , ∀j ∈ N , (6.8)

then there exists ε∗ > 0 such that, for all ε ∈ (0, ε∗), F (P,Kε) ∈ ˆ̀1(C(m+p)×(m+p)),
where F (P,Kε) is given by (6.2), with K replaced with Kε.

Moreover, if the reference signal r is given by

r(k) :=
N∑

j=1

λk
j rj , rj ∈ C

p , ∀k ∈ Z+ , (6.9)

and the disturbance signals d1, d2 satisfy

lim
k→∞

(d1(k) −
N∑

j=1

λk
j d1j) = 0 , lim

k→∞
(d2(k) −

N∑
j=1

λk
j d2j) = 0 , d1j ∈ C

m , d2j ∈ C
p ,

(6.10)
then, for every ε ∈ (0, ε∗), the output y of the closed-loop system asymptotically tracks
r, in the presence of d1, d2, that is limk→∞(y(k) − r(k)) = 0.
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Figure 6-2: An illustration of the sets U , V1 and V2.

For the proof of Theorem 6.1.9, a key step is to show that the transfer function
(I + PKε)−1, the so-called sensitivity function, is in H∞(E1, C

p×p) for sufficiently small
ε > 0.

Lemma 6.1.10. Let N ∈ N and let λj ∈ C, |λj | = 1 be such that λj 6= λk for j, k ∈ N ,
j 6= k. Let P ∈ H∞(E1, C

p×m) be such that the limit P(λj) := limz→λj , z∈E1 P(z)
exists for every j ∈ N . Let Kε be given by (6.6), where K0 ∈ H∞(E1, C

m×p) and Kj ∈
C

m×p. Assume that (6.7) and (6.8) hold. Then there exists ε∗ > 0 such that, for all
ε ∈ (0, ε∗), (I +PKε)−1 ∈ H∞(E1, C

p×p). Moreover, if the additional assumptions that
P ∈ H∞

< (E1, C
p×m) and K0 ∈ H∞

< (E1, C
m×p) are satisfied, then, for every ε ∈ (0, ε∗),

(I + PKε)−1 ∈ H∞
< (E1, C

p×p).

Proof. Since σ[λ̄jP(λj)Kj ] ⊂ C0 for all j ∈ N , there exists θ ∈ (0, π/2) such that

N⋃
j=1

σ[λ̄jP(λj)Kj ] ⊂ {z ∈ C \ {0} : arg z ∈ (−θ, θ)} =: U . (6.11)

Let ρ ∈ (0, 1) and consider Figure 6-2. The circles {z ∈ C : |z| = ρ} and {z ∈ C : |z +
1| = 1} intersect at two points, denoted by ρeiφ(ρ) and ρe−iφ(ρ), where φ(ρ) ∈ (π/2, π).
Note that φ(ρ) → π/2 monotonically as ρ → 0. Hence there exists ρ0 ∈ (0, 1) such that
π − φ(ρ) > θ for all ρ ∈ (0, ρ0]. Set

V1 := {z ∈ C \ {0} : arg z ∈ (−φ(ρ0), φ(ρ0))} .

and
V2 := −V1 = {z ∈ C \ {0} : arg z ∈ (π − φ(ρ0), π + φ(ρ0))} ,

Clearly,
U ∩ cl(V2) = ∅ . (6.12)
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There exists ρ1 ∈ (0, ρ0] such that |λj − λk| > 2ρ1 for all j, k ∈ N , j 6= k. Defining

Ωj := E1

⋂
{z ∈ C : |z − λj | < ρ1} ,

we have that Ωj ∩Ωk = ∅ for j, k ∈ N , j 6= k. Moreover, set Ω := E1 \
⋃N

j=1 Ωj. Assume
that P ∈ H∞(E1, C

p×m) and K0 ∈ H∞(E1, C
m×p). It is clear that

sup
z∈Ω

∥∥∥∥∥∥P(z)

K0(z) +
N∑

j=1

Kj

z − λj

∥∥∥∥∥∥ < ∞ .

Therefore, there exists ε∞ > 0 such that

S(z) := [I + P(z)Kε(z)]−1 =

I + εP(z)

K0(z) +
N∑

j=1

Kj

z − λj

−1

is uniformly bounded for all z ∈ Ω and for all ε ∈ (0, ε∞). Fix j ∈ N . To analyze S on
Ωj , we define

Sj(z) :=
(

I +
εP(λj)Kj

z − λj

)−1

=
(

I +
ελ̄jP(λj)Kj

λ̄jz − 1

)−1

,

and
Qj(z) :=

P(z) − P(λj)
z − λj

Kj + P(z)K0(z) +
∑

k∈N, k 6=j

P(z)Kk

z − λk
.

By (6.8), we see that Qj is bounded on Ωj, with a bound that is independent of ε. For
convenience, we set Γj := λ̄jP(λj)Kj . Noticing that λ̄jΩj − 1 ⊂ V1 and if w ∈ V1, then
γw ∈ V1 for all γ ≥ 0, we have

sup
z∈Ωj

‖Sj(z)‖ = sup

{∥∥∥∥∥
(

I + ε
Γj

w

)−1
∥∥∥∥∥ : w ∈ λ̄jΩj − 1

}
≤ sup

s∈V1

‖s(sI + Γj)−1‖

= sup
s∈V2

‖s(sI − Γj)−1‖ .

By (6.11) and (6.12), the function s 7→ s(sI − Γj)−1 is holomorphic on an open set
W ⊃ cl(V2). Moreover,

lim
|s|→∞

s(sI − Γj)−1 = I .

Hence s 7→ s(sI − Γj)−1 is a bounded on cl(V2). Therefore, Sj is bounded on Ωj with
a bound independent of ε. We have S−1 − S−1

j = εQj , so that

S(z) = Sj(z)(I + εQj(z)Sj(z))−1 .
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Hence there exists εj ∈ (0, ε∞) such that S is uniformly bounded on Ωj for all ε ∈ (0, εj).
Setting

ε∗ := min{εj : j ∈ N} ,

it follows that
(I + PKε)−1 ∈ H∞(E1, C

p×p) , ∀ε ∈ (0, ε∗) . (6.13)

Finally, let ε ∈ (0, ε∗) and assume that P ∈ H∞
< (E1, C

p×m) and K0 ∈ H∞
< (E1, C

m×p).
It is clear that (I+PKε)−1 is meromorphic on Eγ for some γ ∈ (0, 1). Letting β ∈ (γ, 1),
it follows that (I + PKε)−1 has at most finitely many poles in the compact annulus
cl(Eβ)\E1. By (6.13), (I +PKε)−1 does not have any poles on the unit circle ∂E1 and
so there exists α ∈ (β, 1) such that (I + PKε)−1 ∈ H∞(Eα, Cp×p). 2

We are now in the position to prove Theorem 6.1.9.

Proof of Theorem 6.1.9. By Lemma 6.1.10, we know that there exists ε∗ > 0 such that
for all ε ∈ (0, ε∗), (I + PKε)−1 ∈ H∞(E1, C

p×p). Let ε ∈ (0, ε∗).

We first show that the other block entries of F (P,Kε) are also H∞-functions. Due
to the stability of P, it suffices to show that Kε(I + PKε)−1 ∈ H∞(E1, C

m×p). In
the following of the proof, when we write z → λj, it is assumed that z ∈ E1. By
assumption, λj 6= λk for j, k ∈ N , j 6= k. Note that, by (6.7), P(λj)Kj is invertible.
Consequently,

lim
z→λj

1
z − λj

(I + P(z)Kε(z))−1

= lim
z→λj

εP(z)Kj + (z − λj)

I + εP(z)K0(z) + ε
∑

k∈N, k 6=j

P(z)Kk

z − λk

−1

= (εP(λj)Kj)−1 , ∀j ∈ N . (6.14)

By (6.6) and (6.14), we conclude that Kε(I + PKε)−1 has a finite limit at λj , so that
Kε(I +PKε)−1 is bounded on E1 ∩Λ, where Λ is a neighbourhood of the set {λj : j ∈
N}. Since (I + PKε)−1 ∈ H∞(E1, C

p×p) and Kε is bounded on E1 \ Λ, it follows that
Kε(I + PKε)−1 ∈ H∞(E1, C

m×p). Consequently, F (P,Kε) ∈ H∞(E1, C
(m+p)×(m+p)).

To prove that F (P,Kε) ∈ ˆ̀1(C(m+p)×(m+p)), we set

K1(z) :=
N∑

j=1

Kj

z − λj
.

We see that K1 is a (strictly proper) rational matrix function. Let Rs denote the
ring of discrete-time stable proper complex rational functions, i.e., rational functions
with complex coefficients which are bounded at infinity and have all their poles in
{z ∈ C : |z| < 1}. By a standard result (see [78, Theorem 4.1.43, p. 75]), K1 has a
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right-coprime factorization over Rs, i.e., K1 = ND−1, where N ∈ R
m×p
s , D ∈ R

p×p
s

and there exist X ∈ R
p×m
s , Y ∈ R

p×p
s such that XN + YD = I . Therefore,

Kε = ε(K0 + K1) = ε(K0D + N)D−1 ,

showing that Kε has right coprime factorization (ε(K0D + N),D), since

(ε−1X)ε(K0D + N) + (Y −XK0)D = XN + YD = I .

Since K0,N ∈ ˆ̀1(Cm×p) and D ∈ ˆ̀1(Cp×p), we have that K0D + N ∈ ˆ̀1(Cm×p).
Therefore, invoking Proposition 6.1.5 and the assumption that P ∈ ˆ̀1(Cm×p), we have
F (P,Kε) ∈ ˆ̀1(C(m+p)×(m+p)).

To prove tracking and disturbance rejection, we note first that, since P(λj)Kj is in-
vertible,

(I + PKε)−1(λj) = lim
z→λj

(I + P(z)Kε(z))−1 = 0 , ∀j ∈ N , (6.15)

and

((I + PKε)−1P)(λj) = lim
z→λj

(I + P(z)Kε(z))−1P(z) = 0 , ∀j ∈ N . (6.16)

Let r be given by (6.9) and let d1, d2 satisfy (6.10). For j ∈ N , define aj : Z+ → C
p,

bj : Z+ → C
m by

aj(k) := λk
j rj , bj(k) := λk

j d1j .

Obviously, r =
∑N

j=1 aj and limk→∞ d1(k) −∑N
j=1 bj(k) = 0. Let Z −1 denote the

inverse Z-transform. Then, by Lemma 6.1.6, (6.15) and (6.16), we obtain

lim
k→∞

[Z −1((I + PKε)−1) ? r](k)

=
N∑

j=1

lim
k→∞

{[Z −1((I + PKε)−1) ? aj)](k) − ((I + PKε)−1)(λj)λk
j rj}

= 0 , (6.17)

and

lim
k→∞

[Z −1((I + PKε)−1P) ? d1](k)

=
N∑

j=1

lim
k→∞

{[Z −1((I + PKε)−1P) ? bj](k) − ((I + PKε)−1P)(λj)λk
j d1j}

+ lim
k→∞

[Z −1((I + PKε)−1P) ? (d1 −
N∑

j=1

bj)](k)

= 0 . (6.18)
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Similarly, by Lemma 6.1.6 and (6.15),

lim
k→∞

[Z −1((I + PKε)−1) ? d2](k) = 0 . (6.19)

It follows from system (6.1) (with K replaced by Kε) that

r̂ − ŷ = (I + PKε)−1(r̂ − d̂2) − (I + PKε)−1Pd̂1 . (6.20)

Therefore, by (6.17)–(6.20),

lim
k→∞

(r − y)(k) = lim
k→∞

{[Z −1((I + PKε)−1) ? (r − d2)](k)

− [Z −1((I + PKε)−1P) ? d1](k)}
= 0 . 2

Remark 6.1.11. (1) In (6.6), the term K0 may be employed to satisfy additional
design requirements, for example, to improve robustness properties or to speed
up the transient response. The existence of matrices Kj such that (6.7) holds
is guaranteed if and only if rkP(λj) = p for all j ∈ N , in which case, Kj =
λjP∗(λj)[P(λj)P∗(λj)]−1 is a possible choice.

(2) The lim sup condition (6.8) is not very restrictive. It is trivially satisfied if P ∈
H∞

< (E1, C
p×m).

(3) If, in Theorem 6.1.9, we replace the controller Kε given in (6.6) by

K̃ε(z) := ε

K̃0(z) +
N∑

j=1

zK̃j

z − λj

 ,

where K̃0 ∈ ˆ̀1(Cm×p) and K̃j ∈ C
m×p, and condition (6.7) by

σ(P(λj)K̃j) ⊂ C0 , ∀j ∈ N ,

whilst all the other conditions in the theorem remain the same, then the conclu-
sions on stability, tracking and disturbance rejection in Theorem 6.1.9 are still
valid. This follows directly from Theorem 6.1.9, since

K̃ε(z) = ε

K̃0(z) +
N∑

j=1

K̃j +
N∑

j=1

λjK̃j

z − λj


is of the form (6.6) with

K0(z) := K̃0(z) +
N∑

j=1

K̃j , Kj := λjK̃j ,

and σ(λ̄jP(λj)Kj) = σ(P(λj)K̃j) ⊂ C0. 3
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Next we show that, under a mild extra assumption on P, K0, d1 and d2, the convergence
of y(k) to r(k) as k → ∞ is exponentially fast.

Theorem 6.1.12. Let N ∈ N and let λj ∈ C, |λj | = 1 be such that λj 6= λk for j, k ∈ N ,
j 6= k. Consider the feedback system (6.1) with P ∈ H∞

< (E1, C
p×m) and Kε given by

(6.6), where K0 ∈ H∞
< (E1, C

m×p) and Kj ∈ C
m×p for j ∈ N . If (6.7) holds, then

there exists ε∗ > 0 such that, for every ε ∈ (0, ε∗), F (P,Kε) ∈ H∞
< (E1, C

(m+p)×(m+p)).
Moreover, if the reference signal r is given by (6.9) and there exist M ≥ 0 and ρ ∈ (0, 1)
such that the disturbance signals d1, d2 satisfy

‖d1(k) −
N∑

j=1

λk
j d1j‖ ≤ Mρk , ‖d2(k) −

N∑
j=1

λk
j d2j‖ ≤ Mρk , d1j ∈ C

m , d2j ∈ C
p ,

(6.21)
then, for every ε ∈ (0, ε∗), there exist L ≥ 0 and β ∈ (ρ, 1) such that

‖y(k) − r(k)‖ ≤ Lβk , ∀k ∈ Z+ .

Proof. By the hypotheses on P, K0, and Lemma 6.1.10, we know that there exists
ε∗ > 0 such that, for every ε ∈ (0, ε∗), there exists α ∈ (ρ, 1) such that

(I + PKε)−1 ∈ H∞(Eα, Cp×p) , P ∈ H∞(Eα, Cp×m) , K0 ∈ H∞(Eα, Cm×p) .

To prove that F (P,Kε) ∈ H∞(Eα, C(m+p)×(m+p)), it suffices to show that Kε(I +
PKε)−1 ∈ H∞(Eα, Cm×p). By (6.14), we conclude that Kε(I + PKε)−1 has a finite
limit as z → λj for every j ∈ N , so that Kε(I+PKε)−1 is bounded on a neighbourhood
Λ of the set {λj : j ∈ N}. Since (I + PKε)−1 ∈ H∞(Eα, Cp×p) and Kε is bounded on
Eα \ Λ, it follows that

Kε(I + PKε)−1 ∈ H∞(Eα, Cm×p) .

Hence F (P,Kε) ∈ H∞(Eα, C(m+p)×(m+p)). Therefore, it follows from Proposition 6.1.7
that, for every β ∈ (α, 1), we have

(I + PKε)−1 ∈ ˆ̀1
β(Cp×p) , (I + PKε)−1P ∈ ˆ̀1

β(Cp×m) .

Finally, invoking Lemma 6.1.6, (6.9), (6.15), (6.16) and (6.21), we conclude that there
exists M1 ≥ 0 such that

‖[Z −1((I + PKε)−1) ? r](k)‖ ≤ M1β
k , ∀k ∈ Z+ ,

‖[Z −1((I + PKε)−1P) ? d1](k)‖ ≤ M1β
k , ∀k ∈ Z+ ,

‖[Z −1((I + PKε)−1) ? d2](k)‖ ≤ M1β
k , ∀k ∈ Z+ .

Consequently, by (6.20), we have

‖y(k) − r(k)‖ ≤ 3M1β
k , ∀k ∈ Z+ . 2
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6.1.3 Application to state-space systems

We now apply Theorem 6.1.9 to obtain tracking results for discrete-time state-space
systems. Let X be a Banach space and let the plant Σp be given by

xp(k + 1) = Apxp(k) + Bpup(k) ; xp(0) = x0
p ∈ X , (6.22a)

yp(k) = Cpxp(k) + Dpup(k) , (6.22b)

where Ap ∈ B(X), Bp ∈ B(Cm,X), Cp ∈ B(X, Cp) and Dp ∈ B(Cm, Cp). The transfer
function P of Σp is given by

P(z) = Cp(zI − Ap)−1Bp + Dp .

We say that system (6.22) is power stable if Ap is power stable.

Next we construct a state-space realization of the controller transfer function (6.6). Let
K0 be a discrete-time stable proper complex rational function and let (A0, B0, C0,D0) ∈
C

n0×n0 × C
n0×p × C

m×n0 × C
m×p be a stabilizable and detectable realization of K0,

i.e., K0(z) = C0(zI −A0)−1B0 +D0, (A0, B0) is stabilizable and (C0, A0) is detectable.
Since K0 ∈ H∞(E1, C

m×p), A0 is power stable. Let Kj ∈ C
m×p and let λj ∈ C,

|λj | = 1 be such that λj 6= λk for j, k ∈ N , j 6= k. Define Ac ∈ C
(Np+n0)×(Np+n0),

Bc ∈ C
(Np+n0)×p, Cc ∈ C

m×(Np+n0) and Dc ∈ C
m×p by

Ac :=


A0 0 . . . 0

0 λ1Ip . . . 0
...

...
. . .

...

0 0 . . . λNIp

 , Bc :=


B0

Ip
...

Ip

 , Cc := (C0,K1, . . . ,KN ) , Dc := D0 ,

(6.23)
where Ip is the p × p identity matrix. Let ε > 0 and we define the controller Σc by

xc(k + 1) = Acxc(k) + Bcuc(k) ; xc(0) = x0
c ∈ C

Np+n0 , (6.24a)
yc(k) = εCcxc(k) + εDcuc(k) . (6.24b)

Obviously, the transfer function Kε of Σc is given by

Kε(z) = εCc(zI − Ac)−1Bc + εDc = ε

K0(z) +
N∑

j=1

Kj

z − λj

 .

Consider the feedback interconnection of (6.22) and (6.24) given by

uc = r − yp − d2 , up = yc + d1 , (6.25)

where r is a reference signal and d1 and d2 are disturbance signals. Let F(Σp,Σc)
denote the feedback system given by (6.22), (6.24) and (6.25). The state-space system
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F(Σp,Σc) is a state-space realization of the system (6.1) (with K replaced by Kε). It
is clear that F(Σp,Σc) has a unique solution which will be denoted by(

xp(·;x0
p, x

0
c , ε, r, d1, d2)

xc(·;x0
p, x

0
c , ε, r, d1, d2)

)
.

Remark 6.1.13. Note that the plant Σp is infinite-dimensional, but the discrete-
time controller Σc is finite-dimensional and hence can be implemented with on-line
digital computers. The order of the discrete-time controller depends on the number of
frequencies of the reference and disturbance signals. 3

Theorem 6.1.14. Assume that (6.22) is power stable and that

σ(λ̄jP(λj)Kj) ⊂ C0 , ∀j ∈ N . (6.26)

Then there exists ε∗ > 0 such that, for all ε ∈ (0, ε∗), the following statements hold:

(1) F(Σp,Σc) is power stable. Moreover, F(Σp,Σc) is input-to-state stable in the
sense that there exist M1 ≥ 1 and γ ∈ (0, 1) such that∥∥∥∥∥
(

xp(k;x0
p, x

0
c , ε, r, d1, d2)

xc(k;x0
p, x

0
c , ε, r, d1, d2)

)∥∥∥∥∥ ≤ M1

(
γk

∥∥∥∥∥
(

x0
p

x0
c

)∥∥∥∥∥+ ‖r‖`∞ + ‖d1‖`∞ + ‖d2‖`∞

)
,

(6.27)

∀x0
p ∈ X , ∀x0

c ∈ C
Np+n0 , ∀d1 ∈ `∞(Z+, Cm) ,

∀r, d2 ∈ `∞(Z+, Cp) .

(2) If r is given by (6.9) and d1, d2 satisfy (6.10), then for all initial conditions
x0

p ∈ X and x0
c ∈ C

Np+n0, the output y = yp + d2 asymptotically tracks r, that is
limk→∞(y(k)−r(k)) = 0. Additionally, if (6.21) holds with M ≥ 0 and ρ ∈ (0, 1),
then the convergence is exponentially fast.

Proof. There exists ε1 > 0 such that (I + εDcDp) is invertible for all ε ∈ (0, ε1). Then
I+εDpDc is also invertible for ε ∈ (0, ε1), with (I+εDpDc)−1 = I−Dp(I+εDcDp)−1Dc.
It is clear that K0 ∈ H∞

< (E1, C
m×p). It follows from Proposition 2.2.1 and the power

stability of system (6.22) that P ∈ H∞
< (E1, C

p×m). Since (6.26) holds, Theorem 6.1.12
shows that, there exists ε∗ ∈ (0, ε1) such that, for all ε ∈ (0, ε∗),

F (P,Kε) ∈ H∞
< (E1, C

(m+p)×(m+p)) , (6.28)

where F (P,Kε) is defined in (6.2) with K replaced by Kε. Let ε ∈ (0, ε∗). It follows
from Proposition 6.1.7 that F (P,Kε) ∈ ˆ̀1(Z+, C(m+p)×(m+p)), i.e., F(Σp,Σc) is `q-
stable for 1 ≤ q ≤ ∞.

To prove the power stability of F(Σp,Σc), we first show that Σc given by (6.24) is
detectable and stabilizable. By (6.26), we see that rk (P(λj)Kj) = p. It follows that
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rkKj = p (in particular p ≤ m). Moreover, the power stability of A0 and Proposition
2.2.1 implies that σ(A0) ⊂ {z ∈ C : |z| < 1}. Note that λj 6= λk for all j, k ∈ N , j 6= k.
Therefore,

rk

(
zI − Ac

Cc

)
= rk



zI − A0 0 . . . 0

0 (z − λ1)Ip . . . 0
...

...
. . .

...

0 0 . . . (z − λN )Ip

C0 K1 . . . KN


= Np + n0 , ∀z ∈ cl(E1) ,

and

rk (zI − Ac, Bc) = rk


zI − A0 0 . . . 0 B0

0 (z − λ1)Ip . . . 0 Ip
...

...
. . .

...
...

0 0 . . . (z − λN )Ip Ip


= Np + n0 , ∀z ∈ cl(E1) .

Hence, by the Hautus criterion, Σc is detectable stabilizable. Since Ap is power stable,
Σp given by (6.22) is detectable and stabilizable. Therefore, F(Σp,Σc) is stabilizable
and detectable. Since F(Σp,Σc) is `2-stable, it follows that F(Σp,Σc) is power stable
(see [31, Theorem 2]).

To show that F(Σp,Σc) is input-to-state stable, we set Ep := (I + εDcDp)−1, Ec :=
(I + εDpDc)−1 and define

∆ :=

(
Ap 0

0 Ac

)
+

(
Bp 0

0 Bc

)(
Ep 0

0 Ec

)(
−εDc εI

−I −εDp

)(
Cp 0

0 Cc

)
.

For convenience, we write

xp(·) := xp( · ;x0
p, x

0
c , ε, r, d1, d2) , xc(·) := xc( · ;x0

p, x
0
c , ε, r, d1, d2) .

By a routine calculation†, we obtain that(
xp(k + 1)

xc(k + 1)

)
= ∆

(
xp(k)

xc(k)

)
+

(
BpEp[d1(k) + εDc(r(k) − d2(k))]

BcEc[−Dpd1(k) + r(k) − d2(k)]

)
, ∀k ∈ Z+ .

By power stability of ∆, it follows from the discrete-time variation-of-parameters for-
mula that there exist M1 ≥ 1 and γ ∈ (0, 1) such that (6.27) holds. This completes the

†See Appendix A.4.2 with r replaced by r − d2.
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proof of Statement (1).

Set y = yp + d2. To prove asymptotic tracking and disturbance rejection, we note that
it follows from a routine calculation† that(

y(k)

yc(k)

)
=

(
EcCp εDpEpCc

−εDcEcCp εEpCc

)
∆k

(
x0

p

x0
c

)
+

(
yio(k)

yio
c (k)

)
,

where yio and yio
c satisfy

ŷio = Pŷio
c + Pd̂1 + d̂2 , ŷio

c = Kε(r̂ − ŷio) . (6.29)

An application of Theorem 6.1.9 to the system (6.29) shows that limk→∞(yio(k) −
r(k)) = 0. Since ∆ is power stable, it is easy to see that limk→∞(y(k) − r(k)) = 0.

Finally, assume that there exist M ≥ 0 and ρ ∈ (0, 1) such that (6.21) holds. Applying
Theorem 6.1.12 to the system (6.29) and invoking the fact that ∆ is power stable
completes the proof of Statement (2). 2

Remark 6.1.15. Note that the matrices (Ac, Bc, Cc,Dc) of the controller Σc defined
in (6.23) are generally complex. Assume that the non-real numbers in {λj ∈ C : |λj | =
1, j ∈ N} occur in complex conjugate pairs. Without loss of generality, we write

λ2j−1 = αj + iβj , λ2j = αj − iβj , ∀j ∈ n1 ; λ2n1+j = 1 or − 1 , ∀j ∈ n2 ,

where
0 := ∅ ; 2n1 + n2 = N ; αj, βj ∈ R , βj 6= 0 , ∀j ∈ n1 ,

We now design a real state-space realization of the controller with transfer function of
the form (6.6). Let K0 be a discrete-time proper stable real rational function matrix
and let (A0, B0, C0,D0) ∈ R

n0×n0 ×R
n0×p ×R

m×n0 ×R
m×p be a realization of K0 such

that (A0, B0) is stabilizable and (C0, A0) is detectable. Let Kj ∈ C
m×p for j ∈ n1, and

set

C2j−1 :=
Kj + K̄j

2
− Kj − K̄j

2i
, C2j :=

Kj + K̄j

2
+

Kj − K̄j

2i
, ∀j ∈ n1 .

Note that Cj ∈ R
m×p for all j ∈ 2n1. Let K2n1+j ∈ R

m×p for j ∈ n2. We define
Ac ∈ R

(Np+n0)×(Np+n0), Bc ∈ R
(Np+n0)×p, Cc ∈ R

m×(Np+n0) and Dc ∈ R
m×p by

Ac := diag(A0,Λ1, . . . ,Λn1 , λ2n1+1Ip, . . . , λNIp) , Bc :=


B0

Ip
...

Ip

 , (6.30a)

Cc := (C0, C1, . . . , C2n1 ,K2n1+1, . . . ,KN ) , Dc := D0 , (6.30b)
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where

Λj :=

(
αjIp βjIp

−βjIp αjIp

)
, ∀j ∈ n1 .

It is easy to check that

Cc(zI −Ac)−1Bc +Dc = K0(z)+
n1∑
j=1

(
Kj

z − αj − iβj
+

K̄j

z − αj + iβj

)
+

N∑
j=2n1+1

Kj

z − λj
.

Moreover, if rkKj = p for j = 1, . . . , n1, 2n1 + 1, . . . ,N , then, using Hautus Criterion,
it can be shown that (Ac, Bc) is stabilizable and (Cc, Ac) is detectable.

If, in Theorem 6.1.14, (Ac, Bc, Cc,Dc) in the controller (6.24) is given by (6.30), P is
real, i.e., P(z) = P(z̄) for z ∈ cl(E1), and

σ(λ2j−1P(λ2j−1)Kj) ⊂ C0 , ∀j ∈ n1 ; σ(λ̄jP(λj)Kj) ⊂ C0 , ∀j = 2n1 + 1, . . . ,N ,

whilst the other conditions in the theorem remain the same, then the conclusions of
Theorem 6.1.14 are still valid. This follows from the fact that

σ(λ2jP(λ2j)K̄j) = σ(λ2j−1P(λ2j−1)Kj) = σ(λ2j−1P(λ2j−1)Kj) ⊂ C0 , ∀j ∈ n1 ,

so that (6.26) is satisfied. 3

6.1.4 The case of positive transfer functions

If we know that the plant P is positive (see definition below), then we can design
a simple controller which achieves the control objective (tracking and disturbance
rejection), but does not require low gain. In the following, for K ∈ C

m×m, set
Re K := (1/2)(K + K∗).

Definition 6.1.16. Let A,B ∈ C
m×m. We say that A > 0 if 〈Au, u〉 > 0 for all

u ∈ C
m \ {0}, and A ≥ 0 if 〈Au, u〉 ≥ 0 for all u ∈ C

m. We say A ≥ B if A − B ≥ 0.

Remark 6.1.17. If A ≥ 0, then A = A∗ (see [29, Theorem 3.10-3, p. 203]). 3

We say P ∈ H∞(E1, C
m×m) is a positive transfer function if

ReP(z) =
1
2
[P(z) + (P(z))∗] ≥ 0 , ∀z ∈ E1 . 3

The proof of the following lemma can be found in [65] (see [65, Lemma 3.3]).

Lemma 6.1.18. Let K ∈ C
m×m. Then Re K ≥ I/2 if and only if there exists Q ∈

C
m×m with ‖Q‖ ≤ 1 such that K = (I − Q)−1. Furthermore, for such Q,

Re Q ≤
(

1 − 1
2‖K‖2

)
I .

82



Lemma 6.1.19. Let K ∈ C
m×m. If Re K ≥ αI for some α ≥ 0, then

‖Ku‖ ≥ α‖u‖ , ∀u ∈ C
m .

Proof. Let u ∈ C
m. It follows from the Cauchy-Schwarz inequality that

‖Ku‖‖u‖ ≥ |〈Ku, u〉| ≥ Re 〈Ku, u〉 = 〈(Re K)u, u〉 ≥ α‖u‖2 ,

showing that ‖Ku‖ ≥ α‖u‖. 2

The following theorem is the discrete-time counterpart of [65, Theorem 3.4].

Theorem 6.1.20. Consider the closed-loop feedback system (6.1). Let N ∈ N and let
λj ∈ C, |λj | = 1 be such that λj 6= λk for j, k ∈ N , j 6= k. Assume that P ∈ ˆ̀1(Cm×m),
P is a positive transfer function and ReP(λj) is invertible for all j ∈ N . Let K be
given by

K(z) := K0(z) +
N∑

j=1

zKj

z − λj
, (6.31)

where K0 ∈ ˆ̀1(Cm×m),

ReK0(z) ≥ 1
2
I , ∀z ∈ E1 , (6.32)

and Kj ∈ C
m×m with Kj > 0 for every j ∈ N . Then F (P,K) ∈ ˆ̀1(C2m×2m), where

F (P,K) is given by (6.2). Moreover, the output y of closed-loop system (6.1) asymp-
totically tracks the reference signal r given by (6.9), in the presence of the disturbance
d1, d2 satisfying (6.10), that is, limk→∞(y(k) − r(k)) = 0.

Proof. Since ReP(λj) is invertible for every j ∈ N and ReP(z) ≥ 0 for all z ∈ E1, we
conclude that ReP(λj) > 0 for every j ∈ N . Hence, there exist α > 0 and δj > 0 such
that

ReP(z) ≥ αI , ∀z ∈ Ωj := {z ∈ E1 : |z − λj| < δj} , ∀j ∈ N . (6.33)

By Remark 6.1.17, Kj > 0 implies that Kj = K∗
j for every j ∈ N . Therefore, for every

j ∈ N ,

Re
(

zKj

z − λj

)
=

zz̄ − Re (zλ̄j)
|z − λj|2 Kj ≥ |z|2 − |zλ̄j |

|z − λj|2 Kj =
|z|(|z| − 1)
|z − λj|2 Kj ≥ 0 , ∀z ∈ E1 .

It follows from (6.31) and (6.32) that

ReK(z) ≥ 1
2
I , ∀z ∈ E1 , (6.34)

and thus, by Lemma 6.1.19,

‖K(z)u‖ ≥ 1
2
‖u‖ , ∀u ∈ C

m , ∀z ∈ E1 . (6.35)
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Invoking Lemma 6.1.18 and (6.34), there exists Q : E1 → C
m×m such that

K = (I − Q)−1 ,

where

ReQ(z) ≤
(

1 − 1
2‖K(z)‖2

)
I ≤ I , ∀z ∈ E1 . (6.36)

Consequently, setting S := (I + PK)−1, we obtain that

S−1 = I + P(I − Q)−1 = (I − Q + P)(I − Q)−1 = (I − Q + P)K . (6.37)

We first show that S−1 is bounded from below on
⋃N

j=1 Ωj. By (6.33) and (6.36), we
have

Re [I −Q(z) + P(z)] ≥ αI , ∀z ∈
N⋃

j=1

Ωj .

It follows from Lemma 6.1.19 that

‖[I − Q(z) + P(z)]u‖ ≥ α‖u‖ , ∀u ∈ C
m , ∀z ∈

N⋃
j=1

Ωj .

Using this, together with (6.35) and (6.37), we obtain

‖S−1(z)u‖ ≥ α

2
‖u‖ , ∀u ∈ C

m , ∀z ∈
N⋃

j=1

Ωj . (6.38)

Setting Ω := E1 \
⋃N

j=1 Ωj , we next show that S−1 is bounded from below on Ω. It is
clear that K is bounded on Ω, i.e., there exists β > 0 such that

‖K(z)‖ ≤ 1√
2β

, ∀z ∈ Ω .

Hence, by (6.36),

ReQ(z) ≤
(

1 − 1
2‖K(z)‖2

)
I ≤ (1 − β)I , ∀z ∈ Ω .

Consequently, using the assumption that ReP(z) ≥ 0 for all z ∈ E1, we obtain that

Re [I − Q(z) + P(z)] ≥ βI , ∀z ∈ Ω .

Invoking Lemma 6.1.19 again, we have

‖[I − Q(z) + P(z)]u‖ ≥ β‖u‖ , ∀u ∈ C
m , ∀z ∈ Ω . (6.39)
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It follows from (6.35), (6.37) and (6.39) that

‖S−1(z)u‖ ≥ β

2
‖u‖ , ∀u ∈ C

m , ∀z ∈ Ω . (6.40)

Combining (6.38) and (6.40), we see that S−1 is bounded from below on E1, showing
that S is bounded on E1. Therefore, S = (I + PK)−1 ∈ H∞(E1, C

m×m).

Since ReP(λj) > 0 for every j ∈ N , we see that, for all u ∈ C
m \ {0},

‖P(λj)u‖‖u‖ ≥ |〈P(λj)u, u〉| ≥ Re 〈P(λj)u, u〉 = 〈(ReP(λj))u, u〉 > 0 ,

showing that P(λj) is invertible for all j ∈ N . Moreover, Kj > 0 implies that Kj

is invertible for all j ∈ N . Therefore, P(λj)Kj is invertible for all j ∈ N . Invoking
arguments identical to those used in the proof of Theorem 6.1.9, we conclude that
F (P,K) ∈ ˆ̀1(C2m×2m) and limk→∞(y(k)− r(k)) = 0, where r is given by (6.9), in the
presence of the disturbance d1, d2 satisfying (6.10). 2

Remark 6.1.21. A simple choice for K0 and Kj is K0 = αIm, where α ≥ 1/2, and
Kj = βIm, where β > 0. 3

6.2 Low-gain sampled-data control of systems with mea-
sure impulse responses

6.2.1 Preliminaries

Let B(R+) denote the Borel-σ-algebra on R+. For a C
p×m-valued Borel measure µ on

R+, the total variation |µ| : B(R+) → [0,∞] of µ is defined by

|µ|(E) := sup


∞∑

j=1

‖µ(Ej)‖ : Ej ∈ B(R+) , Ej ∩ Ek = ∅ if j 6= k , E =
∞⋃

j=1

Ej

 .

It is clear that
‖µ(E)‖ ≤ |µ|(E) , ∀E ∈ B(R+) .

The following proposition shows that a C
p×m-valued Borel measure is necessarily

bounded.

Proposition 6.2.1. The total variation |µ| of a C
p×m-valued Borel measure µ on R+

is a finite non-negative Borel measure on R+.

Proof. For the scalar-valued case (i.e., m = p = 1), it follows from [66, Theorem 6.2]
that |µ| is a non-negative Borel measure on R+. An inspection of the proof of Theorem
6.2 in [66] shows that it carries over to the matrix-valued case.
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To prove the finiteness of |µ|, we define a complex-valued Borel measure µij by

µij(E) := (µ(E))ij , ∀i ∈ p , ∀j ∈ m , ∀E ∈ B(R+) .

It follows from [66, Theorem 6.4] that there exists M ≥ 0 such that

|µij|(R+) ≤ M , ∀i ∈ p , ∀j ∈ m .

Let (Ek)k∈Z+ be a partition of R+, where Ek ∈ B(R+) for all k ∈ Z+. Then there
exists α ≥ 0 such that

∞∑
k=1

‖µ(Ek)‖ ≤ α
∞∑

k=1

p∑
i=1

m∑
j=1

|(µ(Ek))ij | = α

p∑
i=1

m∑
j=1

∞∑
k=1

|µij(Ek)|

≤ α

p∑
i=1

m∑
j=1

|µij|(R+)

≤ αMpm .

It now follows from the definition of |µ| that |µ|(R+) ≤ αMpm < ∞. 2

The following technical result is used later.

Proposition 6.2.2. Let µ be a C
p×m-valued Borel measure on R+. Then

lim
t→∞

∫ ∞

t
|µ|(ds) = 0 .

Proof. Define f : R+ → R+ by

f(t) := |µ|([k, k + 1)) , ∀t ∈ [k, k + 1) , ∀k ∈ Z+ .

Obviously, by Proposition 6.2.1,∫ ∞

0
f(s)ds =

∞∑
k=0

∫ k+1

k
f(s)ds =

∞∑
k=0

|µ|([k, k + 1)) = |µ|(R+) < ∞ ,

showing that f ∈ L1(R+, R). Hence, for every ε > 0, there exists T ∈ N such that∫ ∞

T
f(s)ds < ε .

Consequently,∫ ∞

t
|µ|(ds) ≤

∫ ∞

T
|µ|(ds) =

∞∑
k=T

∫ k+1

k
f(s)ds =

∫ ∞

T
f(s)ds < ε , ∀t ≥ T ,

showing that limt→∞
∫∞
t |µ|(ds) = 0. 2
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Let µ be a C
p×m-valued Borel measure on R+. Define the continuous-time input-output

operator G by

(Gu)(t) := (µ ? u)(t) =
∫ t

0
µ(ds)u(t − s) , t ≥ 0 , u ∈ L1

loc(R+, Cm) , (6.41)

It is well-known that G ∈ B(Lq(R+, Cm), Lq(R+, Cm)) for 1 ≤ q ≤ ∞ (see [13, Propo-
sition 8.49, p. 271]). The transfer function G of G is given by

G(s) =
∫

R+

e−stµ(dt) , ∀s ∈ cl(C0) , (6.42)

Trivially, by Proposition 6.2.1, ‖G(s)‖ ≤ ∫∞
0 |µ|(dt) < ∞ for all s ∈ cl(C0). It follows

in particular that G ∈ H∞(C0, C
p×m).

Recall that Lb(R+, Cm) denotes the set of bounded C
m-valued Lebesgue measurable

functions with the sup-norm ‖ · ‖∞.

Lemma 6.2.3. Let the operator G be given by (6.41), where µ is a C
p×m-valued Borel

measure on R+ and let u ∈ Lb(R+, Cm). Then

lim sup
t→∞

‖(Gu)(t)‖ ≤ |µ|(R+) lim sup
t→∞

‖u(t)‖ . (6.43)

In particular, if limt→∞ u(t) = 0, then limt→∞(Gu)(t) = 0.

Proof. Let ε > 0 and u ∈ Lb(R+, Cm). Set M := |µ|(R+) and σ := lim supt→∞ ‖u(t)‖.
By Proposition 6.2.2, there exists T > 0 such that∫ ∞

T
|µ|(ds) ≤ ε

2‖u‖∞ and ‖u(t)‖ ≤ σ +
ε

2M
, ∀t ≥ T .

Hence, for t ≥ 2T ,

‖(Gu)(t)‖ ≤
∫ t/2

0
‖u(t − s)‖|µ|(ds) +

∫ t

t/2
‖u(t − s)‖|µ|(ds)

≤ (σ +
ε

2M
)
∫ t/2

0
|µ|(ds) + ‖u‖∞

∫ t

t/2
|µ|(ds)

≤ (σ +
ε

2M
)
∫ ∞

0
|µ|(ds) + ‖u‖∞

∫ ∞

T
|µ|(ds)

≤ (σ +
ε

2M
)M + ‖u‖∞ ε

2‖u‖∞
≤ Mσ + ε .

Since this holds for all ε > 0, the (6.43) follows. Consequently, if limt→∞ u(t) = 0, then
limt→∞(Gu)(t) = 0. 2
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Lemma 6.2.4. Let ξ ∈ cl(C0), v ∈ C
m, u ∈ L1

loc(R+, Cm) and let G be given by (6.41),
where µ is a C

p×m-valued Borel measure on R+.

(1) If limt→∞(u(t) − eξtv) = 0, then

lim
t→∞[(Gu)(t) − eξtG(ξ)v] = 0 .

(2) If there exist α < 0 and M ≥ 0 such that∫ ∞

0
e−αs|µ|(ds) < ∞ and ‖u(t) − eξtv‖ ≤ Meαt , ∀t ≥ 0 ,

then there exists L ≥ 0 such that

‖(Gu)(t) − eξtG(ξ)v‖ ≤ Leαt , ∀t ≥ 0 .

Proof. Define v : R+ → C
m by v(t) := eξtv. By (6.41) and (6.42), using ξ ∈ cl(C0), we

have

‖(Gu)(t) − eξtG(ξ)v‖ =
∥∥∥∥∫ t

0
µ(ds)u(t − s) −

∫ ∞

0
eξ(t−s)µ(ds)v

∥∥∥∥
≤

∥∥∥∥∫ t

0
µ(ds)(u(t − s) − eξ(t−s)v)

∥∥∥∥+ ‖v‖
∫ ∞

t
|eξ(t−s)||µ|(ds)

= ‖(G(u − v))(t)‖ + ‖v‖
∫ ∞

t
|µ|(ds) , ∀t ≥ 0 . (6.44)

By hypothesis, limt→∞(u(t) − v(t)) = 0, and hence, by Lemma 6.2.3,

lim
t→∞(G(u − v))(t) = 0 . (6.45)

Moreover, it follows from Proposition 6.2.2 that limt→∞
∫∞
t |µ|(ds) = 0. Hence, invok-

ing (6.44) and (6.45) completes the proof of Statement (1).

To prove Statement (2), assume that there exist α < 0 and M ≥ 0 such that

M1 :=
∫ ∞

0
e−αs|µ|(ds) < ∞ and ‖u(t) − eξtv‖ ≤ Meαt , ∀t ≥ 0 .

Since α < 0, it follows from (6.44) that

e−αt‖(Gu)(t) − eξtG(ξ)v‖ ≤ e−αt

∫ t

0
‖(u − v)(t − s)‖|µ|(ds) + ‖v‖e−αt

∫ ∞

t
|µ|(ds)

≤ M

∫ t

0
e−αs|µ|(ds) + ‖v‖

∫ ∞

t
e−αs|µ|(ds)

≤ MM1 + ‖v‖M1 , ∀t ≥ 0 .

Hence ‖(Gu)(t) − eξtG(ξ)v‖ ≤ M1(M + ‖v‖)eαt for all t ≥ 0. 2
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Let τ > 0 be the sampling period. Define the sample-hold discretization Gτ of G by

Gτ := SτGHτ , (6.46)

where Sτ and Hτ are the sampling and hold operators, respectively.

Define gτ : Z+ → C
p×m by

gτ (k) := µ(Ek) , where Ek :=

{
{0} , k = 0

((k − 1)τ, kτ ] , k ∈ N

. (6.47)

Let Gτ denote the transfer function of Gτ .

Proposition 6.2.5. Assume that G is given by (6.41), where µ is a C
p×m-valued

Borel measure on R+ such that
∫∞
0 e−αt|µ|(dt) < ∞ for some α ≤ 0. Then gτ defined

by (6.47) is in `1
ρ(Z+, Cp×m), where ρ := eατ , and is the impulse response of Gτ .

Consequently, Gτ ∈ B(`q(Z+, Cm), `q(Z+, Cp)) for 1 ≤ q ≤ ∞, and Gτ ∈ ˆ̀1
ρ(C

p×m) ⊂
H∞(Eρ, C

p×m). Moreover,

lim
τ→0

Gτ (eξτ ) = G(ξ) , ∀ξ ∈ cl(C0) .

Proof. Clearly,

∞∑
k=0

‖gτ (k)‖ρ−k ≤
∞∑

k=0

∫ (k+1)τ

kτ
e−ατ(k+1)|µ|(dt)

≤ e−ατ
∞∑

k=0

∫ (k+1)τ

kτ
e−αt|µ|(dt)

= e−ατ

∫ ∞

0
e−αt|µ|(dt) < ∞ .

showing that gτ ∈ `1
ρ(Z+, Cp×m). For any discrete-time input v : Z+ → C

m, we have

(Gτv)(k) = ((SτGHτ )v)(k) = (G(Hτ v))(kτ) =
∫ kτ

0
µ(ds)(Hτ v)(kτ − s)

=
k∑

j=0

∫
Ej

µ(ds)v(k − j)

=
k∑

j=0

gτ (k)v(k − j) , ∀k ∈ Z+ .

Hence, the impulse response of Gτ is gτ , so that Gτ ∈ B(`q(Z+, Cm), `q(Z+, Cp)) for
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1 ≤ q ≤ ∞, and Gτ ∈ ˆ̀1
ρ(C

p×m) ⊂ H∞(Eρ, C
p×m). Moreover, it is clear that

Gτ (eξτ ) =
∞∑

k=0

gτ (k)e−ξτk =
∞∑

k=0

∫ (k+1)τ

kτ
e−ξτ(k+1)µ(dt) ,

and

G(ξ) =
∫

R+

e−ξtµ(dt) =
∞∑

k=0

∫ (k+1)τ

kτ
e−ξtµ(dt) .

Using ξ ∈ cl(C0), we obtain

‖Gτ (eξτ ) − G(ξ)‖ =

∥∥∥∥∥
∞∑

k=0

∫ (k+1)τ

kτ

(
e−ξτ(k+1) − e−ξt

)
µ(dt)

∥∥∥∥∥
≤

∞∑
k=0

∫ (k+1)τ

kτ
|e−ξτ(k+1)||1 − e−ξ[t−(k+1)τ ]||µ|(dt)

≤
∞∑

k=0

∫ (k+1)τ

kτ
|1 − eξ[(k+1)τ−t]||µ|(dt)

≤ sup
t∈[0,τ ]

|1 − eξt||µ|(R+) .

Since limτ→0 (supt∈[0,τ ] |1 − eξt|) = 0 and |µ|(R+) is finite, the claim follows. 2

Remark 6.2.6. The convergence of Gτ (eξτ ) to G(ξ) as τ → 0 is uniform for all ξ ∈ U ,
where U ⊂ cl(C0) is compact. Moreover, it follows from the above that Gτ (1) = G(0)
for all τ > 0. 3

6.2.2 Main result

Consider the sampled-data system shown in Figure 6-3, where G is the input-output
operator of the continuous-time plant, Kτ,ε is the input-output operator of the discrete-
time controller, r is a reference signal, and d1 and d2 are disturbance signals. Mathe-
matically, Figure 6-3 can be expressed as

yp = G(Hτyc + d1) , y = yp + d2 , yc = Kτ,εSτ (r − y) . (6.48)

The following theorem is the main result of this section.

Theorem 6.2.7. Let N ∈ N and let ξj ∈ iR for all j ∈ N be such that ξj 6= ξk for
j, k ∈ N , j 6= k. Let G be given by (6.41), where µ is a C

p×m-valued Borel measure
on R+ such that

∫∞
0 e−αt|µ|(dt) < ∞ for some α < 0, Let the discrete-time controller

Kτ,ε be such that its transfer function Kτ,ε is given by

Kτ,ε(z) = ε

K0(z) +
N∑

j=1

Kj

z − eξjτ

 , (6.49)
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Figure 6-3: Sampled-data low-gain control.

where K0 ∈ ˆ̀1(Cm×p) and Kj ∈ C
m×p. Assume that

σ(G(ξj)Kj) ⊂ C0 , ∀j ∈ N . (6.50)

The following statements hold for the output y of the sampled-data system (6.48):

(1) There exists τ∗ > 0 such that, for every sampling period τ ∈ (0, τ∗), there exists
ετ > 0 such that, for all ε ∈ (0, ετ ), the feedback system is L∞-stable, in the sense
that there exists N1 ≥ 0 such that

‖y‖∞ ≤ N1(‖r‖∞ + ‖d1‖∞ + ‖d2‖∞) , ∀r, d2 ∈ Lb(R+, Cp) , ∀d1 ∈ Lb(R+, Cm) .

(2) If the reference signal r : R+ → C
p is given by

r(t) :=
N∑

j=1

eξjtrj , rj ∈ C
p , (6.51)

the disturbance signals d1 ∈ Lb(R+, Cm) and d2 ∈ Lb(R+, Cp) satisfy

lim
t→∞(d1(t)−

N∑
j=1

eξjtd1j) = 0 , lim
t→∞(d2(t)−

N∑
j=1

eξjtd2j) = 0 , d1j ∈ C
m , d2j ∈ C

p ,

(6.52)
then, for every δ > 0, there exists τδ > 0 such that, for every sampling period
τ ∈ (0, τδ), there exists ετ > 0 such that, for every ε ∈ (0, ετ ),

lim sup
t→∞

‖y(t) − r(t)‖ ≤ δ . (6.53)

(3) Under the additional assumptions that K0 ∈ H∞
< (E1, C

m×p) and that there exist
γ ∈ (α, 0) and N2 ≥ 0 such that

‖d1(t) −
N∑

j=1

eξjtd1j‖ ≤ N2e
γt , ‖d2(t) −

N∑
j=1

eξjtd2j‖ ≤ N2e
γt , ∀t ≥ 0 , (6.54)

91



(6.53) can be replaced by

‖y(t) − r(t)‖ ≤ δ + N3e
βt , ∀t ≥ 0 ,

for some β ∈ (γ, 0) and N3 ≥ 0 (both depending on τ and ε).

Proof. Setting τ0 := 2π/ sup{|ξj − ξk| : j, k ∈ N, j 6= k}, we know that if τ ∈ (0, τ0),
then eξjτ 6= eξkτ for all j, k ∈ N , j 6= k. Let Gτ be the sample-hold discretization of G
defined by (6.46) and Gτ be the transfer function of Gτ . It follows from Proposition
6.2.5 that

lim
τ→0

eξ̄jτGτ (eξjτ )Kj = G(ξj)Kj , ∀j ∈ N .

Hence, by hypothesis (6.50), there exists τ∗ ∈ (0, τ0) such that if τ ∈ (0, τ∗), then

σ(eξ̄jτGτ (eξjτ )Kj) ⊂ C0 , ∀j ∈ N . (6.55)

By assumption, there exists α < 0 such that
∫∞
0 e−αt|µ|(dt) < ∞. Therefore, by

Proposition 6.2.5, Gτ ∈ H∞
< (E1, C

p×m) ⊂ ˆ̀1(Cp×m). Moreover, by assumption, K0 ∈
ˆ̀1(Cm×p). It follows from Theorem 6.1.9 that, for every τ ∈ (0, τ∗), there exists ετ > 0
such that

Kτ,ε(I + GτKτ,ε)−1 ∈ ˆ̀1(Cm×p) , ∀ε ∈ (0, ετ ) ,

showing that Kτ,ε(I + GτKτ,ε)−1 is a convolution operator with impulse response in
`1(Z+, Cm×p). Let τ ∈ (0, τ∗) and ε ∈ (0, ετ ). Set

M := |µ|(R+) and M1 := ‖Kτ,ε(I + GτKτ,ε)−1‖ . (6.56)

Let d1 ∈ Lb(R+, Cm) and d2, r ∈ Lb(R+, Cp). It is well-known that ‖Gd1‖∞ ≤
M‖d1‖∞. Furthermore, set

d := Gd1 + d2 . (6.57)

Trivially,

‖Sτd‖`∞ ≤ ‖d‖∞ ≤ M‖d1‖∞ + ‖d2‖∞ and ‖Sτ r‖`∞ ≤ ‖r‖∞ . (6.58)

The output yc of the discrete-time controller (see (6.48)) is given by

yc = Kτ,εSτ [r − (GHτyc + d)] = Kτ,ε[Sτr − (Gτyc + Sτd)] .

It follows that
yc = Kτ,ε(I + GτKτ,ε)−1(Sτ r − Sτd) . (6.59)

Invoking (6.56) and (6.58), we have

‖yc‖`∞ ≤ M1(‖Sτ r‖`∞ + ‖Sτd‖`∞) ≤ M1(‖r‖∞ + M‖d1‖∞ + ‖d2‖∞) . (6.60)
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Clearly, the output y of the closed-loop sampled-data system (6.48) satisfies

y = GHτyc + Gd1 + d2 = GHτyc + d . (6.61)

Since ‖Hτyc‖∞ = ‖yc‖`∞ , it follows from (6.60) and (6.61) that

‖y‖∞ ≤ ‖GHτyc‖∞ + ‖Gd1‖∞ + ‖d2‖∞
≤ M‖Hτyc‖∞ + M‖d1‖∞ + ‖d2‖∞
= M‖yc‖`∞ + M‖d1‖∞ + ‖d2‖∞
≤ MM1(‖r‖∞ + M‖d1‖∞ + ‖d2‖∞) + M‖d1‖∞ + ‖d2‖∞
≤ N1(‖r‖∞ + ‖d1‖∞ + ‖d2‖∞) ,

with N1 := (M + 1)(MM1 + 1). This completes the proof of Statement (1).

To prove Statement (2), note that, by (6.55), Gτ (eξjτ )Kj is invertible for every j ∈ N .
In the following, we take limits as z → eξjτ for z ∈ E1. It is easy to calculate that

lim
z→eξjτ

(I + Gτ (z)Kτ,ε(z))−1 = 0 , ∀j ∈ N ,

and

lim
z→eξjτ

1
z − eξjτ

(I + Gτ (z)Kτ,ε(z))−1

= lim
z→eξjτ

εGτ (z)Kj + (z − eξjτ )

I + εGτ (z)K0(z) + ε
∑

k∈N, k 6=j

Gτ (z)Kk

z − eξkτ

−1

= (εGτ (eξjτ )Kj)−1 , ∀j ∈ N .

Consequently,

(Kτ,ε(I + GτKτ,ε)−1)(eξjτ )

= lim
z→eξjτ

εK0(z)(I + Gτ (z)Kτ,ε(z))−1 + lim
z→eξjτ

∑
k∈N

(
εKk

z − eξkτ
(I + Gτ (z)Kτ,ε(z))−1

)
= lim

z→eξjτ

εKj

z − eξjτ
(I + Gτ (z)Kτ,ε(z))−1

= Kj(Gτ (eξjτ )Kj)−1 , ∀j ∈ N . (6.62)

Set
dj := G(ξj)d1j + d2j , ∀j ∈ N . (6.63)
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By Lemma 6.2.4 and (6.52), we obtain that

lim
t→∞(d(t) −

N∑
j=1

eξjtdj) = lim
t→∞[(Gd1)(t) −

N∑
j=1

eξjtG(ξj)d1j ] + lim
t→∞(d2(t) −

N∑
j=1

eξjtd2j)

= 0 , (6.64)

where d is defined in (6.57).

It follows trivially from (6.51) and (6.64) that

(Sτr)(k) =
N∑

j=1

eξjkτ rj , ∀k ∈ Z+ and lim
k→∞

[(Sτd)(k) −
N∑

j=1

eξjkτdj] = 0 . (6.65)

Define aτ , bτ : Z+ → C
m by

aτ (k) :=
N∑

j=1

eξjτkKj(Gτ (eξjτ )Kj)−1rj , bτ (k) :=
N∑

j=1

eξjτkKj(Gτ (eξjτ )Kj)−1dj .

(6.66)

It follows from Lemma 6.1.6, (6.59), (6.62) and (6.65) that

lim
k→∞

[yc(k) − aτ (k) + bτ (k)] = 0 . (6.67)

By (6.50), G(ξj)Kj is invertible for every j ∈ N . Define v1, v2 : R+ → C
m by

v1(t) :=
N∑

j=1

eξjtKj(G(ξj)Kj)−1rj , v2(t) :=
N∑

j=1

eξjtKj(G(ξj)Kj)−1dj . (6.68)

We conclude from Lemma 6.2.4, (6.51) and (6.64) that

lim
t→∞[(Gv1)(t) − r(t)] = 0 , lim

t→∞[(Gv2)(t) − d(t)] = 0 . (6.69)

Let δ > 0. Invoking Proposition 6.2.5 and the fact that the fact that ξj ∈ iR, there
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exists τδ ∈ (0, τ∗) such that if τ ∈ (0, τδ), then then

sup
t∈[kτ,(k+1)τ)

‖v1(t) − (Hτaτ )(t)‖

= sup
t∈[kτ,(k+1)τ)

∥∥∥∥∥∥
N∑

j=1

eξjtKj(G(ξj)Kj)−1rj −
N∑

j=1

eξjτkKj(Gτ (eξjτ )Kj)−1rj

∥∥∥∥∥∥
≤ sup

t∈[kτ,(k+1)τ)

N∑
j=1

|eξj(t−kτ) − 1|‖Kj(G(ξj)Kj)−1rj‖

+
N∑

j=1

‖(G(ξj)Kj)−1 − (Gτ (eξjτ )Kj)−1‖‖Kj‖‖rj‖

≤ δ

2M
, ∀k ∈ Z+ ,

where M is defined in (6.56). Hence,

‖v1(t) − (Hτaτ )(t)‖ ≤ δ

2M
, ∀t ≥ 0 , (6.70)

and, similarly,

‖v2(t) − (Hτ bτ )(t)‖ ≤ δ

2M
, ∀t ≥ 0 , (6.71)

Let τ ∈ (0, τδ) and ε ∈ (0, ετ ). By (6.67), (6.70) and (6.71), we obtain

lim sup
t→∞

‖(Hτyc)(t) − v1(t) + v2(t)‖
≤ lim sup

t→∞
‖(Hτ (yc − aτ + bτ ))(t)‖ + lim sup

t→∞
‖(Hτaτ )(t) − v1(t)‖

+ lim sup
t→∞

‖v2(t) − (Hτ bτ )(t)‖

≤ δ

M
. (6.72)

By (6.61) and (6.69), it follows that

lim sup
t→∞

‖y(t) − r(t)‖ ≤ lim sup
t→∞

‖(G(Hτ yc − v1 + v2))(t)‖ + lim sup
t→∞

‖d(t) − (Gv2)(t)‖
+ lim sup

t→∞
‖(Gv1)(t) − r(t)‖

= lim sup
t→∞

‖(G(Hτ yc − v1 + v2))(t)‖ .

Finally, Hτyc − v1 + v2 is bounded and thus, by Lemma 6.2.3 and (6.72),

lim sup
t→∞

‖y(t) − r(t)‖ ≤ M lim sup
t→∞

‖(Hτ yc)(t) − v1(t) + v2(t)‖ ≤ δ .

This completes the proof of Statement (2).
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To prove Statement (3), assume that K0 ∈ H∞
< (E1, C

m×p) and that there exist N2 ≥
0 and γ ∈ (α, 0) such that (6.54) holds. Therefore, by Theorem 6.1.12, Kτ,ε(I +
GτKτ,ε)−1 ∈ H∞

< (E1, C
m×p). Hence, by Proposition 6.1.7, there exists ρ ∈ (eγτ , 1)

such that
Kτ,ε(I + GτKτ,ε)−1 ∈ ˆ̀1

ρ(C
m×p) .

By Lemma 6.2.4 and (6.54), there exists M2 ≥ 0 such that

‖(Gd1)(t) −
N∑

j=1

eξjtG(ξj)d1j‖ ≤ M2e
γt , ∀t ≥ 0 .

Invoking (6.54), it follows that

‖d(t) −
N∑

j=1

eξjtdj‖ ≤ ‖(Gd1)(t) −
N∑

j=1

eξjtG(ξj)d1j‖ + ‖d2(t) −
N∑

j=1

eξjtd2j‖

≤ (M2 + N2)eγt , ∀t ≥ 0 , (6.73)

where d and dj are defined in (6.57) and (6.63), respectively. Trivially,

‖(Sτd)(k) −
N∑

j=1

eξjkτdj‖ ≤ (M2 + N2)(eγτ )k ≤ (M2 + N2)ρk , ∀k ∈ Z+ .

It follows from (6.62) and Lemma 6.1.6 that there exists M3 ≥ 0 such that

‖yc(k) − aτ (k) + bτ (k)‖ ≤ M3ρ
k , ∀k ∈ Z+ , (6.74)

where yc is given by (6.59) and aτ , bτ are defined in (6.66). We conclude from Lemma
6.2.4, (6.51) and (6.73) that there exists M4 ≥ 0 such that

‖(Gv1)(t) − r(t)‖ ≤ M4e
γt , ‖(Gv2)(t) − d(t)‖ ≤ M4e

γt ; ∀t ≥ 0 , (6.75)

where v1 and v2 are defined in (6.68). Since ρ ∈ (0, 1), we have

ρk ≤ ρ−1ρ(kτ+θ)/τ = ρ−1eβ(kτ+θ) , ∀θ ∈ [0, τ) , ∀k ∈ Z+ ,

where β := (ln ρ)/τ . Consequently, by (6.70), (6.71) and (6.74),

‖(Hτyc)(t) − v1(t) + v2(t)‖
≤ ‖(Hτyc − Hτaτ + Hτ bτ )(t)‖ + ‖(Hτaτ )(t) − v1(t)‖ + ‖v2(t) − (Hτ bτ )(t)‖
≤ M3ρ

−1eβt +
δ

M
, ∀t ≥ 0 .
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Since ρ ∈ (eγτ , 1), we have that β ∈ (γ, 0) ⊂ (α, 0) and hence,

‖(G(Hτ yc − v1 + v2))(t)‖ ≤
∫ t

0
‖(Hτyc − v1 + v2)(t − s)‖|µ|(ds)

≤
∫ t

0
M3ρ

−1eβ(t−s)|µ|(ds) +
δ

M

∫ ∞

0
|µ|(ds)

≤ M3ρ
−1eβt

∫ ∞

0
e−βs|µ|(ds) + δ

≤ M3M5ρ
−1eβt + δ , ∀t ≥ 0 ,

where M5 :=
∫∞
0 e−βs|µ|(ds) ≤ ∫∞

0 e−αs|µ|(ds) < ∞. Therefore, by (6.61) and (6.75),
it follows that

‖y(t) − r(t)‖ ≤ ‖(G(Hτ yc − v1 + v2))(t)‖ + ‖(d(t) − Gv2(t))‖ + ‖(Gv1)(t) − r(t)‖
≤ ‖(G(Hτ yc − v1 + v2))(t)‖ + 2M4e

γt

≤ δ + (M3M5ρ
−1 + 2M4)eβt , ∀t ≥ 0 .

This completes the proof of Statement (3). 2

Remark 6.2.8. (1) By [65], the low-gain continuous-time controller which achieves
tracking and disturbance rejection for systems given by (6.41) is of the form
ε
∑N

j=1[Kj/(s − ξj)]. That is, the impulse response of the controller is given
by ε

∑N
j=1 eξjtKj . Applying sample-hold discretization to this continuous-time

controller and invoking arguments similar to those used in the proof of Proposition
6.2.5, it can be shown that the corresponding discrete-time controller has transfer
function given by

ε

N∑
j=1

αjKj

z − eξjτ
, where αj :=


(eξjτ − 1)

ξj
, if ξ 6= 0

τ , if ξ = 0
.

Apart from the coefficients αj , this low-gain discrete-time controller obtained by
sample-hold discretization is the same as (6.49) (where, for the thesis discussion,
we ignore the term K0). In this respect, Theorem 6.2.7 can be regarded as a
result on indirect sampled-data control.

(2) In (6.49), the term K0 may be employed to satisfy additional design requirements,
for example, to improve robustness properties or to speed up the transient re-
sponse. The existence of matrices Kj such that (6.50) holds is guaranteed if and
only if rkG(ξj) = p for all j ∈ N , in which case, Kj = G∗(ξj)[G(ξj)G∗(ξj)]−1 is
a possible choice.

(3) The proof of Theorem 6.2.7 shows that, for fixed {ξj : j ∈ N}, τδ and ετ can
be chosen to be uniform for all signals r, d1 and d2 with rj, d1j and d2j , j ∈ N ,
satisfying a pre-specified bound. 3
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6.2.3 Application to state-space systems

In the following, we consider sampled-data systems in the state-space form: we apply
the input-output results to a class of infinite-dimensional state-space systems.

Let X be a Hilbert space and assume that the plant is given by

ẋp(t) = Apxp(t) + Bpup(t) ; xp(0) = x0
p ∈ X , (6.76a)

yp(t) = Cpxp(t) + Dpup(t) , (6.76b)

where Ap : D(A) → X is the generator of a strongly continuous semigroup T(t) on X,
Bp ∈ B(Cm,X−1) is the control operator, Cp ∈ B(X, Cp) is the (bounded) observation
operator and Dp ∈ C

p×m is the feedthrough matrix. Here X−1 is the completion of X
with respect to the norm ‖x‖−1 := ‖(βI −Ap)−1x‖X , where β is in the resolvent set of
Ap. We assume that Bp is admissible, that is, for every t ≥ 0, there exists bt ≥ 0 such
that ∥∥∥∥∫ t

0
T(t − s)Bpup(s)

∥∥∥∥
X

≤ bt‖up‖L2 , ∀up ∈ L2([0, t], Cm) .

The admissibility assumption implies, in particular, that system (6.76) is regular (see
Section 2.4 and the references within for more details on admissible control operators
and regular systems). For up ∈ L2

loc(R+, Cm), the mild solution xp of (6.76a), given by

xp(t) = T(t)x0
p +

∫ t

0
T(t − s)Bpup(s)ds , (6.77)

is a continuous X-valued function, satisfying the differential equation (6.76a) in X−1

for almost every t ∈ R+. The transfer function G of (6.76) is given by

G(s) = Cp(sI − Ap)−1Bp + Dp , ∀s ∈ Cω(T) ,

where
ω(T) := lim

t→∞
1
t

ln ‖T(t)‖
denotes the exponential constant of T. We say that (6.76) is exponentially stable if
ω(T) < 0.

Next we construct a state-space realization of the controller transfer function (6.49). Let
K0 be a discrete-time stable proper complex rational function and let (A0, B0, C0,D0) ∈
C

n0×n0 × C
n0×p × C

m×n0 × C
m×p be a stabilizable and detectable realization of K0,

i.e., K0(z) = C0(zI −A0)−1B0 +D0, (A0, B0) is stabilizable and (C0, A0) is detectable.
Since K0 is `2-stable, it follows that A0 is power stable. Let Ac ∈ C

(Np+n0)×(Np+n0),
Bc ∈ C

(Np+n0)×p, Cc ∈ C
m×(Np+n0) and Dc ∈ C

m×p are given by (6.23) with λj = eξjτ ,
where ξj ∈ iR for all j ∈ N and ξj 6= ξk for j ∈ N , j 6= k. If the non-zero numbers in
{ξj ∈ iR : j ∈ N} occur in complex conjugate pairs, then we can design (Ac, Bc, Cc,Dc)
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to be real matrices (see Remark 6.1.15). The controller is defined by

xc(k + 1) = Acxc(k) + Bcuc(k) ; xc(0) = x0
c ∈ C

Np+n0 , (6.78a)
yc(k) = εCcxc(k) + εDcuc(k) . (6.78b)

The transfer function Kτ,ε of (6.78) is given by

Kτ,ε(z) = ε

K0(z) +
N∑

j=1

Kj

z − eξjτ

 .

The interconnection of (6.76) and (6.78) is given by

up = Hτyc + d1 , y = yp + d2 , uc = Sτ (r − y) , (6.79)

where r is a reference signal and d1 and d2 are disturbance signals. The state-space
sampled-data feedback system given by (6.76), (6.78) and (6.79) is a state-space real-
ization of the system (6.48), and has a unique solution which will be denoted by(

xp( · ;x0
p, x

0
c , τ, ε, r, d1 , d2)

xc( · ;x0
p, x

0
c , τ, ε, r, d1, d2)

)
.

Remark 6.2.9. Note that the plant Σp is infinite-dimensional, but the discrete-time
controller Σc is finite-dimensional and hence can be implemented with on-line digi-
tal computers. The order of the discrete-time controller depends on the number of
frequencies of the reference and disturbance signals. 3

Theorem 6.2.10. Consider the sampled-data state-space system given by (6.76), (6.78)
and (6.79). Assume that (6.76) is exponentially stable and σ(G(ξj)Kj) ⊂ C0 for all
j = N . The following statements hold:

(1) There exists τ∗ > 0 such that, for every sampling period τ ∈ (0, τ∗), there exists
ετ > 0 such that if ε ∈ (0, ετ ), then the sampled-data system is exponentially
stable, i.e., for every ε ∈ (0, ετ ), there exist N1 ≥ 0 and β < 0 such that∥∥∥∥∥
(

xp(kτ + θ;x0
p, x

0
c , τ, ε, r, d1, d2)

xc(k;x0
p, x

0
c , τ, ε, r, d1, d2)

)∥∥∥∥∥
≤ N1

(
eβ(kτ+θ)

∥∥∥∥∥
(

x0
p

x0
c

)∥∥∥∥∥+ ‖r‖∞ + ‖d1‖∞ + ‖d2‖∞
)

,

∀θ ∈ [0, τ) , ∀k ∈ Z+ , ∀x0
p ∈ X , ∀x0

c ∈ C
Np+n0 ,

∀r, d2 ∈ Lb(R+, Cp) , ∀d1 ∈ Lb(R+, Cm) .

(2) If r is of the form (6.51) and d1 ∈ Lb(R+, Cm), d2 ∈ Lb(R+, Cp) satisfy (6.52),
then, for every δ > 0, there exists τδ > 0 such that, for every sampling period
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τ ∈ (0, τδ), there exists ετ > 0, such that, for all ε ∈ (0, ετ ), all x0
p ∈ X and all

x0
c ∈ C

Np+n0,
lim sup

t→∞
‖y(t) − r(t)‖ ≤ δ .

Moreover, if (6.54) holds for some γ < 0 and N2 ≥ 0, then, for every ε ∈ (0, ετ ),
there exist η ∈ (γ, 0) and N3 ≥ 0 such that, for all x0

p ∈ X and all x0
c ∈ C

Np+n0,

‖y(t) − r(t)‖ ≤ δ + N3e
ηt , ∀t ≥ 0 .

Proof. The sample-hold discretization of (6.76) is given by the quadruple(
T(τ) ,

∫ τ

0
T(s)Bpds , Cp , Dp

)
. (6.80)

Clearly, since T(t) is exponentially stable, T(τ) is power stable. Since A−1
p Bp ∈

B(Cm,X) and ∫ τ

0
T(s)Bpds v = (T(τ) − I)A−1

p Bp v , ∀v ∈ C
m ,

we see that
∫ τ
0 T(s)Bpds ∈ B(Cm,X) for every τ > 0. Define

Ep := (I + εDcDp)−1 , Ec := (I + εDpDc)−1 ,

and ∆: [0, τ ] → B(X × C
Np+n0) by

∆(θ) :=(
T(θ) 0

0 Ac

)
+


∫ θ

0
T(s)Bpds 0

0 Bc

(Ep 0

0 Ec

)(
−εDc εI

−I −εDp

)(
Cp 0

0 Cc

)
.

For θ ∈ [0, τ ] and k ∈ Z+, define R(k, θ) : Lb(R+, Cm) × Lb(R+, Cp) × Lb(R+, Cp) →
X × C

Np+n0 by

R(k, θ)

d1

d2

r

 :=

[∫ kτ+θ
kτ T(kτ + θ − s)Bpd1(s)ds + ε

∫ θ
0 T(s)dsBpEpDc[−Dpd1(kτ) + r(kτ) − d2(kτ)]

BcEc[−Dpd1(kτ) + r(kτ) − d2(kτ)]

]
.

For convenience, we write

xp(·) := xp( · ;x0
p, x

0
c , τ, ε, r, d1, d2) , xc(·) := xc( · ;x0

p, x
0
c , τ, ε, r, d1, d2) .
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By (6.77)–(6.79) and a routine calculation†, we obtain

(
xp(kτ + θ)

xc(k + 1)

)
= ∆(θ)

(
xp(kτ)

xc(k)

)
+ R(k, θ)

d1

d2

r

 , ∀k ∈ Z+ , θ ∈ [0, τ) . (6.81)

It follows from (6.81) with θ = τ that

(
xp((k + 1)τ)

xc(k + 1)

)
= ∆(τ)

(
xp(kτ)

xc(k)

)
+ R(k, τ)

d1

d2

r

 , ∀k ∈ Z+ . (6.82)

The transfer function of (6.80) is denoted by Gτ . By Proposition 6.2.5 and the as-
sumption that σ(G(ξj)Kj) ⊂ C0, there exists τ∗ > 0 such that if τ ∈ (0, τ∗), then
eξjτ 6= eξkτ for all j, k ∈ N , j 6= k, and

σ(eξ̄jτGτ (eξjτ )Kj) ⊂ C0 , ∀j ∈ N . (6.83)

Applying Statement (1) of Theorem 6.1.14 to the feedback inter-connection of discrete-
time systems (6.80) and (6.78) (the free dynamics of which is governed by ∆(τ)), we
conclude that, for every τ ∈ (0, τ∗), there exists ετ > 0 such that, for every ε ∈ (0, ετ ),
∆(τ) is power stable.

Let τ ∈ (0, τ∗), ε ∈ (0, ετ ), d1 ∈ Lb(R+, Cm) and r, d2 ∈ Lb(R+, Cp). By the admissi-
bility of Bp, there exists M1 ≥ 0 such that∥∥∥∥∫ kτ+θ

kτ
T(kτ + θ − s)Bpd1(s)ds

∥∥∥∥
X

= M1‖d1‖L2((kτ,kτ+θ),Cm) ≤ M1

√
τ∗‖d1‖∞ ,

∀k ∈ Z+ , ∀θ ∈ [0, τ ] .

Therefore, there exists M2 ≥ 0 such that∥∥∥∥∥∥∥∥R(k, θ)

d1

d2

r


∥∥∥∥∥∥∥∥ ≤ M2(‖r‖∞ + ‖d1‖∞ + ‖d2‖∞) , ∀k ∈ Z+ , ∀θ ∈ [0, τ ] . (6.84)

Let x0
p ∈ X and x0

c ∈ C
Np+n0. It follows from the discrete-time variation-of-parameters

formula, the power stability of ∆(τ), (6.82) and (6.84) that there exist M3 ≥ 1 and
ρ ∈ (0, 1) such that∥∥∥∥∥

(
xp(kτ)

xc(k)

)∥∥∥∥∥ ≤ M3

(
ρk

∥∥∥∥∥
(

x0
p

x0
c

)∥∥∥∥∥+ ‖r‖∞ + ‖d1‖∞ + ‖d2‖∞
)

, ∀k ∈ Z+ . (6.85)

†See Appendix A.4.3 with σ = 1 and r replaced by r − d2.
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By (6.81), we obtain that(
xp(kτ + θ)

xc(k)

)
= Q1(θ)

(
xp(kτ)

xc(k)

)
+

(
R1(k, θ)

0

)
(6.86)

where

Q1(θ) :=

T(θ) − ε

∫ θ

0
T(s)dsBpEpDcCp ε

∫ θ

0
T(s)dsBpEpDc

0 I

 ,

and

R1(k, θ) :=∫ kτ+θ

kτ
T(kτ + θ − s)Bpd1(s)ds + ε

∫ θ

0
T(s)dsBpEpDc[−Dpd1(kτ) + r(kτ) − d2(kτ)] .

Consequently, setting M4 := maxθ∈[0,τ∗] ‖Q1(θ)‖, it follows from (6.84), (6.85) and
(6.86) that∥∥∥∥∥
(

xp(kτ + θ)

xc(k)

)∥∥∥∥∥ ≤ M4

∥∥∥∥∥
(

xp(kτ)

xc(k)

)∥∥∥∥∥+ M2(‖r‖∞ + ‖d1‖∞ + ‖d2‖∞)

≤ M3M4ρ
k

∥∥∥∥∥
(

x0
p

x0
c

)∥∥∥∥∥+ (M2 + M3M4)(‖r‖∞ + ‖d1‖∞ + ‖d2‖∞)

≤ N1

(
eβ(kτ+θ)

∥∥∥∥∥
(

x0
p

x0
c

)∥∥∥∥∥+ ‖r‖∞ + ‖d1‖∞ + ‖d2‖∞
)

,

∀θ ∈ [0, τ) , ∀k ∈ Z+ ,

where β := (ln ρ)/τ < 0 and N1 := max{M3M4ρ
−1,M2 + M3M4}. This completes the

proof of Statement (1).

To prove the approximate tracking and disturbance rejection result claimed in State-
ment (2), note that, by exponential stability of (6.76) and boundedness of C, the
impulse response of (6.76) is a C

p×m-valued Borel measure µ of the form µ(ds) =
g(s)ds + Dδ0(ds), where g ∈ L1

α(R+, Cp×m) for some α < 0, and δ0 is the Dirac mea-
sure (see [41, Lemma 2.3]). By (6.76)–(6.79) and a routine calculation†, we obtain(

y(kτ + θ)

yc(k)

)
= Q2(θ)∆(τ)k

(
x0

p

x0
c

)
+

(
yio(kτ + θ)

yio
c (k)

)
, ∀θ ∈ [0, τ) , ∀k ∈ Z+ , (6.87)

†See Appendix A.4.3 with σ = 1 and r replaced by r − d2.
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where

Q2(θ) :=CT(θ)− εC

∫ θ

0
T(s)BdsEDcC − εDEDcC εC

∫ θ

0
T(s)BdsEDc + εDECc

−εDcEcC εCc − ε2DcEcDCc

 ,

and yio, yio
c satisfy

yio = G(d1 + Hτy
io
c ) + d2 , yio

c = Kτ,εSτ (r − yio) . (6.88)

An application of Theorem 6.2.7 to system (6.88) with r and d1, d2 given by (6.51) and
(6.52), respectively, shows that, for every δ > 0, there exists τδ ∈ (0, τ∗) such that, for
every sampling period τ ∈ (0, τδ), there exists ετ > 0, such that, for every ε ∈ (0, ετ ),

lim sup
t→∞

‖yio(t) − r(t)‖ ≤ δ .

Therefore, by power stability of ∆(τ) and (6.87),

lim sup
t→∞

‖y(t) − r(t)‖ ≤ δ .

Moreover, an application of Theorem 6.2.7 to system (6.88) with r given by (6.51) and
d1, d2 satisfying (6.54) for some γ < 0 and N2 ≥ 0, shows that, for every δ > 0, there
exists τδ ∈ (0, τ∗) such that, for every sampling period τ ∈ (0, τδ), there exists ετ > 0,
such that, for every ε ∈ (0, ετ ),

‖yio(t) − r(t)‖ ≤ δ + M5e
η1t .

for some η1 ∈ (γ, 0) and M5 ≥ 0. Therefore, by power stability of ∆(τ) and (6.87),
there exist η ∈ (η1, 0) and N3 ≥ M5 such that

‖y(t) − r(t)‖ ≤ δ + N3e
ηt . 2

Example 6.2.11. For purpose of illustration, we consider the problem of heating a bar
of length 1. We keep both endpoints at zero temperature and inject heat of magnitude
up at the point η1 ∈ (0, 1). The temperature measurement is generated by a spatial
averaging of the state over an σ-neighbourhood of a point η2 ∈ (η1, 1). The system to
be controlled can be formulated as follows

zt(η, t) = zηη(η, t) + δ(η − η1)up(t) ,

yp(t) =
1
2σ

∫ η2+σ

η2−σ
z(s, t)ds ,

103



0 10 20 30 40 50 60
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

t

e
(t

)

0 10 20 30 40 50 60
−1.5

−1

−0.5

0

0.5

1

1.5

t

y(
t)

Figure 6-4: Error signal e and output y.

with boundary conditions

z(0, t) = z(1, t) = 0 , ∀t > 0 .

For simplicity, we assume zero initial condition

z(η, 0) = 0 , ∀η ∈ [0, 1] .

Analog low-gain integral control of this system (in the presence of input hysteresis) was
studied in [37].

With input up and output yp, it can be shown that this system is a regular linear
system with state space X = L2((0, 1), R) and bounded observation. In particular, the
semigroup T(t) given by

(T(t)z)(η) =
∞∑

n=1

2 exp(−n2π2t) sin(nπη)
∫ 1

0
sin(nπλ)x(λ)dλ .

is exponentially stable. The transfer function G is given by

G(s) =
sinh(σ

√
s) sinh(η1

√
s) sinh((1 − η2)

√
s)

σs sinh(
√

s)
.

The aim is to design a robust controller such that the closed-loop system approximately
tracks the reference signal r(t) = sin t, in the presence of disturbance signals d1, d2 given
by

d1(t) =
1
5

cos(5t) +
1

t + 1
, d2(t) =

1
5

sin(5t) − 1
2

ln
(

1 +
1

t + 1

)
, t ≥ 0 .
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Set
K1 := 1/G(i) , K2 := K1 , K3 := 1/G(5i) , K4 := K3 ,

and K0(z) ≡ 10, so that the transfer function Kτ,ε of the controller Kτ,ε (see (6.49)) is
given by

Kτ,ε(z) := ε

(
10 +

K1

z − eiτ
+

K2

z − e−iτ
+

K3

z − e5iτ
+

K4

z − e−5iτ

)
= ε

(
10 +

2Re (K1)z − 2Re (K1e
−iτ )

z2 − 2 cos τz + 1
+

2Re (K3)z − 2Re (K3e
−5iτ )

z2 − 2 cos(5τ)z + 1

)
.

Since all the relevant hypotheses are satisfied, the conclusions of Theorem 6.2.7 are
valid. In Figures 6-4, simulations are shown for the specific values

η1 = 0.2 , η2 = 0.6 , σ = 0.01 , τ = 0.1 , ε = 0.1 ,

with zero initial conditions for the controller. The error signal e = r − yp − d2 and the
output y = yp+d2 of the sampled-data system are shown in Figure 6-4. Asymptotically,
the error is bounded by 0.0028, that is, lim supt≥0 |e(t)| ≤ 0.0028. Simulations show
that, for the sampling period τ = 0.1, instability occurs at ε ≈ 0.22.

6.3 Low-gain sampled-data control of exponentially stable
well-posed systems

We extend our results in Section 6.2 to exponentially stable well-posed systems with
transfer functions in H∞(Cα, Cp×m), where α < 0, by using suitable low-pass filters. A
(finite-dimensional) filter is an exponentially stable, strictly causal, finite-dimensional
system. In particular, a filter has impulse response of the form t 7→ CeAtB, where
A ∈ C

`×`, B ∈ C
`×m and C ∈ C

p×`, and every eigenvalue of A has negative real part.

Lemma 6.3.1. Let G is a continuous-time input-output operator with transfer function
G ∈ H∞(Cα, C) for some α < 0, and let F be a single-input-single-output filter. Then
there exists β ∈ (α, 0) such that the impulse response of GF is in L1

β(R+, C).

Proof. Let F denote the transfer function of F , which is a strictly proper stable rational
function. Hence there exists γ ∈ (α, 0) such that F ∈ H2(Cγ , C), so that GF is in
H2(Cγ , C). Let h denote the impulse response of GF . By the Paley-Wiener Theorem,
h ∈ L2

γ(R+, C). Therefore, it follows easily from the Hölder’s inequality that h ∈
L1

β(R+, C) for every β ∈ (γ, 0). 2

The following Lemma will be useful in the proof of Theorem 6.3.4, the main result of
this section. It is essentially the same as the first claim of Theorem 6.1.12, but we
provide an alternative proof.
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Lemma 6.3.2. Let N ∈ N and let λj ∈ C, |λj | = 1 for all j ∈ N be such that
λj 6= λk for all j, k ∈ N , j 6= k. Assume that P ∈ H∞

< (E1, C
p×m) and that there exist

Kj ∈ C
m×p such that

σ(λ̄jP(λj)Kj) ⊂ C0 , ∀j ∈ N .

Let K0 ∈ H∞
< (E1, C

m×p) and set

Kε(z) := ε

K0(z) +
N∑

j=1

Kj

z − λj

 .

Then there exists ε∗ > 0 such that

Kε(I + PKε)−1 ∈ H∞
< (E1, C

m×p) , ∀ε ∈ (0, ε∗) .

It is convenient to first state and prove the following lemma which will facilitate the
proof of Lemma 6.3.2.

Lemma 6.3.3. For ρ > 0, set Bρ := B(1, ρ) ∩ E1 and let U ⊃ cl(Bρ) be open. Let
Q ∈ H∞(U, Cp×m), H ∈ H∞(U, Cm×p) and K ∈ C

m×p. If

σ(Q(1)K) ⊂ C0 , (6.89)

then there exists ε∗ > 0 such that

z 7→
(

I + εQ(z)
(
H(z) +

K

z − 1

))−1

∈ H∞(Bρ, C
p×p) , ∀ε ∈ (0, ε∗) .

Proof. Note that, by (6.89), rkK = p, so that K∗K is invertible. Setting

D(z) :=
z − 1

z
Ip , N(z) := H(z)D(z) +

1
z
K ,

we conclude that (N,D) is a right coprime factorization of H(z) + K/(z − 1) over
H∞(Bρ), since N(z)D−1(z) = H(z) + K/(z − 1) and

(K∗K)−1K∗N(z) + [Ip − (K∗K)−1K∗H(z)]D(z) =
1
z
Ip +

z − 1
z

Ip = Ip .

By Proposition 6.1.3, it is sufficient to show that there exists ε∗ > 0 such that

inf
z∈Bρ

|det[εQ(z)N(z) + D(z)]| > 0 , ∀ε ∈ (0, ε∗) .

Seeking a contradiction, suppose such an ε∗ does not exist. Then there exists a sequence
εn ↓ 0 such that

inf
z∈Bρ

∣∣∣∣det
[
εnQ(z)H(z)D(z) +

εn

z
Q(z)K +

z − 1
z

Ip

]∣∣∣∣ = 0 , ∀n ∈ Z+ .
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It follows that there exists a number zn ∈ cl(Bρ) such that

det
[
εn(zn − 1)

zn
Q(zn)H(zn) +

εn

zn
Q(zn)K +

zn − 1
zn

Ip

]
= 0 , ∀n ∈ Z+ .

showing that

det[εn(zn − 1)Q(zn)H(zn) + εnQ(zn)K + (zn − 1)Ip] = 0 , ∀n ∈ Z+ . (6.90)

Since limn→∞ εn = 0, we conclude from (6.90) that

lim
n→∞ zn = 1 . (6.91)

Moreover, we obtain from (6.90) that

1 − zn

εn
∈ σ[(zn − 1)Q(zn)H(zn) + Q(zn)K] , ∀n ∈ Z+ .

Consequently, by (6.89) and (6.91), there exists β > 0 and n0 ∈ N such that

1 − zn

εn
∈ Cβ , ∀n ≥ n0 .

Setting z′n := 1 + iIm zn for n ∈ Z+, and invoking an argument identical to that used
in the proof of Theorem 2.5 in [45], it can be shown that

lim inf
n→∞

(
Re

1 − z′n
εn

)
≥ β > 0 .

This is in contradiction to the trivial fact that Re ((1− z′n)/εn) = 0 for all n ∈ Z+. 2

We are now in the position to prove Lemma 6.3.2.

Proof of Lemma 6.3.2. We first show that (I+PKε)−1 ∈ H∞(E1, C
p×p) for sufficiently

small ε. Since λj 6= λk for all j, k ∈ N , j 6= k, we can choose ρ > 0 sufficiently small
such that

cl(B(λj , ρ)) ∩ cl(B(λk, ρ)) = ∅ , ∀j, k ∈ N , j 6= k .

Setting Ωj := E1 ∩ B(λj , ρ) and Ω :=
⋃N

j=1 Ωj, it is clear that

z 7→ P(z)

K0(z) +
N∑

j=1

Kj

z − λj


is bounded on E1 \ Ω. Thus, exists ε∞ > 0 such that

(I + PKε)−1 ∈ H∞(E1 \ Ω, Cp×p) , ∀ε ∈ (0, ε∞) . (6.92)
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Fix j ∈ N and set

H(z) := K0(z) +
∑

k∈N, k 6=j

Kk

z − λk
.

Then there exists an open set Vj ⊃ cl(Ωj) such that H ∈ H∞(Vj , C
m×p) and, further-

more,

P(z)Kε(z) = εP(z)
(
H(z) +

Kj

z − λj

)
= εP(λjw)

(
H(λjw) +

λ̄jKj

w − 1

)
,

where w := λ̄jz. Setting

H̃(w) := H(λjw) , Q(w) := P(λjw) , K̃j := λ̄jKj ,

it follows that

P(z)Kε(z) = εQ(w)

(
H̃(w) +

K̃j

w − 1

)
.

Since P ∈ H∞
< (E1, C

p×m) and K0 ∈ H∞
< (E1, C

m×p), we see that Q ∈ H∞
< (E1, C

p×m)
and H̃ ∈ H∞(Uj , C

m×p), where

Uj := λ̄jVj ⊃ λ̄j cl(Ωj) = cl(E1 ∩ B(1, ρ)) = cl(Bρ) .

Moreover,
σ(Q(1)K̃j) = σ(λ̄jP(λj)Kj) ⊂ C0 .

It follows from the Lemma 6.3.3 that there exists εj ∈ (0, ε∞) such that

w 7→
[
I + εQ(w)

(
H̃(w) +

K̃j

w − 1

)]−1

∈ H∞(Bρ, C
p×p) , ∀ε ∈ (0, εj) .

Hence,
(I + PKε)−1 ∈ H∞(Ωj, C

p×p) , ∀ε ∈ (0, εj) . (6.93)

Letting ε∗ := min{εj : j ∈ N} and invoking (6.92) and (6.93), we conclude that

(I + PKε)−1 ∈ H∞(E1, C
p×p) , ∀ε ∈ (0, ε∗) . (6.94)

Invoking arguments identical to those used in the proof of the second claim of Lemma
6.1.10, it can be shown that (I + PKε)−1 ∈ H∞

< (E1, C
p×p) for all ε ∈ (0, ε∗). Further-

more, invoking arguments identical to those used in the proof of the first claim of The-
orem 6.1.12, we conclude that Kε(I + PKε)−1 ∈ H∞

< (E1, C
m×p) for all ε ∈ (0, ε∗). 2

Consider the sampled-data system shown in Figure 6-5, where G is the input-output
operator of the continuous-time plant, Kτ,ε is the input-output operator of the discrete-
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Figure 6-5: Sampled-data low-gain control with filters.

time controller, F1 and F2 are filters, r is a reference signal, and d1 and d2 are distur-
bance signals. Mathematically, Figure 6-5 can be expressed as

y = G(F2Hτyc + d1) + d2 , yc = Kτ,εSτ (r − F1y) . (6.95)

The following theorem is the main result of this section.

Theorem 6.3.4. Let N ∈ N and let ξj ∈ iR for all j ∈ N be such that ξj 6= ξk for
j, k ∈ N , j 6= k. Assume that the transfer function G of G is in H∞(Cα, Cp×m) for
some α < 0 and there exist Kj such that

σ(G(ξj)Kj) ⊂ C0 , ∀j ∈ N . (6.96)

Let τ > 0 be the sampling period and let the transfer function Kτ,ε of Kτ,ε be given by

Kτ,ε(z) := ε

K0(z) +
N∑

j=1

Kj

z − eξjτ

 , (6.97)

where K0 ∈ H∞
< (E1, C

m×p). Assume that the transfer functions F1 of F1 and F2 of F2

satisfy
F1(ξj) = Ip , F2(ξj) = Im , ∀j ∈ N . (6.98)

If r is given by r(t) :=
∑N

j=1 eξjtrj , rj ∈ C
p, and d1, d2 are given by

d1(t) :=
N∑

j=1

eξjtd1j + p1(t) , d2(t) :=
N∑

j=1

eξjtd2j + p21(t) + p22(t) , d1j ∈ C
m , d2j ∈ C

p ,

(6.99)
where p1 ∈ L2

γ(R+, Cm), p21 ∈ L2
γ(R+, Cp) for some γ ∈ (α, 0), and p22 ∈ L1

loc(R+, Cp)
with limt→∞ p22(t) = 0, then, for every δ > 0, there exists τδ > 0 such that, for every
sampling period τ ∈ (0, τδ), there exists ετ > 0 such that, for every ε ∈ (0, ετ ), the
output y of the sampled-data feedback system (6.95) can be decomposed as y = y1 + y2,
where y1 ∈ L2

γ(R+, Cp) and y2 satisfies

lim sup
t→∞

‖y2(t) − r(t)‖ ≤ δ .
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Proof. Setting τ0 := 2π/ sup{|ξj − ξk| : j, k ∈ N, j 6= k}, we know that if τ ∈ (0, τ0),
then eξjτ 6= eξkτ for all j, k ∈ N , j 6= k. Define

H := F1GF2 , Hτ := SτHHτ = SτF1GF2Hτ .

The transfer functions of H and Hτ are denoted by H and Hτ , respectively. By Lemma
6.3.1, there exists β ∈ (α, 0) such that the impulse responses of H, F1G and GF2 are
in L1

β(R+, Cp×m). Hence, by Proposition 6.2.5 and (6.98), Hτ ∈ H∞
< (E1, C

p×m) and

lim
τ→0

Hτ (eξjτ ) = H(ξj) = G(ξj) , ∀j ∈ N . (6.100)

By (6.96) and (6.100), there exists τ∗ ∈ (0, τ0) such that if τ ∈ (0, τ∗), then

σ(eξ̄jτHτ (eξjτ )Kj) ⊂ C0 , ∀j ∈ N . (6.101)

Let τ ∈ (0, τ∗). Invoking Theorem 6.1.12, we conclude that there exists ετ > 0 such
that

Kτ,ε(I + HτKτ,ε)−1 ∈ H∞
< (E1, C

m×p) , ∀ε ∈ (0, ετ ) . (6.102)

By (6.101), Hτ (eξjτ )Kj is invertible, and thus, we calculate that

(Kτ,ε(I + HτKτ,ε)−1)(eξjτ ) = Kj(Hτ (eξjτ )Kj)−1 , ∀j ∈ N . (6.103)

The output yc of the discrete-time controller (see (6.95)) is given by

yc = Kτ,εSτ [r − F1(GF2Hτyc + Gd1 + d2)]
= Kτ,εSτ r − Kτ,εHτyc − Kτ,εSτF1Gd1 − Kτ,εSτF1d2 ,

so that,
yc = Kτ,ε(I + HτKτ,ε)−1(Sτr − SτF1Gd1 − SτF1d2) . (6.104)

Since the impulse reponses of F1G and F1, p1 and p21 are L2-functions,

lim
t→∞(F1Gp1)(t) = 0 , lim

t→∞(F1p21)(t) = 0 . (6.105)

Invoking the fact that the impulse responses of F1G and F1 are L1-functions, together
with Lemma 6.2.4, (6.98) and (6.105), we obtain

lim
t→∞[(F1Gd1)(t) −

N∑
j=1

eξjtG(ξj)d1j ] = 0 , lim
t→∞[(F1d2)(t) −

N∑
j=1

eξjtd2j ] = 0 ,
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showing that

lim
k→∞

[(Sτ F1Gd1)(k) −
N∑

j=1

eξjkτG(ξj)d1j ] = 0 , lim
k→∞

[(SτF1d2)(k) −
N∑

j=1

eξjkτd2j ] = 0 .

(6.106)

Define aτ , bτ , cτ : Z+ → C
m by

aτ (k) :=
N∑

j=1

eξjτkKj(Hτ (eξjτ )Kj)−1rj ,

bτ (k) :=
N∑

j=1

eξjτkKj(Hτ (eξjτ )Kj)−1G(ξj)d1j ,

cτ (k) :=
N∑

j=1

eξjτkKj(Hτ (eξjτ )Kj)−1d2j .

By (6.102), the impulse response of Kτ,ε(I + HτKτ,ε)−1 is in `1(Z+, Cm×p). It follows
from Lemma 6.1.6, (6.103), (6.104) and (6.106) that

lim
k→∞

(yc − aτ + bτ + cτ )(k) = 0 . (6.107)

By (6.96), G(ξj)Kj is invertible for every j ∈ N . Define functions v1, v2 and v3 on R+

by

v1(t) :=
N∑

j=1

eξjtKj(G(ξj)Kj)−1rj ,

v2(t) :=
N∑

j=1

eξjtKj(G(ξj)Kj)−1G(ξj)d1j ,

v3(t) :=
N∑

j=1

eξjtKj(G(ξj)Kj)−1d2j .

By (6.98), G(ξj) = H(ξj) for every j ∈ N . Since ξj ∈ iR for j ∈ N , we have, for all
k ∈ Z+,

sup
t∈[kτ,(k+1)τ)

‖v1(t) − (Hτaτ )(t)‖

≤
N∑

j=1

‖(H(ξj)Kj)−1 − (Hτ (eξjτ )Kj)−1‖‖Kj‖‖rj‖ +

sup
t∈[kτ,(k+1)τ)

N∑
j=1

|eξj(t−kτ) − 1|‖Kj(G(ξj)Kj)−1rj‖ . (6.108)
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Let δ > 0. By (6.100) and (6.108), there exists τδ ∈ (0, τ∗) such that if τ ∈ (0, τδ), then

‖v1(t) − (Hτaτ )(t)‖ ≤ δ

3M
, ∀t ≥ 0 , (6.109)

where M denotes the L1-norm of the impulse response of GF2. Similarly,

‖v2(t) − (Hτbτ )(t)‖ ≤ δ

3M
, ‖v3(t) − (Hτ cτ )(t)‖ ≤ δ

3M
, ∀t ≥ 0 . (6.110)

Let τ ∈ (0, τδ) and ε ∈ (0, ετ ). Then, by (6.107), (6.109) and (6.110), we obtain

lim sup
t→∞

‖(Hτyc)(t) − v1(t) + v2(t) + v3(t)‖
≤ lim sup

t→∞
‖(Hτ (yc − aτ + bτ + cτ ))(t)‖ + lim sup

t→∞
‖(Hτaτ )(t) − v1(t)‖

+ lim sup
t→∞

‖v2(t) − (Hτ bτ )(t)‖ + lim sup
t→∞

‖v3(t) − (Hτ cτ )(t)‖

≤ δ

M
. (6.111)

Moreover, we conclude from Lemma 6.2.4 and (6.98) that

lim
t→∞[(GF2v1)(t) − r(t)] = 0 , lim

t→∞[(GF2v2)(t) −
N∑

j=1

eξjtG(ξj)d1j ] = 0 , (6.112)

and

lim
t→∞[(GF2v3)(t) − d2(t) + p21(t)]

=
N∑

j=1

lim
t→∞[(GF2(eξj ·Kj(G(ξj)Kj)−1d2j))(t) − eξjtd2j ] − lim

t→∞ p22(t)

= 0 . (6.113)

Setting

y1(t) := (Gd1)(t) −
N∑

j=1

G(ξj)eξjtd1j + p21(t) ,

and

y2(t) := (GF2Hτyc)(t) +
N∑

j=1

G(ξj)eξjtd1j + d2(t) − p21(t) ,

it follows that y = y1 + y2. Denoting the Laplace transform by L and invoking (6.99),
we obtain that

(L (y1))(s) =
N∑

j=1

[G(s) − G(ξj)]d1j

s − ξj
+ G(s)(L (p1))(s) + (L (p21))(s) .
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Since G ∈ H∞(Cα, Cp×m), p1 ∈ L2
γ(R+, Cm) and p21 ∈ L2

γ(R+, Cp) with α < γ < 0,
it follows that L (y1) ∈ H2(Cγ , Cp). Hence, the Paley-Wiener Theorem implies that
y1 ∈ L2

γ(R+, Cp). Furthermore, since

‖y2(t) − r(t)‖ ≤ ‖(GF2(Hτyc − v1 + v2 + v3))(t)‖ + ‖(GF2v1)(t) − r(t)‖

+

∥∥∥∥∥∥
N∑

j=1

G(ξj)eξj td1j − (GF2v2)(t)

∥∥∥∥∥∥
+ ‖d2(t) − p21(t) − (GF2v3)(t)‖ , ∀t ≥ 0 ,

it follows from (6.112) and (6.113) that

lim sup
t→∞

‖y2(t) − r(t)‖ ≤ lim sup
t→∞

‖(GF2(Hτyc − v1 + v2 + v3))(t)‖ .

Finally, Hτyc − v1 + v2 + v3 is bounded and thus, by Lemma 6.2.3 and (6.111),

lim sup
t→∞

‖y2(t) − r(t)‖ ≤ M lim sup
t→∞

‖(Hτ yc)(t) − v1(t) + v2(t)‖ ≤ δ . 2

Remark 6.3.5. (1) Let N ∈ N and let ξj ∈ iR be such that ξj 6= ξj for all j ∈ N ,
j 6= k. A filter with transfer function F satisfying F(ξj) = I for all j ∈ N can be
constructed in the following way:

F(s) :=
1

h(s)

N∑
j=1

h(ξj)
∏

k∈N, k 6=j

(s − ξk)
ξj − ξk

 I ,

where h(s) is a real Hurwitz polynomial of degree N . It is cleat that F is a
strictly proper stable rational function. Moreover, if the numbers in {ξj ∈ iR :
j ∈ N} \ {0} occur in complex conjugate pairs, then it is easy to see that F has
real coefficients.

(2) Theorem 6.3.4 implies that for every δ > 0, there exists τδ > 0 such that, for every
sampling period τ ∈ (0, τδ), there exists ετ > 0 such that, for every ε ∈ (0, ετ ),
the output y of system (6.95) satisfies

lim
T→∞

µL({t ≥ T : ‖r(t) − y(t)‖ ≥ δ}) = 0 ,

where µL denotes the Lebesgue measure on R+. 3

Example 6.3.6. For purpose of illustration, we consider the problem of heating a bar
of length 1. We keep both endpoints at zero temperature and inject heat of magnitude
uj at the point ηj ∈ (0, 1), j = 1, 2. Temperature measurements are taken at the points
η1, η2 ∈ (0, 1). The system to be controlled can be formulated as follows

zt(ξ, t) = zξξ(ξ, t) + δ(ξ − ξ1)u1(t) + δ(ξ − ξ2)u2(t) , ∀ξ ∈ (0, 1) , ∀t > 0 ,

yp1(t) = z(η1, t) , yp2(t) = z(η2, t) ; ∀t > 0 ,
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with boundary conditions

z(0, t) = z(1, t) = 0 , ∀t > 0 .

For simplicity, we assume zero initial condition

z(ξ, 0) = 0 , ∀ξ ∈ [0, 1] .

Continuous-time low-gain integral control of this system was studied in [33].

It can be shown that this system can be formulated as a well-posed system with the
state space X = L2((0, 1), R). In particular, the semigroup T(t) given by

(T(t)z)(ξ) =
∞∑

n=1

2 exp(−n2π2t) sin(nπξ)
∫ 1

0
sin(nπλ)x(λ)dλ .

is exponentially stable. Assuming that

0 < ξ1 ≤ η1 ≤ ξ2 ≤ η2 < 1 ,

the transfer function G(s) is given by

G(s) =
1√

s sinh(
√

s)

(
sinh((1 − η1)

√
s) sinh(ξ1

√
s) sinh((1 − ξ2)

√
s) sinh(η1

√
s)

sinh((1 − η2)
√

s) sinh(ξ1
√

s) sinh((1 − η2)
√

s) sinh(ξ2
√

s)

)
.

The aim is to determine ε K0, and Kj such that the controller (6.97) leads to a
sampled-data feedback system such that the output y = (yp1, yp2)T + d2 of this system
approximately tracks the reference signal

r(t) =

(
sin t

cos t

)
, ∀t ≥ 0 ,

in the presence of disturbance signals d1, d2 given by

d1(t) =
1
5

 sin(2t) + e−t

cos(2t) +
1

t + 1

 , d2(t) =
1
5

 cos(2t)

sin(2t) − ln
(

1 +
1

t + 1

) , t ≥ 0 .

It can be shown that, if ξ2 > η1, then G(s) is invertible for s ∈ cl(C0). Set

K1 := G−1(i) , K2 := K∗
1 , K3 := G−1(2i) , K4 := K∗

3 ,

and K0(z) ≡ 1, so that the transfer function Kτ,ε of the controller Kτ,ε (see (6.97)) is
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Figure 6-6: Norm of the error signal e.

given by

Kτ,ε(z) := ε

(
1 +

K1

z − eiτ
+

K2

z − e−iτ
+

K3

z − e2iτ
+

K4

z − e−2iτ

)
= ε

(
1 +

2zRe (K1) − 2Re (e−iτK1)
z2 − 2 cos(τ)z + 1

+
2zRe (K3) − 2Re (e−2iτK3)

z2 − 2 cos(2τ)z + 1

)
,

where Re Kj = (1/2)(Kj + K∗
j ). Define the transfer functions F1 and F2 of filters F1

and F2, respectively, by

F1(s) = F2(s) :=
1

3(s + 1)4
[−4(s2 + 4) + (12s + 7)(s2 + 1)]I2 .

It is easy to compute that Fj(±i) = Fj(±2i) = I2 for j = 1, 2. Since all the relevant
hypotheses are satisfied, the conclusions of Theorem 6.3.4 are valid. (For this example,
it can be shown that y1(t) in Theorem 6.3.4 goes to 0 as t → ∞.) Simulations are
shown for the specific values

ξ1 = 0.2 , ξ2 = 0.6 , η1 = 0.4 , η2 = 0.8 , τ = 0.1 , ε = 0.01 ,

with zero initial conditions for the controller and the filters. The norm of the error
signal e = r−y is shown in Figure 6-6, and the output y = (y1, y2)T of the sampled-data
system is shown in Figure 6-7. Asymptotically, the error e is bounded by 0.088, that
is, lim supt≥0 ‖e(t)‖ ≤ 0.0882. Simulations show that, for the sampling period τ = 0.1,
instability occurs at ε ≈ 0.013.
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Figure 6-7: Output y = (y1, y2)T .

6.4 Notes and references

Whilst the main results of Sections 6.1 and 6.2 are contained in Ke, Logemann and
Rebarber [24], the results in Section 6.3 are contained in [26] by Ke, Logemann and
Rebarber. To the best of our knowledge, Theorem 6.1.9 and Theorem 6.2.7 are new even
for finite-dimensional systems. Theorem 6.1.9 and Theorem 6.1.20 are discrete-time
counterparts of the continuous-time results in Rebarber and Weiss [65] (see Theorem
3.2 and Theorem 3.4 in [65]).

In Section 6.1, we make use of fractional representation theory which is a significant
tool in the analysis and synthesis of feedback systems. This theory has been extensively
developed and there is a wealth of literature, see, for example, [7], [32], [52], [73], [78],
[79].

The important feature of condition (6.50) is that the only plant information needed is
G(ξj), the transfer function evaluated at the frequencies of the reference and distur-
bance signals. In principle, G(ξj) can be calculated by performing frequency-response
experiments on the plant. Moreover, the values of G(ξj) do not need to be known
precisely, since condition (6.50) is robust with respect to small changes of G(ξj). If
the impulse response of the plant is a Borel measure, then Lemma 6.2.4 can be used
to estimate the value of G(ξj). If the plant is an exponentially stable regular system,
then using suitable modifications of the input t 7→ eξt, G(ξj) can still be estimated by
input-output experiments (see [16, Theorem 10]).
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Chapter 7

Adaptive low-gain integral
control of infinite-dimensional
systems

An important issue in low-gain sampled-data control (as developed in Chapter 6) is the
tuning of the gain parameter ε. In this chapter, we address this issue in the context of
low-gain integral control (that is, the reference and disturbance signals are constants).
In Section 7.1, an universal adaptive discrete-time low-gain control strategy is pre-
sented for tracking constant reference signals and rejecting constant disturbance signals
for infinite-dimensional, discrete-time, power-stable, linear systems. The discrete-time
results are applied in Section 7.2 in the development of universal adaptive sampled-
data low-gain control for infinite-dimensional, well-posed, exponentially stable, linear
systems. By “universal” we mean that the controllers are not based on system iden-
tification or plant parameter estimation algorithms. Our results considerably extend,
improve and simplify previous work by Logemann and Townley [45].

7.1 Adaptive discrete-time low-gain control

Let X, U and Y be Hilbert spaces. Consider the discrete-time system

x(k + 1) = Ax(k) + Bu(k) ; x(0) = x0 ∈ X , (7.1a)
y(k) = Cx(k) + Du(k) , (7.1b)

where A ∈ B(X), B ∈ B(U,X), C ∈ B(X,Y ) and D ∈ B(U, Y ). The transfer function
of (7.1), P : C → B(U, Y ), is given by

P(z) := C(zI − A)−1B + D .

System (7.1) is called power stable if A is power stable.
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The aim of this section is to find an adaptive control law which achieves setpoint
tracking in the presence of constant disturbances. To this end, consider the adaptive
controller given by

u(k) = Kw(k) + d , (7.2a)
w(k + 1) = w(k) + γ−q(k)(r − y(k)) ; w(0) = w0, (7.2b)
γ(k + 1) = γ(k) + ‖r − y(k)‖2 ; γ(0) = γ0 , (7.2c)

where r ∈ Y is the reference vector, d ∈ U is the disturbance vector, K ∈ B(Y,U) and
q ∈ (0, 1].

The following theorem is the main result of this section. It forms the discrete-time
counterpart of the continuous-time result in [47].

Theorem 7.1.1. Assume that (7.1) is power stable and that there exists K ∈ B(Y,U)
such that

σ(P(1)K) ⊂ C0 .

Let q ∈ (0, 1]. Then, for all (x0, w0) ∈ X × Y , all γ0 > 0, all r ∈ Y and all d ∈ U , the
closed-loop system given by (7.1) and (7.2) has the following properties:

(1) r − y ∈ `2(Z+, Y ), so in particular limk→∞ y(k) = r;

(2) limk→∞ γ(k) = γ∞ < ∞;

(3) u − u∞ ∈ `2(Z+, U), where u∞ := K(P(1)K)−1[r − P(1)d] + d;

(4) x − x∞ ∈ `2(Z+,X), where x∞ := (I − A)−1Bu∞.

Proof. We use a change of coordinates. Define

z(k) := x(k) − (I − A)−1B[Kw(k) + d] , ∀k ∈ Z+ , (7.3a)
v(k) := w(k) − (P(1)K)−1[r − P(1)d] , ∀k ∈ Z+ . (7.3b)

Invoking the identity A(I − A)−1 + I = (I − A)−1 together with (7.1)–(7.3), a routine
calculation gives

z(k + 1) = x(k + 1) − (I − A)−1B[Kw(k + 1) + d]
= Ax(k) + Bu(k) − (I − A)−1B[Kw(k + 1) + d]
= Az(k) + [A(I − A)−1 + I]B[Kw(k) + d] − (I − A)−1B[Kw(k + 1) + d]
= Az(k) + (I − A)−1BK[w(k) − w(k + 1)]
= Az(k) − γ−q(k)Γe(k) , ∀k ∈ Z+ , (7.4)

where Γ := (I − A)−1BK and e := r − y, and

v(k + 1) = w(k + 1) − (P(1)K)−1[r − P(1)d]
= w(k) − (P(1)K)−1[r − P(1)d] + γ−q(k)e(k)
= v(k) + γ−q(k)e(k) , ∀k ∈ Z+ . (7.5)
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Moreover, noting that P(1) = C(I − A)−1B + D, we have

e(k) = r − y(k) = r − Cx(k) − Du(k)
= r − Cz(k) − C(I − A)−1B(Kw(k) + d) − D(Kw(k) + d)
= −Cz(k) − P(1)K[w(k) − (P(1)K)−1(r −P(1)d)]
= −[Cz(k) + P(1)Kv(k)] , ∀k ∈ Z+ . (7.6)

Since A is power stable and σ(P(1)K) ⊂ C0, there exist P ∈ B(X), P = P ∗, P > 0
and Q ∈ B(Y ), Q = Q∗, Q > 0 such that

A∗PA − P = −I , (P(1)K)∗Q + Q(P(1)K) = I , (7.7)

(see [64, Proposition 5] and [71, Theorem 18, p. 231]). It follows from (7.4)–(7.7) and
the Cauchy-Schwarz inequality that there exists M1 ≥ 0 such that, for all k ∈ Z+,

〈z(k + 1), P z(k + 1)〉 − 〈z(k), P z(k)〉
= 〈Az(k) − γ−q(k)Γe(k), P [Az(k) − γ−q(k)Γe(k)]〉 − 〈z(k), P z(k)〉
≤ 〈z(k), (A∗PA − P )z(k)〉 + 2γ−q(k)|〈Az(k), PΓe(k)〉| + M1γ

−2q(k)‖e(k)‖2

≤ −‖z(k)‖2 + 2γ−q(k)|〈Az(k), PΓCz(k)〉| + 2γ−q(k)|〈Az(k), PΓP(1)Kv(k)〉|
+ M1γ

−2q(k)‖e(k)‖2

≤ −‖z(k)‖2 + M1γ
−q(k)‖z(k)‖2 + M1γ

−q(k)‖z(k)‖‖v(k)‖ + M1γ
−2q(k)‖e(k)‖2

≤
[
−1 + M1γ

−q(k)
(
1 +

α

2

)]
‖z(k)‖2 +

M1γ
−q(k)

2α
‖v(k)‖2 + M1γ

−2q(k)‖e(k)‖2 ,

and

〈v(k + 1), Qv(k + 1)〉 − 〈v(k), Qv(k)〉
= 〈v(k) + γ−q(k)e(k), Q[v(k) + γ−q(k)e(k)]〉 − 〈v(k), Qv(k)〉
≤ −γ−q(k)〈v(k), [(P(1)K)∗Q + Q(P(1)K)]v(k)〉 + 2γ−q(k)|〈v(k), QCz(k)〉|

+ M1γ
−2q(k)‖e(k)‖2

≤ −γ−q(k)‖v(k)‖2 + M1γ
−q(k)‖z(k)‖‖v(k)‖ + M1γ

−2q(k)‖e(k)‖2

≤ M1γ
−q(k)α
2

‖z(k)‖2 +
(
−1 +

M1

2α

)
γ−q(k)‖v(k)‖2 + M1γ

−2q(k)‖e(k)‖2 ,

where α > 0 is arbitrary. Defining V : Z+ → R by

V (k) := 〈z(k), P z(k)〉 + 〈v(k), Qv(k)〉 ,

it follows that

V (k + 1) − V (k) ≤ [−1 + M1(1 + α)γ−q(k)]‖z(k)‖2 + (−1 +
M1

α
)γ−q(k)‖v(k)‖2

+ 2M1γ
−2q(k)‖e(k)‖2 , ∀k ∈ Z+ . (7.8)

119



We first prove limk→∞ γ(k) = γ∞ < ∞. To this end, it is sufficient to show that γ is
bounded since, by (7.2c), γ is non-decreasing. Seeking a contradiction, suppose that
γ is not bounded. Then, since q > 0, k 7→ γ−q(k) is monotonically decreasing and
converging to 0. Hence, there exists N1 ∈ Z+ such that

γ−q(k) ≤ 1
2M1(1 + 2M1)

, ∀k ≥ N1 .

Choosing α = 2M1, it follows from (7.8) that

V (k + 1) − V (k) ≤ −1
2
(‖z(k)‖2 + γ−q(k)‖v(k)‖2) + 2M1γ

−2q(k)‖e(k)‖2 , ∀k ≥ N1 .

Note from (7.6) that

‖e(k)‖2 = ‖Cz(k) + P(1)Kv(k)‖2 ≤ 2(‖Cz(k)‖2 + ‖P(1)Kv(k)‖2) , ∀k ∈ Z+ .

Consequently, there exists M2 ≥ 0 such that

V (k + 1) − V (k) ≤ −4M2γ
−q(k)(‖Cz(k)‖2 + ‖P(1)Kv(k)‖2) + 2M1γ

−2q(k)‖e(k)‖2

≤ [−2M2 + 2M1γ
−q(k)]γ−q(k)‖e(k)‖2 , ∀k ≥ N1 .

By the fact that k 7→ γ−q(k) is monotonically decreasing and converging to 0 and
(7.2c), there exists N2 ≥ N1 such that

V (k + 1) − V (k) ≤ −M2γ
−q(k)‖e(k)‖2 = −M2γ

−q(k)[γ(k + 1) − γ(k)] , ∀k ≥ N2 .

Summing up over k, we obtain

V (k) − V (N2) ≤ −M2

k−1∑
j=N2

γ−q(j)[γ(j + 1) − γ(j)] , ∀k ≥ N2 + 1 .

Since s 7→ s−q is positive monotonically decreasing for s > 0 and the fact that V is
non-negative, it follows that∫ γ(k)

γ(N2)
s−qds =

k−1∑
j=N2

∫ γ(j+1)

γ(j)
s−qds ≤

k−1∑
j=N2

γ−q(j)[γ(j + 1) − γ(j)]

≤ V (N2) − V (k)
M2

≤ V (N2)
M2

, ∀k ≥ N2 + 1 .

By the assumption that q ∈ (0, 1], we conclude that γ is bounded, contradicting our
assumption. Hence γ is bounded. This proves Statement (2). It follows immediately
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from (7.2c) that
r − y = e ∈ `2(Z+, Y ) . (7.9)

In particular, limk→∞ y(k) = r. Thus Statement (1) is true. Since A is power stable,
statement (2) together with (7.4) and (7.9) imply

z ∈ `2(Z+,X) , (7.10)

so that Cz ∈ `2(Z+, Y ). It follows from (7.6), (7.9) and the invertibility of P(1)K that
v ∈ `2(Z+, Y ). Invoking (7.2a) and (7.3b),

Kv = u − K(P(1)K)−1[r − P(1)d] − d = u − u∞ ∈ `2(Z+, U) . (7.11)

This completes the proof of statement (3). By (7.3a),

x − (I − A)−1Bu∞ = z + (I − A)−1B(u − u∞) .

Then Statement (4) follows from (7.10) and (7.11). 2

7.2 Adaptive sampled-data low-gain control

Consider a well-posed system with state-space X, input space U , and output space
Y (all Hilbert spaces), generating operators (A,B,C), input-output operator G and
transfer function G. For x0 ∈ X and v ∈ L2

loc(R+, U), the state x and output y
corresponding to the initial condition x(0) = x0 ∈ X and the input function v satisfy

ẋ(t) = Ax(t) + Bv(t) ; x(0) = x0 ∈ X , for a.a. t ≥ 0 , (7.12a)
y(t) = CΛ[x(t) − (ηI − A)−1Bv(t)] + G(η)v(t) , (7.12b)

and

x(t) = T(t − t0)x(t0) +
∫ t

t0

T(t − s)Bv(s)ds , ∀t0 ≥ 0 , ∀t ≥ t0 . (7.13)

Let τ > 0 be the sampling period and let a ∈ L2([0, τ ], R) be such that

(i)
∫ τ

0
a(t)dt = 1 , (ii)

∫ τ

0
a(t)T(t)z dt ∈ X1 , ∀z ∈ X . (7.14)

Whilst the above condition (ii) is difficult to check for general a, it can be shown by using
integration by parts that (ii) holds if there exists a partition 0 = t0 < t1 < · · · < tm = τ
such that a|(tj−1, tj) ∈ W 1,1((tj−1, tj), R) for j = 1, 2, . . . ,m. A simple example of a
satisfying (7.14) is that a(t) ≡ 1/τ for t ∈ [0, τ ].

Define L : X → X1 by

Lz :=
∫ τ

0
a(t)T(t)zdt . (7.15)
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Lemma 7.2.1. Let a ∈ L2([0, τ ], R) satisfy (7.14). Then L given by (7.15) is in
B(X,X1).

Proof. We first show that L is a closed linear operator. Let (zn)n∈Z+ ⊂ X1, z ∈ X
and y ∈ X1 be such that zn → z in X and Lzn → y in X1 as n → ∞. We need to
prove that Lz = y. To this end, note that there exist M ≥ 1 and ω ∈ R such that
‖T(t)(zn − z)‖ ≤ Meωt‖zn − z‖. Therefore, by the Hölder’s inequality,

‖Lzn − Lz‖ ≤ M

∫ τ

0
|a(t)|eωtdt ‖zn − z‖ ≤ M

√
e2ωτ − 1‖a‖L2√

2ω
‖zn − z‖ .

showing that Lzn → Lz in X as n → ∞. Since Lzn → y in X1 as n → ∞, Lzn → y
in X as n → ∞. Hence, Lz = y. It follows from the closed-graph theorem that L is in
B(X,X1). 2

We define a generalized sampling operator S : L2
loc(R+, Y ) → F (Z+, Y ) by

(Sy)(k) :=
∫ τ

0
a(t)y(kτ + t)dt , ∀k ∈ Z+ , (7.16)

where F (Z+, Y ) denotes the Y -valued functions defined on Z+, and define(
Aτ Bτ

Cτ Dτ

)
:=

T(τ)
∫ τ

0
T(s)dsB

CL CLA−1B + G(0)

 . (7.17)

Trivially, Aτ ∈ B(X). Moreover, Bτ = (T(τ) − I)A−1B ∈ B(U,X), and, by Lemma
7.2.1, Cτ ∈ B(X,Y ) and Dτ ∈ B(U, Y ).

Proposition 7.2.2. Assume that (7.12) is exponentially stable and consider (7.12)
with v = Hτu, where u is a function Z+ → U and Hτ is the hold operator. Then

x((k + 1)τ) = Aτx(kτ) + Bτu(k) , (7.18a)
(Sy)(k) = Cτx(kτ) + Dτu(k) , (7.18b)

where S is the generalized sampling operator defined in (7.16). Moreover, Aτ is power
stable and

Gτ (1) = Cτ (I − Aτ )−1Bτ + Dτ = G(0) ,

where Gτ denotes the transfer function of the discrete-time system (7.18).

Proof. The equation (7.18a) follows easily from (7.13). To prove (7.18b), let z ∈ X.
There exists (zn)n∈Z+ ⊂ X1 such that zn → z as n → ∞. Since C ∈ B(X1, Y ),

CLzn = C

∫ τ

0
a(t)T(t)zndt =

∫ τ

0
a(t)CT(t)zndt , ∀n ∈ Z+ . (7.19)
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Using the admissibility of C, we have

lim
n→∞

∫ τ

0
‖CΛT(t)(zn − z)‖2dt = 0 ,

so that, letting n → ∞ in (7.19), we conclude that

CLz =
∫ τ

0
a(t)CΛT(t)zdt . (7.20)

Without loss of generality, we may choose η = 0 in (7.12b). By (7.13), we obtain that

y(kτ + t) = CΛ

[
T(t)x(kτ) +

∫ t

0
T(s)Bu(k)ds + A−1Bu(k)

]
+ G(0)u(k)

= CΛ[T(t)x(kτ) + T(t)A−1Bu(k)] + G(0)u(k) , ∀k ∈ Z+ , ∀t ∈ [0, τ) .

Consequently, it follows from (7.20) that,

(Sy)(k) =
∫ τ

0
a(t)y(kτ + t)dt

=
∫ τ

0
a(t)CΛT(t)[x(kτ) + A−1Bu(k)]dt + G(0)u(k)

= CLx(kτ) + CLA−1Bu(k) + G(0)u(k)
= Cτx(kτ) + Dτu(k) , ∀k ∈ Z+ ,

showing that (7.18b) is true. Moreover, Aτ = T(τ) is power stable since T(t) is
exponentially stable. Finally, since Bτ = (T(τ) − I)A−1B, it follows that

Gτ (1) = Cτ (I − Aτ )−1Bτ + Dτ = −CLA−1B + CLA−1B + G(0) = G(0) . 2

We seek an adaptive controller which achieves setpoint tracking. To this end, consider
the adaptive control law given by

v(t) = (Hτ (Kw))(t) + d , (7.21a)
w(k + 1) = w(k) + γ−q(k)(r − (Sy)(k)) ; w(0) = w0, (7.21b)
γ(k + 1) = γ(k) + ‖r − (Sy)(k)‖2 ; γ(0) = γ0 , (7.21c)

where (Sy)(k) is defined in (7.16), r ∈ Y is the reference vector, d ∈ U is the disturbance
vector, K ∈ B(Y,U) and q ∈ (0, 1].

Remark 7.2.3. (1) We emphasize that for well-posed systems, ideal sampling of the
output y is in general not well-defined due to the potentially high irregularity of
y and therefore generalized sampling is unavoidable.

(2) Note that the control law (7.21) is “causal”, in the sense that, in order to compute
v(t) for t ∈ [kτ, (k +1)τ), we need to know (Sy)(k− 1), which is available at time
t = kτ . 3
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Theorem 7.2.4. Assume that the well-posed system (7.12) is exponentially stable,
there exists K ∈ B(Y,U) such that

σ(G(0)K) ⊂ C0 , (7.22)

and q ∈ (0, 1]. Then, for all (x0, w0) ∈ X × Y , all γ0 > 0, all τ > 0, all r ∈ Y and all
d ∈ U , the closed-loop sampled-data system given by (7.12) and (7.21) has the following
properties:

(1) limk→∞ γ(k) = γ∞ < ∞;

(2) limt→∞ v(t) = v∞ and v − v∞ ∈ L2(R+, U), where v∞ := K(G(0)K)−1(r −
G(0)d) + d;

(3) limt→∞ x(t) = x∞ := −A−1Bv∞ and x − x∞ ∈ L2(R+,X);

(4) the error signal e := r − y can be decomposed as e = e1 + e2, where

lim
t→∞ e1(t) = 0 and e2 ∈ L2(R+, Y ) ;

(5) under the additional assumption that

lim
t→∞(Gf)(t) = 0 , ∀f ∈ PC(R+, U) ∩ L2(R+, U) with lim

t→∞ f(t) = 0 , (7.23)

where PC(R+, U) denotes the set of piecewise continuous functions defined on
R+ with value in U , the error signal e = r − y can be decomposed as e = e1 + e2,
where

lim
t→∞ e1(t) = 0 and e2 ∈ L2

α(R+, Y ) , ∀α > ω(T) .

Furthermore, if (7.23) holds and T(t0)(Ax0 +BKw0 +Bd) ∈ X for some t0 ≥ 0,
then limt→∞ e(t) = 0.

(6) under the additional assumption that U and Y are finite-dimensional, the impulse
response of G is a (matrix-valued) Borel measure on R+ and T(t0)x0 ∈ X1 for
some t0 ≥ 0, we have limt→∞ e(t) = 0.

Proof. Let (x0, w0) ∈ X × Y and γ0 > 0. Defining u : Z+ → U by

u(k) := Kw(k) + d , (7.24)

it follows from (7.21a) that v = Hτu. We obtain x, y, (u(k))k∈Z+ and (γ(k))k∈Z+ by
applying (7.21) to (7.12). Set

xk := x(kτ) , yk := (Sy)(k) , ∀k ∈ Z+

where S is defined in (7.16). By assumption, (7.12) is exponentially stable. It fol-
lows from Proposition 7.2.2 that (xk)k∈Z+ , (u(k))k∈Z+ and (yk)k∈Z+ satisfy (7.18) with
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(Aτ , Bτ , Cτ ,Dτ ) given by (7.17), Aτ is power stable and, by (7.22),

σ(Gτ (1)K) = σ(G(0)K) ⊂ C0 ,

where Gτ denotes the transfer function of the discrete-time system (7.18). Therefore,
applying Theorem 7.1.1 to the discrete-time system (7.18) and the discrete-time con-
troller given by (7.21b), (7.21c) and (7.24), we conclude that limk→∞ γ(k) = γ∞. This
proves Statement (1). Moreover, setting

v∞ := K(G(0)K)−1(r − G(0)d) + d = K(Gτ (1)K)−1(r − Gτ (1)d) + d ,

we have
u − v∞ ∈ `2(Z+, U) , 4u ∈ `2(Z+, U) , (7.25)

where 4u : Z+ → U is defined by (4u)(k) := u(k + 1) − u(k). Hence, it is clear that
v − v∞ = Hτ (u − v∞) ∈ L2(R+, U) and

lim
t→∞ v(t) = lim

t→∞(Hτu)(t) = v∞ .

This completes the proof of Statement (2). To prove Statement (3), note that, for each
k ∈ N and t ∈ [kτ, (k + 1)τ),

x(t) = T(t)x0 + T(t − kτ)
k−1∑
j=0

∫ (j+1)τ

jτ
T(kτ − s)Bu(j)ds +

∫ t

kτ
T(t − s)Bu(k)ds

−
∫ t

0
T(t − s)Bv∞ds +

∫ t

0
T(t − s)Bv∞ds

= T(t)x0 + T(t − kτ)[T(τ) − I]
k−1∑
j=0

T((k − j − 1)τ)A−1B(u(j) − v∞)

+ [T(t − kτ) − I]A−1B(u(k) − v∞) + [T(t) − I]A−1Bv∞ .

Consequently,

‖x(t) − x∞‖ ≤ ‖T(t)‖‖x0‖ + M‖A−1B‖‖T(τ) − I‖
k−1∑
j=0

‖T(k − 1 − j)‖‖u(j) − v∞‖

+ (M + 1)‖A−1B‖‖u(k) − v∞‖ + ‖T(t)‖‖x∞‖ ,

∀t ∈ [kτ, (k + 1)τ) , ∀k ∈ N ,

where M := maxt∈[0,τ ] ‖T(t)‖. Therefore Statement (3) follows from the exponential
stability of T and the fact that u − v∞ ∈ `2(Z+, U).

To prove Statement (4), define the integral operator J by

(Jv)(t) :=
∫ t

0
v(s)ds , ∀v ∈ L1

loc(R+, U) , ∀t ∈ R+ ,
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and define the function θ : R+ → R by θ(t) := 1 for all t ∈ R+. For every t ∈ R+, let
kt ∈ Z+ be such that t ∈ [ktτ, (kt + 1)τ). Then,

(JHτ (4u))(t) =
kt−1∑
j=0

∫ (j+1)τ

jτ
(Hτ (4u))(s)ds +

∫ t

ktτ
(Hτ (4u))(s)ds

= τ

kt−1∑
j=0

[u(j + 1) − u(j)] + (t − ktτ)(Hτ (4u))(t)

= τ(Hτu)(t) − τθ(t)u(0) + h(t) , ∀t ≥ 0 , (7.26)

where h(t) := (t − ktτ)(Hτ (4u))(t) for all t ≥ 0. It follows from (7.26) that

GJHτ (4u) − G(0)JHτ (4u) = τG(Hτ u) − τG(0)(Hτ u) − τG(θu(0))
+ τG(0)θu(0) + Gh −G(0)h .

Consequently, setting

e1 := −1
τ
(GJ − G(0)J)Hτ (4u) − 1

τ
G(0)h + r − G(0)Hτ u , (7.27)

and
e2 := −CΛT(t)x0 − [G(θu(0)) − G(0)θu(0)] +

1
τ
Gh , (7.28)

it follows that
e = r − y = r − CΛT(t)x0 − G(Hτu) = e1 + e2 .

We first prove that limt→∞ e1(t) = 0. Noting that

s 7→ [L (GJ − G(0)J)](s) = s 7→ 1
s
(G(s) − G(0)) ∈ H∞(C0,B(U, Y )) ,

it follows that GJ − G(0)J ∈ B(L2(R+, U), L2(R+, Y )). By (7.25), we see that
Hτ (4u) ∈ L2(R+, U). Hence

(GJ − G(0)J)Hτ (4u) ∈ L2(R+, Y ) . (7.29)

Moreover, since, by shift-invariance, G and J commute,

[(GJ −G(0)J)Hτ (4u)]′ = (G − G(0))Hτ (4u) ∈ L2(R+, Y ) . (7.30)

As a consequence of (7.29) and (7.30), we obtain

lim
t→∞[(GJ − G(0)J)Hτ (4u)](t) = 0 . (7.31)

Moreover, (7.25) implies that

h ∈ L2(R+, U) ∩ PC(R+, U) , lim
t→∞h(t) = 0 , (7.32)
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and
lim
t→∞G(0)(Hτ u)(t) = G(0)v∞ = r . (7.33)

Combining (7.27), (7.31)–(7.33) gives limt→∞ e1(t) = 0. We proceed to prove that
e2 ∈ L2(R+, Y ). Obviously,

CΛTx0 ∈ L2
α(R+, Y ) , ∀α > ω(T) , ∀x0 ∈ X . (7.34)

Now
[L (G(θu(0)) − G(0)θu(0))](s) =

1
s
[G(s) − G(0)]u(0) ,

and we see that

L (G(θu(0)) − G(0)θu(0)) ∈ H2(Cα, U) , ∀α > ω(T) .

Hence, by the Paley-Wiener theorem,

G(θu(0)) −G(0)θu(0) ∈ L2
α(R+, U) , ∀α > ω(T) . (7.35)

Using G ∈ B(L2(R+, U), L2(R+, Y )) and h ∈ L2(R+, U) (see (7.32)), we have Gh ∈
L2(R+, Y ). Combining this with (7.28), (7.34), (7.35) and the exponential stability of
T, yields that e2 ∈ L2(R+, Y ). This completes the proof of Statement (4).

To prove the first claim of Statement (5), we assume that (Gf)(t) → 0 as t → 0 for all
f ∈ PC(R+, U) ∩ L2(R+, U) with limt→∞ f(t) = 0. Then, by (7.32), we have

lim
t→∞(Gh)(t) = 0 . (7.36)

Writing e = ẽ1 + ẽ2, where

ẽ1 :=
1
τ
Gh − 1

τ
(GJ −G(0)J)Hτ (4u) − 1

τ
G(0)h + r − G(0)Hτ u ,

and
ẽ2 := −CΛT(t)x0 − [G(θu(0)) −G(0)θu(0)] , (7.37)

it follows from (7.31)–(7.33) and (7.36) that limt→∞ ẽ1(t) = 0, and from (7.34) and
(7.35) that ẽ2 ∈ L2

α(R+, Y ) for all α > ω(T). This proves the first claim of Statement
(5). To prove the second claim of Statement (5), it suffices to show that limt→∞ ẽ2(t) =
0 under the extra assumption that such that T(t0)(Ax0 + BKw0 + Bd) ∈ X for some
t0 ≥ 0. Laplace transform of (7.37) gives

(L (ẽ2))(s) = −C(sI − A)−1x0 − 1
s
[G(s) − G(0)]u(0) .

It follows from (2.17) with η = 0 that

1
s
[G(s) − G(0)] = C(sI − A)−1A−1B ,
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so that
(L (ẽ2))(s) = −C(sI − A)−1A−1[Ax0 + B(Kw0 + d)] .

Since T(t0)[Ax0 + B(Kw0 + d)] ∈ X,

ẽ2(t) = −CΛT(t)A−1[Ax0 + B(Kw0 + d)]
= −CA−1T(t − t0)T(t0)[Ax0 + B(Kw0 + d)] , t ≥ t0 .

By the exponential stability of T, limt→∞ ẽ2(t) = 0. This completes the proof of
Statement (5).

Finally, assume that U and Y are finite-dimensional, the impulse response of G is a
(matrix-valued) Borel measure on R+ and T(t0)x0 ∈ X1 for some t0 ≥ 0. Using Lemma
6.2.4, we know that limt→∞(Gv)(t) = G(0)v∞ = r, so that

lim
t→∞ e(t) = lim

t→∞
(
r − (Gv)(t) − CT(t − t0)T(t0)x0

)
= 0 . 2

Remark 7.2.5. (1) The proof for Statement (4) is inspired by the proof of [6, Propo-
sition 7.3.4, p. 131].

(2) Statement (4) (first claim of Statement (5), respectively) in Theorem 7.2.4 shows
that the error signal e becomes small in the sense that e = e1 + e2, where e1 → 0
as t → ∞ and e2 ∈ L2(R+, Y ) (e2 ∈ L2

α(R+, Y ) for α > ω(T), respectively). This
implies, in particular, we have “tracking in measure”, i.e., for every ε > 0,

lim
T→∞

µL({t ≥ T : ‖e(t)‖ ≥ ε}) = 0 ,

where µL denotes the Lebesgue measure on R+. The second claim of Statement
(5) and Statement (6) show that “asymptotic tracking” (i.e., limt→∞ e(t) = 0) is
guaranteed under certain conditions.

(3) If T is analytic, then

T(t0)[Ax0 + B(Kw0 + d)] = AT(t0)[x0 + A−1B(Kw0 + d)] ∈ X

for all t0 > 0, all x0 ∈ X, all w0 ∈ Y and all d ∈ U , since T(t) maps X into X1

for all t > 0. 3

Example 7.2.6. For purpose of illustration, we consider the problem of heating a bar
of length 1. We keep both endpoints at temperature 0 and inject heat of magnitude
vj(t) at the point ξj ∈ (0, 1), j = 1, 2. Temperature measurements are taken at the
points η1, η2 ∈ (0, 1). The system to be controlled can be formulated as follows

zt(ξ, t) = κzξξ(ξ, t) + δ(ξ − ξ1)v1(t) + δ(ξ − ξ2)v2(t) , ∀ξ ∈ (0, 1) , ∀t > 0 , (7.38a)
y1(t) = z(η1, t) , y2(t) = z(η2, t) ; ∀t > 0 , (7.38b)

z(0, t) = z(1, t) = 0 , ∀t ≥ 0 ; z(ξ, 0) = z0(ξ) , ∀ξ ∈ (0, 1) . (7.38c)
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Here κ is a positive constant and δ(·) denotes the Dirac delta function. Non-adaptive
continuous-time low-gain integral control of this system was studied in [33].

System (7.38) can be formulated as a well-posed system with the state space X =
L2((0, 1), R). In particular, the semigroup T(t), given by

(T(t)z0)(ξ) =
∞∑

n=1

2 exp(−κn2π2t) sin(nπξ)
∫ 1

0
sin(nπλ)z0(λ)dλ ,

is exponentially stable. Assuming that

0 < ξ1 ≤ η1 ≤ ξ2 ≤ η2 < 1 ,

the transfer function G(s) is given by

G(s) =


sinh((1 − η1)

√
s/κ) sinh(ξ1

√
s/κ)√

sκ sinh(
√

s/κ)

sinh((1 − ξ2)
√

s/κ) sinh(η1

√
s/κ)√

sκ sinh(
√

s/κ)
sinh((1 − η2)

√
s/κ) sinh(ξ1

√
s/κ)√

sκ sinh(
√

s/κ)
sinh((1 − η2)

√
s/κ) sinh(ξ2

√
s/κ)√

sκ sinh(
√

s/κ)

 .

It is then easy to see that

G(0) =
1
κ

(
(1 − η1)ξ1 (1 − ξ2)η1

(1 − η2)ξ1 (1 − η2)ξ2

)
.

As a consequence, the characteristic polynomial of G(0) is given by

det(λI − G(0)) = λ2 − κ−1[(1 − η1)ξ1 + (1 − η2)ξ2]λ + κ−2ξ1(1 − η2)(ξ2 − η1) .

Since ξ1, ξ2, η1, η2 ∈ (0, 1), it follows that σ(G(0)) ⊂ C0 if and only if ξ2 > η1. We
sample the output using the simple averaging sampling operation defined by

(Sy)(k) =
1
τ

∫ τ

0
y(kτ + t)dt , (i.e., a(t) ≡ 1/τ in (7.16)) .

To be specific, we set

ξ1 = 0.2 , ξ2 = 0.6 , η1 = 0.4 , η2 = 0.8 , τ = 1 , K = I , κ = 0.1 ,

z0(ξ) = sin(πξ) , r =

(
1

2

)
, d =

(
−1

0

)
, q = 0.55 , γ0 = 2 , w0 = 0 .

MATLAB simulations of the closed-loop system given by (7.38) and (7.21) (with v =
(v1, v2)T and y = (y1, y2)T ) are shown in Figures 7-1 to 7-3. By Theorem 7.2.4, we
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Figure 7-1: Input signals v1, v2.
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Figure 7-2: Temperature measurements y1, y2.

know that

lim
t→∞ v(t) = (G(0))−1r =

(
−2.5

2.5

)
,

as is illustrated by Figure 7-1. It can be shown that the impulse response of G is in
L1(R+, R2×2) (see [51, Appendix 6]). It follows from Statement (6) in Theorem 7.2.4
that

lim
t→∞ y(t) = r =

(
1

2

)
,

as is illustrated by Figure 7-2. The sequence γ and the evolution of the temperature
profile are shown in Figure 7-3 and Figure 7-4, respectively.

7.3 Notes and references

For continuous-time low-gain integral control of continuous-time systems, there have
been two basic approaches to the tuning of ε - either steady-state data from the plant is
used off-line to determine suitable ranges for the gain ε (see, for example, Davison [8],
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Figure 7-3: Sequence γ.

Figure 7-4: Temperature z(ξ, t).

Logemann, Ryan and Townley [43], or Lunze [49]), or simple on-line universal adaptive
tuning of ε is used (see Cook [4], Miller and Davison [53, 54] in the finite-dimensional
case and Logemann and Ryan [40, 41], Logemann, Ryan and Townley [42], Logemann
and Townley [44, 46, 47] in the infinite-dimensional case).

Whilst universal adaptive continuous-time control of infinite-dimensional systems has
developed to some extent (see, for example, Logemann and Ilchmann [34], Logemann
and Mårtensson [35], Logemann and Townley [44] and Townley [77]), to the best of our
knowledge, the only only result on universal adaptive discrete-time control of discrete-
time infinite-dimensional systems is contained in the note by Logemann and Mårtensson
[36] which is an extension of an earlier finite-dimensional result by Mårtensson [50], and
in Logemann and Townley [45].

Most of the results in this chapter are contained in Ke, Logemann and Townley [27].
The main results Theorem 7.1.1 and Theorem 7.2.4 are new. The coordinates changing
technique plays a key role in the proof of Theorem 7.1.1. It has also been used in [42]
and [47] (see the proofs of Theorem 3.3 in [42] and Theorem 3.1 in [47]).
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Theorem 7.1.1 improves [45, Theorem 3.2] on adaptive low-gain control of discrete-time
systems in the following aspects:

• In [45], it is assumed that the steady-state gain matrix P(1) is symmetric and pos-
itive definite, where P is the transfer of the discrete-time plant. This symmetry
assumption is restrictive and highly nonrobust, essentially limiting the applica-
tions of the above result to single-input single-output systems. Theorem 7.1.1
replace this assumption by the considerably weaker (and essentially necessary)
assumption that all the eigenvalues of P(1) have positive real parts.

• The range of the parameter q is (0, 1] in (7.2) instead of (0, 1/2) in [45].

• In comparing the analysis presented in the proof of Theorem 7.1.1 to that in [45],
we use a change of coordinates technique which is the discrete-time counterpart
to that used in [47], leading to a dramatic simplification of the proof.

• We allow for a constant input disturbance which is not considered in [45].

Our results in Theorem 7.2.4 are extensions and improvements of those in [45] with
respect to the following aspects:

• The continuous-time plant is assumed to belong to the class of exponentially
stable well-posed systems, which is considerably more general than the class of
exponentially stable regular systems considered in [45].

• In [45], it is assumed that G(0) is symmetric and positive definite, where G
denotes the transfer of the continuous-time plant. As discussed above, this as-
sumption is restrictive and highly nonrobust. In Theorem 7.2.4, we only assume
that the eigenvalues of G(0) have positive real parts.

• The simple averaging sampling operator used in [45] is a special case of the
generalized sampling operator S defined in (7.16).

• The range of the parameter q is (0, 1] instead of (0, 1/2) in [45].

• The analysis of the behaviour of the tracking error has been considerably im-
proved, see Statements (4)-(6) of Theorem 7.2.4.

• We allow for a constant input disturbance which is not considered in [45].
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Appendix

A.1 Pathological and non-pathological sampling periods

The concept of pathological and non-pathological sequences (relative to a given square
matrix) has been defined in Definition 5.2.7. Given a positive sequence (τj)j∈Z+ , define
D ⊂ R

n×n by

D := {A ∈ R
n×n : (τj)j∈Z+ is non-pathological relative to A} .

Set σ+(A) := σ(A) ∩ cl(C0).

Theorem A.1.1. The follows statements hold for D:

(1) D is non-empty;

(2) D is dense in R
n×n;

(3) if the set {k/τj : k ∈ Z \ {0} , j ∈ Z+} has no accumulation points in R, then D

is open.

Proof. Define
dist(u, V ) := inf{|u − v| : v ∈ V } ,

the distance between a point u ∈ C and a set V ⊂ C, and

dist(U, V ) := inf{|u − v| : u ∈ U , v ∈ V } ,

the distance between two sets U, V ⊂ C.

We proceed in three steps.

Step 1: Non-emptiness of D.

Obviously, {A ∈ R
n×n : σ+(A) = ∅} ⊂ D. Alternatively, if all elements in σ+(A) are

real, then A ∈ D, i.e., {A ∈ R
n×n : σ+(A) ⊂ R} ⊂ D. This proves Statement (1).

Step 2: Density of D.

Let A ∈ R
n×n \ D. Assume that A has m real eigenvalues λ1, . . . , λm and 2` non-real

eigenvalues α1±iβ1, . . . , α`±iβ`, counting multiplicities in each case, so that m+2` = n.
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There exists an invertible matrix T ∈ R
n×n such that A = T−1JT , where J is in the

real Jordan canonical form (see [69, p. 159]), i.e., J = diag(R,C), where R and C are
of the form:

R =



λ1 γ1 0 · · · 0

0 λ2 γ2 · · · 0
...

...
. . .

...

0 0 · · · λm−1 γm−1

0 0 · · · 0 λm


,

and

C =



α1 β1 γm 0 · · · 0 0

−β1 α1 0 γm · · · 0 0
...

...
. . . . . . . . .

...
...

0 0 · · · α`−1 β`−1 γm+`−2 0

0 0 · · · −β`−1 α`−1 0 γm+`−2

0 0 · · · 0 0 α` β`

0 0 · · · 0 0 −β` α`


.

Here γj (j ∈ m + ` − 2) takes value of either 0 or 1 (depending on A). Define

V :=
{

2kπi

τj
: k ∈ Z \ {0} , j ∈ Z+

}
.

For j ∈ `, choose (ξj,k)k∈N ⊂ R such that

2(βj + ξj,k)i /∈ V , ∀k ∈ N and lim
k→∞

ξj,k = 0 . (A.1)

To prove the density of D, it is sufficient to show that there exist (∆k)k∈N ⊂ R
n×n

such that A + ∆k ∈ D for sufficiently large k and limk→∞ ∆k = 0. For k ∈ N, define
Pk ∈ R

n×n by Pk := diag(1/k, . . . , 1/(mk), Pk,1, . . . , Pk,`), where

Pk,j :=


1

(m + j)k
ξj,k

−ξj,k
1

(m + j)k

 , ∀j ∈ ` ,

and let ∆k := T−1PkT . Note that limk→∞ ∆k = 0, since limk→∞ Pk = 0. Moreover, a
simple calculation yields

σ(A + ∆k) =
{

λj +
1
jk

: j ∈ m

}⋃{(
αj +

1
(m + j)k

)
± i(βj + ξj,k) : j ∈ `

}
.

Let λ, µ ∈ σ(A + ∆k).
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Case 1: λ 6= µ̄.

We see that Re λ 6= Re µ for sufficiently large k. Hence λ − µ /∈ V for sufficiently large
k.

Case 2: λ = µ̄.

By (A.1), it is clear that

λ − µ = 2Im λ /∈ V , ∀k ∈ N .

Combining the above two cases completes the proof of Statement (2).

Step 3: Openness of D.

Let A ∈ D. We consider two cases: σ+(A) 6= ∅ and σ+(A) = ∅.
Case 1: σ+(A) 6= ∅.
Define

U := {λ − µ : λ, µ ∈ σ+(A)} .

By assumption, {k/τj : k ∈ Z \ {0} , j ∈ Z+} has no accumulation points in R. Hence,
V has no accumulation points in C, and thus V is closed. It follows immediately from
the closedness of V , the fact that U ∩ V = ∅ and the finiteness of U that

d1 := dist(U, V ) > 0 .

Recall that C− := {s ∈ C : Re s < 0}. We set

d :=

{
min{d1,min{|Re λ| : λ ∈ σ(A) ∩ C−}} , if σ(A) ∩ C− 6= ∅
d1 , if σ(A) ∩ C− = ∅

.

By perturbation theory, the mapping A 7→ σ(A) is continuous in the sense of [18]
(see [18, Corollary 4.2.1, p. 399]). Therefore, there exists δ > 0 such that, for every
∆ ∈ R

n×n with ‖∆‖ ≤ δ,

σ(A + ∆) ⊂
⋃

λ∈σ(A)

B(λ, d/4) , (A.2)

where B(λ, d/4) denotes the open disk centered at λ with radius d/4. Let ∆ ∈ R
n×n

with ‖∆‖ ≤ δ. We claim that A + ∆ ∈ D. Assume that σ+(A + ∆) 6= ∅ (otherwise
there is nothing to show). If σ(A)∩C− = ∅, then σ(A) = σ+(A). It is clear from (A.2)
that

σ+(A + ∆) ⊂
⋃

λ∈σ+(A)

B(λ, d/4) . (A.3)

If σ(A) ∩ C− 6= ∅, then let λ ∈ σ(A) ∩ C− and λ′ ∈ σ+(A + ∆). We have

|λ − λ′|2 = (|Re λ| + Re λ′)2 + |Im (λ − λ′)|2 ≥ |Re λ|2 ≥ d2 ,
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showing that λ′ /∈ B(λ, d/4). Combining this with (A.2), we see that again (A.3) holds.

Let λ′, µ′ ∈ σ+(A + ∆) and set u′ := λ′ − µ′. By (A.3), there exist λ, µ ∈ σ+(A) such
that

|λ − λ′| ≤ d

4
, |µ − µ′| ≤ d

4
.

Setting u := λ − µ ∈ U , we have

|u′ − u| ≤ |λ′ − λ| + |µ′ − µ| ≤ d

2
.

Then, for any v ∈ V ,

|u′ − v| = |(u − v) − (u − u′)| ≥ |u − v| − |u′ − u| ≥ d − d

2
=

d

2
> 0 .

Hence u′ /∈ V . Consequently A + ∆ ∈ D.

Case 2: σ+(A) = ∅, or equivalently, σ(A) ⊂ C−.

Again, by perturbation theory, we know that there exists δ > 0 such that, for every
∆ ∈ R

n×n with ‖∆‖ ≤ δ, we have σ(A + ∆) ⊂ C−. Hence A + ∆ ∈ D for every ∆ with
‖∆‖ ≤ δ.

Combining the above two cases, we conclude that D is open. 2

Alternatively, we can use the pole-shifting theorem to prove the denseness of D in
R

n×n.

Alternative proof of Statement (2) of Theorem A.1.1. Define

C := {(A, b) ∈ R
n×n × R

n : (A, b) is controllable} ,

and

V :=
{

2kπi

τj
: k ∈ Z \ {0} , j ∈ Z+

}
.

Let A ∈ R
n×n \ D. The aim is to show that, for every δ > 0, there exists ∆ ∈ R

n×n

with ‖∆‖ ≤ δ such that A + ∆ ∈ D.

Case 1: There exists b ∈ R
n such that (A, b) ∈ C.

Write the characteristic polynomial of A as

p(s) = det(sI − A) =
m∏

j=1

(s − λj)
∏̀
j=1

[s − (αj ± iβj)] ,

where
λj ∈ R , ∀j ∈ m ; αj, βj ∈ R , βj 6= 0 , ∀j ∈ ` ; m + 2` = n .
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For j ∈ `, choose (ξj,k)k∈N ⊂ R such that

2(βj + ξj,k)i /∈ V , ∀k ∈ N and lim
k→∞

ξj,k = 0 .

Define

pk(s) :=
m∏

j=1

[
s −

(
λj +

1
kj

)] ∏̀
j=1

[
s −

(
αj +

1
(m + j)k

± i(βj + ξj,k)
)]

.

Since (A, b) is controllable, by the pole-shifting Theorem (see, for example, [71, Theo-
rem 13, p. 186]), there exists fk ∈ R

n such that

det(sI − A − bfT
k ) = pk(s) , ∀k ∈ N ,

that is, for all k ∈ N,

σ(A + bfk) =
{

λj +
1
jk

: j ∈ m

}⋃{(
αj +

1
(m + j)k

)
± i(βj + ξj,k) : j ∈ `

}
.

Let λ, µ ∈ σ(A + bfT
k ).

If λ 6= µ̄, then we see that Re λ 6= Reµ for sufficiently large k. Hence λ − µ /∈ V for
sufficiently large k. If λ = µ̄, then it is clear that

λ − µ = 2Im λ /∈ V , ∀k ∈ N .

Hence, we conclude that A + bfT
k ∈ D for sufficiently large k. It is now sufficient

to prove that limj→∞ bfT
k = 0. Note that the coefficients of pk(s) converge to the

corresponding coefficients of p(s). By the proof of the the pole-shifting theorem (see
[71, p. 186]), or by Ackermann’s formula (see [71, Exercise 5.1.12, p. 188]) combined
with the Cayley-Hamilton theorem, we conclude that

lim
j→∞

fk = 0 ,

showing that limj→∞ bfT
k = 0.

Case 2: There does not exist b ∈ R
n such that (A, b) ∈ C.

Let δ > 0. Since C is open and dense in R
n×n ×R

n (see [71, Proposition 3.3.12, p. 97]),
there exists (A1, b1) ∈ C such that ‖A1 − A‖ ≤ δ/2. If A1 ∈ D, then there nothing to
show. If A1 /∈ D, then, by Case 1, there exists f ∈ R

n such that

A1 + b1f
T ∈ D and ‖b1f

T‖ ≤ δ

2
.

Therefore
‖A1 + b1f

T − A‖ ≤ ‖A1 − A‖ + ‖b1f
T‖ ≤ δ . 2
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Corollary A.1.2. If limj→∞ τj = 0, then D is open.

Proof. If limj→∞ τj = 0, then k/τj → ±∞ as k → ±∞ and j → ∞, showing that
{k/τj : k ∈ Z \ {0} , j ∈ Z+} has no accumulation points in R. Invoking Theorem
A.1.1 completes the proof. 2

In the following, we give conditions on (τj)j∈Z+ in terms of spectral data of A, which
guarantee that (τj)j∈Z+ is non-pathological relative to A.

Trivially, if σ+(A) = ∅, every positive sequence (τj)j∈Z+ is non-pathological relative to
A. Assume that σ+(A) 6= ∅ and set

Im (σ+(A)) := {Im λ : λ ∈ σ+(A)} , Im (σ(A)) := {Im λ : λ ∈ σ(A)} ,

and

ω+ := max
{ |Im λ|

2π
: λ ∈ σ+(A)

}
, ω := max

{ |Im λ|
2π

: λ ∈ σ(A)
}

.

We call ω to be the maximum frequency of A. The diameter of a bounded set U ⊂ C

is defined as
diam(U) := sup{|u − v| : u, v ∈ U} .

It is easy to check that

4πω+ = diam(Im (σ+(A))) , 4πω = diam(Im (σ(A))) ,

since σ+(A) and σ(A) are symmetric with respect to the real line.

Proposition A.1.3. Let A ∈ R
n×n and assume that σ+(A) 6= ∅. If one of the following

conditions is satisfied,

(1) τj <
2π

diam(Im (σ+(A)))
=

1
2ω+

, ∀j ∈ Z+,

(2) τj <
2π

diam(Im σ(A))
=

1
2ω

, ∀j ∈ Z+,

(3) τj <
2π

diam(σ+(A))
, ∀j ∈ Z+,

(4) τj <
2π

diam(σ(A))
, ∀j ∈ Z+,

(5) τj <
π

r(A)
, ∀j ∈ Z+,

then (τj)j∈Z+ is non-pathological relative to A.
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Proof. If condition (1) is satisfied, then

τj <
2kπ

|Im λ − Im µ| , ∀λ, µ ∈ σ+(A) , ∀k ∈ N , ∀j ∈ Z+ .

Hence (τj)j∈Z+ is non-pathological relative to A.

For λ, µ ∈ σ(A), we have

|Im λ − Im µ| ≤ |λ − µ| ≤ |λ| + |µ| .

Hence

diam(Im (σ+(A))) ≤ diam(Im (σ(A))) = 4πω ≤ diam(σ(A)) ≤ 2r(A) ,

showing that

π

r(A)
≤ 2π

diam(σ(A))
≤ 2π

diam(Im (σ(A)))
=

1
2ω

≤ 2π
diam(Im (σ+(A)))

.

Moreover, it is easy to see that

2π
diam(σ+(A))

≤ 2π
diam(Im (σ+(A)))

.

Therefore, if one of the conditions (2)-(5) is satisfied, then condition (1) is satisfied, so
that (τj)j∈Z+ is non-pathological relative to A. 2

A.2 Stabilizability and detectability under sampling

Let f : C → C be an entire function, i.e., a function analytic on the entire complex
plane. Then the power series expansion of f around 0,

f(z) =
∞∑

j=0

ajz
j ,

converges for every z ∈ C. For a matrix A ∈ R
n×n, we define f(A) by

f(A) :=
∞∑

j=0

ajA
j .

This series converges absolutely for every A ∈ R
n×n.

Theorem A.2.1 (Spectral mapping theorem). Assume that f is an entire function.
Then, for A ∈ R

n×n,
σ(f(A)) = {f(λ) : λ ∈ σ(A)} .
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For a proof of the spectral mapping theorem, see, for example, [71, Appendix A.3,
p. 454].

Let A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n and let τ > 0. Set

Aτ := eAτ , Bτ :=
∫ τ

0
eAsdsB and σ+(A) := σ(A) ∩ cl(C0) .

Theorem A.2.2. Assume that (A,B) is stabilizable and (C,A) is detectable. If τ is
non-pathological relative to A, then (Aτ , Bτ ) is discrete-time stabilizable and (C,Aτ ) is
discrete-time detectable, i.e., there exist F ∈ R

m×n and H ∈ R
n×p such that Aτ + BτF

and Aτ + HC are power stable.

Proof. By the spectral mapping theorem,

σ(Aτ ) = {eλτ : λ ∈ σ(A)} .

Hence
{s ∈ σ(Aτ ) : |s| ≥ 1} = {eλτ : λ ∈ σ+(A)} . (A.4)

If σ+(A) = ∅, then, by (A.4), {s ∈ σ(Aτ ) : |s| ≥ 1} = ∅. Consequently,

rk (sI − Aτ , Bτ ) = rk

(
sI − Aτ

C

)
= n , ∀s ∈ C , |s| ≥ 1 .

By the Hautus criterion, (Aτ , Bτ ) is discrete-time stabilizable and (C,Aτ ) is discrete-
time detectable. In the following, we assume that σ+(A) 6= ∅. By the Hautus criterion
and (A.4), discrete-time stabilizability of (Aτ , Bτ ) and discrete-time detectability of
(C,Aτ ) is equivalent to

rk (eλτ I − Aτ , Bτ ) = rk

(
eλτI − Aτ

C

)
= n , ∀λ ∈ σ+(A) .

Let λ ∈ σ+(A) be arbitrary. Define f, g : C → C by

f(s) :=


esτ − 1

s
, s 6= 0

τ , s = 0
, g(s) :=


esτ − eλτ

s − λ
, s 6= λ

τeλτ , s = λ

.

Note that f, g are entire functions. Furthermore,

Af(A) = f(A)A , Ag(A) = g(A)A .

By assumption, τ is non-pathological relative to A, and thus,

2kπi

τ
/∈ σ(A) , λ +

2kπi

τ
/∈ σ(A) , ∀k ∈ Z \ {0} .
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It follows from the spectral mapping theorem that 0 /∈ σ(f(A)) and 0 /∈ σ(g(A)). Thus
f(A) and g(A) are invertible. Let g1(s) := esτ −eλτ and g2(s) := s−λ. We have g1(s) =
g(s)g2(s). Since g and g2 are entire functions, we conclude that g1(A) = g(A)g2(A),
i.e.,

eλτI − Aτ = g(A)(λI − A) .

It is easy to see that Bτ = f(A)B. Hence

(eλτ I − Aτ , Bτ ) = (g(A)(λI − A), f(A)B)

= f(A)(λI − A,B)

(
(f(A))−1g(A) 0

0 I

)
, (A.5)

and (
eλτ I − Aτ

C

)
=

(
g(A)(λI − A)

C

)
=

(
g(A) 0

0 I

)(
λI − A

C

)
. (A.6)

Since f(A), g(A) are invertible, the matrices

f(A) ,

(
(f(A))−1g(A) 0

0 I

)
and

(
g(A) 0

0 I

)

have full ranks. Moreover, by assumption, (A,B) is stabilizable and (C,A) is detectable.
By the Hautus criterion,

rk (λI − A,B) = rk

(
λI − A

C

)
= n .

Therefore, by (A.5) and (A.6),

rk (eλτ I − Aτ , Bτ ) = rk

(
eλτI − Aτ

C

)
= n . 2

Remark A.2.3. (1) The above proof is essentially due to [11, Lemma 8]. In [11],
the discrete-time stabilizability of (Aτ , Bτ ) was proved, and it was mentioned
without proof that the discrete-time detectability of (C,Aτ ) can be shown in a
similar way.

(2) It is a standard result that if (A,B) is controllable, (C,A) is observable and

τ(λ − µ) 6= 2kπi , ∀λ, µ ∈ σ(A) , ∀k ∈ Z+ \ {0} , (A.7)

then (Aτ , Bτ ) is discrete-time controllable and (C,Aτ ) is discrete-time observable.
The proof can be found in [22, Theorem 12] or [2, Theorem 3.2.1, p. 41]. Condition
(A.7) is sometimes called the “Kalman-Ho-Narenda” criterion. 3
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A.3 Asymptotic behaviour of functions in W 1,p(R+, Rn)

For p ∈ [1,∞], the Sobolev space W 1,p(R+, Rn) has been defined in Definition 2.3.4.

Proposition A.3.1. Let 1 ≤ p < ∞. Then

lim
t→∞u(t) = 0 , ∀u ∈ W 1,p(R+, R) .

Proof. First we consider p = 1. Assume u ∈ W 1,1(R+, R). It follows from the funda-
mental theorem of calculus for absolutely continuous functions that

u(t) = u(0) +
∫ t

0
u̇(s)ds , ∀t ≥ 0 .

Letting t → ∞, the right-hand side converges since u̇ ∈ L1(R+, R). Thus limt→0 u(t) =
a for some a ∈ R. Since u ∈ L1(R+, R), it is clear that a = 0.

Next, consider p ∈ (1,∞). Let u ∈ W 1,p(R+, R). Define

Ω := {t ∈ R+ : u is differentiable at t} .

Note that the set R+ \Ω has zero measure, since u is differentiable almost everywhere.
We define

Ω0 := {t ∈ Ω : u(t) = 0, u̇(t) 6= 0} ⊂ Ω .

Setting v := |u|, it follows from the absolute continuity of u and the triangle inequality
that v is absolutely continuous. Hence v is differentiable almost everywhere. We want
to show that v is not differentiable in Ω0, but is differentiable in Ω \ Ω0. To this end,
let t0 ∈ Ω0. Since v(t0) = 0, we have

v(t0 + h) − v(t0)
h

=
|u(t0 + h)|

h
= sgn(h)

∣∣∣∣u(t0 + h)
h

∣∣∣∣ ,

where sgn denotes the sign function. Hence

lim
h↑0

v(t0 + h) − v(t0)
h

= −|u̇(t0)| 6= |u̇(t0)| = lim
h↓0

v(t0 + h) − v(t0)
h

,

showing that v is not differentiable at t0 ∈ Ω0. Consequently, Ω0 has zero measure,
since v is differentiable almost everywhere. Next let t1 ∈ Ω \ Ω0.

Case 1: u(t1) = u̇(t1) = 0.

Then

dv

dt
(t1) = lim

h→0

|u(t1 + h)| − |u(t1)|
h

= lim
h→0

(
sgn(h)

∣∣∣∣u(t1 + h)
h

∣∣∣∣) = 0 .

Case 2: u(t1) 6= 0.
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Then for sufficiently small h, u(t1 + h) and u(t1) have the same sign. Hence

dv

dt
(t1) = lim

h→0

|u(t1 + h)| − |u(t1)|
h

= sgn(u(t1)) lim
h→0

u(t1 + h) − u(t1)
h

= sgn(u(t1)) u̇(t1) .

Consequently,

fu(t) :=

{
sgn(u(t)) u̇(t) , t ∈ Ω \ Ω0

0 , elsewhere

it follows that
dv

dt
(t) = fu(t) , a.e. t ∈ R+ .

Since R+ \Ω and Ω0 have zero measure, R+ \(Ω\Ω0) = (R+ \Ω)∪Ω0 has zero measure
and thus

d(vp)
dt

(t) = pvp−1(t)fu(t) , a.e. t ∈ R+ .

Hence, by the fundamental theorem of calculus for absolutely continuous functions

|u(t)|p = |u(0)|p + p

∫ t

0
|u(s)|p−1fu(s)ds , ∀t ∈ R+ . (A.8)

Let q be such that (1/p) + (1/q) = 1. The Hölder inequality yields∫ t

0
|u(s)|p−1|fu(s)|ds ≤

∫ ∞

0
|u(s)|p−1|u̇(s)|ds

≤
(∫ ∞

0
|u(s)|(p−1)qds

)1/q (∫ ∞

0
|u̇(s)|pds

)1/p

= ‖u‖p/q
Lp ‖u̇‖Lp = ‖u‖p−1

Lp ‖u̇‖Lp , ∀t ∈ R+ , (A.9)

showing that |u|p−1fu ∈ L1(R+, R). Therefore, the right-hand side of (A.8) converges
as t → ∞. Thus u(t) has a limit as t → ∞ and this limit must be 0, since u ∈
Lp(R+, R). 2

A.4 Routine calculations for dynamic output feedback sys-

tems

A.4.1 Continuous-time systems

Consider the continuous-time closed-loop system, where the plant is given by

ẋp(t) = Apxp(t) + Bpup(t) ; xp(0) = x0
p ∈ R

np , (A.10a)
yp(t) = Cpxp(t) + Dpup(t) , (A.10b)
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where Ap ∈ R
np×np , Bc ∈ R

np×m, Cc ∈ R
p×np and Dc ∈ R

p×m. The discrete-time
controller is given by

ẋc(t) = Acxc(t) + Bcuc(t) ; xc(0) = x0
c ∈ R

nc , (A.11a)
yc(t) = Ccxc(t) + Dcuc(t) , (A.11b)

where Ac ∈ R
nc×nc , Bc ∈ R

nc×p, Cc ∈ R
m×nc and Dc ∈ R

m×p.

The interconnection of (A.10) and (A.11) is given by

up = yc , uc = yp . (A.12)

By (A.10)–(A.12),

up = yc = Ccxc + Dcuc = Ccxc + Dcyp = Ccxc + Dc(Cpxp + Dpup) ,

and
uc = yp = Cpxp + Dpup = Cpxp + Dpyc = Cpxp + Dp(Ccxc + Dcuc) .

Setting Ep := (I − DcDp)−1 and Ec := (I − DpDc)−1, it follows that

up = Ep(DcCpxp + Ccxc) , uc = Ec(Cpxp + DpCcxc) .

Consequently, (A.10a) and (A.11a) can be written as(
ẋp

ẋc

)
=

[(
Ap 0

0 Ac

)
+

(
Bp 0

0 Bc

)(
Ep 0

0 Ec

)(
Dc I

I Dp

)(
Cp 0

0 Cc

)](
xp

xc

)
.

A.4.2 Discrete-time systems

Consider the discrete-time closed-loop system, where the plant is given by

xp(k + 1) = Apxp(k) + Bpup(k) ; xp(0) = x0
p ∈ R

np , (A.13a)
yp(k) = Cpxp(k) + Dpup(k) , (A.13b)

where Ap ∈ R
np×np , Bc ∈ R

np×m, Cc ∈ R
p×np and Dc ∈ R

p×m. Let ε > 0 be a
parameter. The discrete-time controller is given by

xc(k + 1) = Acxc(k) + Bcuc(k) ; xc(0) = x0
c ∈ R

nc , (A.14a)
yc(k) = εCcxc(k) + εDcuc(k) , (A.14b)

where Ac ∈ R
nc×nc , Bc ∈ R

nc×p, Cc ∈ R
m×nc and Dc ∈ R

m×p. The interconnection of
(A.13) and (A.14) is given by

up = d + yc , uc = r − yp , (A.15)
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where r is a reference signal and d is a disturbance signal. Set Ep := (I + εDcDp)−1

and Ec := (I + εDpDc)−1. By (A.13)–(A.15),

up = d + yc = d + εCcxc + εDcuc

= d + εCcxc + εDc(r − yp)
= d + εCcxc + εDcr − εDc(Cpxp + Dpup) .

It follows that
up = Ep(−εDcCpxp + εCcxc + d + εDcr) . (A.16)

Consequently, by (A.14a),

xp(k+1) = (Ap−εBpEpDcCp)xp(k)+εBpEpCcxc(k)+BpEp[d(k)+εDcr(k)] . (A.17)

On the other hand,

uc = r − yp = r − (Cpxp + Dpup) = r − Cpxp − Dp(d + yc)
= r − Cpxp − Dpd − εDp(Ccxc + Dcuc) ,

showing that
uc = Ec(−Cpxp − εDpCcxc − Dpd + r) . (A.18)

Hence, by (A.14a),

xc(k+1) = −BcEcCpxp(k)+(Ac−εBcEcDpCc)xc(k)+BcEc[−Dpd(k)+r(k)] . (A.19)

Define ∆ ∈ R
(np+nc)×(np+nc) by

∆ :=

(
Ap 0

0 Ac

)
+

(
Bp 0

0 Bc

)(
Ep 0

0 Ec

)(
−εDc εI

−I −εDp

)(
Cp 0

0 Cc

)
.

It follows from (A.17) and (A.19) that(
xp(k + 1)

xc(k + 1)

)
= ∆

(
xp(k)

xc(k)

)
+

(
BpEp[d(k) + εDcr(k)]

BcEc[−Dpd(k) + r(k)]

)
, ∀k ∈ Z+ .

Consequently, by the discrete-time variation-of-parameters formula,(
xp(k)

xc(k)

)
= ∆k

(
x0

p

x0
c

)
+

k−1∑
j=0

∆k−1−j

(
BpEp[d(j) + εDcr(j)]

BcEc[−Dpd(j) + r(j)]

)
, ∀k ∈ N . (A.20)
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Figure A-1: Sampled-data closed-loop system.

Note that I − εDpEpDc = Ep and I − εDcEcDp = Ec. By (A.16), (A.18) and (A.20),(
yp(k)

yc(k)

)
=

(
Cpxp(k)

εCcxc(k)

)
+

(
Dpup(k)

εDcuc(k)

)

=

(
Cp − εDpEpDcCp εDpEpCc

−εDcEcCp εCc − ε2DcEcDpCc

)(
xp(k)

xc(k)

)

+

(
DpEp[d(k) + εDcr(k)]

εDcEc[−Dpd(k) + r(k)]

)

=

(
EcCp εDpEpCc

−εDcEcCp εEpCc

)
∆k

(
x0

p

x0
c

)
+

(
yio

p (k)

yio
c (k)

)
, ∀k ∈ Z+ ,

where yio
p , yio

c satisfy

yio
p = G(d + yio

c ) , yio
c = Kε(r − yio

p ) ,

where G and Kε are the input-output operators of (A.13) and (A.14), respectively.

A.4.3 Sampled-data systems

Consider the sampled-data closed-loop system shown in Figure A-1. The continuous-
time plant is given by

ẋp(t) = Apxp(t) + Bpup(t) ; xp(0) = x0
p ∈ R

np , (A.21a)
yp(t) = Cpxp(t) + Dpup(t) , (A.21b)
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where Ap ∈ R
np×np , Bc ∈ R

np×m, Cc ∈ R
p×np and Dc ∈ R

p×m. Let ε > 0 be a
parameter. The discrete-time controller is given by

xc(k + 1) = Acxc(k) + Bcuc(k) ; xc(0) = x0
c ∈ R

nc , (A.22a)
yc(k) = εCcxc(k) + εDcuc(k) , (A.22b)

where Ac ∈ R
nc×nc , Bc ∈ R

nc×p, Cc ∈ R
m×nc and Dc ∈ R

m×p.

The interconnection of (A.21) and (A.22) is given by

up = Hτyc + d , uc = Sτ (r − σyp) , (A.23)

where r is a reference signal, d is a disturbance signal and σ ∈ {−1, 1}. Set

Ep := (I + εσDcDp)−1 and Ec := (I + εσDpDc)−1 .

By (A.21)–(A.23), it is clear that, for θ ∈ [0, τ),

up(kτ + θ) = d(kτ + θ) + yc(k)
= d(kτ + θ) + εCcxc(k) + εDcuc(k)
= d(kτ + θ) + εCcxc(k) + εDc[r(kτ) − σyp(kτ)]
= d(kτ + θ) + εCcxc(k) + εDcr(kτ) − εσDc[Cpxp(kτ) + Dpup(kτ)] .

(A.24)

For θ = 0, it follows that

up(kτ) = d(kτ) + εCcxc(k) + εDcr(kτ) − εσDc[Cpxp(kτ) + Dpup(kτ)] ,

showing that

up(kτ) = Ep[d(kτ) + εCcxc(k) + εDcr(kτ) − εσDcCpxp(kτ)] . (A.25)

Note that
I − εσDcDpEp = Ep and DcDpEp = EpDcDp .

Substituting (A.25) into (A.24), we obtain

up(kτ + θ) = d(kτ + θ) − εσDcDpEpd(kτ) + (I − εσDcDpEp)[εCcxc(k)
+εDcr(kτ) − εσDcCpxp(kτ)]

= d(kτ + θ) + εEp[−σDcDpd(kτ) + Ccxc(k) + Dcr(kτ)
−σDcCpxp(kτ)] . (A.26)
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Consequently, by the variation-of-parameters formula,

xp(kτ + θ) = eApθxp(kτ) +
∫ kτ+θ

kτ
eAp(kτ+θ−s)Bpup(s)ds

=
(

eApθ − εσ

∫ θ

0
eApsdsBpEpDcCp

)
xp(kτ) + ε

∫ θ

0
eApsdsBpEpCcxc(k)

+
∫ kτ+θ

kτ
eAp(kτ+θ−s)Bpd(s)ds

+ ε

∫ θ

0
eApsdsBpEpDc[−σDpd(kτ) + r(kτ)] . (A.27)

On the other hand,

uc(k) = r(kτ) − σyp(kτ)
= r(kτ) − σ[Cpxp(kτ) + Dpup(kτ)]
= r(kτ) − σCpxp(kτ) − σDp[d(kτ) + yc(k)]
= r(kτ) − σCpxp(kτ) − σDpd(kτ) − εσDp[Ccxc(k) + Dcuc(k)] , ∀k ∈ Z+ ,

showing that

uc(k) = Ec[−σCpxp(kτ) − εσDpCcxc(k) − σDpd(kτ) + r(kτ)] , ∀k ∈ Z+ . (A.28)

Hence, by (A.22a),

xc(k +1) = −σBcEcCpxp(kτ)+(Ac −εσBcEcDpCc)xc(k)+BcEc[−σDpd(kτ)+r(kτ)] .
(A.29)

Define ∆: [0, τ ] → R
(np+nc)×(np+nc) by

∆(θ) :=(
eApθ 0

0 Ac

)
+


∫ θ

0
eApsdsBp 0

0 Bc

(Ep 0

0 Ec

)(
−εσDc εI

−σI −εσDp

)(
Cp 0

0 Cc

)
,

(A.30)

and, for θ ∈ [0, τ ] and k ∈ Z+, define R(k, θ) : Lb(R+, Rm) × Lb(R+, Rp) → R
np+nc by

R(k, θ)

(
d

r

)

:=


∫ kτ+θ

kτ
eAp(kτ+θ−s)Bpd(s)ds + ε

∫ θ

0
eApsdsBpEpDc[−σDpd(kτ) + r(kτ)]

BcEc[−σDpd(kτ) + r(kτ)]

 .
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It follows from (A.27) and (A.29) that(
xp(kτ + θ)

xc(k + 1)

)
= ∆(θ)

(
xp(kτ)

xc(k)

)
+ R(k, θ)

(
d

r

)
, ∀k ∈ Z+ , θ ∈ [0, τ) . (A.31)

Letting θ ↗ τ , it follows from the continuity of the terms depending on θ that(
xp((k + 1)τ)

xc(k + 1)

)
= ∆(τ)

(
xp(kτ)

xc(k)

)
+ R(k, τ)

(
d

r

)
, ∀k ∈ Z+ .

Consequently, by the discrete-time variation-of-parameters formula,(
xp(kτ)

xc(k)

)
= ∆(τ)k

(
x0

p

x0
c

)
+

k−1∑
j=0

∆(τ)k−j−1R(j, τ)

(
d

r

)
, ∀k ∈ N . (A.32)

Hence, by (A.26)–(A.28) and (A.32),(
yp(kτ + θ)

yc(k)

)

=

(
Cpxp(kτ + θ)

εCcxc(k)

)
+

(
Dp 0

0 εDc

)(
up(kτ + θ)

uc(k)

)

=

Cpe
Apθ − εσCp

∫ θ

0
eApsdsBpEpDcCp εCp

∫ θ

0
eApsdsBpEpCc

0 εCc

(xp(kτ)

xc(k)

)

+

Cp

∫ kτ+θ

kτ
eAp(kτ+θ−s)Bpd(s)ds + εCp

∫ θ

0
eApsdsBpEpDc[−σDpd(kτ) + r(kτ)]

0


+

(
Dp 0

0 εDc

)(
−εσEpDcCp εEpCc

−σEcCp −εσEcDpCc

)(
xp(kτ)

xc(k)

)

+

(
Dp 0

0 εDc

)(
d(kτ + θ) + εEpDc[−σDpd(kτ) + r(kτ)]

Ec[−σDpd(kτ) + r(kτ)]

)

= Q(θ)

(
xp(kτ)

xc(k)

)
+

(
G(k, θ)

εDcEc[−σDpd(kτ) + r(kτ)]

)

= Q(θ)∆(τ)k
(

x0
p

x0
c

)
+

(
yio

p (kτ + θ)

yio
c (k)

)
, ∀θ ∈ [0, τ) , ∀k ∈ Z+ ,
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where

Q(θ) :=

Cpe
Apθ − εσCp

∫ θ

0
eApsdsBpEpDcCp εCp

∫ θ

0
eApsdsBpEpCc

0 εCc


+

(
−εσDpEpDcCp εDpEpCc

−εσDcEcCp −ε2σDcEcDpCc

)
,

G(k, θ) := Cp

∫ kτ+θ

kτ
eAp(kτ+θ−s)Bpd(s)ds + Cp

∫ θ

0
eApsdsBpEpDc[−σDpd(kτ) + r(kτ)]

+ Dpd(kτ + θ) + εDpEpDc[−σDpd(kτ) + r(kτ)] ,

and yio
p , yio

c satisfy

yio
p = G(d + Hτyio

c ) , yio
c = Kτ,εSτ (r − yio

p ) ,

where G and Kτ,ε are the input-output operators of (A.21) and (A.22), respectively.
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et Énergétique, 35 (1990), 389–396.

[10] G. E. Dullerud, Control of Uncertain Sampled-data Systems, Birkhäuser, Boston,
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