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Summary

We study a number of issues in sampled-data control of linear systems. We investigate
the relationship between the continuous-time finite-dimensional feedback systems and
the corresponding sampled-data systems obtained by sample-and-hold operations with
a constant sampling period. Using state-space methods, we show that the sampled-
data system recovers the state stability of the continuous-time feedback system as the
sampling period goes to zero. State feedback systems and dynamic output feedback
systems are considered. We explore sampled-data feedback systems with time-varying
sampling period. It is shown that, applying an adaptive law for adjusting the sam-
pling period, we can achieve the stability of the sampled-data feedback systems. State
feedback, static and dynamic output feedback are considered. We solve tracking and
disturbance rejection problems for stable infinite-dimensional systems, using a simple
low-gain discrete-time controller suggested by the internal model principle, with ref-
erence signals which are finite sums of sinusoids, and disturbance signals which are
asymptotic to finite sums of sinusoids. The results are given for both input-output
systems and state space systems. We present adaptive low-gain control strategies for
tracking constant reference signals for infinite-dimensional, well-posed, exponentially
stable, linear systems.
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List of symbols.

N
Z,R, C

Set of natural numbers {1,2,...}.

Ring of integers, fields of real numbers and complex numbers.
Non-negative integers {0} U N.

Real and imaginary parts of a complex number z.
{s e R: s > 0}.

Open right half-plane {s € C: Res > a} for a € R.
Open left half-plane {s € C: Res < 0}.

{1,...,N} for N € N.

{seC:|s— A <r}

{s € C: |s]| > p}.

The closure of U C C.

The complex of conjugate of A € C.

Laplace transform.

Z-transform.

Let X,Y be Banach spaces.

B(X,Y)
B(X)

A

o(A), 0(A)
r(A)
Ly(Ry, X)

H®(Q, X)
HX(Eq, X)

H?(Cqy, X)

Eé(ZJraX)

08(X)
Lqﬁ(RJr’X)

The set of all bounded linear operators from X to Y.

The set of all bounded linear operators from space X to X.
Self-adjoint operator of A € B(X).

Spectrum and resolvent of A € B(X).

Spectral radius of A € B(X).

The set of bounded X-valued Lebesgue measurable functions with

the sup-norm || - ||oo-
{f: Q@ — X | f is holomorphic and bounded}, where Q C C is open.
U B>E,,X).
0<y<1

{f: C, — X | f is holomorphic and sup/ | f(x +i0)|?do < oo}

>a ) —oco
Weighted ¢!-space {v: Zy — X | (v(k)a®)ez, € (H(Zy, X)}
for a > 0.
(Z(g): g € (T4, X)} C H®(Eq, X).
Exponentially weighted Li-space {f € L{ (R, X): f(e B e

LR, X)} for 1 <g<ooand f§eR.
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Chapter 1

Introduction

Since digital computing equipment offers many benefits, such as accuracy, speed, small
size and low price, it has been used more and more to implement feedback controls.
Therefore, the analysis and synthesis of sampled-data systems (or digital control sys-
tems) have been of continuing interest for several decades (see [1], [2], [12], [17], [84],
[85], to name just a few references).
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Figure 1-1: Sampled-data systems.

We use the specific class of linear feedback systems shown in Figure 1-1 to give a short
introduction to sampled-data systems. In a sampled-data system, a continuous-time
plant G is controlled, via sample and hold operations, by a discrete-time controller
K, which is normally a microprocessor or the central processing unit of a digital com-
puter. Sampled-data systems are hybrid systems which involve both continuous-time
and discrete-time signals.

The sampling operator 8. is the mathematical model of a digital-to-analog (D/A) con-
vertor which converts a continuous-time signal to a discrete-time signal. In many
practical situations, 8, is the ideal sampling operator which samples periodically at
sampling points 0, 7,27, 37,..., i.e.,

uc(k) = (8re)(k) :=e(kr), VkeZi,



K,

Figure 1-2: Sample-hold discretization.

where 7 > 0 is the so-called sampling period. The operator H, is the mathematical
model for an analog-to-digital (A/D) convertor. In this thesis, H, is the zero-order
hold operator: it produces a piecewise constant signal by holding a discrete-time signal
constant during the sampling intervals, that is,

(j{TyC)(t) = yc(k) , Vte [kT’ (k + 1)7—) .

As for the exogenous signals in Figure 1-1, r denotes the reference signal, d; denotes a
plant input disturbance and do denotes a plant output disturbance.

This thesis explores how to design a discrete-time controller for a given continuous-time
plant such that one or several of the following goals are achieved for the sampled-data
feedback system:

e exponential stability,
e input-output stability,

e the output y of the closed-loop system (approximately) tracks certain reference
signals r and (approximately) rejects certain external disturbances d; and do.

One approach to discrete-time controller design for sampled-data systems, called indi-
rect sampled-data control, is to first design a continuous-time controller K to achieve
specific performance goals (for example, stability of the state, input-output stability)
using continuous-time design methods. A discrete-time controller is obtained by dis-
cretization of K. There are many methods for this purpose (see, for example, Kowal-
czuk [30]). One commonly used method is the so-called sample-hold discretization
illustrated in Figure 1-2. Here the discretization K of K is given by K, := 8, KH,. A
natural and important question in indirect sampled-data control is whether continuous-
time stability and/or performance is recovered as 7 — 0.

In practice, there are several potential technical disadvantages to indirect sampled-data
control. For example, the use of indirect sampled-data control may lead to very small
sampling period, so that practical implementation may be too expensive or may not
even be feasible. Another approach to sampled-data controller design, called direct
sampled-data control, is to design the discrete-time controller K, directly (see [2], [10],
[19] and [57], to name a few references). The obvious advantage is that it solves



the problem without approximation. The disadvantage is that this approach is more
difficult since sampled-data systems are time-varying .

In this thesis, we focus on a number of issues in indirect sampled-data control: stabiliza-
tion of linear finite-dimensional systems (Chapters 3-5) and (approximate) tracking and
disturbance rejection for stable infinite-dimensional systems using low-gain controllers
(Chapters 6 and 7).

This thesis is organised as follows: Chapter 2 contains some preliminaries used through-
out the thesis. In Chapter 3, we study the sampled-data systems obtained from state
feedback controlled continuous-time systems by sample-hold discretization. We discuss
the relationship between exponential growths, transient bounds and trajectories of the
continuous-time state feedback system and the corresponding sampled-data system.

In Chapter 4, we extend the results in Chapter 3 to dynamic output feedback systems.
We also use state-space method to show that, for an exponentially stable dynamic
output feedback system, if the sampling period 7 is sufficiently small, then the corre-
sponding sampled-data system is exponentially stable and input-output stable in the
sense that the LP-norm of the output is bounded by the sum of the W1P-norm of the
input for 1 < p < oo and the Euclidean norm of the initial data.

In Chapter 5, we study sampled-data state feedback systems with time-varying sam-
pling period. We develop an approach, which is based on an adaptive law for adjusting
the sampling period, to achieve the stability of the state feedback sampled-data sys-
tems. This adaptive approach is extended to static and dynamic output feedback.

In Chapter 6, we first show that, for power stable infinite-dimensional discrete-time
systems, the application of a certain discrete-time low-gain controller (depending on
only one gain parameter) leads to a stable closed-loop system which asymptotically
tracks reference signal r of the form r(k) = Zjvzl )\?tj where v; € CP and A; € C
with [A\j] =1 for j =1,..., N. The closed-loop system also rejects disturbance signals
which are asymptotically equal to signals of this form. The discrete-time results are
used to derive results on approximate tracking and disturbance rejection for a large
class of infinite-dimensional systems, using sampled-data control. The reference signals
are finite sums of sinusoids, and disturbance signals are asymptotic to finite sums of
sinusoids. The results are given for both input-output systems and state space systems.
For purpose of illustration, a number of examples and simulations are included.

One of the main issues in low-gain control as developed in Chapter 6 is the tuning
of the gain parameter. For the case of integral control, this issue is addressed in
Chapter 7: after a detailed analysis of adaptive discrete-time low-gain integral control
of infinite-dimensional, multivariable, discrete-time, power-stable systems, the discrete-
time results are applied in the development of adaptive sampled-data low-gain control
for infinite-dimensional, multivariable, well-posed, exponentially stable systems.

Finally, we mention that some of the results from Chapters 6 and 7 have been submitted
for publication ([24]-[27]). Another manuscript containing results from Chapters 4 and
5 is in preparation [20].
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Chapter 2

Preliminaries

In this chapter, we collect a number of preliminary results used in this thesis.

2.1 Exponential rates, exponential growth and transient
bounds

We consider the following continuous-time linear system
i(t) = Az(t), Vt>0; z(0)=z"€R", (2.1)
where A € R™*"™.

Definition 2.1.1. A number « € R is said to be an exponential rate of system (2.1)
(or of A) if there exists M > 1 such that

ledt]| < Me™t, vt>0. (2.2)

We define the exponential growth w of system (2.1) (or of A) by

w = inf{a : « is an exponential rate of system (2.1) (or of A)}.

We say that system (2.1) is exponentially stable if and only if w < 0. O

It is well known that
w=max{ReA: A€ c(A)},

where o(A) is the spectrum of A.

Trajectories of an exponentially stable linear system may temporarily move a long way
from the origin before approaching it as t — oo. From a practical point of view, if the
“state excursions” are very large, the stable system actually behaves like an unstable
one. We use the concept of transient bound as to quantify the transient behaviour. This
concept was introduced by Hinrichsen and Pritchard (see [18, Section 5.5, p. 648]).



Definition 2.1.2. If « is an exponential rate of system (2.1), then
M(a) :=inf{M >1:(2.2) holds}
is the transient bound of system (2.1), associated with the exponential rate «. &

It is clear that
w<a<p = M@ <M. (2.3)

Remark 2.1.3. Hinrichsen and Pritchard also discussed the interplay between expo-
nential rates and the associated transient bounds. They showed that if w < a < § and
M(B) > 1, then M(5) < M(«) (see [18], p.650). &

The following proposition seems to be new.

Proposition 2.1.4. Let w be the exponential growth of system (2.1). The function
(w,00) = [1,00), «a— M(«a)
18 continuous.

Proof. Let x( -;2°) denote the solution of system (2.1) and let « > w. First we show
left continuity. There exists é; > 0 such that o — 2§; > w. By the definition of the
transient bound, we have

|z (t; 20)|| = leM2®|| < M(o = 261) e e @020, vt >0, val e R".  (2.4)

By (2.3), M(a) < M (o — 261). Trivially, there exists 7" > 0 such that

M(a—20)e” " < M(a), Vt>T.

Hence, it follows from (2.4) that

|z (t; 2)|| < M(a)e@™ D20, vt >T, Va® e R". (2.5)

For every € > 0, there exists d2 € (0,d1) such that, if § € (0,02), then

M(a)e®T < M(a)+e.

Hence, for every ¢ € (0, 4ds),

2(t;2%)| < M(a)ee @220
< M(a)eéTe(aﬂS)tHxOH
< (M(a) +e)e®™ )2, vtelo,T], va° € R". (2.6)

Combining (2.5) and (2.6), we see that if 6 € (0, d2), then

|2(t; %) < (M(a) +e)e@ 20|, vt >0, vz e R".



Therefore, we conclude that, for every € > 0, there exists d > 0 such that if § € (0, d2),
then
M(a) < M(a—96) < M(a)+e,

where the first inequality follows from (2.3). Hence the mapping a — M («) is left
continuous.

It remains to show right continuity. We consider two cases.
Case 1: M(a) = 1.

Then we have
lz(t; 2°)| < e®||2°||, Vt>0, Va¥ e R".

It is clear that

(t; 20)|| < e TV 20|, vt >0, Va" e R", V6> 0.

Thus M(a+0) = M(«) =1 for all 6 > 0, showing the right continuity in this case.
Case 2: M(a) > 1.

Seeking a contradiction, suppose that the function o — M («) is not right continuous.
Then, by (2.3), there exist M < M(c) and a sequence (0x)rez, C (0,00) satisfying
limy_, o 0 = 0, such that M(a + d;) < M for all k£ € Z;. By the definition of the
transient bound, we have

|2 (t; 2°)e % || < M(a + 6;)e* ||z < Me?t||z%]|, Vt>0, V2’ e R", Vk € Z, .

Letting k£ — oo, we see that
|z(t; 2°)|] < Me™||2%|, ¥t>0, Va® e R™,

contradicting the definition of M («). This proves the right continuity in this case. O

2.2 Power stability, power rates and power growth

Let X be a Banach space and let A € B(X), a bounded linear operator on X. It is
well known that
r(A) = Jim [|4¥]V% (27)
—00

where r(A) denotes the spectral radius of A (see, for example, [66, Theorem 18.9,
p.360]). We say that A is power stable if and only if limy_ ., A* = 0.

The following theorem is well-known. We provide a proof for completeness.

Proposition 2.2.1. The following statements are equivalent:

(1) A€ B(X) is power stable;



(2) there exist p € (0,1) and M > 1 such that ||A*|| < Mp* for all k € 7. ;
3) r(4) <1L;
(4) 2z (2 — A)~! € HX(Ey, B(X)).

Proof. We first show (1) = (3). If limy_.o, A¥ = 0, then there exists ko € Z, such that
|Ako|| =: ¢ € [0,1). Hence

ko /) < (Ao ) = At = R <1, € Ty

Letting n — oo and using (2.7) proves that r(A) < 1.

We next show (3) = (2). Assume that r(A) < 1. Let p € (r(A),1). By (2.7),
there exists kg € Z, such that ||A*||'/* < p if k > kg. Choosing M > 1 such that
|A*||VE < MY%pif k=0,..., ko, we conclude that Statement (2) holds.

Trivially, (2) = (1). Finally, we show that (3) < (4). Assume that r(A) < 1. There
exists a € (r(A),1) such that cl(E,) is contained in the resolvent set of A. Note that
lim, (2 — A)~! = 0. Hence (2I — A)~! is bounded for all z € Eg for some 8 > 1.
Clearly, z — (21 — A)~! is bounded on the compact annulus cl(E,) \ Eg, showing that
2+ (2I—A)~!is bounded on E,. Moreover, it is a standard result that z +— (21— A)~!
is holomorphic at every point of the resolvent set of A (see, for example, [29], p. 389,
Theorem 7.5-2) so that z + (zI — A)~! is holomorphic on E,. We conclude that
2z — (2 — A7t € H®(E,, B(X)). The proof for (4) = (3) can be found in [31,
Lemma 1]. O

Remark 2.2.2. Logemann showed that if z — (21 — A)~! € H*®(E;,B(X)), then
r(A) <1 (see [31, Lemma 1]). This assumption is weaker than Statement (4). &

Consider the discrete-time system
z(k+1)=Az(k), VkeZ,; z(0)=2"€cX. (2.8)

Definition 2.2.3. A number p > 0 is said to be a power rate of system (2.8) (or of A)
if there exists M > 1 such that

|AK|| < Mp*, VkezZ,.

The power growth of system (2.8) (or of A) is defined to be

inf{p : p is a power rate of system (2.8) (or of A)}.

We say that system (2.8) is power stable if and only if A is power stable. O

Invoking (2.7) and a routine argument, it can be shown that r(A) is equal to the power
growth of system (2.8).



2.3 Properties of sampling and hold operators

In this section, we discuss the boundedness properties of the sampling and hold oper-
ators 8, and H,, which are fundamental in the study of sampled-data systems.

Let F(R4,C") and F(Z4+,C") denote the spaces of all C"-valued functions defined on
R and Z., respectively.

Definition 2.3.1. Let 7 > 0 denote the sampling period. We define the ideal sampling
operator 8.: F(R,,C") — F(Z4+,C") by

(S;u)(k) :=wu(kr), VkeZi.

The (zero-order) hold operator H,: F(Z,,C") — F(R4,C") is defined by
(Hro)(t) :i=wv(k), Vtelkr,(k+1)T1),

that is, H; converts the discrete-time signal v into a piecewise continuous function by
holding it constant over the sampling intervals. &

Let Ly(R4,C™) denote the space of bounded Lebesgue measurable functions with the
sup-norm ||-||c on R4 and let C (R4, C") denote the space of continuous functions from
R4 to C™. The following proposition shows that J{; has the nice property that, by
suitable scaling, it is norm preserving from ¢#(Z,C") to LP(R;,C") forall 1 < p < oc.

Proposition 2.3.2. For 1 < p < oo, H;: P(Z4,C") — LP(Ry,C") is bounded.
Moreover,
19l = 7YP||0l|l, Vv € PP(Z4,C"), V1< p < o0,

and

[Hrollzee = [vlle, Vo € £5(Z4,C").

Thus H;: £°(Z4,C") — L>® (R4, C") is an isometry.
The sampling operator 8;: Ly(Ry,C") — £°°(Z4,C") is bounded and of norm 1.

The proof is simple and can be found in [2, Theorem 9.3.1, p.211]. A counter-example
given in the proof of [2, Theorem 9.3.1] shows that the sampling operator 8, is not well
defined from LP(Ry,C") N C(R4+,C") to P(Zy,C") for 1 < p < oo:

Example 2.3.3. Define u: Ry — Ry by

2k?
1=t —kr|, if[t—kr| < o5
T

u(t) := ka(t), where vg(t) := 2k%

k=1 0, otherwise

as shown in Figure 2-1. It is clear that v € LP(R4,R) N C(R4,R) for 1 < p < oo.
However, S;u ¢ P since (S;u)(k) =1 for all k € N.



0 kr— — kr kT4 (k+ )7

T
2k2 2k?

Figure 2-1: Function u.

We next show that 8, is bounded from the Sobolev spaces W1P(R,,C") to ¢P(Z,,C")
for 1 <p< .

Definition 2.3.4. For p € [1, o0], we define
WP(R,,C") := {u: R, — C" | u is absolutely continuous ,u,u € LP(R,,C")},

where 4 denotes the classical derivative of u (which exists almost everywhere). The
WP_norm is defined by

00 00 1/p
s o= ([ luras+ [T aras) L e 1o,
0 0

[ullwree = max{[|ul[pe, il zo} -

Theorem 2.3.5. The sampling operator 8, is bounded from W1P(R,,C") to
P(Z4,C™) for every 1 < p < oo. In particular,

I8-uller < M(p,n, 7)lullwrs, Yu€ WHP(Ry,C"),

where

Al

1
2' v /(P 7Y
1

M(p,n,T):{ » PE[l,00)

) p =00
Proof. If p = 0o, then, by Proposition 2.3.2,

(18- u|gee < |Juflpoe < [Jullpprce, Vu € WHR(R,,CM).

Assume that p € [1,00) and let u € WHP(R,,C"). Writing u = (u1, ..., uy,)", it follows
that u; € WHP(Ry,C) for j = 1,...,n. Define a mapping f: R} — C" by

F((t1, . t)D) = (w(tr), .. un ()T

By the continuity of |u;| on R, and the mean-value theorem of integration, there exist

10



&k € [k, (k4 1)7] such that

1 (k+1)7
luj(&5.6)| = ;/k lu;j(s)|ds, Vk€Zy,Vji=1,...,n. (2.9)
Trivially,
(4. . +a® )2 <aj+...4a,, Yoi,...,0,>0. (2.10)

Moreover, a routine application of the Cauchy-Schwarz inequality (in R™) yields that
1/2

n n
Saj<vn > ol . Yai,...,an >0, (2.11)
j=1 i=1

Setting & = (14, - -+, &nik)? for k € Zy, by (2.9)—(2.11), we have

1/2

IN

G = | D () > Jui(&)l
=1 =1

1 (k+1)7 n
=[S ) as

T
kT j=1

(k+1)7
< @/ lu(s)lds, VkeZy. (2.12)
kT

The fundamental theorem of calculus for absolutely continuous functions shows,
&),k

wj(& k) —uj(kt) = /k uj(s)ds, VkeZi,Vji=1,...,n. (2.13)

Consequently, by (2.10), (2.11) and (2.13),

1/2
£ &) —utkn) | = | Y lui(&n) — u(kr)?
j=1
< D lu(€n) — (k)]
j=1
n ik
<y | tatsas
(k+1)r ™
(W
< | jz;|u]<s>| s
(k+1)7
< vn lla(s)||ds, Vk€Zy. (2.14)
kT

11



Since p € [1,00), the function Ry — R, : x +— 2P is convex. Hence

p D D
(‘”ﬂ) <P a0,
2 2
that is,
(a4 B <207 (a? + 67), Va,3>0. (2.15)

Using (2.12), (2.14), (2.15) and the Holder’s inequality, we obtain that, for k € Z,

Ju(kr) P < (1 (&) — k)l + [1f (€))7
< 27N f (&) — ulkn)[P + 1 (EIP)
(k+1)r p (k+1)7 P
< or-l [np/2 </m+1 Hib(s)Hds> + 7 PpP/? </m+1 HU(S)Hd**’)]
(k+1)r (k+1)
< igr [ [ wieas e [T \\u(s)\\pds]
(k+1)T (k+1)7
< P IpP2(pp7l gl (/ : Hu(s)des—l—/ : Hu(s)des>.
kT kT
Therefore,

ISullpy =D llu(kr)|”
k=0

00 (k+1)7 (k+1)r
< (el )Y / Ji(s)|Pds + / u(s)|Pds
k=0 kT kT
= P
showing that ||S;ulm < 21=0/P)/n(rP=1 + 7= VP |u|| 1. 0

2.4 Infinite-dimensional well-posed systems

In this section, we recall briefly some facts about admissible control and observation
operators, infinite-dimensional well-posed linear systems, their input-output operators
and transfer functions, which will be useful in Chapter 6 and 7. For the details,
we refer to Salamon [67, 68], Staffans [72, 74, 75], Staffans and Weiss [76], or Weiss
[80, 81, 83, 82]. These papers offer equivalent definitions of well-posed systems but
formulate them quite differently.

The class of well-posed systems captures the systems-theoretic properties of linearity,
time-invariance, and causality together with natural continuity properties. It is the
largest class of infinite-dimensional systems for which there exists a well-developed
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state-space and frequency-domain theory. It includes many distributed parameter sys-
tems and all time-delay systems which are of interest in applications. Every well-posed
system has a well-defined transfer function.

Throughout this section, we consider a well-posed system ¥ with state-space X, input
space U, and output space Y (all Hilbert spaces), generating operators (A, B, C), input-
output operator G and transfer function G. Here A is the generator of a strongly
continuous semigroup (Cp-semigroup) T on X, B € B(U,X_;), and C € B(X;,Y),
where X7 denotes the domain of A, as an operator defined on X, endowed with the
graph norm ||z||; := ||z|| + ||Az||, and X_; denotes the completion of X with respect
to the norm ||z||_1 := ||(3] — A)~'z||. The number 3 is in the resolvent set o(A) of
A. It can be verified that different choices of 8 lead to equivalent norms. We have
X1 — X — X_1. It is known that T restricts to a Cy-semigroup on X; and extends
to a Cy-semigroup on X_1 with the exponential growth constant being the same on all
three spaces X7, X and X_;. The generator of the restricted (extended) semigroup is a
restriction (extension) of A. The restricted/extended semigroups and their generators
will be denoted by the same symbols T and A, respectively.

The control operator B is admissible, that is, for every ¢t > 0, there exists by > 0 such
that

/t T(t — s)Bu(s)ds|| < be|lull2, Yue L*([0,t],U), (2.16)
0

and the observation operator C is also admissible, that is, for every t > 0, there exists
¢ > 0 such that

t
/ |CT(8)z)2dt < c]|2|>, Yz € X;.
0

It follows from (2.16) that (sI—A)~"'B € B(U, X) for all s € 9(A). The control operator
B is said to be bounded if B € B(U, X) (and unbounded otherwise), whilst C' is called
bounded if it can be extended such that C' € B(X,Y) (and unbounded otherwise).

The so-called A-extension of C' is defined by

Cprz:= lim  CAXM —A)"lz, Vzedom(Cy),

A—00, AeER

where dom(Cy) is the set of all z € X for which the above limit exists. Clearly,
X1 C dom(Cy). For each z € X, T(t)z € dom(Cy) for almost all ¢ > 0 and CATz €
L2(R,,Y) for all a > w(T), where

1
W(T) = lim ~In || T(0)]

denotes the exponential growth constant of T. The transfer function G satisfies

GO =G0 _ _opor—ay g1~ A)B, VsmeCumy s £, (217)
5—1

and G € H*(C,,B(U,Y)) for every a > w(T). Moreover, the input-output operator
G:L2 (Ry,U)— L2 (R.,Y) is continuous and shift-invariant; for every a > w(T),

loc loc
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G € B(L2(Ry,U), L2(R:,Y)) and
(ZL(Gu))(s) = G(s)(L(w)(s), Vs Cq, Vue LE(Ry,U).

where .Z(u) denotes the Laplace transform of function u.

For 2° € X and u € L} (R,U), let 2 and y denote the state and output functions of a
well-posed system ¥, respectively, corresponding to the initial condition z(0) = 2° € X

and the input function u. Then
t
(t) = T(t)2" + / T(t — s)Bu(s)ds, Vt>0,
0

and x(t) — (nI — A)~1Bu(t) € dom(Cy) for almost all t > 0. Moreover,

i(t) = Ax(t)+Bu(t); 2(0)=2"c X, foraa. t>0, (2.18a)
y(t) = Calz(t) — (nI — A7 'Bu(t)] + G(n)u(t), fora.a.t>0, (2.18b)

where 1 € C, () is arbitrary. The differential equation (2.18a) has to be interpreted in
X_1. We identify ¥ and (2.18) and refer to (2.18) as a well-posed system. We say that
(2.18) is exponentially stable if T is exponentially stable, i.e., w(T) < 0.

The well-posed system (2.18) is said to be regular if there exists a linear operator D
such that
lim G(s)u=Du, YueU.
s—00,8€ER
In this case, by the uniform boundedness theorem, D € B(U,Y), and D is called the
feedthrough operator of (2.18b). Moreover, x(t) € dom(Cy) for almost all ¢ > 0, the
output equation (2.18b) can be simplified as

y(t) = Caz(t) + Du(t), fora.a.t>0,
im[(sI — A)~'B] C dom(C,) for all s € g(A), and

G(s)=Cp(sI—A)'B+D, VseCyr)-

2.5 Notes and references

While Theorem 2.3.5 should be well known, we could not find it in the literature. Our
proof here is elementary and seems to be new. Kannai and Weiss showed that 8. is
bounded from W*2(R,C) to £2(Z,C) for all s > 1/2 (see [23, Proposition 2.1]). Note
that in their result, s is allowed to take non-integer values. In this respect, their result
is more general than Theorem 2.3.5. On the other hand, in Theorem 2.3.5, the domain
of 8, is WP where p is allowed to be in the interval [1, 0o], not just for p = 2. Closely
related to Theorem 2.3.5 is a result by Chen and Francis: they proved that the sampling
operator preceded by a filter F, i.e., 8;F, is bounded from LP(R,,C") to ¢P(Z,,C™)
for all 1 < p < oo (see [1, Theorem 1] or [2, Theorem 9.3.2, p.212]).
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Chapter 3

Indirect sampled-data control:
state feedback

Consider the finite-dimensional continuous-time state feedback system

i(t) = Axz(t)+ Bu(t); z(0)=2"€cR", (3.1a)
u(t) = Fu(t), (3.1b)

where A € R™", B € R"*™ and F € R™*".

Let 7 > 0 be the sampling period. Using sampling and hold in (3.1b), we obtain the
corresponding sampled-data feedback system

i(t) = Ax(t)+ Bu(t); =2(0)=z2"cR", (3.2a)
w(t) = Fax(kr), Vtelkr,(k+1)7). (3.2b)

In this chapter, we introduce the concepts of exponential rate, exponential growth
and transient bound associated with a particular exponential rate for the sampled-
data feedback system (3.2). In Section 3.1, it is shown that the exponential growth of
system (3.2) approaches the exponential growth of system (3.1) as 7 — 0. In Section
3.2, we derive that the limit superior (as 7 — 0) of the transient bound of system
(3.2) associated with the exponential rate a of (3.2) is less than the transient bound of
(3.1) associated with «. Section 3.3 deals with the convergence of the solution of the
sampled-data system (3.2) as 7 — 0.

Throughout this chapter, let z(-;2°, 7) denote the unique solution of the sampled-data
system (3.2).

3.1 Exponential growth

First we generalize Definition 2.1.1 to the sampled-data system (3.2).
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Definition 3.1.1. A number o € R is said to be an exponential rate of system (3.2) if
there exists M > 1 such that

lz(t; 20, 7)|| < Me*||2°||, Vt>0, Va® € R™. (3.3)

We define the exponential growth ws(7) of system (3.2) by

ws(7) = inf{a : a is an exponential rate of system (3.2)}.
We say that system (3.2) is exponentially stable if and only if wy(7) < 0. <&

By the variation-of-parameters formula, the solution (- ;2% 7) of (3.2) satisfies

6
(bt +6;2°,7) = (6A9 +/0 eAstBF> z(kr;2%, 1), VOe[0,7], VEE€Z,. (3.4)

Define zj, := x(k7;2°,7) for all k € Z. Tt follows from (3.4) with § = 7 that
Tpr1 = Arxg = Af“xo, VkeZy, (3.5)
where

A=+ / e*dsBF . (3.6)
0

We know that the spectral radius r(A;) of A; is the power growth of system (3.5).

Theorem 3.1.2. The number p > 0 is a power rate of system (3.5) if and only if
(Inp)/7 is an exponential rate of system (3.2). Consequently,

wi(r) = S In(r(A)).

-

Proof. 1f p is a power rate of system (3.5), then there exists M; > 1 such that
AR < Mygh, VkezZy.

Setting Mz := maxge(o -] [|e4? + fg e%dsBF ||, it follows from (3.4) and (3.5) that

k|| < Mol AZ]|2°]] < My Map* ).

0
(kT + 0;2°,7)|| < eA9+/ eAsdsBF‘
0

Case 1: p > 1.

Then, since pG/T >1,

|z (kT + 0;2°, 7)[| < MyMap"p®/ 7|20 = My Mye(nP/TIETH0)130))
Vo € [0,7), Vk € Z, , Vz° € R™.
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Case 2. 0 < p < 1.
Then, since p(‘s'/T)_1 >1,

(kT + 0;2°, 7)< MyMap™ p* /T 20| = My My~ elUm A/ DETEE) 20|
Vo € [0,7), VE € Z, , V2° € R™,

Combining the above two cases, we conclude that (Inp)/7 is an exponential rate of
system (3.2).

Conversely, if (In p)/7 is an exponential rate of system (3.2), then, by Definition 3.1.1
and (3.5), there exists M > 1 such that

| A% = fla(krsa®, Pl < MpF|a®], Vk € Zs, Va0 € R,

showing that ||A¥|| < Mp* for all k € Z, . This proves that p is a power rate of system
(3.5). Taking infima, we have

ws(7) = In(r(A;))/7. O

Remark 3.1.3. It is clear that « is an exponential rate of (3.2) if and only if e is a
power rate of (3.5). &

Corollary 3.1.4. We have

lim z(t;2°,7) =0, Va¥eR",

t—o0

if and only if ws(1) < 0.

Proof. The sufficiency is obvious. For the necessity, assume that tlim x(t; 2, 7) =0 for
—00
all 2° € R™. Hence, by (3.5),

lim z(k7;2°,7) = lim Aﬁxo =0, vz'eR",

k—o00 k—o0

showing that limy,_,o, A¥ = 0. Therefore, it follows from Theorem 2.2.1 that r(A,) < 1.

T

By Theorem 3.1.2, it follows that ws(7) < 0. O

Let w,. denote the exponential growth of (3.1). Observe that when 7 tends to 0, system
(3.2) seems to approximate system (3.1). Does ws(7) tend to w, as 7 — 07 The
following theorem shows that the answer is yes.

Theorem 3.1.5. Let w, and ws(7) denote the exponential growths of state feedback
system (3.1) and corresponding sampled-data system (3.2), respectively. Then

lim wy(7) = lim — In(r(A;)) = we,
T—0 0T

where A is defined in (3.6).
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Proof. We show first that
1
limsup — In(r(A;)) < we. (3.7)

T—0 T

Using the power series expansion of e?, we obtain
T
A, = 4 / e*dsBF = I + 7(A+ BF + P(1)), (3.8)
0
where

2 Jj=1
P(r) = %A(A+ BF) + %AZ{A +BF)+...+ TTAH(A+ BF)+....

Let \r € 0(A;). By (3.8), we see that A; is of the form A\; = 1 + 7pu,, where p, €
o(A+ BF + P(t)). Hence,

’)‘7’2 = ’1 + T/"L’T’2 = (1 + 7Re :U'T)2 + (TImMT)2 =1+ T(2Re Hr =+ T’MT‘Q) : (3'9)

By the definition of w,, c(A+ BF) C {s € C: Res < w.}. Note that lim,_,o P(7) = 0.
By perturbation theory, the mapping A — o(A) is continuous in the sense of [18] (see
[18, Corollary 4.2.1, p.399]). In particular, for every e > 0, there exists 71 = 71(¢) > 0
such that

o(A+ BF+ P(1)) C {sGC:Res<wc+Z}, VT e (0,71).

Hence, 2Re 1 < 2w, + €/2 for all 7 € (0,71). Consequently, there exists 75 € (0,71)
such that

2Re iy + 7lpr|? < 2we+e, V1 e (0,7).
Thus, by (3.9), [A+|? <1+ 7(2w. +¢) for all 7 € (0,72). Hence

1A <14+72w.+¢), VYre(0,m).

Then
In(r(A;)) _ In(r(A;)?) - In(1+ 72w +¢))

T 2T 2T

:wc+§+E(7), vr e (0,7)

where lim, g E(7) = 0. Therefore, for every € > 0, there exists 73 € (0,72) such that

Inr(A,
L)<wc—i—€, V1 € (0,73),

showing that (3.7) is true.

Furthermore, we claim that

1
liminf —In(r(A;)) > we. (3.10)

T—0 T
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Figure 3-1: Indirect sampled-data state feedback control.

It follows from perturbation theory that, for every ¢ > 0, there exist 74 = 74(¢) > 0
and fi; € 0(A+ BF + P(7)) such that

Reji, >wc—%, V1 € (0,74).

Let Ay := 1+ 7/ir. By (3.8), we know that A, € o(A,). By (3.9),
r(AD? > A2 >1+2rRefir > 14+ 72w, —e), V1€ (0,74).

Using the same argument as above, for every € > 0, there exists 15 € (0,74) such that

Inr(A;)

T

>w.—e, Vre(0,7s).

showing that (3.10) is true. Combining (3.7) and (3.10), we have lim, o In(r(A;))/7 =
we. Invoking Theorem 3.1.2 completes the proof. O

The following corollary is a direct consequence of Theorem 3.1.5.

Corollary 3.1.6. Assume that the state feedback system (3.1) is exponentially stable.
Then there exists 7% > 0 such that, for all T € (0,7*), the sampled-data feedback system
(3.2) is exponentially stable.

We give a simple example to illustrate Corollary 3.1.6.

Example 3.1.7. The continuous-time state feedback system is given by

M) = (‘1 1) 2(t) + (‘)) u(t): @(0) =2 = <‘1> ,
-2 3 1 2

ut) = (2,-5)a(t).
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Figure 3-2: Instability occurs when 7 = 0.45.

It is easy to check that the above system is exponentially stable. Let x( -;z°) and
z( ;2% 7) denote the solutions of the above system and the corresponding sampled-
data system, respectively. Figure 3-1 illustrates the effect of sampling with constant
sampling period 7 = 0.2. Simulations shows that, at 7 ~ 0.44, the sampled-data system
is not exponentially stable, as shown in Figure 3-2.

3.2 Transient bounds

In this section, we will discuss the relation between the transient bounds of the state
feedback system (3.1) and the transient bounds of the corresponding sampled-data
feedback system (3.2).

Definition 3.2.1. If « is an exponential rate of system (3.2), then the number
Ms(a,7) :=inf{M >1:(3.3) holds}

is said to be the transient bound of (3.2), associated with the exponential rate o and
the sampling period 7. <&

It is clear that
we < a< f= MsB,7) < My(a, 7). (3.11)

Using the same argument as in the proof of Proposition 2.1.4, we can show that for
fixed sampling period 7, the function (ws(7),00) — [1,00), a — M(a, T) is continuous.

Let M.(«) denote the transient bound of (3.1), associated with the exponential rate «
of (3.1). The following theorem is the main result of this section.

Theorem 3.2.2. For every 8 > w, and every M > M.((3), there exists 7% = 7%(3, M)
> 0 such that, for all T € (0,7*), (8 is an exponential rate of the sampled-data feedback
system (3.2) and Ms(B,7) < M.
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We need two more lemmas to prove this theorem.

Lemma 3.2.3. For A € R"*" B € R™"™ and F' € R™*",

t
Q(ATBI)E _ (At / eASBFeATBII=9) s vt > 0.
0

Proof. Let 2% € R™ and set z(t) := eATBM0 for all ¢ > 0. Then

t=(A+ BF)r = Az + BFz.

Regarding BF'z as a forcing term and using the variation-of-parameters formula, we
have

t
z(t) = eMa® + / e BFx(t —s)ds, Vt>0,
0

showing that

t
QATBE)L0 _ At 0 / As BFATBR)(t=5) g 10 vt > 0.
0

This holds for all 2° € R” and thus the claim follows. O

The following lemma is a version of the discrete-time Gronwall Lemma.

Lemma 3.2.4. Let a € R and b > 0. If the sequence f : Z+ — R satisfies

then
fk) < (@ +b*a+0bf(0), VEeN.

Proof. We use strong induction. When £ = 1, we have f(1) < a + bf(0) by our

hypothesis, thus the claim is true for K = 1. For N > 2, assume the claim is true for
k=1,2,...,N —1. Since b > 0,

N-1
FIN) < a+b) f()
§=0

N—-1
< a+bf(0)+b(a+bf(0) Y (1+by"
j=1
= a+0bf(0)+ (a+bf(0)[A+0)N -1
= (140" Y a+0bf(0)).
Therefore the claim holds for k = N. O
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Proof of Theorem 3.2.2. Define V., W, € R"*" by

VT = 6(A+BF)T

)

W, = / " ABF (1= e BNE=) ds — / " AT B (1—e@B0) ds.
0 0
Define zy, := z(k7;2°,7) for all k € Z,, where x( -;2°,7) denotes the solution of (3.2).
By Lemma 3.2.3 and (3.5), we obtain

Tpyr1 = Vexp + Wexy, VkeZi. (3.12)

Considering k — W, xj as a forcing term, it follows from the discrete-time variation-
of-parameters formula that

k—1
oy =V + > VI W, VEeN. (3.13)
j=0

Let f > w. and M > M_.(3). By Proposition 2.1.4, there exists a € (we, ) such that
M > M_.(«). Since « is an exponential rate of system (3.1),

IVE = e+ BPRT || < M(a)e™ | VE € Zy .

Consequently, by (3.13),
k—1 ‘
k]l < Me(@)e™ |12 + Me(@)[|Wo[| D e*™ D )ayl, VkeN,
7=0
or, equivalently,

e |zl < Me(a)|2°]] + Me(a)e™7||W; IIZ ~layll, VkeN.

Set a := M.(a)||z°||, b := M.(a)e™"||W,|| and f(k) := e=°7¥ ||z || for k € Z,. Apply-
ing Lemma 3.2.4 yields

e T lzp < 1+ Ha+bf(0) < ™(a+b]|2°]), VEkEN,
since 1 + b < eb. Hence,

g ]| < €CTHFM(a) (1 + [Wrlle™T) |2, V€ Zy. (3.14)

Let 79 > 0. Note that there exists N > 0 such that

|eAT=)BF|||I — eATBS|| <2Ns, Vr,s€[0,7).
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Therefore .
A g/ ONsds < N2, vr e (0,7). (3.15)
0
Defining &(7) := o + NM.(a)e "1, we have

at+b = ar+M.(a)e T |W;| < ar+ NM,(a)e "2 = a(t)r, V7€ (0,70]. (3.16)
By (3.4) and (3.14)—(3.16),

|z (kT + 0; 20, T <

0
6A0+/ eASdsBF‘ |zl
0

e||A||T(1 + HBFH,]_)eol(r)(kTJrG)efd(T)BMc(a)(1 + Ne*aTTz)HxOH 7
V0 € [0,7), VT € (0,70], Yk € Z .

IN

Since &(7) > « for all 7 > 0, it is clear that e~ < el®l™ for all 7 > 0 and all
0 € [0,7). Setting

O(r) 1= Mc()(1 + | BF|[r)(1 + Neemr?)elAl+ier
we conclude that

|z(t; 2%, 7)|| < C(r)e® 2%, Vt>0, Vre (0,7], V2" € R". (3.17)

By our choice of a and 3, we have w. < o < . By Theorem 3.1.5 and the definition
of &(7) , there exists 7 € (0,79) such that if 7 € (0,71), then

ws(T)<a<alr)<p, Vre(0,m), (3.18)
showing that [ is an exponential rate of system (3.2). Note that C(7) > M.(«) for all
7> 0 and lim,; o C(7) = M.(«). Hence, since M.(a) < M, there exists 7% € (0,7)
such that if 7 € (0,7*), then C(7) < M. It follows from (3.17) that

Ms(a(r),7) < C(r) <M, Vre(0,77).

By (3.11) and (3.18), we obtain that

My(B,7) < My(a(r),7) < M, ¥re(0,7%). 0

3.3 Convergence as the sampling period tends to 0

Let 2(-;2°) denote the solution of the continuous-time state feedback system (3.1). By
Theorem 3.1.5, we know that the exponential growth ws(7) of the sampled-data system
(3.2) converges to the exponential growth w,. of (3.1) as 7 — 0. In this context, it is
natural to ask: Does z(-;2°,7) converge to z(-;2°) as 7 — 0? The answer is positive.
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Theorem 3.3.1. Let 2 C R™ be bounded. Then, for every T > 0,

lim sup |jz(t;2°7) — 2(t;2")|| = 0. (3.19)
7=04e(0,7]
20eQ
Moreover, if w. < 0, then

lim sup ||lz(t;2°, 7) — z(t;2°)| = 0. (3.20)
7—0 t>0
z0e€Q

Proof. Let Q C R™ be bounded. We first prove that (3.19) holds for every 7" > 0.
Define V,W: [0, 7] — R™*" by

V(o) = e(A+BE)0

0
W) = /0 ¢*BF (I - e<A+BF>(9—S>) ds.

Trivially,

z(kt + 0;2°) = ATBEIRTH0) .0 — v () (1)k2?, Vo e [0,7), Yk € Z, .

By (3.4), (3.5) and Lemma 3.2.3, we have

z(kt+6;2°,7) = [V(0) + W(O)]z(kr;2°,7)
= [V(0) + W(0)]
)

= VO +WOIV(r)*+Z(1)z", Voelo,7), VkeZ,,

where Z(7) := [V (1) + W(1)]F — V(7). Tt follows that

|z (kT + 0; z°, T) — x(kT + 0; xO)H
< V@) + WO ZE) 2 + W @)V ()" 12°)]

A

k—1
K I )+ 20
< (VeI + [w@l) > (j)IIV( I W ()l ]> [l
+W @IV @I, V6 €[0,7), Vk € Zy . (3.21)

Let 7 € (0,79) for some 79 > 0. By an argument identical to that leading to (3.15), we
conclude that there exists M7 > 0 such that

W (0)|| < M6* < MyT*, VO €[0,7]. (3.22)

Fix T > 0 and let t € [0,T]. Then t := k7 + 6 for some k € Z, and some 6 € [0, 7).
Trivially, k7 < T. Setting My := elATBFIT  we have

V()| < elATBFII0 < (lATBEIRT < Apy - yj=0,... k, Voe[0,7].  (3.23)
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Consequently, by (3.22) and (3.23),

k—1 ‘ k—1 k!
> (erwmps < 3o anae
= =Mk = )
k—1
k) (k—7) .
< M, (]:)7.'(]\/_[17.)(/%])
= (k=)
< Mgk < (M 7))
T k=)
Y (TMyTY
- MQZ 1
7=1
< My(e MlT—1). (3.24)

Therefore, combining (3.21)—(3.24), we conclude that there exists M3 > 0 such that

[MF(e™™7 —1) + My Mpr?e 07|20
Ms7||2%||, V7€ (0,70, Vt € [0,T].

le(t;2,7) = 2(t2%)| <
<

As a consequence, (3.19) follows.

Finally assume that w. < 0. Let a € (w,,0). By Theorem 3.1.5, there exists 77 > 0 such
that if 7 € (0,71), then ws(7) < .. Let 7 € (0,71). It follows from the boundedness of
) that there exists M > 0 such that

lzt; )| < Me*t,  ||lz(t; 2%, 7)|| < Meot, vt >0, V2’ € Q.
Since a < 0, for every € > 0, there exists T" > 0 such that

Vt>T, Vi e Q.

Hence,

Invoking (3.19), we conclude that, for every € > 0, there exists 75 € (0,71) such that

sup ||z(t;2%,7) —x(t;2)|| < e, V7€ (0,7m).
>0
20eQ

showing that (3.20) is true. O

The following simple example shows that (3.20) is not true if w. > 0.
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Example 3.3.2. Consider

i(t) = z(t)+ut); z0)=z2"cR,
u(t) = x(t).

Obviously, z(t; 2°) = €220 for t > 0 and

z(kr +0;2°,7) = (2% —1)(2¢7 — 1)*2°, Vo€ [0,7), Vk e Zy, .

Then

lz(kr;2%) — 2(kr;20,7)| = |27 — (27 — D)F||20], VkeZ,.

We see that, for all 7 > 0 and all 2° € R with 20 # 0, |x(k7;2%) — 2(k7;2°, 7)| goes to
0o as k — oo.

3.4 Notes and references

We remark that Corollary 3.1.6 can be obtained as a consequence of [9, Theorem
1]. However, we found the proof given in [9] is difficult to penetrate. We emphasize
that Theorem 3.1.5 does not follow from results in [9]. To the best of our knowledge,
Theorem 3.1.5 is new.

Theorem 3.2.2 is implicitly contained in [9, Theorem 1]. Whilst we found the proof in
[9] difficult to penetrate, it partly inspired the above proof of Theorem 3.2.2.

Logemann, Rebarber and Townley [39] showed that Corollary 3.1.6 is still true in the
infinite-dimensional case if one of the following assumptions hold:

e the input operator B is bounded, i.e., B € B(U, X), and F' € B(U, X) is compact,
where X is the state space and U is the input space (both Hilbert spaces) (see
[39, Theorem 3.1]).

e the input operator B is unbounded, F' € B(U, X) is compact and the semigroups
generated by A is analytic (see [39, Theorem 4.8]).

Whether Theorem 3.1.5 extends to infinite-dimensional systems is an open problem.
We note that the proof of Theorem 3.1.5 relies on certain properties of the spectrum
of a matrix A and on the convergence of the Taylor series of e?: it certainly does not
generalize to interesting infinite-dimensional situations in a straight forward way.
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Chapter 4

Indirect sampled-data control:
dynamic output feedback

In this chapter, we extend the results in Chapter 3 to dynamic output feedback. More-
over, using state-space methods, the input-output stability of sampled-data systems is
investigated.

4.1 Exponential growth and transient bounds
Consider the continuous-time dynamic feedback system shown in Figure 4-1. The plant
¥, is given by

ip(t) = Apzp(t) + Bpup(t); x,(0) = xg € R™, (4.1a)
yp(t) = Cpap(t) + Dyup(t), (4.1b)

where A, € R"*" B, € R"*™ (), € RP*™ and D, € RP*™. The controller ¥ is of
the form

Fo(t) = Acxe(t) + Beue(t); x.(0) =22 € R, (4.2a)
Ye(t) = Cexe(t) + Deucl(t), (4.2b)

where A, € R"*" B, € R"*P C. € R™*" and D, € R™*P. We use the output y, of
¥, as the input for ¥, and the output y. of ¥, as the input for ¥, i.e.,

Ue =Yp, Up=Yc, (4.3)

to obtain a feedback interconnection of (4.1) and (4.2).

In order for the closed-loop system to be well-posed, we assume that the matrix I—D.D,
is invertible. Then I — D, D, is also invertible, with

(I - D,D.)"' =1+ Dy(I - D.D,) 'D..
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Y
[\
=

Ye Uc

Figure 4-1: Continuous-time dynamic feedback system

Set
E,:=(—-D.D,)™", E.:=(I-D,D,)". (4.4)

It is convenient to define

zo= P , A= Ap 0 , B .= By 0 ,
Te 0 A, 0 B,

C:= Cp 0 , D := De 1 , E = Ep 0 .
0 C. I D, 0 E.

Consequently, by a routine calculation®, the continuous-time dynamic output feedback
system given by (4.1)—(4.3) can be written as

i(t) = (A+BEDC)z(t); x(0)=2":= (x%) € R (4.5)

We now consider the sample-hold discretization of ¥.. Let 7 > 0 be the sampling
period and let the input u. in (4.2a) be given by u. = H,v, where v is a function:
Zy — R™. By the variation-of-parameters formula, we obtain that

z((k+1)7) = eTa (kr) + /T eeSds Bo(k); x.(0) =29 € R, (4.6a)
0
Ye(kt) = Coxc(kT)+ Dov(k). (4.6b)

We use the discrete-time system (4.6) to control the continuous-time system (4.1) by
sampled-data feedback, i.e., we consider the feedback interconnection of (4.1) and (4.6)
given by

v(k) = yp(k7), up(kT +0) = y(k7), VO €[0,7), Vh € Z . (4.7)

The sampled-data feedback system given by (4.1), (4.6) and (4.7) has a unique solution

TSee Appendix A.4.1.
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which will be denoted by

. 40
Tk + 0257 g e00), VheZy .
zo(kT; 20, 7)

For convenience, sometimes we write x,(-) := x,( - ;2°,7) and z.(k7) = z.(kT;2°, 7).
Consequently, a routine calculation! yields the following sampled-data feedback equa-
tions

0
zp(kT +0) = 02, (k) + / e73ds B, Ey[D.Cpap(kt) + Coxe(kT)] (4.8a)
0
V0 €[0,7), Vk € Zy; x,(0) =) € R™,
zo((k+1)7) = e a (k1) + / eAe3ds B, E.[Cpx(kT) + DpCoe(kT)], (4.8b)
0

Vk€Zy; x.(0)=a0 € R,

Definition 4.1.1. A number « € R is said to be an exzponential rate of system (4.8) if
there exists M > 1 such that

. .0
zpkr +0: 2%, 7)1 || M k020 - v € [0,7), Vk € Zy , V2l € RwHne,
xc(kT; 3:0,7')

(4.9)
We define the exponential growth wy(7) of system (4.8) by
wq(7) == inf{a : a is an exponential rate of system (4.8)}.
System (4.8) is said to be exponentially stable if and only if wg(7) < 0. &

Letting 6 ' 7 in (4.8), it follows from the continuity of the terms depending on 6 in

(4.8) that
(mp«kﬂ)f)) A (scp<fw>> ARG ke z,. (4.10)
z((k+1)7) xc(kT)

where A, € R(ptne)x(nptne) ig defined by
Ay =T +/ e*ds BEDC . (4.11)
0

Theorem 4.1.2. A number p is a power rate of (4.10) if and only if (Inp)/7 is an
exponential rate of (4.8). Consequently,

wa(r) = X Im(r(AL)) .

T

TSee Appendix A.4.3 with o = —1,e =1, r = 0, d = 0, A. replaced by e**” and B. replaced by

fOT etesds.
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Proof. By (4.8), we have
(mp(’” + 9)> — Q) ("’Cp(’”)> WO 0,r), Yk e, (4.12)
xc(kT) xc(kT)

where Q: [0,7) — R Hne)x(ptne) is defined by

0 0
eArd 4 / e*dsB,E,D.C, / er*dsB,E,C.
0 0

Q) == (4.13)

0 1
Assume that p is a power rate of (4.10), so that there exists M > 1 such that
|AT) < Mp*, Wk eZy.
(4.10) and (4.12),
xp(kT 4+ 0)
H ( (k) )
where M := max [|Q(0)]l.

0€[0,7]
Case 1: p > 1.

< My||AY|[|2°]) < My Mp* |||, Wk € Zy, WO € [0,7),

. .0
rp (kT +0;2°,7) < MyMpUTHOIT |0 = My MM p)/m) ) 110
vo(kT; 20, 7)

Vo €[0,7), Vk € Zy , Va¥ € Rmrt7e,

Case 2. 0 < p < 1.

l

Combining the two cases above, we conclude that (Inp)/7 is an exponential rate of
system (4.8).

. .0
xp(k"r +0;x 7T) < MlMpflp(kTJrG)/THxOH — MlMpfle((lnP)/T)(kTJFe) HxOH ,
wo(ky 20, 7)

Vo € [0,7), Vk € Z, , Va¥ € R»Tme

Conversely, assume that (Inp)/7 is an exponential rate of (4.8). It follows from (4.9)
with @ = 0 that there exists My > 1 such that

k’i‘(L‘T
kaT

< Mpe P20 = Mop |2, VE € Zy 5 V¥ € R
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Consequently, by (4.10),
|AEO|| < Map*|la®||, Yk € Zy, Va© € R He,

showing that ||AF|| < Myp* for all k € Z,. Thus p is a power rate of (4.10).

Clearly, r(A;) is the power growth of system (4.10). Taking infima, we have wy(7) =
In(r(A;))/T. O

Corollary 4.1.3. For system (4.8),

. 4.0 0
lim (xp(’””’x ’T)> =0, Voe[0,7), Va = <$g> RN (4.14)
xc

k—o0 zo(kT;20,7)
if and only if wg(7) < 0.

Proof. The sufficiency is obvious. For the necessity, assume that (4.14) holds. By
(4.10), it is clear that

k—o0 k—o0 0

lim AF20 = lim ( ’T)> =0, Va¥eRmwtre,

xc(kT; €, T)

Since this holds for all 20 € R™ %7 limy_ o A’ﬁ = 0. It follows from Theorem 2.2.1
that r(A;) < 1. By Theorem 4.1.2, we know that wg(7) < 0. Therefore (4.8) is
exponentially stable. O

Let M.(«) denote the transient bound of system (4.5) associated with the exponential
rate a of (4.5). If v is an exponential rate of (4.8), then the number

Mi(a,7) :=1inf{M > 1: (4.9) holds}

is said to be the transient bound of (4.8), associated with the exponential rate a and the
sampling period 7. The theorems on exponential growth and transient bounds in the
state feedback case (see Theorem 3.1.5 and Theorem 3.2.2) still hold in the dynamic
output feedback case.

Theorem 4.1.4. Let w. and wy(7) denote the exponential growths of system (4.5) and
system (4.8), respectively. Then,

1
lir% wa(T) = lir% —In(r(A;)) = we. (4.15)
T— T—0 T

where A+ is given by (4.11).

For every a > w, and every M > M.(«), there exists " = 7*(cv, M) such that, for all
T € (0,7%), a is an exponential rate of system (4.8), and My(a,7) < M.

31



Proof. Note that (4.5) can be written as a state feedback system

i(t) = Ax(t)+ Bu(t); z(0)=z" € R»Tne, (4.16a)

u(t) = Fuz(t), (4.16b)
where F':= EDC'. Applying sampling and hold in (4.16b), we obtain the corresponding
sampled-data state feedback system

i(t) = Ax(t)+ Bu(t); =z(0)=2z"ec R™T"e, (4.17a)

uw(t) = Fax(kr), Vtelkr,(k+1)7); VkeZy. (4.17Db)

Let 2(-; 2%, 7) denote the solution of (4.17). Using the variation-of-parameters formula,
we obtain the discrete-time system

z((k+1)7;2% 7) = Ara(kr; 2%, 1), VEeZy; x(0;2°7)=2a", (4.18)

where A; is defined in (4.11). It follows from Theorem 3.1.5 that

lim 1 In(r(A;)) = we.

T—0 T

Invoking Theorem 4.1.2 proves that (4.15) holds.

Let o > we. and M > M («). By (4.15) and Theorem 3.2.2, there exists 7 = 71 (o, M) >
0 such that if 7 € (0, 71 ), then « is an exponential rate of system (4.8) and system (4.17),
and M(a, 7) < M, where Mg(a, 7) is the transient bound of (4.17) associated with a.
Let 7 € (0,71). Note that the dynamics of discrete-time systems (4.10) and (4.18) are
both governed by A.. Thus,

k:Tﬂ:T

H( (k7 2® T)H |z(kr; 20, 7)|| < My(o, 7)e® |20, Vk € Zy, Va° € R™»H7e

(4.19)
By (4.12) and (4.19), we have

H(acp(lw—i-ex T)H < 1Q®) ( (kt; 20 T)H
xc(kT; 9 T) kr; 20 T)
Q)] M( OévT)ea'“THwOH

Q)i 3,707 a9
ve € [07 T)7 vk c Z+7 vxo c Rnp+nc ,

where Q(0) is defined in (4.13). Therefore,

My(a,7) < ||QO)||e1" My(a,7), VO €0,7).
Noting that lim, ¢ ||Q(8)|le/*™ =1 for all § € [0, 7) and M(a,7) < M, it follows that
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Figure 4-2: Indirect sampled-data control with exogenous inputs.

there exists 7* € (0,7;) such that if 7 € (0,7*), then My(o,7) < M. |

The following corollary follows immediately from (4.15) in Theorem 4.1.4.

Corollary 4.1.5. If the continuous-time dynamic feedback system (4.5) is exponentially
stable, then there exists T* > 0 such that, for all T € (0,7*), the sampled-data system
(4.8) is exponentially stable.

4.2 Input-output stability

In this section, we discuss the input-output properties of sampled-data systems. Con-
sider the sampled-data feedback interconnection of continuous-time plant (4.1) and
discrete-time controller (4.6) given by

up(kt+0) = yc(kr)+d(kr+0), VOe€|0,7), VkeZ,, (4.20a)
v(k) = yplkr)+r(kr), VkeZi, (4.20b)

as shown in Figure 4-2. Throughout this section, we assume that
de WH(R,,R™), reWY(R,,RP),
for some 1 < ¢ < o0, or
de Ly(Ry,R™), re Ly(Ry,RP),

where Ly(R,R™) denotes the space of R™-valued bounded Lebesgue measurable func-
tions equipped with the sup-norm || - ||.

The sampled-data feedback system given by (4.1), (4.6) and (4.20a) has a unique solu-
tion which will be denoted by

(xp(kT +0;2°,d,r,7)

wo(kr; 20, d, v, 7)

0
) ) Vo € [057—)5 Vk € Z+a where ZCO = <-’E107> .
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For convenience, we write
Zp() == ap( - A rT), (k)= x (k] 20, d,r, T).

By a routine calculation?, z, and x. satisfy the following sampled-data feedback equa-
tions

xp(kT 4+ 0)

0
_ My () + / e ds By By DCpry(kT) + Cote(k)]
0

k46 0
+ / e kTH0=9) B d(s) ds + / e*v*ds B, E, D [Dpd(kt) + r(k7)]
k 0

T

VO €[0,7), Vk € Zy; x,(0) =) € R”, (4.21a)
z((k+1)7)

= eMTa (kT) + / ¢4 ds Be B[ Cpip(kT) + DyCle (k)]
0
+ / ¢/<*dsB.E[Dpd(kr) +1(kT)], Yk € Ly ; 2c(0) = 2] € R™,  (4.21D)
0

where E,, and E, are defined in (4.4). Setting R: Z; — R"™*"e by

T

(k+1)7 T
e VT8I d(sVds + [ e*dsB,E,D[D,d(kt) + (kT
p p=p p
R(k):= | Jk 0

/7’ eACSdSBCEC[Dpd(k;T) + 7 (kT)]

0
(4.22)
a routine calculation! gives
(k) k-1 '
(mf’ T > = AFz®+ > AFITIR(G), VkeN. (4.23)
we(kT) j=0

where A; is defined in (4.11).

The following theorem is the main result of this section.

Theorem 4.2.1. Assume the continuous-time feedback system (4.5) is exponentially
stable. There exists o > 0 such that if T € (0,79), then the sampled-data system, given
by (4.1), (4.6) and (4.20a) (as shown in Figure 4-2), is input-output stable in the sense
that, for all T € (0,79), there exists M > 0 such that

)

fSee Appendix A.4.3 with o = —1, ¢ = 1, A. replaced by e“<™ and B. replaced by / e?esds.
0

< M(Jl2%l + lldllwra + [Irllwra).,

La
vzl € Rt vd e WH(R,, R™), Vr € WHY(R,,RP),
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for1 < q < o0, and
Yp
w

where y, and w are the outputs of the sampled-data system shown in Figure 4-2.

< M([I2° + lldlloo + lI7lloo) -

o0

vz € R Vd € Ly(Ry,R™), Vr € Ly(Ry,RP),

Proof. Note that w = H,8,y.. By a routine calculation’, we have

(yp(kT + 0)) _ (Cpxp(kT + 0) + Dpuy (kT + 0))
w(kT +60) Cexc(kT) + Dev(k)

= Q) [T 4 Gk, 9) L (4.24)
xc(kT) D.E.[Dyd(kt) + r(kT)]
Vo €10,7), Vk € Z4,
where Q: [0,7) — RPTm)>x(ptne) j5 defined by
Q0) :=
0 0
Cpetr? 4 <cp / e dsB, + Dp) E,D.C, (Cp / e dsB, + Dp) E,C.
0 0

D.E.C, C. + D.E.D,C.,
(4.25)

and

kT+6 0
G(k,0) :== C, / e BT B d(s)ds + C,, / e5ds By E,De[Dyd(kT) + 7(kT))
k 0

T

+ Dyd(kr + 0) + D,E,D.[Dpd(kr) + r(k7)] . (4.26)

Recall that A; and R(j) are defined in (4.11) and (4.22), respectively, and define
Hl,Hg,Hgt R+ — Rerp by

(kT +6) = Q(O)AF", (4.27a)
0, k=0
__ k—1
Oo(kr +0) = 00) Z ARIIRG) . keN (4.27b)
7=0

s(kr +0) = G(k,6) ) . (4.27¢)

<DCEC [Dpd(kT) + r(kT)]

TSee Appendix A.4.3 with o0 = —1, ¢ = 1, A, replaced by e”<™ and B. replaced by / eesds.
0
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Combining (4.23) and (4.24), we obtain that

(yp((t))> = I (¢) + o (t) + I5(t), VteRy. (4.28)
w(t

It follows from Theorem 4.1.4 and the exponential stability of system (4.5) that there

exists 79 > 0 such that, for all 7 € (0,79), A, is power stable. Hence, setting A :=
(AF)iez, , we conclude that A € (9(Z, , Rw+ne)x(motne)y for all 1 < ¢ < cc.

Let 1 < ¢ < oo and 7 € (0,7). Clearly,

o (k1) 1/a
S ke ey
k=0’ kT

= MY Awl2®]], Va® € RHne, (4.29)

[Ty || La

IN

where M) := maxgejp -] |Q(0)]. Let d € WH(R,R™) and r € WHI(R,,RP). To
estimate Ily, define S: Z, — R™ and My > 0 by

(k+1)T
S(k) ::/ eAp[(kH)T_S}de(s)ds and My := max [e'B,|.
k

T 7TO}

Q> 1/q

Morg M d o < Mord ™) dlyyrra - (4.30)

It follows from the Hélder’s inequality that

[Sllea = (Z
k=0

00 (k+1)T 1/q
Mgy / d(s)]|eds
k=0“k

T

(k+1)7
/ eAp((kJrl)Tfs)de(s)dS
kT

IN

Setting
M3 := max{Ms| E,D.|, max |e?'B.E.|},
tE[O,To]

by (4.22), we see that

IRBI < [5G+ H | e asn, B0 Dydth) + (k)

/ ’ ¢S ds B.E.(Dyd(kt) + (k7)) H
0
< NS+ 270 Ms([| Dpl[|d(k)|| + |Ir(kT)I) . VE € Zy . (4.31)

i

Moreover, by Theorem 2.3.5, there exists M4 > 0 such that

[87dlles < Mulldl[wrra,  [[S77lles < Mullrllyra - (4.32)
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Consequently, combining (4.30) and (4.31) yields
[Bllea < [|ISllea + 270 M3(l| Dpll[[8rdllea + 877 llea) < Ms(lldllwra + [[7]lwra) s

where Ms := max{Ma7y /¢ + 270 My My||D, |, 270 MsMj}. Tt follows from the power
stability of A, that

[Ax Rllea < [|[Allgr[|Bllea < Ms|[Allgr (|dllwra + |7 llwa) - (4.33)

Therefore, by (4.27b) and (4.33),

0 n(k+2)T 1/q
My (z / H(A*R)(k)qut>
k=0

(k+1)7

(TL2 || La

IN

= MY A Rllen < My Mo | Al ([dlwro + [Irllwra) - (4.34)

Finally, by (4.26) and (4.27c), for all § € [0,7) and for all k € Z,
M3 (k7 + )

kT+6
Cp / eAP(kTJre*s)de(s)ds
k

T

(

(k+1)7
< MzHCpH/k 1d(s)llds + | Dplll|d(kT + 0)]|+

(10Ms3]|Copl| + |1 Dp EpDe|| + [|DEcll) (1D [ [|d(Er)| + [ (k7)) - (4.35)

< \ T ID,dCkr + 6) 1+

0
C,p / e%dsB,E,D.
0

+ [ DpEpDell + HDcEcH> (I Dplllld k) + [|r(~T)I])

By the Holder’s inequality,

% (k+1)7 a1/ (& 1/a
Z( / ||d<s>uds>] < g0 (Z / ||d<s>uqu>
k':O kT k‘:O kT

IN

-1
4l (4.36)
Hence, by (4.32), (4.35), (4.36) and a routine argument, there exists Mg > 0 such that
Ms][za < Ms(lldlwr.a + [I7llwa) - (4.37)

Combining (4.28), (4.29), (4.34) and (4.37), we conclude that there exists M > 0 such

that if 7 € (0,79), then

' (yp> < |Mllze + |Mallze + [Tsllze < M(|I2°) + lldllwra + [Irllwo)
w

La
vzl e R 1 d e WH(R,,R™), Vr € WH(R,,RP).
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Using a similar argument, we can show that
Yp
w

Remark 4.2.2. (1) The constant M does not depend on 7 € (0, 7).

< M([|2°) + lldllo + lI7llo0) -

Loo
vz € R Vd € Ly(R,,R™), Vr € Ly(R.,RP).

(2) If D, =0, i.e., if the plant (4.1) is strictly causal, then we only need to assume
de LIY(R,R™), r € Whi(R,,RP) (1 < ¢q < o0) for Theorem 4.2.1 to hold (with
|ld||y1.4 replaced by ||d||La). &

Corollary 4.2.3. Assume the continuous-time dynamic feedback system (4.5) is expo-
nentially stable. Consider the sampled-data system given by (4.1), (4.6) and (4.20a),
as shown in Figure 4-2. If d € WH(R,,R™) and r € WH(R ., RP), 1 < g < oo, then,
for sufficiently small T > 0,

tim (9] =0, va® e Rtne
t—0 U}(t)

where y,, w are the outputs of the sampled-data system, as shown in Figure 4-2.

Proof. By (4.28), we have

()

where II;, IIy and II3 are defined in (4.27). It is sufficient to show that tlim IL;(t) =0
— 00
for j = 1,2, 3 if 7 is sufficiently small.

< M@ + M@ + @), vt >0,

It follows from Theorem 4.1.4 and the exponential stability of system (4.5) that there
exists 79 > 0 such that, for all 7 € (0,79), A, is power stable, where A, is defined in
(4.11). Let 7 € (0,70) and set My := maxge[o 5] [|Q(0)||, where @ is defined in (4.25).
By (4.27a),

Iy (k7 + 0)[| < M| AT, V6 € [0,7), Vk € Zy

showing that lim;_, ||II;(¢)|| = 0 for all 20 € Rrptne,

Let 1 <g<ooandletde I/VL‘I(RJr R™) and r € WH4(R,,RP). By (4.33), (AxR) €
04(Zy, R™*7e) where A := (AF)ez, and R is defined in (4.22). By (4.27b),

(ke +0)| < M(AxR)(k— 1), V8e[0,7), VkeN,

showing that lim; . |[II2(¢)]| = 0.
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Finally,

kT+6 (k+1)T
/k |eAr*TH0=5) B d(s)||ds < Mg/ |d(s)||ds, V6 €][0,7), Vk € Z, .

T kT

where M := max; € [0, 70]||e**B,||. Tt follows from (4.36) that

(k+1)7
(/k ||d<s>uds> € ((Z,.R),

kEZ+

showing that

k140
/ |eAETH0-9B d(s)|ds — 0 as k— oo, VOeE[0,7).
k

T

Moreover, since d € WH9(R,,R™) and r € WH4(R,RP), for 1 < g < oo, we have

tlim d(t) = klim d(kr) = klim r(kt) =0, (4.38)
(see Theorem A.3.1 in the Appendix A.3). Hence, by (4.35) and (4.38), we conclude
that limy_. 3(¢t) = 0. O

4.3 Notes and references

It was shown in Logemann et al. [39] that Corollary 4.1.5 can be extended to infinite-
dimensional systems under certain conditions (see [39, Theorem 6.1]). Similar to the
remarks of last chapter, whether Theorem 4.1.4 extends to infinite-dimensional systems
is an open problem, since in the proof of Theorem 4.1.4, we use Theorem 3.1.5 which
relies on certain properties of the spectrum of a matrix A and on the convergence of the
Taylor series of e: it certainly does not generalize to interesting infinite-dimensional
situations in a straight forward way.

We have proved Theorem 4.2.1 using a state-space approach. Chen and Francis proved
a similar result (see [1, Theorem 4] and [2, Theorem 9.4.1, p.219]) using input-output
methods, where it is assumed that the exogenous inputs are in LP(R,R™) instead
of W'P(R,,R") for 1 < p < oco. However, since the sampling operator does not
necessarily map LP(R;,R"™) to P(R;,R™) for 1 < p < oo, Chen and Francis used a
filter F' such that the composition 8, o F' is bounded from LP(R;,R"™) to ¢P(Ry,R™).
By Theorem 2.3.5, 8, is bounded from W1?(R,,R") to /P(R,R") for 1 < p < cc. In
the light of this, the conditions on exogenous inputs in [1] (and [2]) and in Theorem
4.2.1 are the same. More importantly, in [1] and [2] it is required that the plant and
controller are strictly causal (in particular ruling out static output feedback), whilst
we allow for feedthroughs D and D, in the plant and controller.
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Chapter 5

Indirect sampled-data control
with variable sampling period

In this chapter, we study indirect sampled-data control with variable sampling period:
we consider (pre-specified) time-varying sampling period as well as sampling period
which is updated on the basis of an adaptation rule.

5.1 Time-varying sampling period

In this section, we consider indirect sampled-data control with time-varying sampling
period. This is relevant in some practical digital control applications, where computer
overloading, networks, communication errors, etc. may cause delays and sampling pe-
riod jitter. Moreover, the analysis of sampled-data systems with time-varying sampling
period is important in the context of problems where the sampling period is determined
by an adaptive feedback mechanism.

Consider the continuous-time state feedback system again

i(t) = Axz(t)+ Bu(t); 2(0)=2"cR", (5.1a)
u(t) = Fu(t), (5.1b)

where A € R™*" B € R™™ and F € R™*"™.

Let t := (t3)rez. be a sequence of sampling points, where

to=0, tey1 > tp, VkeZi, t, > o0 as k— 00. (5.2)

The sampling period 73 := t11—tx is not constant anymore, and becomes time-varying.
We use sampling and hold in (5.1b) to obtain the corresponding sampled-data feedback
system
i(t) = Az(t)+ Bu(t); z(0)=2"€cR", (5.3a)
u(t) = F:c(tk) , Vte [tk, tk—f—l) . (5.3b)
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Define

7 :=liminf{r;}, 7 :=limsup{m}.
k—o0 k—o0

Let z(-;2% t) denote the solution of (5.3). The variation-of-parameters formula yields
0
z(ty +0;2°,t) = (eA9 +/ eAsdsBF> z(ty;2°,t), VOel0,7),VkeZ,. (5.4)
0

Set 1= x(ty; 2%, t) for all k € Z,. It follows from (5.4) with 6 = 75, that
Tpy1 = Dz, VkEZy, (5.5)
where

Tk
Ay, = eTr +/ e*dsBF .
0

Set D := {(k,l) € Zy x Zy : k > l}. The matrices (Ay)rez, generate an evolution
operator ®(-,-): D — R™* " satisfying

o= if k=1 (5:6)
’ Ap 1A oAy, ifE>1

For every I € Z and every z € R", the solution of the initial value problem
Tpy1 = Dpzg, k2>1; T =z

is given by
k— ®k,0)z, k>I.

Definition 5.1.1. A number p > 0 is said to be a power rate of (5.5), if for every
l € Z4, there exists M; > 1 such that

[k, DIl < Mp*™", VE>1.

Let w,. denote the exponential growth of (5.1).

Theorem 5.1.2. Let a > w.. Assume that supyey {7k} < 00 and T > 0. There exists
7* > 0 such that, if T € (0,7%), then the following statements hold:

(1) If w. >0, then p = €T is a power rate of system (5.5).

(2) If w. <0, then p = €T is a power rate of system (5.5).

Proof. Let a@ > w, and (8 € (w,, @), where we choose o < 0 if w, < 0. We know that
A+ BF — B3I is exponentially stable. There exists P = PT with P > 0 such that

(A+BF - BI)' P+ P(A+ BF — BI) = —1I,
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(see, for example, [71, Theorem 18, p.231]). Thus
(A+ BF)'P4+ P(A+BF)=23P —1I. (5.7)
Define a new norm || - ||p on R™ by setting
|z|% = (2, Pz), VzeR".

Note that || - || p is equivalent to the Euclidean norm || - ||, i.e, there exist A, A > 0 such
that
Mzl < Iz < All2l?, ¥z e R™. (5.8)

(Possible choices for A and A are the smallest and largest eigenvalues of P, respectively.)
To prove that p is a power rate of system (5.5), we need to show that for every [ € Z,
there exists M; > 1 such that

o~ B Dok, D)p < My, Vk>1.

It is sufficient to prove that there exists N; > [ such that (|[p~*=D®(k, )| p)r>n, is
non-increasing, i.e.,

lp~ D0k + 1,0 < (I~ ® DB, Dp, VRN

To this end, by (5.6) and since p > 0, it is sufficient to prove that ||p71Ax|[p < 1 for
almost all k € Z (a.a. k € Z,), that is,

lp ™ Apzl|3 — [I2]> <0, aa. keZy, VzeR",

Using the power series expansion of e,
Ay =1+ 7,(A+BF)+7T(r.), VkeZ,, (5.9)

where

1 Tk Tj )
[(rk) == 5 A(A + BF) + aAQ(A +BF)+...+ UT’“Q)!AJ“(A +BF)+....

Fix 70 > 0 and only consider sequences (Tk)kez . such that supyey LTk S 70, There
exists M > 0 such that ||['(7;)|| < M for all k € Zy. Let z € R". By (5.7), (5.9) and
the Cauchy-Schwarz inequality,

o~ Azl = 12117

p Az, PALz) — (2, Pz)

p 2l + (A4 BF))z, P[I + 7(A+ BF))z) — (2, Pz) 4+ O(1d)||2|*

(p72 = 1){(2, P2) + p°mi(2,[(A + BF)TP + P(A + BF)]2) + O(7})| 2|I?
(p2 = DllzllB + o281z I — [121%) + O()|=1I?

o2 (1 +267) — 213 — p *mellzl* + O)=11?, Yk e Zy. (5.10)

VARVAN
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We first prove Statement (1). Assume that w. > 0. There exists u > 1 such that
0 < Bp < a. Setting p = €7, we have

P1+28n) -1 = e T(1+2087) -1
[1—2a7 4+ O(T )](1 +207) — 1
[1— 287+ OF))(1 +28m) — 1

<
< (=28)(uT — 1) — 46%un T + O(F?), Vk € Zy. (5.11)

By the definition of 7, 7, < p7 for almost all k& € Z,. Consequently, by (5.10) and
(5.11), we have

le™TApzlp — 27 < (=20)(u7 — w)ll2llB + OF)|2l7 — e me2)”
+0()|21?, aa keZ,. (5.12)

Define
Ky :={keZs:(512) holds, 7, <7}, Ky:={ke€Zy:(5.12) holds,7 <7, < u7}.
Then K U K> is co-finite in Zy (i.e., Zy \ (K1 U K>) is finite).

Case 1: k € Kj.
It follows from (5.12) and the positivity of 3 that

le T Agz — 123 < [(=28) (1 — 1)7 + O[3 + [—e 27m + ORI

Since 8 > 0 and p > 1, there exists 7* € (0,7°) such that if 7 € (0,7*) (and hence
7 € (0,7%)), then |[e™ T Agz||% — ||2[|% < 0 for all k € Kj.

Case 2: k € Ks.
By (5.8) and (5.12),

le™T Awz||B — Il=I%

1 —2aT — 1 —2aT
< (-20)(ua7 = m)lalfs + |3 27+ 806 el + |- ge 7+ (D) o1

< (-20)(u7 = el + [~ 2774 0| IalP + |- ge 27+ OB 1P

Consequently, there exists 7** € (0,7*) such that if 7 € (0,7**) (and hence 7, €
(0, u7**)), then |[e T Agz||% — ||1z]|% < 0 for all k € Ky. Combining the above two
cases, if 7 € (0, 7**), then |le™°TAgz||% — ||2]|% < 0 for almost all k € Z,. Hence €7 is
a power rate of (5.5) if 7 is sufficiently small. This finishes the proof of Statement (1).
To prove Statement (2), assume that w, < 0, so that w., < f < a < 0. There exists
0 € (0,1) such that 50 < a. Setting p = €7, a straightforward calculation shows that

e (1 +207) — 1 < (=28)(0r — ) —4F%0mz + O(2%), VK E€Zy.  (5.13)
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By the definition of 7 and 7,

Or <7, <

DN w

?, a.a. k€Z+

Consequently, by (5.10) and (5.13), we have

e Agzl3 — 1213
< (=28)(6z — )23 + O3 — e |z + O(r2) |1
< (=28)(0z - lllB — e T ll22 + O(R)I2]?,  aa k€ Ly

Since 8 < 0, we conclude that there exists 7% > 0 such that if 7 € (0,7*) (and hence
T € (0,(3/2)7*)), we have

He_O‘IAkZH%D _ HZH%D <0, aa ke€eZg,

showing that e®T is a power rate of (5.5) if 7 is sufficiently small. O
Alternatively, we have a second proof for Theorem 5.1.2.

Alternative proof of Theorem 5.1.2. Let o > w. and € (w.,«), where we choose
o < 0if w. < 0. There exists M > 1 such that

|eATBE L < MeP||z]], Vt>0, VzeR".

We introduce a new norm | - | on R” by setting

2| == sup [|le PleATBRIL|| vz e R,
>0

It is clear that
[2]] < 2] < Mllz]|, VzeR", (5.14)

showing that | - | is equivalent to the Euclidean norm || - ||. Moreover,

(A+BF)tZ| sup ||€fﬁse(A+BF)(t+s)ZH

s>0

e
_ eﬁt sup ||€fﬁ(t+s)e(A+BF)(t+s)Z||

s>0

A+BF)s

IN

¢ sup |le™%%e!
s>0

= Pz, VzeR™, Vt>0. (5.15)

d

Similar to the first proof of Theorem 5.1.2, if we can show that there exists p > 0 such
that
lp Arz| — 12| <0, aa. k€Z,,VzeR",
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for sufficiently small 7, then p a power rate of (5.5). To this end, define W: Ry — R™*"
by

t
Wi(t) := /0 ASBEF (I _ e(A+BF)(t—s)) ds .

Fix 70 > 0 and only consider (73 )xez, such that supj_. 7% < 7°. Then there exists
M; > 1 such that

e BE||||I — eATBE) =) < oM (1, — 5), Vs e[0,m], Vk € Z, .
Therefore,
Tk
W ()] < / My (1 — s)ds < Myt¢, Vk€Z, . (5.16)
0
By Lemma 3.2.3, we know that

Ay = eAHBO LWi(n), VkeZ,. (5.17)

First, we assume that w. > 0. By (5.14)—(5.17), we obtain

™ Az] — 2] < eIl BEI | 4 e (72 |2
(ePTe=OT L =T MW (71,)| — 1)|2|

(e7OT=Bm) L o= T MM 72 — 1)|2|, VkeZ,. (5.18)

VAN VARVAN

Choose 71 > 0 such that 3+ v1 < a. By the definition of T,

«

B+m

T < T, aa keZy.

Consequently,
B < (B+m)m < oF, aa keZy.
Invoking the fact that e™* <1 —te™" for all ¢t > 0, it follows from (5.18) that
le™ T Apz| — |2|
< (—(cﬁ — Bry,)e”(0T=Bm) 4 e_O‘FMMlT,?) ||
- (_ [0F — (B + 71) 7] €T ™) — qpem (T B e*‘ﬁMMlTl?> ]
< (_ [0 — (B + y1)7e] e @7 F) — e 1 + MMlT/%) |z|, aa. keZ,.

Hence if 7 is sufficiently small, then |[e"®TAgz| — |z| < 0 for almost all k¥ € Z,. This
completes the proof of Statement (1).

Next we assume that w, < 0, so that w, < f < a < 0. Invoking (5.14)—(5.17) and the
same argument used to obtain (5.18), we conclude that

e T Apa| — |2| < (7T 4 e TMMy T — 1)|2], Vk €Ly
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Choose 72 > 0 such that 6 + 9 < «. By the definition of 7 and 7,

«
T <71 <

ﬂ+ _5?, a.a.kEZ_,_.
Y2

Consequently,
B < (B+v)m <ar, aa keZy.

Since et <1 —te~! for all t > 0, it follows that
T Agz] — |2

< (—(az — Bri)e 0T =B) 4 e_O‘IMMlle) |z

= (— [ar — (8 + 7o) 1) e~ (OT7B™) — qpe=(o=Bmk) 4 eiO‘IMMlTlf) ||

< (— [ar — (B + ~2) 7] e~ (@7 F) — Yo 7 + e_O‘IMMlTlg) |z|, aa. keZy.
Hence, if 7 is sufficiently small, then |e”*TAgz| — |z| < 0 for almost all k € Z. This
proves Statement (2). O

Definition 5.1.3. A number « is said to be an exponential rate of (5.3) if there exists
a constant M > 1 such that

lz(t; 20, )| < Me|| 2|, Vt>0, Va e R™.
We say that system (5.3) is exponentially stable if it has a negative exponential rate. <

The following theorem shows that an exponential rate of the continuous-time feedback
system (5.1) is also an exponential rate of the sampled-data system (5.3) under certain
conditions.

Theorem 5.1.4. Let o« > w.. Assume that imy_.oo Tk = Too € (0,00). If Too is
sufficiently small, then « is an exponential rate of (5.3).

Proof. By assumption, 7 = 7 = 7o,. Let a > w., where we choose a < 0 if w. < 0.
It follows from Theorem 5.1.2 that there exists 7% > 0 such that if 7o, € (0,7%), then
e®™> is a power rate of (5.5). Assume that 7o, € (0,7%).

We first assume that w. < 0, so that a € (w.,0). For sufficiently small £ > 0, (oo te)
is also an power rate of (5.5). Hence there exists M > 1 such that

|z (ty; 20, )| = | @ (K, 0)2°| < MerT=tok)20 - Yk eZ,, Va® e R".  (5.19)

where ®(-,-) is defined in (5.6). There exists N € N such that 7, < 7o + ¢ for all
k > N, that is, tx11 — tx < Teo + € for all £ > N. Summing over k, we obtain

tk—tNS(k:—N)(Too—f—s), Vk > N. (5.20)
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Since a < 0, by (5.19) and (5.20),

||$(tk;$0,t)” < Mea(TOOJrE)Nea(TOOJrE)(ka)HxOH
< Mea(fooJrE)NeOl(tk*tN) HxOH

Meclreete)N=tnlcoti 20| - > N | va® € R,

Set

~v:= sup {rx} and M;:= max
k}EZJr tE[O,'y]

t
eAt—}—/ eAsdsBFH .
0

Case 1: t > ty.
Then t € [tg, tr+1) for some k > N. By (5.4) and (5.21), we obtain that

l(t;2°,2)| M|z (ty; 2%, )|

<
< MlMeoz[(Too-i—e)N—tN}e—a(t—tk)eat‘|x0 H
< Mpe|2®||, va® e R",

where My := MMleo‘[(T°°+5)N_tN]e_o‘7.
Case 2: t € [0,tn).
Then ¢ € [tg, txy1) for some k € {0,1,..., N —1}. Set

M3 := Mye~ 'V max{||®(k,0)

|:ke{0,1,...,N—1}}.

By (5.4), we have

lo(t; 2% ¢)| < Milla(te;a®, t) < M| @(k, 0)][l2°]
< My[|®(k, 0)]]e” " e |2
<

Mze®||2%], Va2 e R™.

(5.21)

(5.22)

By the two cases above, we see that « is an exponential rate of (5.3) if 7o is sufficiently

small.

If we > 0, then for sufficiently small ¢ > 0, e(Te0 _i) is also a power rate of (5.5). There
exists N € N such that 7, > 7, — € for all K > N, that is, ty11 — tx > Too — € for all

k > N. Summing over k, we obtain

(k—N)(Too —€) <ty —tg, Vk>N.

Consequently, since o > 0 and e*(72 =€) i also a power rate of (5.5), there exists M>1

such that

||$(75k;; :CO, t)H < Mea(Too—e)Nea(Too—e)(k;—N)HxOH

Mea(TOO*E)Neo‘(tk’tN) on H

IN

= Melre—oN=tgleate| 20 Wk > N, Va0 € R,
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Case 1: t > tg.
Then t € [tk,tx+1) for some k > N. Set My := MMleO‘[(TOO*E)N*tN]eM, where v and
M, are defined in (5.22). By (5.4) and (5.23), we obtain that

lz(t;2® )l < M|z (ty;2®, t)l]
< MlMea[(Too—e)N—tN}e—a(t—tk)eothxOH
<

Mye® |20, Va® e R™.

Case 2: t € [0,t5).
Then ¢ € [tg,tr11) for some k € {0,1,... N — 1}. Set

Mj := My max{||®(k,0)| : k € {0,1,...,N —1}}.

By (5.4), we have

le(t; 2%, )l < Mala(t; 2%, t)| M| @ (k, 0)][[|=°]]

<
< M| ®(k, 0)][e[|2°
< Mze®||2%, Va2 e R™.

By the two cases above, we see that « is an exponential rate of (5.3) if 7o is sufficiently
small. 0

We state and prove the following theorem, which is crucial to the proof of Theorem
5.2.2, the main result of next section.

Theorem 5.1.5. Assume that the continuous-time feedback system (5.1) is exponen-
tially stable. If (Ty)rez., satisfies the conditions

lim 7, =0 and linlfw{mko‘} >0 for some a € (0,1), (5.24)
€

k—oo

then the solution (xi)kez, of (5.5) is in (*(Z4,R™).

Proof. It follows from the exponential stability of (5.1) that there exists P = PT, P >0
such that
(A+BF)'P+ P(A+BF) = -1 (5.25)

(see, for example, [71, Theorem 18, p.231]). We define a norm || - ||p on R™ by setting
|2]|% = (2, Pz), as in the proof of Theorem 5.1.2. Thus there exist A, A > 0 such that

Mzl < 217 < Allz)®, ¥z eR™. (5.26)

Using the power series expansion of e4?,

Ak:I+Tk(A+BF)+T/§F(Tk), Vk € Zy ,
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where

1 Tk Tj )
[(rk) == 5 A(A + BF) + aAQ(A +BF)+...+ UT’“Q)!AJ“(A +BF)+....

The convergence of (73)rez, implies (7j)rez, is bounded. Hence, the sequence
(IT(7x)||)kez, is bounded. Therefore, by the Cauchy-Schwarz inequality and (5.25),
there exists M7 > 0 such that

(Agzr, PAgzy) — (21, Pry)
< 7(zk, [(A+ BF)'P+ P(A+ BF)] z) + Mi7¢||zk ||
< —mpllwel® 4+ Myt anl?, Yk € Z, . (5.27)

lzks1llE — lzxllB

Since limy_. o 7% = 0, there exists N € Z, such that

Tk
—Tllwell? + Myrg || |* < _?kaw’ Vk>N.

Consequently, it follows from (5.26) and (5.27) that

Tk Tk
lonsallp < el — Elanl? < (1= 25 ) lanld, VE=N.  (5.28)
Hence
k—1 -
loeld < | TT (1= 5%) | lowld, k=N +1. (5.29)
j=N

If zy, = 0 for some kg > N, then it follows from (5.28) that z; = 0 for all k > k. Thus
(zk)kez, € L1(Z4,R™). Assume now that zj, # 0 for all k > N. By (5.28), we see that
1 —7,/(2A) > 0 for all £ > N. Moreover, since M := infren{mk“} > 0, 7, > M/k"
for all £ € N. Thus

Tk M

S [ > N.
0<1l-gr<l-gro. Vk=2N

Therefore, by (5.29), we obtain

k-1 1

M \2
lzelle < | ] <1 - 2Aja) lenllp, Vk>N4+1. (5.30)
j=N

Define v: Zy — R4 by

o(k) = Jﬁk <1 - an)% .

J=N

By (5.26) and (5.30), in order to show that (zj)kez, € ¢*(Z4,R™), it suffices to show
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that v € £1(Z,,R). Invoking the inequality 1 —t < e~! for t € R, we have
l 1 1 1
o= (1o M V(o My (oM )
kz_ov( ) = 2AN® 2AN® 2A(N + 1)°
N+l 1
M 2
... 1-—
o I 2Aja>

. MY, M1, 1
= OPATAN ) TP T\ Ve T (Vv r e

ik 2\
= OPATANe ) TP\ T A e
1+ 1)M
+...+exp( i) MEr (5.31)

Since a € (0,1), it follows that

M(l+1)
v (“ghov ) </

for sufficiently large [. Hence, the right-hand side of (5.31) converges to a finite limit
as | — oo, showing that v € £1(Z,,R). O

5.2 Adaptation of the sampling period

By Corollary 3.1.6, we know that if the continuous-time state feedback system is expo-
nentially stable, then the corresponding sampled-data system with constant sampling
period is also exponentially stable, provided that the sampling period 7 > 0 is suffi-
ciently small. The problem is that it is difficult to estimate how small the sampling
period has to be in order to achieve stability of the sampled-data system. In this
section, we first develop an approach for state feedback systems which is based on an
adaptive law for adjusting the sampling period. We then extend this approach to static
output feedback systems and dynamic output feedback systems.

Throughout this section, let (5x)rez, be such that
Bo=0, PBry1>pPk,VkeZy, [(r—o0ask— o0.
Let (0x)rez, be a positive sequence, i.e., d; > 0 for all k € Z. Define the function
:Ry = Z4, z—max{j € Zy : f; < z}.

Trivially, z € [B,(2), Bp(z)+1) for all z € Ry.
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5.2.1 State feedback
Consider the continuous-time state feedback system

i(t) = Ax(t)+ Bu(t); =z(0)=2z2"€R", (5.32a)
u(t) = Fux(t), (5.32b)
where A € R™", B € R™™ and F' € R™*". Let t := (t})rez, be the sampling points

satisfying (5.2). Set 7 := tj41 — ti for k € Z. We use sampling and hold in (5.32b)
to obtain that

@(t) = Ax(t)+ Bu(t); 2(0)=2"cR", (5.33a)
u(t) = F.’L‘(tk) , Vte [tk, tk‘+1) . (5.33b)

We generate the sampling points (Z;)rez, by the following recursive adaptive law

to:=0, ko:=0, op := ||2Y),
o1 i= 0y + oty
ti=ty +(G—k)o, j=k+1,... k1,
where k;11 > k; + 1 is such that Adaptive strategy (AS1).
Tkpyr—1 < ﬂ%(dkl)Jrl v Ok 2 ﬂ%(dkl)Jrl .
Or, if such a k;11 does not exist, then
ti=ty,+G—Fk)o, j>k.

In the latter case, we set
kl-i—j =k, VjeN,

and say that the sequence (k;)jez, is ultimately constant. The adaptation of the
sampling period terminates in finite time if and only if (k;) ez, is ultimately constant.

The idea of (AS) is that the () are thresholds and the d are possible sampling periods.
Note that (0;)jez, is non-decreasing and each o; lies in an interval given by two
consecutive thresholds: if 0,11 lies in an interval different from the interval containing
oj, then the algorithm changes the sampling period; otherwise, the same sampling
period is used.

System (5.33) combined with the adaptive strategy (AS1) has a unique solution, de-
noted by x( - ;x%). Of course, z( -;2") depends on (Br)kez, and (x)rez. , but since
these two sequences are fixed, we do not indicate the dependence of z(-;z%) on (B )rez N
and (0x)rez, . Note that

k
o= la(t;a%), VkeZy. (5.34)
7=0

In Figure 5-1, which illustrates strategy (AS1) for the adaptation of the sampling points,

o1



0'6:
g5 - *

g [ B &

01 F *

ook . . . L Bo
0 t1 to ts ty t5 te t7 ts to tio t

Figure 5-1: Tllustration of adaptive strategy (AS1).

we have

ko=0, ki=3, kj=4,Vj>2;
tj=j50, Vi=1,2,3; ty =13+ 01 tj=t4+(j—4)52, Vi >5.

Lemma 5.2.1. The sequence (kj)jez, is ultimately constant if and only if the sequence
(0})jez, is bounded.

Proof. By (AS1), the sequence (k;);ez, is ultimately constant if and only if there exists
l € Z4, such that

Tki+j € [/Bcp(O'kl)v /Bcp(ale—l) 5 vj S Z+ .
The existence of such a number [ is equivalent to the boundedness of (0;);ez., - O

Theorem 5.2.2. Assume that the continuous-time state feedback system (5.32) is ex-
ponentially stable and that the positive sequence (0x)rez, Satisfies

lim 6y =0 and linlfw{@k:a} >0 for some a € (0,1). (5.35)
€

k—o0

Then, for any x° € R™, the following statements hold for the closed-loop system given
by (5.33) and (AS1):

(1) the adaptation of the sampling period terminates in finite time;

(2) limyooz(t;2°) = 0, 2(-;2%) € L'(R+,R") and (x(ty;2°))kez, € £'(Z+,R"),
where x( - ;x°) is the solution of the adaptive system given by (5.33) and (AS1).

Proof. We first show that (0j);ez, is bounded. Seeking a contradiction, suppose
(0j)jez, is unbounded. By Lemma 5.2.1, we know that (k;)jcz, is not ultimately
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constant, so that lim; .. k; = co. By (AS1), the sampling period 7; := tj;1 —t;
satisfies
Tj=5l, Vi=ky,....,kjpy1 — 1, YleZy,

and k; > [ for all [ € Z. Thus,
Tjja:&jazélla, Vj:kl,...,k:l+1—1,Vl€Z+,

Moreover, since limg_,o 0 = 0, it is easy to see that limy_ ., 7 = 0. Therefore, it
follows from Theorem 5.1.5 that (z(tx;2°))kez, € ¢*(Z4,R™). By (5.34), we see that
(04)jez, is bounded, contradicting our supposition. Consequently, the supposition is
wrong, showing that (0;)jez, is bounded. Invoking Lemma 5.2.1 completes the proof
of Statement (1).

To prove Statement (2), we set

0:= sup 6y < oo and M := sup

t
eAt—i—/ A BFds
keZy t€[0,3] 0

Since (0j)jez, is bounded, by (5.34), we conclude that (z(t;2°))kez, € ¢*(Z4,R™).
Thus limy,_o 2(t; 2°) = 0 for all 2° € R™. By the variation-of-parameters formula, we
have

|z(ty + 0;2°)|| < M||z(ty; )|, VO €[0,7), Va®eR™.

Consequently,

lim z(t;2%) =0, Vva®eR".

t—o00

Moreover,

0 thy1 B 0 B
]l = Z/ 2(t;20)|dt < ME ||t 2°)[| = M6 (2 (t; 2°)rez, o < o0,
k=0 "tk k=0

showing that x € L*(R4,R"). O

To illustrate Theorem 5.2.2, we present two numerical simulations.

Example 5.2.3. Let the matrices A, B and F in system (5.32) be given by
a= (Y, g=(?), F:(Q _5). (5.36)
-2 3 1

o(A) = {1+V2}, o(A+BF)={-1,-2},

Then
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Figure 5-2: Sampled-data control with adaptive sampling period for Example 5.2.3 (at starred
points, the sampling period is adapted).

showing that A is unstable, whilst F' stabilizes the pair (A, B). Set

0.7
=2k, 0p=——-~; VkEZ,,
and initial condition z° := (2,3)7. Clearly, (6y)rez, satisfies condition (5.35) with

o = 1/2. Hence, the conclusions of Theorem 5.2.2 are true. Figure 5-2 shows ||z (¢; 2%)]|
and 7; = tj41 — t; for j € Z when the adaptive sampled-data strategy (AS1) applied
to system (5.33), with A, B and F' given by (5.36).

Next we consider a 2-input/2-output linear system.

Example 5.2.4. Assume that A, B and F' in system (5.32) are given by

11 0 0 1 , 1 s
A=lo00 1|, B=[|1 1|, F= :
—2 0 05
02 -1 0 0
Then
o(A) ={1,1,-2}, o(A+BF)={-1,-1+i}.
Set
B =100k, 0= —2 . Vkez
ke RN VPR +5

and the initial condition 2° := (1,2,3)”. Clearly, (Jx)rez, satisfies condition (5.35)
with @ = 1/2. Hence, the conclusions of Theorem 5.2.2 are true. The result is illus-
trated by Figure 5-3.

Remark 5.2.5. If the assumptions of Theorem 5.2.2 hold, then there exists N € Z
such that the adaptation of the sampling period terminates after 5, and the constant
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Figure 5-3: Sampled-data control with adaptive sampling period for Example 5.2.4 (at starred
points, the sampling period is adapted).

sampling period dy is used from t = ¢, onwards, i.e.,

tjztkN+(j—kN)(5N, Vi > kn.

Moreover, by Theorem 5.2.2,
Ai;kNx(tN;xO) =2(tj;2°) =0 as j— o0,
However, Ay, may not be power stable, since N depends on z° and thus AZ;N may not

go to 0 as j — 0o. To see this, consider Example 5.2.3, where we still set G := 2k and
O :=0.7/(k 4+ 1)1/3. The two eigenvalues A1, Ao of Ag = e4% + fO(SO e*BF are

A1~ 0.5493, A2~ —3.9359.

Let v denote a normalized eigenvector of Ag corresponding to A\;. With 20 := v, it
follows trivially that

1A32° = [[Nv]l € (Bo, B1) = (0,2), VjeZy,
showing that no adaptation takes place, implying that N =0, i.e., ky = kg = 0. Whilst
lim z(t;;2°) = lim A%xo = lim )\{U =0,
J—00 J]—00 J]—00

Ag is not power stable. <&
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5.2.2 Static output feedback

Consider the static output feedback system

i(t) = Ax(t)+ Bu(t); z(0)=2"€cR", (5.37a)
y(t) = Cua(t), (5.37b)
u(t) = Ky(1), (5.37¢)

where A € R B € R"*™ (C € RP*™ and K € R™*P. The system (5.37) is exponen-
tially stable if and only if A + BKC' is exponentially stable.

Let t := (tx)rez, be sampling points satisfying (5.2). Using sampling and hold in
(5.37c), we obtain

i(t) = Ax(t)+ Bu(t); z(0)=2"€cR", (5.38a)
y(t) = Cux(t), (5.38b)
u(t) = Ky(tk) , Vte [tk‘)tk‘-i-l) . (5.38C)

Let x( - ;2% ¢) denote the solution of system (5.38) and set 7, 1= tpy1 — 5 for k € Z.
The variation-of-parameters formula yields

0
x(ty 4+ 0;2°t) = <eA9 + / eASdsBKC> x(ty; 2% t), VO € (0,7 (5.39)
0
It is easy to see that

Tk
z(tpyr; 20, t) = <eATk —|—/ eASdsBKC'> z(ty; 2% t), VkeZ,. (5.40)
0

Note that (5.37), (5.38) and (5.40) are special cases of (5.1), (5.3) and (5.5), respectively,
with F' = KC'. Hence, the lemma below follows immediately from Theorem 5.1.5.

Lemma 5.2.6. Assume that the static output feedback system (5.37) is exponentially
stable. If (Tp)rez, satisfies (5.24), then (x(ty;2°,t))kez, € (H(Z4,R™).

We now develop an adaptive strategy for the generation of the sampling points (1 )xez. -
Instead of using state information as in (AS1), we now use output information, i.e., we
replace (AS1) by

to:=0, ko :=0, o9 = [ly(0)] = [|C°|,
o1 =05+ Iyt
ti=ty,+G—k)or, j=k+1... k1,
where k1 > k; + 1 is such that Adaptive strategy (AS2).
Okpy1—1 < ﬁ‘ﬂ(”kl)‘f'l v Ok 2 ﬁ‘ﬂ(”kl)‘f'l :
Or, if such a kj11 does not exist, then
ti=ty,+G—Fk)o, j>k.
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System (5.38) combined with the adaptive strategy (AS2) has a unique solution, de-
noted by z( -;2%). Since (Bg)kez, and (0k)rez, are fixed, we do not indicate the
dependence of z( - ;2°) on these two sequences. Note that

k
on =" lyt)ll, VkezZs. (5.41)
j=0

By (AS2), it is clear that Lemma 5.2.1 still holds, i.e., the sequence (k;);jez, is ulti-
mately constant if and only if the sequence (o) ez, is bounded.

Definition 5.2.7. A number 7 > 0 is said to be pathological relative to A € R™ "™ if
there exist k € Z\ {0} and A, u € 0(A) Ncl(Cyp) such that

TN — p) = 2kmi.

Otherwise, 7 is said to be non-pathological relative to A. We say a positive sequence
(75)jez. is pathological relative to A if there exists j € Z, such that 7; is pathological
relative to A. On the other hand, (7;);ez, is said to be non-pathological relative to A,
if 7; is non-pathological relative to A for all j € Z. O

Theorem 5.2.8. Assume that the continuous-time static output feedback system (5.37)
is exponentially stable and that the positive sequence (0 )rez, satisfies

li = inf o 1).
kirgoék 0 and érelN{&gk } >0 for some a € (0,1)

For all 2° € R", the following statements hold for the closed-loop system given by (5.38)
and (AS2):

(1) the adaptation of the sampling period terminates in finite time;
(2) if (Ok)kez, is non-pathological relative to A, the limy_.oc x(t;2%) = 0, z(-;2%) €

L'(R4,R™) and (z(ty;2°))kez, € 1(Z4,R™), where x( - ;2°) is the solution of
the adaptive system given by (5.38) and (AS2).

Proof. We first show that (0j);ez, is bounded. Seeking a contradiction, suppose
(0)jez, is unbounded. By Lemma 5.2.1, we know that (k;)jcz, is not ultimately
constant, so that lim; .. k; = co. By (AS2), the sampling period 7; := tj11 —t;
satisfies

Tj=5l, Vi=ky,....,kjpy1 —1; YleZy,

and k; > [ for all [l € Z. Thus,
Tjja:5lja25ﬂa, Vj:kl,...,k:l+1—1;Vl€Z+,

'”. [‘ (0% > '”. [‘ 5 (6% () vl E ZZ
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Moreover, since limy_,o, 0 = 0, it is easy to see that limg_,., 7 = 0. Therefore, by
Lemma 5.2.6, (z(tg;2%))kez, € ¢*(Z4,R™). It follows from (5.38b) that (y(t))kez, €
(Y (Z4,RP). Clearly, by (5.41), (0)jez, is bounded, contradicting our supposition.
Consequently, the supposition is wrong, showing that (0;);ez, is bounded. Invoking
Lemma 5.2.1 completes the proof of Statement (1).

Statement (1) implies there exists N € Z, such that the sampling period oy =: 7 is
used from ¢ = tj, onwards, i.e.,

tj:tkN+(j—kN)T, VjZk‘N

Since system (5.37) is exponentially stable, the pair (C, A) is detectable. By assump-
tion, 7 is non-pathological relative to A. Therefore the pair (C,e4™) is discrete-time
detectable (see Theorem A.2.2 in the Appendix). Hence there exists H € R"*P such
that e4™ + HC is power stable. By (5.40), we obtain that

z(tjp1;2°) = eMa(t;;a0) + B, KCx(tj; 2°)
(e + HC)x(t;;2°) + (B, K — H)y(t;), Vi>kn, (5.42)

where B, = [ e*dsB. Since (0})jez, is bounded, by (5.41), (y(tx))kez, € €1(Z4,RP).
It follows from (5.42) and the power stability of ™ + HC that (z(ty;2°))kez, €
(Y(Z,R™). Invoking (5.39), it follows from an argument identical to that used in the
proof of Theorem 5.2.2 that x € LY(R,,R™) and lim;_, x(t; 2°) = 0. O

Remark 5.2.9. For (0;)kez, , define D C R™*™ by

D :={A € R"™™: (6;)rez, is non-pathological relative to A}.

By Theorem A.1.1 and Corollary A.1.2 in the Appendix, we know that D is dense in
R™ " and that additionally if limg_,o, 6 = 0, then D is also open. Hence, given a
positive sequence (6 )rez, with limy_., 6 = 0, the probability that a randomly chosen
matrix A € R"*" has the property that (Jx)rez, is pathological relative to A is zero.

&
5.2.3 Dynamic output feedback
Finally, consider the dynamic output feedback system, where the plant is given by
&y = Aprp+ Bpup; z,(0) = xg eR", (5.43a)
yp = Cprp+ Dpu,, (5.43b)

where A, € R"*" B, € R"*™ C, € RP*™ and D, € RP*". The controller is of the
form

T. = Acxe+ Beue; x(0) = :cg € R, (5.44a)
Ye = Cexe+ Deue, (5.44b)
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where A, € R"*" B, € R"*P C. € R™*" and D, € R™*P. We use the output y, of
(5.43) as the input for (5.44), and the output y. of (5.44) as the input for (5.43), i.e.,

Ue =Yp, Up=7Yc, (5.45)
to obtain the feedback interconnection of (5.43) and (5.44). In order for the feedback
system to be well-posed, we assume that the matrix I — D.D, is invertible. Then
I — D,D, is also invertible, with

(I -D,D.)'=1+D,(I~D.D,)'D,.

For convenience, set

E,:=(—-D.D,)™", E.:=(I-D,D,)".

z= TP , A= Ap 0 , B := By 0 ,
Te 0 A, 0 B,

C:= Cp 0 , D = De 1 , E .= Ep 0 )
0 C. I D, 0 E.

Then, by a routine calculation’, the continuous-time dynamic feedback system given
by (5.43)—(5.45) can be written as

and

i=(A+BEDC)zx; x(0)=2"= (m
x

[T Ren)

> € Rwtne. (5.46)

Let t := (tx)rez, be sampling points satisfying (5.2). Set 7 := tpyq —t for k € Z.
Let the input u. in (5.44a) be given by

uc(t) = U(kj) , te [tk, tk-i—l) R

where v is a function Z; — RP. By the variation-of-parameters formula, we obtain
from (5.44) that

Tk

Te(tpp1) = e™a(ty) + / edsB.u(k); x.(0) =20 e R", (5.47a)
0

Ye(tr) = Coxety) + Dev(k), VkeZy. (5.47D)

We consider the sampled-data feedback interconnection given by

v(k) = yp(tr), up(te +0) = ye(ty), YO €[0,7), Yk € Zy . (5.48)

TSee Appendix A.4.1.
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The sampled-data feedback system given by (5.43), (5.47) and (5.48) has a unique
solution which will be denoted by

. 4.0
TGI8 w07, Yk ez, .
xc(tk;xo’t)

For convenience, we write

2p(-) = 2p(;2%t) and  z.(ty) := ze(ty; 20, t).

By the variation-of-parameters formula and a routine calculation’, we obtain that

’ A
(fﬂp(tk+9)> _ <€A”6 0 >+ /o o " BEDC (xp(t’“)> ,

Tk
reltin) 0 et 0 / eAesds ze(tr)
0
(5.49)
VH S [07Tk] ) vk S Z_ﬁ_, -’Ep(O) — fI,'O c Rnp+nc )
z.(0)
Setting
Tk
Ak::eATk+/ eASdSBEDC’
0
it follows from (5.49) with § = 73, that
<xp(tk;+1)> — A, (m(%)) , VkeZ,. (5.50)
Te(th+1) To(ty)

A simple calculation yields

(ycm)) _ (EpDccp E,C. ) (xpofk)) _ epe (xpofk)) | (5.51)
Yp(tr) E.C, E.D,C. xe(t) xe(ty)

Corollary 5.2.10. Assume that the continuous-time system (5.46) is exponentially
stable. If (Ty)rez, satisfies (5.24), then

(((L‘p(tk)>> c gl(ZJr’Ranrnc) ]
e(tr) keZ,

TSee Appendix A.4.3 with 0 = —1, e =1, r = 0, d = 0, A. replaced by e and B. replaced by

A
e”<%ds.
0
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Proof. Note that (5.46) can be written as the state feedback system

i(t) = Ax(t)+ Bu(t); z(0)=z" € R»Tne, (5.52a)
u(t) = EDCx(t). (5.52b)

With sampling points t = (tx)rez,, we apply sampling and hold in (5.52b) to obtain
the sampled-data system

i(t) = Axz(t)+ Bu(t); =z(0) =2z c Rwtne,

u(t) = EDCxz(ty), Vte [ty tesr).

Let x(-;2°,¢) denote its solution. Using the variation-of-parameters formula, we obtain

t(tpyr; 20, t) = Aga(ty; 2%, t), VkeZy; x(0;2°t) =20, (5.53)

By Theorem 5.1.5, we know that (z(ty;2%,t))kez, € ¢*(Z4,R™ 7). Noting the dy-
namics of systems (5.50) and (5.53) are both governed by Ay, it follows that

z(ty; 20, t) = (xp(tk)> , VkeZy,

xe(tr)

showing that <<xp(tk)>> € (N(Zy, Rwtne), 0
Sl?c(tk) kEZ4

Similar to (AS1), we consider the following adaptive strategy

to:=0, ko :=0, 00 := [lyp(0)[| + [[y(0)[ ,
i1 := 05 + lyp(tr )l + [lye(tie)ll
ti=ty,+G—k)or, j=k+1... k1,
where k;11 > k; + 1 is such that Adaptive strategy (AS3).
Okpy1—1 < ﬁ‘ﬂ(”kl)‘f'l v Ok 2 ﬁ‘ﬂ(”kl)‘f'l :
Or, if such a k;11 does not exist, then
tj=ty +(—k)o, >k

7

System (5.49) combined with the adaptive strategy (AS3) has a unique solution, de-
noted by

. 4.0
G20 v cion), kez..
xc(t/ﬁ;xo)

Since (B )rez, and (O )rez, are fixed, we do not indicate the dependence on these two
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sequences. Note that

k

ok =Y (lypt) + lyet)l), k€ Zy. (5.54)
5=0

By (AS3), it is clear that Lemma 5.2.1 still holds, i.e., the sequence (k;);jez, is ulti-
mately constant if and only if the sequence (0;) ez, is bounded.

Theorem 5.2.11. Assume that the continuous-time dynamic output feedback system
(5.46) is exponentially stable and that the positive sequence (0y)rez, Ssatisfies

lim 6y =0 and linlfw{@k:a} >0 for some o € (0,1).
€

k—o0

For all initial condition 2° € R™1"< the following statements hold for the closed-loop
system given by (5.49) and (AS3):

(1) the adaptation of the sampling period terminates in finite time;

(2) if (Ok)kez,. is non-pathological relative to A = diag(Ap, Ac), then

lim z,(t;2%) =0 and  lim 2.(tg;2°) =0,

t—o00 k—oo0

where

. .0
Tplte +0:27) )y e 0,7:), ke,
we(ty; 2?)

is the solution of the adaptive system given by (5.49) and (AS3). Moreover, x, €
LY R4, R™), (zp(t; 2°))kez, € €NZ4,R™) and (zo(ty;2°))kez, € (H(Zy,R™).

Proof. We first show that (0j);ez, is bounded. Seeking a contradiction, suppose
(0)jez, is unbounded. By Lemma 5.2.1, we know that (k;)jcz, is not ultimately
constant, so that lim; .. k; = co. By (AS2), the sampling period 7; := tj;1 —t;
satisfies

Tj=5l, Vi=ky,....,kjpy1 —1; YleZy,

and k; > [ for all [ € Z. Thus,
Tjja:&jazélla, Vj:kl,...,k:l+1—1;Vl€Z+,

“lf T ka > “lf (5 ka 0 VZ € Z+ .

Moreover, since limyg_,o, 0 = 0, it is easy to see that limg_,., 7 = 0. Therefore, by

Theorem 5.2.10,
<<:Cp(tk§x0)>> e EI(ZJF Rnp-i-nc) )
xc(tk;xo) keZ,
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It follows from (5.51) that

<<%“9>> € 0z, RP™).
Yeltr) kEZy

Clearly, by (5.54), (0})jez, is bounded, contradicting our supposition. Consequently,
the supposition is wrong, showing that (oj);cz, is bounded. Invoking Lemma 5.2.1
completes the proof of Statement (1).

Now Statement (1) implies that there exists N € Z, such that the sampling period
On =: 7 is used from time ¢t = t, onwards, i.e.,

tjztkN—i-(j—kN)T, Vi > kn.

By (5.54) and boundedness of (0;);ez, , we know that
Wp(te)kezs € C(Z4,RY),  (ye(te)kez, € €(Z+,R™). (5.55)

Since system (5.46) is exponentially stable, i.e., A + BEDC' is exponentially stable,
the pair (EDC, A) is detectable. By assumption, 7 is non-pathological relative to A.
Therefore the pair (EDC,e”7) is discrete-time detectable (see Theorem A.2.2 in the
Appendix). Hence there exists H € R(»+1e)x(m+p) guch that eA”™ + HEDC is power
stable. By (5.50) and (5.51),

<xp(tk+1%$0)> _ AT <$p(tk%$0)> + B.EDC <$p(tk;x0)>
Te(tpy1; 2°) zeo(tr; 20) Te(tr; 20)
= (e + HEDC) (xp(t’“;xo)> + (B, — H) (yc(t’“)> Yk > ky,
o(ty; 2°) Yp(tr)

where B, = fOT eA%dsB. By (5.55) and the power stability of eA™ + HEDC, we see
that

(@p(ti; 2°)kezy € €L, ™), (ze(tn; 2”))rez, € 0(Z4,R™),

showing that limy_ec 7p(tk;2°) = limg—eo zc(tg;2°) = 0. Invoking (5.49) and using
an argument similar to that in the proof of Theorem 5.2.2, we conclude that that
zp € LY(R4,R") and limy_, o x,(t; 2°) = 0. ]

5.3 Notes and references

Sampled-data control with time-varying sampling period arises when the output is
not available at equidistant sampling points due to errors. Moreover, the analysis
of sampled-data systems with time-varying sampling period is useful in the context of
problems where the sampling period is determined by an adaptive feedback machanism.
In the literature, it was also considered in the following situations:
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e For sampled-data high-gain stabilization problems, Owens [58] gave an example
to show that using constant sampling period, implementing a high-gain discrete-
time adaptive controller to a high-gain stabilizable continuous-time plant does
not lead to the stability of the closed-loop system. He presented an adaptive
law to adjust the sampling period. Sampled-data control of high-gain stabilizable
systems using adaptive sampling period is also studied by Ilchmann and Townley
[21].

e Motivated by the high-gain results in [21] and [58], Ozdemir and Townley [59],
in the context of infinite-dimensional systems, analysed a low-gain sampled-data
integral control scheme involving adaptation of the sampling period.

e If a continuous-time system is controllable/observable, then the discrete-time sys-
tem obtained by sample-hold discretization is also controllable/observable pro-
vided that the sampling period 7 satisfies the so-called “Kalman-Ho-Narenda”
criterion (see, for example, [2, Theorem 3.2.1, p.41]). But if the uncertainty of
the system is large, then a very small 7 may have to be chosen to satisfy this
condition: too small to be practically feasible. Kreisselmeier [28] showed that
applying sample-hold discretization with a periodic sampling pattern to a con-
trollable/observable continuous-time system leads to a controllable/observable
discrete-time system, provided certain mild conditions are satisfied.

To the best of our knowledge, all the results in this chapter are new. We remark

that Theorem 5.1.5 is crucial to the development of Section 5.2. A journal publication
containing the main results of Section 5.2 is in preparation [20].
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Chapter 6

Low-gain tracking and
disturbance rejection for
infinite-dimensional systems by
sampled-data control

There has been much interest in low-gain integral control over the last thirty years.
The following principle has become well established: an application of the integra-
tor (¢/s)I to an asymptotically stable, finite-dimensional continuous-time plant, with
square transfer function matrix G(s), leads to an asymptotically stable closed-loop
system which achieves asymptotic tracking of arbitrary constant reference signals, pro-
vided that the gain parameter £ > 0 is sufficiently small and the eigenvalues of the
steady-state matrix G(0) have positive real parts. This result has been proved by
Davison [8] and Lunze [48] using state-space methods and by Grosdidier et al. [14] and
Morari [55] using frequency-domain methods (see also the book by Lunze [49, Chap-
ter 10] and the textbook by Morari and Zafiriou [56, Theorem 14.3-2, p.362]). The
low-gain integral control approach has been successfully applied to industrial control
problems (see, for example, Coppus et al. [5]).

The above tuning integrator result has been extended by Hamélainen and Pohjolainen
[15], Logemann et al. [33], Logemann and Owens [38], Logemann and Townley [44]
Pohjolainen [61, 62|, Pohjolainen and Latti [63] and Rebarber and Weiss [65] to various
classes of (abstract) infinite-dimensional continuous-time systems. Furthermore, in [15]
and [65], the tuning integrator has been further developed into a tuning regulator which
achieves asymptotic tracking and disturbance rejection of signals of the form

N
Ze“"jtmj, ijR, ij(Cm,
j=1

for large classes of stable infinite-dimensional systems.

The aim of this chapter is to solve tracking and disturbance rejection problems for a
certain class of stable infinite-dimensional systems using low-gain sampled-data control
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Figure 6-1: Discrete-time closed-loop system.

(that is, to obtain sampled-data versions of the tuning regulator results in [15] and [65]).
In Section 6.1, we first design a simple discrete-time low-gain controller (depending on
only one gain parameter) for a power stable infinite-dimensional discrete-time plant
such that the closed-loop system is power stable and the output of the closed-loop
system tracks the reference signal r of the form r(k) = Zj\[: 1 )\?tj where t; € CP and
Aj € Cwith |A\;| = 1for j € N, and rejects disturbance signal d satisfies limy,_, o, (d(k) —
Z;V:l )\5‘0]-) = 0, where 0; € C™. The discrete-time results are used in Section 6.2 to
derive results on approximate tracking and disturbance rejection for a large class of
infinite-dimensional systems with impulse responses given by Borel measures. The
reference signals are finite sums of sinusoids, and disturbance signals are asymptotic to
finite sums of sinusoids. In Section 6.3, we conclude the chapter by extending the results
in Section 6.2 to exponentially stable well-posed systems with transfer functions which
are holomorphic and bounded in some half plane {s € C: Res > a}, where oo < 0, by

using suitable low-pass filters.

6.1 Low-gain control of discrete-time systems

6.1.1 Preliminaries

Consider the following discrete-time closed-loop feedback system
i/\p:P(dl"i‘i/\c)a @\C:K(?_g)7 @\:@\p—i_dQv (61)

as shown in Figure 6-1, where § denotes the Z-transform of y. Let Q C C be open and
let Qq denote the quotient field of H>*(Q2,C), i.e., Qo = {n/d : n,d € H*(2,C),d # 0}.
For (P,K) € Q0™ x 907 such that det(I + PK) # 0, we set

(6.2)

F(P.K) = < (I +PK)~! P(I+KP)1> |

K(I+PK)! (I+KP)!

The feedback system (6.1) is called ¢2-stable for 1 < g < oo if there exists M > 0 such
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that

[Ypllea + lyelles < M(||7llea+lldrllea+ld2llea) , V7, da € €4(Zy, CP), Vdy € £9(Zy,C™)

We observe that system (6.1) is (%-stable if F(P,K) e ¢1(Cmtr)x(m+p)) Tt is a
standard result that (6.1) is £>-stable if and only if F(P,K) € H™®(E;, Clm+p)x(m+p))
(see [60, Theorem 3.2.1, p.45]).

Definition 6.1.1. A left-coprime factorization of P € Q8™ (over H*°(12,C)) is a pair
(D,N) € H®(Q, CP*P) x H®(Q, CP*™) such that

(1) detD # 0,
(2) P=D"!N,

(3) D,N are left coprime, i.e., there exist X € H®(Q,CP*P), Y € H*>(Q,C™*P)
satisfying DX + NY = 1.

A right-coprime factorization of P € Q&™ (over H>®(£2,C)) is a pair (N, D) €
H>(Q,CP*™) x H>®(Q2,C™*™) such that

(1) detD # 0,

(2) P=ND!,

(3) N, D are right coprime, i.e., there exist X € H>*(Q2,C™*P), Y € H>®(Q,C™*™)
satisfying XN + YD = 1. O

Remark 6.1.2. It follows from [70, Theorem 1] that P € QF*™ and K € Qg' ™" admit
left and right coprime factorizations (over H*®(EEq,C)) if system (6.1) is £2-stable. <

An application of a standard result in fractional representation theory (see [79, Lemma
3.1]) gives the following necessary and sufficient algebraic condition for closed-loop
stability in terms of coprime factors.

Proposition 6.1.3. Let P € Q0™ and K € Q™. Assume that there exist a left-
coprime factorization (Dp,Np) of P and a right-coprime factorization (Nk,Dk) of
K (both over H®(Q,C)). Then F(P,K) € H>®(Q,C+P)x(m+p)) if and only if the
matric NpNg + DpDx has an inverse in H*(Q,CP*P), i.e., if and only if

211615% | det[Np(2)Nk(2) + Dp(2)Dk(2)]| > 0.

Proposition 6.1.4 ([3, Lemma 3.1]). Assume that G € {H(C™m). Then G has an
inverse in £1(C™™) if and only if

inf |det G(2)| > 0.
z€Eq
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The next result will be an important tool in the proof of Theorem 6.1.9, the main
theorem of this section, and it is also interesting in its own right.

Proposition 6.1.5. Assume that the feedback system (6.1) is £2-stable. Let (Dp,Np)
be a left-coprime factorization of P € Qﬁfm and let (Ng,Dxk) be a right-coprime fac-
torization of K € QEXP (both over H*®(Ey,C)). Assume that Dp,Dg € {1(CP*P),

Np € /1(CP*™) and Nk € (1(C™*P). Then F(P,K) € {1 (Cm+2)*x(m+p)) " In particu-
lar, (6.1) is £4-stable for 1 < q < co.

Proof. By hypothesis, it is clear that NpNg + DpDxk € él(Cpo). Since system (6.1)
is (%-stable, i.e., F(P,K) € H*®(E;, Ctm+P)x(m+p)) by Proposition 6.1.3,

Ziengl | det[Np(2)Nk(z) + Dp(2)Dk(2)]| > 0.

Therefore, it follows from Proposition 6.1.4 that (NpNg + DpDg)~" € £1(CP*P). Tt
is easy to see that

(I + PK)™! = Dx(NpNgk + DpDk) 'Dp,

so that (I +PK)~! e ¢(CP*P). By simple calculations, we obtain

K(I +PK)' = Ng(NpNgk + DpDk) 'Dp € /1(C™*P),
P(I+KP)™' = (I+PK)'P=Dg(NpNk +DpDk) 'Np € /1 (CP*™),
(I+KP)™' = T-K({I+PK)'P

= ] - NK(NPNK + DPDK)_lNP c él((cmxm) )
Hence F(P,K) € él((c(erp)X(erp))_ -

The following frequency-response result for transfer functions in /*(CP*™) will be useful
for understanding the asymptotic behaviour of the closed-loop system.

Lemma 6.1.6. Let G be a discrete-time input-output operator with impulse response
g and transfer function G and let u be a function: Z, — C™, X € cl(E;), v € C™.

(1) If g € (1(Z,,CP*™) and lim, oo (u(n) — A"0) = 0, then

lim [(Gu)(n) — A"G(A\)v] =0.

n=oo
(2) If there exist 5 € (0,1) and M > 0 such that g € %(Z%Cpxm) and
[u(n) = A"o|| < MB™, VneZy,
then there exists L > 0 such that

[(Gu)(n) = G(A)A"|| < LB™, Vn€Z,.
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Proof. Since g € (Y(Z,,CP*™),

1G(2) < ZHQ Il=l~* < ZHQ ) <00, Vzecd(E),

so that G(z) is well defined for z € cl(Ey). Define v: Z, — C™ by v(k) := A\*v. Since
A € cl(Ey), [A|7F < 1 for all k € Z. Therefore,

[(Gu)(n) = A"G(Mo|| = =Y A" g(k)o
k=0
—k) o —R)|[+ ol D A" Flg(k)]
k=n-+1
< (Glu—o) @)+ N0l Y gkl Vn € Zy. (6.3)

We proceed to prove Statement (1). By hypothesis, limg_,o(u(k) — v(k)) = 0 and
g € (Y(Z,CP*™). There exists M; > 0 such that ||u(k) — v(k)|| < M; for all k € Z.
Moreover, for € > 0, there exists kg € Z such that

g > g
wk) —v(k)|| < z55—, 9l € 35 Vk=>ko,
(k) = 9 < o DI < 53 )

Then, for n > 2k,

n

[(G(u—0))(n)]| < Z lg(oI(w = v)(n = E)|+ D lg®)l|(w = v)(n — k)|
k=ko+1
< S kZ:O lol 3 3 lotb
< ¢,
showing that
lim ||G(u —v)(n)|| =0. (6.4)

n—oo

A combination of (6.3), (6.4) and the fact that lim, o > e, [|g(k)|| = 0 yields State-
ment (1).

To prove Statement (2), we set My := > 70 B *||g(k)|| < oo. By hypothesis, there
exists M > 0 such that

[(u—=v)(n)l| < MB"™, Vné€Z,.
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Since (€ (0,1) and by (6.3), we have

B(Gu)(n) = G(M)A || < 57 ZHQ )i =v)(n = k)| + 67 ”HUHZHQ
k=n

IN

s~ leg )IMB" ’“+||0||Zﬂ *llg(k)

IN

M Zﬁ_ng(k)H + o] Z 57 lg(k)
k=0 k=0

MM, + ||| My, VneZy.

IN

Hence [|[(Gu)(n) — G(A)A™ 0| < Ma(M + ||v]|)5™ for all n € Z. O

The following result shows that Lemma 6.1.6 applies in particular to input-output
operators with transfer functions in H2°(E;, CP*™).

Proposition 6.1.7. For 0 < o < g, H®(E,,CP*™) C l%(@”xm).
Proof. Let 0 < a < f and f € H*(E,, C). To prove H*(E,,CP*™) C l%((:pxm)7 it is

sufficient to show that f € %(C) Since f is holomorphic and bounded on E,, f can
be written as

o0
:Zakz_k, Vz € Eq,

where a;, € C. Taking p € (a, 3), we have
0 .
= Zakp*keﬂko, Vo € [0,27).

By Parseval’s formula (see, for example, [66, Theorem 10.22, p.211]), we have

2
e B 1 21 ; ;
Slalo = o= | rf<pe9>\2des<sup \f(pe")\) < oo,
=0 ™ Jo 0€[0,2n]

By the Holder’s inequality,

S ot < (St ) (Swt) <o

k=0 k=0 k=0
showing that f € %(C) O
Remark 6.1.8. Consider a discrete-time state-space system

zp(k+1) = Apzp(k) + Byup(k), (6.5a)
yp(k) = Cpp(k) + Dyup(k), (6.5b)
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evolving on a Banach space X, where A, € B(X), B, € B(C", X), C, € B(X,CP) and
D, € B(C™,CP). The transfer function P of (6.5) is given by

P(z) = Cp(2I — Ay)) " 'B, + D,.

System (6.5) is called power stable if A, is power stable. By Proposition 2.2.1, the power
stability of (6.5) implies that P € HX(E;, CP*™). Hence, it follows from Proposition
6.1.7 that Lemma 6.1.6 applies to power stable systems of the form (6.5). &

6.1.2 Main results

The following asymptotic tracking theorem is the main result of this section. It is the
discrete-time counterpart of a continuous-time result due to Rebarber and Weiss [65],
which is a partial extension of the main results in Hamaéldinen and Pohjolainen [15].

Theorem 6.1.9. Consider the feedback system (6.1) with K replaced by K. defined in
(6.6). Let N € N. For j € N, let \j € C, |\j| =1 be such that \j # X\, for j,k € N,
j# k. Assume that P € él((Cpxm) and K. is given by

N
— 0 J
K.(2) :=¢ [ K°(2) + Z; | (6.6)
]:
where KO € 01 (C™*P) and K; e Cm*p. If
a[\P(N)K;] CCy, VjieN, (6.7)
and P PO
lim sup (2) = P(Y) <oco, VjeEN, (6.8)
z—Aj, 2€E, Z=Aj

then there exists €* > 0 such that, for all e € (0,*), F(P,K.) € {'(Cmtr)x(m+p)y,
where F(P,K.) is given by (6.2), with K replaced with K.

Moreover, if the reference signal r is given by

N
r(k) = Mvj, v eC, VkeZ,, (6.9)
j=1

and the disturbance signals dy,ds satisfy

k—o0

N N
lim (dy (k) =) " A\j01;) =0, Jim (ds (k) — D Ng) =0, 0;€C™, 0y €CP,
j=1 j=1
(6.10)
then, for every e € (0,e*), the output y of the closed-loop system asymptotically tracks
r, in the presence of dy,da, that is limg_,~(y(k) — r(k)) = 0.
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Figure 6-2: An illustration of the sets U, V; and V5.

For the proof of Theorem 6.1.9, a key step is to show that the transfer function
(I + PK.)™!, the so-called sensitivity function, is in H>°(E;, CP*?) for sufficiently small
e>0.

Lemma 6.1.10. Let N € N and let \; € C, |\j| =1 be such that \; # X\, for j,k € N,
J # k. Let P € H®(Ey,CP*™) be such that the limit P()\;) = lim, .y, ., P(2)
exists for every j € N. Let K. be given by (6.6), where K® € H®(E;,C™*?) and K; €
C™*P. Assume that (6.7) and (6.8) hold. Then there exists €* > 0 such that, for all
e € (0,e%), (I+PK.)~' € H*®(E{,CP*P). Moreover, if the additional assumptions that
P € HX(E;,CP*™) and K° € HX(E1,C™*P) are satisfied, then, for every e € (0,&*),
(I +PK.)"! € HX(E,,CP*P).

Proof. Since o[\;P()\;)K;] C Cy for all j € N, there exists § € (0,7/2) such that

N
U oePO)E] C{z e C\ {0} rargz € (—6,0)} = U. (6.11)
j=1

Let p € (0,1) and consider Figure 6-2. The circles {z € C: |z| = p} and {z € C: |z +
1| = 1} intersect at two points, denoted by pe’®(®) and pe=*®(?) where ¢(p) € (7/2, ).
Note that ¢(p) — m/2 monotonically as p — 0. Hence there exists pp € (0,1) such that
m— ¢(p) > 0 for all p € (0, pg]. Set

Vi :={z € C\{0} : argz € (=(p0), $(r0))} -

and
Vo= Vi ={2 € C\ {0} :argz € (1 — ¢(po), ™ + ¢(po))} ,

Clearly,
Uncl(Vy) =10. (6.12)

72



There exists p1 € (0, po] such that [A\; — A\g| > 2py for all j,k € N, j # k. Defining
Qj :ZElﬂ{Z e C: ’Z—)\j‘ <p1},

we have that Q;NQy, = 0 for j,k € N, j # k. Moreover, set ) := [E; \Uj\[:1 ;. Assume
that P € H®(E;,CP*™) and K" € H>®(E{, C™*P). It is clear that

N
sup || P(2) Ko(z)—f—z K; < 0.

Therefore, there exists e > 0 such that

-1
N

S(z) == [ +P(2)K(2)] ' = |I+eP(2) | K'(2) + ) K;
j=1

Z—)\j

is uniformly bounded for all z € Q and for all € € (0,e,). Fix j € N. To analyze S on
€1, we define

Sj(2) := <I+&j¥{j>l = (I+M>1 ;

Z — j )\jz—l
and P(x) — P(\) P(:)K
Z) — : z
Qj(z) = ="K+ P)K'(2) + Y £
z—=Aj 2= A
keEN, k#j

By (6.8), we see that Q; is bounded on €;, with a bound that is independent of €. For
convenience, we set I'; := \;P(\;) K;. Noticing that \;Q; —1 C V; and if w € V1, then
~yw € Vp for all v > 0, we have

r;\ ! .
sup ||S;(2)|| = sup{ |<I+€—J) :we)\ij—l}
ZEQ]' w
< sup [|ls(sT +T;) 7!
seV1
— sup [ls(s] ;)71
seVa

By (6.11) and (6.12), the function s — s(sI — I';)™! is holomorphic on an open set
W D cl(Va). Moreover,
lim s(sI —T;)"'=1.

|s|—o0

Hence s — s(sI —T';)~! is a bounded on cl(Vz). Therefore, S; is bounded on §2; with
a bound independent of e. We have S™1 — S;l = £Qj, so that

S(z) =8S;(2)(I + st(z)Sj(z))*1 )
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Hence there exists €; € (0, ) such that S is uniformly bounded on ; for all e € (0,¢;).
Setting

*

e :=min{e; : j € N},

it follows that
(I +PK.)"! € H®(E,,CP*P), Vee (0,e). (6.13)

Finally, let € € (0,¢*) and assume that P € HX(E;, CP*™) and K° € HZ(E;, C™*P).
It is clear that (I+PK.)™! is meromorphic on E, for some vy € (0,1). Letting 8 € (v,1),
it follows that (I + PK.)~! has at most finitely many poles in the compact annulus
cl(Eg) \E1. By (6.13), (I +PK.)~! does not have any poles on the unit circle JE; and
so there exists o € (3, 1) such that (I + PK.)~! € H®(E,, CP*P). O

We are now in the position to prove Theorem 6.1.9.

Proof of Theorem 6.1.9. By Lemma 6.1.10, we know that there exists £* > 0 such that
for all € € (0,&*), (I + PK.)~! € H®(E1,CP*P). Let € € (0,&*).

We first show that the other block entries of F'(P,K;) are also H*-functions. Due
to the stability of P, it suffices to show that K.(I + PK.)™! € H>®(E;,C™*P). In
the following of the proof, when we write 2 — A;, it is assumed that z € E;. By
assumption, \; # A, for j,k € N, j # k. Note that, by (6.7), P(\;)K; is invertible.
Consequently,

lim (I+P(2)K.(2)!
2= 2 — Aj

-1

P(2)K
— lim [P()K;+ (2= N) [T +eP)K () +e Y &Ak
N kEN ki © K

= (PW\)K;)™', VjeN. (6.14)

By (6.6) and (6.14), we conclude that K. (I + PK.)™! has a finite limit at );, so that
K. (I +PK.)™! is bounded on E; N A, where A is a neighbourhood of the set {); : j €
N}. Since (I +PK.)"t € H®(E;,CP*P) and K. is bounded on E; \ A, it follows that
K.(I + PK.)~' € H®(E;,C"™*?). Consequently, F(P,K.) € H®(E, Ctmtp)x(m+p)),

To prove that F(P,K.) € /*(Cm+)x(m+0)) we set

N
K.
K!(z) := Z . _])\‘ .
=1 !

We see that K! is a (strictly proper) rational matrix function. Let Ry denote the
ring of discrete-time stable proper complex rational functions, i.e., rational functions
with complex coefficients which are bounded at infinity and have all their poles in
{z € C: |z] < 1}. By a standard result (see [78, Theorem 4.1.43, p.75]), K! has a
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right-coprime factorization over R, i.e., K! = ND~!, where N € R{"?, D € RY*P
and there exist X € RE*™, Y € RE*P such that XN + YD = I . Therefore,

K. =e¢(K'+K") =¢(KD+N)D !,
showing that K. has right coprime factorization (¢(K’D + N), D), since

(' X)e(K'D+N)+ (Y - XK )D=XN+YD=1.

Since KON € (1(C™P) and D € /}(CP*?), we have that K'D + N e /'(C™*?),
Therefore, invoking Proposition 6.1.5 and the assumption that P € ¢1(C™*P), we have
F(P,K,) € (' (Clmtp)x(m+p)y,

To prove tracking and disturbance rejection, we note first that, since P()\;)Kj is in-
vertible,

(I+PK.)'()\) = Zli)rg\l'(I+P(z)K€(z))*1 =0, VjeN, (6.15)
and
(I +PK.)'P)(\)) = Zli_)rr)\l'(f—l—P(z)Ka(z))*lP(z) =0, VjEN. (6.16)

Let 7 be given by (6.9) and let di,dy satisfy (6.10). For j € N, define a;: Z, — CP,
bj: Z4y — C™ by
CLJ'(]C) = )\?Iﬁj s b](k‘) = )\?Dlj .

) = 0. Let 21 denote the

Obviously, r = Zjv 16 and limg_,o dyi(k _1bj(k
5) and (6.16), we obtain

) _
inverse Z-transform. Then, by Lemma 6.1.6, (6

>
6.15

lim [Z7Y((I + PK.) ™Y x 7] (k)

k—o00

= Z lim {[2°7(( +PK:) ™) xay)](k) — (1 + PK:) ™) (At}

k—o0
= 0 , (6.17)
and

lim (27 Y((I + PK.)"'P) % dy](k)

k—o00
= Zkli)ﬁgo{ (I +PK.)'P) % bjl(k) — (I + PK.) ™' P) (M) Ao15}
N
+ lim [277H(( + PK:)"'P) x (di — Z} b;)(k)
= 0. ] (6.18)
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Similarly, by Lemma 6.1.6 and (6.15),

lim [Z71((I + PK.) ™) «da](k) = 0. (6.19)

k—o00

It follows from system (6.1) (with K replaced by K.) that
F—g=I+PK.) ' (F—do) — (I + PK.)'Pd, . (6.20)
Therefore, by (6.17)-(6.20),

tim (r — y)() = lim {12717+ PK.)")  (r = )] (F)

k—oo
—[Z7H(I + PK.)"'P) x di](k)}
=0. O

Remark 6.1.11. (1) In (6.6), the term K° may be employed to satisfy additional
design requirements, for example, to improve robustness properties or to speed
up the transient response. The existence of matrices K; such that (6.7) holds
is guaranteed if and only if rkP(\;) = p for all j € N, in which case, K; =
N P*(A\)[P(A\;)P*(\;)] 7! is a possible choice.

(2) The limsup condition (6.8) is not very restrictive. It is trivially satisfied if P €
H®(E,, CP*m).

(3) If, in Theorem 6.1.9, we replace the controller K. given in (6.6) by

N
I ._ 0 Zh g
K.(2):=¢ K(z)+§% v
j:

z —

where K° € /1(C™*?) and K; € C™*?, and condition (6.7) by
o(P()K)) CCo, VjEN,

whilst all the other conditions in the theorem remain the same, then the conclu-
sions on stability, tracking and disturbance rejection in Theorem 6.1.9 are still
valid. This follows directly from Theorem 6.1.9, since
N K

— )\

z

N
K.(2)=¢ |K'(2)+ > Kj+)

7j=1
is of the form (6.6) with

N
K'(2) =K'(2) + Y _K;, K;:=\Kj,
j=1

and o(\,P(\)K;) = o(P(A\)K;) C Co. o
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Next we show that, under a mild extra assumption on P, K°, d; and dy, the convergence
of y(k) to r(k) as k — oo is exponentially fast.

Theorem 6.1.12. Let N € N and let \; € C, |\;| = 1 be such that \j # X\, forj,k € N,
j # k. Consider the feedback system (6.1) with P € HX(E{,CP*™) and K. given by
(6.6), where K® € HX(E,,C™ P?) and K; € C™*P for j € N. If (6.7) holds, then
there exists €* > 0 such that, for every e € (0,&*), F(P,K.) € HX(E,, Cm+p)x(m+p)),
Moreover, if the reference signal r is given by (6.9) and there exist M > 0 and p € (0, 1)
such that the disturbance signals di,do satisfy

N N
dy (k) = > Moyl < Mp¥, [lda(k) =Y Mjogsll < MpF, 01, € C™, 2y € CP,
=1 =1
(6.21)
then, for every e € (0,e*), there exist L > 0 and (8 € (p,1) such that

ly(k) —r(k)|| < LB*, Vke€Zy.

Proof. By the hypotheses on P, K°, and Lemma 6.1.10, we know that there exists
e* > 0 such that, for every € € (0,&*), there exists a € (p, 1) such that

(I +PK.)"! € H®(E,,CP*P), P € H®(E,,CP*™), K’ ¢ H*®(E,, C™*?).

To prove that F(P,K.) € H®(E,, Cm+2)*x(m+p)) it suffices to show that K (I +
PK.)™! € H®(E,,C™*?). By (6.14), we conclude that K.(I + PK.)™! has a finite
limit as z — A for every j € N, so that K.(I+PK_.)™! is bounded on a neighbourhood
A of the set {)\; : j € N}. Since (I + PK.)™! € H®(E,, CP*?) and K. is bounded on
Eq \ A, it follows that

K.(I +PK.)"! € H®(E,,C"*?).

Hence F(P,K.) € H®(E,, C"+P)x(m+p)) Therefore, it follows from Proposition 6.1.7
that, for every (§ € (a, 1), we have

(I +PK.)™ € ly(CP*?), (I+PK.)'Pely(Crm).

Finally, invoking Lemma 6.1.6, (6.9), (6.15), (6.16) and (6.21), we conclude that there
exists M7 > 0 such that

112~ +PK) ) #r(R)| < Mig*, VkeZy,
11271 +PK)T'P)xdi](k)| < MiS", VkeZy,
112711 +PK) ) xdo] (k)| < MiS", VkeZy.
Consequently, by (6.20), we have
ly(k) —r(k)|| < 3M 8%, VkeZ,. m
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6.1.3 Application to state-space systems

We now apply Theorem 6.1.9 to obtain tracking results for discrete-time state-space
systems. Let X be a Banach space and let the plant ¥, be given by

zp(k+1) = Apx,(k)+ Bpup(k); x,(0) = xg €X, (6.22a)
yp(k) = Cpap(k) + Dyup(k), (6.22b)

where A, € B(X), B, € B(C™, X), C, € B(X,C?) and D, € B(C™,CP). The transfer
function P of ¥, is given by

P(2) = Cp(2I — Ap)) " 'B, + D,.

We say that system (6.22) is power stable if A, is power stable.

Next we construct a state-space realization of the controller transfer function (6.6). Let
K" be a discrete-time stable proper complex rational function and let (Ag, By, Co, Do) €
CroxXno x CnoXp x C™*m0 x C™*P be a stabilizable and detectable realization of K9,
i.e., K%(2) = Co(2I — Ag) "' By + Dy, (Ag, By) is stabilizable and (Cy, Ap) is detectable.
Since K° € H>(E;,C™*P), Ay is power stable. Let K; € C™? and let \; € C,
|Aj| = 1 be such that \; # X\; for j,k € N, j # k. Define A, € CNPtno)x(Np+no),
B, € CNptno)xp ¢ e Cm*(Nptno) and D, € C™*P by

Ao 0 ... 0 By
0 M1, ... 0 I
e | Be=| P |, Coi=(Co,Ky,...,Ky), De:= Dy,
0 0 ... AnD, I,
(6.23)
where I, is the p x p identity matrix. Let ¢ > 0 and we define the controller 3. by
ze(k+1) = Azc(k) + Boue(k); z.(0) =20 e CNPtmo (6.24a)
ye(k) = eCexe(k) +eDouc(k) . (6.24b)

Obviously, the transfer function K, of X, is given by

K;

K.(2) =eCe(2] = Ae) 'Be+eD. =¢ [ K°(2) + ) —4
Y]

J=1

Consider the feedback interconnection of (6.22) and (6.24) given by
Ue=T—Yp—do, U, =1yc+di, (6.25)

where r is a reference signal and d; and dp are disturbance signals. Let F(X,, X.)
denote the feedback system given by (6.22), (6.24) and (6.25). The state-space system
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F(X,,X.) is a state-space realization of the system (6.1) (with K replaced by K.). It
is clear that F(X,, ¥X.) has a unique solution which will be denoted by

xp(,xg,xg,a r,dy,ds)
xr ( 0 0 e, r, dl,dz)

7p) Te,

Remark 6.1.13. Note that the plant X, is infinite-dimensional, but the discrete-
time controller ¥, is finite-dimensional and hence can be implemented with on-line
digital computers. The order of the discrete-time controller depends on the number of
frequencies of the reference and disturbance signals. O

Theorem 6.1.14. Assume that (6.22) is power stable and that

O'()\jP()\j)Kj) cCy, VjEN. (6.26)
Then there exists €* > 0 such that, for all € € (0,£*), the following statements hold:

(1) F(X,,%.) is power stable. Moreover, F(¥,,%.) is input-to-state stable in the
sense that there exist My > 1 and v € (0,1) such that

7 p7 078 r, d17d2) xg
7 p) cae T, dl)d2) .’L'g
(6.27)
Va) € X, Val € CNPHo vdy € 12°(Zy,C™),
Vr,dy € £°(Zy,CP).

< M (’Yk

+lIrllese + lldalle= + Hd2H/zo<>> ;

(2) If r is given by (6.9) and dy,dy satisfy (6.10), then for all initial conditions
:cg € X and 2° € CNPT10_ the output y = Yp + do asymptotically tracks r, that is
limy oo (y(k)—7(k)) = 0. Additionally, if (6.21) holds with M > 0 and p € (0,1),

then the convergence is exponentially fast.

Proof. There exists e; > 0 such that (I +eD.D),) is invertible for all € € (0,e1). Then
I+eD,D. is also invertible for ¢ € (0,e1), with (I+eD,D.)~! = I-D,(I+eD.D,) ' D..
It is clear that K € H(E;, C™*P). It follows from Proposition 2.2.1 and the power
stability of system (6.22) that P € H2°(E;, CP*™). Since (6.26) holds, Theorem 6.1.12
shows that, there exists e* € (0,e1) such that, for all € € (0,¢*),

F(P,K.) € HX(E,, CmFP)x(m+p)y (6.28)

where F(P,K.) is defined in (6.2) with K replaced by K.. Let € € (0,£*). It follows
from Proposition 6.1.7 that F(P,K.) € ((Z,,CmPxm+p)) e F(¥, ¥.) is (2-
stable for 1 < ¢ < cc.

To prove the power stability of F(X,,X.), we first show that ¥. given by (6.24) is
detectable and stabilizable. By (6.26), we see that rk (P()\;)K;) = p. It follows that

79



rk K; = p (in particular p < m). Moreover, the power stability of Ay and Proposition
2.2.1 implies that 0(Ap) C {z € C: |z] < 1}. Note that A\; # A for all j,k € N, j # k.
Therefore,

ZI—A() 0 0
0 (Z— )\1)Ip 0
rk ol = A = rk : : :
Ce
0 0 (Z— )\N)Ip
Cy K Kn

= Np+ngy, Vzec(E),

and
zI — A 0 0 By
vk (2 — A, B.) = rtk 0 (z =)l 0 Iy
0 0 (=AM, I

= Np+ng, Vzec(E).

Hence, by the Hautus criterion, X is detectable stabilizable. Since A, is power stable,
¥, given by (6.22) is detectable and stabilizable. Therefore, F(X,,%.) is stabilizable
and detectable. Since F(X,,X.) is (?-stable, it follows that F(X,,X.) is power stable
(see [31, Theorem 2]).

To show that F(X,,X.) is input-to-state stable, we set E, := (I +eD.D,)™!, E. :=
(I +eD,D.)~! and define

A A, 0 n B, 0 E, 0 —eD, el C, 0 .
0 A, 0 B, 0 E. -1 —€D, 0 C.

For convenience, we write

Zp() == ap( - ;xg,xg,e,r, di,ds), x():=x.(- ;xg,xg,s,r, dy,ds).

By a routine calculation, we obtain that

(xp<k+ 1)) A (xpuf)) . (BpEp[d1<k> +eDe(r(k) - dz<k>>]> ez,
zo(k +1) o (k) BoE,|—Dydy (k) + r(k) — da(k)]

By power stability of A, it follows from the discrete-time variation-of-parameters for-
mula that there exist M; > 1 and v € (0, 1) such that (6.27) holds. This completes the

fSee Appendix A.4.2 with r replaced by r — ds.
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proof of Statement (1).

Set y = y, + da. To prove asymptotic tracking and disturbance rejection, we note that
it follows from a routine calculation® that

y(k) — EcCp EDpEpCC Ak :Eg + ylo(k) ’
ve(k))  \=eD.EeCp  eE,C. 20) g (k)
where y'° and 3 satisfy

y° =Py +Pdy +dy, i =K (7 - ). (6.20)

An application of Theorem 6.1.9 to the system (6.29) shows that limy .. (y'°(k) —
r(k)) = 0. Since A is power stable, it is easy to see that limg_,~(y(k) — r(k)) = 0.

Finally, assume that there exist M > 0 and p € (0, 1) such that (6.21) holds. Applying
Theorem 6.1.12 to the system (6.29) and invoking the fact that A is power stable
completes the proof of Statement (2). O

Remark 6.1.15. Note that the matrices (A., B., C¢, D.) of the controller ¥, defined
in (6.23) are generally complex. Assume that the non-real numbers in {\; € C: |);| =
1,7 € N} occur in complex conjugate pairs. Without loss of generality, we write

Agjo1 =0 +ifj, Agj =a; —ifBj, VjEny; Aop4j=1lor —1,VjeEny,
where
0:=0; 2ni+na=N; «a;,6€R, 3;#0,Vjen,

We now design a real state-space realization of the controller with transfer function of
the form (6.6). Let K° be a discrete-time proper stable real rational function matrix
and let (Ag, By, Co, Do) € R™0X10 x RM0XP x RM*10 x RMXP he a realization of K° such
that (Ao, By) is stabilizable and (Cp, Ag) is detectable. Let K; € C™*? for j € ny, and
set

Cyj—1 =

Ki+K;, K;-K, _ K;+K;  K;-K, vien
5 ny.

2 21

Note that C; € R™*P for all j € 2n;. Let Ko, ; € R™*P for j € ny. We define
A, € RWptno)x(Nptno) B e RINPmo)xp (0 e RmM*(Nptno) and D, € R™*P by

By
: I,

Ac = dlag(A(), Al, v 7An17 )\2n1+11p7 ce ,)\pr) 5 Bc = . 5 (630&)
Ip

Cc = (CO;Cla"')C2TL1)K2TL1+1)"')KN)a DC = DO’ (630b)
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where

Aj ::(ajlp ﬂj[p) s VJGE
—Bilp ajlp

It is easy to check that

2 K; K; YK
Co(2I — A 'B.4D. = K°(2) + ( I + I >+ —
¢ © ¢ ¢ ]Z:; 2= — i z—oj+if; j:;Jrlz_)\j

Moreover, if tk K; = p for j =1,...,n1,2n; +1,..., N, then, using Hautus Criterion,
it can be shown that (A., B.) is stabilizable and (C., A.) is detectable.

If, in Theorem 6.1.14, (A., B.,C., D.) in the controller (6.24) is given by (6.30), P is

real, i.e., P(z) = P(2) for z € cl(E;), and
O'()\ijlp()\gjfl)Kj) cCy, Vj € ny; U(S\jP()\j)KJ’) cCy,Vj=2n1+1,...,N,

whilst the other conditions in the theorem remain the same, then the conclusions of
Theorem 6.1.14 are still valid. This follows from the fact that

(AP (Mej)Kj) = 0(A2j—1P(Noj—1)K;) = 0(A2j—1P(N2j—1)K;) C Co, Vj € m,

so that (6.26) is satisfied. &

6.1.4 The case of positive transfer functions

If we know that the plant P is positive (see definition below), then we can design
a simple controller which achieves the control objective (tracking and disturbance
rejection), but does not require low gain. In the following, for K € C™* ™ set
Re K := (1/2)(K + K*).

Definition 6.1.16. Let A, B € C™*™. We say that A > 0 if (Au,u) > 0 for all
ue C™\ {0}, and A > 0if (Au,u) > 0 for all u € C™. Wesay A > Bif A— B > 0.

Remark 6.1.17. If A > 0, then A = A* (see [29, Theorem 3.10-3, p.203]). &

We say P € H*(E,C™*"™) is a positive transfer function if

ReP(2) %[P(z) +(P(R)] >0, V:cE. o

The proof of the following lemma can be found in [65] (see [65, Lemma 3.3]).

Lemma 6.1.18. Let K € C"™*™. Then Re K > 1/2 if and only if there exists Q €
Cm™>m with ||Q|| < 1 such that K = (I — Q)~'. Furthermore, for such Q,

1
ReQ < (1- grers )
2K
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Lemma 6.1.19. Let K € C™*™, [fRe K > ol for some o > 0, then

|Ku| > alul, VueC™.

Proof. Let u € C™. It follows from the Cauchy-Schwarz inequality that
[ Kulllul > (Ku,u)| > Re (Ku,u) = (Re K)u, u) > alful|*,

showing that |[|Kul| > oful. ]

The following theorem is the discrete-time counterpart of [65, Theorem 3.4].

Theorem 6.1.20. Consider the closed-loop feedback system (6.1). Let N € N and let
Aj € C, |\j] =1 be such that \j # \g for j,k € N, j # k. Assume that P € {*(C™™),
P is a positive transfer function and ReP(\;) is invertible for all j € N. Let K be
given by

N zK;
K(z) =K’(2) + > 5 (6.31)
j=1 /
where KO € /1(C™*m),
1
ReK’(2) > 5l Ve, (6.32)

and K; € C™™ with K; > 0 for every j € N. Then F(P,K) € PH(C2mx2mY) - yhere
F(P,K) is given by (6.2). Moreover, the output y of closed-loop system (6.1) asymp-
totically tracks the reference signal r given by (6.9), in the presence of the disturbance
dy, dy satisfying (6.10), that is, limg_.~(y(k) —r(k)) = 0.

Proof. Since ReP(};) is invertible for every j € N and ReP(z) > 0 for all z € E;, we
conclude that Re P(\;) > 0 for every j € N. Hence, there exist o > 0 and ¢; > 0 such
that

ReP(z) >al, VzeQj:={zeE;:|z—)\j| <}, VjeN. (6.33)

By Remark 6.1.17, K; > 0 implies that K; = K7 for every j € N. Therefore, for every
JEN,

2K 22 — Re (z))) |22 — |2\;] Iz|(]z] — 1)
Re< J): LK > SR = K; >0, VzcE;.
z2= A R e Y

It follows from (6.31) and (6.32) that

ReK(z) > =I, VzeE, (6.34)

1
2
and thus, by Lemma 6.1.19,

1
IKE)ull > Sllull, YueC™, vz ek, . (6.35)
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Invoking Lemma 6.1.18 and (6.34), there exists Q: E; — C™*™ such that

K=(I-Q)",
where

ReQ(z) < <1 I<I, VzeE. (6.36)

1
2HK(Z)||2)
Consequently, setting S := (I + PK)~!, we obtain that

S1=I+PI-Q)'=(I-Q+P)I-Q) '=(I-Q+PXK. (6.37)

We first show that S™! is bounded from below on Ujvzl ;. By (6.33) and (6.36), we
have

N
Re[l —Q(2) +P(2)] > al, Vze|]9Q;.
j=1
It follows from Lemma 6.1.19 that

N
1T = Q(2) + P(2)Jul| = aful|, YueC™, Vze|]Q;.
Jj=1

Using this, together with (6.35) and (6.37), we obtain

N
_ o) m
IS~ (2)u| > Slull, VueC™, vze o (6.38)
j=1

Setting 2 := E; \ Ujvzl Q;, we next show that S™1 is bounded from below on Q. It is
clear that K is bounded on {2, i.e., there exists 8 > 0 such that

IK(2)| < , VzeQ.

3
@

Hence, by (6.36),
1
ReQ(z) < (1—7>I§ (1-p8)1, VzeQ.
2| K (2)]?
Consequently, using the assumption that ReP(z) > 0 for all z € E;, we obtain that
Re[l —Q(2) +P(2)] > B, VzeQ.

Invoking Lemma 6.1.19 again, we have

I —Q(z) + P(2)u| > Bllul|, VueC™, VzeQ. (6.39)
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It follows from (6.35), (6.37) and (6.39) that

IS~ (2)ul| > gllu\l , YueC™, vzeq. (6.40)

Combining (6.38) and (6.40), we see that S~! is bounded from below on E;, showing
that S is bounded on E;. Therefore, S = (I + PK)~! € H>®(E{,C™*™).

Since Re P(\;) > 0 for every j € N, we see that, for all u € C™ \ {0},
PG )ullllull = [(P(Aj)u, w)] = Re (P(Xj)u, u) = (Re P(X;))u, u) >0,

showing that P()\;) is invertible for all j € N. Moreover, K; > 0 implies that K
is invertible for all j € N. Therefore, P(\;)Kj; is invertible for all j € N. Invoking
arguments identical to those used in the proof of Theorem 6.1.9, we conclude that
F(P,K) € /*(C?*2m) and limy_,o0 (y(k) — r(k)) = 0, where r is given by (6.9), in the
presence of the disturbance dj, ds satisfying (6.10). O

Remark 6.1.21. A simple choice for K° and Kj; is K° = al,,, where o > 1/2, and
K; = BI,,, where 3 > 0. &

6.2 Low-gain sampled-data control of systems with mea-
sure impulse responses

6.2.1 Preliminaries

Let B(R4) denote the Borel-o-algebra on Ry. For a CP*™-valued Borel measure ;1 on
R, the total variation |u|: B(R4) — [0, 00] of p is defined by

ul(E) :=sup ¢ Y [lu(E))ll - B; € BRy), B;NEy=0if j#k, E= ] E;
j=1 J=1

It is clear that
[u(B)|| < |pl(E), VE € BRy).

The following proposition shows that a CP*™-valued Borel measure is necessarily
bounded.

Proposition 6.2.1. The total variation |u| of a CP*™-valued Borel measure p on R
is a finite non-negative Borel measure on R.

Proof. For the scalar-valued case (i.e., m = p = 1), it follows from [66, Theorem 6.2]

that |u| is a non-negative Borel measure on R ;. An inspection of the proof of Theorem
6.2 in [66] shows that it carries over to the matrix-valued case.
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To prove the finiteness of |u|, we define a complex-valued Borel measure 1i;; by
wij(E) == (u(E))ij, Yi€p,Vjiem, VEe€BRy).
It follows from [66, Theorem 6.4] that there exists M > 0 such that
lwij(Ry) <M, Viep, Vjem.

Let (Ey)rez, be a partition of Ry, where £, € B(R,) for all & € Z,. Then there
exists « > 0 such that

ZHuEk <aY YN NWED))il = @Y D> i (B

k=11i=1 j=1 i=1 j=1 k=1
P m
< o« Z Z |1z (R)
i=1 j=1
< aMpm.
It now follows from the definition of |u| that |u|(R4) < aMpm < . O

The following technical result is used later.
Proposition 6.2.2. Let y be a CP*™-valued Borel measure on Ry.. Then

oo
lim |p|(ds) =0.
t—oo [y
Proof. Define f: Ry — Ry by

F@) = |ul(k k+ 1)), Vtelkk+1), Vke€Zy.

Obviously, by Proposition 6.2.1,

[e’e) oo k+1 [e'e}
[ s =32 [ fts)ds = S lulh b+ 1)) = [l (®s) < o
0 k=0"k k=0

showing that f € L'(R,,R). Hence, for every € > 0, there exists T € N such that

/ f(s)ds <e.
T
Consequently,
00 00 OO k+1 00
/ || (ds) < / || (ds) = Z/ f(s)ds = / f(s)ds<e, Yt>T,
t T ier kK T
showing that lim;_.o [, || (ds) = 0. O
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Let u be a CP*™-valued Borel measure on R ;. Define the continuous-time input-output
operator G by

(Gu)(t) :== (uru)(t) = /0 p(ds)u(t —s), t>0, uec Ll (R,,C™), (6.41)

It is well-known that G € B(LY(Ry,C™), LY(R4,C™)) for 1 < ¢ < oo (see [13, Propo-
sition 8.49, p.271]). The transfer function G of G is given by

G(s) = /]R e *tu(dt), Vs € cl(Cy), (6.42)

Trivially, by Proposition 6.2.1, |G(s)|| < [5° |u|(dt) < oo for all s € cl(Co). It follows
in particular that G € H*(Cy, CP*™).

Recall that Ly(Ry,C™) denotes the set of bounded C™-valued Lebesgue measurable
functions with the sup-norm || - |-

Lemma 6.2.3. Let the operator G be given by (6.41), where p is a CP*™-valued Borel
measure on Ry and let u € Ly(Ry,C™). Then

lim sup (Gu)@)]| < |ul(Ry) fim sup Ju(®)]l- (6.43)

In particular, if limy_o u(t) = 0, then lim;_,o(Gu)(t) = 0.

Proof. Let e > 0 and u € Ly(Ry,C™). Set M := |u|(Ry) and o := limsup,_, o ||u(t)].
By Proposition 6.2.2, there exists T' > 0 such that

& € €
ul(ds) < and ||u@®)|| <o+ —, Vt>T.
) < g and )] <o+ 5

Hence, for t > 2T,
t/2 t
lGu))] < /O lu(t — $)lllal(ds) + /W lu(t — s (ds)

c t/2 t
< gy ) i) ol |l

< gy | @)+l [l

T

9
< (04 5)M + ull

< Mo +e.

9
2][ulloo

Since this holds for all € > 0, the (6.43) follows. Consequently, if lim; ., u(¢) = 0, then
limy o0 (Gu)(t) = 0. O
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Lemma 6.2.4. Let & € cl(Cy), v € C™, u € L _(R,,C™) and let G be given by (6.41),

loc
where p is a CP*™-valued Borel measure on R .
(1) If limy_ oo (u(t) — e$to) = 0, then

lim [(Gu)(t) — ¢5'G(£)v] = 0.

t—o00

(2) If there exist a <0 and M >0 such that
o
/ e |u|(ds) < oo and |ju(t) —eSto|| < Me®t, Vt>0,
0
then there exists L > 0 such that
I(Gu)(t) — ' G(&o]l < Le**, V> 0.

Proof. Define v: R, — C™ by v(t) := efv. By (6.41) and (6.42), using £ € cl(Cy), we
have

I(Gu)(t) — G (&)v]

t 00
/u(ds)u(t—s)—/ S u(ds)o
0 0
e / 1669 ] (ds)

(G (u =)@ + o] /too |ul(ds), Vt=>0. (6.44)

IN

| sttt = s) = 0=0)

By hypothesis, lim; o (u(t) — v(t)) = 0, and hence, by Lemma 6.2.3,

lim (G(u —wv))(t) =0. (6.45)

t—o0

Moreover, it follows from Proposition 6.2.2 that lim;_, s ftoo |ee|(ds) = 0. Hence, invok-
ing (6.44) and (6.45) completes the proof of Statement (1).
To prove Statement (2), assume that there exist & < 0 and M > 0 such that

o0
M ::/ e~ |ul(ds) < oo and  [[u(t) — eSto| < Me®t, Vi >0.
0

Since o < 0, it follows from (6.44) that

e\ (Gu)(t) - SIG(E)]| < e /0 (u— )t — 5)/ ] (ds) + [[o e~ /f\u\(ds)

IN

t o0

M [ lulas) + ol [ e Jul(as)
0 t

< MMl—i-HUHMl, Vt>0.

Hence ||(Gu)(t) — e51G(€)v]] < My (M + |jo]|)e for all t > 0. 0
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Let 7 > 0 be the sampling period. Define the sample-hold discretization G, of G by
Gr = 8;GH,, (6.46)

where 8, and H; are the sampling and hold operators, respectively.

Define g,: Z, — CP*™ by

{0}, k=0

(6.47)
((k—=1)r7,k7], keN

gr(k) = p(Ey), where Ej:= {

Let G, denote the transfer function of G.

Proposition 6.2.5. Assume that G is given by (6.41), where p is a CP*"-valued
Borel measure on Ry such that [ e™|u|(dt) < oo for some a < 0. Then g, defined
by (6.47) is in E},(ZJF,(CPX’”), where p := e, and is the impulse response of G,.
Consequently, G, € B(l41(Z4,C™),01(Z4,CP)) for 1 < q < oo, and G, € E}(Cpxm) C
H*(E,,CP*™). Moreover,

lim G (e7) = G(§), V& € cl(Co).

Proof. Clearly,

o (k+1)7

anf Mot < Y /k e=oT D |y ()

k=0"YF"T

(k+1)7
—on'Z/ _at’M’ dt)
= e [T el <

0

IN

showing that g, € E})(ZJF, CP*™). For any discrete-time input v: Z, — C™, we have
kT
(Grv)(k) = ((8:GHr)v) (k) = (G(Hrv))(kT) = /O p(ds)(Hrv) (kT — 5)
k
- X / plds)olk  j)
= Z g-(k —-J), VYkeZy.

Hence, the impulse response of G; is g-, so that G, € B(¢4(Z4,C™),¢4(Z,CP)) for
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1<q¢<o0,and G, € lg(@pxm) C H*(E,,CP*™). Moreover, it is clear that

0 o (k+1)r
Grle) = Yo gy = 30 [ e ),
k=0 k=0"YFRT

and

o (k+1)T .
Z/ e tu(dt).
k=0’ kT

GO = [ e utan) -

Using ¢ € cl(Cyp), we obtain

o (k+1)7
G~ Gl = S0 [ (et - e
k=0 kT
o0 (k+1)7
< Y[ e )
k=0 kT
0 (k+1)7
< Y[ e
k=0 kT
< sup 1 ef|u|(Ry).
t€[0,7]
Since lim; o (supsecfo - [1 — ') = 0 and |u|(R,) is finite, the claim follows. O

Remark 6.2.6. The convergence of G, (ef7) to G(£) as 7 — 0 is uniform for all £ € U,
where U C cl(Cy) is compact. Moreover, it follows from the above that G,(1) = G(0)
for all 7 > 0. <&

6.2.2 Main result

Consider the sampled-data system shown in Figure 6-3, where G is the input-output
operator of the continuous-time plant, K . is the input-output operator of the discrete-
time controller, r is a reference signal, and d; and dy are disturbance signals. Mathe-
matically, Figure 6-3 can be expressed as

Yp=G(Hrye+d1), y=yp+da, ye=Kr8:(r—y). (6.48)

The following theorem is the main result of this section.

Theorem 6.2.7. Let N € N and let §; € iR for all j € N be such that §; # & for
J,k € N, j# k. Let G be given by (6.41), where p is a CP*™-valued Borel measure
on Ry such that [;~ e~ |u|(dt) < oo for some v <0, Let the discrete-time controller
K. . be such that its transfer function K, . is given by

K;

z — 65]'7—

N
Kre(z) =2 [ K(2) + > : (6.49)
j=1
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Figure 6-3: Sampled-data low-gain control.

where KO € {1 (C™*P) and K; € C™*P. Assume that

o(G(§)Kj) CCo, VYjeN. (6.50)
The following statements hold for the output y of the sampled-data system (6.48):

(1) There exists 7" > 0 such that, for every sampling period T € (0,7*), there exists
er > 0 such that, for alle € (0,e;), the feedback system is L>°-stable, in the sense
that there exists N1 > 0 such that

[Ylloo < N1(llrlloo + ldrlloc + lld2lloc) s Vr,da € Ly(Ry, CF), Vdi € Ly(Ry, C™).

(2) If the reference signal r: Ry — CP is given by
N
= Z 66'7ttj RS cr, (6.51)
=1
the disturbance signals dy € Ly(R4,C™) and da € Ly(Ry, CP) satisfy

lim d1 Z 57%1 =0, hm dg Z 57t02 0, Dlj S Cm, 02]' S Cp,

t~>oo
7j=1

(6.52)
then, for every § > 0, there exists 5 > 0 such that, for every sampling period
T € (0,75), there exists e, > 0 such that, for everye € (0,&;),

limsup [Jy(t) — r(t)|| < 9. (6.53)
t—o00

(3) Under the additional assumptions that K® € HX(Ey, C™*P) and that there exist
v € (a,0) and Ny > 0 such that

N N
dy(t) = €5, < Noe?®, lda(t) =) €50y < Noe?, VE>0, (6.54)
Jj=1 Jj=1

91



(6.53) can be replaced by
ly(t) —r(t)|| <6+ Nse’, vt >0,

for some (3 € (,0) and N3 > 0 (both depending on T and €).

Proof. Setting 19 := 2w /sup{|§; — &l : j,k € N, j # k}, we know that if 7 € (0,79),
then e%7 # €7 for all j,k € N, j # k. Let G, be the sample-hold discretization of G
defined by (6.46) and G, be the transfer function of G.. It follows from Proposition
6.2.5 that -

lim e%7 G, (5K, = G(§)Kj, Vj€N.

T—0

Hence, by hypothesis (6.50), there exists 7 € (0, 79) such that if 7 € (0,7*), then
o(57GL(e9T)K;) C Cy, VjeN. (6.55)
By assumption, there exists o < 0 such that [;~ e *|u|(dt) < co. Therefore, by
Proposition 6.2.5, G, € HX(E,CP*™) C gl((Cpxm). Moreover, by assumption, K? €
{1 (C™*P). Tt follows from Theorem 6.1.9 that, for every 7 € (0, 7*), there exists e, > 0

such that X
K, (I +G, K, )"t e ll(C™P), Vee(0,e,),

showing that K, (I + GTKT,E)*1 is a convolution operator with impulse response in
(Y(Zy.,C™*P). Let 7 € (0,7*) and ¢ € (0,¢,). Set

M :=|p|(Ry) and My :=||K, (I +G,K,.)7'|. (6.56)

Let di € Lp(R4+,C™) and do,7 € Lp(Ry,CP). It is well-known that [|Gdiljcc <
M||d1||oo- Furthermore, set
Trivially,

[8rdlleee < [ldlloc < Ml[d1]loc + lld2lloc  and  [|8+7lgee < [|7{loc - (6.58)
The output y. of the discrete-time controller (see (6.48)) is given by
Yo = K7 :8:[r — (GHrye + d)] = K; o [8:1 — (Grye + 8-d)] .

It follows that
Yo=K, (I +G K, ) 1 (81 — 8,:d). (6.59)

Invoking (6.56) and (6.58), we have

[1Yelleme < My ([|877[|g + [|87dllee) < Mi([[7[loo + Mld1 oo + [ld2]loo) - (6.60)
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Clearly, the output y of the closed-loop sampled-data system (6.48) satisfies

y = GH,ye + Gdy + do = GHry +d. (6.61)

Since || Hryelloo = ||Yellese, it follows from (6.60) and (6.61) that

1GHryelloo + |G floo + lld2loo

M[Hryelloo + Mldi]|oo + [ld2[loo

M[yelle + M|drlloo + |2l

MMy ([rllee + Mlldillco + lldalloc) + Ml [0 + lldalloo
Ni(lIrlloe + l1d1lloc + [Id2loc)

[9lloo

IN N

VANVAN

with Ny := (M + 1)(M M; + 1). This completes the proof of Statement (1).

To prove Statement (2), note that, by (6.55), G,(e%7)K; is invertible for every j € N.
In the following, we take limits as z — €%7 for z € E. It is easy to calculate that

lim (I+G,(2)K,.(2))' =0, VjeN,

z~>eEJ
and
lim (I+ G, (2)Kro(2)) !
z—etiT 2 — ST 7
~1
G, (2)K
= lim |eG;(2)K; + (2 — ST | T+ G (2)KO(2) 4 ¢ Z %
PR kEN i zZ—e
= (G (%MK, VjeN.
Consequently,
(Kre(I + GTKT,E)_I)(egﬂ)
T 0 eR -1
= ZEZ?J'T eK2(2)(I + G, (2)Kre(2)t + Zilren] Z <z — efkT (I+Gr(2)K;:(2)) >
= lim g (I+G ( ) TE(Z))il
2ebiT 2 — €8T
= K;(G,(e%T)K;)™!, VjeN. (6.62)
Set
0j = G(&)o1; + 025, VjEN. (6.63)
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By Lemma 6.2.4 and (6.52), we obtain that

=

lim (d( Z; ¢4';) = lim [(Gdy )( Z G (&;)o15] + lim (da(t Z e5it0q;)
; s

—0, (6.64)

where d is defined in (6.57).
It follows trivially from (6.51) and (6.64) that

N
k)= 9", VkeZ, and Jim [( Z SR, =0.  (6.65)

Define a,,b;: Z, — C™ by

N N
)= TR (G (9T)K)) ey, be(k) =) eSTERG (G (e5T)K) ;.
=1 =1

(6.66)
It follows from Lemma 6.1.6, (6.59), (6.62) and (6.65) that
khm [ye(k) —ar(k) + b (k)] =0. (6.67)
By (6.50), G(&;) K] is invertible for every j € N. Define vi,v2: Ry — C™ by
N N
)=y K (G(E)K)) Z Kj)~';. (6.68)
i=1 i=1
We conclude from Lemma 6.2.4, (6.51) and (6.64) that
tlim [(Gvy)(t) —r(t)] =0, tlim [(Gua)(t) —d(t)] =0. (6.69)

Let 6 > 0. Invoking Proposition 6.2.5 and the fact that the fact that §; € iR, there
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exists 75 € (0,7*) such that if 7 € (0,75), then then

sup [Jvi(t) — (Frar)(@)|]
telkr,(k+1)7)

N N
= sup ZeéjtKj(G(fj)Kj)fltj — ZeékaKj(GT(eng)Kj)iltj
telkr,(k+1)7) j=1 j=1

N
< sup €5 0FT) — 1| K (G(&) )M
telkr,(k+1)7) j=1
N
+Z (G(E)E;) ™ = (G (€5 K;) 1Kl |[x5
j=1
< 0 Vk € Z4
— 2M7 M

where M is defined in (6.56). Hence,

lor(t) = (96 an)(B)] < o=, Ve 0, (6.70)

and, similarly,

[v2(t) = (Hobr) D < 577, VE=0, (6.71)
Let 7 € (0,75) and ¢ € (0,e,). By (6.67), (6.70) and (6.71), we obtain

lim sup || (FHrye) () — vi(t) + v2(1)|

t—o0

< timsup (3 (v — ar + b)) (1) + lim sup | (9 ) (1) — (1)

t—o0
+ 11?1 sup HUQ(t) - (}CTbT)(t)H
0
< —. .72
< 2 (6.72)
By (6.61) and (6.69), it follows that

lim sup ly(t) = r(®)[| < limsup [(G(Hrye — v1 +v2)) (1) + lim sup 1d(t) — (Gu2)(#)]]

t—o0

+ limsup [[(Gvy)(t) — r(t)]]

t—o0

= limsup ||(G(H,ye — v1 + v2))(1)]|-

t—o00
Finally, H,y. — v1 + v is bounded and thus, by Lemma 6.2.3 and (6.72),
i sp (1) — ()] < M i sup | (H) (1) = 1 (6) + n(0)] < 5.
This completes the proof of Statement (2).

95



To prove Statement (3), assume that K° € H>(E;, C"™*?) and that there exist Ny >
0 and v € (a,0) such that (6.54) holds. Therefore, by Theorem 6.1.12, K. (I +
G,K.:)"! € HX(E;,C™*P). Hence, by Proposition 6.1.7, there exists p € (¢77,1)
such that

K, (I+G.K..)™' €l(Cmr),

By Lemma 6.2.4 and (6.54), there exists My > 0 such that

1(Gdy)( 2657 (E)oull < Mae?t, Wt >0.

Invoking (6.54), it follows that

ld(t) Z oyl < (Ga)(t Z 'G(&)0u5] + lda (1) Z ¢ 0y

7=1
< (Mg + Np)et, Vt>0, (6.73)

where d and 0; are defined in (6.57) and (6.63), respectively. Trivially,
N
1(8-d)(k) = D "0, < (Mz + Na)(7)* < (M + No)p®, V€ Zy .
j=1
It follows from (6.62) and Lemma 6.1.6 that there exists M3z > 0 such that
lye(k) — ar (k) + br (k)| < M3p®, vk € Z, (6.74)

where y, is given by (6.59) and a,, b, are defined in (6.66). We conclude from Lemma
6.2.4, (6.51) and (6.73) that there exists My > 0 such that

[(Gui)(t) = r()]] < Mae™, [[(Gua)(t) —d(t)|| < Mye™; VE>0, (6.75)
where v; and vg are defined in (6.68). Since p € (0,1), we have
b < p LT/ — LB g e (0,7, VE € Zy
where (:= (Inp)/7. Consequently, by (6.70), (6.71) and (6.74),

1(FHrye)(t) = vi(t) + w2 (1)
< (FHrye = Hrar + Hb) O + [[(Hrar)(8) — v ()] + [[o2(t) — (Hb) (D]

0
< Mgpfleﬁt—i— U Vi >0.
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Since p € (e77,1), we have that § € (7,0) C («,0) and hence,

(G(Hrye —v1 +v2))()] < /Ot [(Hrye — v1 + v2)(t = s)||p|(ds)

t
< [ Myp1eB9) ) (ds) / 1l (ds)
0

IN

Myp~le™ / =05y (ds) + 8
0

< MsMsp~teP +65, Vi>0,

where Ms := [°e™P%|u|(ds) < [;° e7**|u|(ds) < oo. Therefore, by (6.61) and (6.75),
it follows that

ly@) —r@OI < [[(G(Hrye = v +v2)) (O] + [[(d(t) = Gua ()] + [[(Gor)(E) = ()]
< IGOHrye —v1 +02))(O)]] +2Mye™
< 6+ (M3M5p71 + 2M4)€ﬁt, Vi>0.
This completes the proof of Statement (3). O

Remark 6.2.8. (1) By [65], the low-gain continuous-time controller which achieves

tracking and disturbance rejection for systems given by (6.41) is of the form
EZle[Kj /(s —&;)]. That is, the impulse response of the controller is given
by 62?[:1 eSitK ;- Applying sample-hold discretization to this continuous-time
controller and invoking arguments similar to those used in the proof of Proposition
6.2.5, it can be shown that the corresponding discrete-time controller has transfer
function given by

(eﬁﬂ_l) )
¥ T ire+o0
5E z—efﬂ’ where o = &5 7
T, if£€=0

Apart from the coeflicients o, this low-gain discrete-time controller obtained by
sample-hold discretization is the same as (6.49) (where, for the thesis discussion,
we ignore the term K°). In this respect, Theorem 6.2.7 can be regarded as a
result on indirect sampled-data control.

In (6.49), the term K° may be employed to satisfy additional design requirements,
for example, to improve robustness properties or to speed up the transient re-
sponse. The existence of matrices K such that (6.50) holds is guaranteed if and
only if tk G(§;) = p for all j € N, in which case, K; = G*(&)[G(£;)G*(&)] 7!

a possible choice.

The proof of Theorem 6.2.7 shows that, for fixed {¢; : j € N}, 75 and e, can
be chosen to be uniform for all signals r,d; and dy with t;, 01; and 035, j € N,
satisfying a pre-specified bound. O
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6.2.3 Application to state-space systems

In the following, we consider sampled-data systems in the state-space form: we apply
the input-output results to a class of infinite-dimensional state-space systems.

Let X be a Hilbert space and assume that the plant is given by

Ep(t) = Apzp(t) + Bpup(t); xp(0) = xg eX, (6.76a)
yp(t) = Cpap(t) + Dyuy(t), (6.76b)

where A, : D(A) — X is the generator of a strongly continuous semigroup T(¢) on X,
B, € B(C™, X_1) is the control operator, C), € B(X,CP) is the (bounded) observation
operator and D, € CP*™ is the feedthrough matrix. Here X_; is the completion of X
with respect to the norm ||z||_; := ||(B] — Ap) ‘x| x, where 3 is in the resolvent set of
Ap. We assume that B), is admissible, that is, for every ¢ > 0, there exists b; > 0 such
that

< billupllzz,  Vu, € L*([0,4],C™).
X

/0 t T(t — 5)Byuy(s)

The admissibility assumption implies, in particular, that system (6.76) is regular (see
Section 2.4 and the references within for more details on admissible control operators
and regular systems). For u, € L2 (R;,C™), the mild solution z,, of (6.76a), given by

loc

£p(t) = T(£)20 + /O T = ) Byuy (5)ds (6.77)

is a continuous X-valued function, satisfying the differential equation (6.76a) in X_;
for almost every ¢ € R;. The transfer function G of (6.76) is given by

G(s) = Cp(sI — A)"'B,+ D,, Vsc Co(ty »

where 1
w(T) := tlim n In [|T(¢)]]

denotes the exponential constant of T. We say that (6.76) is exponentially stable if
w(T) <0.

Next we construct a state-space realization of the controller transfer function (6.49). Let
K" be a discrete-time stable proper complex rational function and let ( Ag, By, Co, Do) €
Croxno . CnoXp x C™M*"o x C™*P be a stabilizable and detectable realization of KO,
i.e., K9(2) = Co(2I — Ag) "1 By + Dy, (Ao, Bo) is stabilizable and (Cy, Ag) is detectable.
Since K is 2-stable, it follows that Ay is power stable. Let A, € CWVrtno)x(Np+no)
B. € CWptno)xp ¢, ¢ Cm*(NP+10) and D, € C™*P are given by (6.23) with \; = €57,
where §; € iR for all j € N and &; # &, for j € N, j # k. If the non-zero numbers in
{¢; € iR : j € N} occur in complex conjugate pairs, then we can design (4., Be, Ce, D,)

98



to be real matrices (see Remark 6.1.15). The controller is defined by

ze(k+1) = Axc(k) + Boue(k); z.(0) =20 e CNPtmo (6.78a)
ye(k) eCexc(k) + eDouc(k) . (6.78b)

The transfer function K, . of (6.78) is given by

N
_ 0 J
Kre(2) =¢ [ K'(2) + Z; P
The interconnection of (6.76) and (6.78) is given by
Up = Heye+di, y= Yp + da, uc= ST(T - y) s (679)

where r is a reference signal and d; and do are disturbance signals. The state-space
sampled-data feedback system given by (6.76), (6.78) and (6.79) is a state-space real-
ization of the system (6.48), and has a unique solution which will be denoted by

.0 .0
<:Cp( : ’xp)xcaT)s)r) dl)d2)>

.0 .0
:CC( : ,CCp,CCc,T,g,T, dladQ)

Remark 6.2.9. Note that the plant ¥, is infinite-dimensional, but the discrete-time
controller ¥, is finite-dimensional and hence can be implemented with on-line digi-
tal computers. The order of the discrete-time controller depends on the number of
frequencies of the reference and disturbance signals. O

Theorem 6.2.10. Consider the sampled-data state-space system given by (6.76), (6.78)
and (6.79). Assume that (6.76) is exponentially stable and o(G(§;)K;) C Cqy for all
j = N. The following statements hold:

(1) There exists T > 0 such that, for every sampling period T € (0,7*), there exists
er > 0 such that if ¢ € (0,e;), then the sampled-data system is exponentially
stable, i.e., for every e € (0,e;), there exist Ny > 0 and $ < 0 such that

xp (kT + H;xg,xg,T,S,T, di,dz)
ze(k;al, 2l 7, e, dy, d2)

yYpr e
0
(mp>
0
:CC

VO €[0,7), Vk € Zy, Va) € X, Val € CNPHmo,
Vr,dy € Lb(R+, Cp) , Vdy € Lb(R+,Cm) .

<N <6ﬁ(k7+9)

F lrlloo + lldaloo + Hdzlloo> :

(2) If r is of the form (6.51) and dy € Ly(R4,C™), dy € Ly(R,CP) satisfy (6.52),
then, for every § > 0, there exists 5 > 0 such that, for every sampling period
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T € (0,75), there exists e > 0, such that, for all € € (0,e,), all xg € X and all
20 € CNptno,

limsup [y (t) — ()] < 5.
t—o0

Moreover, if (6.54) holds for some v < 0 and Ny > 0, then, for everye € (0,e,),
there exist n € (,0) and N3 > 0 such that, for all acg € X and all 2% € CNPtno,

ly(t) — r(t)|| <0+ Nse™, Vt>0.

Proof. The sample-hold discretization of (6.76) is given by the quadruple
(T0). [ 185 €4 D,) (6.50)
0

Clearly, since T(t) is exponentially stable, T(r) is power stable. Since A; 'B, €
B(C™, X) and

/ T(s)Bpdsv = (T(1) — I)A;prv, Vv e C™,
0

we see that [ T(s)Byds € B(C™, X) for every 7 > 0. Define
E,:=(I+eD.D,)"', E.:=(I+eD,D.)",
and A: [0,7] — B(X x CNp+no) by

A(0) :=
0
<T<9> 0>+ JRCLT <E o><_5pc 1 )(c o>_
0 A 0 B, ) \0 E -1  —eD,) \0 C.

For 6 € [0,7] and k € Z,, define R(k,0) : Ly(Ry,C™) x Ly(R4,CP) x Ly(R4,CP) —
X x CNptno by

dy
R(Ek,0) [ dy | =

r

MO (k7 + 0 — 5)Byda(s)ds + ¢ [y T(s)ds BpEyDe[—Dpdi (k1) + 7(k7) — da(k7)]
BeEe[—Dydy (k7) + 1(k7) — dy (k7))

For convenience, we write

xp(+) == p( - ;xg,xg,T,&?,r, di,da), x():=zc(- ;xg,xg,T,&?,r, dy,dsy).
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By (6.77)-(6.79) and a routine calculation’, we obtain

dy

(xp(kT + 0)) — A(6) <xp(k7—)> +R(k,0) | dy|, YeeZy,0c[0,7). (6.81)
zo(k+1) zc(k)
It follows from (6.81) with # = 7 that
dy
(xp((k—i-l)T)) A (xp(k7)> R gy | kezs. (6.82)
xc(k + 1) xc(k) -

The transfer function of (6.80) is denoted by G.. By Proposition 6.2.5 and the as-
sumption that o(G({;)K;) C Cop, there exists 7* > 0 such that if 7 € (0,7), then
ST £ 5T for all j k€ N, j # k, and

o(57G(5T)K;) C Cy, VjEN. (6.83)

Applying Statement (1) of Theorem 6.1.14 to the feedback inter-connection of discrete-
time systems (6.80) and (6.78) (the free dynamics of which is governed by A(7)), we
conclude that, for every 7 € (0,7*), there exists e, > 0 such that, for every ¢ € (0,¢,),
A(T) is power stable.

Let 7 € (0,7%), € € (0,&;), d1 € Lp(R4,C™) and r,dy € Ly(R4,CP). By the admissi-
bility of B, there exists M; > 0 such that

kT+0
/ T (kT + 60 — 5)Bpdi(s)ds
k

T

= M|ldi|lz2((krkrro),cm) < MivVT*||di 0o

VkeZy, Vo e[0,7].

X

Therefore, there exists My > 0 such that

dy
R(k,0) | dy ||| < Ma(|I7lloo + [ld1lloo + l|d2llc) ,  VEk € Zy, VO €[0,7].  (6.84)
T

Let 3:2 € X and z¥ € CNPTmo_ Tt follows from the discrete-time variation-of-parameters
formula, the power stability of A(7), (6.82) and (6.84) that there exist M3 > 1 and

p € (0,1) such that
i )l=
ze(k) 0

fSee Appendix A.4.3 with ¢ = 1 and r replaced by r — da.

< M;3 <Pk

+ [|7lloo + l1dlloo + Hdguoo> , Vke€Zy. (6.85)
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By (6.81), we obtain that

(xp(kﬂ' +¢9)> — 0.(0) (xp(k7)> i (Rl(k’9)> (6.86)
(k) (k) 0

where
[’ [’
T(0) —5/ T(s)dsB,E,D.C, 5/ T(s)dsBpE,D,
Q1(0) :== 0 0 ,
0 I
and
Ry(k,0) :=

kT+6 6
/k T(kt + 6 — 5)Bpdy(s)ds + 5/ T(s)dsBpE,D.|—Dydi (k1) + r(kT) — do(kT)] .
0

T

Consequently, setting My := maxge(g,r+] 0)|], it follows from (6.84), (6.85) and
(6.86) that
k 0) (k
wplhT < 34 | (PN 4 2l + 1o + l1ello)
ze(k (k)
k )
< M3Myp o) ||+ M A+ MyMy)([|rlloo + fldifloo + [ld2[loc)
xC
<

N, ( B0kr+9) ( %)

Vo € [0,7), Vk € Z, |

+lrllee + lldafloo + HdzHoo> ;

where 3 := (Inp)/7 < 0 and Ny := max{MzMyp~!, My + M3M,}. This completes the
proof of Statement (1).

To prove the approximate tracking and disturbance rejection result claimed in State-
ment (2), note that, by exponential stability of (6.76) and boundedness of C, the
impulse response of (6.76) is a CP*™-valued Borel measure p of the form u(ds) =
g(s)ds + Déo(ds), where g € L} (R, CP*™) for some a < 0, and dp is the Dirac mea-
sure (see [41, Lemma 2.3]). By (6.76)(6.79) and a routine calculation’, we obtain

(y(fw +9)> — Qu(0)A(M) <$2> T (yio(’.” N ‘”) . VOE,T), VEEL,, (657)
ye(k) c ve' (k)

fSee Appendix A.4.3 with ¢ = 1 and r replaced by r — da.
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where
QQ(Q) =
0 0
CT(0) — EC/ T(s)BdsED.C —eDED.C EC/ T(s)BdsED.+ e¢DEC.
0 0

)

—eD.E.C eC, —e?D.E.DC.
and y'°, yl© satisfy
YO =G(di + Hyl%) +dy, Yl =K, 8, (r—y°). (6.88)
An application of Theorem 6.2.7 to system (6.88) with r and d;, dy given by (6.51) and

(6.52), respectively, shows that, for every 6 > 0, there exists 75 € (0,7*) such that, for
every sampling period 7 € (0, 75), there exists e, > 0, such that, for every € € (0,¢,),

lim sup Hyio(t) —r(t)| <é.
t—oo

Therefore, by power stability of A(7) and (6.87),

limsup ||y(¢t) —r(t)|| < 0.

t—o00

Moreover, an application of Theorem 6.2.7 to system (6.88) with r given by (6.51) and
dy, dy satisfying (6.54) for some v < 0 and Ny > 0, shows that, for every 6 > 0, there
exists 75 € (0,7*) such that, for every sampling period 7 € (0, 75), there exists e, > 0,
such that, for every e € (0,&;),

ly°(t) = r($)]l < 6+ Mse™*.

for some n; € (7,0) and Mz > 0. Therefore, by power stability of A(7) and (6.87),
there exist 7 € (11,0) and N3 > Mj5 such that

ly(t) = r(®)] < &+ Nae™. 0

Example 6.2.11. For purpose of illustration, we consider the problem of heating a bar
of length 1. We keep both endpoints at zero temperature and inject heat of magnitude
up at the point 7 € (0,1). The temperature measurement is generated by a spatial
averaging of the state over an o-neighbourhood of a point 73 € (11, 1). The system to
be controlled can be formulated as follows

zt(n7 t) = sz(nv t) + 5(77 - nl)up(t) )
(t) : nﬁa( )d
Yp(t) = — z(s,t)ds,
: 20 Jpp—o
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Figure 6-4: Error signal e and output y.

with boundary conditions

2(0,t) = 2(1,t) =0, Vt>0.

For simplicity, we assume zero initial condition

z(n,0) =0, Vnel0,1].

Analog low-gain integral control of this system (in the presence of input hysteresis) was
studied in [37].

With input u, and output y,, it can be shown that this system is a regular linear
system with state space X = L?((0,1),R) and bounded observation. In particular, the
semigroup T(t) given by

(T(t)z)(n) = Z 2 exp(—n’r?t) sin(mm)/o sin(nw\)x(A)dA.

n=1
is exponentially stable. The transfer function G is given by

G(s) = sinh(o+/s) sinh(n;/s) sinh((1 — n2)+/s)
ossinh(y/s) '

The aim is to design a robust controller such that the closed-loop system approximately
tracks the reference signal r(¢) = sint, in the presence of disturbance signals dy, ds given
by

1 1 1 1 1
di(t) = = t —_— do(t) = = si t) — =1 1+ — t>0.
1(t) 5COS(5)+t—|—1’ 2(t) 58111(5) 2n(+t+1), >0
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Set
K :=1/G(i), Ky:=K;, Kz3:=1/G(5), K,;:=Ks,

and K°(z) = 10, so that the transfer function K . of the controller K. (see (6.49)) is
given by

K1 K2 Kg K4 )

Kre(z) = ¢ <10 + o _ eim + 5 e—iT T o _ ebir + 5 — e—biT

2Re (K1)z — 2Re (K1e77)  2Re(K3)z — 2Re (K3e 77)
= |10+ +
22 —2cosTz+ 1 22 —2cos(b7)z + 1

Since all the relevant hypotheses are satisfied, the conclusions of Theorem 6.2.7 are
valid. In Figures 6-4, simulations are shown for the specific values

m=02, =06, o0=00l, 7=01, e=0.1,

with zero initial conditions for the controller. The error signal e = r — y, — d2 and the
output y = y,+ds of the sampled-data system are shown in Figure 6-4. Asymptotically,
the error is bounded by 0.0028, that is, limsup,s |e(t)| < 0.0028. Simulations show
that, for the sampling period 7 = 0.1, instability oceurs at e & 0.22.

6.3 Low-gain sampled-data control of exponentially stable
well-posed systems

We extend our results in Section 6.2 to exponentially stable well-posed systems with
transfer functions in H*°(C,, CP*™), where o < 0, by using suitable low-pass filters. A
(finite-dimensional) filter is an exponentially stable, strictly causal, finite-dimensional
system. In particular, a filter has impulse response of the form ¢ — Ce?*B, where
AeCH BeC»™m and C € CP*, and every eigenvalue of A has negative real part.

Lemma 6.3.1. Let G is a continuous-time input-output operator with transfer function
G € H®(C,,C) for some a < 0, and let F' be a single-input-single-output filter. Then
there exists 3 € (a,0) such that the impulse response of GF' is in LE(RJF, C).

Proof. Let F denote the transfer function of F', which is a strictly proper stable rational
function. Hence there exists v € (,0) such that F € H?*(C,,C), so that GF is in
H?(C,,C). Let h denote the impulse response of GF. By the Paley-Wiener Theorem,
h € Lg(RJr,C). Therefore, it follows easily from the Holder’s inequality that h €
Lé(RjL,(C) for every (8 € (v,0). O

The following Lemma will be useful in the proof of Theorem 6.3.4, the main result of
this section. It is essentially the same as the first claim of Theorem 6.1.12, but we
provide an alternative proof.
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Lemma 6.3.2. Let N € N and let \; € C, |\j| = 1 for all j € N be such that
Nj # M forall j,k € N, j#k. Assume that P € HX(Ey,CP*™) and that there exist
K; € C™*P such that )
O'()\jP()\j)Kj) cCy, VjeEN.

Let K® € HX(E;,C™*?) and set
N
K.

- 0 J
K.(z):=¢ | K (z)+.212—)\j .

J:

Then there exists € > 0 such that

K.(I +PK.)™' € HX®(E;,C™?), Veec (0,&%).
It is convenient to first state and prove the following lemma which will facilitate the
proof of Lemma, 6.3.2.

Lemma 6.3.3. For p > 0, set B, := B(1,p) NE; and let U D cl(B,) be open. Let
Qe H>®(U,Cr™), H € H*(U,C™*P) and K € C"™*P. If

o(Q()K) c Co, (6.89)

then there exists €* > 0 such that
K -1
Z (I +:eQ(2) <H(z) + —1>) € H*®(B,,CP*P), Ve e (0,e%).
P

Proof. Note that, by (6.89), rk K = p, so that K*K is invertible. Setting

D(z) = = - L1, N(:):= H()D() + %K

we conclude that (N,D) is a right coprime factorization of H(z) + K/(z — 1) over
H>(B,), since N(2)D~'(2) = H(z) + K/(z — 1) and

z—1

(K*K) ' K*N(z2) + [I, - (K*K) ' K*H(2)|D(2) = %Ip + I,=1,.

z
By Proposition 6.1.3, it is sufficient to show that there exists €* > 0 such that

zienlg |det[eQ(2)N(z) + D(z)]| >0, Vee (0,e").

Seeking a contradiction, suppose such an €* does not exist. Then there exists a sequence
€n | 0 such that

inf
z€B,

:0, vn€Z+

det [enQ(z)H(z)D(z) + QUK + 5 114
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It follows that there exists a number z, € cl(B,) such that

(zn — 1)

det En zZn — 1

Q(2)H(zn) + ‘Z—"Q(zn)K + I,| =0, Vnez,.

Zn n Zn

showing that

detlen (2, — 1)Q(2n)H(2p) + €0, Q(2n) K + (2, — 1)I,] =0, VneZ,. (6.90)

Since lim,, o €5, = 0, we conclude from (6.90) that

lim z, =1. (6.91)

n—oo

Moreover, we obtain from (6.90) that

1—2z,

€o(zn — 1)Q(2n)H(zn) + Q(2zn) K], VneZ,.

En
Consequently, by (6.89) and (6.91), there exists # > 0 and ny € N such that

1—2z,

€Cs, Vn>ng.
En

Setting 2] := 1+ ilm 2, for n € Z,, and invoking an argument identical to that used
in the proof of Theorem 2.5 in [45], it can be shown that

1_ /
lim inf (Re Z”) >(3>0.

n—oo En
This is in contradiction to the trivial fact that Re ((1 —z},)/e,) =0foralln € Zy. O
We are now in the position to prove Lemma 6.3.2.

Proof of Lemma 6.5.2. We first show that (I+PK_.)~! € H>®(E;, CP*P) for sufficiently
small €. Since \; # Ai, for all j,k € N, j # k, we can choose p > 0 sufficiently small
such that

c(B(Aj,p)) Ncl(B(A,p) =0, VjikeN,j#k.

Setting Q; :=E; NB(\;, p) and Q := UjV:1 ;, it is clear that

N

2o P() [ KO2) + ) K;
j=1

Z—)\j

is bounded on E; \ Q. Thus, exists €* > 0 such that

(I+PK.) "' € H®(E, \ Q,CP*P), Ve € (0,%). (6.92)
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Fix j € N and set
Ky,

z2—Mp

H(z) :=K'(2) + >

kEN, k#j

Then there exists an open set V; D cl(£2;) such that H € H>°(V;, C™*?) and, further-
more,

PIK(2) = <P(2) (H) + 2 ) = POy (HOyu) + 222

where w := \;z. Setting

H(w) :=HW\jw), Qw):=P\w), K;:= S\jKj ,

it follows that

P(2)K.(2) = cQ(w) <ﬁ<w> + A ) .

w—1
SinceNP € HX(E1,CP*™) and K € HX(E;,C™*P), we see that Q € HX(E;,CP*™)
and H € H>*(U;,C"*P), where

Uj == \V; D A cl(€)) = cl(E1 NB(L, p)) = cl(B,).

Moreover,

U(Q(l)Kj) = J()\jP()\j)Kj) c Cy.

It follows from the Lemma 6.3.3 that there exists €; € (0,£°°) such that

-1
I+ eQ(w) (ﬁ(w) + ij1>] € H*(B,,CP*P), Ve € (0,¢5).

w H—

Hence,
(I +PK.)™' € H>®(Q;,CP*?P), Ve (0,¢). (6.93)

Letting €* := min{e; : j € N} and invoking (6.92) and (6.93), we conclude that

(I +PK.)"' € H®(E,,CP*P), Vee (0,e). (6.94)
Invoking arguments identical to those used in the proof of the second claim of Lemma
6.1.10, it can be shown that (I + PK.)™! € HX(E;,CP*?) for all ¢ € (0,&*). Further-

more, invoking arguments identical to those used in the proof of the first claim of The-
orem 6.1.12, we conclude that K (I + PK.)"! € HX(E;,C™*?) for all ¢ € (0,¢*). O

Consider the sampled-data system shown in Figure 6-5, where G is the input-output
operator of the continuous-time plant, K, . is the input-output operator of the discrete-

108



dy d2i+ Y
T =f > ¢ T >
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Figure 6-5: Sampled-data low-gain control with filters.

time controller, F} and F5 are filters, r is a reference signal, and dy and do are distur-
bance signals. Mathematically, Figure 6-5 can be expressed as

y=G(FHyc+di)+da, ye= K 8:(r—Fy). (6.95)
The following theorem is the main result of this section.

Theorem 6.3.4. Let N € N and let §; € iR for all j € N be such that §; # & for
J.k € N, j # k. Assume that the transfer function G of G is in H*(C,,CP*™) for
some a < 0 and there exist K; such that

o(G(¢)K;) CCy, VjeN. (6.96)

Let 7 > 0 be the sampling period and let the transfer function K. . of K;. be given by

K
2z — ST

K. (2) = | K'(2) + Z , (6.97)

where KO € HX(E.,C™*P). Assume that the transfer functions Fy of F1 and Fy of Fy
satisfy
Fi(&) =1y, Fao(§)=1In, VjeEN. (6.98)

If r is given by r(t) := Z;Vﬂ ebitej, v; € CP, and dy, da are given by

N N
dl(t) = Zegjtblj —i—pl(t), dg(t) = Z egjtagj —|—p21(t) +p22(t) , 015 € cm, 025 € Ccr,
=1 j=1

(6.99)
where py € L?Y(R+,(Cm), D21 € L?Y(RJ,_, CP) for some v € (a,0), and pao € L}, (R4, CP)
with imy_, o poa(t) = 0, then, for every 6 > 0, there exists 75 > 0 such that, for every
sampling period T € (0,75), there exists e; > 0 such that, for every e € (0,e;), the
output y of the sampled-data feedback system (6.95) can be decomposed as y = y1 + y2,

where y; € L,%(RJ’_, CP) and ys satisfies

liinsup lly2(t) — r(t)]| < 0.
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Proof. Setting 19 := 27/sup{|&; — &| : j, k € N,j # k}, we know that if 7 € (0, 79),
then €57 # €7 for all j,k € N, j # k. Define

H = FlGFQ s HT = STHJ'CT == STFlGFQJ{T .

The transfer functions of H and H. are denoted by H and H, respectively. By Lemma
6.3.1, there exists 5 € (a,0) such that the impulse responses of H, F1G and GF;, are
in L%(R%Cpxm). Hence, by Proposition 6.2.5 and (6.98), H, € HX(E;,CP*™) and

lim H(¢57) = H() = G(&), VjeN. (6.100)

T—0
By (6.96) and (6.100), there exists 7* € (0,79) such that if 7 € (0,7*), then

o(5TH(9T)K;) C Cy, VjeEN. (6.101)

Let 7 € (0,7*). Invoking Theorem 6.1.12, we conclude that there exists £, > 0 such
that
K, (I+HK,.) ' € H°(E;,C™P), Vee (0,¢,). (6.102)

By (6.101), H,(e%7)K; is invertible, and thus, we calculate that

(Kol +HK, ) ) (5) = K;(H(5T)K;)™!, VjeN. (6.103)

The output y. of the discrete-time controller (see (6.95)) is given by

Ye = KT,ES’T[T - F (GFQJ{TyC + Gdl + d2)]
= K;8;r— K cHrye — K7 e 8: F1Gdy — K7 .8 Fida ,

so that,
Yo = Kro(I + H K, o) (8, — 8, F1Gdy — 8, Fydy). (6.104)

Since the impulse reponses of F1G and Fy, p; and po; are L2-functions,

thm (Flel)(t) == 0, thm (Flpgl)(t) =0. (6105)

Invoking the fact that the impulse responses of FG and Fy are L'-functions, together
with Lemma 6.2.4, (6.98) and (6.105), we obtain

lim [(F1Gdy)(t 2657 &)o1j] =0, lim [(Fida)( Zefa%

t—o00
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showing that

Jim (8- F1Gdy)(k Zeff’”G §)051 =0, lim [(8-Fidy)( Zefﬂ”oQ

(6.106)
Define a,,br,c;: Zy — C™ by

N
ar(k) = ) STEK(H(e9T)K)) My,
N
br(k) = Y STHRG(HA(ST)K)) TG0y,
7j=1
N
cr(k) = D SRR (H(e57T) K)oy .
j=1

By (6.102), the impulse response of K, (I + H. K, )" ! is in £1(Z,,C™*P). It follows
from Lemma 6.1.6, (6.103), (6.104) and (6.106) that

lim (ye — ar + by + ¢ )(k) = 0. (6.107)

k—o0

By (6.96), G(&;)Kj is invertible for every j € N. Define functions vi, v and v3 on R4
by

N
vi(t) = Y S (G(E)K)

j=1

N
va(t) = Zeg"tKj(G(fj)Kj)_lG(ﬁj)Dlja
vg(t) = ZegﬂtK K;) 1oy

By (6.98), G(&;) = H(¢;) for every j € N. Since ¢ € iR for j € N, we have, for all
keZ,,

sup |lvi(t) — (Hrar)(@)]]
telkr,(k+1)7)

N
D IHE)E) ™ = (e (5T K I e+
j=1

sup Z\egft’” [IK;(G()E;) ™l (6.108)
[k’r(k-l-l)’r)
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Let § > 0. By (6.100) and (6.108), there exists 75 € (0,7*) such that if 7 € (0, 75), then

0
lor(t) = ()@ < 52y VEZ0, (6.109)

where M denotes the L'-norm of the impulse response of GFy. Similarly,

J

[v2(t) — (Fbr) (B[] < 3M los(t) = Frer) Ol < 537, VE=0. (6.110)

Let 7 € (0,75) and ¢ € (0,e,). Then, by (6.107), (6.109) and (6.110), we obtain

lim sup [[(Hrye)(t) — vi(t) + v2(t) + v3(t)]|

t—o00

< limsup |3, (ye — ar + by + ¢))()] + Limsup [[(3ar)() — v (1))
t—o0

t—o0

limsup [ (£) — (3o (1) + lim sup [l (1) — (3re) ()]

)
< —. A11
< - (6.111)

Moreover, we conclude from Lemma 6.2.4 and (6.98) that

thm [(GFQUl)(t) - ’I“(t)] == O, thm GFQ’UQ 5] Dlj O (6112)

HMZ

and

thm [(GFQUg)

—~

t) — da(t) + par(t)]

I
M=

Jim [(GF (57 I (G{& ) K) ™1 02)) (1) — €9%03;] — lim poa(t)
1

I
S

(6.113)

Setting

N
y1(t) := (Gdy)( ZG &)e 015 + pan(t) |
Jj=1

and

N
y2(t) == (GF3rye) () + Z G(&)e5 0y + da(t) — par(t)
=1

it follows that y = y; + y2. Denoting the Laplace transform by .# and invoking (6.99),
we obtain that

= G(&))]01;
-y e T GO p)) + (L) (9),

Jj=1

112



Since G € H>*(C,,CP*™), p; € L%(RJF,(C’”) and po; € L%(RJF,(CP) with a < v < 0,
it follows that £ (y1) € H*(C,,CP). Hence, the Paley-Wiener Theorem implies that

Y1 €

L2(Ry,CP). Furthermore, since

ly2(t) =r@O] < [(GF2(Hrye — v1 + vz +03)) (1) + [[(GF201)(t) — r(t)]

N
+ D0 G(&)e 015 — (GFaun) (1)
=1

+ |ld2(t) — p21(t) — (GFav3) ()|, Vt>0,

it follows from (6.112) and (6.113) that

limsup [|lya(¢) — r(#)[] < limsup [|(GFo(Hrye — v1 + v2 + v3))(@)] -

t—o0 t—o0

Finally, H,y. — v1 + v2 + v3 is bounded and thus, by Lemma 6.2.3 and (6.111),

limsup [y2(6) = (O] < M limsup [[(3-5)(6) = 0a(8) + va(0)]| <. 0

Remark 6.3.5. (1) Let N € N and let {; € iR be such that §; # &; for all j € N,

J # k. A filter with transfer function F satisfying F(§;) = I for all j € IV can be
constructed in the following way:

F(s) :=$Z e 1 (;‘_Z) I

j=1 kEN, k#j

where h(s) is a real Hurwitz polynomial of degree N. It is cleat that F is a
strictly proper stable rational function. Moreover, if the numbers in {§; € iR :
j € N} \ {0} occur in complex conjugate pairs, then it is easy to see that F has
real coefficients.

Theorem 6.3.4 implies that for every § > 0, there exists 75 > 0 such that, for every
sampling period 7 € (0,7s), there exists e, > 0 such that, for every € € (0,e,),
the output y of system (6.95) satisfies

Jim pr({t =T r(@) -yl 2 6}) =0,

where p, denotes the Lebesgue measure on R . &

Example 6.3.6. For purpose of illustration, we consider the problem of heating a bar
of length 1. We keep both endpoints at zero temperature and inject heat of magnitude
uj at the point n; € (0,1), j = 1,2. Temperature measurements are taken at the points
n1,m2 € (0,1). The system to be controlled can be formulated as follows

2(&,t) = zee(§5t) +6(§ — §)ua(t) + (6 — &)ua(t), VE€(0,1), Vi >0,
yp1(t) = z(n,t), ypa(t) = z(ma,t); V>0,
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with boundary conditions

2(0,t) = 2(1,t) =0, Vt>0.
For simplicity, we assume zero initial condition
2(£,0) =0, VEe]0,1].

Continuous-time low-gain integral control of this system was studied in [33].

It can be shown that this system can be formulated as a well-posed system with the
state space X = L2((0,1),R). In particular, the semigroup T(t) given by

(T(1)2)(€) = 3 2exp(—n?rt) sin(nre) /0 sin(nr\)z(\)dA.

n=1

is exponentially stable. Assuming that
0<&<m<E<np<l,

the transfer function G(s) is given by

G(s) = ——L (sinh((l—m)ﬁ)sinh(&ﬁ) sinh((l—@)ﬁ)smh(mﬁ))_
Vssinh(vs) \sinh((1 — 12)y/5) sinh(€14/5)  sinh((1 — 72)+/5) sinh(€21/3)

The aim is to determine ¢ K° and K; such that the controller (6.97) leads to a

sampled-data feedback system such that the output y = (yp1, ypg)T + ds of this system
approximately tracks the reference signal

)= ("), w>o,
cost

in the presence of disturbance signals dy, dy given by

1 [ sin(2t) +e7? 1 cos(2t)
bt =3 @)+ — ) RO=31 (26) —1n (14 — =0
— in(2t) — In —
o P41 41
It can be shown that, if & > 71, then G(s) is invertible for s € cl(Cp). Set

Ky :=G7 (i), Ky:=K;j, K3:=G (2, K,:=K;,

and K%(2) = 1, so that the transfer function K, . of the controller K, . (see (6.97)) is
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Figure 6-6: Norm of the error signal e.

given by

K K K K
R (R
zZ— €

2 — e T 2 — et o — e—uT
) 2zRe (K1) —2Re (e K1) = 22Re(K3) — 2Re (e 27 K3)
= ¢
22 —2cos(1)z+ 1 22 —2cos(27)z+ 1 ’

where Re K; = (1/2)(K; + K7). Define the transfer functions F; and Fy of filters I
and Fy, respectively, by

1
m[—4(32 +4) + (125 + 7)(s2 4+ 1)]]5..

Fl(s) = FQ(S) =
It is easy to compute that F;(+i) = F;(£2i) = I for j = 1,2. Since all the relevant
hypotheses are satisfied, the conclusions of Theorem 6.3.4 are valid. (For this example,
it can be shown that y;(¢) in Theorem 6.3.4 goes to 0 as t — oo.) Simulations are
shown for the specific values

=02, & =06, 7 =04, 70=08, 7=0.1, ¢ =0.01,

with zero initial conditions for the controller and the filters. The norm of the error
signal e = 7 —y is shown in Figure 6-6, and the output y = (y*, y2)T of the sampled-data
system is shown in Figure 6-7. Asymptotically, the error e is bounded by 0.088, that
is, lim sup,~ [|e(t)|| < 0.0882. Simulations show that, for the sampling period 7 = 0.1,
instability occurs at & ~ 0.013.
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Figure 6-7: Output y = (y*,y%)7.

6.4 Notes and references

Whilst the main results of Sections 6.1 and 6.2 are contained in Ke, Logemann and
Rebarber [24], the results in Section 6.3 are contained in [26] by Ke, Logemann and
Rebarber. To the best of our knowledge, Theorem 6.1.9 and Theorem 6.2.7 are new even
for finite-dimensional systems. Theorem 6.1.9 and Theorem 6.1.20 are discrete-time
counterparts of the continuous-time results in Rebarber and Weiss [65] (see Theorem
3.2 and Theorem 3.4 in [65]).

In Section 6.1, we make use of fractional representation theory which is a significant
tool in the analysis and synthesis of feedback systems. This theory has been extensively
developed and there is a wealth of literature, see, for example, [7], [32], [52], [73], [78],
[79].

The important feature of condition (6.50) is that the only plant information needed is
G (&), the transfer function evaluated at the frequencies of the reference and distur-
bance signals. In principle, G(&;) can be calculated by performing frequency-response
experiments on the plant. Moreover, the values of G(§;) do not need to be known
precisely, since condition (6.50) is robust with respect to small changes of G(§;). If
the impulse response of the plant is a Borel measure, then Lemma 6.2.4 can be used
to estimate the value of G(¢;). If the plant is an exponentially stable regular system,
then using suitable modifications of the input ¢ — e, G(&;) can still be estimated by
input-output experiments (see [16, Theorem 10]).
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Chapter 7

Adaptive low-gain integral
control of infinite-dimensional
systems

An important issue in low-gain sampled-data control (as developed in Chapter 6) is the
tuning of the gain parameter €. In this chapter, we address this issue in the context of
low-gain integral control (that is, the reference and disturbance signals are constants).
In Section 7.1, an universal adaptive discrete-time low-gain control strategy is pre-
sented for tracking constant reference signals and rejecting constant disturbance signals
for infinite-dimensional, discrete-time, power-stable, linear systems. The discrete-time
results are applied in Section 7.2 in the development of universal adaptive sampled-
data low-gain control for infinite-dimensional, well-posed, exponentially stable, linear
systems. By “universal” we mean that the controllers are not based on system iden-
tification or plant parameter estimation algorithms. Our results considerably extend,
improve and simplify previous work by Logemann and Townley [45].

7.1 Adaptive discrete-time low-gain control

Let X, U and Y be Hilbert spaces. Consider the discrete-time system

z(k+1) = Axz(k)+Bu(k); z(0)=2"¢X, (7.1a)
y(k) = Cuxz(k)+ Du(k), (7.1b)

where A € B(X), Be B(U,X), C € B(X,Y) and D € B(U,Y). The transfer function
of (7.1), P:C — B(U,Y), is given by

P(2):=C(2I - A)'B+D.

System (7.1) is called power stable if A is power stable.
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The aim of this section is to find an adaptive control law which achieves setpoint
tracking in the presence of constant disturbances. To this end, consider the adaptive
controller given by

u(k) = Kuw(k)+d, (7.2a)
wk+1) = wk)+y9k)(r —y(k); w(0) =u’, (7.2b)
FE+1) = k) + lIr = yE)]*; v(0) =4°, (7.2¢)

where r € Y is the reference vector, d € U is the disturbance vector, K € B(Y,U) and
€ (0,1].

The following theorem is the main result of this section. It forms the discrete-time

counterpart of the continuous-time result in [47].

Theorem 7.1.1. Assume that (7.1) is power stable and that there exists K € B(Y,U)
such that
oc(P(1)K) C Cyp.

Let q € (0,1]. Then, for all (z°,w®) € X xY, all4° >0, allr €Y and all d € U, the
closed-loop system given by (7.1) and (7.2) has the following properties:

(1) r—y € £2(Z4,Y), s0 in particular limy_,o y(k) = r;
(2) Timg o () = 7 < 00}
(3) u—u™® € 2(Zy,U), where u™ := K(P(1)K) [r — P(1)d] + d;
(4) x— 2> € (*(Zy, X), where z*° = (I — A)~1 Bu™®
Proof. We use a change of coordinates. Define
2(k) = xz(k)— (I - A" 'BKwk)+d, VkecZ,, (7.3a)
v(k) = wk) - POK) '[r-P)d, VkecZ,. (7.3b)

Invoking the identity A(I — A)~! + 1 = (I — A)~! together with (7.1)—(7.3), a routine
calculation gives

2k+1) = z(k+1)— I - A 'BKwk+ 1) +d]
= Axz(k)+ Bu(k) — (I — A)"'B[Kw(k + 1) + d
= Az(k)+[A(I — A"  + I|B[Kw(k) + d] — (I — A" 'B[Kw(k + 1) + d]
= Az(k)+ (I — A)7'BK[w(k) — w(k + 1)]
= Az(k) —~"9(k)Te(k), VkeZ,, (7.4)

where I' := (I — A)"!BK and e :=r — y, and

(k+1) = (P()K) ' [r = P(1)d]

(k) — (P()K) " [r — P(1)d] + 7~ (k)e(k)

= wv(k)+y YUk)e(k), VkeZy. (7.5)

vk+1) = w

= w
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Moreover, noting that P(1) = C(I — A)™'B + D, we have

e(k)=r—y(k) = r—Cx(k)— Du(k)
= r—Cz(k)—C(I - A 'B(Kw(k) + d) — D(Kw(k) + d)
= —Cz(k) - P()K[w(k) — (P(1)K) " (r — P(1)d)]
= —[Cz(k) + P(1)Kv(k)], VkeZ,. (7.6)

Since A is power stable and o(P(1)K) C Cy, there exist P € B(X), P = P*, P > 0
and Q € B(Y), Q = Q*, @ > 0 such that

A*PA-P=-1, POK)Q+QP1)K)=1I, (7.7)

(see [64, Proposition 5] and [71, Theorem 18, p.231]). It follows from (7.4)—(7.7) and
the Cauchy-Schwarz inequality that there exists M7 > 0 such that, for all k € Z,

(z(k + ) = (2(k), Pz (k)

= (Az(k) =77 (k)Te(k), P[Az(k) — v~ 1(k)Te(k)]) — (z(k), Pz(k))

< (z(k), (A*PA P)z(k)) + 297 1(k)|(Az(k), PTe(k))| + My~ (k) [le(k)[|*

< =llz®)* + 297 U(R)[(Az(k), PLCz(k))| + 2971(k)|(A2(k), PTP (1) Kv(k))]
+ My 24 (k) [le (k)|

1), Pz(k: +1)

< =P + May 9 (R) ()2 + My ()| o (k)| + May29(k) ()]
< [ 1) (10 )] 12 + 2 E g2 a2 et 2,
and
(ol + 1), Qulk + 1)) = (v(k), Qu(k))
= (v(k) + 7" (k)e(k), QLu(k) + 5~ (R)e(R)]) — (v(k), Quk))
< ek, (POKYQ + QRK olh) + 20 1) o(k), QC=(4)
+ My e ()|
< =y k)P + My BB o)+ May= (k) (k)]
< Mo q( Jor

M\ _ _
=P + (~1+ 50 ) 7 WII? + M 18P,
where o > 0 is arbitrary. Defining V: Z, — R by

V(k) := (z(k), Pz(k)) + (v(k), Qu(k)) ,
it follows that

V(k+1) = V(k) < [=1+M(1+a)y (R)]=®)+ (-1 + %) ROIUG]E

+2Miy (k) e(k)|1? Yk € Zy. (7.8)
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We first prove limy_. v(k) = 7> < oo. To this end, it is sufficient to show that - is
bounded since, by (7.2¢), v is non-decreasing. Seeking a contradiction, suppose that
« is not bounded. Then, since ¢ > 0, k — v~ 9(k) is monotonically decreasing and
converging to 0. Hence, there exists Ny € Z such that

1

< — k> N;.
i ()_2M1(1+2M1)’ vk = Ny

Choosing a = 2Mj, it follows from (7.8) that
1 _ -
V(k+1) =V (k) < =S (20 + 7 B)llo(B)[*) + 200y~ (B)lle(R)[[*, Yk > Ny .

Note from (7.6) that

le(®)[I* = [IC2(k) + P()Kv(k)|* < 2(|C=(k)[* + [PQ)Ku(k)I*), Yk € Zy .

Consequently, there exists My > 0 such that

V(k+1) - V(k) —AMay = (R)(|C=(k)|* + [P (D) Kv(k)[*) + 2M1y~24(k) [le (k)|

<
< [=2Mp + 2Myy T U(R)yA(R)le(k)1P Yk > Ny

By the fact that & — ~79(k) is monotonically decreasing and converging to 0 and
(7.2c), there exists No > Nj such that

V(k+1) = V(k) < Moy 3(0)|e(R)|> = —May 2 (k)[y(k + 1) = y(k)], Vk = Ny.

Summing up over k, we obtain

k-1

V(k) = V(Ny) <=My Y v (DG +1) =), VE>Ny+1.
Jj=N2

Since s — s ¢ is positive monotonically decreasing for s > 0 and the fact that V is
non-negative, it follows that

(k) Al D) i
[sas= S0 [ s < 3y G)hG + 1) < 20)
~v(N2) j=N> () j=N>
< V(N2) — V(k)
< W
V(Ns)
— 2 > .
L TRz N+l

By the assumption that ¢ € (0,1], we conclude that 7 is bounded, contradicting our
assumption. Hence v is bounded. This proves Statement (2). It follows immediately
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from (7.2¢) that
r—y=ccl*ZY). (7.9)

In particular, limy_,o, y(k) = r. Thus Statement (1) is true. Since A is power stable,
statement (2) together with (7.4) and (7.9) imply

z € l¥(Zy, X), (7.10)

so that Cz € ¢%(Z4,Y). Tt follows from (7.6), (7.9) and the invertibility of P(1)K that
v € (?(Z4,Y). Invoking (7.2a) and (7.3b),

Kv=u—KPLK) ' [r—P1)d —d=u—u> € *(Z;,U). (7.11)

This completes the proof of statement (3). By (7.3a),

z— (T —A)"Bu® =2+ —-A)"'Bu—u>).

Then Statement (4) follows from (7.10) and (7.11). O

7.2 Adaptive sampled-data low-gain control

Consider a well-posed system with state-space X, input space U, and output space
Y (all Hilbert spaces), generating operators (A, B, (), input-output operator G and
transfer function G. For 2° € X and v € LlOC(R+,U ), the state z and output y
corresponding to the initial condition 2(0) = 2° € X and the input function v satisfy

i(t) = Az(t)+Bvut); x(0)=2"c X, foraa. t>0, (7.12a)
y(t) = Calz(t) — (nI = A)7'Bu(t)] + G(n(t), (7.12b)

and
x(t) = T(t — to)x(to) + tT(t —s)Bu(s)ds, Ytyg>0, Vt>tg. (7.13)

to

Let 7 > 0 be the sampling period and let a € L*([0,7],R) be such that
Q) / aB)dt =1, (i) / aO)T()zdt€ Xy, VzeX.  (T14)
0 0

Whilst the above condition (ii) is difficult to check for general a, it can be shown by usmg
integration by parts that (11) holds if there exists a partition 0 =tg <1 < -+ <t,, =
such that af,_, ) Wh((tj_1,t),R) for j = 1,2,...,m. A simple example of a
satisfying (7. 14) is that a(t) =1/t for t e [0,7].

Define L: X — X, by
Leim / a(t)T(t)=dt (7.15)
0
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Lemma 7.2.1. Let a € L?([0,7],R) satisfy (7.14). Then L given by (7.15) is in
B(X, X1).

Proof. We first show that L is a closed linear operator. Let (zp)nez, C X1, 2 € X
and y € Xy be such that z, — 2z in X and Lz, — y in X7 as n — oo. We need to
prove that Lz = y. To this end, note that there exist M > 1 and w € R such that
IT(t)(zn — 2)|| < Me“Y||z, — z||. Therefore, by the Holder’s inequality,

MVe*™ —1||al| 2 H
z
V2w "
showing that Lz, — Lz in X as n — oco. Since Lz, — y in X; as n — oo, Lz, — y

in X as n — oco. Hence, Lz = y. It follows from the closed-graph theorem that L is in
B(X, Xl) O

.
|Lz, — Lz|| < M/ ]a(t)]e“’tdt |z — 2] < —z|.
0

We define a generalized sampling operator 8: L2 (Ry,Y) — F(Zy,Y) by

loc

(Sy)(k) = /OT a(t)y(kr +t)dt, VkeZy, (7.16)

where F(Z4,Y’) denotes the Y-valued functions defined on Z., and define

(AT BT> _ [T /OTT(s)dSB | (717
Cr Dy CL CLA'B+G(0)

Trivially, A, € B(X). Moreover, B, = (T(7) — I)A™'B € B(U, X), and, by Lemma
7.2.1, C; € B(X,Y) and D, € B(U,Y).

Proposition 7.2.2. Assume that (7.12) is exponentially stable and consider (7.12)
with v = H,yu, where u is a function Zy — U and H; is the hold operator. Then

z((k+1)7) = Arz(kt)+ Bru(k), (7.18a)
(Sy)(k) = Craz(kt)+ Dyu(k), (7.18b)

where 8 is the generalized sampling operator defined in (7.16). Moreover, A, is power

stable and
G,(1)=C,(I-A)"'B, + D, = G(0),

where G, denotes the transfer function of the discrete-time system (7.18).

Proof. The equation (7.18a) follows easily from (7.13). To prove (7.18b), let z € X.
There exists (2, )nez, C X1 such that z, — z as n — oco. Since C' € B(X1,Y),

CLz, = C/T a(t)T(t)z,dt = /T a(t)CT(t)z,dt, VneZi. (7.19)
0 0
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Using the admissibility of C, we have
fim [ 1T (0)(z, - 2t =0,
so that, letting n — oo in (7.19), we conclude that
CL: = /O " (1) CAT (1)t (7.20)
Without loss of generality, we may choose 7 = 0 in (7.12b). By (7.13), we obtain that
ylkt+1t) = Ch |:T(t).%'(k7‘) + /Ot T(s)Bu(k)ds + A~ Bu(k)| + G(0)u(k)
= CA[T(t)x (k) + T(t) A Bu(k)] + G(O)u(k), Vke€Z,, Vte0,7).

Consequently, it follows from (7.20) that,

(Sy)(k) = /OT a(t)y(kT + t)dt

= /OT a(t)CAT () [x(kT) + A~ Bu(k)]dt + G(0)u(k)

= CLx(kt) 4+ CLA™ Bu(k) + G(0)u(k)
= Crx(kt)+ Dyu(k), VkeZi,

showing that (7.18b) is true. Moreover, A, = T(7) is power stable since T(t) is
exponentially stable. Finally, since B; = (T(7) — I)A™!' B, it follows that

G,(1)=C,(I-A)"'B,+D;, =-CLA'B+CLA'B+G(0) =G(0). O

We seek an adaptive controller which achieves setpoint tracking. To this end, consider
the adaptive control law given by

o(t) = (H(Kw))(t) +d, (7.21a)
wk+1) = w(k)+y k) (r - Sy)(k): w(0) =, (7.21b)
Wk+1) = (k) + [ = SY®IZ; A(0) =, (7.21¢)

where (8y)(k) is defined in (7.16), r € Y is the reference vector, d € U is the disturbance
vector, K € B(Y,U) and ¢ € (0, 1].

Remark 7.2.3. (1) We emphasize that for well-posed systems, ideal sampling of the
output y is in general not well-defined due to the potentially high irregularity of
y and therefore generalized sampling is unavoidable.

(2) Note that the control law (7.21) is “causal”, in the sense that, in order to compute
v(t) for t € [kr, (k+1)7), we need to know (8y)(k — 1), which is available at time
t=kr. <
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Theorem 7.2.4. Assume that the well-posed system (7.12) is exponentially stable,
there exists K € B(Y,U) such that

7(G(0)K) € Cq, (7.22)

and q € (0,1]. Then, for all (z°,w®) € X x Y, all4° >0, all 7 > 0, all v €Y and all
d € U, the closed-loop sampled-data system given by (7.12) and (7.21) has the following
properties:

(1) limy—oo (k) = 7> < oo;

(2) limy_oov(t) = v*° and v — v™® € L*(R,,U), where v*° := K(G(0)K) (r —
G(0)d) +d;

(3) limy—oo z(t) = 2° := —A71Bv™>® and z — 2™ € L*(Ry, X);
(4) the error signal e :=r —y can be decomposed as e = ey + e, where

lim e;(t) =0 and ey € L*(R},Y);

t—o00
(5) wunder the additional assumption that

lim (Gf)(t) =0, VYfe& PCRy,U)NL*(Ry,U) with Jlim f(t) =0, (7.23)

t—o0

where PC(Ry,U) denotes the set of piecewise continuous functions defined on
R with value in U, the error signal e = r —y can be decomposed as e = e1 + ea,
where

tlim e1(t) =0 and ey € L2(R,,Y), Va>uw(T).
—0oQ0

Furthermore, if (7.23) holds and T(ty)(Az® + BKw’+ Bd) € X for some tg > 0,
then limy_o e(t) = 0.

(6) under the additional assumption that U and Y are finite-dimensional, the impulse
response of G is a (matriz-valued) Borel measure on Ry and T(to)z® € X for
some to > 0, we have lim;_, e(t) = 0.

Proof. Let (z°,w") € X x Y and 4° > 0. Defining v : Z, — U by
u(k) := Kw(k) +d, (7.24)

it follows from (7.21a) that v = H,u. We obtain z, y, (u(k))rez, and (v(k))rez, by
applying (7.21) to (7.12). Set

xy = x(kT), yp = (Sy)(k), VkeZy

where 8 is defined in (7.16). By assumption, (7.12) is exponentially stable. It fol-
lows from Proposition 7.2.2 that (z3)rez, , (u(k))rez, and (yx)rez, satisfy (7.18) with
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(Ar, B;,C:, D;) given by (7.17), A, is power stable and, by (7.22),
o(G-(1)K) =0o(G(0)K) C Cy,

where G, denotes the transfer function of the discrete-time system (7.18). Therefore,
applying Theorem 7.1.1 to the discrete-time system (7.18) and the discrete-time con-
troller given by (7.21b), (7.21c) and (7.24), we conclude that limy_,~, (k) = v*°. This
proves Statement (1). Moreover, setting

v = K(G(0)K) ™! (r — G(0)d) + d = K(G,(1)K) " (r — G,(1)d) + d,

we have

u—v>® € P(Zy,U), Aucl*(Z,,U), (7.25)
where Au : Z; — U is defined by (Au)(k) := u(k + 1) — u(k). Hence, it is clear that
v —v® =3, (u—v*) € L*(R;,U) and

lim v(t) = tliglo(j{Tu)(t) =0v>.

t—o0

This completes the proof of Statement (2). To prove Statement (3), note that, for each
ke Nandt e [kr,(k+1)7),

E-1 o(i+1) t
z(t) = T(t)z® + T(t — k7) / T(kT — s)Bu(j)ds + [ T(t— s)Bu(k)ds
j

iT kT

1]

t t
- / T(t — s)Bv™ds + / T(t — s)Bv™ds
0

= T(t)2° + T(t — k7)[T ZT —j —1)7) A7 B(u(j) — v™)

+ [T(t — k) — IJA™ 1B(u(l<:)—voo)—i—[T(t)—I]A*leoo

Consequently,
k—1

() = 2| < |TON|2°) + M|AT BIIT(r) = 1| Y IT(k = 1 = j)ll[luli) — v
j=0

+ (M + DA B [Ju(k) — v + [IT@) |2,
vVt e lkr,(k+1)1), Yk e N,

where M := maxc[g ;) [|T(¢)||. Therefore Statement (3) follows from the exponential
stability of T and the fact that u —v> € (?(Z,,U).

To prove Statement (4), define the integral operator J by

t
(Jo)(t) :== / v(s)ds, Vv e LL (R, U), VteR,,
0
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and define the function 6: Ry — R by 6(¢) := 1 for all t € R;. For every t € Ry, let

ki € Z4 be such that t € [k, (k + 1)7). Then,

kel (4T t
JH(Au = H-(Au))(s)ds H,-(Au))(s)ds
(JIC (L)1) Z%/ (9, (L) )(s) *fm( (Lu))(s)
ki—1

=T Z [w(j + 1) —u(f)] + (¢ — ker)(Hr (Au))(t)
_ T(]ﬂ:ju)(t) —70(t)ul0) + h(t), VE>0,
where h(t) = (£ — k) (3 (Au))(t) for all ¢ > 0. Tt follows from (7.26) that
GIH (L) — G(O)TH, (D) = 7G(H ) — 7G(0) () — TG(6u(0))
+ 7G(0)0u(0) + Gh — G(0)h.
Consequently, setting
e i —%(GJ — G(O))H, (Au) — %G(O)h +r— G0)Iu,

and
ey i = —CAT(t)z" — [G(6u(0)) — G(0)0u(0)] + %Gh,

it follows that
e=r—y=r—Cy\T(t)2" — G(H,u) = e + 3.

We first prove that lim; o e1(t) = 0. Noting that

s [L(GT — G(0)])](s) = s %(G(s) — G(0)) € H®(Co, B(U,Y)),

(7.26)

(7.27)

(7.28)

it follows that GJ — G(0)J € B(L*(R,,U),L*(R.,Y)). By (7.25), we see that

H,(Au) € L*(R,,U). Hence
(GJ — G(0)J)H,(Au) € L*(R.,Y).
Moreover, since, by shift-invariance, G and J commute,
(GT = G(0)))3 (Aw)] = (G — G(0))3 (Au) € LR, Y).
As a consequence of (7.29) and (7.30), we obtain

lim [(G.J — G(0).J)H, (Au)](t) = 0.

t—00
Moreover, (7.25) implies that

he L*(Ry,U)NPC(R,,U), Jim A(t) =0,
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and
tlgélo G(0)(H u)(t) = G(0)v™>® =7r. (7.33)

Combining (7.27), (7.31)—(7.33) gives lim; .. e1(t) = 0. We proceed to prove that
ez € L*(R.,Y). Obviously,

CaTz’ € LI2(R,,Y), Va>w(T), va’e X. (7.34)

Now

and we see that

Z(G(0u(0)) — G(0)0u(0)) € H*(Co,U), VYa > w(T).
Hence, by the Paley-Wiener theorem,

G(0u(0)) — G(0)0u(0) € L2 (R, U), Va > w(T). (7.35)

Using G € B(L*(Ry,U),L*(R4,Y)) and h € L*(Ry,U) (see (7.32)), we have Gh €
L?*(R,,Y). Combining this with (7.28), (7.34), (7.35) and the exponential stability of
T, yields that ey € L?(Ry,Y). This completes the proof of Statement (4).

To prove the first claim of Statement (5), we assume that (Gf)(t) — 0 as ¢t — 0 for all
f€PCOR,,U)NL*(Ry,U) with limg o f(t) = 0. Then, by (7.32), we have

lim (Gh)(t) = 0. (7.36)

t—o00

Writing e = é; + é3, where
- 1 1 1
€1 = ;Gh - ;(GJ - G(0)))H;(Au) — ;G(O)h +7r—G(0)H,u,

and

&y := —CAT(t)z° — [G(0u(0)) — G(0)0u(0)], (7.37)
it follows from (7.31)—(7.33) and (7.36) that lim; o €1(t) = 0, and from (7.34) and
(7.35) that é; € L2(Ry,Y) for all & > w(T). This proves the first claim of Statement
(5). To prove the second claim of Statement (5), it suffices to show that lim; o, €2(t) =

0 under the extra assumption that such that T(¢y)(Az" + BKw® + Bd) € X for some
to > 0. Laplace transform of (7.37) gives

(L(e2))(5) = ~C(sT — A)4" — 1[G(s) ~ G(O)]u0).

It follows from (2.17) with n = 0 that

LG(s) = G(0)] = C(sT — A) 1418,

S
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so that
(Z(e2))(s) =—-C(sI — A)_lA_l[AxO + B(Kw0 +d)].

Since T(tg)[Az? + B(Kw® + d)] € X

éa(t) = —CAT(t)A 1 [A2° + B(Kuw® + d)]
= —CA'T(t —t)T(to)[A2’ + B(Kuw® + d)], t>tg.

By the exponential stability of T, lim; .o €2(t) = 0. This completes the proof of
Statement (5).

Finally, assume that U and Y are finite-dimensional, the impulse response of G is a
(matrix-valued) Borel measure on Ry and T(to)z" € X for some ¢y > 0. Using Lemma
6.2.4, we know that lim;_..(Gv)(t) = G(0)v> = r, so that

lim e(t) = lim (r — (Gv)(t) — CT(t — tO)T(tO)xO) =0. O

t—o0 t—o0

Remark 7.2.5. (1) The proof for Statement (4) is inspired by the proof of [6, Propo-
sition 7.3.4, p. 131].

(2) Statement (4) (first claim of Statement (5), respectively) in Theorem 7.2.4 shows
that the error signal e becomes small in the sense that e = e; 4+ e3, where e; — 0
ast — oo and ey € L2(R,,Y) (ex € L2(Ry,Y) for a > w(T), respectively). This
implies, in particular, we have “tracking in measure”, i.e., for every € > 0,

Jim pr({t =T fle®)]| 2 €}) =0,

where 117, denotes the Lebesgue measure on Ry. The second claim of Statement
(5) and Statement (6) show that “asymptotic tracking” (i.e., lim; .o e(t) = 0) is
guaranteed under certain conditions.

(3) If T is analytic, then
T(to)[Az° + B(Kuw® 4 d)] = AT (to)[2° + A™'B(Ku® + d)] € X

for all tg > 0, all 2° € X, all w® € Y and all d € U, since T(t) maps X into X;
for all ¢ > 0. O

Example 7.2.6. For purpose of illustration, we consider the problem of heating a bar
of length 1. We keep both endpoints at temperature 0 and inject heat of magnitude
vj(t) at the point &; € (0,1), j = 1,2. Temperature measurements are taken at the
points 11,12 € (0,1). The system to be controlled can be formulated as follows

zi(€,1) = Krzge(§,1) +6(§ — &)vi(t) +0(§ — E)va(t), VEE€(0,1), V>0, (7.38a)
yi(t) = z(m,t), w2(t) = 2(m2,t); vVt >0, (7.38b)
20,8) = 2(1,t) = 0, Vt>0; =2(£0) =220, VEe(0,1). (7.38¢)
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Here k is a positive constant and d(-) denotes the Dirac delta function. Non-adaptive
continuous-time low-gain integral control of this system was studied in [33].

System (7.38) can be formulated as a well-posed system with the state space X =
L?((0,1),R). In particular, the semigroup T(t), given by

00 1
= Z 2 exp(—kn?mt) sin(nmf) / sin(nw)z°(\)d\,
n=1 0

is exponentially stable. Assuming that
0<&<m<E<np<l,

the transfer function G(s) is given by

(
G(s) = \/sk sinh \/S/—FJ) /sk sinh \/s/—n)

sinh((1 — 172)\/—) sinh(&14/s/k)  sinh((1 — 172)\/—) sinh(¢21/s/k)
Vsksinh(y/s/k) Vsksinh(y/s/k)

It is then easy to see that

) = (u —ma (- @m) |
PAL=m)& (1-m2)&

As a consequence, the characteristic polynomial of G(0) is given by
det(AI — G(0)) = A = k7 [(1 = m)&r + (1 = m)€a] A + w261 (1 — 1) (&2 —m) -

Since &1,&2,m1,1m2 € (0,1), it follows that o(G(0)) C Cp if and only if & > 7. We
sample the output using the simple averaging sampling operation defined by

(Sy)(k) = %/OT y(kr +t)dt, (ie., a(t)=1/7 in (7.16)).

To be specific, we set

£=02, & =06, m =04, 17,=08, 7=1, K=1, k=0.1,

2 0

MATLAB simulations of the closed-loop system given by (7.38) and (7.21) (with v =
(v1,v2)T and y = (y1,92)7) are shown in Figures 7-1 to 7-3. By Theorem 7.2.4, we

129



o 10 20 30 40 50 o io0 20 30 40 50

Figure 7-1: Input signals vy, vs.

o 10 20 30 40 50 o 10 20 30 40 50
Figure 7-2: Temperature measurements yi, yo.

know that

lim v(t) = (G(0)) " lr = <_2'5> )

t—o0 2.5

as is illustrated by Figure 7-1. It can be shown that the impulse response of G is in
LY (R4, R?*2) (see [51, Appendix 6]). It follows from Statement (6) in Theorem 7.2.4

that
. 1
lim y(t) =r = < ) ,
t—00 2

as is illustrated by Figure 7-2. The sequence v and the evolution of the temperature
profile are shown in Figure 7-3 and Figure 7-4, respectively.

7.3 Notes and references

For continuous-time low-gain integral control of continuous-time systems, there have
been two basic approaches to the tuning of € - either steady-state data from the plant is
used off-line to determine suitable ranges for the gain ¢ (see, for example, Davison [§],
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Figure 7-4: Temperature z(&,t).

Logemann, Ryan and Townley [43], or Lunze [49]), or simple on-line universal adaptive
tuning of € is used (see Cook [4], Miller and Davison [53, 54] in the finite-dimensional
case and Logemann and Ryan [40, 41], Logemann, Ryan and Townley [42], Logemann
and Townley [44, 46, 47] in the infinite-dimensional case).

Whilst universal adaptive continuous-time control of infinite-dimensional systems has
developed to some extent (see, for example, Logemann and Ilchmann [34], Logemann
and Martensson [35], Logemann and Townley [44] and Townley [77]), to the best of our
knowledge, the only only result on universal adaptive discrete-time control of discrete-
time infinite-dimensional systems is contained in the note by Logemann and Martensson
[36] which is an extension of an earlier finite-dimensional result by Martensson [50], and
in Logemann and Townley [45].

Most of the results in this chapter are contained in Ke, Logemann and Townley [27].
The main results Theorem 7.1.1 and Theorem 7.2.4 are new. The coordinates changing
technique plays a key role in the proof of Theorem 7.1.1. It has also been used in [42]
and [47] (see the proofs of Theorem 3.3 in [42] and Theorem 3.1 in [47]).
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Theorem 7.1.1 improves [45, Theorem 3.2] on adaptive low-gain control of discrete-time
systems in the following aspects:

e In [45], it is assumed that the steady-state gain matrix P (1) is symmetric and pos-
itive definite, where P is the transfer of the discrete-time plant. This symmetry
assumption is restrictive and highly nonrobust, essentially limiting the applica-
tions of the above result to single-input single-output systems. Theorem 7.1.1
replace this assumption by the considerably weaker (and essentially necessary)
assumption that all the eigenvalues of P(1) have positive real parts.

e The range of the parameter ¢ is (0,1] in (7.2) instead of (0,1/2) in [45].

e In comparing the analysis presented in the proof of Theorem 7.1.1 to that in [45],
we use a change of coordinates technique which is the discrete-time counterpart
to that used in [47], leading to a dramatic simplification of the proof.

e We allow for a constant input disturbance which is not considered in [45].

Our results in Theorem 7.2.4 are extensions and improvements of those in [45] with
respect to the following aspects:

e The continuous-time plant is assumed to belong to the class of exponentially
stable well-posed systems, which is considerably more general than the class of
exponentially stable regular systems considered in [45].

e In [45], it is assumed that G(0) is symmetric and positive definite, where G
denotes the transfer of the continuous-time plant. As discussed above, this as-
sumption is restrictive and highly nonrobust. In Theorem 7.2.4, we only assume
that the eigenvalues of G(0) have positive real parts.

e The simple averaging sampling operator used in [45] is a special case of the
generalized sampling operator § defined in (7.16).

e The range of the parameter ¢ is (0, 1] instead of (0,1/2) in [45].

e The analysis of the behaviour of the tracking error has been considerably im-
proved, see Statements (4)-(6) of Theorem 7.2.4.

e We allow for a constant input disturbance which is not considered in [45].
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Appendix

A.1 Pathological and non-pathological sampling periods

The concept of pathological and non-pathological sequences (relative to a given square
matrix) has been defined in Definition 5.2.7. Given a positive sequence (7;),cz, , define
D C R™™ by

D :={A € R"™" : (15)jez, is non-pathological relative to A}.

Set ot (A) := a(A) Ncl(Cy).
Theorem A.1.1. The follows statements hold for D:

(1) D is non-empty;
(2) D is dense in R™*™;
(3) if the set {k/7; : k € Z\ {0}, j € Z1} has no accumulation points in R, then D
1S open.
Proof. Define
dist(u, V) := inf{|ju —v| : v € V},

the distance between a point u € C and a set V' C C, and
dist(U, V) :=inf{lu —v| :wu €U, veV},

the distance between two sets U,V C C.
We proceed in three steps.
Step 1: Non-emptiness of D.

Obviously, {4 € R™" : 7 (A) = 0} C D. Alternatively, if all elements in o+ (A) are
real, then A € D, ie.,, {4 € R"™": 0" (A) C R} C D. This proves Statement (1).

Step 2: Density of D.

Let A € R"™™\ D. Assume that A has m real eigenvalues Ay, ..., A\, and 2¢ non-real
eigenvalues a1 101, . . ., aptify, counting multiplicities in each case, so that m+2¢ = n.
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There exists an invertible matrix 7' € R™*" such that A = T~'JT, where J is in the
real Jordan canonical form (see [69, p.159]), i.e., J = diag(R,C), where R and C are
of the form:

Moy 0 -0
0 X 72 -+ 0
R=|: : - |
0 0 - Ame1 Y1
o o0 - 0 Am
and
ar Boym O 0 0

-6 a1 0 Ym

C=[o0 o a1 Bl Ymte—2 0
0 0 —Be—1 a1 0 Vim+0—2
0 0 0 0 oy Be
0 0 0 0 -8 ay

Here 7; (j € m + ¢ — 2) takes value of either 0 or 1 (depending on A). Define

ki
v::{ Tm:keZ\{o},jeZ+}.
J

For j € £, choose (& x)ken C R such that
Q(ﬁ] + fj,k)i ¢ V, Vk € N and khm gj,k =0. (Al)
— 00
To prove the density of D, it is sufficient to show that there exist (Ag)gen C R™*"

such that A + Ay, € D for sufficiently large k£ and limg_,.o Ar = 0. For k& € N, define
P, € R™*" by Py := diag(1/k,...,1/(mk),Py1,...,Py), where

! ¢
R S,
Poyo= | DR T e,
ik Gy R

and let Ay := T~'P,T. Note that limj_,oo Ay = 0, since limy_,o P, = 0. Moreover, a
simple calculation yields

1 1
J(A+Ak):{)‘j+j_k:jem}U{(O‘j+m)ii(ﬁj+fj,k)ij€£}~
Let A\, pu € 0(A+ Ay).
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Case 1: X\ # [i.

We see that Re A # Re u for sufficiently large k. Hence A — pu ¢ V for sufficiently large
k.

Case 2: A = [i.
By (A.1), it is clear that

A—p=2ImA¢V, VkeN.

Combining the above two cases completes the proof of Statement (2).
Step 3: Openness of D.
Let A € D. We consider two cases: 07 (A) # 0 and o (A) = 0.
Case 1: o (A) # 0.
Define
U={\—pu: \pcot(A)}.

By assumption, {k/7; : k € Z\ {0}, j € Z;} has no accumulation points in R. Hence,
V' has no accumulation points in C, and thus V is closed. It follows immediately from
the closedness of V, the fact that U NV = () and the finiteness of U that

dy = dist(U, V) > 0.

Recall that C_ := {s € C: Res < 0}. We set
g min{d;,min{|ReA\| : A € c(A)NC_}}, ifc(A)NC_#0
dy , if c(A)NC_ =10

By perturbation theory, the mapping A — o(A) is continuous in the sense of [18]
(see [18, Corollary 4.2.1, p.399]). Therefore, there exists § > 0 such that, for every
A € R™" with [|A] <6,

s(A+A)c | B/, (A.2)
A€o (A)

where B(\,d/4) denotes the open disk centered at A\ with radius d/4. Let A € R™*"
with [|A|| < 6. We claim that A+ A € D. Assume that ot (A + A) # 0 (otherwise
there is nothing to show). If o(A)NC_ =0, then o(A) = o7 (A). It is clear from (A.2)
that
st(A+a)c | B(Od/4). (A.3)
A€o+ (A)

If o(A)NC_ #0, thenlet A € 0(A)NC_ and X € o (A + A). We have

A= N2 = (JRe A+ ReN)? + |Im (A — X)|? > [Re A]? > @2,
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showing that X ¢ B(\,d/4). Combining this with (A.2), we see that again (A.3) holds.

Let N,u' € 07 (A+ A) and set o’ := N — ¢/ By (A.3), there exist A\, u € 07 (A) such
that J

A=N<g lw=wl<

A~ Q.

Setting u := A — p € U, we have
d
o —ul < N = A+ —pl < 5.

Then, for any v € V,

d d
|u’—v|:|(u—v)—(u—u’)|2|u—v|—|u/—u|2d—§:§>0.

Hence u' ¢ V. Consequently A+ A € D.
Case 2: o7 (A) =0, or equivalently, o(A) C C_.

Again, by perturbation theory, we know that there exists § > 0 such that, for every
A € R with ||A]| < 9, we have 0(A+ A) C C_. Hence A+ A € D for every A with
Jall < 6.

Combining the above two cases, we conclude that D is open. O

Alternatively, we can use the pole-shifting theorem to prove the denseness of D in
RTLXTL.

Alternative proof of Statement (2) of Theorem A.1.1. Define
C:={(A,b) e R""™ x R": (A,b) is controllable},

and

ki
v;:{ :’:keZ\{o},jeZ+}.
J

Let A € R™™\ D. The aim is to show that, for every 6 > 0, there exists A € R"*"
with ||A]| < 0 such that A+ A € D.

Case 1: There exists b € R™ such that (A,b) € C.
Write the characteristic polynomial of A as
m l
p(s) = det(s] —A) = [ J(s = 3) []ls — (g = i),

Jj=1 Jj=1

where
NeER,Vjem; a;,8;€R, B;#0,Vjel; m+2=n.
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For j € £, choose (& x)ken C R such that

Q(ﬂj + fj*;)i Q_f V, VkeN and khm Sj,k =0.

pi(s) == ﬁ [s - (Aj + %)] ]ljl [s - (aj + m +i(5; +§j,k)>] .

Since (A, b) is controllable, by the pole-shifting Theorem (see, for example, [71, Theo-
rem 13, p. 186]), there exists fr € R™ such that

det(sI — A —bfl) =pp(s), VkeN,

that is, for all £ € N,
(Atbfi)= I+ jemb T (a5 + oo ) #i05 + 60 1 € L
g k) — J ka m a] (m+])k‘ L J Jik <J =( -

Let A\, u € o(A+bfl).

If A # [, then we see that Re A # Repu for sufficiently large k. Hence A — u ¢ V for
sufficiently large k. If A = [z, then it is clear that

A—p=2ImA ¢V, VkeN.

Hence, we conclude that A + b fkT € D for sufficiently large k. It is now sufficient
to prove that lim; .. bf{ = 0. Note that the coefficients of pi(s) converge to the
corresponding coefficients of p(s). By the proof of the the pole-shifting theorem (see
[71, p.186]), or by Ackermann’s formula (see [71, Exercise 5.1.12, p.188]|) combined
with the Cayley-Hamilton theorem, we conclude that

lim fx =0,
j—oo
showing that lim; . bfk.T =0.
Case 2: There does not exist b € R™ such that (A4,b) € C.

Let § > 0. Since C is open and dense in R"*™ x R™ (see [71, Proposition 3.3.12, p.97]),
there exists (A1, b1) € € such that ||A; — A|| < §/2. If Ay € D, then there nothing to
show. If A; ¢ D, then, by Case 1, there exists f € R™ such that

1)
A +biffeD and |bfT < 5
Therefore
[AL+ b1 f" = Al < | Ar — Al + b 7] < 6. O

137



Corollary A.1.2. Iflim; ., 7; =0, then D is open.

Proof. If lim;_ . 7; = 0, then k/7; — £o00 as k — Foo and j — oo, showing that
{k/mj : k € Z\ {0}, j € Z;} has no accumulation points in R. Invoking Theorem
A.1.1 completes the proof. O

In the following, we give conditions on (7;);jcz, in terms of spectral data of A, which
guarantee that (7;);ez, is non-pathological relative to A.

Trivially, if o+ (A) = 0, every positive sequence (7;);cz, is non-pathological relative to
A. Assume that o7 (A) # 0 and set
Im (ot (A)) :={ImA: A€ot (A)}, Im(c(4)):={ImA:\€c(A)},

and
|Im |

™

|Tm | '
o

wt = max{ A ea+(A)} , wi= max{ € a(A)} .

We call w to be the mazimum frequency of A. The diameter of a bounded set U C C
is defined as
diam(U) := sup{|u — v| : u,v € U}.

It is easy to check that
41wt = diam(Im (67 (A))), 4rw = diam(Im (o (A))),
since 0 (A) and o(A) are symmetric with respect to the real line.

Proposition A.1.3. Let A € R™" and assume that o (A) # 0. If one of the following
conditions is satisfied,

()7 < diam(Irj7(T0+(A))) =g Vi€ks
(2) Tj<m:$’ viez,,

(3) 7 < m, Vj € Zy,

@) 7 < m, vj € Zy,

() ;< %A)’ Vi €Ly,

then (7j) ez, is non-pathological relative to A.
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Proof. 1f condition (1) is satisfied, then

2k

P A T(A ke N i€ 72 .
TJ<‘Im)\_ImM, VA pueo(A),Vke N, VjeZy

Hence (7j)jez. is non-pathological relative to A.

For A\, u € 0(A), we have

[Im A — Tmpa| < A= p] < [\ + [nl.

Hence
diam(Im (07 (A))) < diam(Im (0(A))) = 47w < diam(c(A)) < 2r(A),

showing that
s 27 27 1 27

(A) = Tam(o(4)) = diam(Im (0(A))) ~ 2 = diam(Tm (o (A)))

Moreover, it is easy to see that

2 < 2m
diam(ot(A)) ~ diam(Im (6t (A)))

Therefore, if one of the conditions (2)-(5) is satisfied, then condition (1) is satisfied, so
that (7;);ez, is non-pathological relative to A. O

A.2 Stabilizability and detectability under sampling

Let f: C — C be an entire function, i.e., a function analytic on the entire complex
plane. Then the power series expansion of f around 0,

f(2)=> a2,
=0

converges for every z € C. For a matrix A € R"*", we define f(A) by
F(A) =) ;A
j=0

This series converges absolutely for every A € R™*™.

Theorem A.2.1 (Spectral mapping theorem). Assume that f is an entire function.
Then, for A € R"*™

o(f(A) ={f(N) : A ea(A)}.
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For a proof of the spectral mapping theorem, see, for example, [71, Appendix A.3,
p.454].

Let A€ R™™" B e R C € RP*"™ and let 7 > 0. Set

A = eAT, B, = / eA%dsB  and ot (A) :=o(A)Necl(Cy).
0

Theorem A.2.2. Assume that (A, B) is stabilizable and (C, A) is detectable. If T is
non-pathological relative to A, then (A;, B;) is discrete-time stabilizable and (C, A;) is
discrete-time detectable, i.e., there exist F' € R™*" and H € R™*P such that A; + B, F
and A + HC are power stable.

Proof. By the spectral mapping theorem,
o(A) ={M : X e o(A)}.

Hence
{seo(A):|s|>1}={eM: AeaT(A)}. (A.4)

If 07 (A) = 0, then, by (A.4), {s € 0(A;) : |s| > 1} = 0. Consequently,

sl — A,

rk (sI — A;,B;) =1k
C

)zn, VseC, |s|>1.

By the Hautus criterion, (A;, B;) is discrete-time stabilizable and (C, A;) is discrete-
time detectable. In the following, we assume that o™ (A) # (. By the Hautus criterion
and (A.4), discrete-time stabilizability of (A, B;) and discrete-time detectability of
(C, A;) is equivalent to

ATT
rk (e’ — A,, B;) = rk (e g AT) =n, VA€ot (A).
c

Let A\ € 07 (A) be arbitrary. Define f,g: C — C by

esT — 1 eST_e)\T
, s#0 —, SFA
f(s):= s , o g(s) = s—A 7
T, s=0 Te s=A

Note that f, g are entire functions. Furthermore,
Af(A) = f(A)A, Ag(A) =g(A)A.

By assumption, 7 is non-pathological relative to A, and thus,

2kmi 2kma
mgéa(A), At i

¢ o(A), VkeZ\ {0},

T
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It follows from the spectral mapping theorem that 0 ¢ o(f(A)) and 0 ¢ o(g(A)). Thus
f(A) and g(A) are invertible. Let g1 (s) := e*"—e* and ga(s) := s—\. We have g;(s) =
g(s)ga(s). Since g and gy are entire functions, we conclude that g;(A) = g(A)ga(A),

ie.,

NI — Ay = g(A)Y(N — A).
It is easy to see that B, = f(A)B. Hence
(71— ArBy) = (g(A)N — A), f(4)B)

— HA)A - A,B) <(f (A))Olg(A) 3) , (A.5)

(WI—AT) _ (g(A)()J—A)) _ <g(A) o) <)\I—A> (A6)
C C 0 I c ) '

Since f(A),g(A) are invertible, the matrices

). ((f(A))lg(A) 2) i <g<A> o)

and

0 0 I

have full ranks. Moreover, by assumption, (A, B) is stabilizable and (C, A) is detectable.
By the Hautus criterion,

tk (\] — A, B) = rk (”\I_A> =n
C

Therefore, by (A.5) and (A.6),

ATT
rk (e’ I — A, B;) = rk (6 I AT) =n. O
C

Remark A.2.3. (1) The above proof is essentially due to [11, Lemma 8]. In [11],
the discrete-time stabilizability of (A., B;) was proved, and it was mentioned
without proof that the discrete-time detectability of (C, A;) can be shown in a
similar way.

(2) It is a standard result that if (A, B) is controllable, (C, A) is observable and
T(A—p) #2kmi, VYA peo(A), VkeZy\ {0}, (A.7)

then (A, B;) is discrete-time controllable and (C, A) is discrete-time observable.
The proof can be found in [22, Theorem 12] or [2, Theorem 3.2.1, p. 41]. Condition
(A.7) is sometimes called the “Kalman-Ho-Narenda” criterion. &
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A.3 Asymptotic behaviour of functions in W!?(R,, R")

For p € [1,00], the Sobolev space WP(R,,R") has been defined in Definition 2.3.4.

Proposition A.3.1. Let 1 <p < oco. Then

lim u(t) =0, Yuec W' (R,,R).

t—o00

Proof. First we consider p = 1. Assume u € WH(R;,R). It follows from the funda-
mental theorem of calculus for absolutely continuous functions that

u(t) = u(0) + /Ot u(s)ds, Vt>0.

Letting t — oo, the right-hand side converges since 7 € L'(R,,R). Thus lim; o u(t) =
a for some a € R. Since u € L*(R,,R), it is clear that a = 0.

Next, consider p € (1,00). Let u € WHP(R,,R). Define
Q= {t € Ry : u is differentiable at ¢} .

Note that the set R \  has zero measure, since u is differentiable almost everywhere.
We define
Qo :={t e Q:u(t)=0,u(t) #0} C Q.

Setting v := |ul, it follows from the absolute continuity of u and the triangle inequality
that v is absolutely continuous. Hence v is differentiable almost everywhere. We want
to show that v is not differentiable in Qg, but is differentiable in Q \ . To this end,
let ¢ty € Qp. Since v(tp) = 0, we have

v(to + h})L —o(to) _ ’u(tOth Ml _ sgn(h)

h

where sgn denotes the sign function. Hence

i ’U(t() + h) — U(to) . . .
1 = — =1
lim - [i(to)] # li(to)] = lim

v(to + h) — v(to)
h M

showing that v is not differentiable at ty € g. Consequently, ¢ has zero measure,
since v is differentiable almost everywhere. Next let ¢; € O\ Q.

Case 1: u(ty) = u(ty) = 0.
Then

%(tl) ~ lim |u(t1 + h)| - |u(t1)| — lim <sgn(h)

h—0 h h—0 h

MD _0.
Case 2: u(ty) # 0.
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Then for sufficiently small h, u(t; + k) and u(t;) have the same sign. Hence

dv . |u(ts + h)| = |u(tr)] . u(ty +h) —u(ty)
=1 = 1
o (t1) Jim . sgn(u(ty)) lim Y
= sgn(u(ty))u(ty).
Consequently,

Fult) = { sgn(u(t))u(t), teQ\Q

0, elsewhere
it follows that
—(t) = fu(t), ae. teRy.

Since R4\ © and Qg have zero measure, Ry \ (2\ Q) = (R4 \ Q) UQp has zero measure
and thus
d(vP)

S () =P O fut), ae tER,.

Hence, by the fundamental theorem of calculus for absolutely continuous functions
¢
lu(t)[P = |u(0)[P +p/ lu(s)|P~ fu(s)ds, VteR,. (A.8)
0
Let ¢ be such that (1/p) 4+ (1/q) = 1. The Holder inequality yields

tuspfl s)lds Oouspflﬂs S
/O|<>| Fu(s)lds < /0 fu(s) P ()l

*puoevas) " ([ atsras)”
0 0

. —1 -
=l Nélee = el lallee V€ Ry, (A.9)

IN

showing that |u[P~!f, € L'(R,,R). Therefore, the right-hand side of (A.8) converges
as t — oo. Thus u(t) has a limit as ¢ — oo and this limit must be 0, since u €
LP(R4,R). O

A.4 Routine calculations for dynamic output feedback sys-
tems

A.4.1 Continuous-time systems

Consider the continuous-time closed-loop system, where the plant is given by

p(t) = Apxp(t) + Bpuy(t); xp(0) = xg e R" (A.10a)
yp(t) = Cprp(t) + Dyuy(t), (A.10Db)
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where A, € R"*™ B, € R"»*™ C. € RP*™ and D. € RP*™. The discrete-time
controller is given by

To(t) = Acre(t) + Boue(t); .(0) =20 € R, (A.11a)
Ye(t) = Cewe(t) + Deue(t), (A.11D)

where A, € R"*" B, € R"*P (. R™*" and D, € R™*P,

The interconnection of (A.10) and (A.11) is given by
Up = Yo, Ue=Yp- (A.12)
By (A.10)-(A.12),

up = Yo = Cete + Deue = Coxe + Deyp = Cexe + De(Cpzp + Dpuy)

and
ue = Yp = Cpxp + Dpuy = Cpxp + Dpye = Cpxp + Dp(Cexe + Deuse)

Setting E, := (I — D.D,)~! and E. := (I — D,D.)"}, it follows that

up = Ep(D.Cpxp + Cexe),  ue = Ee(Cpap + DpCexe) .

Consequently, (A.10a) and (A.1la) can be written as
i\ _ (A O\, (B 0\ (B 0 (D I)(C 0
Fe 0 A, o BJ\o EJ\I D) \0o cC.

A.4.2 Discrete-time systems

7).

Consider the discrete-time closed-loop system, where the plant is given by

zp(k+1) = Apxy(k)+ Bpup(k); x,(0) = 562 € R" (A.13a)
yp(k) = Cpap(k) + Dyup(k), (A.13b)

where 4, € R™*™ B, ¢ R™»*™ (C, € RP*"™ and D, € RP*™. Let ¢ > 0 be a
parameter. The discrete-time controller is given by

To(k+1) = Axo(k)+ Boue(k); z.(0) =20 € R (A.14a)
ye(k) = eCexc(k)+eDouc(k), (A.14b)

where A, € R"*" B. e R"*P (C,ec R™*" and D. € R™*P, The interconnection of
(A.13) and (A.14) is given by

Up=d+Ye, Ue=T—1Yp, (A.15)
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where r is a reference signal and d is a disturbance signal. Set E, := (I +&D.D,)""
and E. := (I +eD,D.)~ . By (A.13)-(A.15),

u, = d+y. = d+eCexe+eDouc
d+eCexe + eDc(r — yp)
= d+eCoxc+eDer —eD.(Cpxp + Dpuy) .

It follows that
up = Ep(—eD.Cpxp + eCexe +d+eD.r) . (A.16)

Consequently, by (A.14a),
zp(k+1) = (A, —eB,E,D.Cp)ay(k) +eByEyCexe(k) + BpEy[d(k)+eDer(k)] . (A.17)
On the other hand,

uc=r—yp =1 —(Cpzp+ Dpuy) = 1 —Cpry — Dp(d+yec)
= 1r—Cpxp — Dpd — eDp(Coxc + Deoue)

showing that
ue = E(—Cpzp — eDpCexe — Dpd + 1) . (A.18)

Hence, by (A.14a),
ze(k+1) = =B.E.Cpry(k)+ (Ac —eB.E.D,Ce)x (k) + B.Ec[—Dpd(k) +1(k)] . (A.19)

Define A € R(wtne)x(nptne) 15y

A A, 0 n B, 0 E, 0 —eD, el C, 0 .
0 A 0 B 0 FE. -1 —eD, 0 C.
It follows from (A.17) and (A.19) that

<xp(k+1)> L (xp(k)> . (BpEp[dw)ﬂDcr(k)]) ke,
volk+ 1) ze(k))  \BoEo[-Dyd(k) +r(k)])

Consequently, by the discrete-time variation-of-parameters formula,

<:Cp(k?)> _ Ak (x?)) + kilAk:—l—j (BpEp[d(j) + 5DCT(j)]> 7 Vk e N. (A.QO)
.’Ec(k‘) (L‘g j=0 BCEC[_Dpd(J) + T(])]
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Figure A-1: Sampled-data closed-loop system.

Note that I —eD,E,D. = E, and I —eD.E.D, = E.. By (A.16), (A.18) and (A.20),

(yp(k)> — (Cpxp(k’)> + (Dpup(k?)>

ye(k) eCee(k) eDuc(k)
_ <Cp—gDpEpDcCp eD,E,C, ) <xp(k)>
—eD.EcCy eCe. —e*DE.D,C.) \a.(k)

N < Dy Eyld(k) + ¢ Der (k)] )
eD E.[—Dyd(k) + r(k)]

0 io
_ E.C, eD,E,C. AF [T 4 yl? (k)  VkeZ,,
—-eD.E.C, ¢€E,C. 20 y2 (k)
where y;f, ylo satisfy

yy = Gd+y2), y°=K(r—yy),

where G and K. are the input-output operators of (A.13) and (A.14), respectively.

A.4.3 Sampled-data systems

Consider the sampled-data closed-loop system shown in Figure A-1. The continuous-
time plant is given by
Tp(t) = Apxp(t) + Bpuy(t); x,(0) = xg € R, (A.21a)
Yp(t) Cpap(t) + Dpup(t) (A.21Db)
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where A, € R™*"™ B, € R™»*™ (. € RP*™ and D, € RP*™. Let ¢ > 0 be a
parameter. The discrete-time controller is given by

To(k+1) = Acxo(k)+ Boue(k); 2.(0) = 20 € R (A.22a)
Ye(k) = eCexc(k) +eDeuc(k), (A.22D)

where A, € R"%*" B, € R"*P (. R™*" and D, € R™*P,
The interconnection of (A.21) and (A.22) is given by

up =Hrye+d, ue=38:(r—oy,), (A.23)
where r is a reference signal, d is a disturbance signal and o € {—1,1}. Set

E,:=(I+¢eoD.D,)""' and E.:=(I+eoD,D.)"*

By (A.21)—(A.23), it is clear that, for 6 € [0, 7),

up(k7 +0) = d(kT + 0) + y.(k)

( )
=d(kT + 0) + eCexc(k) + eDouc(k)
=d(kT 4+ 0) + eCexc(k) + eD.[r(kT) — oyp(kT)]
=d(kt 4+ 0) + eCexc(k) + eDer(kt) — 0D [Cpap(kT) + Dpuy(kT)] .
(A.24)
For 6 = 0, it follows that
up(k1) = d(k1) + eCexc(k) + eDer (k1) — e0 Do [Cpap(kT) + Dpuy (k)]
showing that
up(km) = E,d(kT) + eCexc(k) + eDer (k1) — eo D Cpap(kT)] . (A.25)

Note that
I —-eoD.D,E,=FE, and D.D,E,= E,D.D,.

Substituting (A.25) into (A.24), we obtain

up(kr +0) = d(kr +8) — e0DeDyEyd(kr) + (I — 20 DDy Ey)[eCote(k)
+eD.r(kt) — eo D .Cpap(kT)]
= d(kT +0)+cEp|—0D.D,d(kT) + Cexc(k) + Der(kT)
—0D.Cpaxp(kT)). (A.26)
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Consequently, by the variation-of-parameters formula,
k46

zp(kt +0) = eMl2,(kr) —|—/k e RT3 B 4y (5)ds

0 0
= (eAp9 — EO’/ eApstBpEpDcCp> xp(kT) + 5/ eAdeSBpEpchc(k)
0 0

kT+60
-+ / eAp(kTw_s)de(s)ds
k

T

0
+e / e*ds B, E,D.|—0Dyd(kt) + 7(kT)] . (A.27)
0

On the other hand,

uc(k) = r(kt) —oyp(kr)

(kT) — o[Cpap(kT) + Dpuy(k7)]
(k7)

(k7)

= r

I
<

kt) — 0Cpxp(kT) — 0 Dyld(kT) + yc(k)]
kt) — 0Cpxp(kT) — 0 Dpd(kT) — e0 Dy [Cee(k) + Deuc(k)], Vk € Zy,

= r
showing that

uc(k) = Ec[—0Cpxp(kT) — e0DpCexe(k) — o Dpd(kt) +1r(kT)], Vke€Zi. (A.28)

Hence, by (A.22a),

ze(k+1) = —0B.E.Cpxy(kt)+ (A —e0 B E.DyCe)xe(k) + BoEc|—0oDypd(kT) +1(kT)] .

(A.29)
Define A: [0,7] — R(mptne)x(nptne) pyy
A(0) =
0
€Ap9 0 / eAdeSBp 0 Ep 0 —€UDC el Cp 0
+ 0 ’

0 Ac 0 Bc 0 Ec —ol —go-Dp 0 Cc

(A.30)

and, for 0 € [0,7] and k € Z,, define R(k,0): Ly(R;,R™) x Ly(Ry,RP) — R " by

Rk, 0) <d>

kT+6 6
/ eAP(kTJFG*S)de(s)dS + 5/ e*ds B, E,D [0 Dyd(kt) + (k7))
= kT 0

B.E.[—0Dyd(kt) + r(kT)]
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It follows from (A.27) and (A.29) that

<~’Cp(’”+ 9)> = A(6) (%(M) + R(k,0) <d> , Vke€Zy,0€[0,7). (A31)
ze(k+1) zc(k) r

Letting 6 7, it follows from the continuity of the terms depending on 6 that

(xp((k + 1)T)> = A(7) (xp(k7)> + R(k, ) <d> , VkeZ,.
z(k+1) zc(k) r

Consequently, by the discrete-time variation-of-parameters formula,

k—1
(xp(’”)> = ( 2) + ST ARG, T )<d> , VkeN. (A.32)
.%'C(k‘) 8 7=0 r
Hence, by (A.26)—(A.28) and (A.32),
<y,,(/w+e)>
Ye(k)

_ <Cpxp(/w +0)> . (Dp 0 ) <up(k7 + 0))
eCexc(k) 0 eD, uc(k)
0 0
Cpetr? — eaC, / e**dsB,E,D.C, &C, / eA*ds B, E,C. (xp(/w)>
0 0

0 eC, e(k)

kT+0 0
e / eAr k0= B d(s)ds 4 £C, / e*v$ds B, E,D |~ Dyd(kt) + r(kT)]
k 0

T

0
. (Dp 0 ) (—60EpDCCp eE,C, ) ( (m))
0 €D, —oE.C,  —eoE.D,C, (k)
. (Dp 0 ) (d(k7+«9) + eB,D.[~oDyd(kt) + r (kT )])
0 eD. E.-oD d(kT r(kT)]
)
z.(k) eD E.[—oDpd( kT )+ r(kT)

= Q(O)A(r)* <x2> + (yfi’o(l.w N 0)> . Voe0,r), YkeZ,,
0 Y (k)
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0 6
CpeAP9 — EUCp/ eAT’stBpEpDcCp an/ eApstBpEpCC
0 0

Q) =
0 eCe
n —eoD,E,D.C), eD,E,C.
—e0D.E,C, —c20D.E.D,C.)
kT+0 0
G(k,0) :=C, A eAr k=) B d(s)ds + C, /0 e*ds B,E,D.[—0Dyd(kT) + (k7))

+ Dyd(kT + 0) + eDpE, D [—0Dpd(kt) + r(k7)],
and y}f’, ylo satisfy
y = G(d+3Hy0), y =K. S8:(r—yy),

where G and K. are the input-output operators of (A.21) and (A.22), respectively.
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