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Summary

We develop and adapt absolute stability results for nonnegative Lur’e systems,

that is, systems made up of linear part and a nonlinear feedback in which the

state remains nonnegative for all time. This is done in both continuous and

discrete time with an aim of applying these results to population modeling.

Further to this, we consider forced nonnegative Lur’e systems, that is, Lur’e

systems with an additional disturbance, and provide results on input-to-state

stability (ISS), again in both continuous and discrete time. We provide neces-

sary and sufficient conditions for a forced Lur’e system to have the converging-

input converging-state (CICS) property in a general setting before specializing

these results to nonnegative, single-input, single-output systems. Finally we

apply integral control to nonnegative systems in order to control the output

of the system with the key focus being on applications to population manage-

ment.
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Chapter 1

Introduction

In this thesis we develop and adapt results about Lur’e systems. These are

systems made up of two components, a linear system with a state x, an input u,

an output y; and a nonlinear feedback u = f(y). They exist in both continuous

time and discrete time. In a continuous time setting the linear system is given

by

ẋ = Ax+ bu, x(0) = x0 ∈ Rn, y = cTx,

where A ∈ Rn×n, b, c ∈ Rn and f : R → R. The resulting nonlinear feedback

system is given by

ẋ = Ax+ bf(cTx), x(0) = x0 ∈ Rn.

In a similar fashion, in a discrete time setting, the linear system is given by

x(t+ 1) = Ax(t) + bu(t), x(0) = x0 ∈ Rn, y(t) = cTx(t),

again where A ∈ Rn×n, b, c ∈ Rn and f : R → R. The resulting nonlinear

feedback system is

x(t+ 1) = Ax(t) + bf(cTx(t)), x(0) = x0 ∈ Rn.

See also Figure 1.1 for a block diagram representation of a Lur’e system.

Lur’e systems are a common class of nonlinear systems which are at the

center of the classical subject of absolute stability theory. Absolute stability

theory is a way of guaranteeing that a Lur’e system is stable, and the conditions

for stability are usually stated in terms of the linear system and apply to a

class of nonlinearities. We refer the reader to [55, 72, 86, 124, 146, 153] and

the references within for more information on this subject.

We specialize absolute stability theory to nonnegative, single-input, single-

output Lur’e systems with the aim of applying the results to model asymptotic
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Figure 1.1: Block diagram of a Lur’e system.

behavior of populations. The inspiration for doing so is [143], in which a

stability/instability trichotomy was established for nonnegative Lur’e systems.

Through the use of absolute stability we are able to provide stronger stability

properties, in particular exponential asymptotic stability, and include a larger

class of nonlinearities, however as a consequence, the strict trichotomy is lost.

We further develop the theory for continuous time systems along with the

discrete time systems which were considered in [143].

Furthermore, we consider forced Lur’e systems. These systems take the

form

ẋ = Ax+ bf(cTx) + d, x(0) = x0 ∈ Rn,

where d : L∞loc(R+,Rn), in continuous time and

x(t+ 1) = Ax(t) + bf(cTx(t)) + d(t), x(0) = x0 ∈ Rn,

where d : N0 → Rn, in discrete time. A block diagram of a forced Lur’e system

is given in Figure 1.2.

(A, b, cT )

f

d

u y

Figure 1.2: Block diagram of a forced Lur’e system.

The forcing term d goes by many names such as a disturbance, control or

input, and will vary depending on its interpretation. While considering d to be

a disturbance to a nonnegative, single-input, single-output system, we adapt
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input-to-state stability (ISS) results. Without going into detail here ISS means

that the map (x0, d) 7→ x(t) has nice boundedness and asymptotic properties.

This is done in both a continuous and a discrete time setting. See [72, 124] for

further details on ISS.

We consider d to be an input term which converges to a limit for a larger

class of multi-input, multi-output, continuous time Lur’e systems. We provide

necessary and sufficient conditions for the converging-input converging-state

(CICS) property. A Lur’e system is said to have such a property if for every

d∞ ∈ Rn, there exists x∞ ∈ Rn such that limt→∞ x(t) = x∞ for all x0 and all

inputs d converging to d∞. We also consider Lur’e systems of the form

ẋ = Ax+ bf(cTx− d), x(0) = x0 ∈ Rn,

for which the block diagram is given in Figure 1.3, and provide conditions for

this system to have the CICS property.

(A, b, cT )f−
+

u

y

d

Figure 1.3: Block diagram of the controlled Lur’e system ẋ = Ax+bf(cTx−d).

The final type of system which we provide conditions for the CICS property

are nonnegative, single-input, single-output Lur’e systems. This is the same

type of system we considered when looking into ISS in continuous time.

We also look at integral control of nonnegative, single-input, single-output,

discrete time Lur’e systems. We do this from a population management per-

spective. Population managers aim to regulate the population to a desired

density in a way which is robust to parametric uncertainty and observation

errors. The main problem which we consider is to design a method to restock

a managed, but declining, population. This method should be implemented

with only access to specified observations of the population and in a manner

that is both independent of the initial population distribution and robust to

model uncertainty. This means that the management action is to be taken at

each time-step and is based on observations of the population. A scheme such

as this is represented in Figure 1.4.

We progressively add features to our model which are necessitated by the

specific demands of population modeling and illustrate theoretical concepts

with ecological examples.

This thesis is structured as follows: Chapter 2 provides preliminary defini-
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Figure 1.4: Feedback control for population management.

tions and results which are used throughout this thesis and contains material

on nonnegative matrices, primitivity, Perron-Frobenius theory and Metzler

matrices to name a few. Chapter 3 contains material on absolute stability and

ISS of nonnegative single-input, single-output continuous time Lur’e systems,

and is largely based on [10]. Chapter 4 are the results about the CICS property

including the specialization to nonnegative single-input, single-output contin-

uous time Lur’e systems and is based on [11]. Chapter 5 is the discrete time

counterpart to Chapter 3 and contains the discrete time version of the abso-

lute stability and ISS results presented in Chapter 3. Chapter 6 contains the

material on integral control from a population management perspective and

is based on [53]. This concludes the main text of this thesis. Also included

are a list of main assumptions used in each of the chapters and an index of

key terms which can be found beginning on pages 241 and 244 respectively.

Finally on we provide a bibliography beginning on page 245.
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Chapter 2

Preliminaries

In this chapter we introduce notation and concepts which will be used through-

out this thesis. This chapter is arranged as follows. Section 2.1 introduces

nonnegative matrices and contains results about irreducibility and primitivity.

Section 2.2 introduces linear discrete time systems and how they can be used

to model populations. Section 2.3 contains a definition of Metzler matrices and

results about them. Section 2.4 introduces sector conditions and contains two

examples of nonlinearities which fit these sector conditions. Finally Section

2.5 provides definitions of comparison functions.

2.1 Nonnegative Matrices

Let R and C denote the fields of real and complex numbers respectively. Denote

the set of nonnegative real numbers by R+, that is

R+ := {x ∈ R : x ≥ 0}.

Let N denote the set of natural numbers and N0 be the set of nonnegative

integers, that is

N0 := N ∪ {0}.

This is not the only way of denoting the set of nonnegative integers. An

alternative notation sometimes used in the literature is to let K denote the set

of integers, and K+ denote the set of nonnegative integers. Throughout this

thesis we shall be using the N0 notation.

Definition 2.1.1. Let M = (mij) ∈ Rn×p.

(1) If mij ≥ 0 for all 1 ≤ i ≤ n and 1 ≤ j ≤ p, M is said to be a nonnegative

matrix. This is often denoted as M ∈ Rn×p
+ .
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(2) If mij ≥ 0 for all 1 ≤ i ≤ n and 1 ≤ j ≤ p and M 6= 0 then M is said to

be nonnegative and nonzero which is often denoted as M ∈ Rn×p
+ \{0}.

(3) If mij > 0 for all 1 ≤ i ≤ n and 1 ≤ j ≤ p, M is said to be a positive

matrix.

Often when considering matrices, it is convenient to use inequalities. These

inequalities are slightly different than scalar inequalities and are defined below.

Definition 2.1.2. Let M = (mij) ∈ Rn×p and N = (nij) ∈ Rn×p. Write

• M ≥ N if mij ≥ nij for all 1 ≤ i ≤ n and 1 ≤ j ≤ p;

• M > N if M ≥ N and M 6= N ;

• M � N if mij > nij for all 1 ≤ i ≤ n and 1 ≤ j ≤ p.

Using matrix inequalities we can express that a matrix M is nonnegative,

nonnegative and nonzero, and positive by M ≥ 0, M > 0 and M � 0 respec-

tively.

2.1.1 Irreducibility of Matrices

Before defining irreducibility of matrices, we first must define what a nontrivial

partition is.

Definition 2.1.3. Let X be a set. The sets Y and Z form a nontrivial parti-

tion of X if Y ∪ Z = X , Y 6= ∅, Z 6= ∅ and Y ∩ Z = ∅.

We can now define what it means for a matrix to be irreducible. We do

this by defining what it means for a matrix to be reducible and then negating

it.

Definition 2.1.4. A matrix M = (mij) ∈ Rn×n is said to be reducible if there

exists a nontrivial partition I, J of N = {1, . . . , n}, such that for all i ∈ I
and all j ∈ J , mij = 0.

If a matrix is not reducible it is said to be irreducible.

Example 2.1.5. 1. Consider the matrix A = (aij) ∈ R3×3 given by

A =

−7 5 0

0 1 −7

4 0 6

 .

We demonstrate that A is irreducible by considering all 6 nontrivial par-

titions of the set {1, 2, 3}.
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• I = {1} and J = {2, 3}. a12 = 5 6= 0.

• I = {2} and J = {1, 3}. a23 = −7 6= 0.

• I = {3} and J = {1, 2}. a31 = 4 6= 0.

• I = {1, 2} and J = {3}. a23 = −7 6= 0.

• I = {1, 3} and J = {2}. a12 = 5 6= 0.

• I = {2, 3} and J = {1}. a31 = 4 6= 0.

Clearly, there does not exist a nontrivial partition I,J of {1, 2, 3} such

that aij = 0 for all i ∈ I and j ∈ J , therefore, A is not reducible thus it

is irreducible.

2. Consider the matrix B = (bij) ∈ R4×4 given by

B =


1 3 0 0

10 2 0 0

1 −7 −7 −5

−1 6 2 −5

 .

We demonstrate that is is a reducible matrix. Let I = {1, 2} and J =

{3, 4}. This is clearly a nontrivial partition of {1, 2, 3, 4}. Now b13 =

b14 = b23 = b24 = 0, therefore B is a reducible matrix.

We make a series of trivial remarks based on the definition of irreducibility.

Remark 2.1.6. The lead diagonal entries of a matrix do not play a role in

whether the matrix is reducible or irreducible. If I,J form a nontrivial parti-

tion, then, for all i ∈ I and j ∈ J , i 6= j.

Remark 2.1.7. A matrix is reducible if, ignoring the lead diagonal, it has a

zero row or a zero column. This is easy to demonstrate. Let M = (mij) ∈ Rn×n

and let the i-th row have all zero entries. Set I = {i} and J = N\{i}. Then

mij = 0 for all j ∈ J , therefore, M is reducible.

It is often convenient to test for irreducibility using a graphical approach.

This method is also described in, for example, [100, Section 8.3].

The first step involves creating a digraph of the matrix. A digraph consists

of n nodes, labeled 1, . . . , n. For all 1 ≤ i, j ≤ n with i 6= j a directed line is

drawn from node j to node i if the ij-th entry of the matrix is nonzero.

A digraph is is strongly connected if there is a cycle passing through every

node. This means that every node can be reached from every other node

following the directed lines.
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Theorem 2.1.8. A matrix is irreducible if, and only if, its digraph is strongly

connected.

For a proof of this theorem see [15, Theorem 3.2.1] We demonstrate this

graphical method of testing for irreducibility in the following example.

Example 2.1.9. 1. We return to the matrix A in Example 2.1.5. The

digraph of this matrix is given in Figure 2.1.

1

2 3

Figure 2.1: Digraph of the matrix A from Example 2.1.9.

It is easily verified that this digraph is strongly connected as there exists

a cycle 1→ 3→ 2→ 1, which confirms that A is irreducible.

2. We now return to the matrix B in Example 2.1.5. The digraph of this

matrix is given in Figure 2.2.

1 2

3 4

Figure 2.2: Digraph of the matrix B from Example 2.1.9.

This digraph is not strongly connected as the only cycles ending at node

1 is the cycle 1 → 2 → 1, which clearly does not travel through nodes 3

or 4, therefore, the matrix is reducible (as it is not irreducible).
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2.1.2 Primitivity of Matrices

Primitivity is a very useful property for matrices to have as it links nonneg-

ativity and positivity. Before we define and speak about primitivity we first

define the index of imprimitivity of a matrix.

Definition 2.1.10. Given a nonnegative, irreducible matrix M ∈ Rn×n with

characteristic polynomial

det(λI −M) = λn + a1λ
n1 + . . .+ amλ

nm , (2.1)

where a1, . . . , am 6= 0 and n > n1 > n2 > . . . > nm, define the index of

imprimitivity to be the greatest common divisor of the set

{n− n1, n1 − n2, . . . , nm−1 − nm}.

We can now use this index of imprimitivity to define when a matrix is

primitive.

Definition 2.1.11. A matrix is said to be primitive if it is nonnegative, ir-

reducible and its index of imprimitivity is equal to 1. Otherwise the matrix is

said to be imprimitive.

Example 2.1.12. Consider the matrix

A =


0 0 0 9

0 0 4 0

0 0 0 8

1 2 7 0

 .

We demonstrate that this matrix is primitive. Firstly note that A is clearly

nonnegative. To establish irreducibly we use the graphical approach. The di-

graph of A is given in Figure 2.3.

There is a path 1→ 4→ 3→ 2→ 4→ 1, therefore the digraph is strongly

connected. This means that A is irreducible. Now

det(λI − A) = λ4 − 65λ2 − 64λ.

The index of imprimitivity is therefore the common divisor of the set

{4− 2, 2− 1} = {2, 1},

which clearly is 1, therefore A is primitive.
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1 2

3 4

Figure 2.3: Digraph of the matrix A from Example 2.1.12.

Next we define what is meant by the trace of a matrix which will be required

in the result which follows.

Definition 2.1.13. Let M = (mii) ∈ Rn×n. The trace of the matrix M ,

denoted tr(M) is the sum of the lead diagonal entries of the matrix, that is

tr(M) =
n∑
i=1

mii.

We shall make use of the following lemma at various points throughout this

thesis. It states that nonnegative, irreducible matrices with positive trace are

primitive.

Lemma 2.1.14. Let M ∈ Rn×n be a nonnegative, irreducible matrix with

tr(M) > 0. Then M is a primitive matrix.

Proof. Let M ∈ Rn×n
+ be an irreducible matrix with tr(M) > 0. The charac-

teristic polynomial of M takes the form

λn − λn−1tr(M) + r(M),

where r is a polynomial of degree of at most n − 2. Comparing to (2.1),

the term n1 would equal n − 1 and therefore, the first difference is given by

n− (n− 1) = 1. This means that no mater the value of the other differences,

the greatest common divisor will always be 1, thus the index of imprimitivity

of M is 1. Therefore, M is primitive.

Like for irreducible matrices we can use a graphical approach for testing

if a matrix is primitive. We only need do this for nonnegative, irreducible

matrices with zero trace, as we know that for a matrix to be primitive it must

be nonnegative and irreducible and if additionally it has positive trace it is

primitive.
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Theorem 2.1.15. Let M ∈ Rn×n
+ be irreducible. Let Li denote the length of

all cycles li passing through node i of the digraph of M . Denote

hi = g.c.d.li∈Li
{li},

which is the greatest common divisor of these cycle lengths. Then, h1 = h2 =

. . . = hn = h and h is the index of imprimitivity of M .

A proof of this result can be found in [7, Theorem 2.2.30].

Example 2.1.16. We return to the matrix A from Example 2.1.12 which has

a digraph given in Figure 2.3. Clearly the matrix A is nonnegative and we

established in Example 2.1.12 that A is irreducible. It is clear that A does not

have a positive trace so we cannot apply Lemma 2.1.14, so we use the graphical

approach to show that A is primitive.

We look at the lengths of all cycles starting and ending at the first node.

Listed below are just a few of these cycles:

• Length 2: 1→ 4→ 1

• Length 4: 1→ 4→ 3→ 4→ 1

• Length 4: 1→ 4→ 1→ 4→ 1

• Length 5: 1→ 4→ 3→ 2→ 4→ 1

Clearly, the greatest common divisor of these lengths is 1, therefore the matrix

A is primitive.

The following result is important as it links nonnegative and positive ma-

trices. For a proof of this result see [46, Theorem 3.5.8].

Theorem 2.1.17. Let M be a nonnegative matrix. M is primitive if, and

only if, for some k ≥ 1, Mk � 0.

This not only is a key property of a primitive matrix which we will make

use of several times in this thesis but also provides a method of testing if a

matrix is primitive. It also results in the following corollary which follows

immediately.

Corollary 2.1.18. Let M be a nonnegative matrix. If, for some k ≥ 1,

Mk � 0, then M is an irreducible matrix.

We demonstrate Theorem 2.1.17 as a method of testing for irreducibility.
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Example 2.1.19. We return the matrix A considered in Examples 2.1.12 and

2.1.16. We have already established that A is primitive. We demonstrate that

Ak � 0 for some k ≥ 1. We only need to compute up until the third power of

A to demonstrate this as seen below.

A2 =


45 18 63 54

0 16 16 32

8 16 56 0

6 8 8 65

 , A3 =


324 180 450 909

32 128 288 128

48 64 64 520

101 162 487 118

 .

The following remark, which can be found in [145, Section 2.2] relates the

power k which a primitive matrix M must be raised to such that Mk � 0,

and the lead diagonal components.

Remark 2.1.20. Let M = (mij) ∈ Rn×n
+ be an irreducible matrix.

• If mii > 0 for all i = 1, . . . , n then, for every k ≥ n− 1, Mk � 0.

• If mii > 0 for some i = 1, . . . , n then, for every k ≥ 2n− 2, Mk � 0.

• If M is primitive then for every k ≥ n2 − 2n+ 2, Mk � 0.

2.1.3 Perron-Frobenius Theory

In this section we investigate spectral properties of nonnegative matrices. This

topic is known as Perron-Frobenius theory as it has evolved from the contribu-

tions of Oskar Perron [108] and Ferdinand Georg Frobenius [45]. The original

work of Perron pertained to positive matrices, however the contributions of

Frobenius extended this to nonnegative matrices.

We begin by defining two important quantities.

Definition 2.1.21. Let M ∈ Rn×n, with eigenvalues λ1, . . . , λn. The spectrum

of M , denoted σ(M), is the set of all eigenvalues, that is

σ(M) = {λ1, . . . , λn}.

The spectral radius of M , denoted ρ(M), is the largest magnitude attained by

any eigenvalue, that is

ρ(M) = max{|λ1|, . . . , |λn|}.

We state the Perron-Frobenius theorem. This result can be found in [100,

Section 8.3], along with a proof and discussion.
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Theorem 2.1.22. If M ∈ Rn×n
+ is irreducible, then each of the following is

true:

(1) r = ρ(M) ∈ σ(M), r > 0 and r is simple.

(2) There exist unique vectors, p, q ∈ Rn, satisfying

Mp = rp, qTM = rqT , p, q � 0 and ‖p‖1 = ‖q‖1 = 1.

p and q are called the right and left Perron vectors, respectively.

The next result, again stated and proved in [100, Section 8.3], concerns

primitivity and Perron-Frobenius theory.

Theorem 2.1.23. Let M ∈ Rn×n
+ be irreducible and set r = ρ(M). Then the

following statements are equivalent.

(1) M is primitive.

(2) r is the only eigenvalue on the spectral circle of M , or equivalently, if

λ ∈ σ(M) such that |λ| = r, then λ = r.

(3) limk→∞(M/r)k exists and

lim
k→∞

(
M

r

)k
=
pqT

qTp
� 0,

where p and q are the left and right Perron vectors of M .

The next result shows that the spectral radius of a nonnegative matrix has

certain monotonicity properties.

Corollary 2.1.24. Let M,N ∈ Rn×n.

(1) If M > N ≥ 0 and N is irreducible, then ρ(M) > ρ(N).

(2) If M ≥ N ≥ 0, then ρ(M) ≥ ρ(N).

Proof. We begin by proving statement (1). Note that irreducibility of N im-

plies irreducibility of M . By Theorem 2.1.22, there exists vectors v, w � 0

such that

wTM = ρ(M)wT , Nv = ρ(N)v.

Obviously, wTv > 0 and, furthermore, ρ(M)wTv > ρ(N)wTv, showing ρ(M) >

ρ(N). Proceeding to prove statement (2), let P ∈ Rn×n be a positive matrix

and ε > 0. ThenM+2εP � N+εP � 0 and note thatN+εP is an irreducible

matrix as it is a positive matrix. By statement (1), ρ(M + 2εP ) > ρ(N + εP ),

and, letting ε → 0, and using continuity of spectral radius (see [100, Chapter

7]) we conclude that ρ(M) ≥ ρ(N).
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2.2 Linear Discrete Time Systems and Popu-

lation Projection Models

Let t ∈ N0 be time measured discretely. This could be something like months,

years or seasons and is chosen at the modelers discretion.

The simplest form of population model involves x(t) ∈ R+ being the total

population at time t ∈ N0. To model the population as time evolves, we use

the system

x(t+ 1) = ax(t), x(0) = x0 ∈ R+, (2.2)

where a ∈ R+. Let x( · ;x0) denote the solution of the initial value problem

(2.2). Note that populations can only take positive values, therefore we must

restrict a and x0 to the nonnegative real numbers to ensure x(t) ∈ R+ for all

t ∈ N0.

The following theorem provides long term estimates for the state x(t) for

different values of a.

Theorem 2.2.1. Consider the system (2.2).

(1) If a = 0 then x(t;x0) = 0 for all t ∈ N and all x0 ∈ R+.

(2) If a ∈ (0, 1) then x(t;x0)→ 0 as t→∞ for all x0 ∈ R+.

(3) If a = 1 then x(t;x0) = x0 for all t ∈ N0 and all x0 ∈ R+.

(4) If a > 1 then x(t;x0)→∞ as t→∞ for all x0 ∈ R+ with x0 > 0.

(5) For all a ∈ R+, x(t; 0) = 0 for all t ∈ N0.

Proof. The proof of this result is trivial noting

x(t) = ax(t− 1) = a2x(t− 2) = . . . = atx0.

The model given by (2.2) is a very simple model and can only be used

to model total population. A more useful model involves replacing the scalar

population by a vector population given by

x(t) :=


x1(t)

...

xn(t)

 .

Each of the xi for 1 ≤ i ≤ n denote an age- or stage-class of the population

and the total population is now given by ‖x(t)‖1. An age-class model involves
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individuals moving from one class to the next as each time interval passes.

A stage-class model groups together individuals with similar dynamics which

could represent life stages such as egg, larva, pupa and adult stages of an

insect. In each time interval it could be the case that an individual remains in

the same stage-class or moves into the next.

To model vector population dynamics we consider the system

x(t+ 1) = Ax(t), x(0) = x0 ∈ Rn
+, (2.3)

where A = (aij) ∈ Rn×n
+ . This is equivalent to the n coupled systems

x1(t+ 1) =
n∑
j=1

a1jxj(t) x1(0) = x0
1 ∈ R+,

...

xn(t+ 1) =
n∑
j=1

anjxj(t), xn(0) = x0
n ∈ R+.

The matrix A is commonly referred to as a population projection matrix or

PPM for short. What happens to the state x(t) as t → ∞ now depends on

the spectral radius of the matrix A.

The matrix A is said to be stable, or Schur, if ρ(A) < 1. In this case,

lim
t→∞

x(t+ 1) = lim
t→∞

Ax(t) = lim
t→∞

Atx(0) = 0.

In Chapters 5 and 6, we consider discrete time systems and throughout most

of those chapters, we only consider stable matrices.

In the following subsections we discuss three common structures of PPMs.

2.2.1 Leslie Matrices

Leslie matrices are commonly used in age-structured models. They take the

form

L =



b1 · · · · · · · · · bn

g1 0 · · · · · · 0

0
. . . . . .

...
...

. . . . . .
...

0 · · · 0 gn−1 0


, (2.4)

where bi ≥ 0 for 1 ≤ i ≤ n and 0 < gi ≤ 1 for 1 ≤ i ≤ n − 1. The bi

terms denote birth rates, that is the number of members entering the first age-

class with parents in the i-th age-class each time step. The gi terms represent
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a growth rate which is the proportion of individuals leaving age-class i and

entering age-class i + 1 each time step. It is assumed that if an individual in

age-class i does not successfully enter age-class i+ 1 it dies.

An example of a Leslie matrix is

L1 =



0 0 3.124 3.124 3.124 3.124 3.124

0.802 0 0 0 0 0 0

0 0.802 0 0 0 0 0

0 0 0.868 0 0 0 0

0 0 0 0.868 0 0 0

0 0 0 0 0.868 0 0

0 0 0 0 0 0.868 0


(2.5)

which is the PPM associated with the Tibetan Monkey (Macaca thibetana)

which can be found in [106].

Another example of a Leslie matrix is that of black-footed ferret (Mustela

nigripes) which can be found in [48] and is given by

L2 =


0.73 1.25 1.25 1.25 0

0.39 0 0 0 0

0 0.67 0 0 0

0 0 0.67 0 0

0 0 0 0.67 0

 . (2.6)

Due to the sparse structure of Leslie matrices we can characterize when a

Leslie matrix is irreducible and when it is primitive. These results are difficult

to find in the literature so are given in full here. We begin with irreducibility.

Theorem 2.2.2. A Leslie matrix given by (2.4) is irreducible if, and only if,

bn 6= 0.

Proof. Assume that bn 6= 0. Figure 2.4 contains a minimal digraph of a Leslie

matrix with bi = 0 for 1 ≤ i ≤ n− 1

1

2 3 n− 1 n
· · ·

Figure 2.4: Digraph of a Leslie matrix with bn 6= 0 and bi = 0 for 1 ≤ i ≤ n−1.
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Clearly this graph is strongly connected as it will always contain cycle

1 → n → n − 1 → · · · → 2 → 1, regardless on the other values of bi for

1 ≤ i ≤ n− 1, therefore the matrix is irreducible.

Now assume that a Leslie matrix is irreducible. By Remark 2.1.7 there

must be at least one nonzero entry in each column and row, hence bn 6= 0.

By this theorem it follows immediately that the Leslie matrix L1 given by

(2.5) is irreducible and L2 given by (2.6) is reducible.

What irreducibility means for Leslie matrices is that, individuals progress

through the age-classes from smallest to larges at which time they reproduce

and the newborn is in the first age-class and the cycle continuous.

We now consider primitivity of a Leslie matrix. To this end, define

I := {i : bi 6= 0}.

Theorem 2.2.3. A Leslie matrix given by (2.4) is primitive if, and only if,

bn 6= 0 and the elements of the set I are coprime.

Proof. The characteristic polynomial of a Leslie matrix is

det(λI − L) = λn − b1λ
n−1 −

n∑
i=2

(
bi

i−1∏
j=1

gj

)
λn−i,

hence defining β1 = b1 and

βi = bi

i−1∏
j=1

gj, ∀ 2 ≤ i ≤ n,

we have that

det(λI − L) = λn −
n∑
i=1

βiλ
n−i

with βi 6= 0 if, and only if, i ∈ I.

Assume that L is primitive. This implies by Theorem 2.2.2 that L is

irreducible, therefore, bn 6= 0 and so n ∈ I. Write I = {i1, . . . , iq} with

i1 < i2 < . . . < iq = n and set

nj = n− ij, j = 1, . . . , q (2.7)

(and so nq = 0). By primitivity

n− n1, n1 − n2, . . . , nq−1 − nq
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are coprime. Hence

i1, i2 − i1, . . . , iq − iq−1

are coprime, and consequently, i1, . . . , iq must be coprime.

Conversely, assume that bn 6= 0 and the elements in I are coprime. By

Theorem 2.2.2, the matrix L is irreducible. Defining nj for j = 1, . . . , q, by

(2.7), we need to show that

n− n1, n1 − n2, . . . , nq−1 − nq

are coprime. Now

n− n1 = i1,

n1 − n2 = i2 − i1,
...

nq−1 − nq = iq − ip−1.

By hypothesis, i1, . . . , iq are coprime. Let p ∈ N be such that p divides i1, i2−
i1, i3 − i2, . . . , iq − iq−1. Then we may conclude that p divides i1, i2 = (i2 −
i1) + i1, i3 = (i3 − i2) + i2, . . . , iq. Hence, p = 1, showing that n − n1, n1 −
n2, . . . , nq−1 − nq are coprime.

The following remark is a trivial consequence of Theorem 2.2.3 based on

the elements of the set I.

Remark 2.2.4. Let L be an irreducible Leslie matrix.

• If bi 6= 0 and bi+1 6= 0 for some 1 ≤ i ≤ n− 1, then L is primitive.

• If n is prime, then if any bi 6= 0 for 1 ≤ i ≤ n− 1, then L is primitive.

• If b1 6= 0, then L is primitive. (This also follows immediately from

Lemma 2.1.14.)

Returning to the Leslie matrix L1 given by (2.5) which we saw earlier was

irreducible, we can now say that it is also primitive by this remark noting that

two consecutive birth rates are nonzero.

What it means biologically for a Leslie matrix, or a PPM in general, to be

primitive is that after a certain amount of time has passed, an individual with

have an ancestor and a descendent in age-class.

2.2.2 Leslie-Plus Matrices

A limitation of age-structured population projection models is that the max-

imum age of the species is n time steps. This means that for species which
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live for a long time, the PPM will become very large. One way of dealing with

this is a hybrid system which consists of n − 1 age-classes and 1 stage-class.

The stage-class is the final class, that is the xn term. The purpose of these

models is to allow species with longer lives, where once they reach a certain

age exhibit the same survival and birth rate, to be modeled without having to

work with very large systems.

Leslie-Plus matrices can be used to model such species and take the form

L+ =



b1 · · · · · · · · · bn

g1 0 · · · · · · 0

0
. . . . . .

...
...

. . . 0 0

0 · · · 0 gn−1 s


, (2.8)

where, as with a Leslie matrix, bi ≥ 0 for 1 ≤ i ≤ n, 0 < gi ≤ 1 for 1 ≤ i ≤ n−1

and now 0 < s ≤ 1. The only difference is the additional survival term, s which

is the chance that an individual survives to the next time interval, once they

are fully grown.

An example of a Leslie-Plus matrix is the PPM of a Wallaby (Onychogalea

fraenata), which can be found in [42] and is

L+ =


0 0 0 3.1

0.93 0 0 0

0 0.82 0 0

0 0 0.47 0.8

 . (2.9)

Like Leslie matrices, we can characterize when a Leslie-Plus matrix is irre-

ducible and primitive.

Theorem 2.2.5. A Leslie-Plus matrix given by (2.8) is irreducible if, and only

if, bn 6= 0.

Proof. The proof of this result follows immediately from Theorem 2.2.2 noting

that the lead diagonal elements of a matrix play no role in if they are irreducible

or not and that a Leslie-Plus matrix only differs from a Leslie matrix due to

the presence of an addition entry on the lead diagonal.

Theorem 2.2.6. A Leslie-Plus matrix is primitive if, and only if, it is irre-

ducible.

Proof. Assume a Leslie-Plus matrix is primitive. From the definition of prim-

itivity, it must be irreducible.
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Now assume that a Leslie-Plus matrix, L+, is irreducible. By Lemma 2.1.14

it follows immediately that it is also primitive, noting that tr(L+) = b1 + s ≥
s > 0.

By Theorem 2.2.5 we see that the Leslie-Plus matrix, (2.9) is irreducible

and therefore, by Theorem 2.2.6, it is also primitive.

2.2.3 Growth Matrices

The final structure of a PPM we consider is that of a stage-class model and is

known as a growth matrix. These matrices take the form

G =



s1 b2 · · · · · · bn

g1 s2 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0

0 · · · 0 gn−1 sn


, (2.10)

where bi ≥ 0 for 2 ≤ i ≤ n denotes the birth rates of parents in stage-class i;

0 < g1 ≤ 1 denotes the probability of an individual moving from the first stage

class to the second; 0 < gi < 1 for 2 ≤ i ≤ n− 1 denotes the probability of an

individual moving from the i-th stage class the i + 1-th stage-class; s1 ≥ 0 is

a combination of the probability of an individual remaining in the first stage-

class and the birth rate of individuals born to parents in the first stage-class;

0 < si < 1 for 2 ≤ i ≤ n − 1 is the probability that an individual remains

in the i-th stage class; and 0 < sn ≤ 1 is the probability that an individual

remains in the final stage-class. An additional requirement is that si + gi ≤ 1

for 2 ≤ i ≤ n − 1, otherwise there is a probability that an individual could

both progress to the next stage-class and remain in the same stage-class.

An example of a growth matrix is

G =



0 0 0 0.2488 40.5916 68.8415

0.4394 0.5704 0 0 0 0

0 0.0741 0.8413 0 0 0

0 0 0.0391 0.8405 0 0

0 0 0 0.0069 0.7782 0

0 0 0 0 0.17 0.9482


, (2.11)

which represents a green turtle (Chelonia mydas), which can be found in [20].

We characterize when a growth matrix is irreducible and primitive.

Theorem 2.2.7. A growth matrix is irreducible if, and only if, bn 6= 0.
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Proof. The proof of this result follows immediately from Theorem 2.2.2 noting

that the lead diagonal elements of a matrix play no role in whether a matrix is

irreducible or not and that a growth matrix only differs from a Leslie matrix

due to the presence of additional terms on the lead diagonal.

Theorem 2.2.8. A growth matrix is primitive if, and only if, it is irreducible.

Proof. Assume that a growth matrix is primitive. From the definition of prim-

itivity, it must be irreducible.

Now assume that a growth matrix G is irreducible. Noting that tr(G) =∑n
i=1 si > 0, it follows immediately from Lemma 2.1.14 that G is primitive.

The growth matrix associated with a green turtle in (2.11) is primitive

noting that n = 6 and b6 = 68.8415.

2.3 Metzler Matrices

In this section we gather from the literature results on Metzler matrices. Fre-

quently, Metzler matrices go by other names such as essentially nonnegative

matrices [6, p. 146] or quasi-positive matrices [131, p. 60]. In a dynamical

systems context, they are the continuous-time analogue of nonnegative matri-

ces which arise naturally in discrete-time nonnegative dynamical systems. We

refer the reader to [6, 94, 145].

We begin by defining what a Metzler matrix is.

Definition 2.3.1. A matrix M = (mij) ∈ Rn×n is said to be a Metzler matrix

if all off-diagonal entries of M are nonnegative, that is, mij ≥ 0 for all 1 ≤
i, j ≤ n with i 6= j.

We also define a quantity which is useful when working with Metzler ma-

trices.

Definition 2.3.2. Let M ∈ Rn×n be a Metzler matrix. Define

δ(M) := − min
1≤i≤n

(mii, 0) ≥ 0,

which is the modulus of the most negative entry of M , or 0 if M has no negative

entries.

The first result in this section links primitive matrices and Metzler matrices.

Lemma 2.3.3. Let M ∈ Rn×n be an irreducible Metzler matrix. If µ > δ(M),

then µI +M is a primitive matrix.
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Proof. It is clear that µI + M is a nonnegative, irreducible matrix with a

positive trace, therefore by Lemma 2.1.14, µI +M is a primitive matrix.

The following well-known result demonstrates that the Metzler property

characterizes linear flows which leave the nonnegative orthant invariant.

Lemma 2.3.4. A matrix M ∈ Rn×n is Metzler if, and only if, eMt > 0 for all

t ≥ 0. A matrix M ∈ Rn×n is Metzler and irreducible if, and only if, eMt � 0

for all t > 0.

Proof. The first claim is proved in, for example, [131, Section 3.1] or [128,

Theorem 3]. The second claim may be found in [145, Theorem 8.2] or a more

general version in [128, Proposition 1].

Definition 2.3.5. A matrix M ∈ Rn×n is said to be Hurwitz if all of its

eigenvalues have negative real parts.

Corollary 2.3.6. If M ∈ Rn×n is Metzler and Hurwitz, then −M−1 > 0.

Further assume that M is irreducible, then −M−1 � 0.

Proof. By the Hurwitz property of M , we have∫ ∞
0

eMtdt = −M−1.

Since M is Metzler, Lemma 2.3.4 yields that

−M−1 =

∫ ∞
0

eMtdt > 0.

Now assume that M is irreducible. Again by Lemma 2.3.4

−M−1 =

∫ ∞
0

eMtdt� 0,

completing the proof.

Classical Perron-Frobenius theory pertains to nonnegative matrices. Whilst

a Metzler matrix M is in general not nonnegative, µI +M is nonnegative for

all µ ≥ δ(M). This observation, along with Lemma 2.3.3, enables applications

of Perron-Frobenius theory to Metzler matrices. We first define the spectral

abscissa of a matrix.

Definition 2.3.7. Let M ∈ Rn×n. The spectral abscissa α(M) of M is defined

by

α(M) = max{Reλ : λ ∈ σ(M)}.
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Although all of the results in the following theorem are well known, they

are scattered across the literature. For completeness and convenience of the

reader, we provide a full proof.

Theorem 2.3.8. Let M ∈ Rn×n be an irreducible Metzler matrix, set a :=

α(M) and let µ > δ(M). Then the following statements hold.

(1) a ∈ σ(M) and a = ρ(µI +M)− µ.

(2) If λ ∈ σ(M) and λ 6= a, then Re λ < a.

(3) a is simple.

(4) There exist unique vectors v, w ∈ Rn satisfying

vTM = avT , Mw = aw, v, w � 0, ‖v‖1 = ‖w‖1 = 1.

(2.12)

(5) The following convergence result holds:

lim
t→∞

e(M−aI)t =
1

vTw
wvT � 0,

where v and w are the vectors satisfying (2.12).

Proof. Let µ > δ(M) and set r := ρ(µI + M). Since µI + M is primitive, by

Lemma 2.3.3, it follows from Theorem 2.1.22 that r ∈ σ(µI +M), r is simple

and |z| < r for every z ∈ σ(µI +M) such that z 6= r. Obviously,

σ(M) = {z − µ : z ∈ σ(µI +M)},

and we have that a = r − µ ∈ σ(M) and a is simple. Moreover, for z ∈
σ(µI + M), z 6= r, Re z < r and therefore Re λ < a for every λ ∈ σ(M) such

that λ 6= a, completing the proof of the first three statements.

We proceed to prove statement (4). Primitivity of µI +M , in combination

with Theorem 2.1.23, shows that there exist unique v, w ∈ Rn such that v, w �
0, ‖v‖1 = ‖w‖1 = 1 and

vT (µI +M) = rvT , (µI +M)w = rw.

Therefore, by statement (1), vTM = avT and Mw = aw, showing that state-

ment (4) holds.

Finally, we prove statement (5). Let S be an invertible matrix such that

M = S−1

(
a 0

0 J

)
S,
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where J is a Jordan matrix with σ(J) = σ(M)\{a}. The matrix µI + M is

primitive, and, by statement (1), µ+a = ρ(µI+M). Therefore it follows from

statement (2) of Theorem 2.1.23,

µ+ a = ρ(µI +M) > |µ+ λ| ∀ λ ∈ σ(J).

Consequently, ρ((µ+ a)−1(µI + J)) < 1 and so

(µ+ a)−j(µI +M)j = (µ+ a)−jS−1

(
µ+ a 0

0 µI + J

)j

S

→ S

(
1 0

0 0

)
S as j →∞.

On the other hand, invoking statement (3) of Theorem 2.1.23, we have

(µ+ a)−j(µI +M)j → 1

vTw
wvT as j →∞,

where v and w are the unique vectors satisfying (2.12). Hence,

S−1

(
1 0

0 0

)
S =

1

vTw
wvT

and, furthermore,

e(M−aI)t = e−ateMt = S−1

(
1 0

0 e−ateJt

)
S → 1

vTw
wvT as t→∞,

where we have used that, by statement (3), a > Re λ for all λ ∈ σ(J), to

conclude that e−ateJt → 0 as t→∞.

We shall also be making use of the following monotonicity property of the

spectral abscissas of irreducible Metzler matrices.

Lemma 2.3.9. Let M,N ∈ Rn×n be Metzler matrices.

(1) If M > N and N is irreducible, then α(M) > α(N).

(2) If M ≥ N , then α(M) ≥ α(N).

Proof. Let µ > δ(N) and assume that M > N and N is irreducible. Then

µI +M > µI +N ≥ 0 and µI +N is irreducible, and it follows from Corollary

2.1.24 that ρ(µI+M) > ρ(µI+N). Hence, invoking statement (1) of Theorem

2.3.8,

α(M) = ρ(µI +M)− µ > ρ(µI +N)− µ = α(N),
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completing the proof of statement (1). To prove statement (2), an argument

similar to that in the proof of statement (2) of Corollary 2.1.24 can be used.

2.3.1 Continuous Time Population Modeling

In this section we describe how Metzler matrices can be used to model in

continuous times systems and act as a counterpart to Section 2.2. We refer

the reader to [77] for further details on what are presented here along with a

comparison to Leslie matrices.

As with discrete time models let x(t) = (x1(t), . . . , xn(t))T denote a popu-

lation divided into n age-classes at time t. Let bi ≥ 0 denote birth rates of the

i-th age-class and di > 0 denote death rates of the i-th age-class. Finally let

mi > 0 for 1 ≤ i ≤ n− 1 denote the rate of movement from the i-th age-class

to the i + 1-th age-class. We can now write a set of differential equations to

model the population. We have

ẋ1 = b1x1 + . . .+ bnxn − (d1 +m1)x1,

ẋi = mi−1xi−1 − (di +mi)xi, i = 2, 3, . . . , n− 1,

ẋn = mn−1xn−1 − dnxn

We can combine these into vector form given by

ẋ(t) =



b1 − d1 −m1 b2 b3 · · · bn

m1 −d2 −m2 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0

0 · · · 0 mn−1 −dn


x(t) = Ax(t).

The matrix A is clearly a Metzler matrix and so we can apply the results in

this section to such a system. Also note that the structure of A is the same as

a growth matrix therefore, the matrix A is irreducible if and only if bn > 0.

2.4 Sector Conditions

In this section we introduce two different types of sector conditions. Sector

conditions are used at various stages throughout this thesis. In this section

we will also introduce two nonlinearities which frequently appear in the litera-

ture for population modeling and mention how these fit in the different sector

conditions.
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2.4.1 Sectors Given by a Single Line

Let f : R+ → R+. We consider sectors of the form f(y)/y < p for all y > 0,

where p > 0. There are three different strengths of this type sector condition

which we consider and are given by:

(S1) f(y)/y ≤ p for all y > 0,

(S2) f(y)/y < p for all y > 0,

(S3) supy>0 f(y)/y < p.

For all three of these sector conditions, the graph of f(y) lies in a sector

bounded below by 0 and above by the line l1(y) = py. For (S1), the graph

of f(y) need not lay strictly below the line l1(y), therefore, for some y > 0 it

could be the case that f(y) = py. (S2) is a stronger condition in which we

require f(y) 6= py for any y > 0. (S3) says that there exists q ∈ (0, p) such

that f must satisfy f(y)/y ≤ q for all y > 0. That is the graph of f(y) must

lie in a smaller sector than in the other cases. It is obvious that (3) implies

(2) which implies (1).

These three conditions are illustrated in Figure 2.5.

y

f(y)

0

py

f

(a)

y

f(y)

0

py

f

(b)

y

f(y)

0

py

qy

f
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Figure 2.5: (a) A graph of a function f satisfying (S1). (b) A graph of a
function f satisfying (S2). (c) A graph of a function f satisfying (S3).

2.4.2 Sectors Given by Two Lines

Let f : R+ → R+ with f(0) = 0 and p > 0. Further assume there exists

y∗ > 0 such that f(y∗) = py∗. We consider two sectors, governed by the lines

l1(y) = py and l2(y) = 2py∗ − py.

(S4) For 0 ≤ y < y∗, py ≤ f(y) ≤ 2py∗ − py and for y > y∗, 2py∗ − py ≤
f(y) ≤ py.
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(S5) For 0 < y < y∗, py < f(y) < 2py∗ − py and for y > y∗, 2py∗ − py <

f(y) < py.

Sector (S4) could also be written as∣∣∣∣f(y)− f(y∗)

y − y∗
∣∣∣∣ ≤ p ∀ y ∈ R+\{y∗},

and sector (S5) could be written as∣∣∣∣f(y)− f(y∗)

y − y∗
∣∣∣∣ < p ∀ y ∈ R+\{0, y∗}.

Both these sectors mean that the graph of f(y) lies between the lines l1(y) and

l2(y) for all y > 0. (S4) is a weaker condition as the graph of f(y) could touch

the lines l1(y) or l2(y) for some y 6= y∗, and (S5) is stronger as the possibility

is ruled out. It is obvious that (S5) implies (S4).

We can strengthen sector (S5) by also imposing that f satisfies

lim sup
y→y∗

∣∣∣∣f(y)− f(y∗)

y − y∗
∣∣∣∣ < p (2.13)

which means that the graph of f(y) is not tangential to the lines l1(y) or l2(y)

for y = y∗. We denote a sector given by (S5) which also satisfies (2.13) by

(S6).

A way of strengthening sector (S6) would be to further assume that f

satisfies

lim sup
y→∞

∣∣∣∣f(y)− f(y∗)

y − y∗
∣∣∣∣ < p

which means that for sufficiently large y, the points (y, f(y)) lie in a sector

defined by two straight lines of slope q and −q where 0 < q < p.

Sector conditions (S4), (S5) and (S6) are illustrated in Figure 2.6.

2.4.3 Examples of Nonlinearities

We look at two common nonlinearities appearing in population modeling.

Beverton-Holt Nonlinearity

Consider a Beverton-Holt nonlinearity [8] given by

f1(y) =
my

k + y
,
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Figure 2.6: (a) A graph of a function f sector condition (S4). (b) A graph
of a function f satisfying sector condition (S5). (c) A graph of a function f
satisfying sector condition (S6).

where m, k > 0. It can be seen that m denotes a carrying capacity of the

population as

lim
y→∞

f1(y) = m.

This function will always satisfy a sector condition, and which it will satisfy

depends on the constants and p.

• If m/k < p then (S3) is satisfied.

• If m/k = p then (S2) is satisfied.

• If m/k > p then (S6) is satisfied.

We reach this conclusion noting that f1(y) is a strictly increasing function, and

f ′1(y) is a decreasing, yet positive function.

Example 2.4.1. Consider the Beverton-Holt function given by

f1(y) =
2y

10 + y
. (2.14)

The graph of this function is plotted in Figure 2.7 as a blue line. Note that

f1(y) < 2 for all y ∈ R+ which is shown as a black dotted line in Figure 2.7.

We consider p = 1/3, 1/5 and p = 1/20 such that (S2), (S3) and (S6) hold

receptively. The lines l1(y) = py are plotted in Figure 2.7 for each of the values

of p along with the line l2(y) for p = 1/20 to illustrate these sector conditions.

Ricker Nonlinearity

Now consider a Ricker nonlinearity [117] given by

f2(y) = ye−βy,
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l2(y) = 3− y/20

Figure 2.7: Graph for Example 2.4.1. Induces the graph of f1(y) given by
(2.14) and the lines l1(y) = py for p = 1/2, 1/5, 1/20 and the line l2(y) for
p = 1/20 to illustrate the sector conditions this function satisfies.

where β > 0. This will not always satisfy a sector condition depending on the

value of p.

• If p > 1 then (S3) is satisfied.

• If p = 1 then (S2) is satisfied.

• If e−2 ≤ p < 1 then (S6) is satisfied.

• If p < e−2 then no sector condition is satisfied.

These claims can be easily verified by elementary calculus.

Example 2.4.2. Consider the Ricker function given by

f2(y) = ye−0.2y. (2.15)

The graph of this function is plotted in Figure 2.8 as a blue line. We consider

p = 2, 1 and p = 1/2 such that (S2), (S3) and (S6) hold respectively. We also

consider p = 1/10 < e−2 in which case no sector condition is satisfied. The

lines l1(y) = py are plotted in Figure 2.7 for each of the values of p along with

the line l2(y) for p = 1/2 and p = 1/10 to illustrate these sector conditions.

2.5 Comparison Functions

We define comparison functions which are used at several stages in this thesis.

Definition 2.5.1. • Let K denote the set of all continuous functions ϕ :

R+ → R+ such that ϕ(0) = 0 and ϕ is strictly increasing.
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Figure 2.8: Graph for Example 2.4.2. Induces the graph of f2(y) given by
(2.14) and the lines l1(y) = py for p = 2, 1, 1/2, 1/10 and the line l2(y) for
p = 1/2, 1/10 to illustrate the sector conditions this function satisfies.

• Moreover, define

K∞ := {ϕ ∈ K : ϕ(s)→∞ as s→∞}.

• We denote by KLD the set of functions ψ : R+ × N0 → R+ with the

following properties:

– ψ( · , t) ∈ K for every t ∈ N0

– ψ(s, · ) is nonincreasing with

lim
t→∞

ψ(s, t) = 0

for every s ≥ 0.

• We denote by KL the set of functions ψ : R+ × R+ → R+ with the

following properties:

– ψ( · , t) ∈ K for every t ∈ R+

– ϕ(s, · ) is nonincreasing with

lim
t→∞

ψ(s, t) = 0

for every s ≥ 0.
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Chapter 3

Stability of Nonnegative Lur’e

Systems in Continuous Time

This chapter is based on [10] and acts as a continuous time counterpart to

Chapter 5.

3.1 Introduction

In mathematical control theory, much attention has been devoted to a class of

nonlinear systems referred to as Lur’e systems [55, 72, 86, 96, 124, 146, 153].

These systems are comprised of two components: a linear system with state

x, input u and output y, given by

ẋ = Ax+ bu, x(0) = x0, y = cTx, (3.1)

where A ∈ Rn×n, b, c ∈ Rn, and a nonlinear feedback u = f(y) where f : R→
R. The resulting nonlinear feedback system is given by

ẋ = Ax+ bf(cTx), x(0) = x0. (3.2)

Lur’e systems arise in various contexts in circuit, control and systems the-

ory. Under the common assumption that the nonlinearity f satisfies f(0) = 0,

it follows that 0 is an equilibrium of (3.2). In this chapter we not only deal

with the case when f(0) = 0 as in [10], but we also consider the case where

f(0) > 0.

The study of stability properties of the zero equilibrium of Lur’e systems is

termed absolute stability and generally refers to the situation where the linear

system (3.1) is known and the nonlinearity f is unknown, but usually sector

bounded. Absolute stability is a well-studied and active area of research, and

we refer the reader to [55, 72, 86, 124, 146, 153] and the references therein. A
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typical absolute stability result provides conditions on the linear components

(either in time or frequency domain) which ensure that zero is globally asymp-

totically stable (GAS) for a class of sector bounded nonlinearities. Crucially,

stability of the Lur’e system is determined by the sector bounds and not by

the individual nonlinearity f itself. Such inherent robustness makes absolute

stability results especially powerful. Furthermore, if the Lur’e system (3.2) is

subject to an external additive time-dependent disturbance d, that is, if (3.2)

is replaced by

ẋ = Ax+ bf(cTx) + d, x(0) = x0, (3.3)

then recent research [72, 124] shows that the conditions of a well-known clas-

sical absolute stability result, the so-called circle criterion, guarantee input-to-

state stability (ISS) of the forced system (3.3), thereby adding to the inher-

ent robustness properties of stable Lur’e systems. Without going into details

here, we mention that ISS means that the map Rn × L∞loc(R+,Rn) → Rn,

(x0, d) 7→ x(t) has “nice” boundedness and asymptotic properties. For an

overview of ISS theory we refer the reader to [25, 138].

Systems of type (3.2) or (3.3) also arise naturally in biology, ecology and

chemistry, for example, in T-cell receptor signal transduction [98, 135]; en-

zyme synthesis [103, Section 7.2], [131, Chapter 4.2] and [144]; and population

dynamics [51]. Lur’e type models for economic fluctuations have also been

suggested, see [50]. In a population model, f captures density-dependence,

for example, a carrying capacity. In a chemical reaction model, f may de-

scribe a nonlinear reaction rate between certain components. In these applied

contexts, a common key feature is that the components of the state x of the

model, which may represent population abundances, chemical concentrations,

or economic quantities (such as prices) are, necessarily, nonnegative. In this

case, the matrix A is Metzler, whilst b and c are nonnegative and f maps the

interval [0,∞) into itself.

In the context of biological, ecological and chemical models the focus is

often the existence and stability of nonzero equilibria which then correspond

to the co-existence of populations or chemical compounds.

Small-gain techniques have been applied to Lur’e systems to develop sta-

bility/instability trichotomy results for classes of both finite-dimensional [143]

and infinite-dimensional [112] discrete-time population models. For the situ-

ations considered in [112, 143], only one of three outcomes is possible: either

zero is GAS, there is a stable nonzero equilibrium which attracts all nonzero

solutions, or else all nonzero solutions diverge component-wise. Further tri-

chotomies of stability for various classes of monotone discrete-time dynamical

systems have been established in [82, Chapter 6] and [83] for finite-dimensional
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systems and in [64, 132] for infinite-dimensional systems. The paper [83] also

contains a limit set trichotomy for a class of periodic continuous-time systems

satisfying certain monotonicity conditions.

In this chapter we develop results reminiscent of a stability/instability tri-

chotomy for continuous-time Lur’e systems using ideas from absolute stability

theory (for instance, [72]). Our results cover asymptotic and exponential sta-

bility as well as ISS. We emphasize that the Lur’e systems considered in this

chapter are in general not monotone and therefore results from the theory of

monotone systems [131] do not apply.

This chapter is organized as follows. Section 3.2 collects material on abso-

lute stability and input-to-state stability which we shall require. Section 3.3

introduces the concept of a nonnegative system along with some basic results.

Section 3.4 contains the main results for unforced Lur’e systems and is split

into three parts which resemble a stability/instability trichotomy. Section 3.5

contains the main results for forced Lur’e systems and is once again split into

three parts which resemble a stability/instability trichotomy. We conclude this

chapter with Section 3.6 which provides detailed discussions of two examples.

The first example we consider is from a population modeling perspective and

the second is about enzyme synthesis.

3.2 Stability of Continuous Time Lur’e Sys-

tems

Consider the continuous time Lur’e system

ẋ = Ax+ bf(cTx), x(0) = x0 ∈ Rn, (3.4)

where A ∈ Rn×n, b, c ∈ Rn and f : R → R is locally Lipschitz. Let x( · ;x0)

denote the continuously differentiable unique maximally defined forward solu-

tion of the initial-value problem (3.4), the existence of which is guaranteed by

[90, Theorem 4.22] or [134, Theorem 54], for example. If there exists an affine

linear bound for the nonlinearity f , then x(t;x0) is defined for all t ≥ 0 (see

[90, Proposition 4.12]).

Application of linear output feedback of the form f(y) = κy to (3.4) leads

to

ẋ = (A+ κbcT )x, (3.5)

where κ is a constant which is sometimes referred to as feedback gain. Define

S(A, b, cT ) := {κ ∈ C : A+ κbcT is Hurwitz},

39



which is the set of complex stabilizing output feedback gains for the linear

system (A, b, cT ).

Definition 3.2.1. Let D denote the complex disc centered at k ∈ C with radius

r > 0, that is

D(k, r) := {κ ∈ C : |κ− k| < r}.

There are many types of stability and appearing in the literature these

types of stability go by different names. The following definition gives precise

meaning to the types of stability appearing in this chapter.

Definition 3.2.2. Consider the system (3.4).

1. The equilibrium 0 is said to be stable in the large in the sense that there

exists exists g ≥ 1 such that, for every x0 ∈ R,

‖x(t;x0)‖ ≤ g‖x0‖ ∀ t ≥ 0.

2. The equilibrium 0 is said to be globally asymptotically stable if 0 is stable

in the large and for every x0 ∈ Rn, x(t;x0)→ 0 as t→∞.

3. The equilibrium 0 is said to be globally exponentially stable if there exists

γ > 0 and g ≥ 1 such that, for every x0 ∈ Rn,

‖x(t;x0)‖ ≤ ge−γt‖x0‖ ∀ t ≥ 0.

The following result plays a key role in this chapter. For more information

on this result the reader is referred to [72], where the result is developed and

proved.

Theorem 3.2.3. Let A ∈ Rn×n, b, c ∈ Rn and f : R→ R be locally Lipschitz

with f(0) = 0. Assume that

D(k, r) ⊆ S(A, b, cT ), (3.6)

where k ∈ R and r > 0.

(1) If
f(y)

y
∈ [k − r, k + r] ∀ y ∈ R\{0},

then there exists g ≥ 1 such that

‖x(t;x0)‖ ≤ g‖x0‖ ∀ t ≥ 0, ∀ x0 ∈ Rn. (3.7)

In particular, the equilibrium 0 of (3.4) is stable in the large.
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(2) If
f(y)

y
∈ (k − r, k + r) ∀ y ∈ R\{0}, (3.8)

then the equilibrium 0 of (3.4) is globally asymptotically stable, that is 0

is stable in the large and for all x0 ∈ Rn
+, x(t)→ 0 as t→∞.

(3) If there exists r1 ∈ (0, r) such that

f(y)

y
∈ (k − r1, k + r1) ∀ y ∈ R\{0}, (3.9)

then the equilibrium 0 of (3.4) is globally exponentially stable, that is,

there exists γ > 0 and g ≥ 1 such that for all x0 ∈ Rn

‖x(t;x0)‖ ≤ ge−γt‖x0‖ ∀ t ≥ 0, ∀ x0 ∈ Rn.

The well known control theoretical circle criterion (see [146]) can be derived

as a corollary to Theorem 3.2.3 (see [72]). Roughly speaking, statement (2) of

Theorem 3.2.3 says that linear stability, namely D(k, r) ⊆ S(A, b, cT ), implies

global asymptotic stability for all nonlinearities f : R→ R satisfying

f(y)

y
∈ (k − r, k + r), ∀ y ∈ R\{0}.

We emp hasize that stability of the linear feedback system (3.5) has to hold

for all complex κ satisfying |κ − k| < r. It is easy to see that the conclusions

in Theorem 3.2.3 remain true for complex nonlinearities f : C→ C, provided

that, in statements (1)-(3) conditions (3.7)-(3.9) are replaced by

f(y)

y
∈ D(k, r),

f(y)

y
∈ D(k, r) and

f(y)

y
∈ D(k, r1)

respectively, where the conditions hold for all y ∈ C\{0} and D(k, r) denotes

the closed complex ball, centered at k with radius r.

We present a special case wherein the complex condition

D(k, r) ⊆ S(A, b, cT )

can be replaced by its real counterpart

(k − r, k + r) ⊆ S(A, b, cT ).

Corollary 3.2.4. Let A ∈ Rn×n, b, c ∈ Rn, let f : R→ R be locally Lipschitz

with f(0) = 0 and let k ∈ R and r > 0. Assume that b and c are nonnegative,
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A+ kbcT is Metzler and

(k − r, k + r) ⊂ S(A, b, cT ). (3.10)

Under these conditions, statements (1)-(3) of Theorem 3.2.3 hold.

Proof. Set Ak := A+ kbcT and define

rF(Ak; b, c
T ) := inf{|κ| : κ ∈ F, Ak + κbcT is not Hurwitz},

where F = C or F = R, which is the stability radius of Ak with respect to

perturbation structure given by b and c. Invoking (3.10), we see that r ≤
rR(Ak; b, c

T ). By a stability radius result for nonnegative systems proved in

[62],

rR(Ak; b, c
T ) = rC(Ak; b, c

T )

and consequently, D(0, r) ⊆ S(Ak, b, c
T ), or equivalently, D(k, r) ⊆ S(A, b, cT ).

The claim now follows from Theorem 3.2.3.

Let G denote the transfer function of (A, b, cT ) given by G(s) = cT (sI −
A)−1b. The next result considers a scenario wherein the Lur’e system (3.4) has

an equilibrium x∗ 6= 0 in addition to the zero equilibrium.

Theorem 3.2.5. Consider the system (3.4) and assume that A is Hurwitz,

f(0) = 0, ‖G‖H∞ = |G(0)| > 0 and there exists y∗ 6= 0 such that y∗ =

G(0)f(y∗). Then x∗ = −A−1bf(y∗) 6= 0 is an equilibrium of (3.4) and the

following statements hold.

(1) If ∣∣∣∣f(y)− f(y∗)

y − y∗
∣∣∣∣ ≤ 1

|G(0)| ∀ y ∈ R\{y∗}, (3.11)

then there exists g ≥ 1 such that

‖x(t;x0)− x∗‖ ≤ g‖x0 − x∗‖

for all x0 ∈ Rn and t ≥ 0. In particular, the equilibrium x∗ of (3.4) is

stable in the large.

(2) If ∣∣∣∣f(y)− f(y∗)

y − y∗
∣∣∣∣ < 1

|G(0)| ∀ y ∈ R\{0, y∗}, (3.12)

then, for every x0 ∈ Rn, we have that x(t;x0) → x∗ or x(t;x0) → 0 as

t→∞.
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Proof. Since G(0) 6= 0 and y∗ 6= 0, we have f(y∗) 6= 0 and x∗ 6= 0. Noting that

cTx∗ = y∗, we conclude that

Ax∗ + bf(cTx∗) = Ax∗ + bf(y∗) = 0,

showing that x∗ is an equilibrium of (3.4).

Let x0 ∈ Rn and set x̃(t) = x(t;x0)−x∗ for all t ≥ 0. Furthermore, defining

f̃ : R→ R by f̃(y) = f(y + y∗)− f(y∗) for all y ∈ R, it follows that

˙̃x = Ax̃+ bf̃(cT x̃), x̃(0) = x0 − x∗. (3.13)

Setting p := 1/|G(0)|, it follows by hypothesis that p = 1/‖G‖H∞ and

thus, by elementary stability radius theory (see [61] or [62, Section 5.3])

inf
{
|κ| : κ ∈ C, A+ κbcT is not Hurwitz

}
= p.

Consequently,

D(0, p) ⊆ S(A, b, cT ). (3.14)

To prove statement (1), note that∣∣∣∣∣ f̃(y)

y

∣∣∣∣∣ ≤ p ∀ y ∈ R\{0}. (3.15)

Combining (3.13)-(3.15) with statement (1) of Theorem 3.2.3 yields the

existence of a constant g ≥ 1 such that, for every x0 ∈ Rn,

‖x(t;x0)− x∗‖ ≤ g‖x0 − x∗‖, ∀ t ≥ 0.

We proceed to prove statement (2). To this end, observe that∣∣∣∣∣ f̃(y)

y

∣∣∣∣∣ < p ∀ y ∈ R\{0,−y∗}. (3.16)

By [61, proof of Theorem 5.6.22], there exists a positive semi-definite P =

P T ∈ Rn×n such that the quadratic form V (z) = 〈Pz, z〉 satisfies

Vd(z) : =
〈

(∇V )(z), Az + bf̃(cT z)
〉

≤ f̃ 2(cT z)− p2(cT z)2 ∀ z ∈ Rn,
(3.17)

where the last inequality follows from (3.16).

By statement (1), using [90] for example, it follows that, x̃ is bounded and so

its ω-limit set Ω is nonempty, compact, connected and invariant. Furthermore,
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Ω is the smallest closed set with the property

lim
t→∞

dist(x̃(t),Ω) = 0.

As a consequence of LaSalle’s invariance principle, Ω ⊆ V −1
d (0). By (3.16) and

(3.17),

V −1
d (0) ⊆

{
z ∈ Rn : cT z = 0 or cT z = −y∗

}
.

Hence

Ω ⊆ ker cT ∪ (ker cT − x∗).

The sets ker cT and ker cT − x∗ are closed and disjoint as cTx∗ = y∗ 6= 0.

Now Ω is connected and therefore,

Ω ⊂ ker cT or Ω ⊆ ker cT − x∗.

Consequently,

lim
t→∞

cT x̃(t) = 0 or lim
t→∞

cT x̃(t) = −y∗.

Hence by (3.13) and the Hurwitz property of A,

lim
t→∞

x̃(t) = 0 or lim
t→∞

x̃(t) = −A−1bf̃(−y∗) = −x∗.

Thus

lim
t→∞

x(t;x0) = x∗ or lim
t→∞

x(t;x0) = 0,

completing the proof.

Note that (3.11) is a “sector” condition in the sense that the graph of f

is “sandwiched” between the lines l1(y) = py and l2(y) = 2py∗ − py∗, where

p = 1/G(0). See Figure 3.1 for an illustration of this. In the case of the

“strict” sector condition (3.12), the graph of f “touches” these lines only at

the points (0, 0) and (y∗, f(y∗)).

Let us now consider forced Lur’e systems of the form

ẋ = Ax+ bf(cTx) + d, x(0) = x0 ∈ Rn, (3.18)

whereA ∈ Rn×n, b, c ∈ Rn, f : R→ R is locally Lipschitz and d ∈ L∞loc(R+,Rn).

Let x( · ;x0, d) denote the unique absolutely continuous maximally defined for-

ward solution of the initial-value problem (3.18) (see [134, Theorem 54]).

The function d is an external disturbance, otherwise known as an input

or forcing term. In most contexts d will be piecewise continuous, in which

case x( · ;x0, d) is piecewise continuously differentiable. Furthermore, if the

nonlinearity f satisfies an affine linear bound, then x(t;x0, d) is defined for all
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Figure 3.1: A graph of a function f satisfying a sector condition, that is it lies
between the lines l1(y) = py and l2(y) = 2py∗ − py.

t ≥ 0 (see [90, Proposition 4.12]).

We now introduce a different type of stability which relates to disturbed

systems.

Definition 3.2.6. Consider the system (3.18). 0 is said to be input-to-statte

stable (ISS) if there exists ψ ∈ KL and ϕ ∈ K such that, for all x0 ∈ Rn and

all d ∈ L∞loc(R+,Rn),

‖x(t;x0, d)‖ ≤ ψ(‖x0‖, t) + ϕ(‖d‖L∞(0,t)) ∀ t ≥ 0.

Obviously, if d = 0 in (3.18), then 0 is an equilibrium of (3.18). The reader

is referred to [25] and [138] for more details on ISS theory.

The proof of the following theorem can be found in [124].

Theorem 3.2.7. Let A ∈ Rn×n, b, c ∈ Rn, and let f : R → R be locally

Lipschitz with f(0) = 0. Assume that

D(k, r) ⊆ S(A, b, cT ), (3.19)

where k ∈ R and r > 0. If there exists β ∈ K∞ such that

|f(y)− ky| ≤ r|y| − β(|y|) ∀ y ∈ R, (3.20)

then there exists ψ ∈ KL and ϕ ∈ K such that, for all x0 ∈ Rn and all

d ∈ L∞loc(R+,Rn),

‖x(t;x0, d)‖ ≤ ψ(‖x0‖, t) + ϕ(‖d‖L∞(0,t)) ∀ t ≥ 0. (3.21)

Note that there exists β ∈ K∞ such that (3.20) holds if, and only if, |f(y)−
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ky| < r|y| for all y 6= 0 and

r|y| − |f(y)− ky| → ∞ as |y| → ∞.

Note that condition (3.8) from Theorem 3.2.3 can be rewritten in the form

|f(y)− ky| < r|y| ∀ y ∈ R\{0}, (3.22)

thus it becomes apparent that Theorem 3.2.7 is structurally very similar to

Theorem 3.2.3. In particular, Theorem 3.2.7 says that linear stability, namely

D(k, r) ⊆ S(A, b, cT ), implies ISS for all nonlinearities f : R → R satisfying

(3.20).

It is easy to construct counterexamples to demonstrate that Theorem 3.2.7

does not remain valid if the condition β ∈ K∞ is replaced by β ∈ K (see [124]).

In particular, (3.19) together with (3.22) is not sufficient for ISS.

Finally, we mention that if there exists r1 ∈ (0, r) such that (3.9) holds,

then (3.20) is satisfied with β(s) = r0s, where r0 is an arbitrary constant

satisfying 0 < r0 < r − r1. In this case, assuming that the linear condition

(3.19) holds, it can be shown that the ISS estimate (3.21) holds with ψ and ϕ

given by ψ(s, t) = c1e
c2ts and ϕ(s) = c3s where c1, c2, c3 are suitable positive

constants.

3.3 Nonnegative Lur’e Systems in Continuous

Time

In this section we introduce assumptions which ensure that the state x(t) of

a Lur’e system given by (3.4) remains nonnegative for all t ∈ R+. We then

make a series of remarks and lemmas about these nonnegative Lur’e systems.

To conclude this section we introduce a nonnegative Lur’e system which will

be used as an example throughout this chapter and show that it satisfies the

assumptions which have been introduced.

Firstly we make a trivial remark.

Remark 3.3.1. Consider the system (3.4). If f(0) = 0, then 0 is an equilib-

rium of the system.

We proceed to introduce assumptions which will be used throughout this

chapter.

(A3.1) The matrix A is a Metzler matrix and b, c ∈ Rn
+ are nonzero.

(A3.2) The matrix A is Hurwitz.
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(A3.3) The matrix A+ bcT is irreducible.

(A3.4) f : R+ → R+ is locally Lipschitz.

Note that if (A3.1) and (A3.4) hold, then, for every x0 ∈ Rn
+, the unique

maximally defined forward solution x( · ;x0) of (3.4) satisfies x(t;x0) ∈ Rn
+ for

all t ≥ 0 for which the solution exists.

The following remark is a straightforward consequence of the results in

Section 2.1.2.

Remark 3.3.2. (1) If (A3.1) and (A3.3) are satisfied, then A + kbcT is

irreducible for every k > 0.

(2) If (A3.1) and (A3.3) are satisfied, then for every µ > δ(A) and every

k > 0, µI + A+ kbcT is primitive.

(3) If there exist µ, k ≥ 0 such that µI +A+ kbcT is primitive, then (A3.3)

holds.

The following lemma plays an important role in this chapter. It demon-

strates the nonnegativity of the steady-state gain of the linear system (A, b, cT )

and relates it to the H∞-norm, under certain assumptions.

Lemma 3.3.3. Assume that (A3.1) and (A3.2) are satisfied, then

‖G‖H∞ = |G(0)| = G(0) ≥ 0.

If additionally (A3.3) is satisfied, then G(0) > 0.

Proof. Assume that (A3.1) and (A3.2) are satisfied. Then, by Lemma 2.3.4,

cT eAtb ≥ 0 for all t ≥ 0, and hence, for all s ∈ C with Re s ≥ 0,

|G(s)| =
∣∣∣∣∫ ∞

0

cT eAtbe−stdt

∣∣∣∣ ≤ ∫ ∞
0

|cT eAtb||e−st|dt ≤
∫ ∞

0

cT eAtbdt = G(0),

showing that ‖G‖H∞ = G(0) ≥ 0.

Now assume that (A3.1)-(A3.3) are satisfied. It remains to show that

G(0) > 0 and to do so, we invoke a contradiction argument. To this end,

suppose G(0) = 0. Then

0 = G(0) =

∫ ∞
0

cT eAtbdt,

and noting that cT eAtb ≥ 0 for all t ≥ 0 by (A3.1) and Lemma 2.3.4, we

obtain

cT eAtb = 0 ∀ t ≥ 0.
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Consequently,

cT e(µI+A)tb = eµtcT eAtb = 0 ∀ t ≥ 0,

where µ > δ(A). Repeated differentiation and evaluation at t = 0 yields

cT (µI + A)kb = 0 ∀ k ∈ N0.

As a consequence,
∞∑
k=0

cT
(µI + A+ bcT )k

k!
b = 0. (3.23)

On the other hand, we know by part (2) of Remark 3.3.2, that µI +A+ bcT is

primitive, implying that the series in (3.23) has a positive sum. This provides

the desired contradiction and therefore G(0) > 0.

Definition 3.3.4. Define p ∈ R+ to be the inverse of the steady-state gain of

(A, b, cT ), that is

p :=
1

G(0)
=

−1

cTA−1b
.

For the remainder of this chapter p will always be defined by Definition

3.3.4.

Lemma 3.3.5. Assume (A3.1)-(A3.3) hold and let q > p. Then

0 = α(A+ pbcT ) < α(A+ qbcT ).

Proof. By Lemma 3.3.3 p = 1/‖G‖H∞ and from stability radius theory for

nonnegative linear systems (see [62]) we know that the real and complex sta-

bility radii of A with respect to weightings b and cT coincide and are equal to p.

Moreover, p is the minimal destabilizing perturbation, implying in particular

that α(A+ pbcT ) = 0.

Now, if q > p then the Metzler matrices A + qbcT and A + pbcT satisfy

A + qbcT > A + pbcT . By (A3.3) and part (1) of Remark 3.3.2, A + pbcT is

irreducible, thus invoking Lemma 2.3.9, α(A+ qbcT ) > α(A+ pbcT ).

Throughout this chapter key results will be demonstrated by simulating

data and plotting the time history of x(t;x0). For simplicity the linear system

will remain unchanged with just the nonlinearity varying to fit the assumptions

of the theorem which is being used. In the following example we introduce a

linear system and verify that (A3.1)-(A3.3) are satisfied.

Example 3.3.6. Consider the Lur’e system (3.4) with the following choice of
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linear system,

A =

−0.5 0 0

1 −0.5 0

0 0.5 −1

 , b =

 1

0.5

0

 , c =

0

1

2

 . (3.24)

We demonstrate that (A3.1)-(A3.3) are satisfied. Begin by noting that clearly

A is a Metzler matrix as defined in Definition 2.3.1. Also it is clear that b, c

are nonnegative and nonzero, therefore (A3.1) is satisfied. It can be easily

show that all of the eigenvalues of A lie in the left half plane which means A

is Hurwitz and so (A3.2) is satisfied. Note that

A+ bcT =

−0.5 1 2

1 0 1

0 0.5 −1

 .

This matrix can easily be shown to be irreducible using the method described in

Example 2.1.9, thus details are omitted here, however it verifies that (A3.3)

holds. Finally note that p = −1/(cTA−1b) = 0.1.

We have demonstrated that this linear part of a Lur’e system satisfies

the assumptions important for this chapter. We shall return to this example

throughout this chapter to demonstrate some of the main results.

3.4 Absolute Stability of Nonnegative Lur’e

Systems in Continuous Time

This section is split into three parts. The first looks into systems lacking a

stable equilibrium and demonstrates that all solutions diverge. The second

looks at systems with a unique equilibrium which is stable. In particular we

look at two cases, when the system has a 0 equilibrium and when the system

has a nonzero equilibrium. The final part looks at systems which have two

equilibria, an equilibrium at 0 and a nonzero equilibrium which is stable.

3.4.1 Systems Without Stable Equilibria

We consider two cases where the system (3.4) lacks a stable equilibrium. The

first occurs when f(0) = 0 and infy>0 f(y)/y > p (see Figure 3.2(a)) in which

case the system has a 0 equilibrium which is “strongly” unstable. What this

means is that all entries of x(t;x0) diverge to∞ as t→∞. The second occurs

when f(0) > 0 and infy≥0 f(y)/y > p (see Figure 3.2(b) in which case we have
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no equilibria and all solutions diverge.
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Figure 3.2: (a) A graph of a function f satisfying f(0) = 0 and infy>0 f(y)/y >
p. (b) A graph of a function f satisfying f(0) > 0 and infy≥0 f(y)/y > p.

Theorem 3.4.1. Consider the system (3.4). Assume that (A3.1)-(A3.4)

hold and that f satisfies f(0) = 0 and

inf
y>0

f(y)

y
> p.

If x0 ∈ Rn
+ with x0 6= 0, is such that the solution x(t;x0) exists for every t ≥ 0,

then

lim
t→∞

xi(t;x
0) =∞, ∀ i ∈ {1, . . . , n},

where xi(t;x
0) denotes the i-th component of x(t;x0).

Proof. Let x0 ∈ Rn
+ with x0 6= 0, be such that the solution x(t;x0) exists

for every t ≥ 0. For simplicity write x(t) := x(t;x0) for all t ≥ 0. By the

hypothesis on f , there exists q > p such that

f(y) ≥ qy ∀ y ∈ R+.

By (A3.1), (A3.3) and part (1) of Remark 3.3.2, A + qbcT is an irreducible

Metzler matrix. Invoking statement (5) of Theorem 2.3.8 shows that there

exists a positive matrix L such that

lim
t→∞

e(A+qbcT−aI)t = L� 0, (3.25)

where a := α(A + qbcT ). Note that a > 0 which follows from Lemma 3.3.5.

Moreover,

ẋ = (A+ qbcT )x+ b(f(cTx)− qcTx)
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and thus, by variation-of-parameters formula,

x(t) = e(A+qbcT )tx0 +

∫ t

0

e(A+qbcT )(t−s)b(f(cTx(s))− qcTx(s))ds

≥ e(A+qbcT )tx0 ∀ t ≥ 0. (3.26)

Since a > 0, it follows from (3.25) that every component of e(A+qbcT )tx0 diverges

to ∞ as t→∞, completing the proof.

Example 3.4.2. Consider the Lur’e system (3.4) with linear part given by

(3.24). Let f(y) = 0.2y + sin(y/10) and note that (A3.4) is satisfied. As

demonstrated in Figure 3.3(a), which has f(y) plotted in blue and the line

py = 0.1y in red, it can be easily seen that f(0) = 0 and infy>0 f(y)/y > p.

Theorem 3.4.1 tells us that for all initial conditions x0 ∈ Rn
+ with x0 6= 0,

limt→∞ xi(t) = ∞ for each i = {1, 2, 3}. Figure 3.3(b) demonstrates this with

an arbitrary initial condition.
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Figure 3.3: Simulations of the system given in Example 3.4.2. (a) A plot of
f(y) and the line py. (b) Time history of the three components of x(t).

Theorem 3.4.3. Consider the system (3.4). Assume that (A3.1)-(A3.4)

hold, f(0) > 0 and that f satisfies

inf
y≥0

f(y)

y
> p.

If x0 ∈ Rn
+ is such that the solution x(t;x0) exists for every t ≥ 0, then

lim
t→∞

xi(t;x
0) =∞, ∀ i ∈ {1, . . . , n},

where xi(t;x
0) denotes the i-th component of x(t;x0).

Proof. We consider two cases, when x0 6= 0 and when x0 = 0. If x0 6= 0 then

the proof is identical to the proof of Theorem 3.4.1 and thus there is nothing
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to show. When x0 = 0, we are required to preform an extra step as (3.26) just

tells us that x(t;x0) ≥ 0 for all t ≥ 0, and not that x(t;x0) diverges.

Let x0 = 0. Then

ẋ(0; 0) = Ax(0; 0) + bf(cTx(0; 0)) = bf(0) > 0,

thus there exists τ > 0, such that x(τ ; 0) 6= 0. Following the method of the

proof of Theorem 3.4.1 we can reach the formula

x(t; 0) = e(A+qbcT )tx(τ ; 0) +

∫ t

τ

e(A+qbcT )(t−s)bf(cTx(s; 0)− qcTx(s; 0))ds

≥ e(A+qbcT )tx(τ ; 0) ∀ t ≥ 0.

The result now follows noting x(τ ; 0) 6= 0.

Example 3.4.4. Consider the Lur’e system (3.4) with linear part given by

(3.24). Let f(y) = 0.1 + 0.25y and note that (A3.4) is satisfied. Theorem

3.4.3 tells us that for all x0 ∈ Rn
+, limt→∞ xi(t;x0) = ∞ for all i = {1, 2, 3}.

This is because f(y) > 0 and infy≥0 f(y)/y > p, which is illustrated in Figure

3.4(a), which contains the plot of f(y) in blue and the line py = 0.1y in red.

Figure 3.4(b) shows the time history of xi(t) for i = {1, 2, 3} and t ∈ [0, 100]

using the initial condition of x0 = (0, 0, 0)T . This initial value, which could take

any value, has been chosen as it is where there is a major difference between

Theorem 3.4.3 and Theorem 3.4.1. It is clear from this plot that xi(t) → ∞
as t→∞ for i = {1, 2, 3}, as expected.
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Figure 3.4: Simulations of the system given in Example 3.4.4. (a) A plot of
f(y) and the line py. (b) Time history of the three components of x(t).

3.4.2 Systems With A Unique Stable Equilibrium

In this section we consider systems with a unique equilibrium which exhibit

somewhat nice stability properties. This equilibrium depends on the nonlin-
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earity f and conditions which it must satisfy.

There are two cases which we consider. The first is if f(0) = 0 and f(y)

satisfies an inequality of the form f(y)/y ≤ p for all y > 0 as illustrated in

Figure 3.5(a). In this case the equilibrium 0 of (3.4) will have certain stability

properties. The second case relates to a nonnegative and nonzero equilibrium

x∗ which exists if f satisfies a sector condition as illustrated in 3.5(b).
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Figure 3.5: (a) A graph of a function f satisfying f(0) = 0 and f(y)/y ≤ p for
all y > 0. (b) A graph of a function f satisfying a sector condition.

We begin by considering the simpler 0 equilibrium case.

Theorem 3.4.5. Consider the system (3.4) and assume (A3.1)-(A3.4) hold

and that f(0) = 0.

(1) If f(y)/y ≤ p for all y > 0, then the equilibrium 0 is stable in the large

in the sense that there exists g ≥ 1 such that, for every x0 ∈ Rn
+,

‖x(t;x0)‖ ≤ g‖x0‖ ∀ t ≥ 0.

(2) If f(y)/y < p for all y > 0, then the equilibrium 0 is globally asymp-

totically stable in the sense that 0 is stable in the large and, for every

x0 ∈ Rn
+, x(t;x0)→ 0 as t→∞.

(3) If supy>0 f(y)/y < p, then the equilibrium 0 is globally exponentially

stable, that is, there exists γ > 0 and g ≥ 1 such that, for every x0 ∈ Rn
+,

‖x(t;x0)‖ ≤ ge−γt‖x0‖ ∀ t ≥ 0.

Proof. By Lemma 3.3.3, p = 1/‖G‖H∞ and therefore, D(0, p) ⊆ S(A, b, cT ).

We seek to apply Theorem 3.2.3. We therefore extend f to the whole real line
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by defining an extension f̃ : R→ R as follows:

f̃(y) =

{
f(y) for y > 0

0 for y ≤ 0.
(3.27)

Note that by linear boundedness of f and assumptions (A3.1) and (A3.4), we

have that, for every x0 ∈ Rn
+, x( · ;x0) is defined on R+ and x(t;x0) ∈ Rn

+ for

all t ≥ 0. Therefore, for every x0 ∈ Rn
+, x( · ;x0) is also the uniquely maximally

defined forward solution of

ẋ = Ax+ bf̃(cTx), x(0) = x0. (3.28)

To prove statement (1), assume that f(y)/y ≤ p for all y > 0. Then,

trivially,
f̃(y)

y
∈ [0, p] ∀ y ∈ R\{0},

and the claim follows from statement (1) of Theorem 3.2.3 applied to (3.28).

To prove statement (2), assume that f(y)/y < p for all y > 0. Then,

f̃(y)

y
∈ (0, p), ∀ y ∈ R\{0},

and the claim follows from statement (2) of Theorem 3.2.3 applied to (3.28).

Finally, to prove statement (3), assume that supy>0 f(y)/y < p. Then there

exists q ∈ (0, p) such that

f̃(y)

y
∈ (0, q), ∀ y ∈ R\{0},

and the claim follows from statement (3) of Theorem 3.2.3 applied to (3.28).

See Section 2.4.1 for a comparison of the different conditions on f appearing

in Theorem 3.4.5.

The following example illustrates parts (2) and (3) of Theorem 3.4.5. This

also demonstrates how much of a difference having exponential stability can

make over just asymptotic stability.

Example 3.4.6. Consider the Lur’e system (3.4) with linear part given by

(3.24). First consider the nonlinearity f1(y) = y/(10 + y). We begin by noting

that (A3.4) holds and that f1(0) = 0. It can be shown that f1(y) < py for all

y > 0, however supy>0 f1(y)/y < p is not true as f ′1(0) = 0.1 = p, therefore the

lines f1(y) and py initially have the same gradient. This can be seen in Figure

3.6(a), where f(y) is plotted in blue and py is plotted in red. Application of
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Theorem 3.4.5 tells us that for all x0 ∈ Rn
+, x(t) → 0 as t → ∞. This is

illustrated in Figure 3.6(b) with the initial condition x0 = (1, 1, 1)T .
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Figure 3.6: Simulation for Example 3.4.6. (a) Plot of f1(y) = y/(10 + y) in
blue and the line py in red. It shows that f1(0) = 0 and that f1(y) < py
for all y > 0 and that both lines have the same gradient at y = 0. (b) Is a
time history plot of the three components of x(t) which can be seen slowly
converging to 0.

Now consider the nonlinearity f2(y) = y/(20 + y). Like with f1(y), f2(0) =

0 and (A3.4) is satisfied. However, we now have that supy>0 f2(y)/y < p as

the initial gradient of f2 < p. This can be seen in Figure 3.7(a) where again,

f(y) is plotted in blue and py is plotted in red. Application of Theorem 3.4.5

now tells us that there exists γ > 0 and g ≥ 1 such that, for every x0 ∈ Rn
+,

‖x(t;x0)‖ ≤ ge−γt‖x0‖ for all t ≥ 0. In other words, 0 is globally exponentially

stable. Figure 3.7(b) demonstrates this with initial condition x0 = (1, 1, 1)T .
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Figure 3.7: Simulation for Example 3.4.6. (a) Plot of f2(y) = y/(20+y) in blue
and the line py in red. It shows that f2(0) = 0 and that supy>0 f2(y)/y < p.
(b) Is a time history plot of the three components of x(t) which can be seen
rapidly converging to 0.

A comparison of Figures 3.6(b) and 3.7(b) demonstrates the huge difference

which can occur between asymptotic convergence and exponential convergence.
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We introduce additional assumptions before we start looking at a system

with a nonzero equilibrium. For these assumptions to make sense we need to

assume (A3.1)-(A3.4) hold, which imply that p > 0.

(A3.5) There exists y∗ > 0 such that f(y∗) = py∗.

(A3.6) f satisfies∣∣∣∣f(y)− f(y∗)

y − y∗
∣∣∣∣ ≤ p, ∀ y ∈ R+\{y∗}.

(A3.7) f satisfies∣∣∣∣f(y)− f(y∗)

y − y∗
∣∣∣∣ < p ∀ y ∈ R+\{0, y∗}.

(A3.8) f satisfies

lim sup
y→y∗

∣∣∣∣f(y)− f(y∗)

y − y∗
∣∣∣∣ < p.

(A3.9) f satisfies

lim sup
y→∞

∣∣∣∣f(y)− f(y∗)

y − y∗
∣∣∣∣ < p.

(A3.10) For all y0 > 0

sup
y≥y0, y 6=y∗

∣∣∣∣f(y)− f(y∗)

y − y∗
∣∣∣∣ < p.

Assumptions (A3.6) and (A3.7) are sector conditions in the sense that

they are equivalent to the graph of f being sandwiched between the straight

lines py and 2py∗ − py as illustrated in Figure 3.1. If f is differentiable at y∗,

then (A3.8) is equivalent to the condition |f ′(y∗)| < p. Assumption (A3.9)

says that, for all sufficiently large y, the points (y, f(y)) lie in a sector defined

by two straight lines of slope r and −r, where 0 < r < p. Note that neither

(A3.8) or (A3.9) is implied by (A3.7). Collectively (A3.7)-(A3.9) are

equivalent to (A3.10), and can been seen as a uniform version of (A3.7).

These assumptions are also explained in Section 2.4.2.

Lemma 3.4.7. Assume that (A3.1)-(A3.5) are satisfied and f(0) ∈ (0, 2py∗).

Then x∗ := −A−1bpy∗ > 0 is an equilibrium of (3.4). If in addition (A3.7) is

satisfied, then there are no other equilibria in Rn
+.

Proof. Assume (A3.1)-(A3.5) are satisfied. We begin by verifying that x∗ >

0. By Lemma 3.3.3, ‖G‖H∞ = G(0) > 0 and noting y∗ > 0 we have f(y∗) > 0.
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From Corollary 2.3.6, (A3.1) and (A3.2) if follows that −A−1 ≥ 0. We

also have that b ≥ 0 by (A3.1). Combining the above we have that x∗ =

−A−1bpy∗ ≥ 0. Assume that x∗ = 0. This implies bpy∗ = 0, therefore b = 0

which invalidates (A3.1), therefore x∗ > 0.

We now demonstrate that x∗ is an equilibrium of (3.4). Noting that cTx∗ =

y∗, we conclude

Ax∗ + bf(cTx∗) = Ax∗ + bf(y∗) = 0,

thus x∗ > 0 is an equilibrium of (3.4).

Finally assume that (A3.7) also holds and that x† ∈ Rn
+ is an equilibrium

of (3.4), that is Ax†+ bf(cTx†) = 0. We demonstrate that x† = x∗. Since A is

Hurwitz by (A3.2), A must be invertible, therefore,

x† = −A−1bf(cTx†). (3.29)

Firstly assume that cTx† = 0. Noting f(0) > 0,

0 = cTx† = −cTA−1bf(0) = G(0)f(0) > 0,

which does not hold, we conclude that cTx† > 0. Since

cTx† = −cTA−1bf(cTx†) = G(0)f(cTx†) =
1

p
f(cTx†),

it follows that

f(cTx†)− f(y∗) = p(cTx† − y∗).

Invoking (A3.7), we conclude that cTx† = y∗, which, together with (3.29)

implies that x† = x∗.

Theorem 3.4.8. Consider the system (3.4) and assume that (A3.1)-(A3.5)

hold.

(1) If the additional assumption (A3.6) is satisfied, there exist g ≥ 1 such

that x∗ = −A−1bpy∗ is stable in the large in the sense that, for every

x0 ∈ Rn
+,

‖x(t;x0)− x∗‖ ≤ g‖x0 − x∗‖ ∀ t ≥ 0.

(2) If the additional assumption (A3.7) is satisfied and f(0) ∈ (0, 2py∗), the

equilibrium x∗ = −A−1bpy∗ is globally asymptotically stable in the sense

that it is stable in the large and, for every x0 ∈ Rn
+, x(t;x0) → x∗ as

t→∞.

(3) If the additional assumptions (A3.7)-(A3.9) or (A3.10) are satisfied

and f(0) ∈ (0, 2py∗), then the equilibrium x∗ = −A−1bpy∗ is globally
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exponentially stable in the sense that, for every x0 ∈ Rn
+, there exists

constants γ > 0 and g ≥ 1 such that

‖x(t;x0)− x∗‖ ≤ ge−γt‖x0 − x∗‖ ∀ t ≥ 0.

Proof. Note that, by the linear boundedness of f and assumptions (A3.1)

and (A3.4), we have that, for every x0 ∈ Rn
+, x(·, x0) is defined on R+ and

x(t;x0) ∈ Rn
+ for all t ≥ 0.

Define

f̃(y) =

{
f(y + y∗)− f(y∗) for y ≥ −y∗
−f(y∗) for y < −y∗.

(3.30)

See Figure 3.8 for a comparison of f(y) and f̃(y).
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py

2py∗−py

f

(a)

y

f(y)

0

py

−py

f̃

(b)

Figure 3.8: (a) A graph of the original nonlinearity f satisfying the sector
condition given by the lines l1(y) = py and l2(y) = 2py∗ − py. (b) A graph of
the shifted and extended nonlinearity f̃ given by (3.30) bounded by the lines
l̃1(y) = py and l̃2(y) = −py.

Furthermore, let x0 ∈ Rn
+ and set x̃(t) := x(t;x0)− x∗. It follows that

˙̃x = Ax̃+ bf̃(cT x̃), x̃(0) = x0 − x∗. (3.31)

It follows from above that, for every x0 ∈ Rn
+, x̃(·) is the maximally defined

forward solution of (3.31) and thus x( · ;x0) = x̃( · ) + x∗ is the maximally

defined forward solution of (3.4).

It follows as a consequence of elementary stability radius theory, (see [59])

that

D(0, p) ⊆ S(A, b, cT ). (3.32)
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To prove statement (1), note that∣∣∣∣∣ f̃(y)

y

∣∣∣∣∣ ≤ p ∀ y ∈ R\{0}. (3.33)

Combining (3.31)-(3.33) with statement (1) of Theorem 3.2.3 yields the exis-

tence of a constant g ≥ 1 such that for every x0 ∈ Rn
+,

‖x(t;x0)− x∗‖ ≤ g‖x0 − x∗‖, ∀ t ≥ 0.

Proceeding to prove statement (2), we observe that∣∣∣∣∣ f̃(y)

y

∣∣∣∣∣ < p ∀ y ∈ R\{0}. (3.34)

Combining (3.31), (3.32) and (3.34) with statement (2) of Theorem 3.2.3 yields

that for every x0 ∈ Rn
+, x̃(t) → 0 as t → ∞ or equivalently, x(t;x0) → x∗ as

t→∞.

Finally we proceed to prove statement (3). From the assumptions we have

that ∣∣∣∣∣ f̃(y)

y

∣∣∣∣∣ < r ∀ y ∈ R\{0}, (3.35)

where 0 < r < p. Combining (3.31), (3.32) and (3.35) with statement (3) of

Theorem 3.2.3 yields that for every x0 ∈ Rn
+, there exists γ > 0 and g ≥ 1

such that

x(t;x0)‖ ≤ ge−γt‖x0‖ ∀ t ≥ 0.

Example 3.4.9. Consider the Lur’e system (3.4) with linear part given by

(3.24). Let f(y) = 1 + y/(10 + y) which satisfies (A3.4). It is easily verified

that for y∗ = 5(1 +
√

5) ≈ 16.1803, f(y∗) = py∗, thus satisfying (A3.5).

Using this value yields that y(0) ∈ (0, 2py∗). Finally we note that (A3.8)

holds for this particular f(y) which can be seen in Figure 3.9(a) with f(y)

shown in blue, l1(y) = py in red and l2(y) = 2py∗ − py as a red dashed line.

Application of Theorem 3.4.8, part (3) tells us that for all x0 ∈ Rn
+, that

x∗ = −A−1bpy∗ ≈ (3.2361, 8.0902, 4.0451)T is globally exponentially stable.

This is illustrated in Figure 3.9(b) with an arbitrary initial condition.

3.4.3 Systems With Two Equilibria

We introduce an additional assumption which acts as an addition to (A3.4).

(A3.11) f(0) = 0.
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Figure 3.9: Simulation for Example 3.4.9. (a) Plot of f2(y) = 1 + y/(10 + y) in
blue, py in red and 2py∗ − py as a dashed red line. It shows that f(y) lies in
the sector for all t ≥ 0 and that f(y) = py at a unique point, y∗. (b) A time
history plot of the three components of x(t) which can be seen converging to
x∗ ≈ (3.2361, 8.0902, 4.0451)T denoted by the dotted lines.

We begin by reformulating Lemma 3.4.7 for systems (3.4) when (A3.11)

is satisfied.

Lemma 3.4.10. Assume (A3.1)-(A3.5) and (A3.11) are satisfied. Then

0 and x∗ = −A−1bpy∗ > 0 are equilibria of the system (3.4). If additionally

(A3.7) holds, then there are no other equilibria in Rn
+.

Proof. Clearly, since f(0) = 0 by (A3.11), 0 is an equilibrium of (3.4). By

Lemma 3.4.7, we also have that x∗ is an equilibrium of (3.4) satisfying x∗ > 0.

Now assume that (A3.7) holds and that x† ∈ Rn
+ is an equilibrium of (3.4),

that is, Ax0 + bf(cTx0) = 0. We have to show that x† = 0 or x† = x∗. Since

A is Hurwitz, A is invertible, and so,

x† = −A−1bf(cTx†). (3.36)

If cTx† = 0, then x† = 0. Assume that cTx† > 0. Since

cTx† = −cTA−1f(cTx†) = G(0)f(cTx†) =
1

p
f(cTx†),

it follows that

f(cTx†)− f(y∗) = p(cTx† − y∗).

Invoking (A3.7), we conclude that cTx† = y∗, which, together with (3.36)

implies that x† = x∗.

The following result shows in particular that, under suitable assumptions,

the equilibrium x∗ = −A−1bpy∗ is stable in the large and attracts every nonzero

initial vector x0 ∈ Rn
+. We ofter refer to this as “global” asymptotically stable
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as we must remove a singularity from the whole domain to get the domain of

attraction, due to this point being an equilibrium.

Theorem 3.4.11. Consider the system (3.4). Assume that (A3.1)-(A3.5)

and (A3.11) hold.

(1) Under the additional assumption that (A3.6) is satisfied, there exists

g ≥ 1 such that x∗ = −A−1bpy∗ is stable in the large in the sense that,

for every x0 ∈ Rn
+,

‖x(t;x0)− x∗‖ ≤ g‖x0 − x∗‖ ∀ t ≥ 0.

(2) Under the additional assumption that (A3.7) is satisfied, the equilibrium

x∗ = −A−1bpy∗ is “globally” asymptotically stable in the sense that it is

stable in the large and, for every x0 ∈ Rn
+ with x0 6= 0, x(t;x0) → x∗ as

t→∞.

Proof. Statement (1) is a specific case covered in statement (1) of Theorem

3.4.8 with f(0) = 0 so there is nothing to show. We therefore move straight

on to the proof of statement (2).

Note that, by the linear boundedness of f and assumptions (A3.1) and

(A3.4), we have that, for every x0 ∈ Rn
+ with x0 6= 0, x( · , x0) is defined on

R+ and x(t;x0) ∈ Rn
+ for all t ≥ 0.

Assuming (A3.1)-(A3.5), (A3.7) and (A3.11) are true, by statement (2)

of Theorem 3.2.5 we have that

lim
t→∞

x(t;x0) = x∗ or lim
t→∞

x(t;x0) = 0.

Fix x0 ∈ Rn
+ with x0 6= 0 and write x(t) := x(t;x0) for all t ≥ 0. Seeking a

contradiction, suppose that x(t)→ 0 as t→∞. Then there exists τ ≥ 0 such

that cTx(t) ≤ y∗ for all t ≥ τ . Thus, since

x(t+ τ) = e(A+pbcT )tx(τ)

+

∫ t+τ

τ

e(A+pbcT )(t+τ−s) [b(f(cTx(s))− pcTx(s))
]
ds ∀ t ≥ 0,

and

f(y)− py ≥ 0 ∀ y ∈ [0, y∗],

we have

x(t+ τ) ≥ e(A+pbcT )tx(τ) ∀ t ≥ 0. (3.37)

By Lemma 3.3.5, α(A+ pbcT ) = 0 and so, it follows from Theorem 2.3.8 that
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there exists v � 0 such that vT (A+ pbcT ) = 0. Consequently,

vT e(A+pbcT )t = vT ∀ t ≥ 0.

By (3.37),

vTx(t+ τ) ≥ vTx(τ) ∀ t ≥ 0.

Since v � 0 and x(τ) ∈ Rn
+, x(τ) 6= 0, it is clear that vTx(τ) > 0 and so,

vTx(t) ≥ vTx(τ) > 0 ∀ t ≥ τ,

contradicting the supposition that limt→∞ x(t) = 0. Thus x(t) → x∗ =

−A−1bpy∗ as t→∞, which completes the proof of statement (2).

Example 3.4.12. Consider the Lur’e system (3.4) with linear part given by

(3.24). Let f(y) = 2y/(5 + y). Clearly (A3.4) and (A3.11) are satisfied.

Simple calculation yields that y∗ = 15. Figure 3.10(a), which is a plot of f(y)

in blue and the lines l1 = py and l2 = 2py∗−py in red, you can see that clearly

(A3.5) and (A3.7) are satisfied. Therefore, for any x0 ∈ Rn
+ with x0 6= 0,

Theorem 3.4.11 tells us that x(t;x0) → x∗ = −A−1bpy∗ = (3, 7.5, 3.75)T as

t → ∞. A simulation for an arbitrary initial condition can be found Figure

3.10(b).
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Figure 3.10: Simulation for Example 3.4.12. (a) Plot of f(y) = 2y/(5 + y) in
blue and the line py in red. It shows that f(y) lies in the sector for all t ≥ 0
and that f(y) = py at a unique point, y∗. (b) A time history plot of the three
components of x(t) which can be seen converging to x∗ = (3, 7.5, 3.75)T which
is denoted by the dotted lines.

The issue of exponential stability is far more difficult to establish than sta-

bility in the large or asymptotic stability for a system with multiple equilibria.

We recap some of the major points covered thus far in this part of the section.

Assumptions (A3.1)-(A3.5) and (A3.11) imply that the Lur’e system

(3.4) has at least two equilibria which include 0 and x∗. If in addition (A3.6)
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holds, then x∗ is stable in the large and if (A3.7) holds then 0 and x∗ are

the only equilibria and x∗ is asymptotically stable with a domain of attraction

equal to Rn
+\{0}.

To have “global” exponential stability of x∗ we would require there to exist

g ≥ 1 and γ > 0 such that, for every x0 ∈ Rn
+, x0 6= 0,

‖x(t;x0)− x∗‖ ≤ ge−γt‖x0 − x∗‖ ∀ t ≥ 0, (3.38)

which is not possible. This is a straightforward consequence of the continuity of

the flow map (t;x0) 7→ x(t;x0) together with the facts that 0 is an equilibrium

of (3.4) and x∗ 6= 0. Indeed, x(t; 0) = 0 for each t ≥ 0, and so, if (tn) is a

sequence in R+ with tn → ∞, then there exists a sequence (x0
n) in Rn

+\{0}
such that

tn →∞, x0
n → 0, x(tn;x0

n)→ 0 as n→∞,

and thus,

‖x(tn;x0
n)− x∗‖ → ‖x∗‖ > 0 as n→∞.

Hence, there do not exist constants g and γ such that (3.38) holds for all

x0 ∈ Rn
+ with x0 6= 0.

In the following we develop a series of results which play an important role

in the development of an exponential stability result for the case where we

have two equilibria. They will allows us to bound cTx(t;x0) away from 0 after

a certain amount of time has passed, however we are required to limit our

choice of initial condition x0 and thus instead of reaching a “global” result, we

establish a “quasi-global” result.

It is convenient to introduce some new notation. Assuming (A3.1)-(A3.3)

hold, let q ≥ p, set aq := α(A + qbcT ) and let vq, wq ∈ Rn
+ denote the unique

positive vectors such that

vTq (A+ qbcT ) = aqv
T
q = aqv

T
q , (A+ qbcT )wq = aqwq, ‖vq‖1 = ‖wq‖1 = 1,

the existence of which are ensured by statement (4) of Theorem 2.3.8 applied

to A+ qbcT . By Lemma 3.3.5, 0 = ap < aq for all q > p.

Invoking statement (5) of Theorem 2.3.8, there exists τq > 0 such that

e−aqte(A+qbcT )t ≥ 1

2vTq wq
wqv

T
q =: Lq � 0 ∀ t ≥ τq. (3.39)
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We define the constants

µ := δ(A+ pbcT ) ≥ 0, λq := smallest component of cTLq. (3.40)

Note that λq > 0 by the positivity of Lq. Furthermore, for every l > 0, we set

ω(l) := inf{‖z‖1 : cT z ≥ l} > 0. (3.41)

Lemma 3.4.13. Consider the system (3.4). Assume that (A3.1)-(A3.5),

(A3.7) and (A3.11) hold and fix y† ∈ (0, y∗).

(1) If, for x0 ∈ Rn
+ with x0 6= 0, there exists t† ≥ 0 such that cTx(t†;x0) = y†,

then

cTx(t;x0) ≥ min{λpω(y†), e−µτpy†} > 0 ∀ t ≥ t†.

(2) For each ε > 0, there exists tε ∈ (0,∞) such that, for all x0 ∈ Rn
+ with

‖x0‖ ≥ ε and cTx0 < y†, there exists t† ∈ (0, tε] such that cTx(t†;x0) =

y†.

Proof. Let x0 ∈ Rn
+ with x0 6= 0 and set x(t) := x(t;x0) for all t ≥ 0.

To prove statement (1), let t† ≥ 0 be such that cTx(t†) = y†. If cTx(t) ≥ y†

for all t ≥ t†, then there is nothing to show as y† ≥ min{λpω(y†), e−µτpy†}.
Therefore, let us assume that there exists t1 > t† such that cTx(t1) < y†. It is

sufficient to show that

cTx(t1) ≥ min{λpω(y†), e−µτpy†}.

To this end, as t 7→ cTx(t) is continuous, note that there exists t0 ∈ [t†, t1)

such that cTx(t0) = y† and

cTx(t) ≤ y† ∀ t ∈ [t0, t1].

Invoking the sector condition (A3.7), we obtain

f(cTx(t)) ≥ pcTx(t) ∀ t ∈ [t0, t1]. (3.42)

Now, for t ≥ 0, it follows from the variation-of-parameters formula

x(t+ t0) = e(A+pbcT )tx(t0)

+

∫ t+t0

t0

e(A+pbcT )(t+t0−s) [b (f(cTx(s))− pcTx(s)
)]
ds.

(3.43)

By the hypotheses and (3.42), the integrand on the right hand side of (3.43)
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is nonnegative for all s ∈ [t0, t1], and so

x(t+ t0) ≥ e(A+pbcT )tx(t0) ∀ t ∈ [0, t1 − t0]. (3.44)

By definition of µ in (3.40), it follows that µI + A+ pbcT is nonnegative, and

thus

e(A+pbcT )t ≥ e−µtI ≥ e−µτpI ∀ t ∈ [0, τp]. (3.45)

with τp defined by (3.39). Combining (3.44) and (3.45), we see that

cTx(t+ t0) ≥ e−µτpcTx(t0) = e−µτpI,

for all t such that 0 ≤ t ≤ min{τp, t1 − t0}. Hence, if t1 − t0 ≤ τp, then

cTx(t1) = cTx(t1 − t0 + t0) ≥ e−µτpy†. (3.46)

Furthermore, if t1 − t0 > τp, then, by (3.39), (3.40) and (3.44)

cTx(t+ t0) ≥ cTLpx(t0) ≥ λp‖x(t0)‖1 ∀ t ∈ (τp, t1 − t0].

Since cTx(t0) = y†, we have ‖x(t0)‖1 ≥ ω(y†) and so,

cTx(t1) = cTx(t1 − t0 + t0) ≥ λpω(y†). (3.47)

Combining (3.46) and (3.47) yields that

cTx(t1) ≥ min{λpω(y†), e−µτpy
†},

which completes the proof of statement (1).

We proceed to prove statement (2). To this end, given ε > 0, let x0 ∈ Rn
+

be such that cTx0 < y† and ‖x0‖1 ≥ ε. We consider two cases.

Case 1 . There does not exist t ∈ (0, τp] such that cTx(t) = y†, in which

case

cTx(t) < y† ∀ t ∈ [0, τp]. (3.48)

Set

T := {t ≥ 0 : cTx(s) ≥ y† ∀ s ∈ [τp, τp + t]}

and

r := inf{f(y)/y : λpε ≤ y ≤ y†} > p.

Note that (A3.7) guarantees that r > p. It is clear that T 6= ∅ and t∗ := sup T
satisfies 0 < t∗ ≤ ∞ by (3.48) and the definition of t∗.

Noting that cTx(t) ≤ y† for all t ∈ [0, τp + t∗), we can argue as in the
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derivation of statement (1) to obtain

cTx(t) ≥ cT e(A+pbcT )tx0 ∀ t ∈ [0, τp + t∗).

Now

cT e(A+pbcT )tx0 ≥ cTLpx
0 ≥ λpε ∀ t ≥ τp,

and so

cTx(t) ≥ λpε ∀ t ∈ [τp, τp + t∗). (3.49)

Consequently,

λpε ≤ cTx(t) ≤ y† ∀ t ∈ [τp, τ
∗
t ), (3.50)

and thus, by definition of r,

f(cTx(t)) ≥ rcTx(t) ∀ t ∈ [τp, τp + t∗).

The variation-of-parameters formula then yields

x(t) = e(A+rbcT )(t−τp)x(τp) +

∫ t

τp

e(A+rbcT )(t−s) [b (f(cTx(s))− rcTx(s)
)]
ds

≥ e(A+rbcT )(t−τp)x(τp) ∀ t ∈ [τp, τp + t∗). (3.51)

Since

e(A+rbcT )(t−τp)x(τp) ≥ ear(t−τp)Lrx(τp) ∀ t ≥ τp + τr, (3.52)

we use the positivity of ar > 0 to conclude from (3.50) and (3.51) that t∗ <∞.

Setting t† := τp + t∗, it is clear that cTx(t†) = y†. If t† > τp + τr, which is

equivalent to t∗ > τr, then, by (3.51) and (3.52),

y† = cTx(t†) ≥ cT e(A+rbcT )(t†−τp)x(τp) ≥ ear(t†−τp)cTLrx(τp),

and so, invoking (3.49),

y† ≥ ear(t†−τp)λrω(λpε),

which in turn leads to

t† ≤ τp +
1

ar
ln

y†

λrω(λpε)
=: sε.

Consequently, we have that

t† ≤ max{sε, τp + τr} =: tε. (3.53)
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Case 2 . There exists t ∈ (0, τp] such that cTx(t) = y†. In which case,

setting t† := t, (3.53) is trivially satisfied.

Informally, the following proposition says that, under certain assumptions,

the output cTx(t;x0) is uniformly, ultimately bounded away from 0.

Proposition 3.4.14. Assume that (A3.1)-(A3.5), (A3.7) and (A3.11) hold

and let ε > 0. Then there exists η > 0 and θ ≥ 0 such that, for all x0 ∈ Rn
+

with ‖x0‖ ≥ ε, the solution x( · ;x0) of (3.4) satisfies

cTx(t;x0) ≥ η ∀ t ≥ θ. (3.54)

Proof. Fix y† ∈ (0, y∗) and ε > 0. For x0 ∈ Rn
+ with ‖x0‖ ≥ ε, set x(t) :=

x(t;x0). Furthermore, define

η := min{λpω(y†), e−µτpy†}

and θ := tε, where tε is the number guaranteed to exist by statement (2) of

Lemma 3.4.13. We demonstrate that

cTx(t) ≥ η ∀ t ≥ θ (3.55)

by considering three exhaustive cases.

Case 1 . If cTx(0) = cTx0 < y†, appealing to statement (2) of Lemma

3.4.13, we see that there exists t† ∈ (0, θ] such that cTx(t†) = y†. Application

of statement (1) of Lemma 3.4.13 yields that cTx(t) ≥ η for all t ≥ t†, thus

(3.55) is satisfied.

Case 2 . If cTx(0) = cTx0 = y†, by statement (1) of Lemma 3.4.13, cTx(t) ≥
η for all t ≥ 0, and hence, (3.55) hold.

Case 3 . If cTx(0) = cTx0 > y† we consider two scenarios. Firstly if

cTx(t) > y† for all t ≥ 0 then (3.55) is satisfied since y† ≥ η. Alternatively,

there exists t† > 0 such that

cTx(t†) = y† and cTx(t) > y† ∀ t ∈ [0, t†),

By statement (1) of Lemma 3.4.13, cTx(t) ≥ η for all t ≥ t†. It now follows

that (3.55) holds, since cTx(t) > y† ≥ η for all t ∈ [0, t†).

Now that we have reached our goal of establishing a bound (3.55) we can

move on to the “quasi-global” exponential stability result for (3.4).

Theorem 3.4.15. Assume that (A3.1)-(A3.5), (A3.7)-(A3.9) and (A3.11)

hold. The equilibrium x∗ = −A−1bpy∗ of the Lur’e system (3.4) is quasi-

globally exponentially stable in the sense that, for every ε > 0, there exists
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constants γ > 0 and g ≥ 1 such that (3.38) holds for every x0 ∈ Rn
+ with

‖x0‖ ≥ ε.

Proof. Let ε > 0. By Proposition 3.4.14, there exists η > 0 and θ ≥ 0 such

that cTx(t;x0) ≥ η for all t ≥ θ and all x0 ∈ Rn
+ with ‖x0‖ ≥ ε. Invoking

assumptions (A3.7)-(A3.9), it follows that

r := sup

{ |f(y + y∗)− f(y∗)|
|y| : −y∗ + η ≤ y <∞, y 6= 0

}
< p. (3.56)

Consider a fixed, yet arbitrary, x0 ∈ Rn
+ with ‖x0‖ ≥ ε and write x̃(t) :=

x(t;x0) − x∗ for t ≥ 0. Choose a locally Lipschitz function f̃ : R → R such

that

f̃(y) = f(y + y∗)− f(y∗) ∀ y ∈ [−y∗ + η,∞)

and
∣∣∣f̃(y)/y

∣∣∣ ≤ r ∀ y ∈ R\{0}.
(3.57)

Since cT x̃(t) ≥ −y∗ + η for all t ≥ θ and using (3.57), it is straightforward to

show

˙̃x(t) = Ax̃+ bf̃(cT x̃) ∀ t ≥ θ.

By (3.56), r < p and thus it follows from statement (3) of Theorem 3.2.3

that there exists γ > 0 and h ≥ 1, which do not depend on x0, such that

‖x̃(t)‖ ≤ he−γ(t−θ)‖x̃(θ)‖ ∀ t ≥ θ.

Combining the stability in the large of x∗ established in statement (1) of

Theorem 3.4.11, this shows that there exists g > h, also not dependent on x0,

such that

‖x̃(t)‖ ≤ ge−γt‖x0 − x∗‖ t ≥ 0.

Rewriting this in terms of x(t;x0), gives (3.38) thus completing the proof.

When (A3.10) was introduced, it was noted that it was equivalent to

(A3.7)-(A3.9) collectively. Therefore, Theorem 3.4.15 can also be formulated

assuming (A3.10) holds instead of (A3.7)-(A3.9).

Note that assumption (A3.9) defines the sector condition for all sufficiently

large y. This assumption is essential for quasi-global exponential stability as

it allows us to have initial conditions, x0, which yield large initial values for y.

There is however, a weaker concept called “semi-global” exponential stability

which does not require (A3.9) to hold. This is presented in the following

theorem.
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Theorem 3.4.16. Assume that (A3.1)-(A3.5), (A3.7), (A3.8) and (A3.11)

hold. The equilibrium x∗ = −A−1bpy∗ of the Lur’e system (3.4) is semi-globally

exponentially stable in the sense that, for every compact set Γ ⊆ Rn
+ with 0 /∈ Γ,

there exists constants γ > 0 and g ≥ 1 such that (3.38) holds for every x0 ∈ Γ.

Proof. Let Γ ⊆ Rn
+ be compact with 0 /∈ Γ. Then there exists ε > 0 such that

‖x0‖1 ≥ ε for all x0 ∈ Γ. Consequently, invoking Proposition 3.4.14, there

exists η > 0 and θ ≥ 0 such that

cTx(t;x0) ≥ η ∀ t ≥ θ, ∀ x0 ∈ Γ.

Furthermore, by statement (1) of Theorem 3.4.11, the equilibrium x∗ is stable

in the large and thus, there exists a constant h > 0 such that

cTx(t;x0) ≤ h ∀ t ≥ 0, ∀ x0 ∈ Γ.

Replacing the definition of r in (3.56) by

r := sup

{ |f(y + y∗)− f(y∗)|
|y| : −y∗ + η ≤ y ≤ h, y 6= 0

}
and f̃ : R→ R in (3.57) by

f̃(y) = f(y + y∗)− f(y∗) ∀ y ∈ [−y∗ + η,∞)

and
∣∣∣f̃(y)/y

∣∣∣ ≤ r ∀ y ∈ R\{0},

and noting that r < p by (A3.7) and (A3.8), we can argue as in the proof of

Theorem 3.4.15 to establish the claim.

There is an alternative method of proving the semi-global exponential sta-

bility property guaranteed by Theorem 3.4.16 that does not make use of Propo-

sition 3.4.14. This proof rests on a combination of local exponential stability

of x∗ which is not difficult to establish, statement (2) of Theorem 3.4.11 and

a well known uniformity property enjoyed by compact subsets of the region of

attraction of an asymptotically stable equilibrium, see [90, Proposition 5.20].

We emphasize that this approach cannot be used to establish the quasi-global

exponential stability property, Theorem 3.4.15, which pertains to initial vec-

tors of arbitrary large norm.

Note that no examples are given for any form of exponential stability ex-

plicitly. This is because the system considered in Example 3.4.12 satisfies the

assumptions required for some sort of exponential stability.
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3.5 Input-to-State Stability of Nonnegative

Lur’e Systems in Continuous Time

In this section we consider forced nonnegative Lur’e systems of the form (3.18).

As in the previous section, nonnegative means that the state x(t) of (3.18)

remains nonnegative for all t ∈ R+. We therefore require (A3.1) and (A3.4)

to hold.

The unique maximally defined forward solution of (3.18) is denoted by

x( · ;x0, d). If f is affine-linearly bounded and the disturbance d ∈ L∞loc(R+,Rn
+)

is nonnegative, then the maximally defined forward solution exists for all times

t ≥ 0 (that is, there is no finite escape time from the nonnegative orthant).

Obviously, if d ∈ L∞loc is not nonnegative, then the interval of existence of

maximally defined forward solutions may be bounded (finite escape time from

the nonnegative orthant).

3.5.1 Disturbed Systems Without Stable Equilibria

The results in the section extend the results in Section 3.4.1 to disturbed Lur’e

systems. The proofs in this section will be omitted as the proofs in Section

3.4.1, mutatis mutandis, carry over to Lur’e systems with disturbance.

Theorem 3.5.1. Consider the system (3.18). Assume that (A3.1)-(A3.4),

(A3.11) and

inf
y>0

f(y)

y
> p.

If x0 ∈ Rn
+ with x0 6= 0 and d ∈ L∞loc(R+,Rn

+) are such that the solution

x(t;x0, d) exists for t ≥ 0, then

lim
t→∞

xi(t;x
0, d) =∞, ∀ i ∈ {1, . . . , n},

where xi(t;x
0, d) denotes the i-th component of x(t;x0, d).

Theorem 3.5.2. Consider the system (3.18). Assume that (A3.1)-(A3.4)

hold, f(0) > 0 and

inf
y≥0

f(y)

y
> p.

If x0 ∈ Rn
+ and d ∈ L∞loc(R+,Rn

+) are such that the solution x(t;x0, d) exists

for t ≥ 0, then

lim
t→∞

xi(t;x
0, d) =∞, ∀ i ∈ {1, . . . , n},

where xi(t;x
0, d) denotes the i-th component of x(t;x0, d).
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3.5.2 ISS of Systems with A Unique Stable Equilibrium

This section provides counterpart results to those covered in Section 3.4.2 for

systems with a disturbance. It is convenient at this stage to introduce a final

assumption which requires (A3.1)-(A3.3) to hold.

(A3.12) py − f(y)→∞ as y →∞.

Theorem 3.5.3. Consider the system (3.18) and assume (A3.1)-(A3.4),

(A3.11) and (A3.12) hold. Further assume

f(y)

y
< p, ∀ y > 0.

Then, 0 is ISS in the sense that there exists ψ ∈ KL and ϕ ∈ K such that, for

all x0 ∈ R+ and all nonnegative disturbances d ∈ L∞loc(R+,Rn
+),

‖x(t;x0, d)‖ ≤ ψ(‖x0‖, t) + ϕ(‖d‖L∞(0,t)) ∀ t ≥ 0. (3.58)

Proof. By Lemma 3.3.3, p = 1/‖G‖H∞ > 0 and therefore,

D(0, p) ⊆ S(A, b, cT ).

Aiming to apply Theorem 3.2.7 with r = p and k = 0 consider the function

f̃ : R→ R given by (3.27) which extends f to the whole real line. Furthermore,

by hypothesis on f , we have that

p|y| − |f̃(y)| > 0 ∀ y 6= 0

and

p|y| − |f̃(y)| → ∞ as |y| → ∞.

Hence there exists β ∈ K∞ such that

|f̃(y)| ≤ p|y| − β(|y|) ∀ y ∈ R.

Note that by linear boundedness of f and assumption (A3.1) and (A3.4), we

have that, for every x0 ∈ Rn
+ and every d ∈ L∞(R+,Rn

+), x( · ;x0, d) is defined

on R+ and x(t;x0, d) ∈ Rn
+ for all t ≥ 0. Therefore, for every x0 ∈ Rn

+ and

every d ∈ L∞(R+,Rn
+), x( · ;x0, d) is also the uniquely defined forward solution

of

ẋ = Ax+ bf̃(cTx) + d, x(0) = x0. (3.59)

An application of Theorem 3.2.7 to (3.59) shows that there exists ψ ∈ KL and
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ϕ ∈ K such that, for all x0 ∈ Rn
+ and all d ∈ L∞(R+,Rn

+),

‖x(t;x0, d)‖ ≤ ψ(‖x0‖, t) + ϕ(‖d‖L∞(0,t)) ∀ t ≥ 0,

which completes the proof.

Example 3.5.4. Consider the system (3.18) with linear part given by (3.24),

nonlinearity f(y) = y/(20 + y) and disturbance

d(t) =

0.25(1 + sin(t/5))

0.5(1 + sin(t/10))

1 + sin(t/2)

 .

Theorem 3.5.3 tells us that 0 is ISS. We demonstrate this in Figure 3.11 which

is a simulation of this system with an arbitrary initial condition.
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Figure 3.11: Simulation for Example 3.5.4. (a) Plot of three components d(t).
(b) A time history plot of the three components of x(t). (c) Plot of the error
‖x(t)− x∗‖.

Theorem 3.5.5. Consider the system (3.18) and assume (A3.1)-(A3.5),

(A3.7) and (A3.12) hold and that f(0) ∈ (0, 2py∗). Then x∗ = −A−1bpy∗

is ISS in the sense that, there exists ψ ∈ KL and ϕ ∈ K such that, for all

72



x0 ∈ Rn
+ and all nonnegative disturbances d ∈ L∞loc(R+,Rn

+),

‖x(t;x0, d)− x∗‖ ≤ ψ(‖x0 − x∗‖, t) + ϕ(‖d‖L∞(0,t)) ∀ t ≥ 0.

Proof. By Lemma 3.3.3, p = 1/‖G‖H∞ > 0 and therefore, D(0, p) ⊆ S(A, b, cT ).

Define f̃ : R→ R by (3.30). Then

p|y| − |f̃(y)| > 0 ∀ y 6= 0

and

p|y| − |f̃(y)| → ∞ as |y| → ∞.

Hence there exists β ∈ K∞ such that

|f̃(y)| ≤ p|y| − β(|y|) ∀ y ∈ R.

Let x0 ∈ Rn
+ and d ∈ L∞loc(R+,Rn

+) and set x̃(t) = x(t;x0, d)−x∗. It follows

that

˙̃x = Ax̃+ bf̃(cT x̃) + d, x̃(0) = x0 − x∗ := x̃0. (3.60)

Theorem 3.2.7 yields that (3.60) is ISS in the sense that there exists ψ ∈ KL
and ϕ ∈ K such that, for every x0 ∈ Rn and every d ∈ L∞loc(R+,Rn

+),

‖x̃(t)‖ ≤ ψ(‖x̃0‖, t) + ϕ(‖d‖L∞(0,t)), ∀ t ≥ 0,

where x̃( · ; x̃0, d) denotes the unique forward solution of (3.60). This is equiv-

alent to

‖x(t;x0, d)− x∗‖ψ(‖x0 − x∗‖) + ϕ(‖d‖L∞(0,t)) ∀ t ≥ 0,

completing the proof.

Example 3.5.6. Consider the system (3.18) with linear part given by (3.24),

nonlinearity f(y) = 1 + y/(10 + y) and disturbance

d(t) =

0.2(1 + sin(t/4))

1 + sin(t/2)

0.5(1 + sin(t))

 .

Theorem 3.5.5 tells us that x∗ ≈ (3.2361, 8.0902, 4.0451)T is ISS. We demon-

strate this in Figure 3.12(b) which is a simulation of this system with a very

small, arbitrary initial condition.
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Figure 3.12: Simulation for Example 3.5.4. (a) Plot of three components d(t).
(b) A time history plot of the three components of x(t). (c) Plot of the error
‖x(t)− x∗‖.

3.5.3 ISS of Systems With Two Equilibria

We reformulate Lemma 3.4.13 and Proposition 3.4.14 in terms of the forced

Lur’e system (3.18).

Lemma 3.5.7. Consider the system (3.18). Assume (A3.1)-(A3.5), (A3.7)

and (A3.11) hold, fix y† ∈ (0, y∗) and let d ∈ L∞loc(R+,Rn
+).

(1) If, for x0 ∈ Rn
+ with x0 6= 0, there exists t† ≥ 0 such that cTx(t†;x0, d) =

y†, then

cTx(t;x0, d) ≥ min{λpω(y†), e−µτpy†} > 0 ∀ t ≥ t†,

where τp is defined by (3.39).

(2) For each ε > 0, there exists tε ∈ (0,∞) such that for all x0 ∈ Rn
+ with

‖x0‖1 ≥ ε and cTx0 < y†, there exists t† ∈ (0; tε] such that cTx(t†;x0, d) =

y†.

The proof of Lemma 3.5.7 is omitted as the proof of Lemma 3.4.13, mutatis

mutandis, carries over to disturbed Lur’e systems.
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Proposition 3.5.8. Consider the system (3.18) and assume (A3.1)-(A3.5),

(A3.7) and (A3.11) hold and let ε > 0. Then there exists η > 0 and θ ≥ 0

such that, for all x0 ∈ Rn
+ with ‖x0‖ ≥ ε and all nonnegative disturbances

d ∈ L∞loc(R+,Rn
+), the solution x( · ;x0, d) of (3.18) satisfies

cTx(t;x0, d) ≥ η ∀ t ≥ θ. (3.61)

The proof of Proposition 3.5.8 is omitted as the proof of Proposition 3.4.14,

mutatis mutandis, caries over to disturbed Lur’e systems.

We now state and prove the main result of this section. It can be viewed

as a counterpart of statement (2) of Theorem 3.4.11 for Lur’e systems with

disturbances.

Theorem 3.5.9. Consider the system (3.18) and assume (A3.1)-(A3.5),

(A3.7), (A3.11) and (A3.12) hold. Then x∗ = −A−1bpy∗ is “quasi-globally”

ISS in the sense that, for all ε > 0, there exists ψ ∈ KL and ϕ ∈ K such

that, for all x0 ∈ Rn
+ with ‖x0‖ ≥ ε and all nonnegative disturbances d ∈

L∞loc(R+,Rn
+),

‖x(t;x0, d)− x∗‖ ≤ ψ(‖x0 − x∗‖, t) + ϕ(‖d‖L∞(0,t)) ∀ t ≥ 0. (3.62)

Proof. Let ε > 0. By Proposition 3.5.8, there exists η > 0 and θ ≥ 0 such that

for all x0 ∈ Rn
+ with ‖x0‖ ≥ ε and all d ∈ L∞loc(R+,Rn

+),

cTx(t;x0, d) ≥ η ∀ t ≥ θ. (3.63)

Define f̃ : R→ R by

f̃(y) =

{
f(y + y∗)− f(y∗) for y ≥ −y∗ + η

f(η)− f(y∗) for y < −y∗ + η.
(3.64)

Then

p|y| − |f̃(y)| > 0 ∀ y 6= 0

and

p|y| − |f̃(y)| → ∞ as |y| → ∞.

Hence, there exists β ∈ K∞ such that

|f̃(y)| ≤ p|y| − β(|y|) ∀ y ∈ R.

Combining this with the fact that D(0, p) ⊆ S(A, b, cT ), it follows by Theorem
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3.2.7 that the system

ż = Az + bf̃(cT z) + d̃, z(0) = z0. (3.65)

is ISS in the sense that there exists ψ̃ ∈ KL and ϕ̃ ∈ K such that, for every

z0 ∈ Rn and every d̃ ∈ L∞loc(R+,Rn),

‖z(t; z0, d̃)‖ ≤ ψ̃(‖z0‖, t) + ϕ̃(‖d̃‖L∞(0,t)), ∀ t ≥ 0, (3.66)

where z( · ; z0, d̃) denotes the unique forward solution of (3.65).

Let x0 ∈ Rn
+ with ‖x0‖ ≥ ε and let d ∈ L∞loc(R+,Rn

+) be a nonnegative

disturbance. Define x̃(t) := x(t;x0, d)− x∗ for all t ≥ 0 and set

x̃θ(t) := x̃(t+ θ) and dθ(t) := d(t+ θ) ∀ t ≥ 0.

By (3.63),

cT x̃θ(t) ≥ −y∗ + η ∀ t ≥ 0,

and it is easy to see that x̃θ solves (3.65) with z0 = x̃θ(0) = x(θ;x0, d) − x∗
and d̃ = dθ. Hence, by (3.66), we have that

‖x̃θ(t)‖ ≤ ψ̃(‖x̃θ(0)‖, t) + ϕ̃(‖dθ‖L∞(0,t)) ∀ t ≥ 0. (3.67)

Moreover, on the interval [0, θ], x̃ satisfies

˙̃x(t) = Ax̃(t) + bf̂(cT x̃(t)) + d(t) ∀ t ∈ [0, θ],

where the function f̂ : [−y∗,∞)→ [−py∗,∞) is defined by

f̂(y) = f(y + y∗)− f(y∗) = f(y + y∗)− py∗ ∀ y ≥ −y∗.

It is clear that |f̂(y)| ≤ p|y| for all y ≥ −y∗ and, using the variation-of-

parameters formula, it follows that there exists constants k1 > 0 and k2 > 0

(not depending on x0 and d) such that

‖x̃(t)‖ ≤ k1(‖x0− x∗‖+ ‖d‖L∞(0,θ)) + k2

∫ t

0

‖x̃(s)‖ds ∀ t ∈ [0, θ]. (3.68)

Applying Gronwall’s Lemma to the estimate (3.68) yields

‖x̃(t)‖ ≤ k1e
k2θ(‖x0 − x∗‖+ ‖d‖L∞(0,θ))

= k(‖x0 − x∗‖+ ‖d‖L∞(0,θ)) ∀ t ∈ [0, θ],
(3.69)
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where k := k1e
k2θ. Defining ψ1 ∈ KL and ϕ1 ∈ K by

ψ1(s, t) := keθe−ts ∀ s, t ≥ 0

and

ϕ1(s) := ks ∀ s ≥ 0,

respectively, and noting that ks ≤ keθe−ts = ψ1(t, s) for all t ∈ [0, θ] and

s ≥ 0, it follows from (3.69) that

‖x̃(t)‖ ≤ ψ1(‖x0 − x∗‖, t) + ϕ1(‖d‖L∞(0,t)) ∀ t ∈ [0, θ]. (3.70)

Note that here we have made use of the causality of the underlying Lur’e

system (on the right hand side of (3.70) the L∞-norm is taken over [0, t] and

not over [0, θ] as in (3.69)). Furthermore, evaluating (3.69) at t = θ we see

that

‖x̃θ(0)‖ = ‖x̃(θ)‖ ≤ k(‖x0 − x∗‖+ ‖d‖L∞(0,θ)). (3.71)

Inserting (3.71) into (3.67) and invoking the inequality

ψ̃(s1 + s2, t) ≤ ψ̃(2s1, t) + ψ̃(2s2, t)

≤ ψ̃(2s1, 0) + ψ̃(2s2, 0) ∀ s1, s2, t ≥ 0,

we obtain

|x̃(t+ θ)‖ ≤ ψ̃(2k‖x0 − x∗‖, t) + ψ̃(2k‖d‖L∞(0,θ), 0)

+ ϕ̃(‖d‖L∞(0,t+θ)) ∀ t ≥ 0.
(3.72)

Defining ψ2 ∈ KL and ϕ2 ∈ K by

ψ2(s, t) :=

{
ψ̃(2ks, 0), (s, t) ∈ R+ × [0, θ]

ψ̃(2ks, t− θ), (s, t) ∈ R+ × (θ,∞)

and

ϕ2(s) := ϕ̃(s) + ψ̃(2ks, 0) ∀ s ≥ 0

respectively, the estimate (3.72) can be written as

‖x̃(t+ θ)‖ ≤ ψ2(‖x0 − x∗‖, t+ θ) + ϕ2(‖d‖L∞(0,t+θ)) ∀ t ≥ 0.

Finally, setting

ψ := max(ψ1, ψ2) ∈ KL,
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and

ϕ := max(ϕ1, ϕ2) ∈ K,

it is clear that ψ and ϕ do not depend on x0 and d. Invoking (3.70), we obtain

‖x̃(t)‖ ≤ ψ(‖x0 − x∗‖, t) + ϕ(‖d‖L∞(0,t)) ∀ t ≥ 0,

and hence (3.62), completing the proof.

Example 3.5.10. Consider the disturbed Lur’e system (3.18) with (A, b, c)

given by (3.24). If the nonlinearity is given by

f(y) =
2y

5 + y
,

for y ≥ 0 and the disturbance is given by

d(t) =

 0.1(1 + sin(t/2))

0.5(1 + sin(t/5))

0.25(1 + sin(t/10)

 ,

then Theorem 3.5.9 tells us that

x∗ = −A−1bpy∗ =

 3

7.5

3.75


is “quasi-globally” ISS in the sense that for all ε > 0, there exists ψ ∈ KL and

ϕ ∈ K such that for all x0 ∈ Rn
+ with ‖x0‖ > ε,

‖x(t;x0, d)− x∗‖ ≤ ψ(‖x0 − x∗‖, t) + ϕ(‖d‖L∞(0,t)), ∀ t ≥ 0.

This is illustrated in Figure 3.13(b) which simulates this system far an arbitrary

initial condition.

It is clear from these plots that the error is bounded, or at least for t ≤ 100.

To conclude this section we comment on forced Lur’e systems with arbi-

trary, not necessarily nonnegative, disturbances. It is clear if the disturbance

d is not nonnegative, then the solution may not exist on the whole interval R+,

that is, the solution may approach the boundary of the nonnegative orthant

in finite time.

The following result shows that if x∗ � 0, then, under the assumptions

of Theorem 3.5.9, the forward solution exists on R+ in the interior of the

nonnegative orthant for all initial conditions x0 ∈ Rn
+ and all, not necessarily
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Figure 3.13: Simulation for Example 3.5.10. (a) Plot of three components d(t).
(b) A time history plot of the three components of x(t). (c) Plot of the error
‖x(t)− x∗‖.

nonnegative disturbances d ∈ L∞(R+,Rn) with ‖x0 − x∗‖ + ‖d‖L∞(R+) suffi-

ciently small.

Proposition 3.5.11. Consider the system (3.18) and assume (A3.1)-(A3.5),

(A3.7), (A3.11) and (A3.12) hold and x∗ = −A−1bpy∗ � 0. Then there

exists ε > 0, such that, for all x0 ∈ Rn
+ and all disturbances d ∈ L(R+,Rn)

with ‖x0 − x∗‖ + ‖d‖L∞(R+) < ε, the maximally defined solution x( · ;x0, d)

exists on R+ with values in the interior of Rn
+.

Proof. Since x∗ � 0 and cTx∗ = y∗, there exists ε0 > 0 such that

B(x∗, ε0) ⊆ intRn
+, (3.73)

and

cT z ≥ y∗

2
∀ z ∈ B(x∗, ε0). (3.74)

Defining the nonlinearity f̃ : R → R by (3.64) with η = y∗/2, there exists

β ∈ K∞ such that |f̃(y)| ≤ p|y| − β(|y|) for all y ∈ R, and thus, in the context

of the system

ẇ = Aw + bf̃(cTw) + d, w(0) = w0, (3.75)
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the origin is ISS, as follows from Theorem 3.2.7. Consequently, there exists

ψ ∈ KL and ϕ ∈ K such that,

‖w(t;w0, d)‖ ≤ ψ(‖w0‖, t) + ϕ(‖d‖L∞) (3.76)

for all t ≥ 0 and all (w0, d) ∈ Rn
+ × L∞(R+,Rn), where w( · ;w0, d) denotes

the unique solution of (3.75). Obviously, w(t;x0, d) is defined for all t ≥ 0.

Note that in (3.76) all disturbances d ∈ L∞(R+,Rn), which are not necessarily

nonnegative are considered. Now choose ε > 0 such that

ψ(‖w0‖, 0) + ϕ(‖d‖L∞) < ε0

for all (w0, d) ∈ Rn × L∞(R+,Rn) with ‖w0‖ + ‖d‖L∞ < ε. With this choice

of ε, it follows from (3.76) that

‖w(t;w0, d)‖ < ε0 (3.77)

for all t ≥ 0 and all (w0, d) ∈ Rn × L∞(R+,Rn) such that ‖w0‖+ ‖d‖L∞ < ε.

Finally, let (x0, d) ∈ Rn × L∞(R+,Rn) such that ‖x0 − x∗‖ + ‖d‖L∞ < ε,

and set z(t) := w(t;x0 − x∗, d) + x∗. By (3.73), (3.74) and (3.77),

z(t) ∈ B(x∗, ε0) ⊆ intRn
+ ∀ t ≥ 0, (3.78)

and

cT z(t) ≥ y∗

2
∀ t ≥ 0.

Consequently, by the latter,

cTw(t;x0 − x∗, d) = cT z(t)− y∗ ≥ −y
∗

2
∀ t ≥ 0,

from which it follows that

f̃(cTw(t;x0 − x∗, d)) = f(cTw(t;x0 − x∗, d) + y∗)− f(y∗)

= f(cT z(t))− py∗ ∀ t ≥ 0.

An immediate consequence of this identity is that ż = Az + bf(cT z) + d. Now

z(0) = x0, and thus, by uniqueness of solutions, z(t) = x(t;x0, d) for all t ≥ 0.

The claim now follows from (3.78).
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3.6 Applications to Biology

In this section we apply the theory developed in this chapter to two appli-

cations. The first of which is an application to population modeling and the

second applies it to enzyme synthesis.

3.6.1 Population Dynamics

In this first application we return to the continuous time population model

introduced in Section 2.3.1. For this we assume that di = 0 for all 1 ≤ i ≤ n

and instead that the birth rate is a density dependent function which depends

on the final age-class. We also include an external disturbance to each age-class

which will represent migration.

We have n coupled differential equations given by

ẋ1 = −a1x1 + f(xn) + d1, x1(0) = x0
1,

ẋk = a2(k−1)xk−1 − a2k−1xk + dk, xk(0) = x0
k, for k ∈ {2, . . . , n} ,

(3.79)

where f : R+ → R+, ai > 0 for all i ∈ {1, . . . , 2n − 1}, di ∈ L∞loc(R+,R) is

nonnegative for all i ∈ {1, . . . , n} and x0
i ≥ 0 for all i ∈ {1, . . . , n}. Note that

the ai notation has been introduced for convenience to limit the number of

parameters.

Introducing x := (x1, . . . , xn)T and d := (d1, . . . , dn)T , the system (3.79)

may be rewritten in the form (3.18) with

A :=


−a1 0 · · · 0

a2 −a3
. . .

...
. . . . . . 0

0 a2n−2 −a2n−1

 , b :=


1

0
...

0

 , c :=


0
...

0

1

 . (3.80)

Obviously, (A3.1) holds. Since

σ(A) = {−a1,−a3, . . . ,−a2n−1},

and ai > 0 for all i ∈ {1, . . . , 2n − 1}, assumption (A3.2) is also satisfied.

Moreover, it is readily verified that (A3.3) holds.

A straightforward calculation yields that:

p =
1

G(0)
= − 1

cTA−1b
=

∏n
i=1 a2i−1∏n−1
i=1 a2i

. (3.81)
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Let f : R+ → R+ be given by

f(y) =
my

k + y
(3.82)

where m, k > 0 are positive constants. See Section 2.4.3 for additional details

on this function.

Consider the case where d = 0. It can easily be seen that f(y) satisfies

(A3.4) and (A3.11). For p > 0 we can fall into one of three cases.

• If m/k < p then the conditions for statement (3) of Theorem 3.4.5 are

satisfied so 0 will be globally exponentially stable.

• If m/k = p then the conditions for statement (2) of Theorem 3.4.5 are

satisfied so for all x0 ∈ Rn
+, x(t;x0)→ 0 as t→∞.

• If m/k > p then (A3.5) and (A3.10) and satisfied, thus the assump-

tions of Theorem 3.4.15 are satisfied and there exists a “quasi-globally”

exponentially stable nonzero equilibrium.

In a similar fashion, we can say the same about the forced system with

d 6= 0.

• If m/k ≤ p then the conditions of Theorem 3.5.3 are satisfies and 0 will

be ISS.

• If m/k > p then the conditions of Theorem 3.5.9 are satisfied and there

exists an x∗ 6= 0 which is “quasi-globally” ISS.

Consider the system (3.79) with f given by (3.82) and constants given by

n = 3, a1 = 1, a2 = 0.8, a3 = 0.9, a4 = 0.6, a5 = 0.8, m = 3, k = 1. (3.83)

For this choice of constants it follows from (3.81) that p = 3/2. A simple

calculation shows that y∗ = 1 is the unique positive value of y∗ such that

py∗ = f(y∗). Furthermore,

x∗ := −A−1bpy∗ =

3/2

4/3

1


is the unique nonzero, quasi-globally, exponentially stable equilibrium of the

system where d = 0. If d 6= 0 then x∗ is quasi-globally ISS.

We illustrate these two properties in the following simulations for three

arbitrary initial conditions in Rn
+. Figure 3.14 contains a time history plot of

x(t) with d = 0 to illustrate that x∗ is quasi-globally, exponentially stable.
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Figure 3.14: Simulations of the system given by (3.80) with nonlinearity given
by (3.82), constants given by (3.83), d = 0 with three arbitrary initial condi-
tions where the solid lines, dashed lines and dashed/dotted lines represent a
different initial condition.

Now, consider two disturbances,

d1(t) =

 0.1(1 + sin(t/5)

0.2(1 + sin(3t/5)

0.15(1 + sin(t/5)

 and d2(t) =

0.9(1 + sin(2t/3)

0.75(1 + sin(t/6)

0.1(1 + sin(t/3))

 .

(3.84)

Figure 3.15 contains a time history plots of x(t) and error plots of ‖x(t;x0)−
x∗‖ with disturbances given by (3.84) for three arbitrary nonnegative and

nonzero initial conditions to illustrate that x∗ is quasi-globally ISS. In this fig-

ure the solid, dashed and dashed/dotted lines correspond to the three arbitrary

initial conditions.

3.6.2 Enzymatic Control Processes

The following example is based on [103, Section 7.2], which in turn was based

on [49]. This example was chosen as we can bring a new idea to this old

example, namely ISS.

Certain metabolites repress the enzymes which are essential for their own

synthesis. This is achieved by inhibiting the transcription of the molecule

DNA to messenger RNA or mRNA (M). This mRNA is the template which

produces the enzyme (E). The enzyme will combine with a substrate and form

a product (P). It is this product which inhibits the production of mRNA. A

simple model of this is given in Figure 3.16.

The DNA is readily available so does not need to be modeled. The pro-

duction of mRNA is inhibited by the product and degrades according to first

order kinetics. Both the enzyme and the product are produced and degraded

by first order kinetics.
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Figure 3.15: Simulations of the system given by (3.80) with nonlinearity given
by (3.82) and constants given by (3.83), d(t). Three arbitrary initial conditions
are used, where solid lines, dashed lines and dashed/dotted lines correspond
to an initial condition. (a) Time history of x(t) with disturbance d1(t) given
by (3.84). (b) Time history of x(t) with disturbance d2(t) given by (3.84).
(c) Error ‖x(t;x0

i ) − x∗‖ where d(t) = d1(t). (d) Error ‖x(t;x0
i ) − x∗‖ where

d(t) = d2(t).

A model for this system therefore is:

dM

dt
=

v

k + P
− a1M,

dE

dt
= a2M − a3E, (3.85)

dP

dt
= a4E − a5P, (3.86)

where M represents the concentration of mRNA, E is the concentration of

the enzyme and P is the concentration of the product being produced from

the action between the enzyme and substrate. v, k and ai for i = 1, . . . , 5 are

positive constants.

It is perhaps more biologically realistic if the third equation is replaced by

dP

dt
= a4E −

v2P

k2 + P
,
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Figure 3.16: A schematic for the production of a self repressive enzyme.

where v2, k2 > 0 (see [103, Section 7.2]). This is a more realistic model for

the degradation of the product as it saturates for large values of P . For the

purpose of this example however we will not be using this equation for P .

Set x = (M,E, P )T , then rewriting (3.85) in vector form

ẋ =

−a1 0 0

a2 −a3 0

0 a4 −a5

x+

1

0

0

 f
((

0 0 1
)
x
)
, (3.87)

where

f(y) =
v

k + y
. (3.88)

It is easy to verify that for all ai > 0, i = 1, . . . , 5 that (A3.1)-(A3.3) are

satisfied. It is also true that (A3.4) hold for all v, k > 0. Clearly we have that

f(0) > 0 therefore systems with a nonlinearity such as this are a candidate to

fit the framework of Theorem 3.4.8. The following lemma demonstrates why

this is the case.

Lemma 3.6.1. Let f : R+ → R+ be twice continuously differentiable and

p > 0. If f is nonincreasing (f ′ ≤ 0), convex (f ′′ ≥ 0) and if f ′(0) > −p, then

there exists a unique y∗ ≥ 0 such that f(y∗) = py∗ and

sup
y≥0, y 6=y∗

∣∣∣∣f(y)− f(y∗)

y − y∗
∣∣∣∣ < p. (3.89)

Proof. Noting that f is nonincreasing, it is clear that there exists a unique

y∗ ≥ 0 such that f(y∗) = py∗.

First consider the case when y∗ = 0. Noting that f is nonincreasing implies

that f(y) = 0 for all y ≥ 0, from which (3.89) holds trivially.

Now suppose that y∗ > 0. Combining nonnegativity, convexity and f ′(0) >

−p yields

−p < f ′(0) ≤ f ′(y) ≤ 0 ∀ y ≥ 0. (3.90)
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From this it follows that

py∗ ≤ f(0) < 2py∗. (3.91)

We can now conclude on the interval [0, y∗) that f(y) > py, which follows from

f being nonincreasing and that f(y) < 2py∗ − py, which follows from (3.90)

and (3.91). On the interval (y∗,∞) using the fact f is nonincreasing it follows

that f(y) < py, and using (3.90), f(y) > 2py∗ − py.

Combining the above yields (3.89), completing the proof.

We demonstrate that a nonlinearity of the form (3.88) satisfies the require-

ments of Lemma 3.6.1. Begin by noting that

f ′(y) = − v

(k + y)2
, f ′′(y) =

v

(k + y)3
.

Clearly f ′(y) ≥ 0 for all y ≥ 0, thus f is nonincreasing. Additionally f ′′(y) ≥ 0

for all y ≥ 0, therefore f is convex. The final assumption that f ′(0) > −p
depends on v, k and p. If v/k2 < p then all of the assumptions of Lemma 3.6.1

are satisfied.

We consider the specific example described in [49], which provides values

for the constants appearing in (3.87) and (3.88). These give the system

ẋ =

−1 0 0

1 −0.6 0

0 1 −0.8

x+

1

0

0

 f
((

0 0 1
)
x
)
,

x(0) = x0,

f(y) =
360

43 + y
.

(3.92)

We first calculate p for this system and show that v/k2 < p.

p =
−1

cTA−1b
= 0.48 > 0.19 =

v

k2
.

We can therefore apply Lemma 3.6.1 to this system and yield the existence

of a unique y∗ > 0 such that py∗ = f(y∗) and

sup
y≥0, y 6=y∗

∣∣∣∣f(y)− f(y∗)

y − y∗
∣∣∣∣ < p.

This value can be computed to be y∗ = 13.3174.

This system is an ideal candidate for application of Theorem 3.4.8. As pre-

viously stated, assumptions (A3.1)-(A3.4) are satisfied and for the param-

eters we have, Lemma 3.6.1 tells us that (A3.5) and (A3.10) are satisfied.
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Therefore an application of Theorem 3.4.8(3) tells us that the equilibrium

x∗ = −A−1bpy∗ =

 6.3923

10.6539

13.3174


is is globally exponentially stable in the sense that, for all x0 ∈ Rn

+, there exists

constants γ > 0 and g ≥ 1 such that

‖x(t;x0)− x∗‖ ≤ ge−γt‖x0 − x∗‖ ∀ t ≥ 0.

Illustrated in Figure 3.17 is a simulation for this system starting at 3 different

initial points,

x1(0) =

 2

5.5

11

 , x2(0) =

19

19

3

 , x3(0) =

15

0.5

10

 . (3.93)
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Figure 3.17: A simulation of the system (3.92) with initial conditions given by
(3.93). The solid lines are for initial condition x1(0), the dashed for x2(0) and
the dashed/dotted line for x3(t).

It can clearly be seen that for all three initial conditions that x(t)→ x∗ as

t→∞ as expected.

We now demonstrate that in the presence of an additional input to this
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system, we have that the system is ISS. We now consider the system

ẋ(t) =

−1 0 0

1 −0.6 0

0 1 −0.8

x(t) +

1

0

0

 f
((

0 0 1
)
x(t)

)
+ d(t),

x(0) = x0, f(y) =
360

43 + y
, d(t) =

 2 + 2 sin(2t)

0.75 + 0.75 sin(t/2)

2 + 2 sin(4t)

 .

(3.94)

A disturbance in an enzymatic control process could represent a number

of different things such as such as underestimated parameters in the linear

system which are supplemented by an additive disturbance or a time varying

linear system. The implications of ISS are that even if we supplement an

estimated linear system with an additive disturbance, the state remains close

to the equilibrium of the unforced system.

Due to the nature of the nonlinearity, it is clear that

py − f(y)→∞ as y →∞,

and that d ∈ L∞loc(R+,Rn
+). We can therefore apply Theorem 3.5.5 to reach the

conclusion that x∗ = −A−1bpy∗ is ISS in the sense that, there exists ψ ∈ KL
and ϕ ∈ K such that, for all x0 ∈ Rn

+,

‖x(t;x0, d)− x∗‖ ≤ ψ(‖x0 − x∗‖, t) + ϕ(‖d‖L∞(0,t)) ∀ t ≥ 0.

Illustrated in Figure 3.18 is a simulation of (3.94) for the three initial

conditions given in (3.93).
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Figure 3.18: A simulation of the system (3.94) with initial conditions given by
(3.93). The solid lines are for initial condition x1(0), the dashed for x2(0) and
the dashed/dotted line for x3(t).
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These simulations verify that our theory is correct for this example as

clearly ‖x(t;x0, d)− x∗‖ is bounded for the values of t ∈ [0, 40].
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Chapter 4

Converging-Input

Converging-State Property of

Continuous Time Lur’e Systems

This chapter is mainly based on [11].

4.1 Introduction

We consider forced Lur’e systems in continuous-time of the form

ẋ = Ax+Bf(Cx) + v, x(0) = x0 ∈ Rn, (4.1)

where A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n are matrices, f : Rp → Rm is

a (nonlinear) function, x denotes the state and v is a control function (also

interpreted as and named a disturbance, forcing term or input). It is often

useful to think of (4.1) as a closed-loop system obtained by static output

feedback applied to the linear system specified by (A,B,C), namely,

ẋ = Ax+Bu+ v, y = Cx, u = f(y),

where u and y denote the input and output variables, respectively, see also

Figure 4.1. Lur’e systems are a common and important class of nonlinear

systems and are at the center of the classical subject of absolute stability theory

which includes the well known circle and Popov criteria, see [54, 55, 72, 79,

86, 146, 153]. An absolute stability criterion for (4.1) is a sufficient condition

for stability, usually formulated in terms of frequency-domain properties of

the linear system given by (A,B,C) and sector or boundedness conditions for

f , guaranteeing stability for all nonlinearities f satisfying these conditions.

Traditionally, Lyapunov approaches to the stability theory of systems of the
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(A,B,C)

f

v

u y

Figure 4.1: Block diagram of the controlled Lur’e system (4.1).

form (4.1) consider uncontrolled (v = 0) Lur’e systems with forcing (usually

acting through B, that is, v is of the form v = Bw) and have been studied using

the input-output framework initiated by Sandberg and Zames in the 1960s, see,

for example, [31, 146]. More recently, forced Lur’e systems have been analyzed

in the context of input-to-state stability (ISS) theory, see [2, 71, 72, 124].

In this chapter, we investigate the following problem (and variations there-

of):

Given v∞ ∈ Rn, find conditions (necessary or sufficient) for the

existence of x∞ ∈ Rn such that, for every x0 and every v with

v(t)→ v∞ as t→∞, the solution x of (4.1) converges to x∞.

In particular, we consider the so-called converging-input converging-state (often

written as CICS) property: (4.1) is said to have the CICS property if, for every

v∞ ∈ Rn, there exists x∞ ∈ Rn such that limt→∞ x(t) = x∞ for all x0 and all

inputs v converging to v∞.

One of the main contributions of this chapter is the establishment of suffi-

cient conditions for the CICS property which are reminiscent of the complex

Aizerman conjecture [60, 61, 72, 124], the circle criterion for ISS [71, 72, 124]

and the “nonlinear” ISS small-gain condition for Lur’e systems [124] and in-

volve the transfer function matrix of the linear system (A,B,C) and an incre-

mental condition (in terms of norm or sector inequalities) on the nonlinearity

f .

By way of further background and motivation, we comment that if (4.1)

is linear and asymptotically stable, that is, f(z) = Kz and A + BKC is

Hurwitz for some matrix K, then (4.1) has the CICS and converging-input

converging-output properties. Indeed, for given v∞ and v converging to v∞, it

is well-known that for every x0 the state x and output y have respective limits

x∞ := −(A+BKC)−1v∞
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and

y∞ := Cx∞ = −C(A+BKC)−1v∞.

The matrices −(A + BKC)−1 and −C(A + BKC)−1 are sometimes referred

to as steady-state gains. When a Lur’e system has the CICS property, it is

possible to define (nonlinear) steady-state gains, that is, nonlinear mappings

v∞ 7→ x∞ or v∞ 7→ y∞, respectively, which generalize the above linear relation-

ship. We mention that Lur’e systems which are globally asymptotically stable

when controlled (v = 0), need not have the CICS property. Indeed, there may

exist inputs converging to 0 such that, for some initial states, the corresponding

state trajectory is asymptotically divergent (see Example 4.3.4(b)).

This chapter is organized as follows. In Section 4.2, we discuss a number

of preliminaries, present some auxiliary results and prove necessary conditions

for CICS. Section 4.3 is devoted to sufficient conditions for the CICS property,

the main result begin Theorem 4.3.3, from which several CICS criteria are

derived as corollaries. These criteria have the flavor of well-known absolute

stability results (complex Aizerman conjecture, circle criterion and small gain).

In Section 4.4, we consider Lur’e systems of the form

ẋ = Ax+Bf(Cx− v), x(0) = x0 ∈ Rn. (4.2)

Note that (4.2) can be thought of as a closed-loop system obtained by linear

feedback applied to the linear system (A,B,C) subject to an input nonlinearity

f :

ẋ = Ax+Bf(w), y = Cx, w = y − v,

see Figure 4.2. We derive a CICS criterion for Lur’e systems of the form (4.2)

(A,B,C)f−
+

u

y

v

Figure 4.2: Block diagram of the controlled Lur’e system (4.2).

and use it to generalize the well-known result on integral control for linear sys-

tems to this class of nonlinear systems. Section 4.5 is devoted to nonnegative

Lur’e systems. These arise naturally in a variety of applied contexts: a com-

mon key feature is that the state variables x, which may represent population

abundances, chemical concentrations or economic quantities (such as prices)

are, necessarily, nonnegative. In a population model, the function f may de-

scribe density-dependence (typically a sublinear function) owing to increased

competition for resources at higher population abundances. In a chemical re-
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action model, the function f may describe a nonlinear reaction rate between

certain components. Unforced biological, ecological and chemical models often

admit (at least) two equilibria: the zero equilibrium and some nonzero equilib-

rium, the latter corresponding to the co-existence of populations or chemical

compounds. The control v in (4.1) may model immigration or emigration in

a population model or the addition of a new reagent in a chemical reaction

model. The main result in Section 4.5 is a sufficient condition for a “quasi

CICS” property for Lur’e systems which, for zero control v = 0, have two

equilibria (see Theorem 4.5.6). In this context, we shall make contact with

Chapter 3 on stability properties on nonnegative Lur’e systems: a certain “re-

pelling property” established in Chapter 3 will play a pivotal role in the proof

of Theorem 4.5.6.

For general nonlinear systems, the CICS property has been studied in [137,

120]. Concepts related to or reminiscent of the CICS property have been

introduced in [1, 136]. Whilst results in [1, 120, 136] have little overlap with

the material presented in this chapter, [137] plays an important role in the

proof of statement (1) of Theorem 4.3.3, one of the main results in this chapter.

With the exception of [123], there does not seem to be any previous work on

the CICS property for Lur’e systems. We will make detailed comments on the

relationship of our results to those in [123] after the proof of Corollary 4.3.15.

4.2 Preliminary Results and A Necessary

Condition for CICS

Consider the forced Lur’e system

ẋ = Ax+Bf(Cx) + v, x(0) = x0 ∈ Rn, y = Cx, (4.3)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, f : Rp → Rm is locally Lipschitz and

v ∈ L∞loc(R+,Rn) is an input function, otherwise known as a forcing or control

function. If v = 0, then we will refer to (4.3) as an uncontrolled system.

Frequently, the input v will be of the form v = Ew, where E ∈ Rn×q and

w ∈ L∞loc(R+,Rq). If q = m and E = B, then (4.3) can be written in the form

ẋ = Ax+Bu, x(0) = x0 ∈ Rn, y = Cx, u = v + f(y).

Let x( · ;x0, v) denote the unique maximally defined forward solution of the

initial-value problem (4.3). We say that (x∗, v∗) ∈ Rn × Rn is an equilibrium

pair of (4.3) if Ax∗ +Bf(Cx∗) + v∗ = 0, that is, if x∗ is an equilibrium of the
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autonomous differential equation

ẋ = Ax+Bf(Cx) + v∗. (4.4)

In the following, let θ : R+ → R denote the constant function given by

θ(t) = 1 for all t ≥ 0. It is clear that if, for some v∞ ∈ Rn and x0 ∈ Rn,

x(t;x0, v∞θ) converges to x∞ as t→∞, then (x∞, v∞) is an equilibrium pair

of (4.4). An equilibrium pair (x∗, v∗) is said to be globally asymptotically stable

(GAS), if x∗ is a globally asymptotically stable equilibrium of (4.4).

Obviously, if (0, 0) is an equilibrium pair of (4.3), then (0, 0) is GAS if, and

only if, the equilibrium 0 of the uncontrolled system (4.3) is GAS.

We say an equilibrium pair (x∗, v∗) of (4.3) is input-to-state stable (ISS)

if there exists ψ ∈ KL and ϕ ∈ K such that, for every x0 ∈ Rn and every

v ∈ L∞loc(R+,Rn),

‖x(t;x0, v)− x∗‖ ≤ ψ(‖x0 − x∗‖, t) + ϕ(‖v − v∗θ‖L∞(0,t)) ∀ t ≥ 0. (4.5)

The concept of ISS was first formulated in [133] and for surveys of ISS we

refer the reader to [25, 138].

Let SC(A,B,C) denote the set of complex stabilizing output feedback gains

for the linear system (A,B,C), that is,

SC(A,B,C) := {K ∈ Cm×p : A+BKC is Hurwitz}.

Moreover, we define

SR(A,B,C) := SC(A,B,C) ∩ Rm×p,

to be the set of real stabilizing output feedback gains for (A,B,C).

In the following, let G be the transfer function of the linear system

ẋ = Ax+Bu, y = Cx, (4.6)

that is, G(s) = C(sI −A)−1B. Note that if A is Hurwitz, then all poles of G

have negative real parts. Applying output feedback of the form u = Ky + w

to (4.6), where K ∈ Rm×p and w is an input signal, leads to the closed-loop

system

ẋ = (A+BKC)x+Bw, y = Cx. (4.7)

For notational convenience, we set

AK := A+BKC. (4.8)
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The transfer function of the system (4.7) will be denoted by GK , and is given

by

GK(s) = C(sI − AK)−1B = C(sI − A−BKC)−1B

= G(s)(I −KG(s))−1.

The next result is a key tool which we make use of throughout this chapter.

Theorem 4.2.1. Let K ∈ SR(A,B,C) and set γ := 1/‖GK‖H∞, where γ :=

∞ if ‖GK‖H∞ = 0. The following statements hold.

(1) If γ <∞ and

‖f(z)−Kz‖ < γ‖z‖ ∀ z ∈ Rp, z 6= 0, (4.9)

then the equilibrium 0 of the uncontrolled system (4.3) is GAS.

(2) If γ <∞ and there exists α ∈ K∞ such that

‖f(z)−Kz‖ ≤ γ‖z‖ − α(‖z‖) ∀ z ∈ Rp, (4.10)

then the equilibrium pair (0, 0) of (4.3) is ISS.

(3) If γ =∞, then the conclusions of statements (1) and (2) hold for every

locally Lipschitz f : Rp → Rm such that f(0) = 0.

Proof. Since K ∈ SR(A,B,C), the matrix AK = A + BKC is Hurwitz. The

structured complex stability radius of AK with respect to the weights B and

C is defined by

rC(AK , B, C) := inf{‖P‖ : P ∈ Cm×p such that AK +BPC is not Hurwitz}.

It is well known, see [59, 61], that

rC(AK ,B,C) =
1

‖GK‖H∞
= γ. (4.11)

To prove statements (1) and (2), let x0 ∈ Rn and write x(t) := x(t;x0, 0).

Obviously, x satisfies ẋ = AKx+BfK(Cx), where fK : Rp → Rm is defined by

fK(z) = f(z)−Kz ∀ z ∈ Rp. (4.12)

By hypothesis, ‖fK(z)‖ < γ‖z‖ for all nonzero z ∈ Rp and thus the claim

follows from (4.11) and [61, Theorem 4.5.22] or [60, Corollary 3.15]. Moreover,
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by (4.11), BC(K, γ) ⊆ SC(A,B,C), and thus, statement (2) is a consequence

of [124, Theorem 3.2].

We proceed to prove statement (3). To this end, let f : Rp → Rm be

locally Lipschitz and such that f(0) = 0. We show that the equilibrium pair

(0, 0) of (4.3) is ISS. Let x0 ∈ Rn and v ∈ L∞loc(R+,Rn) be arbitrary and set

x(t) := x(t;x0, v). Then ẋ = AKx + BfK(Cx) + v, where fK is defined by

(4.12). Thus, by the variation-of-parameters formula,

x(t) = eAKtx0 +

∫ t

0

eAK(t−s) (BfK(Cx(s)) + v(s)) ds ∀ t ∈ [0, ω), (4.13)

where 0 < ω ≤ ∞ and [0, ω) is the maximal interval of existence of the forward

solution x. Note that, since f is not necessarily affine linearly bounded, finite

escape time cannot be ruled out at this stage. Now CeAKtB is the inverse

Laplace transform of GK and hence CeAKtB = 0 for all t ∈ R. Consequently,

it follows from (4.13),

Cx(t) = CeAKtx0 +

∫ t

0

CeAK(t−s)v(s)ds ∀ t ∈ [0, ω). (4.14)

Since AK is Hurwitz, it follows that Cx is bounded on any bounded subin-

terval of [0, ω) and thus, by (4.13), x is also bounded on any bounded subin-

terval of [0, ω). We may therefore conclude that ω =∞.

By the Hurwitz property of AK , there exists M ≥ 1 and µ > 0 such that

‖eAKt‖ ≤Me−µt ∀ t ≥ 0.

Combining this with (4.14) shows that there exists positive constants M1 and

M2 such that, for all x0 ∈ Rn and v ∈ L∞loc(R+,Rn),

‖Cx(t)‖ ≤M1e
−µt‖x0‖+M2‖v‖L∞(0,t) ∀ t ≥ 0. (4.15)

Moreover, let η ∈ K be such that

‖B‖‖fK(z)‖ ≤ η(‖z‖) ∀ z ∈ Rp. (4.16)

The existence of such a function η follows from the continuity of fK and the

fact that fK(0) = 0. Invoking (4.15) and (4.16), we obtain

‖B‖‖fK(Cx(t))‖ ≤ η1(e−µt‖x0‖) + η2(‖v‖L∞(0,t)) ∀ t ≥ 0, (4.17)

where the K-functions η1 and η2 are defined by η1(s) = η(2M1s) and η2(s) =

η(2M2s).

97



Next we estimate the term

I(t) :=

∫ t

0

eAK(t−s)BfK(Cx(s))ds.

To this end, writing

I(t) =

∫ t/2

0

eAK(t−s)BfK(Cx(s))ds+

∫ t

t/2

eAK(t−s)BfK(Cx(s))ds,

we note that, by (4.17),

‖I(t)‖ ≤Me−(µ/2)t
(
η1(‖x0‖) + η2(‖v‖L∞(0,t))

) ∫ t/2

0

e−µ(t/2−s)ds

+
M

µ

(
η1(e−(µ/2)t‖x0‖) + η2(‖v‖L∞(0,t))

)
∀ t ≥ 0.

Consequently,

‖I(t)‖ ≤ M

µ

(
e−(µ/2)tη1(‖x0‖) + η1(e−(µ/2)t‖x0‖)

)
+

2M

µ
η2(‖v‖L∞(0,t)) ∀ t ≥ 0.

Furthermore, ∥∥∥∥∫ t

0

eAK(t−s)v(s)

∥∥∥∥ ≤ M

µ
‖v‖L∞(0,t) ∀ t ≥ 0,

and therefore, by (4.13),

‖x(t)‖ ≤Me−µt‖x0‖+
M

µ

(
e−(µ/2)tη1(‖x0‖) + η1(e−(µ/2)t‖x0‖)

)
+
M

µ

(
2η2(‖v‖L∞(0,t)) + ‖v‖L∞(0,t)

)
∀ t ≥ 0.

Hence, defining ψ ∈ KL and ϕ ∈ K by

ψ(s, t) := Me−µts+
M

µ

(
e−(µ/2)tη1(s) + η1(e−(µ/2)ts)

)
and

ϕ(s) :=
M

µ
(2η2(s) + s),

respectively, we conclude that, for every x0 ∈ Rn and every v ∈ L∞loc(R+,Rn),

‖x(t;x0, v)‖ = ‖x(t)‖ ≤ ψ(‖x0‖, t) + ϕ(‖v‖L∞(0,t)) ∀ t ≥ 0,

showing that the equilibrium pair (0, 0) of (4.3) is ISS.
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The scenario which is considered in statement (3) of Theorem 4.2.1, wherein

‖GK‖H∞ = 0 (or, equivalently, GK = 0), is not very interesting, but is in-

cluded for mathematical completeness. Note that ‖GK‖H∞ = 0 if, and only

if, ‖G‖H∞ = 0. Consequently, if (A,B) is controllable ((C,A) is observable)

and C 6= 0 (B 6= 0), then ‖GK‖H∞ 6= 0.

As an element in L∞loc(R+,Rn), strictly speaking, v is not a function, but

an equivalence class of functions. In the material which follows we often say

that

lim
t→∞

v(t) = v∞, (4.18)

however, we should clarify what we mean by this. We say (4.18) holds if

‖v − v∞θ‖L∞(t,∞) → 0 as t→∞,

or equivalently, if there exists a representative w in the equivalence class v such

that w(t)→ v∞ as t→∞.

The following proposition is a special case of a well-known result from ISS

theory.

Proposition 4.2.2. Assume that (0, 0) is an ISS equilibrium pair of (4.3).

Then (4.3) has the 0-converging-input converging-state property: for every x0 ∈
Rn and for every v ∈ L∞(R+,Rn) such that v(t)→ 0 as t→∞, we have that

x(t;x0, v)→ 0 as t→∞.

We emphasize that ISS is not a necessary condition for (4.3) to have the

0-converging-input converging-state property (0-CICS), see Example 4.26. We

now introduce a concept which strengthens the notion of the 0-CICS property

and is the primary focus of the chapter.

Definition 4.2.3. We say that (4.3) has the converging-input converging-state

property (CICS property) if, for every v∞ ∈ Rn, there exists x∞ ∈ Rn such

that, for all x0 ∈ Rn and all v ∈ L∞loc(R+,Rn) with limt→∞ v(t) = v∞,

lim
t→∞

x(t;x0, v) = x∞.

If (4.3) has the CICS property and if f(0) = 0 (that is, the origin is an

equilibrium of the uncontrolled Lur’e system (4.3)), then (4.3) has the 0-CICS

property.

The CICS property enables us to define steady-state gains for the Lur’e

system (4.3). Assuming that (4.3) has the CICS property, the map

Γis : Rn → Rn, v∞ 7→ x∞
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is well defined and is called the input-to-state steady-state gain (ISSS gain).

The map

Γio : Rn → Rp, v∞ 7→ CΓis(v
∞) = Cx∞

is called the input-to-output steady-state gain (IOSS gain). If (4.3) has the

CICS property, then, for every v∞, the point

x∞ := Γis(v
∞)

is a globally attractive equilibrium of the system ẋ = Ax+Bf(Cx) + v∞θ.

In the following, the map

FK : Rp → Rp, z 7→ z −GK(0)(f(z)−Kz), (4.19)

where K ∈ SR(A,B,C), will play a key role. For a set W ⊆ Rp, we shall

denote the preimage of W under FK by F−1
K (W ). For w ∈ Rp, it is convenient

to set F−1
K (w) := F−1

K ({w}). We note two simple, but important properties of

FK :

FK(imC) ⊆ imC, F−1
K (imC) ⊆ imC. (4.20)

Definition 4.2.4. For a set S, the symbol #S denotes the cardinality of S. If

S is infinite then we write #S =∞.

The next proposition describes properties of the map FK and shows how

FK relates to equilibrium pairs (x∞, v∞) of (4.3).

Proposition 4.2.5. Assume that K ∈ SR(A,B,C).

(1) Let v ∈ L∞(R+,Rn) have a limit v∞ := limt→∞ v(t) and assume that, for

some x0 ∈ Rn, the limit x∞ := limt→∞ x(t;x0, v) exists. Then (x∞, v∞)

is an equilibrium pair of (4.3),

x∞ = −A−1
K (B(f(Cx∞)−KCx∞) + v∞), (4.21)

where AK is given by (4.8), and FK(Cx∞) = −CA−1
K v∞.

(2) Let v∞ ∈ Rn and assume that there exists x∞ ∈ Rn such that, for all

x0 ∈ Rn, x(t;x0, v∞θ)→ x∞ as t→∞. Then #F−1
K (−CA−1

K v∞) = 1.

(3) Let v∞ ∈ Rn, y∞ ∈ F−1
K (−CA−1

K v∞) and set

x∞ := −A−1
K (B(f(y∞)−Ky∞) + v∞).

Then Cx∞ = y∞ and (x∞, v∞) is an equilibrium pair of (4.3).
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Proof. To prove statement (1), set x(t) := x(t;x0, v) and note that x satisfies

ẋ = AKx+B(f(Cx)−KCx) + v.

Since AK is Hurwitz, it follows immediately that (4.21) holds. As an immediate

consequence of (4.21), we have

0 = AKx
∞ +B(f(Cx∞)−KCx∞) + v∞ = Ax∞ +Bf(Cx∞) + v∞,

showing that (x∞, v∞) is an equilibrium pair of (4.3). Furthermore, applying

C to both sides of (4.21) and rearranging shows that FK(Cx∞) = −CA−1
K v∞.

We proceed to prove statement (2). By statement (1), x∞ satisfies (4.21),

and Cx∞ ∈ F−1
K (−CA−1

K v∞), showing that F−1
K (−CA−1

K v∞) 6= ∅. Let y1, y2 ∈
F−1
K (−CA−1

K v∞). It remains to show that y1 = y2. To this end, set

ξi := −A−1
K (B(f(yi)−Kyi) + v∞), i ∈ {1, 2}. (4.22)

Then

FK(yi) = yi −GK(0)(f(yi)−Kyi) = yi − Cξi − CA−1
K v∞, i ∈ {1, 2}.

But FK(yi) = −CA−1
K v∞ for i ∈ {1, 2} and so, yi = Cξi for i ∈ {1, 2}.

Consequently, by (4.22),

AKξi +B(f(Cξi)−KCξi) + v∞ = 0, i ∈ {1, 2},

and so

Aξi +Bf(Cξi) + v∞ = 0, i ∈ {1, 2},

showing that (ξ1, v
∞) and (ξ2, v

∞) are equilibrium pairs of (4.3). Hence for

i ∈ {1, 2}, x(t; ξi, v
∞θ) = ξi for all t ≥ 0 and it follows from hypothesis that

ξ1 = x∞ = ξ2. Thus, y1 = Cξ1 = Cξ2 = y2, completing the proof.

Finally we proceed to prove statement (3). Note that

Cx∞ = GK(0)(f(y∞)−Ky∞)− CA−1
K v∞

= y∞ − FK(y∞)− CA−1
K v∞ = y∞.

Therefore,

Ax∞ +Bf(Cx∞) + v∞ = AKx
∞ +B(f(y∞)−Ky∞) + v∞ = 0,

showing that (x∞, v∞) is an equilibrium pair of (4.3).
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The following is a corollary of Proposition 4.2.5 and provides, in terms of

FK , a necessary condition for the CICS property to hold.

Corollary 4.2.6. Let K ∈ SR(A,B,C). If the Lur’e system (4.3) has the

CICS property, then #F−1
K = 1 for all z ∈ imC.

Proof. Let z ∈ imC. Then there exists v∞ ∈ Rn such that z = −CA−1
K v∞.

By the CICS property, it is clear that there exists x∞ ∈ Rn, such that for all

x0 ∈ Rn, x(t;x0, v∞θ)→ x∞ as t→∞. Hence, by statement (2) of Proposition

4.2.5, #F−1
K (z) = #F−1

K (−CA−1
K v∞) = 1.

It follows from (4.20) and Corollary 4.2.6 that, if (4.3) has the CICS prop-

erty, then the restriction of FK to imC provides a bijection from the subspace

imC into itself.

4.3 Sufficient conditions for CICS

In this section, we provide conditions which ensure that the Lur’e system (4.3)

has the CICS property. The main result is Theorem 4.3.3, which, in turn, yields

a host of sufficient conditions for the CICS property, formulated as Corollaries

4.3.7, 4.3.9, 4.3.10, 4.3.13 and 4.3.15.

We begin this section by stating and proving two technical results, Lemma

4.3.1 and Proposition 4.3.2, the later of which provides conditions which guar-

antee certain surjectivity and injectivity properties of the map FK . We denote

the restriction of FK to imC by F̂K . It follows from (4.20) that F̂K maps into

imC and we define the co-domain of F̂K to be equal to imC.

Lemma 4.3.1. Let g : Rp → Rm be an arbitrary function and let r > 0.

(1) If there exists ζ ∈ Rp such that

r‖z‖ − ‖g(z + ζ)− g(ζ)‖ → ∞ as ‖z‖ → ∞, (4.23)

then, for every ξ ∈ Rp,

r‖z‖ − ‖g(z + ξ)− g(ξ)‖ → ∞ as ‖z‖ → ∞.

(2) If g is continuous, ‖g(z)‖ < r‖z‖ for all nonzero z ∈ Rp and r‖z‖ −
‖g(z)‖ → ∞ as ‖z‖ → ∞, then there exists α ∈ K∞ such that ‖g(z)‖ ≤
r‖z‖ − α(‖z‖) for all z ∈ Rp.

102



Proof. To prove statement (1), let ξ ∈ Rp, set w := z + ξ − ζ and note that

r‖z‖ − ‖g(z + ξ)− g(ξ)‖ = r‖w + ζ − ξ‖ − ‖g(w + ζ)− g(ζ) + g(ζ)− g(ξ)‖.

Consequently,

r‖z‖−‖g(z+ξ)−g(ξ)‖ ≥ r‖w‖−‖g(w+ζ)−g(ζ)‖−r‖ζ−ξ‖−‖g(ζ)−g(ξ)‖,

and since ‖w‖ → ∞ as ‖z‖ → ∞, the claim follows from (4.23).

To prove statement (2), define β : R+ → R+ by

β(s) := inf
‖z‖≥s

(r‖z‖ − ‖g(z)‖), s ≥ 0.

Then β is continuous by the continuity of g, β(0) = 0, β(s) > 0 for s > 0,

β is nondecreasing, β(s) → ∞ as s → ∞ and ‖g(z)‖ ≤ r‖z‖ − β(‖z‖) for all

z ∈ Rp. Therefore, setting α(s) := (1− e−s)β(s), it is clear that α ∈ K∞ and

‖g(z)‖ ≤ r‖z‖ − α(‖z‖) for all z ∈ Rp, completing the proof.

Proposition 4.3.2. Let Y ⊆ imC be nonempty, K ∈ SR(A,B,C), set γ :=

1/‖GK‖H∞, where γ := ∞ if ‖GK‖H∞ = 0, and assume that f satisfies the

condition:

(A4.1) For all, ξ ∈ Y , and all z ∈ Rp with z 6= 0

‖f(z + ξ)− f(ξ)−Kz‖ < γ‖z‖.

The following statements hold.

(1) #F−1
K (z) = 1 for every z ∈ imC such that F−1

K (z) ∩ Y 6= ∅.

(2) If

‖GK(0)‖ < ‖GK‖H∞ , (4.24)

then FK is surjective.

(3) If there exists ζ ∈ Rp such that

γ‖z‖ − ‖f(z + ζ)− f(ζ)−Kz‖ → ∞ as ‖z‖ → ∞, (4.25)

then FK is surjective.

(4) If Y = imC and (4.24) or (4.25) hold, then F̂K is bijective.

Proof. If GK(0) = 0, then FK(z) = z for all z ∈ Rp. Consequently, the maps

FK and F̂K are bijective and there is nothing to prove. Let us now assume

that GK(0) 6= 0. Then, ‖GK‖H∞ 6= 0, and so, 0 < γ <∞.
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To prove statement (1), let z ∈ imC and assume that F−1
K (z)∩Y 6= ∅. Let

ξ1 ∈ F−1
K (z) ∩ Y and ξ2 ∈ F−1

K (z). To establish that #F−1
K (z) = 1, it suffices

to show that ξ1 = ξ2. Since FK(ξ1) = FK(ξ2), it follows that

‖ξ2 − ξ1‖ = ‖GK(0)(f(ξ2)− f(ξ1)−K(ξ2 − ξ1))‖.

If ξ1 6= ξ2, then, by condition (A4.1),

‖ξ2 − ξ1‖ < ‖GK(0)‖γ‖ξ2 − ξ1‖ ≤ ‖ξ2 − ξ1‖,

which is impossible, hence ξ1 = ξ2.

We proceed to prove statement (2). To show that FK is surjective, note

that, by [116, Theorem 9.36], it is sufficient to prove that FK is coercive, that

is,
1

‖z‖ 〈FK(z), z〉 → ∞ as ‖z‖ → ∞. (4.26)

To establish (4.26), we note that, for all z ∈ Rp,

1

‖z‖ 〈FK(z), z〉 = ‖z‖+
1

‖z‖ 〈GK(0)(f(z)−Kz), z〉

≥ ‖z‖ − ‖GK(0)‖‖f(z)−Kz‖,

and hence

1

‖z‖ 〈FK(z), z〉 ≥ ‖z‖ − ‖GK(0)‖(‖f(z)− f(ξ)−Kz‖+ ‖f(ξ)‖) ∀ z ∈ Rp,

(4.27)

where ξ ∈ Y . By condition (A4.1),

‖f(z + ξ)− f(ξ)−Kz‖ ≤ γ‖z‖ ∀ z ∈ Rp.

Consequently, for all z ∈ Rp,

‖f(z)− f(ξ)−Kz‖ ≤ ‖f(z − ξ + ξ)− f(ξ)−K(z − ξ)‖+ ‖Kξ‖
≤ γ‖z − ξ‖+ ‖Kξ‖,

and thus,

‖f(z)− f(ξ)−Kz‖ ≤ γ‖z‖+ (‖K‖+ γ)‖ξ‖ ∀ z ∈ Rp. (4.28)

Setting

κ := ‖GK(0)‖(‖f(ξ)‖+ (‖K‖+ γ)‖ξ‖), (4.29)
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and invoking (4.27) and (4.28), we conclude that

1

‖z‖ 〈FK(z), z〉 ≥ (1− γ‖GK(0)‖)‖z‖ − κ ∀ z ∈ Rp.

Now, by hypothesis, ‖GK(0)‖ < ‖GK‖H∞ , or, equivalently, 1−γ‖GK(0)‖ > 0,

implying that (4.27) holds, and so surjectivity of FK follows.

To prove statement (3), let ξ ∈ Y . By hypothesis and statement (1) of

Lemma 4.3.1 applied to g(z) = f(z)−Kx,

γ‖z‖ − ‖f(z + ξ)− f(ξ)−Kz‖ → ∞ as ‖z‖ → ∞.

Together with assumption (A4.1) and an application of statement (3) of

Lemma 4.3.1 this shows that there exists α ∈ K∞ such that

‖f(z + ξ)− f(ξ)−Kz‖ ≤ γ‖z‖ − α(‖z‖) ∀ z ∈ Rp.

An argument very similar to that leading to (4.28) yields

‖f(z)− f(ξ)−KZ‖ ≤ γ‖z‖ − α(‖z − ξ‖) + (‖K‖+ γ)‖ξ‖ ∀ z ∈ Rp.

Together with (4.27) this implies

1

‖z‖ 〈FK(z), z〉 ≥ (1− γ‖G(0)‖)‖z‖+ ‖GK(0)‖α(‖z − ξ‖)− κ ∀ z ∈ Rp,

with κ being defined by (4.29). Now 1− γ‖GK(0)‖ ≥ 1− γ‖GK‖H∞ = 0 and

(4.26) follows, showing that FK is coercive and hence surjective.

Finally, to prove statement (4), assume that Y = imC and that (4.24) or

(4.25) are satisfied. Then the map FK is surjective, which follows from state-

ment (2) if (4.24) holds and from statement (3) if (4.25) holds. Surjectivity of

FK , (4.20), and statement (1) guarantee that #F−1
K (z) = 1 for all z ∈ imC.

Writing F−1
K (z) = {yz} for every z ∈ imC and, once again, invoking (4.20),

we conclude that yz ∈ imC and bijectivity of F̂K follows.

For τ ≥ 0, we define the left-shift operator Λτ by (Λτv)(t) = v(t+ τ) for all

t ≥ 0, where v is an arbitrary function R+ → Rn. A subset V ⊆ L∞(R+,Rn)

is said to be equi-convergent to v∞ ∈ Rn if, for every ε > 0, there exists τ ≥ 0

such that

‖Λτv − v∞θ‖L∞ ≤ ε ∀ v ∈ V ,

or, equivalently,

‖v(t)− v∞‖ ≤ ε ∀ t ≥ τ ∀ v ∈ V .
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The following theorem is the main result in this section.

Theorem 4.3.3. Let Y ⊆ imC be nonempty, K ∈ SR(A,B,C), v∞ ∈ Rn and

set γ := 1/‖GK‖H∞, where γ := ∞ if ‖G‖H∞ = 0. Assume that condition

(A4.1) holds and that F−1
K (−CA−1

K v∞)∩Y 6= ∅. Then #F−1
K (−CA−1

K v∞) = 1

and, writing {y∞} = F−1
K (−CA−1

K v∞), the pair (x∞, v∞), where

x∞ := −A−1
K (B(f(y∞)−Ky∞) + v∞), (4.30)

is an equilibrium pair of the system (4.3). Furthermore, Cx∞ = y∞ and the

following statements hold.

(1) The equilibrium pair (x∞, v∞) is GAS, and, for every x0 ∈ Rn and every

v ∈ L∞(R+,Rn) such that limt→∞ v(t) = v∞, we have that x(t;x0, v) →
x∞.

(2) Under the additional assumption that, for some ζ ∈ Rp,

γ‖z‖ − ‖f(z + ζ)− f(ζ)−Kz‖ → ∞ as ‖z‖ → ∞, (4.31)

(x∞, v∞), with x∞ given by (4.30), is an ISS equilibrium pair of (4.3)

and there exists ψ1, ψ2 ∈ KL and ϕ ∈ K such that, for all (x0, v) ∈
Rn × L∞(R+,Rn) and all t ≥ 0,

‖x(t;x0, v)− x∞‖ ≤ ψ1(‖x0 − x∞‖, t) + ψ2(‖v − v∞θ‖L∞ , t)
+ ϕ(‖Λt/2(v − v∞θ)‖L∞).

(4.32)

In particular, for every x0 ∈ Rn and every v ∈ L∞(R+,Rn) such that

limt→∞ v(t) = v∞,

lim
t→∞

x(t;x0, v) = x∞,

and the convergence is uniform in the following sense: given a set of

inputs V ⊆ L∞(R+,Rn) which is equi-convergent to v∞ and κ > 0, the

set of solutions

{x( · ;x0, v) : (x0, v) ∈ Rn × V such that ‖x0‖+ ‖v‖L∞ ≤ κ}

is equi-convergent to x∞.

Proof. By hypothesis, assumption (A4.1) holds and F−1
K (−CA−1

K v∞)∩Y 6= ∅,
and thus, statement (1) of Proposition 4.3.2 yields that #F−1

K (−CA−1
K v∞) = 1.

For x∞ given by (4.30), it follows from statement (3) of Proposition 4.2.5 that

(x∞, v∞) is an equilibrium pair of (4.3) and Cx∞ = y∞.
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Define f̃ : Rp → Rm by

f̃(z) := f(z + y∞)− f(y∞) ∀ z ∈ Rp.

We manipulate (4.30):

x∞ = −A−1
K (B(f(y∞)−Ky∞) + v∞)

(A+BKC)x∞ = −B(f(y∞)−Ky∞)− v∞

Ax∞ +BKCx∞ = −Bf(y∞) +BKCx∞ − v∞

Ax∞ +Bf(y∞) + v∞ = 0.

A simple calculation shows that

A(χ+ x∞) +Bf(C(χ+ x∞)) + v∞ = Aχ+Bf̃(Cχ) ∀ χ ∈ Rn. (4.33)

Moreover, since y∞ ∈ Y , it follows from assumption (A4.1) that

‖f̃(z)−Kz‖ < γ‖z‖ ∀ z ∈ Rp, z 6= 0. (4.34)

To prove statement (1), note that, by (4.33), a function x satisfies

ẋ = Ax+Bf(Cx) + v∞θ (4.35)

if, and only if, x̃ := x− x∞θ satisfies

˙̃x = Ax̃+Bf̃(Cx̃). (4.36)

Consequently, the equilibrium x∞ of (4.35) is GAS if, and only if, the equi-

librium 0 of (4.36) is GAS. Invoking (4.34) in conjunction with statements

(1) and (3) of Theorem 4.2.1 shows that the equilibrium 0 of (4.36) is GAS

and hence, x∞ is a GAS equilibrium of system (4.35). An application of [137,

Theorem 1] or [89, Theorem 4.3] allows us to conclude that, for x0 ∈ Rn and

v ∈ L∞(R+,Rn) with v(t) → v∞ as t → ∞, we have that x(t;x0, d) → x∞ as

t→∞, completing the proof of statement (1).

We proceed to prove statement (2). To this end, let v ∈ L∞loc(R+,Rn) and

set ṽ = v − v∞θ. Invoking (4.33) shows that a function x solves (4.3) if, and

only if, x̃ := x− x∞θ solves

˙̃x = Ax̃+Bf̃(Cx̃) + ṽ. (4.37)

Consequently, the equilibrium pair (x∞, v∞) of (4.3) is ISS if, and only if, the
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pair (0, 0) of (4.37) is ISS. By (4.31) and statement (1) of Lemma 4.3.1,

γ‖z‖ − ‖f̃(z)−Kz‖ → ∞ as ‖z‖ → ∞.

This, together with (4.33) and statement (2) of Lemma 4.3.1, shows that there

exists α ∈ K∞ such that

‖f̃(z)−Kz‖ ≤ γ‖z‖ − α(‖z‖) ∀ z ∈ Rp.

Statements (2) and (3) of Theorem 4.2.1 now show that (0, 0) is an ISS equi-

librium pair of the system (4.37) and thus, the equilibrium pair (x∞, v∞) of

(4.3) is ISS. Consequently, there exists ψ ∈ KL and ϕ ∈ K such that for all

x0 ∈ Rn, and all v ∈ L∞loc(R+,Rn)

‖x(t;x0, v)−x∞‖ ≤ ψ(‖x0−x∞‖, t)+ϕ(‖v−v∞θ‖L∞(0,t)), ∀ t ≥ 0. (4.38)

It remains to show that (4.32) holds. To this end, let x0 ∈ Rn and v ∈
L∞(R+,Rn), and note that, by the state transition property of system (4.3),

x(t;x0, v) = x
(
t/2, x

(
t/2;x0, v

)
,Λt/2v

)
∀ t ≥ 0.

Hence, by (4.38),

‖x(t;x0, v)− x∞‖ ≤ψ
(∥∥x (t/2;x0, v

)
− x∞

∥∥ , t/2)
+ ϕ(‖Λt/2v − v∞θ‖L∞) ∀ t ≥ 0.

Another application of (4.38) yields

‖x(t;x0, v)− x∞‖ ≤ψ
(
ψ
(
‖x0 − x∞‖, t/2

)
+ ϕ(‖v − v∞θ‖L∞), t/2

)
+ ϕ(‖Λt/2(v − v∞θ)‖L∞) ∀ t ≥ 0.

Consequently, defining ψ1, ψ2 ∈ KL by

ψ1(s, t) := ψ(2ψ(s, t/2), t/2)

and

ψ2(s, t) := ψ(2ϕ(s), t/2) ∀ s, t ≥ 0,

we obtain, for t ≥ 0,

‖x(t;x0, v)− x∞‖ ≤ψ1(‖x0 − x∞‖, t) + ψ2(‖v − v∞θ‖L∞ , t)
+ ϕ(‖Λt/2(v − v∞θ)‖L∞),
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which is (4.32).

We illustrate the conclusions of Theorem 4.3.3 with some simple examples.

Example 4.3.4. Consider the one-dimensional Lur’e system

ẋ = −x+ f(x) + v. (4.39)

Note that here n = 1, A = −1 and B = C = 1. We choose K = 0 and so

GK(s) = G0(s) = G(s) =
1

s+ 1
.

Since ‖G‖H∞ = G(0) = 1, we have γ = 1.

(a) Let f : R→ R be given by

f(z) = z − sign(z)(1− e−|z|) ∀ z ∈ R. (4.40)

Since

f ′(z) = 1− e−|z| ∀ z ∈ R,

the Mean-Value Theorem guarantees that

|f(z + ξ)− f(ξ)| < |z| ∀ ξ, z ∈ R, z 6= 0.

Furthermore,

F0(z) = z − f(z) = sign(z)(1− e−|z|) ∀ z ∈ R,

and so, F0(R) = (−1, 1). Setting Y := imC = R, we see that, for every

v∞ ∈ (−1, 1), the assumptions of statement (1) of Theorem 4.3.3 are

satisfied. Therefore, if v∞ ∈ (−1, 1), then, for all x0 ∈ R and all v ∈
L∞(R+,R) such that limt→∞ v(t) = v∞, we have that either x(t;x0, v)→
x∞ = F−1

0 (v∞) or |x(t;x0, v)| → ∞ as t→∞. We show that divergence

is not possible. Seeking a contradiction, suppose that there exists v∞ ∈
(−1, 1), v ∈ L∞(R+,R) with limt→∞ v(t) = v∞ and x0 ∈ R such that

|x(t;x0, v)| → ∞ as t → ∞. Setting x(t) := x(t;x0, v), we have that

either x(t) → ∞ or x(t) → −∞. If x(t) → ∞ as t → ∞, then there

exists τ ≥ 0 such that

ẋ(t) = −1 + e−x(t) + v(t) ≤ (v∞ − 1)/2 < 0 ∀ t ≥ τ.

But this implies that x(t) → −∞ as t → ∞, providing the desired con-
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tradiction. Similarly, if x(t) → −∞ as t → ∞, then there exists τ ≥ 0

such that

ẋ(t) = 1− ex(t) + v(t) ≥ (v∞ + 1)/2 > 0 ∀ t ≥ τ,

showing that x(t)→∞ as t→∞, which is impossible.

The above analysis shows that in particular that the system (4.39) has

the 0-CICS property. Note that the equilibrium pair (0, 0) of (4.39) is

not ISS (since the input v(t) = 1 + ε, ε > 0, produces an unbounded

solution).

(b) Consider again the system (4.39), but now with f : R→ R given by

f(z) = z − sat(z)e−|z|, ∀ z ∈ R,

where sat(z) := z for |z| ≤ 1 and sat(z) := sign(z) for |z| > 1. Set

Y := {0} and let v∞ = 0. Since,

|f(z)| < |z| ∀ z 6= 0,

the assumptions of statement (1) of Theorem 4.3.3 are satisfied and it

follows that y∞ = x∞ = 0, the equilibrium 0 of the uncontrolled system

(4.39) is GAS, and, for every x0 ∈ R and every v ∈ L∞(R+,R) with

limt→∞ v(t) = 0, either x(t;x0, v) → 0 or |x(t;x0, v)| → ∞ as t → ∞.

Divergence is possible, indeed, with input v given by v(t) = 2/(t + e), it

is straightforward to verify that x(t; 1, v) = ln(t+ e).

Example 4.3.5. Consider the two-dimensional Lur’e system

ẋ1 = −x1 + x2 − f(2x1 + x2) + v1

ẋ2 = −x1 − 3x2 + 3f(2x1 + x2) + v2,

}
(4.41)

with nonlinearity f ∈ F , where F is the set of all continuously differentiable

functions f : R→ R such that

f(0) = 0, f ′(z) ≥ 0 ∀ z ∈ R, max
y∈[3,4]

f ′(z) = 2

and f ′(z) ≤ 1/2 ∀ z ∈ R\(3, 4).
(4.42)

Setting

A :=

(
−1 1

−1 −3

)
, B :=

(
−1

3

)
, C :=

(
2 1

)
,
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it is clear that system (4.41) is of the form (4.3). The matrix A is Hurwitz (as

−2 is an eigenvalue of algebraic multiplicity two) and the transfer function of

the linear system (A,B,C) is G(s) = (s + 4)/(s + 2)2. Choosing K = 0, we

have,

‖GK‖H∞ = ‖G0‖H∞ = ‖G‖H∞ = G(0) = 1,

and thus, γ = 1. It follows from (4.42) that |z| − |f(z)| → ∞ as |z| → ∞ and

so, (4.31) holds with ζ = 0. Using elementary calculus, it is not difficult to

show that, for every ξ ∈ R\(1, 6), there exists aξ ∈ (0, 1) such that

|f(z + ξ)− f(ξ)| ≤ aξ|z| ∀ z ∈ R.

Hence, condition (A4.1) holds with Y := R\(1, 6). Furthermore, F0(z) =

FK(z) = z − f(z), and so, using (4.42),

F0(Y ) = (−∞, 1− f(1)] ∪ [6− f(6),∞) ⊇ (−∞, 1/2] ∪ [6,∞).

According to statement (2) of Theorem 4.3.3, for every v∞ = (v∞1 , v
∞
2 )T ∈ R2

such that
5v∞1 + 3v∞2

4
= −CA−1v∞ ∈ F0(Y ),

there exists x∞ ∈ R2 such that, for all x0 ∈ R2 and all v ∈ L∞(R+,R) with

limt→∞ v(t) = v∞, the solution x(t;x0, v) of (4.41) converges to x∞ as t→∞.

Let ξ0 ∈ (1, 6). Then it is not difficult to show that there exists f ∈ F such

that

sup
z 6=0

|f(z + ξ0)− f(ξ0)|
|z| = sup

z 6=0

f(z + ξ0)− f(ξ0)

z
> 1, (4.43)

and it is clear that condition (A4.1) does not hold for ξ = ξ0. We claim that,

for v∞ = (v∞1 , v
∞
2 )T ∈ R2 such that

5v∞1 + 3v∞2
4

= −CA−1v∞ = F0(ξ0), (4.44)

there does not exist x∞ ∈ R2 such that limt→∞ x(t;x0, v) = x∞ for all x0 ∈ R2

and all v ∈ L∞(R+,R2) with limt→∞ v(t) = v∞. To this end note that, by

(4.43), there exists z0 6= 0 such that

f(z0 + ξ0)− f(ξ0)

z0

> 1,

and thus

z0(F0(z0 + ξ0)− F0(ξ0)) < 0.
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Now (4.42) guarantees that

F0(z)→ ±∞ as z → ±∞,

and we conclude that there exists ξ1 6= ξ0 such that F0(ξ0) = F0(ξ1). As a

consequence, #F−1
0 (−CA−1v∞) > 1, and so, by statement (2) of Proposition

4.2.5, it follows that there does not exist x∞ ∈ R2 such that limt→∞ x(t;x0, v) =

x∞ for all x0 ∈ R2 and all v ∈ L∞(R+,R2) with limt→∞ v(t) = v∞.

To illustrate the last point, we consider a specific example. Fix ξ0 = 7/2 ∈
(1, 6) and let f ∈ F be given by

f(z) :=


z/2 z ∈ (−∞, 3)

q(z) z ∈ [3, 4]

z − 4

2
+ 3 z ∈ (4,∞),

(4.45)

where q(z) := −2z3 + 21z2 − 143z/2 + 81. See Figure 4.3 for the graph of f .

0 1 2 3 4 5 6 7 8
z

0

1

2

3

4

5

f
(z
)

Figure 4.3: Graph of the function f from (4.45).

It is straightforward to verify that the function f belongs in F , in particular:

f(3) =
3

2
, f(4) = 3, f ′(3) =

1

2
= f ′(4)

and max
z∈[3,4]

f ′(z) = f ′(ξ0) = 2.

The last identity shows that condition (4.43) holds. Moreover, F0(ξ0) = ξ0 −
f(ξ0) = 5/4, and thus, v∞ := (2,−5/3)T satisfies (4.44). A straightfor-

ward argument shows that F−1
0 (5/4) = {5/2, 7/2, 9/2}. Calculating x∞ =

−A−1(Bf(y∞) + v∞) for y∞ ∈ {5/2, 7/2, 9/2}, we see that (x∞, v∞) is an
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equilibrium pair for every x∞ of the form

x∞ =

(
13/12

x∞2

)
, where x∞2 ∈

{
1

3
,
4

3
,
7

3

}
.

In particular, there does not exist x∞ ∈ R2 such that limt→∞ x(t;x0, v) = x∞

for all x0 ∈ R2 and all v ∈ L∞(R+,R2) with limt→∞ v(t) = v∞.

The following corollary is a consequence of statement (1) of Theorem 4.3.3.

Corollary 4.3.6. Let K ∈ SR(A,B,C), set γ := 1/‖GK‖H∞, where γ := ∞
if ‖GK‖H∞ = 0, and assume that (A4.1) holds with Y := F−1

K (imC) ⊆
imC and set V := {w ∈ Rn : −CA−1

K w ∈ FK(Y )}. Furthermore, assume

that, for every x0 ∈ Rn and every v ∈ L∞(R+,Rn) such that limt→∞ v(t) =

v∞ ∈ V , the function Cx( · ;x0, v) is bounded. Then, for every v∞ ∈ V ,

#F−1
K (−CA−1

K v∞) = 1 and, for every x0 ∈ Rn and every v ∈ L∞(R+,Rn)

such that limt→∞ v(t) = v∞ ∈ V , we have that x(t;x0, v) → x∞ as t →
∞, where x∞ := −A−1

K (B(f(t∞) − Ky∞) + v∞) with y∞ given by {y∞} =

F−1
K (−CA−1

K v∞).

Proof. Let v∞ ∈ V and set z := −CA−1
K v∞. Obviously, z ∈ imC and it follows

from the definitions of the sets Y and V that F−1
K (z) ∩ Y 6= ∅. Consequently,

by Proposition 4.3.2, #F−1
K (−CA−1

K v∞) = #F−1
K (z) = 1.

To prove the convergence property, let x0 ∈ Rn, v∞ ∈ V and let v ∈
L∞(R+,Rn) be such that v(t) → v∞ as t → ∞ and write x(t) := x(t;x0, v).

By hypothesis, Cx is bounded, and so, since x satisfies

ẋ = AKx+B(f(Cx)−KCx) + v,

the Hurwitz property of AK guarantees that x is bounded. An application of

statement (1) of Theorem 4.3.3 shows that x(t) → x∞ as t → ∞, completing

the proof.

We note that Corollary 4.3.6 is particularly useful as usually rkC = p, in

which case imC = Rp, Y = Rp and FK(Y ) = FK(Rp) = imFK .

The next result, a corollary of statement (2) of Theorem 4.3.3, provides a

sufficient condition for the CICS property.

Corollary 4.3.7. Let K ∈ SR(A,B,C) and set γ := 1/‖GK‖H∞, where γ :=

∞ if ‖G K‖H∞ = 0. If there exists ζ ∈ Rp such that (4.25) holds and f

satisfies

(A4.2) For all ξ ∈ imC and all z ∈ Rp with z 6= 0,

‖f(z + ξ)− f(ξ)−Kz‖ < γ‖z‖,
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then (4.3) has the CICS property.

Proof. The map FK is surjective, as follows from hypothesis (A4.2), (4.25)

and statement (3) of Proposition 4.3.2. Hence, by (4.20),

F−1
K (−CA−1

K v∞) ∩ imC 6= ∅ ∀ v∞ ∈ Rn.

Invoking statement (2) of Theorem 4.3.3 with Y = imC shows that the Lur’e

system (4.3) has the CICS property.

As an illustration of Corollary 4.3.7, consider the system (4.39) with f

given by (4.40) and K = 0, see part (a) of Example 4.3.4. In this case, γ = 1,

Y = R and V = F0(R) = (−1, 1). As has been shown in part (a) of Example

4.3.4, assumption (A4.1) holds with Y = R and Cx( · ;x0, v) = x( · ;x0, v)

is bounded for all x0 ∈ R and all convergent v ∈ L∞(R+,Rn) with limit in

(−1, 1). Consequently, all assumptions of Corollary 4.3.6 are satisfied and so,

for all x0 ∈ R and all v ∈ L∞(R+,Rn) such that limt→∞ v(t) = v∞, we have

that limt→∞ x(t;x0, v) = x∞, where x∞ is given by {x∞} = F−1
0 (v∞). Note

that the system does not have the CICS property, since the input v(t) ≡ 1 + ε,

ε > 0, generates a divergent state trajectory. Moreover, note that Corollary

4.3.7 does not apply: whilst assumption (A4.2) is satisfied, there does not

exist ζ ∈ R such that (4.25) holds.

We give a sufficient condition for (A4.2) to hold.

Lemma 4.3.8. Assume that f : Rp → Rm is continuously differentiable, with

derivative denoted by Df . Let ∆ ⊆ Rp be a set which does not have any

accumulation points. If

‖(Df)(z)−K‖ < γ ∀ z ∈ Rp\∆,

then condition (A4.2) holds.

In the following we derive a number of further corollaries which provide “in-

terpretations” of Corollary 4.3.7 in terms of the complex Aizerman conjecture,

small-gain theorems and circle criteria respectively.

The first result is reminiscent of the complexified Aizerman conjecture [60,

61, 124]

Corollary 4.3.9. Let K ∈ Rm×p, r > 0 and assume that

BC(K, r) ⊆ SC(A,B,C).

If

‖f(z + ξ)− f(ξ)−Kz‖ < r‖z‖ ∀ ξ ∈ imC, ∀ z ∈ Rp, z 6= 0 (4.46)
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and there exists ζ ∈ Rp such that

r‖z‖ − ‖f(z + ζ)− f(ζ)−Kz‖ → ∞ as ‖z‖ → ∞, (4.47)

then (4.3) has the CICS property.

Proof. By hypothesis BC(K, r) ⊆ SC(A,B,C) and so, AK = A + BKC is

Hurwitz and BC(0, r) ⊆ SC(AK , B, C). Thus, appealing to elementary stability

radius theory [59, 61], we have that r ≤ 1/‖G‖H∞ . The claim now follows from

Corollary 4.3.7.

Corollary 4.3.9 says, roughly speaking, that linear stability, namely

BC(K, r) ⊆ SC(A,B,C),

implies CICS for all nonlinearities f satisfying the incremental ball condition

(4.46) and the divergence property (4.47).

Consider the following incremental small-gain condition:

(A4.3) For every ξ ∈ imC there exists αξ ∈ K∞ such that

‖GK‖H∞
‖f(z + ξ)− f(ξ)−Kz‖

‖z‖ ≤ 1− αξ(‖z‖)
‖z‖ (4.48)

for all z ∈ Rp with z 6= 0.

We are now in the position to state a “nonlinear” small-gain criterion for

the CICS property.

Corollary 4.3.10. Let K ∈ SR(A,B,C). If f satisfies (A4.3), then (4.3) has

the CICS property.

Proof. It is clear that if (A4.3) is satisfied, then (A4.2) and (4.25) hold.

Thus, the claim follows from Corollary 4.3.7.

Note that (A4.3) is not a small-gain condition in the sense of classical

input-output theory of feedback systems as presented in [31, 54, 55, 79, 146].

In the classical sense, for every fixed ξ ∈ imC, the RHS of (4.48) is smaller

that 1 for all z 6= 0, it is in general not uniformly bounded away from 1.

Indeed, it is possible that, for fixed ξ, the RHS of (4.48) is converging to 1 as

‖z‖ → 0 or ‖z‖ → ∞. Therefore, rather than comparing Corollary 4.3.10 with

classical small-gain theorems, it is more appropriate to view it in the context of

“modern” nonlinear ISS small-gain results, see for example [26, 74, 124, 139].
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If imC = Rp, then condition (A4.2) implies that fK : Rp → Rm, z 7→
f(z) − Kz is globally Lipschitz and γ is a Lipschitz constant for fK . If the

map fK is globally Lipschitz and has a Lipschitz constant λ < γ, then

‖GK‖H∞
‖fK(z + ξ)− fK(ξ)‖

‖z‖ ≤ λ

γ
< 1 ∀ z, ξ ∈ Rp, z 6= 0. (4.49)

This inequality is an incremental small-gain condition in the sense of classical

input-output theory and is sufficient for (A4.3) to hold. Consequently, (4.49)

is a sufficient condition for the CICS property.

In the following example we present a simple nonlinearity f such that f

satisfies (A4.2), fK has minimal Lipschitz constant equal to γ and (4.31)

holds.

Example 4.3.11. Let

A :=

−2 −1 0

1 −1 −1

−1 0 0

 , B :=

0

0

1

 , C :=
(

1 0 0
)

The characteristic polynomial of A is det(sI − A) = (s + 1)3. Hence, A is

Hurwitz and so we may choose K = 0, leading to

GK(s) = G0(s) = G(s) =
1

(s+ 1)3
.

A routine argument shows that

‖G‖H∞ = G(0) = 1,

and thus γ = 1/‖G‖H∞ = 1. In the following, we consider the Lur’e system

ẋ = Ax+Bf(Cx) + v

f(z) = sign(z) ln(1 + |z|).

}
(4.50)

The function f is continuously differentiable and

f ′(0) = 1 and 0 < f ′(z) < 1 ∀ z 6= 0. (4.51)

It follows from Lemma 4.3.8 that condition (A4.2) is satisfied. Moreover,

trivially, |z|− |f(z)| → ∞ as |z| → ∞, and so, Corollary 4.3.7 guarantees that

(4.50) has the CICS property.

If the assumptions of Corollary 4.3.7 hold, then, by Proposition 4.3.2, the

map F̂K : imC → imC restricting FK to imC is bijective and the ISSS gain
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of (4.3) can be written as

Γis(z) = −A−1
K (B(fK ◦ F̂−1

K )(−CA−1
K z) + z) ∀ z ∈ Rn,

where fK(z) := f(z)−Kz. Similarly, the IOSS gain of (4.3) can be expressed

as

Γio(z) = F̂−1
K (−CA−1

K z) ∀ z ∈ Rn.

Note that if A is Hurwitz, f = 0 and K = 0, then (4.3) can be rewritten

as the linear system

ẋ = Ax+ v, y = Cx,

which has transfer function H(s) = C(sI−A)−1. In this case FK(z) = F0(z) =

z for all z ∈ Rn and Γio(z) = −CA−1z = H(0)z, that is, the familiar linear

steady-state gain is recovered.

Definition 4.3.12. A square rational matrix-valued function s 7→ H(s) of a

complex variable s is said to be positive real if for every s ∈ C with Re s ≥ 0,

which is not a pole of H, the matrix H∗(s) + H(s) is positive-semi-definite.

Next we present, in a form of two corollaries, sufficient conditions for the

CICS property which are reminiscent of the well-known circle criterion, see,

for example, [55, 79, 124, 146].

Corollary 4.3.13. Let K1, K2 ∈ Rm×p. Assume that (A,B,C) is stabilizable

and detectable, (I − K2G)(I − K1G)−1 is positive real, for all ξ ∈ imC and

all z ∈ Rp with z 6= 0,

〈f(z + ξ)− f(ξ)−K1z, f(z + ξ)− f(ξ)−K2z〉 < 0 (4.52)

and there exists ζ ∈ Rp and α ∈ K∞ such that for all z ∈ Rp,

〈f(z + ζ)− f(ζ)−K1z, f(z + ζ)− f(ζ)−K2z〉 ≤ −α(‖z‖)‖z‖. (4.53)

Then the Lur’e system (4.3) has the CICS property.

Proof. We shall rewrite the Lur’e system in a form which will allow the appli-

cation of Corollary 4.3.7. For ξ ∈ Rp, define fξ : Rp → Rm by

fξ(z) = f(z + ξ)− f(ξ) ∀ z ∈ Rp. (4.54)

Setting

L :=
1

2
(K1 −K2) and M :=

1

2
(K1 +K2),
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we have that

〈fξ(z)−K1z, fξ(z)−K2z〉 = 〈fξ(z)− (M − L)z, fξ(z)− (M − L)z〉
= ‖fξ(z)−Mz‖2 − ‖Lz‖2 ∀ z ∈ Rp.

Note that in conjunction with (4.52) this implies kerL = {0}. Thus L∗L is

invertible and L# := (L∗L)−1L∗ ∈ Rp×m is a left inverse of L. Define the

nonlinearity g : Rm → Rm by g(z) := f(L#z) − K1L
#z for all z ∈ Rm and

consider the Lur’e system

ẋ = AK1x+Bg(LCx) + v, (4.55)

where AK1 := A + BK1C. The linear state space system (AK1 , B, LC) has

transfer function

H(s) = LC(sI − AK1)
−1B = LGK1(s), where GK1 = G(I −K1G)−1.

It is obvious that x solves the original Lur’e system ẋ = Ax+Bf(Cx)+v if,

and only if, x solves (4.55). Therefore, it is sufficient to show that (4.55) has the

CICS property. To this end, set K := −LL#. Using, mutatis mutandis, argu-

ments from [124, proof of Corollary 3.10], it follows that K ∈ SR(AK1 , B, LC),

γ :=
1

‖HK‖H∞
≥ 1, where HK := H(I −KH)−1,

there exists β ∈ K∞ such that

‖g(z + Lζ)− g(Lζ)−Kz‖ ≤ ‖z‖ − β(‖z‖) ≤ γ‖z‖ − β(‖z‖) ∀ z ∈ Rm,

and

‖g(z + η)− g(η)−Kz‖ < ‖z‖ ≤ γ‖z‖ ∀ η ∈ im (LC), ∀ z ∈ Rm, z 6= 0.

Consequently, the assumptions of Corollary 4.3.7 are satisfied in the context

of the Lur’e system (4.55) and therefore, (4.55) has the CICS property, com-

pleting the proof.

Definition 4.3.14. A rational square matrix H is said to be strictly positive

real if there exists ε > 0 such that the rational matrix function s 7→H(s− ε)
is positive real.

Corollary 4.3.15. Let K1, K2 ∈ Rm×p. Assume that ker(K1 − K2) = {0},
(A,B,C) is stabilizable and detectable, (I −K2G)(I −K1G)−1 is strictly pos-
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itive real and for all ξ ∈ imC and all z ∈ Rp,

〈f(z + ξ)− f(ξ)−K1z, f(z + ξ)− f(ξ)−K2z〉 ≤ 0 (4.56)

Then the Lur’e system (4.3) has the CICS property.

Proof. Set M := K2 − K1, let ξ ∈ imC and define fξ : Rp → Rm by (4.54).

Then, mutatis mutandis, arguments from [124, proof of Corollary 3.13] can be

invoked to show that there exists k > 0 and µ > 0 such that, for all κ ∈ (0, k),

the rational matrix function

(I − (K2 + κM)G)(I − (K1 − κM)G)−1

is positive real and

〈fξ(z)− (K1 − κM)z, fξ(z)− (K2 + κM)z〉 ≤ −µκ(κ+ 1)‖z‖2 ∀ z ∈ Rp.

It follows that the conditions of Corollary 4.3.13 hold with α(s) = µκ(κ+1)s

and K1 and K2 replaced by K1 − κM and K2 + κM respectively. Hence (4.3)

has the CICS property.

Note that the assumptions in Corollary 4.3.15 are essentially identical to

those in the “classical” circle criterion which guarantees global asymptotic

stability (see [54, Theorem 5.1], [55, Corollary 5.8] and [79, Theorem 7.1]),

the only difference being that (4.56) is the incremental version of the standard

sector condition in the circle criterion.

We further note that Corollary 4.3.15 is reminiscent of the main result

in [123] which provides a description of the steady-state error of single-input

single-output Lur’e systems of the form (4.2) in response to a class of poly-

nomial inputs under the assumption that the conditions of the SISO circle

criterion are met. Whilst the CICS property is not mentioned in [123], part

(1) of [123, Theorem 1] can be interpreted in CICS terms. We must emphasize

that Corollary 4.3.13 and Corollary 4.3.15 are not equivalent. We illustrate

this in the following example.

Example 4.3.16. Consider the one-dimensional Lur’e system

ẋ = f(x) + v, (4.57)

with f : R → R given by f(z) = −sign(z) ln(1 + |z|). The function f is

continuously differentiable, f ′(0) = −1 and −1 < f ′(z) < 0 for all z 6= 0.

Obviously, (4.57) is of the form (4.3) with (A,B,C) = (0, 1, 1), and so G(s) =
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1/s. Let K1 < K2 and note that

1−K2G(s)

1−K1G(s)
=
s−K2

s−K1

(4.58)

is positive real (strictly positive real) if, and only if, K2 ≤ 0 (K2 < 0).

Now if K1 < K2 < 0, then, for every ξ ∈ R,

(f(z + ξ)− f(ξ)−K1z)(f(z + ξ)− f(ξ)−K2z) > 0,

for |z| sufficiently large, and we conclude that Corollary 4.3.15 does not apply.

However, choosing K1 < −1 and K2 = 0, it is not difficult to show that the

conditions of Corollary 4.3.13 are satisfied. Indeed, for K1 < −1 and K2 = 0,

the rational function in (4.58) is positive real and, by the mean-value theorem

for differentiation,

(f(z + ξ)− f(ξ)−K1z)(f(z + ξ)− f(ξ)) < 0 ∀ ζ, z ∈ R, z 6= 0. (4.59)

Furthermore, it is clear that

sign(z)

(
f(z)

z
−K1

)
f(z)→ −∞ as |z| → ∞

which together with (4.59), shows that there exists α ∈ K∞ such that

(f(z)−K1z)f(z) ≤ −α(|z|)|z| ∀ z ∈ R.

We have now established that the assumptions of Corollary 4.3.13 hold with

K1 < −1, K2 = 0 and η = 0, and consequently, system (4.57) has the CICS

property.

4.4 The CICS Property for Another Class of

Lur’e Systems

In this section, we shall briefly consider forced Lur’e systems of the form

ẋ = Ax+Bf(Cx− v), x(0) = x0 ∈ Rn, y = Cx, (4.60)

where, as in Sections 4.2 and 4.3, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, f :

Rp → Rm, y denotes the output and v ∈ L∞loc(R+,Rp) is the control (forcing,

input) function. In the uncontrolled case (v = 0), the Lur’e systems (4.3) and

(4.60) are identical. The Lur’e system (4.60) can be thought of as a closed-
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loop system obtained by applying the linear feedback w = y− v to the system

ẋ = Ax+Bf(w).

Let x̂( · ;x0, v) denote the unique maximally defined forward solution of

the initial-value problem (4.60). The Lur’e system (4.60) is said to have

the CICS property if, for every v∞ ∈ Rp, there exists x∞ ∈ Rn such that

limt→∞ x̂(t;x0, v) = x∞ for all x0 ∈ Rn and all v ∈ L∞(R+,Rp) with limt→∞ v∞.

The following proposition provides a sufficient condition for (4.60) to have

the CICS property.

Proposition 4.4.1. Let K ∈ SR(A,B,C) and set γ := 1/‖GK‖H∞, where

γ :=∞ if ‖GK‖ = 0. Furthermore, assume that there exists η ∈ Rp such that

(4.25) holds and f satisfies

(A4.4) For all ξ, z ∈ Rp with z 6= 0,

‖f(z + ξ)− f(ξ)−Kz‖ < γ‖z‖.

Then the map FK is bijective and, for all v∞ ∈ Rp, all x0 ∈ Rn and all

v ∈ L∞(R+,Rp) with limt→∞ v(t) = v∞,

lim
t→∞

x̂(t;x0, v) = x∞ := −A−1
K B(f(y∞ − v∞)−Ky∞),

where y∞ ∈ Rp is given by

y∞ := F−1
K (−(I + GK(0)K)v∞) + v∞

and satisfies y∞ = Cx∞. In particular, the Lur’e system (4.60) has the CICS

property.

Proof. It follows from statement (3) of Proposition 4.3.2 that FK is surjective.

Injectivity of FK can be shown by an argument similar to that used in the

proof of statement (1) of Proposition 4.3.2.

To prove the convergence property, let x0 ∈ Rn, v∞ ∈ Rp and v ∈
L∞(R+,Rp) such that v(t) → v∞ as t → ∞. Setting x̃(t) := x̂(t;x0, v) − x∞,

ṽ(t) := v(t)−v∞ and f̃(z) := f(z+y∞−v∞)−f(y∞−v∞), a routine calculation

shows that x̃ satisfies

˙̃x = Ax̃+Bf̃(Cx̃− ṽ).

Consequently, writing w := B[f(Cx̃− ṽ)− f(Cx̃)], it follows that

˙̃x = Ax̃+Bf̃(Cx̃) + w, (4.61)

and we note that (4.61) is a forced Lur’e system of the form (4.3). Note that

the hypotheses of f combined with Lemma 4.3.1 guarantee that there exists
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α ∈ K∞ such that

‖f̃(z)−Kz‖ ≤ γ‖z‖ − α(‖z‖) ∀ z ∈ Rp.

Consequently, by Theorem 4.2.1, the equilibrium pair (0, 0) of (4.61) is ISS.

Moreover, hypothesis (A4.4) implies that

‖w(t)‖ ≤ ‖B‖(γ + ‖K‖)‖ṽ(t)‖ ∀ t ≥ 0,

showing that w(t) → 0 as t → ∞, noting that γ < ∞ by hypothesis. An

application of Proposition 4.2.2 now shows that x̃(t)→ 0 as t→∞ and thus,

x̂(t;x0, v)→ x∞ as t→∞.

It remains to show that y∞ = Cx∞. To see this, note that

Cx∞ = GK(0)(f(y∞ − v∞)−Ky∞).

Hence

y∞ − Cx∞ = y∞ − v∞ −GK(0)(f(y∞ − v∞)−K(y∞ − v∞))

+ (I + GK(0)K)v∞,

and so,

y∞ − Cx∞ = FK(y∞ − v∞) + (I + GK(0)K)v∞.

But

FK(y∞ − v∞) = −(I −GK(0)K)v∞,

implying that y∞ = Cx∞.

Note that under the assumptions of Proposition 4.4.1, it is natural to define

the IOSS gain of (4.60) to be the map

v∞ 7→ F−1
K (−(I + GK(0)K)v∞) + v∞.

Proposition 4.4.1 allows us to extend a classical result on integral control to

Lur’e systems of the form (4.60). To this end, assume that the assumptions

of Proposition 4.4.1 are satisfied, f(0) = 0 and the linear system (A,B,C)

contains an integrator, that is, G has a Laurent expansion of the form

G(s) =
∞∑

j=−1

Gjs
j,

for all sufficiently small |s|, s 6= 0, where Gj ∈ Rp×m and G−1 6= 0. If G−1K

is invertible, then GK(0)K = −I and so, y∞ = F−1
K (0) + v∞ = v∞, where
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we have used f(0) = 0, showing that every input v with limit v∞ produces

an output y converging also to v∞, or equivalently, the IOSS gain of (4.60) is

equal to the identity.

4.5 CICS Property for Nonnegative Lur’e Sys-

tems

In this section we study nonnegative Lur’e systems which arise naturally in a

variety of applied contexts, such as population dynamics and chemical reaction

models. We restrict attention to models with scalar feedback f (m = p = 1

and f is a scalar function), that is, Lur’e systems of the form

ẋ = Ax+ bf(cTx) + v, x(0) = x0 ∈ Rn
+, y = cTx, (4.62)

so that, in particular, the linear system (A, b, cT ) is a single-input, single-output

(SISO) system. We assume that the following positivity conditions hold:

(A4.5) A ∈ Rn×n is Metzler and b, c ∈ Rn
+, b, c > 0,

(A4.6) f : R+ → R+ is locally Lipschitz.

Furthermore, we only consider nonnegative control functions, v ∈ L∞loc(R+,Rn
+).

As before, we denote the unique maximally defined forward solution of the

initial-value problem (4.62) by x( · ;x0, v). It is well-known that if (A4.5)

and (A4.6) hold, then for all nonnegative initial states x0 ∈ Rn
+ and v ∈

L∞loc(R+,Rn), the solution x(t;x0, v) remains in the nonnegative orthant Rn
+

for all t ∈ [0, ω), where [0, ω), 0 < ω ≤ ∞, denotes the maximal interval of

existence. If ω <∞, then ‖x(t;x0, v)‖ → ∞ as t→∞. If (A4.5) and (A4.6)

hold, then we will refer to (4.62) as a nonnegative Lur’e system.

For later purposes, we introduce a further “positivity” assumption on the

linear system (A, b, cT ).

(A4.7) The matrix A+ bcT is irreducible.

Note that A+ bcT is irreducible if, and only if, A+kbcT is irreducible for every

k > 0.

Let s 7→ G(s) = cT (sI − A)−1b denote the transfer function of the linear

SISO system (A, b, cT ).

For completeness we restate Lemma 3.3.3.

Lemma 4.5.1. Assume that (A4.5) is satisfied, then

‖G‖H∞ = |G(0)| = G(0) ≥ 0.
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If additionally (A4.7) is satisfied, then G(0) > 0.

It follows from Lemma 4.5.1 that if A is Hurwitz, (A4.5) holds and (A, b)

is controllable or (cT , A) is observable, then G(0) > 0.

Theorem 4.5.2. Let Y ⊆ R+ be nonempty and assume that (A4.5) and

(A4.6) hold and A is Hurwitz. Set γ := 1/G(0), where γ := ∞ if G(0) = 0,

and assume further that∣∣∣∣f(z)− f(ξ)

z − ξ

∣∣∣∣ < γ ∀ (ξ, z) ∈ Y × R+ such that z 6= ξ, (4.63)

and

γz − f(z)→∞ as z →∞. (4.64)

Then the following statements hold.

(1) The map

F : R+ → R, z 7→ z −G(0)f(z) (4.65)

has the following properties: R+ ⊆ F (R+) and #F−1(z) = 1 for every

z ∈ R such that F−1(z) ∩ Y 6= ∅.

(2) Let v∞ ∈ R+ and assume that F−1(−cTA−1v∞) ∩ Y 6= ∅. Then,

#F−1(−cTA−1v∞) = 1

and, for all x0 ∈ Rn and all v ∈ L∞(R+,Rn
+) such that limt→∞ v(t) = v∞,

lim
t→∞

x(t;x0, v) = −A−1(bf(y∞) + v∞) =: x∞ ∈ Rn
+,

where {y∞} = F−1(−cTA−1v∞) and x∞ satisfies cTx∞ = y∞ ≥ 0.

Proof. We begin by extended f to the whole real line, R by defining

f̃ : R→ R, z 7→
{
f(z), for z ≥ 0

f(0), for z < 0.
(4.66)

Using (4.63), it is straightforward to show that∣∣∣∣∣ f̃(z + ξ)− f̃(ξ)

z

∣∣∣∣∣ < γ ∀ ξ ∈ Y, ∀ z ∈ R, z 6= 0.

Consequently,

|f̃(z + ξ)− f̃(ξ)| < γ|z| ∀ ξ ∈ Y, ∀ z ∈ R, z 6= 0. (4.67)
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Furthermore, by (4.64),

γ|z| − |f̃(z + ξ)− f̃(ξ)| → ∞ as |z| → ∞. (4.68)

Defining F̃ : R→ R by F̃ (z) = z−G(0)f̃(z), an application of Proposition

4.3.2 shows that F̃ is surjective and

#F̃−1(z) = 1 for every z ∈ R such that F̃−1(z) ∩ Y 6= ∅. (4.69)

Now F̃ (z) < −G(0)f(0) ≤ 0 for all z < 0 and so surjectivity of F̃ implies that

R+ ⊆ F̃ (R+) = F (R+). Moreover, let z ∈ R be such that F−1(z) ∩ Y 6= ∅.
If w ∈ F−1(z) ⊆ R+ then z = F (w) = F̃ (w), and so F−1(z) ⊆ F̃−1(z).

Consequently, F̃−1(z) ∩ Y 6= ∅, whence, by (4.69), #F−1(z) = #F̃−1(z) = 1,

completing the proof of statement (1).

To prove statement (2), let v∞ ∈ R+ be such that F−1(−cTA−1v∞)∩Y 6= ∅.
It follows from the proof of statement (1) that

F−1(−cTA−1v∞) ∩ Y ⊆ F̃−1(−cTA−1v∞) ∩ Y 6= ∅. (4.70)

Let x0 ∈ Rn
+ and let v ∈ L∞(R+,Rn

+) be such that limt→∞ v(t) = v∞. Setting

x(t) := x(t;x0, v), it is clear that x(t) ∈ Rn
+ for t ≥ 0, implying that cTx(t) ≥ 0

for all t ≥ 0. Consequently, x is a solution of

χ̇ = Aχ+ bf̃(cTχ) + v. (4.71)

Appealing to (4.67), (4.68) and (4.70), an application of statement (2) of The-

orem 4.3.3 to the Lur’e system (4.70) then shows that

#F̃−1(−cTA−1v∞) = 1, (4.72)

and

lim
t→∞

x(t) = −A−1(bf̃(y∞) + v∞), (4.73)

where {y∞} = F̃−1(−cTA−1v∞). By hypothesis, F−1(−cTA−1v∞)∩Y 6= ∅ and

thus, invoking (4.70) and (4.72), we obtain that

#F−1(−cTA−1v∞) = 1.

Finally, since −cTA−1v∞ ≥ 0, we have y∞ ≥ 0, implying that f(y∞) = f̃(y∞)

and {y∞} = F−1(−cTA−1v∞). In particular, the RHS of (4.73) is equal to

−A−1(bf(t∞) + v∞) and the proof is complete.

As an immediate consequence of Theorem 4.5.2 we obtain the following
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result.

Corollary 4.5.3. Assume that (A4.5) and (A4.6) hold and A is Hurwitz.

Set γ := 1/G(0), where γ :=∞ if G(0) = 0, and assume further that∣∣∣∣f(z)− f(ξ)

z − ξ

∣∣∣∣ < γ ∀ (ξ, z) ∈ R+ × Rn
+, such that z 6= ξ, (4.74)

and (4.64) is satisfied. Then, for every v∞ ∈ Rn
+, #F−1(−cTA−1v∞) = 1, with

F given by (4.65), the nonnegative Lur’e system (4.62) has the CICS property:

for all x0 ∈ Rn
+ and all v ∈ L∞(R+,Rn

+) with limt→∞ v(t) = v∞,

lim
t→∞

x(t;x0, v) = −A−1(bf(y∞) + v∞) =: x∞ ∈ Rn
+,

where {y∞} = F−1(−cTA−1v∞).

The following lemma, which is an immediate consequence of the mean-value

theorem for differentiation, provides a sufficient condition for (4.74) to hold.

Lemma 4.5.4. Assume that f : R+ → R+ is continuously differentiable and

let ∆ ⊆ R+ be a subset which does not have any accumulation points. If

|f ′(z)| < γ ∀ z ∈ R+\∆,

then (4.74) holds for all (ξ, z) ∈ R+ × R+ such that z 6= ξ.

Example 4.5.5. Nonnegative Lur’e systems of the form (4.62) with

A :=


−a1 0 · · · 0

a2 −a3
. . .

...
. . . . . . 0

0 a2n−2 −a2n−1

 , b :=


b1

0
...

0

 , c :=


0
...

0

1

 ,

where ai > 0 for all i ∈ {1, . . . , 2n − 1} and b1 > 0, arise in both population

modeling [51] and reaction kinetics, see, for example [103, Section 7.2]. Ob-

viously, A is Metzler and Hurwitz. The matrix A can represent a continuous

time population matrix as introduces in Section 2.3.1. In a population dynam-

ics context, the a2k−1 represents mortality rates and growth rates progressing

to the next age class, the a2k represents growth rates from the previous stage

class and f models nonlinear recruitment. The function v could model, for

example, immigration effects.
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Here we consider the following specific example of the above structure.

A :=

−1 0 0

1 −1/2 0

0 1 −2

 , b :=

2

0

0

 , c :=

0

0

1

 . (4.75)

Then,

G(s) = cT (sI − A)−1b =
2

(s+ 1/2)(s+ 1)(s+ 2)
,

and a routine argument shows that

‖G‖H∞ = G(0) = 2,

whence γ = 1/‖G‖H∞ = 1/2. We consider the nonnegative Lur’e system

ẋ = Ax+ bf(cTx) + v (4.76)

for three different nonlinearities f : R+ → R+.

(a) Let f(z) = z/(2 + z) for z ≥ 0. Then, f ′(z) = 2(z + 2)−2 and so,

f ′(0) =
1

2
and f ′(z) <

1

2
∀ z > 0.

By Lemma 4.5.4, condition (4.74) holds. Furthermore, (4.64) is trivially

satisfied. Consequently, Corollary 4.5.3 guarantees that (4.76) has the

CICS property.

(b) Let f(z) = 1/(2 + z) for z ≥ 0. Then, f ′(z) = −(z + 2)−2, and, arguing

as in part (a), we see that (4.76) has the CICS property.

Figure 4.4(a) displays numerical simulations of the state trajectories gen-

erated by the input signals v1 and v2 given by

vj(t) =

0

1

0

wj(t), with
w1(t) :=

1

1 + 1 + e−0.8(t−10)
,

w2(t) := 1 + (−1)S(t)(0.65)bt/10c,

(4.77)

where bzc ∈ N0 denotes the largest integer less or equal to z ∈ R+ and

the “switching function” S : R+ → {0, 1} is defined by

S(t) :=

{
0, bt/10c even,

1, bt/10c odd.

The functions w1 and w2 are plotted in Figure 4.4(b). Obviously, w1(t)→
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1 and w2(t)→ 1 as t→∞, and so

lim
t→∞

v1(t) = lim
t→∞

v2(t) =
(

0 1 0
)T

=: v∞.

By the CICS property, the limit

lim
t→∞

x(t;x0, vj) =: x∞

exists, is independent of j ∈ {1, 2} and the initial condition x0, and is

given by x∞ = −A−1(bf(y∞)+v∞), where {y∞} = F−1(−cTA−1v∞) (see

Corollary 4.5.3). The condition for y∞ can be expressed in the form

y∞ −G(0)f(y∞) + cTA−1v∞ = 0,

which is a quadratic equation in y∞ and has nonnegative solution y∞ =

1.5616. Now x∞ can be computed and we obtain

x∞ :=

0.5615

3.1231

1.5615

 .

See Figure 4.4(a) for an illustration.
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Figure 4.4: (a) State components generated by input signal shown in (b) and
given by (4.77). The nonzero initial states x0 have been chosen randomly.

(c) Let f(z) = 2z/(z + 1) for z ≥ 0, in which case

f(z)− f(ξ) =
2(z − ξ)

(z + 1)(ξ + 1)
∀ (ξ, z) ∈ R+ × R+.

Note that, for any ξ ∈ [0, 3], there exists z ≥ 0, z 6= ξ, such that∣∣∣∣f(z)− f(ξ)

z − ξ

∣∣∣∣ ≥ 1

2
= γ.

128



In particular, for ξ = 3:

f(3)

3
=
f(0)− f(3)

0− 3
=

1

2
= γ.

On the other hand, for every ξ > 3:∣∣∣∣f(z)− f(ξ)

z − ξ

∣∣∣∣ < 1

2
= γ ∀ z ≥ 0.

It is obvious that z/2 − f(z) → ∞ as z → ∞, and so, Theorem 4.5.2,

with Y := (3,∞), can be applied to (4.76). To this end, note that the

function F : R+ → R+ is given by

F (z) = z −G(0)f(z) = z − 4z

z + 1
,

and so, F (y) = (0,∞). Now,

A−1 :=

−1 0 0

−2 −2 0

−1 −1 −1/2

 ,

and thus, −cTA−1 = (1, 1, 1/2), showing that

−cTA−1v∞ > 0 ∀ v∞ ∈ R3
+\{0}.

Consequently,

F−1(−cTA−1v∞) ∩ Y 6= 0 ∀ v∞ ∈ R3
+\{0}.

Theorem 4.5.2 guarantees that, for every v∞ ∈ R3
+\{0}, there exists

x∞ ∈ R3
+ such that limt→∞ x(t;x0, v) = x∞ for all x∞ ∈ R3

+ and all

v ∈ L∞(R+,R3
+) with limt→∞ v(t) = v∞.

To consider a specific numerical example, let

v∞ =

1/4

1/4

1

 ,

in which case, −cTA−1v∞ = 1. Now F−1(1) = {2 +
√

5}, and so y∞ =
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2 +
√

5, f(y∞) = (1 +
√

5)/2, and

x∞ = −A−1(bf(y∞) + v∞) = (1 +
√

5)

1

2

1

+

1/4

1

1

 .

Finally, we comment on input functions v which converge to 0. There

does not exist x∞ such that limt→∞ x(t;x0, v) = x∞ for all x0 ∈ R3
+ and

all v ∈ L∞(R+,R3
+) with limt→∞ v(t) = 0. Indeed, this follows from

the fact that, for v = 0, the system (4.76) has two equilibria in R3
+,

namely (0, 0, 0)T and (3, 6, 3)T . Also note that F−1(0) = {0, 3} and thus

#F−1(0) > 1 (cf. Proposition 4.2.5).

In the context of the Lur’e system discussed in part (c) of Example 4.5.5,

it is interesting to note that the nonzero equilibrium x∗ = (3, 6, 3)T of the

uncontrolled system is asymptotically stable with region of attraction equal

to R3
+\{0}. This gives rise to the following question: does x(t;x0, v) converge

to x∗ for all nonzero initial-conditions x0 ∈ R3
+ and all v ∈ L∞(R+,R3

+) with

limt→∞ v(t) = 0? We shall now state and prove a CICS result which implies

that the answer to the question is “yes”.

Theorem 4.5.6. Assume that (A4.5)-(A4.7) hold and A is Hurwitz. Set

γ := 1/G(0) and assume further that f(0) = 0, there exists y∗ > 0 such that

f(y∗) = γy∗, (4.64) is satisfied,

lim inf
z→0

f(z)

z
> γ, (4.78)

and ∣∣∣∣f(z)− f(ξ)

z − ξ

∣∣∣∣ < γ ∀ (ξ, z) ∈ [y∗,∞)× (0,∞), z 6= ξ. (4.79)

Then the following statements hold.

(1) The points 0 and x∗ := −γy∗A−1b are equilibria of the uncontrolled sys-

tem ẋ = Ax+ bf(cTx).

(2) The map

F ∗ : [y∗,∞)→ R+, z 7→ z −G(0)f(z)

is a bijection.

(3) The nonnegative Lur’e system (4.62) has the following “quasi-CICS”

property: for all x0 ∈ Rn
+, all v∞ ∈ Rn

+ and all v ∈ L∞(R+,Rn
+) such
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that ‖x0‖+ ‖v‖L∞ > 0 and limt→∞ v(t) = v∞,

lim
t→∞

x(t;x0, v) = −A−1(bf(y∞) + v∞) =: x∞ ∈ Rn
+,

where y∞ = F ∗−1(−cTA−1v∞). In particular, if v∞ = 0, then y∞ = y∗

and x∞ = x∗ = −γy∗A−1b.

Proof. Since f(0) = 0, it is obvious that 0 is an equilibrium of ẋ = Ax +

bf(cTx). Invoking the hypothesis that f(y∗) = γy∗, a straightforward calcula-

tion shows the x∗ is also an equilibrium of ẋ = Ax + bf(cTx), completing the

proof of statement (1).

To prove statements (2) and (3), let x0, v∞ ∈ Rn
+ and v ∈ L∞(R+,Rn

+) be

such that ‖x0‖ + ‖v‖L∞ > 0 and limt→∞ v(t) = v∞. We consider two cases:

x0 6= 0 and x0 = 0.

Case 1: x0 6= 0.

Invoking (A4.5)-(A4.7) and conditions (4.78) and (4.79), it follows from

Proposition 3.4.14 that there exists ε ∈ (0, y∗) and τ ≥ 0 such that

cTx(t;x0, v) ≥ ε ∀ t ≥ τ. (4.80)

Consider

f̃ : R→ R, z 7→
{
f(z + y∗)− f(y∗), for z ≥ −y∗ + ε

f(ε)− f(y∗), for z < −y∗ + ε
(4.81)

and

F̃ : R→ R, z 7→ z −G(0)f̃(z),

and note that, since f(y∗) = γy∗,

F̃ (z) = z + y∗ −G(0)f(z + y∗) = F ∗(z + y∗) ∀ z ≥ 0. (4.82)

In particular, F̃ (0) = 0 and, by (4.64) and (4.79),

F̃ (z) > 0, ∀ z > 0

and

F̃ (z)→∞ as z →∞,

implying that F̃ (R+) = R+ and so

F̃−1(z) ∩ R+ 6= ∅ ∀ z ∈ R+. (4.83)
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Next, we prove that∣∣∣∣∣ f̃(z + ξ)− f̃(ξ)

z

∣∣∣∣∣ < γ ∀ ξ ∈ R+, ∀ z ∈ R, z 6= 0. (4.84)

To see this, let ξ ≥ 0. Then, invoking (4.79), we obtain that, for nonzero

z ≥ −(ξ + y∗) + ε,∣∣∣∣∣ f̃(z + ξ)− f̃(ξ)

z

∣∣∣∣∣ =

∣∣∣∣f(z + ξ + y∗)− f(ξ + y∗)

z + ξ + y∗ − (ξ + y∗)

∣∣∣∣ < γ.

Furthermore, for z < −(ξ + y∗) + ε, we have |z| = −z > ξ + y∗ − ε > 0 and so∣∣∣∣∣ f̃(z + ξ)− f̃(ξ)

z

∣∣∣∣∣ =

∣∣∣∣f(ε)− f(ξ + y∗)

z

∣∣∣∣ < ∣∣∣∣f(ε)− f(ξ + y∗)

ε− (ξ + y∗)

∣∣∣∣ < γ,

where the final inequality follows from (4.79). Therefore, (4.84) holds. Conse-

quently,

|f̃(z + ξ)− f̃(ξ)| < γ|z| ∀ ξ ∈ R+, ∀ z ∈ R, z 6= 0. (4.85)

Moreover, by (4.64),

γ|z| − |f̃(z + ξ)− f̃(ξ)| → ∞ as |z| → ∞. (4.86)

Setting x∗ := −A−1bf(y∗) = −γy∗A−1b and

x̃(t) := x(t+ τ ;x0, v)− x∗ ∀ t ≥ 0,

we have, by (4.80),

cT x̃(t) = cTx(t+ τ ;x0, v)− y∗ ≥ −y∗ + ε ∀ t ≥ 0,

where we have used that cTx∗ = y∗. Consequently,

f̃(cT x̃(t)) = f(cTx(t+ τ ;x0, v))− f(y∗) ∀ t ≥ 0,

and so, x̃ satisfies

˙̃x = Ax̃+ bf̃(cT x̃) + Λτv, (4.87)

where, as before, Λτ denotes the left-shift by τ . Appealing to (4.83), (4.85)

and (4.86), we may apply Theorem 4.3.3 with K = 0 and Y = R+, in the
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context of the controlled Lur’e system (4.87) and obtain that

#F̃−1(z) = 1 ∀ z ∈ R+ (4.88)

and

lim
t→∞

x̃(t) = −A−1(bf̃(ỹ∞) + v∞) =: x̃∞, (4.89)

where {ỹ∞} = F̃−1(−cTA−1v∞). Equations (4.82), (4.83) and (4.88) shows

that F ∗ is a bijection. Finally, setting y∞ := ỹ∞ + y∗, we obtain from (4.82),

that y∞ = F ∗−1(−cTA−1v∞), and, by (4.89),

x(t;x0, v)→ x̃∞ + x∗ = −A−1(b(f(y∞)− γy∗) + v∞)− γy∗A−1b

= −A−1(bf(y∞) + v∞), as t→∞.

Case 2: x0 = 0.

Then, by hypothesis, ‖v‖L∞ > 0 and thus, there exists t0 ≥ 0 such that

x(t0; 0, v) =

∫ t0

0

eA(t0−s) (bf(cTx(s; 0, v)) + v(s)
)
ds ≥

∫ t0

0

eA(t0−s)v(s)ds > 0.

The function χ defined by χ(t) := x(t+ t0; 0, x) satisfies

χ̇ = Aχ+ bf(cTχ) + Λt0v, χ(0) = x(t0; 0, v) > 0,

and so, by case 1,

lim
t→∞

x(t; 0, v) = lim
t→∞

χ(t) = −A−1(bf(y∞) + v∞) = x∞,

completing the proof.

Example 4.5.7. Here we re-visit part (c) of Example 4.5.5: A, b and c are

given by (4.75) and f(z) = 2z/(z + 1) for all z ≥ 0. It is readily verified that

A+bcT is irreducible, that is (A4.7) is satisfied. We recall that the uncontrolled

Lur’e system (4.76) has two equilibria, namely 0 and x∗ = (3, 6, 3)T (the latter

being asymptotically stable with domain of attraction R3
+\{0}, as follows from

Theorem 3.4.11) and that γ = 1/‖G‖H∞ = 1/2. We note that f(3) = 3/2 =

3γ, lim infz→0 f(z)/z = f ′(0) = 2, and∣∣∣∣f(z)− f(ξ)

z − ξ

∣∣∣∣ =

∣∣∣∣ 2

(z + 1)(ξ + 1)

∣∣∣∣ < 1

2
∀ (ξ, z) ∈ [3,∞)× (0,∞), z 6= ξ.

We may now apply Theorem 4.5.6 with y∗ = 3 and obtain that the Lur’e system

under consideration has the quasi-CICS property (in the sense of Theorem

4.5.6).
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Consider the input signals v1 and v2 given by vj(t) = wj(t)(0, 1, 0)T , where

w1(t) =
1

1 + e−0.8(t−10)

and

w2(t) =


0, 0 ≤ t ≤ 10,

sin

(
2(t− 10)

25

)
, 10 < t ≤ 10 +

25π

2
,

0, 10 +
25π

2
< t.

See Figure 4.5(b) for an illustration. Note that v1(t)→ (0, 1, 0)T and v2(t)→
(0, 0, 0)T as t→∞. By Theorem 4.5.6, for all x0 ∈ R3

+, we have x(t;x0, v1)→
x∞ and x(t;x0, v2)→ x∗ as t→∞, where

x∞ = −A−1

bf(y∞) +

0

1

0


 =

3.2361

8.4721

4.2361

 .

Figure 4.5(a) shows that plots of ‖x(t;x0, v1) − x∞‖2 and ‖x(t;x0, v2) − x∗‖2

for x0 = 0. In particular, we see that the state trajectory x(t; 0, v2) is at the

zero equilibrium for 0 ≤ t ≤ 10 since the input v2 is zero in this time interval.

On the interval (10, 10 + 25π/2), v2 is positive and correspondingly, x(t; 0, v2)

moves away from the origin and eventually converges to x∗.
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Figure 4.5: Numerical simulations for Example 4.5.7. (a) shows the norm of
state errors for x0 = 0 corresponding to the input signals shown in panel (b).

The following lemma provides a sufficient condition for (4.79) to hold.

Lemma 4.5.8. Assume that f : R+ → R+ is continuously differentiable,

f(0) = 0, f ′(z) ≥ 0 for all z ≥ 0, f ′(0) > γ, f ′ is nonincreasing and
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limz→∞ f ′(z) < γ. Then there exists y∗ > 0 such that f(y∗) = γy∗ and∣∣∣∣f(z)− f(ξ)

z − ξ

∣∣∣∣ =
f(z)− f(ξ)

z − ξ < γ ∀ (ξ, z) ∈ [y∗,∞)× (0,∞), z 6= ξ.

Proof. It follows immediately from the hypothesis that there exists y∗ > y† > 0

such that f(y∗) = γy∗, f ′(y†) = γ, f ′(z) > γ if z ∈ [0, y†) and f ′(z) < γ if

z > y†. We consider two cases.

Case 1: ξ ≥ y∗ and z > y†, z 6= ξ.

In this case,

|f(z)− f(ξ)| =
∣∣∣∣∫ z

ξ

f ′(s)ds

∣∣∣∣ < γ|z − ξ|.

Case 2: ξ ≥ y∗ and z ∈ (0, y†].

Note that, by case 1, |f(y∗)− f(ξ)| ≤ γ|y∗ − ξ| and thus,

|f(z)− f(ξ)| ≤ |f(z)− f(y∗)|+ γ|y∗ − ξ| = γ|y∗ − ξ|+ γy∗ − f(z).

Now

f(z) =

∫ z

0

f ′(s)ds > γz,

and we conclude that

|f(z)− f(ξ)| < γ|ξ − y∗|+ γ(y∗ − z) = γ|z − ξ|.

In both cases we have

|f(z)− f(ξ)| < γ|z − ξ|,

completing the proof.
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Chapter 5

Stability of Nonnegative Lur’e

Systems in Discrete Time

This chapter acts as a discrete time counterpart to Chapter 3.

5.1 Introduction

Lur’e systems are common nonlinear feedback systems in mathematical control

theory and comprises of a linear system with state x, input u and output y,

given by

x(t+ 1) = Ax(t) + bu(t), x(0) = x0 ∈ Rn
+, y(t) = cTx(t) (5.1)

and a nonlinear feedback u = f(y). This system can be written in closed loop

form as

x(t+ 1) = Ax(t) + bf(cTx(t)), x(0) = x0 ∈ Rn
+. (5.2)

We restrict our attention to nonnegative systems, that is, systems in which

the state x remains nonnegative for all time t.

Lur’e systems arise in various contexts, in particular in population dynam-

ics such as [143]. In this application x(t) describes the population structure at

time t, A models linear transition rates such as survival or growth, and bf(cT )

is a density dependent birth rate.

The main inspiration for this chapter is [143] in which a trichotomy of sta-

bility/instability is derived for nonnegative Lur’e systems. We develop this

trichotomy more by implementing absolute stability theory. A common as-

sumption that the nonlinearity f satisfies f(0) = 0 yields that 0 is an equi-

librium of (5.2). The study of stability properties of the zero equilibrium of

Lur’e systems is termed absolute stability and generally refers to the situation

where the linear system (5.1) is known and the nonlinearity f is unknown, but
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usually sector bounded. Common nonlinearities used in population dynamic

models are the Beverton-Holt nonlinearity [8] and the Ricker nonlinearity [117],

which both satisfy f(0) = 0. The sector boundedness of these nonlinearities is

considered in Section 2.4.2.

Although we gain a lot by implementing absolute stability theory such

as exponential asymptotic stability and the ability to apply the results to a

larger class of nonlinear systems, we do however loose the strict trichotomy

from [143]. We organize the results in this chapter in a similar manner by

considering three separate cases, instability, stability of the 0 equilibrium and

stability of a nonzero equilibrium.

If the Lur’e system (5.2) is subject to an external additive time-dependence

d, otherwise known as a forcing term, the system (5.2) can be replaced by

x(t+ 1) = Ax(t) + bf(cTx(t)) + d(t), x(0) = x0 ∈ Rn
+, (5.3)

where d : N0 → Rn
+. We adapt recent research [125] to show that under certain

conditions this system is input-to-state stable (ISS). What this means is that

the mapping (x0, d) 7→ x(t) has nice boundedness and asymptotic properties.

The study of these nonnegative, forced Lur’e systems provides an extension

to the material in [143] which has biological interpretations such as migration

and can account for model error.

We provide a descriptive example of how the theory developed in this chap-

ter can be applied to population modeling and what the nonlinearity and dis-

turbance could represent.

This chapter is organized as follows. Section 5.2 collects material on abso-

lute stability and input-to-state material which are essential to the results in

the remainder of this chapter. Section 5.3 builds on the concept of nonnegativ-

ity established in this introduction and provides assumption which guarantee

that the system remains nonnegative, including some basic results as well as an

example system which will be used throughout this chapter. Section 5.4 con-

tains results in which we apply absolute stability results to nonnegative Lur’e

systems. Section 5.5 contains results in which we apply input-to-state stability

results to forced nonnegative Lur’e systems. Finally Section 5.6 contains an

overview of one particular way we can apply the results from this chapter to

a model the population of a specific species.
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5.2 Stability of Nonnegative Lur’e Systems in

Discrete Time

Consider the discrete time Lur’e system

x(t+ 1) = Ax(t) + bf(cTx(t)), x(0) = x0 ∈ Rn, (5.4)

where A ∈ Rn×n, b, c ∈ Rn and f : R → R is continuous with f(0) = 0. Let

x( · , x0) denote the solution of the system (5.4).

Let S(A, b, cT ) denote the set of complex stabilizing gains of the linear

system (A, b, cT ), that is

S(A, b, cT ) := {κ ∈ C : ρ(A+ κbcT ) < 1}.

Define G to be the transfer function of the linear system (A, b, cT ), that is

G(z) := cT (zI − A)−1b.

Let k ∈ S(A, b, cT ) and define Gk ∈ H∞ by

Gk(z) := cT (zI − A− kbcT )−1b,

or equivalently,

Gk(z) :=
G(z)

1− kG(z)
.

Define r = 1/‖Gk‖H∞ , then, by stability radius theory,

D(k, r) ⊆ S(A, b, cT ),

where D(k, r) denotes a disc centered at k with radius r, that is,

D(k, r) = {κ ∈ R : |k − κ| < r}.

Let D(k, r) denote the closed ball centered at k with radius r, that is,

D(k, r) = {κ ∈ R : |k − κ| ≤ r}.

We now give precise definitions to three types of stability which we will be

considering in this chapter.

Definition 5.2.1. Consider the system (5.4).

1. The equilibrium 0 is said to be stable in the large in the sense that there
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exists exists g ≥ 1 such that, for every x0 ∈ R,

‖x(t;x0)‖ ≤ g‖x0‖ ∀ t ∈ N0.

2. The equilibrium 0 is said to be globally asymptotically stable if 0 is stable

in the large and for every x0 ∈ Rn, x(t;x0)→ 0 as t→∞.

3. The equilibrium 0 is said to be globally exponentially stable if there exists

γ > 0 and g ≥ 1 such that, for every x0 ∈ Rn,

‖x(t;x0)‖ ≤ ge−γt‖x0‖ ∀ t ∈ N0.

The following is a key result for this chapter and is an Aizerman version of

the circle criterion developed in [125].

Theorem 5.2.2. Let A ∈ Rn×n and b, c ∈ Rn. Moreover, let f : R → R be

continuous with f(0) = 0. Assume that k ∈ S(A, b, cT ), where k ∈ R, and set

r :=
1

‖Gk‖H∞
.

Further assume that at least one of the following assumptions holds true:

• There exists z0 with |z0| = 1 such that

r|Gk(z0)| < 1.

• The linear triple (A, b, cT ) is controllable and observable.

Then the following statements hold.

(1) If
f(y)

y
⊆ D(k, r), ∀ y ∈ R\{0},

then there exists g ≥ 1 such that

‖x(t;x0)‖ ≤ g‖x0‖, ∀ t ∈ N0, ∀ x0 ∈ Rn.

In particular, the equilibrium 0 of (5.4) is said to be stable in the large.

(2) If
f(y)

y
⊆ D(k, r), ∀ y ∈ R\{0},

then the equilibrium 0 of (5.4) is globally asymptotically stable in the

sense that 0 is stable in the large and, for all x0 ∈ Rn, x(t;x0) → 0 as

t→∞ .
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(3) If there exists r1 ∈ (0, r) such that

f(y)

y
⊂ D(k, r1), ∀ y ∈ R\{0},

then the equilibrium 0 of (5.4) is globally exponentially stable, that is,

there exists γ > 0 and g ≥ 1 such that

‖x(t;x0)‖ ≤ ge−γt‖x0‖, ∀ t ∈ N0, ∀ x0 ∈ Rn.

Now consider the forced discrete time Lur’e system of the form

x(t+ 1) = Ax(t) + bf(cTx(t)) + d(t), x(0) = x0 ∈ Rn, (5.5)

where A ∈ Rn×n, b, c ∈ Rn, f : R → R is continuous with f(0) = 0 and

d : N0 → Rn. The forcing term d is also known as a disturbance or input. Let

x( · ;x0, d) denote the solution of the system (5.5).

Definition 5.2.3. Let d : N0 → Rn. Define

‖d‖t := max{‖d(τ)‖1 : τ ∈ {0, 1, . . . , t}}.

The following theorem is the second key result which we will be using

throughout this chapter and also comes from [125].

Theorem 5.2.4. Let A ∈ Rn×n, b, c ∈ Rn and let f : R → R be continuous

with f(0) = 0. Let d : N0 → Rn. Assume that k ∈ S(A, b, cT ), where k ∈ R,

and set

r :=
1

‖Gk‖H∞
,

where Gk(z) = cT (zI − A− kbcT )−1b. Therefore,

D(k, r) ⊆ S(A, b, cT ).

Assume that

r|y| − |f(y)| → ∞ as |y| → ∞.

Further assume that at least one of the following assumptions holds true:

• There exists z0 with |z0| = 1 such that

r|Gk(z0)| < 1.

• The linear triple (A, b, cT ) is controllable and observable.
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Then there exists ψ ∈ KLD and ϕ ∈ K such that, for all x0 ∈ Rn and all

d : N0 → Rn,

‖x(t;x0, d)‖ ≤ ψ(‖x0‖, t) + ϕ(‖d‖t) ∀ t ∈ N0. (5.6)

Obviously, if d = 0, then 0 is an equilibrium of (5.4). If there exists

ψ ∈ KLD and ϕ ∈ K such that (5.6) holds for all x0 ∈ Rn and all d : N0 → Rn,

then the equilibrium 0 of the system (5.5) is said to be input-to-state stable

(ISS).

5.3 Nonnegative Lur’e Systems in Discrete

Time

In this section we introduce assumptions which ensure that the state x(t) of

a Lur’e system given by (5.4) remains nonnegative for all t ∈ R+. We then

make a series of remarks and lemmas about these nonnegative Lur’e systems.

To conclude this section we introduce a nonnegative Lur’e system which will

be used as an example throughout this chapter and show that it satisfies the

assumptions which have been introduced.

We first make a trivial remark.

Remark 5.3.1. Consider the system (5.4). If f(0) = 0, then 0 is an equilib-

rium of the system.

We proceed to introduce assumptions which will be used throughout this

chapter.

(A5.1) The matrix A is nonnegative and the vectors b and c are

nonnegative and nonzero.

(A5.2) The matrix A is stable, that is ρ(A) < 1.

(A5.3) The matrix A+ bcT is primitive.

(A5.4) f : R+ → R+ is continuous.

We note that these assumptions are very similar to (A3.1)-(A3.4) appear-

ing in Chapter 3. (A5.1) is a nonnegativity result on the linear system where

A is now nonnegative as opposed to Metzler. (A5.2) is a stability condition on

the matrix A which is now discrete time stability instead of Hurwitz. (A5.3) is

a primitivity assumption which replaces the irreducibility assumption (A3.3)

as in Chapter 3, the matrix A + bcT was not nonnegative. Finally (A5.4) is
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a nonnegativity assumption on the nonlinearity and includes a constraint on

the smoothness of f .

A series of remarks and lemmas based on a system (5.4) satisfying these

assumptions is made. The first remark is about the system (5.4) being non-

negative.

Remark 5.3.2. If (A5.1) and (A5.4) hold, then, for every x0 ∈ Rn
+, the

solution x( · , x0) of (5.4) satisfies x(t;x0) ∈ Rn
+ for all t ∈ N0.

The next remark is about primitivity.

Remark 5.3.3. If (A5.3) is satisfied, then A+κbcT is primitive for all κ > 0.

The following remark plays an important role in this chapter. It demon-

strates the nonnegativity of the steady-state gain of the linear system (A, b, cT )

and relates it to the H∞-norm, under certain assumptions.

Lemma 5.3.4. Assume (A5.1)-(A5.3) hold. Then

‖G‖H∞ = G(1) > 0.

Proof. We begin by demonstrating that G(1) > 0. By (A5.1) we have that

cTAjb ≥ 0 for all j. Noting that

G(1) = cT (I − A)−1b =
∞∑
j=0

cTAjb, (5.7)

by (A5.2), it is sufficient to show that cTAjb > 0 for some j.

To this end, note that by (A5.3), A + bcT is primitive, therefore (A +

bcT )k � 0 for some k ∈ N. Combining this with (A5.1), we obtain cT (A +

bcT )kb > 0. Now,

0 < cT (A+ bcT )kb =
2k∑
i=1

si,

where si = cTAjibσi, for suitable σi ≥ 0 and 0 ≤ ji ≤ k. Consequently,

cTAjib > 0 for some i between 1 and 2k. Therefore, invoking (5.7), G(1) > 0.

Now we proceed to show that ‖G‖H∞ = G(1). By definition,

‖G‖H∞ = sup
|z|>1

|G(z)| = sup
|z|=1

|G(z)|.

For |z| ≥ 1,

G(z) = cT (zI − A)−1b =
∞∑
j=0

1

z
cT
(

1

zj
Aj
)
b,
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and so, for |z| = 1,

|G(z)| ≤
∞∑
j=0

|cTAjb| =
∞∑
j=0

cTAjb = G(1),

which completes the proof.

We now define a quantity which will be key to all of the results which we

shall be considering in this chapter.

Definition 5.3.5. Define p ∈ R to be the inverse of the steady-state gain of

(A, b, cT ), that is

p :=
1

G(1)
=

1

cT (I − A)−1b
.

Lemma 5.3.6. Assume that (A5.1)-(A5.3) hold and let q > p. Then

1 = ρ(A+ pbcT ) < ρ(A+ qbcT ). (5.8)

Proof. We begin by showing ρ(A + pbcT ) < ρ(A + qbcT ) for p < q. Noting

that A + pbcT < A + qbcT and the fact that primitivity implies irreducibility

by Definition 2.1.11, it follows from Corollary 2.1.24 that ρ(A+pbcT ) < ρ(A+

qbcT ).

Now we shall show that 1 = ρ(A + pbcT ). We have that p = 1/‖G‖H∞ by

Lemma 5.3.4, and, by a stability radius result for nonnegative systems (see [63,

Theorem 3.4]), p is a destabilizing perturbation of minimal modulus, implying

that ρ(A+ pbcT ) = 1.

Throughout this chapter we will illustrate main results by simulation. For

simplicity the linear system will remain unchanged with just the nonlinearity

varying to fit the assumptions of the theorem which we are illustrating. We

introduce an extra assumption, which not necessarily linked to nonnegative

Lur’e systems, will be required for a lot of the results.

(A5.5) At least one of the following statements hold.

• There exists z0 with |z0| = 1 such that p|G(z0)| < 1.

• (A, b, cT ) is controllable and observable.

We now introduce our example system and verify that (A5.1)-(A5.3) and

(A5.5) are satisfied.
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Example 5.3.7. Consider the Lur’e system (5.4) with the following choice of

linear system,

A =

0.75 0 0

0.1 0.5 0

0 0.5 0.5

 , b =

1

0

0

 , c =

0

1

1

 . (5.9)

We begin by noting that A, b, c are all nonnegative and nonzero, therefore

(A5.1) hold. By simple calculation it can be shown that ρ(A) = 0.75, therefore

(A5.2) is satisfied. Now

A+ bcT =

0.75 1 1

0.1 0.5 0

0 0.5 0.5

 ,

therefore, by the results in Section 2.1.2, A+bcT is primitive, therefore (A5.3)

holds.

To demonstrate that (A5.5) holds we demonstrate that (A, b, cT ) is control-

lable and observable. Beginning with controllable, note that the controllability

matrix of the system is

C =
(
b Ab A2b

)
=

1 0.75 0.5625

0 0.1 0.125

0 0 0.05

 .

This is of full rank, therefore (A, b) is controllable. To show that (A, cT ) is

observable, we consider the observability matrix of the system is

O =

 cT

cTA

cTA2

 =

 0 1 1

0.1 1 0.5

0.175 0.75 0.25

 .

Clearly this is of full rank, therefore (A, cT ) is observable. Combing the above,

(A, b, cT ) is controllable and observable, therefore, (A5.5) holds.

We end this example noting that p = 0.625.

5.4 Absolute Stability of Nonnegative Lur’e

Systems in Discrete Time

We divide this section into three parts. The first considers the case where we

do not have stability and all solutions diverge to +∞. The second considers
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systems with a unique equilibrium at 0 which is stable. The final part considers

systems with two equilibria, 0 and x∗ 6= 0, where we demonstrate that under

certain assumptions, x∗ is stable.

5.4.1 Systems Without Stable Equilibria

In this section we consider systems of the form (5.4) which lack a stable equi-

libria. This occurs when infy>0 f(y)/y > p, as illustrated in Figure 5.1. In this

case we will see that all nonzero x0 ∈ Rn
+ leads to x(t;x0) diverging to +∞ in

all components as t→∞.

y

f(y)

0

py
f

Figure 5.1: A graph of a function f satisfying (A5.4) and infy>0 f(y)/y > p.

Theorem 5.4.1. Consider the system (5.4) and assume (A5.1)-(A5.4) hold.

If

inf
y>0

f(y)

y
> p,

then for all x0 ∈ R+ with x0 6= 0,

lim
t→∞

xi(t;x
0) =∞, ∀ i ∈ {1, . . . , n},

where xi(t;x
0) denotes the i-th component of x(t;x0).

Proof. Let x0 ∈ Rn
+ with x0 6= 0. By hypothesis on f , there exists q > p such

that

f(y) ≥ qy ∀ y ∈ R+.

Therefore,

x(t+ 1;x0) = Ax(t;x0) + bf(cTx(t;x0)) ≥ Ax(t;x0) + bqcTx(t;x0)

= (A+ qbcT )x(t;x0), ∀ t ∈ N0,
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and so, x(t;x0) ≥ (A+ qbcT )tx0. By Lemma 5.3.6, r := ρ(A+ qbcT ) > 1. Now

r−t(A+ qbcT )t → vwT

wTv
� 0 as t→∞,

where v and w are the left and right Perron vectors of A + qbcT , respectively

(see Theorem 2.1.23). Thus

lim inf
t→∞

r−txi(t;x
0) ≥ ξi,

for i = 1, . . . , n, where ξi is the i-th component of

ξ :=
vwT

wTv
x0 � 0.

Consequently

lim
t→∞

xi(t;x
0) =∞,

for every i = 1, . . . , n.

Example 5.4.2. Recall the system from Example 5.3.7 and let f(y) = 0.75y+

sin(y/3). Note that (A5.4) holds for this nonlinearity. Clearly,

inf
y>0

f(y)

y
> p,

which can be seen in Figure 5.2(a), therefore all of the assumptions of The-

orem 5.4.1 apply, therefore, for all initial condition x0 ∈ Rn
+ with x0 6= 0,

limt→∞ xi(t, x0) = ∞ for i = 1, 2, 3, where xi(t;x
0) is the i-th component of

x(t;x0). This is illustrated in Figure 5.2(b), where x0 was randomly chosen.

Although the divergence is slow, it is the case that x(t;x0) is diverging to +∞
in all three components.
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Figure 5.2: Numerical simulations for Example 5.4.2. (a) A plot of the non-
linearity and the line py. (b) Time history of x(t).
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5.4.2 Systems With A Unique Stable Equilibrium

In this section we consider systems which have a single equilibrium, which

exhibits somewhat nice stability properties. This unique equilibrium is x = 0

and occurs when inequalities of the form f(y)/y ≤ p hold for all y > 0.

Theorem 5.4.3. Consider the system (5.4) and assume (A5.1)-(A5.5) hold.

(1) If f(y)/y ≤ p for all y > 0, then the equilibrium 0 is stable in the large

in the sense that there exists g ≥ 1 such that, for every x0 ∈ Rn
+,

‖x(t;x0)‖ ≤ g‖x0‖ ∀ t ∈ N0.

(2) If f(y)/y < p for all y > 0, then the equilibrium 0 is globally asymptot-

ically stable in the sense that 0 is stable in the large and that for every

x0 ∈ Rn
+, x(t;x0)→ 0 as t→∞.

(3) If supy>0 f(y)/y < p, then the equilibrium 0 is globally exponentially

stable in the sense that there exists γ > 0 and g ≥ 1 such that, for every

x0 ∈ Rn
+,

‖x(t;x0)‖ ≤ ge−γt‖x0‖ ∀ t ∈ N0.

Proof. By Lemma 5.3.4, p = 1/‖G‖H∞ and therefore D(0, p) ⊆ S(A, b, cT ).

Aiming to apply Theorem 5.2.2, define an extension f̃ : R→ R of f by

f̃(y) =

{
f(y) for y > 0

0 for y ≤ 0.
(5.10)

By Remark 5.3.2 we have that for every x0 ∈ Rn
+, x(t;x0) ∈ Rn

+ for all t ∈ N0.

Therefore, for every x0 ∈ Rn
+, x(t;x0) is also the solution of

x(t+ 1) = Ax(t) + bf̃(cTx(t)), x(0) = x0. (5.11)

To prove statement (1), assume f(y)/y ≤ p for all y > 0. Trivially,

f̃(y)

y
⊆ D(0, p) ∀ y ∈ R, y 6= 0.

Application of statement (1) of Theorem 5.2.2 yields the existence of g ≥ 1

such that, for all x0 ∈ Rn
+,

‖x(t;x0)‖ ≤ g‖x0‖ ∀ t ∈ N0.
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To prove statement (2), assume f(y)/y < p for all y > 0. Now

f̃(y)

y
⊆ D(0, p) ∀ y ∈ R, y 6= 0.

Application of statement (2) of Theorem 5.2.2 to system (5.11) implies that

x(t;x0)→ 0 as t→∞ for all x0 ∈ Rn
+.

To prove statement (3), assume supy>0 f(y)/y < p. Therefore

f̃(y)

y
⊆ D(0, p1) ∀ y ∈ R, y 6= 0,

where p1 = supy>0 f(y)/y. Application of statement (3) of Theorem 5.2.2 to

the system (5.11) yields the existence of γ > 0 and g ≥ 1 such that, for all

x0 ∈ Rn
+,

‖x(t;x0)‖ ≤ ge−γt‖x0‖ ∀ t ∈ N0.

This completes the proof.

See Section 2.4.1 for a comparison of the different conditions on f appearing

in Theorem 5.4.3.

Example 5.4.4. We return to the Lur’e system given in Example 5.3.7. We

consider two different nonlinearities, the first of which is

f1(y) =
5y

8 + y
, y ≥ 0.

We begin by noting that (A5.4) holds. Now note that as y → 0, f(y)→ 5/8 =

0.625 = p, and for all y > 0, f(y)/y < p, as seen in Figure 5.3(a), therefore

the conditions of statement (2) of Theorem 5.4.3 hold, therefore 0 is stable in

the large and, for every x0 ∈ R+, x(t;x0)→ 0 as t→∞. This can be seen in

Figure 5.3(b) where x0 is randomly chosen.

Now consider the same system, now with nonlinearity given by

f2(y) =
5y

16 + y
, y ≥ 0.

Again this nonlinearity satisfies (A5.4). However we now have that

sup
y>0

f(y)

y
< p,

in fact we have f(y)/y < 2p for all y > 0. This can be seen in Figure 5.4(a)

We can therefore apply statement (3) of Theorem 5.4.3 to this system which

yields that 0 is globally exponentially stable, in the sense that there exists γ > 0
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Figure 5.3: Numerical simulations for Example 5.4.4 with nonlinearity f1(y) =
5y/(8 + y). (a) A plot of the nonlinearity and the line py. (b) Time history of
x(t).

and g ≥ 1 such that, for every x0 ∈ Rn
+, ‖x(t;x0)‖ ≤ ge−γt‖x0‖, for all t ∈ N0.

This exponential stability is illustrated in Figure 5.4(b) where x0 is randomly

chosen.

0 2 4 6 8 10
y

0

2

4

6

8

f
(y
)

f2(y)

py

py/2

(a)

0 20 40 60 80
t

0

1

2

3

4

x
i(
t)

x1(t)

x2(t)

x(3(t)

(b)

Figure 5.4: Numerical simulations for Example 5.4.4 with nonlinearity f2(y) =
5y/(16+y). (a) A plot of the nonlinearity and the lines py and py/2. (b) Time
history of x(t).

The difference between asymptotic stability and exponential stability be-

comes very clear when considering Figures 5.3(b) and 5.4(b). In the first figure

we has asymptotic stability and the three components can be seen converging to

0. In the second we have exponential stability, in which case the three compo-

nents converge to 0 at a much faster rate. In fact it takes just 100 time steps

to converge to 0 within a small tolerance, where the asymptotic stability case

still has not converged in 250 time steps with the same tolerance.
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5.4.3 Systems With Two Equilibria

In this section we consider systems with two equilibria, namely 0 and x∗ 6= 0.

We begin this section by introducing some more assumptions.

(A5.6) There exists y∗ > 0 such that f(y∗) = py∗.

(A5.7) f satisfies∣∣∣∣f(y)− f(y∗)

y − y∗
∣∣∣∣ ≤ p ∀ y ≥ 0, y 6= y∗.

(A5.8) f satisfies∣∣∣∣f(y)− f(y∗)

y − y∗
∣∣∣∣ < p, ∀ y > 0, y 6= y∗.

(A5.9) f satisfies

lim sup
y→y∗

∣∣∣∣f(y)− f(y∗)

y − y∗
∣∣∣∣ < p.

We firslty draw the readers attention to how these assumptions are the

same as (A3.5)-(A3.8) in Chapter 3. Assumptions (A5.7) and (A5.8) are

sector conditions in the sense that they are equivalent to the graph of f be-

gin sandwiched between the straight lines l1(y) = py and l2(y) = 2py∗ − py.

Assumption (A5.9) means that the graph of f(y) does not cross the lines py

and 2py∗ − py tangentially.

Further details of these sector conditions are given in Section 2.4.2.

As mentioned previously, we are dealing with systems with two equilibria.

A more precise meaning of this is given in the following lemma.

Lemma 5.4.5. Assume that (A5.1)-(A5.4) and (A5.6) hold. Then 0 and

x∗ = (I − A)−1bpy∗ > 0 are equilibria of the system (5.4). If in addition

(A5.8) holds, then there are no other equilibria in Rn
+.

Proof. By Remark 5.3.1, 0 is an equilibrium of (5.4). By (A5.2),

(I − A)−1 =
∞∑
k=0

Ak ≥ 0.

Now bpy∗ ≥ 0 and so x∗ ≥ 0. Obviously, cTx∗ = G(1)py∗ = y∗ > 0 and so

x∗ 6= 0 , therefore, x∗ > 0.

Since

x∗ = Ax∗ + bpy∗ = Ax∗ + bf(y∗) = Ax∗ + bf(cTx∗),
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we have that x∗ is an equilibrium.

Now assume that (A5.8) holds and xe ∈ Rn
+ is an equilibrium of (5.4),

that is xe = Axe + bf(cTxe). We show that either xe = 0 or xe = x∗. Firstly

note that

xe = (I − A)−1bf(cTxe). (5.12)

If cTxe = 0, then xe = 0. Assume that cTxe > 0. Noting that

cTxe = cT (I − A)−1bf(cTxe) = G(1)f(cTxe) =
1

p
f(cTxe),

it follows that

f(cTxe)− f(y∗) = p(cTxe − y∗).

Since cTxe 6= 0, we can invoke assumption (A5.8) to conclude that cTxe = y∗.

It now follows from (5.12) that xe = x∗.

Theorem 5.4.6. Consider the system (5.4) and assume that (A5.1)-(A5.7)

hold. Then the equilibrium x∗ = (I − A)−1bpy∗ is stable in the large in the

sense that there exists g ≥ 1 such that, for every x0 ∈ Rn
+,

‖x(t;x0)− x∗‖ ≤ g‖x0 − x∗‖ ∀ t ∈ N0.

Proof. Let x̃(t;x0) := x(t;x0)− x∗ and

f̃(y) =

{
f(y + y∗)− f(y∗) for y ≥ −y∗

− f(y∗) for y < −y∗.
(5.13)

See Figure 5.5 for a comparison of f and f̃ .

y
2py∗ − py

py
2py∗

f

0 y∗

y

−py

py

f̃

0−y∗

Figure 5.5: A comparison of a function f satisfying (A5.4), (A5.6) and
(A5.7) and the modified f̃ given by (5.13)

.

By (A5.7) ∣∣∣f̃(y)
∣∣∣ ≤ p|y| ∀ y ∈ R, (5.14)
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and f̃(−y∗) = −f(y∗) = −py∗. Moreover,

x̃(t+ 1;x0) = Ax(t;x0) + bf(cTx(t;x0))− x∗

= Ax̃(t;x0) + (A− I)x∗ + bf(cTx(t;x0))

= Ax̃(t;x0)− bf(y∗) + bf(cT x̃(t;x0) + y∗), (5.15)

where (5.15) follows from

(A− I)x∗ = (A− I)(I − A)−1bf(y∗) = −bf(y∗),

and

bf(cTx(t;x0)) = bf(cT (x̃(t;x0) + x∗)) = bf(cT x̃(t;x0) + y∗).

Consequently, since cT x̃(t;x0) ≥ −y∗,

x̃(t+ 1;x0) = Ax̃(t;x0) + bf̃(cT x̃(t;x0)), x̃(0, x0) = x0 − x∗ =: x̃0. (5.16)

Since D(0, p) ⊆ S(A, b, cT ), and (5.14) holds, we can apply statement (1) of

Theorem 5.2.2 to the system (5.16). Hence there exists a constant g ≥ 1 such

that for every x0 ∈ Rn
+,

‖x̃(t;x0)‖ ≤ g‖x̃0‖, ∀ t ∈ N0.

Reverting back to the original system we have

‖x(t;x0)− x∗‖ ≤ g‖x0 − x∗‖, ∀ t ∈ N0,

completing the proof.

In Section 3.4.2, when considering the continuous time counterparts of the

results in this section, to establish exponential stability we required a result

which allowed us to bound cTx(t;x0) away from zero for sufficiently large t,

namely Proposition 3.4.14. The following counterexamples demonstrate that

a discrete time counterpart of Proposition 3.4.14 does not hold true.

Example 5.4.7. Consider the system (5.4) where

A =

0 0 0

1 0 0

0 1 0

 , b =

1

0

0

 , c =

0

1

1

 .

Firstly, note that (A5.1) is clearly satisfied. The spectral radius of A is 0,
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therefore, (A5.2) is satisfied. Noting

(A+ bcT )5 =

2 2 1

1 2 1

1 1 1

� 0,

A+ bcT is primitive therefore (A5.3) is satisfied. Now

G(1) = cT (I − A)−1b =
(

0 1 1
) 1 0 0

−1 1 0

0 −1 1

(1 0 0
)

=
(

0 1 1
)1 0 0

1 1 0

1 1 1

(1 0 0
)

=
(

0 1 1
)(

1 1 1
)

= 2,

and so p = 1/2.

The controllability matrix of (A, b, cT ) is

C =
(
b Ab A2b

)
=

1 0 0

0 1 0

0 0 1

 = I,

which is of full rank thus (A, b) is controllable. The observability matrix is

O =

 cT

cTA

cTA2

 =

0 1 1

1 1 0

1 0 0

 ,

which is also of full rank so (A, cT ) is observable. Therefore (A5.5) is satisfied.

Choose f : R+ → R+ such that f is continuous, f(0) = 0 (thus (A5.4) is

satisfied), f(1) = p = 1/2,∣∣∣∣f(y)− f(1)

y − 1

∣∣∣∣ < 1

2
∀ y > 0, y 6= 1,

and f(3) = 0. Note that (A5.5) holds with y∗ = 1.

Let x0 = (0, 0, 3)T . Then

x(1;x0) = Ax0 + bf(cTx0) = 0 + bf(3) = 0.

Hence,

x(2;x0) = Ax(1;x0) + bf(cTx(1;x0)) = 0,
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and so on. We see that x(t;x0)→ 0, therefore, cTx(t;x0) is not bounded away

from zero for sufficiently large t.

Now let f satisfy the earlier conditions with the exception of f(3) = 0. We

now assume that f(y) > 0 for all y > 0 and f(y) → 0 as y → ∞. Consider

the system (5.4) with

xn =

0

0

n

 , n ∈ N.

Since

x(1;xn) = Axn + bf(cTxn) = bf(n),

we see that since

x(1;xn)→ 0 as n→∞.

For given τ ∈ N, we have

x(τ + 1;xn) = x(τ ;x(1;xn))→ 0 as n→∞

therefore,

cTx(τ + 1;xn)→ 0 as n→∞.

We have seen two examples of systems with two equilibria which satisfy

(A5.6) and the sector condition (A5.8) and have x(t;x0) → 0 as t → ∞. It

is therefore clear that cTx(t;x0) is not bounded away from zero for sufficiently

large t, which in the continuous time case, would be assured. We therefore

have to take a different approach to the one from Section 3.4.2.

In the following three lemmas we demonstrate that, under additional as-

sumptions, we can bound cTx(t;x0) away from 0 for sufficiently large t.

Lemma 5.4.8. Consider the system (5.4). Assume that (A5.1)-(A5.4),

(A5.6) and (A5.8) hold. Also assume that cTAκ � 0 for some κ ∈ N0.

For every ε > 0 there exist η > 0 and θ ∈ N0 such that for all x0 ∈ Rn
+ with

‖x0‖ ≥ ε,

cTx(t;x0) ≥ η ∀ t ∈ N0, t ≥ θ.

Proof. Let ε > 0. We begin by demonstrating that for some δ > 0, ‖x(t;x0)‖ ≥
δ for all t ∈ N0, for all x0 ∈ Rn

+ such that ‖x0‖ ≥ ε.

As (A5.1)-(A5.3) hold, p > 0 by Lemma 5.3.4. Note that if 0 ≤ y ≤ y∗,

then f(y) ≥ py∗ by (A5.8). By (A5.6) and (A5.8) there exists y∗∗ > y∗ such

that f(y) > 0 for all y ∈ [y∗, y∗∗]. Set

λ := inf
y∗≤y≤y∗∗

f(y)

y
> 0. (5.17)
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Define

ε0 := inf{‖z‖1 : cT z ≥ y∗∗} > 0.

Set y(t) := cTx(t;x0), where x0 ∈ Rn
+ such that ‖x0‖ ≥ ε.

If y(t) < y∗, then f(y(t)) ≥ py(t), and therefore,

vTx(t+ 1;x0) ≥ vTA(t;x0) + vT bpy(t) = vT (A+ pbcT )x(t;x0) = vTx(t;x0),

where vT is the left Perron vector of A + pbcT associated with the dominant

eigenvalue 1 (see Lemma 5.3.6).

If y(t) ∈ [y∗, y∗∗], then f(y(t)) ≥ λy(t), where λ is given by (5.17). Hence

vTx(t+ 1;x0) ≥ vTA(t;x0) + vTλby(t) ≥ vTλby∗.

If y(t) > y∗∗, then ‖x(t;x0)‖1 ≥ ε0. Hence,

vTx(t+ 1;x0) = vTAx(t;x0) + vT bf(y(t)) ≥ vTAx(t;x0) ≥ min(vTA)iε0,

where (vTA)i is the i-th component of the row vector vTA. Noting that vT � 0

and A has no zero columns, as cTAκ � 0 for some κ ∈ N, it follows that

vTA� 0, thus min(vTA)i > 0.

For all x0 ∈ Rn
+ with ‖x0‖ ≥ ε

vTx(t+ 1;x0) ≥ min(vTx(t;x0), vT bλy∗,min(vTA)iε0), ∀ t ∈ N0.

Thus, for all x0 ∈ Rn
+ with ‖x0‖ ≥ ε

vTx(t;x0) ≥ min(vTx0, vT bλy∗,min(vTA)iε0) > 0 ∀ t ∈ N0.

Noting that vT � 0, there exists δ > 0 such that for all x0 ∈ Rn
+ with ‖x0‖ ≥ ε

‖x(t;x0)‖1 ≥ δ, ∀ t ∈ N0.

Now, note that for all x0 ∈ Rn
+ such that ‖x0‖ ≥ ε

x(t+ 1;x0) = Ax(t;x0) + b(f(cTx(t;x0))) ≥ Ax(t;x0),

by (A5.1) and (A5.4). For k ∈ N0 and all x0 ∈ Rn
+ such that ‖x0‖ ≥ ε,

x(t;x0) ≥ Akx(t− k;x0), ∀ t = k, k + 1, . . . .

Note that cTAκ � 0 for some κ ∈ N0. Let k = κ and writing wT =

(w1, . . . , wn) = cTAk, wi > 0 for all i = 1, . . . , n and furthermore, for all
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x0 ∈ Rn
+ such that ‖x0‖ ≥ ε,

cTx(t;x0) ≥ min
1≤i≤n

(wi)δ > 0 ∀ t = k, k + 1, . . . .

This completes the proof with θ = k and η = min1≤i≤n(wi)δ.

There are many different structures of cT and A such that cTAκ � 0 holds

for some κ ∈ N. All of these require that A has no zero columns. One of the

simplest structures is if c has no zero entries, however this is a very strong

assumption. Another way of ensuring that cTAκ � 0 for some κ ∈ N is if A

is a primitive matrix. Again this is a strong assumption. There are examples

such that A is not primitive and c has some zero components. One particular

example is the linear system (5.9).

We proceed to consider the next lemma for bounding x(t;x0) away from 0

for sufficiently large t, this time by introducing a stronger assumption on the

nonlinearity.

Lemma 5.4.9. Consider the system (5.4). Assume that (A5.1)-(A5.4),

(A5.6) and (A5.8) hold. Also assume for some α > 0 that f(y) ≥ αy for all

y ≥ 0. For ε > 0 there exist η > 0 and θ ∈ N0 such that for all x0 ∈ Rn
+ with

‖x0‖ ≥ ε,

cTx(t;x0) ≥ η ∀ t ∈ N0, t ≥ θ.

Proof. Let ε > 0. We begin by demonstrating that for some δ > 0, ‖x(t;x0)‖ ≥
δ for all t ∈ N0, for all x0 ∈ Rn

+ such that ‖x0‖ ≥ ε.

As (A5.1)-(A5.3) hold, p > 0 by Lemma 5.3.4. Note that if 0 ≤ y ≤ y∗,

then f(y) ≥ py∗ by (A5.8). We also know that as f(y) ≥ αy for all y ≥ 0

that
f(y)

y
≥ α > 0 ∀ y ≥ y∗.

Set y(t) := cTx(t;x0), where x0 ∈ Rn
+ such that ‖x0‖ ≥ ε.

If y(t) < y∗, then for all x0 ∈ Rn
+ such that ‖x0‖ ≥ ε,

vTx(t+ 1;x0) ≥ vTAx(t;x0) + vT bpy(t) = vT (A+ pbcT )x(t;x0) = vTx(t;x0),

where vT is the left Perron vector of A + pbcT associated with the dominant

eigenvalue 1 (see Lemma 5.3.6).

If y(t) ≥ y∗ then for all x0 ∈ Rn
+ such that ‖x0‖ ≥ ε,

vT (t+ 1;x0) ≥ vTAx(t;x0) + vT bαy(t) ≥ vTαby∗.
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Thus, for all x0 ∈ Rn
+ such that ‖x0‖ ≥ ε

vTx(t+ 1;x0) ≥ min(vTx(t;x0), vT bαy∗), ∀ t ∈ N0.

Therefore, for all x0 ∈ Rn
+ such that ‖x0‖ ≥ ε

vTx(t;x0) ≥ min(vTx0, vT bαy∗) > 0, ∀ t ∈ N0.

Noting that vT � 0, there exists δ > 0 such that for all x0 ∈ Rn
+ with ‖x0‖ ≥ ε

‖x(t;x0)‖ ≥ δ > 0, ∀ t ∈ N0.

As f(y) ≥ αy for all y ≥ 0 where α > 0, for all x0 ∈ Rn
+ such that ‖x0‖ ≥ ε

x(t+ 1;x0) = Ax(t;x0) + bf(cTx(t;x0)) ≥ (A+ αbcT )x(t;x0).

Noting that A+αbcT is a primitive matrix by (A5.3), there exists k ∈ N such

that (A+ αbcT )k � 0. Therefore, for all x0 ∈ Rn
+ such that ‖x0‖ ≥ ε

x(t;x0) ≥ (A+ αbcT )kx(t− k;x0) ∀ t = k, k + 1, . . . ,

thus,

cTx(t;x0) ≥ cT (A+ αbcT )kx(t− k;x0) ∀ t = k, k + 1, . . . .

By (A5.1), cT (A+αbcT )k � 0 for some k ∈ N. Writing wT = (w1, . . . , wn) =

cT (A + αbcT )k, wi > 0 for all i = 1, . . . , n and furthermore, for all x0 ∈ Rn
+

such that ‖x0‖ ≥ ε,

cTx(t;x0) ≥ min
1≤i≤n

(wi)δ > 0, ∀ t = k, k + 1, . . . .

This completes the proof with θ = k and η = min1≤i≤n(wi)δ.

We have seen two lemmas which allow us to bound cTx(t;x0) away from

0 for sufficiently large t, one adding an extra assumption to the linear system

and the other adding one to the nonlinearity. Both of these are fairly strong

assumptions to make, however there is a third case where we need only make a

weaker additional assumption about the nonlinearity and impose restrictions

on the size of the initial condition x0.

Lemma 5.4.10. Consider the system (5.4). Assume that (A5.1)-(A5.6) and

(A5.8) hold and assume f(y) > 0 for all y > 0. For every compact set Γ ⊂ Rn
+
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with 0 /∈ Γ there exist η > 0 and θ ∈ N0 such that for all x0 ∈ Γ,

cTx(t;x0) ≥ η ∀ t ∈ N0, t ≥ θ.

Proof. Let Γ ⊆ Rn
+ be a compact set with 0 /∈ Γ. We note that there exists

y# > 0 such that

cTx(t;x0) ≤ y# ∀ t ∈ N0, ∀ x0 ∈ Γ,

by Theorem 5.4.6. Let

inf
y∗≤y≤y#

f(y)

y
= λ > 0,

noting that f(y) > 0 for all y > 0.

If 0 ≤ y ≤ y∗ we have f(y) ≥ py by (A5.8), thus for all x0 ∈ Γ

vTx(t+ 1;x0) ≥ vTA(t;x0) + vT bpy(t) = vT (A+ pbcT )x(t;x0),

where vT is the left Perron vector of A + pbcT associated with the dominant

eigenvalue 1 (see Lemma 5.3.6).

If y(t) ≥ y∗ then for all x0 ∈ Γ

vTx(t+ 1;x0) ≥ vTAx(t;x0) + vT bλy(t) ≥ vT bλy∗.

Combining the above, for all x0 ∈ Γ

vTx(t+ 1;x0) ≥ min(vTx(t;x0), vT bλy∗), ∀ t ∈ N0.

Therefore, for all x0 ∈ Γ

vTx(t;x0) ≥ min(vTx0, vT bλy∗) > 0, ∀ t ∈ N0.

Noting that vT � 0, there exists δ > 0 such that for all x0 ∈ Γ

‖x(t;x0)‖ ≥ δ > 0, ∀ t ∈ N0.

Setting µ = min(λ, p) > 0, we have for all x0 ∈ Γ

x(t+ 1;x0) ≥ Ax(t;x0) + µbcTx(t;x0) = (A+ µbcT )x(t;x0),

and for some k ∈ N0,

x(t;x0) ≥ (A+ µbcT )kx(t− k;x0), ∀ t = k, k + 1, . . . ,
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therefore,

cTx(t;x0) ≥ cT (A+ µbcT )kx(t− k;x0), ∀ t = k, k + 1, . . . .

Finally, noting cT (A + µbcT )k � 0 for some k ∈ N0 by (A5.1) and (A5.3),

we can write wT = (w1, . . . , wn) = cT (A + µbcT )k we have wi > 0 for all

i = 1, . . . , n and furthermore, for all x0 ∈ Γ

cTx(t;x0) ≥ min
1≤i≤n

(wi)δ > 0.

This completes the proof with θ = k and η = min1≤i≤n(wi).

We note that the assumption on the nonlinearity in Lemma 5.4.10 is weaker

than that in Lemma 5.4.9, therefore when we proceed with the next result,

Lemma 5.4.9 does not play a part.

Theorem 5.4.11. Consider the system (5.4). Assume that (A5.1)-(A5.6)

and (A5.8) hold. Further assume that one of the following also holds:

• cTAk � 0 for some k ∈ N0.

• f(y) > 0 for all y > 0.

Then the equilibrium x∗ = (I − A)−1bpy∗ is “globally” asymptotically stable

in the sense that it is stable in the large, and for all x0 ∈ Rn
+ with x0 6= 0,

x(t;x0)→ x∗ as t→∞.

Proof. Firstly note that the conditions of Theorem 5.4.6 are satisfied, therefore

x∗ is stable in the large. Let x0 ∈ Rn
+ with x0 6= 0.

Assume that cTAk � 0 for some k ∈ N0. By Lemma 5.4.8, there exists

η1 > 0 and θ1 ∈ N0 such that

cTx(t;x0) ≥ η1 ∀ t ∈ N0, t ≥ θ1.

Now, alternatively assume that f(y) > 0 for all y > 0. Then by Lemma

5.4.10 with Γ = {x0}, there exists η2 > 0 and θ2 ∈ N0 such that

cTx(t;x0) ≥ η2 ∀ t ∈ N0, t ≥ θ2.

Therefore for all x0 ∈ R0
+ with x0 6= 0,

cTx(t;x0) ≥ η ∀ t ∈ N0, t ≥ θ,

where η = min(η1, η2) and θ = max(θ1, θ2).
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Define

x̃(t) := x(t− θ;x0)− x∗,

and

f̃(y) :=

{
f(y + y∗)− f(y∗) for y ≥ η − y∗

f(η)− f(y∗) for y < η − y∗.
(5.18)

Now

x̃(t+ 1) = x(t+ 1;x0)− x∗ = Ax(t;x0) + bf(cTx(t;x0))− x∗

= Ax̃(t) + (A− I)x∗ + bf(cTx(t;x0))

= Ax̃(t)− bf(y∗) + bf(cT x̃+ y∗)

= Ax̃(t) + bf̃(cT x̃(t)), x̃(0) = x0 − x∗ (5.19)

where (5.19) follows from cT x̃(t) ≥ η − y∗ for all t ∈ N0. From (A5.8) it

follows that ∣∣∣∣∣ f̃(y)

y

∣∣∣∣∣ < p, ∀ y ∈ R\{0}.

We have that D(0, p) ⊆ S(A, b, cT ). Applying statement (2) of Theorem 5.2.2

to (5.19) yields that limt→∞ x̃(t) = 0. Therefore, for an arbitrary x0 ∈ Rn
+

with x0 6= 0,

lim
t→∞

x(t;x0) = x∗.

We illustrate Theorem 5.4.11 in the following two examples. The first uses

the Lur’e system given in Example 5.3.7 for which cTA � 0, and the second

uses a different linear system such that cTAk 6� 0 for all k ∈ N0.

Example 5.4.12. We return to the Lur’e system given in Example 5.3.7. Let

f : R+ → R+ be given by

f(y) =


2py 0 ≤ y ≤ 2

0.5p(10− y) 2 ≤ y ≤ 10

0 y > 10

Note that (A5.4) holds. A trivial calculation shows that (A5.6) holds for

y∗ = 10/3 and it can easily be seen that (A5.8) holds, which can be seen in

Figure 5.6(b). Application of Theorem 5.4.11 yields that for all x0 ∈ Rn
+ with
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x0 6= 0,

x(t;x0)→ x∗ = (I − A)−1bpy∗ =

25/3

5/3

5/3

 as t→∞.

This is illustrated in Figure 5.6(b) for an arbitrary initial condition.
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Figure 5.6: Numerical simulations for Example 5.4.12. (a) A plot of the non-
linearity and the lines py and 2py∗ − py. (b) Time history of x(t).

Example 5.4.13. Consider the system

x(t+ 1) =

(
0 0.5

0 0.1

)
x(t) +

(
1

1

)
f
((

0 1
)
x(t)

)
, x(0) = x0

f(y) =
9y

2 + y
.

This system is of the form of (5.4) with

A =

(
0 0.5

0 0.1

)
, b =

(
1

1

)
and cT =

(
0 1

)
.

We verify which assumptions this system satisfies. We begin by noting that

A, b, c are all nonnegative and nonzero so (A5.1) is satisfied. The eigenvalues

of A are 0 and 0.1, therefore, A is stable and (A5.2) is satisfied. Noting

A+ bcT =

(
1 1

1 1

)
� 0,

we have that A + bcT is primitive, thus (A5.3) holds. The nonlinearity f(y)

is continuous, and so (A5.4) holds. The controllability matrix of the system
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is

C =
(
b Ab

)
=

(
1 0.5

1 0.1

)
,

which is of full rank and the observability matrix is

O =

(
cT

cTA

)
=

(
1 0

0 0.5

)
,

which is also of full rank, therefore (A, b, cT ) is controllable and observable,

meaning (A5.5) is satisfied.

A simple calculation yields that p = 0.9 and y∗ = 8 is the unique, nonzero

solution of py∗ = f(y∗), thus (A5.6) holds. Figure 5.7(a) contains a plot of

f(y) and the lines py and 2py∗ − py and shows that (A5.8) holds. From this

plot it is also obvious that f(y) > 0 for all y > 0.

We finally note that cTAk 6� 0 for any k ∈ N0. To do this we simple

calculate the first few vectors and observe the trend. Now

cT = (0, 1)

cTA = (0, 0.5)

cTA2 = (0, 0.05)

cTA3 = (0, 0.005).

Clearly cTAk = (0, 0.5 × 0.1k−1), therefore, all of these vectors have a zero

component in the first entry, and will continue to do so for all time.

We have seen that all of the assumptions required for Theorem 5.4.11 holds,

however unlike the previous example, we now have that f(y) > 0 for all y > 0

instead of cTAk � 0 for some k ∈ N0. We therefore have that, for all x0 ∈ R2
+,

with x0 6= 0,

x(t;x0)→ x∗ = (I − A)−1bpy∗ =

(
11.2

8

)
as t→∞.

This is illustrated in Figure 5.7(b) for an arbitrary nonzero initial condition.

We proceed to study exponential stability properties of x∗ 6= 0. We do

this in the following two theorems. The first of which involves the bound

on cTx(t;x0) from Lemmas 5.4.8 and 5.4.9, that is the additional assumption

on the linear system is required or the strong condition on the nonlinearity.

Using these lemmas allow us to formulate a quasi-global result. It is deemed

a quasi-global result as we restrict x0 ∈ Rn
+ such that ‖x0‖ ≥ ε > 0.
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Figure 5.7: Numerical simulations for Example 5.4.13. (a) A plot of the non-
linearity and the lines py and 2py∗ − py. (b) Time history of x(t).

Theorem 5.4.14. Consider the system (5.4). Assume that (A5.1)-(A5.6),

(A5.8) and (A5.9) hold. Also assume that one of the following holds:

• cTAk � 0 for some k ∈ N0.

• For some α > 0, f(y) ≥ αy for all y > 0.

Then the equilibrium x∗ = (I − A)−1bpy∗ is quasi-globally exponentially stable

in the sense that, for every ε > 0 there exists constants γ > 0 and g ≥ 1 such

that, for all x0 ∈ Rn
+ with ‖x0‖ ≥ ε,

‖x(t;x0)− x∗‖ ≤ ge−γt‖x0 − x∗‖ ∀ t ∈ N0.

Proof. Let ε > 0. Assume that cTAk � 0 for some k ∈ N0. By Lemma 5.4.8

there exists constants η1 > 0 and θ1 ∈ N0 such that, for all x0 ∈ Rn
+ with

‖x0‖ ≥ ε,

cTx(t;x0) ≥ η1 ∀ t ∈ N0, t ≥ θ1.

Now alternatively assume that for some α > 0, f(y) > αy for all y > 0.

Then by Lemma 5.4.9, there exists constants η2 > 0 and θ2 ∈ N0 such that,

for all x0 ∈ Rn
+ with ‖x0‖ ≥ ε,

cTx(t;x0) ≥ η2 ∀ t ∈ N0, t ≥ θ2.

Combining the above, for all x0 ∈ Rn
+ with ‖x0‖ ≥ ε,

cTx(t;x0) ≥ η ∀ t ∈ N0, t ≥ θ,

where η = min{η1, η2} and θ = max{θ1, θ2}.
Define

x̃(t) := x(t− θ;x0)− x∗,
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and

f̃(y) :

{
f(y + y∗)− f(y∗) for y ≥ η − y∗

f(η)− f(y∗) for y < η − y∗.
Now

x̃(t+ 1) = Ax̃+ bf̃(cT x̃(t)), x̃(0) = x0 − x∗

which follows as in the proof of Theorem 5.4.11. From (A5.8) and (A5.9) it

follows that

sup
y∈R\{0}

∣∣∣∣∣ f̃(y)

y

∣∣∣∣∣ < p. (5.20)

We have that D(0, p) ⊆ S(A, b, cT ). Applying statement (3) of Theorem 5.2.2

to (5.20) yields the existence of γ > 0 and g ≥ 1 such that

‖x̃(t)‖ ≤ ge−γt‖x̃(0)‖ ∀ t ∈ N0.

Therefore, returning to our original system we have

‖x(t;x0)− x∗‖ ≤ fge−γt‖x0 − x∗‖, ∀ t ∈ N0.

The system from Example 5.4.12 satisfies the assumptions of Theorem

5.4.14, therefore the equilibrium x∗ is quasi-globally exponentially stable. The

same is not true for the system in Example 5.4.13. We revisit this example.

Example 5.4.15. Consider the system

x(t+ 1) =

(
0 0.5

0 0.1

)
x(t) +

(
1

1

)
f
((

0 1
)
x(t)

)
, x(0) = x0

f(y) =
9y

2 + y
+ 0.4y.

This is a similar system to that in Example 5.4.13 with a slightly modified

nonlinearity. We therefore know (A5.1)-(A5.3) and (A5.5) hold and that

p = 0.9.

Trivially, (A5.4) holds and y∗ = 16 is the unique nonzero solution of

py∗ = f(y∗), this (A5.6) holds. Figure 5.8(a) contains a plot of f(y), the

lines py and 2py∗−py and the line 0.3y. From this it is seem that (A5.8) and

(A5.9) holds and that f(y) ≥ 0.3y for all y > 0.

The assumptions for Theorem 5.4.14 all hold, therefore, there exists γ > 0

and g ≥ 1 such that for all x0 ∈ Rn
+ with ‖x0‖ ≥ ε > 0,

‖x(t;x0)− x∗‖ ≤ ge−γt‖x0 − x∗‖ ∀ t ∈ N0.
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This is illustrated in Figure 5.8(b) for an arbitrary initial condition.
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Figure 5.8: Numerical simulations for Example 5.4.12. (a) A plot of the non-
linearity and the lines py, 2py∗ − py and 0.075y. (b) Time history of x(t).

The second exponential stability result uses the bound on cTx(t;x0) from

Lemma 5.4.10, and as such requires the weaker assumption on f(y), namely,

f(y) > 0 for all y > 0. This exponential stability result is a semi-global result

as we require that x0 is in a compact set of Rn
+ which does not contain 0.

Theorem 5.4.16. Consider the system (5.4). Assume that (A5.1)-(A5.6),

(A5.8) and (A5.9) hold. Also assume that f(y) > 0 for all y > 0. Then

the equilibrium x∗ = (I −A)−1bpy∗ is semi-globally exponentially stable in the

sense that, for every compact set Γ ⊂ Rn
+ with 0 /∈ Γ, there exists constants

γ > 0 and g ≥ 1 such that, for every x0 ∈ Γ,

‖x(t;x0)− x∗‖ ≤ ge−γt‖x0 − x∗‖ ∀ t ∈ N0.

Proof. Let Γ ∈ Rn
+ be a compact set with 0 /∈ Γ. From Theorem 5.4.6 we know

that x∗ is stable in the large, that is there exists ĝ ≥ 1 such that for all x0 ∈ Γ

‖x(t;x0)− x∗‖ ≤ ĝe−γt‖x0 − x∗‖ ∀ t ∈ N0. (5.21)

Noting that Γ is a compact set, it follows that it is bounded and therefore for

all x0 ∈ Γ

0 ≤ cTx(t;x0) ≤ λ ∀ t ∈ N0, (5.22)

where λ > 0 is a suitable constant. Since Γ is closed and 0 /∈ Γ, there exists

ε > 0 such that

‖x0‖1 ≥ ε ∀ ε ∈ Γ. (5.23)

From Lemma 5.4.10, we have that there exists constants η > 0 and θ ∈ N0
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such that for all x0 ∈ Γ,

0 < η ≤ cTx(t;x0) ∀ t ∈ N0. (5.24)

Set

x̃(t;x0) := x(t;x0)− x∗ ∀ t ∈ N0.

It follows from (5.22)-(5.24) that for all x0 ∈ Γ

−y∗ + η ≤ cT x̃(t;x0) ≤ −y∗ + λ ∀ t ∈ N0, t ≥ θ. (5.25)

By (A5.8) and (A5.9)

r := sup

{ |f(y + y∗)− f(y∗)|
|y| : −y∗ + η ≤ y ≤ −y∗ + λ

}
< p.

Now choose a continuous function f̃ : R→ R such that

f̃(y) = f(y + y∗)− f(y∗) ∀ y ∈ [−y∗ + η,−y∗ + λ],

and ∣∣∣∣∣ f̃(y)

y

∣∣∣∣∣ ≤ r < p ∀ y ∈ R. (5.26)

Now note that for all x0 ∈ Γ

˙̃x(t+ 1;x0) = Ax̃(t;x0) + f̃(cT x̃(t;x0)) ∀ t ∈ N0, t ≥ θ, (5.27)

which follows from (5.25). We now have that D(0, p) ⊆ S(A, b, cT ). By state-

ment (5.26) we can apply statement (3) of Theorem 5.2.2 and conclude that

there exists γ > 0 and g̃ ≥ 1 such that for all x0 ∈ Γ

‖x̃(t+ θ;x0)‖ ≤ g̃e−γt‖x̃(θ, x0)‖ ∀ t ∈ N0.

Using (5.21) and noting ĝ ≥ 1 and g̃ ≥ 1, we obtain that for all x0 ∈ Γ

‖x̃(t;x0)‖ ≤ ĝg̃eγθe−γt‖x0 − x∗‖ ∀ t = 0, 1, . . . , θ.

The result now follows by reverting back to the original system and setting

g := ĝg̃eγθ.

Example 5.4.13 illustrates this theorem as it can easily be seen that (A5.9)

holds and that is the only additional assumption required for Theorem 5.4.16

over Theorem 5.4.11.
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5.5 Input-to-State Stability of Nonnegative

Discrete Time Lur’e Systems

In this section we consider forced nonnegative Lur’e systems of the form (5.5).

As with the previous section nonnegative in this context means that the state

x(t) of (5.5) remains nonnegative for all t ∈ N0. Therefore we shall always be

assuming that (A.5.1) and (A.5.4) hold. We denote the solution of (5.5) by

x( · ; t, d).

5.5.1 Disturbed Systems Without Stable Equilibria

The result given in this section is an extension of Theorem 5.4.1 to disturbed

Lur’e systems of the form (5.5).

Theorem 5.5.1. Consider the system (5.5). Assume that (A5.1)-(A5.4)

hold and that

inf
y>0

f(y)

y
> p.

If x0 ∈ Rn
+, x0 6= 0 and d : N0 → Rn

+, then

lim
t→∞

xi(t;x
0, d) =∞ ∀ i ∈ {1, . . . , n},

where xi(t;x
0, d) denoted the i-th component of x(t;x0, d).

Proof. Let x0 ∈ Rn
+ with x0 6= 0. By hypothesis on f there exists q > p such

that

f(y) ≥ qy ∀ y ∈ R+.

Therefore,

x(t+ 1;x0, d) = Ax(t;x0, d) + bf(cTx(t;x0, d)) + d(t)

≥ Ax(t;x0, d) + bqcTx(t;x0, d)

= (A+ qbcT )x(t;x0, d), ∀ t ∈ N0,

and so, x(t;x0, d) ≥ (A + qbcT )tx0. By Lemma 5.3.6, r := ρ(A + qbcT ) > 1.

Now

r−t(A+ qbcT )t → vwT

wTv
� 0 as t→∞,

where v and w are the left and right Perron vectors of A+ qbcT , respectively,

as given in Theorem 2.1.22. Thus

lim inf
t→∞

r−txi(t;x
0, d) ≥ ξi,
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for i = 1, . . . , n where ξi is the i-th component of

ξ :=
vwT

wTv
x0 � 0.

Consequently limt→∞ xi(t;x0) =∞, for every i = 1, . . . , n.

Example 5.5.2. We recall Example 5.4.2, where (A, b, cT ) is given by (5.9)

and f(y) = 0.75y + sin(y/3). We apply these to a system of the form (5.5),

where d(t) = (d1(t), d2(t), d3(t))T , and di(t) is a random number in the interval

[0, 1] for each t ∈ N0 and i = 1, 2, 3.

Hypotheses for Theorem 5.5.1 apply, therefore for all x0 ∈ Rn
+ with x0 6= 0

we have

lim
t→∞

xi(t;x
0, d) =∞,

for every i = 1, 2, 3. This is illustrated for a random x0 in Figure 5.9(b) and

can be compared to the same system with d(t) = 0 for all t ∈ N0 illustrated in

Figure 5.9(a).
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Figure 5.9: Numerical simulations for Example 5.5.2. (a) Time history of x(t)
for d(t) = 0 for all t ∈ N+. (b) Time history of x(t) where d(t) is a vector and
all three components are random numbers in [0, 1].

5.5.2 ISS of Systems With A Unique Stable Equilibrium

The result in this section is an extension of Theorem 5.4.3 for systems with a

disturbance. Before stating this result we first introduce a new assumption.

(A5.10) py − f(y)→∞ as y →∞.

Theorem 5.5.3. Consider the system (5.5). Assume that (A5.1)-(A5.5) and

(A5.10) hold. Also assume that f(y)/y < p for all y > 0. Then 0 is ISS in

the sense that there exists ψ ∈ KLD and ϕ ∈ K such that, for all x0 ∈ Rn
+ and

169



all d : N0 → Rn
+,

‖x(t;x0, d)‖ ≤ ψ(‖x0‖, t) + ϕ(‖d‖t) ∀ t ∈ N0.

Proof. By Lemma 5.3.4, p = 1/‖G‖H∞ and therefore D(0, p) ⊆ S(A, b, cT ). To

apply Theorem 5.2.4, consider the function f̃ : R → R given by (5.10) which

extends f to the whole real line. Furthermore, by the hypothesis made on f ,

p|y| − |f̃(y)| > 0 ∀ y 6= 0,

and

p|y| − |f̃(y)| → ∞ as |y| → ∞.

Hence, there exists β ∈ K∞ such that

|f̃(y)| ≤ p|y| − β(|y|) ∀ y ∈ R.

Note that by assumptions (A5.1) and (A5.4) we have that, for every x0 ∈ Rn
+

and every d : N0 → Rn
+, x(t;x0, d) ∈ Rn

+ for all t ∈ N0. Therefore, for every

x0 ∈ Rn
+ and every d : N0 → Rn

+, x( · ;x0, d) is also the solution of

x(t+ 1;x0, d) = Ax(t;x0, d) + bf̃(cTx(t;x0, d)) + d(t), x(0) = x0. (5.28)

Applying Theorem 5.2.4 to (5.28) shows that there exists ψ ∈ KLD and ϕ ∈ K
such that, for all x0 ∈ Rn

+ and all d : N0 → Rn
+,

‖x(t;x0, d)‖ ≤ ψ(‖x0‖, t) + ϕ(‖d‖t) ∀ t ∈ N0,

completing the proof.

Example 5.5.4. Consider the system (5.5) and recall Example 5.4.4, where

(A, b, cT ) is given by (5.9) and

f(y) =
5y

16 + y
, y ≥ 0.

Let d(t) = (d1(t), d2(t), d3(t)), and di(t) is a random number in the interval

[0, 1] for each t ∈ N0 and i = 1, 2, 3.

The hypotheses for Theorem 5.5.3 apply, therefore 0 is ISS in the sense

that there exists ψ ∈ KLD and ϕ ∈ K such that, for all x0 ∈ Rn
+ and all

d : N0 → Rn
+,

‖x(t;x0, d)‖ ≤ ψ(‖x0‖, t) + ϕ(‖d‖t) ∀ t ∈ N0.
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.

Figure 5.10(a) provides a time history plot of the three components of x(t)

and Figure 5.10(b) provides a plot of ‖x(t)‖1.
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Figure 5.10: Numerical simulations for Example 5.5.4. (a) Time history of
x(t). (b) Plot of ‖x(t)‖1.

5.5.3 ISS of Systems With Two Equilibria

Before stating the main results in this section we must first reformulate Lem-

mas 5.4.8-5.4.10 for the disturbed system (5.5).

Lemma 5.5.5. Consider the system (5.5). Assume (A5.1)-(A5.4), (A5.6)

and (A5.8) hold. Also assume that cTAκ � 0 for some κ ∈ N0. For every

ε > 0 there exists η > 0 and θ ∈ N0 such that, for all x0 ∈ Rn
+ with ‖x0‖ ≥ ε,

cTx(t;x0, d) ≥ η ∀ t ∈ N0, t ≥ θ.

The proof of this lemma follows from the proof of Lemma 5.4.8, mutatis

mutandis, carries over to disturbed Lur’e systems.

Lemma 5.5.6. Consider the system (5.5). Assume (A5.1)-(A5.4), (A5.6)

and (A5.8) hold. Also assume for some α > 0 that f(y) ≥ αy for all y ≥ 0.

For every ε > 0 there exist η > 0 and θ ∈ N0 such that, for all x0 ∈ Rn
+ with

‖x0‖ ≥ ε and all d : N0 → Rn
+,

cTx(t;x0, d) ≥ η ∀ t ∈ N0, t ≥ θ.

The proof of this lemma is omitted as the proof of Lemma 5.4.9, mutatis

mutandis, carries over to disturbed Lur’e systems.

Lemma 5.5.7. Consider the system (5.5). Assume (A5.1)-(A5.6), (A5.8)

and (A5.10) hold. For every compact set Γ ⊆ Rn
+ with 0 /∈ Γ and all ∆ > 0,
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there exist η > 0 and θ ∈ N0 such that for all x0 ∈ Γ and all d : N0 → Rn
+ with

‖d‖∞ ≤ ∆,

cTx(t;x0, d) ≥ η ∀ t ∈ N0, t ≥ θ.

Proof. Let Γ ∈ Rn
+ be a compact set with 0 /∈ Γ and ∆ > 0. We begin

by demonstrating that there exists y# > 0 such that, for all x0 ∈ Γ and all

d : N0 → Rn
+ with ‖d‖∞ < ∆,

cTx(t; c0, d) ≤ y# ∀ t ∈ N0.

Let y∗∗ > y∗. Then f(y∗∗) < py∗∗ and thus

q :=
f(y∗∗)

y∗∗
< p.

Define g : R+ → R+ to be the continuous function given by

g(y) =

{
qy for 0 ≤ y ≤ y∗∗,

f(y) for y > y∗∗.

Note that 0 < g(y) < py for all y > 0 and

py − g(y)→∞ as y →∞

by (A5.10). Now

x(t+ 1;x0, d) = Ax(t;x0, d) + bg(cTx(t;x0, d)) + d(t) + e(t;x0, d) ∀ t ∈ N0,

(5.29)

where

e(t;x0, d) := b(f(cTx(t;x0, d))− g(cTx(t;x0, d)).

Moreover,

‖e(t;x0, d)‖ ≤ ‖b‖ sup
0≤y≤y∗∗

|f(y)− g(y)| =: κ <∞.

Applying Theorem 5.5.3 to (5.29) (with the nonlinearity given by g and the

disturbance given by d + e) we conclude that there exists a constant x# > 0

such that, for all x0 ∈ Γ and all d : N0 → Rn
+ with ‖d‖∞ ≤ ∆,

‖x(t;x0, d)‖ ≤ x# ∀ t ∈ N0.

Therefore, setting y(t) := cTx(t;x0, d), we conclude that y(t) ≤ y# for all
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t ∈ N0. Let

inf
y∗≤y≤y#

f(y)

y
= λ > 0,

noting that f(y) > 0 for all y > 0.

If 0 ≤ y ≤ y∗ we have f(y) ≥ py by (A5.8), thus for all x0 ∈ Γ and all

d : N0 → Rn
+ with ‖d‖∞ ≤ ∆

vTx(t+ 1;x0, d) = vTAx(t;x0, d) + vT bf(cTx(t;x0, d)) + vTd(t)

≥ vTA(t;x0, d) + vT bpy(t) = vT (A+ pbcT )x(t;x0, d),

where vT is the left Perron vector of A + pbcT associated with the dominant

eigenvalue 1 (see Lemma 5.3.6).

If y(t) ≥ y∗ then, for all x0 ∈ Γ and all d : N0 → R with ‖d(t)‖∞ ≤ ∆,

vTx(t+ 1;x0, d) = vTAx(t;x0, d) + vT bf(cTx(t;x0, d)) + vTd(t)

≥ vTAx(t;x0, d) + vTλby(t) ≥ vTλby∗.

Combining the above, for all x0 ∈ Γ and all d : N0 → Rn
+ with ‖d‖∞ ≤ ∆

vTx(t+ 1;x0, d) ≥ min(vTx(t;x0, d), vT bλy∗), ∀ t ∈ N0.

Therefore, for all x0 ∈ Γ and all d : N0 → Rn
+ with ‖d‖∞ ≤ ∆

vTx(t;x0, d) ≥ min(vTx0, vT bλy∗) > 0, ∀ t ∈ N0.

Noting that vT � 0, there exists δ > 0 such that, for all x0 ∈ Γ and all

d : N0 → Rn
+ with ‖d‖∞ ≤ ∆,

‖x(t;x0, )‖ ≥ δ > 0, ∀ t ∈ N0.

Setting µ = min(λ, p) > 0, we have for all x0 ∈ Γ and all d : N0 → Rn
+ with

‖d‖∞ ≤ ∆

x(t+ 1;x0, d) ≥ Ax(t;x0, d) + µbcTx(t;x0, d) = (A+ µbcT )x(t;x0, d),

and for some k ∈ N0,

x(t;x0, d) ≥ (A+ µbcT )kx(t− k;x0, d), ∀ t = k, k + 1, . . . ,

therefore,

cTx(t;x0, d) ≥ cT (A+ µbcT )kx(t− k;x0, d), ∀ t = k, k + 1, . . . .
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Finally, noting cT (A+µbcT )k � 0 for some k ∈ N0 by (A5.1) and (A5.3), we

can write wT = (w1, . . . , wn) = cT (A+µbcT )k we have wi > 0 for all i = 1, . . . , n

and furthermore, for all x0 ∈ Γ and all d : N0 → Rn
+ with ‖d‖∞ < ∆,

cTx(t;x0, d) ≥ min
1≤i≤n

(wi)δ > 0.

This completes the proof with θ = k and η = min1≤i≤n(wi).

The following lemma is a discrete time version of Gronwall’s Lemma which

we will be making use of in the proof of later results.

Lemma 5.5.8. Let α ≥ 0, w > 0 and u : N0 → R+ be such that u(0) ≤ α and

u(t) ≤ α + w

t−1∑
k=0

u(k) ∀ t ∈ N.

Then

u(t) ≤ αetw, ∀ t ∈ N0.

Proof. We begin by demonstrating that

u(t) ≤ α(1 + w)t, ∀ t ∈ N0. (5.30)

Firstly we note that (5.30) holds for t = 0 by u(0) ≤ α. We demonstrate that

(5.30) holds for all t ∈ N by strong induction. Assume (5.30) holds for t = τ ,

that is

u(τ) ≤ α(1 + w)τ .

Now

u(τ + 1) ≤ α + w

τ∑
k=0

u(k) ≤ α + αw

τ∑
k=0

(1 + w)k

= α

(
1 + w

τ∑
k=0

(1 + w)k

)
.

Noting that

τ∑
k=0

(1 + w)k =
(1 + w)τ+1 − 1

(1 + w)− 1
=

(1 + w)τ+1 − 1

w
,

it follows that

u(τ + 1) ≤ α(1 + w)τ+1.

Therefore (5.30) holds for t = τ+1, therefore by strong induction, (5.30) holds

for all t ∈ N0.
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Finally, noting w > 0 we have that 1 + w ≤ ew, therefore,

u(t) ≤ αetw, ∀ t ∈ N0.

The first ISS result which we consider is a quasi-ISS result. We name it

this because we must restrict our initial condition.

Theorem 5.5.9. Consider the system (5.5). Assume (A5.1)-(A5.6), (A5.8)

and (A5.10) hold. Also assume that one of the following holds:

• cTAk � 0 for some k ∈ N0.

• For some α > 0, f(y) ≥ αy for all y ≥ 0

The equilibrium x∗ = −(I −A)−1bpy∗ is quasi-ISS in the sense that, for every

ε > 0, there exist ψ ∈ KLD and ϕ ∈ K such that for all x0 ∈ Rn
+ with ‖x0‖ ≥ ε

and all d : N0 → Rn
+,

‖x(t;x0, d)− x∗‖ ≤ ψ(‖x0 − x∗‖, t) + ϕ(‖d‖t) ∀ t ∈ N0.

Proof. Let ε > 0. Assume that cTAk � 0 for some k ∈ N0. By Lemma 5.5.5,

there exists η1 > 0 and θ1 ∈ N0 such that for all x0 ∈ Rn
+ with ‖x‖ ≥ ε and all

d : N0 → Rn
+,

cTx(t;x0, d) ≥ η1 ∀ t ∈ N0, t ≥ θ1.

Now alternatively assume that for α > 0, f(y) ≥ α for all y ≥ 0. Then by

Lemma 5.5.6, there exists η2 > 0 and θ2 ∈ N0 such that for all x0 ∈ Rn
+ with

‖x‖ ≥ ε and all d : N0 → Rn
+,

cTx(t;x0, d) ≥ η2 ∀ t ∈ N0, t ≥ θ2.

Therefore for all x0 ∈ Rn
+ with ‖x0‖ ≥ ε and all d : N0 → Rn

+

cTx(t;x0, d) ≥ η ∀ t ∈ N0, t ≥ θ, (5.31)

where η = min(η1, η2) and θ = max(θ1, θ2).

Define f̃ : R→ R by

f̃(y) =

{
f(y + y∗)− f(y∗) for y ≥ −y∗ + η

f(η)− f(y∗) for y < −y∗ + η.

Then, by (A5.8)

p|y| − |f̃(y)| > 0 ∀ y 6= 0
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and, by (A5.10),

p|y| − |f̃(y)| → ∞ as |y| → ∞.

Combining this with the fact that D(0, p) ⊆ S(A, b, cT ), it follows from

Theorem 5.2.4 that the system

z(t+ 1) = Az(t) + bf̃(cT z(t)) + d̃, z(0) = z0, (5.32)

is ISS in the sense that there exists ψ̃ ∈ KLD and ϕ̃ ∈ K such that, for every

z0 ∈ R, and every d̃ : N0 → Rn,

‖z(t; z0, d̃)‖ ≤ ψ̃(‖z0, t) + ϕ̃(‖d̃t), ∀ t ∈ N0, (5.33)

where z(t; z0, d̃) denoted the unique solution of (5.32).

Let x0 ∈ Rn
+ with ‖x0‖ ≥ ε and let d : N0 → Rn

+. Define x̃(t) := x(t;x0, d)−
x∗ for all t ∈ N0 and set

x̃θ(t) := x̃(t+ θ) and dθ(t) := d(t+ θ) ∀ t ∈ N0.

By (5.31),

cT x̃θ(t) ≥ −y∗ + η ∀ t ∈ N0,

and it is easy to see that x̃θ solves (5.32) with z0 = x̃θ(0) = x(θ;x0, d) − x∗
and d̃ = dθ. Hence, by (5.33), we have that

‖x̃θ(t)‖ ≤ ψ̃(‖x̃θ(0)‖, t) + ϕ̃(‖dθ‖t) ∀ t ∈ N0. (5.34)

Moreover, for t = 0, 1, . . . , θ, x̃ satisfies

x̃(t+ 1) = Ax̃(t) + bf̂(cT x̃(t)) + d(t) ∀ t = 0, 1, . . . , θ,

where the function f̂ : [−y∗,∞)→ [−py∗,∞) is defined by

f̂(y) = f(y + y∗)− f(y∗) = f(y + y∗)− py∗ ∀ y ≥ −y∗.

It is clear that |f̂(y)| ≤ p|y| for all y ≥ −y∗ and, using the variation-of-

parameters formula, it follows that there exists constants k1 ≥ 1 and k2 > 0

176



such that, for all x0 ∈ Rn
+ with ‖x0‖ ≥ ε and all d : N0 → Rn

+,

‖x̃(t;x0, d)‖ ≤ k1(‖x0 − x∗‖+ ‖d‖t−1) + k2

t−1∑
s=0

‖x̃(s)‖ ∀ t = 1, . . . , θ

≤ k1(‖x0 − x∗‖+ ‖d‖θ) + k2

t−1∑
s=0

‖x̃(s)‖ ∀ t = 1, . . . , θ.

Hence, by Lemma 5.5.8,

‖x̃(t;x0, d)‖ ≤ k1e
k2θ(‖x0 − x∗‖+ ‖d‖θ) ∀ t = 0, 1, . . . , θ,

holds for all x0 ∈ Rn
+ such that ‖x0‖ ≥ ε, and all d : N0 → Rn

+.

Setting k := k1e
k2θ and defining ψ1 ∈ KLD and ϕ1 ∈ K by

ψ1(s, t) := keθ−ts ∀ s ∈ R+, ∀ t ∈ N0,

and

ϕ1(s) := ks ∀ s ∈ R+,

it can be seen that for all x0 ∈ Rn
+ with ‖x0‖ ≥ ε and all d : N0 → Rn

+,

‖x̃(t;x0, d)‖ ≤ k(‖x0 − x∗‖+ ‖d‖θ)
≤ ψ1(‖x0 − x∗‖, t) + ϕ1(‖d‖θ) ∀ t = 0, 1, . . . , θ.

(5.35)

In particular, for all x0 ∈ Rn
+ with ‖x0‖ ≥ ε and all d : N0 → Rn

+,

‖x̃θ(0;x0, d)‖ = ‖x̃(θ;x0, d)‖ ≤ k(‖x0 − x∗‖+ ‖d‖θ),

Combining this with (5.34), yields that, for all x0 ∈ Rn
+ with ‖x0‖ ≥ ε and all

d : N0 → Rn
+,

‖x̃(t+ θ;x0, d)‖ ≤ ψ̃(2k‖x0−x∗‖, t) + ψ̃(2k‖d‖θ, 0) + ϕ̃(‖d‖t+θ) ∀ t ∈ N0.

(5.36)

Defining ψ2 ∈ KLD by

ψ2(s, t) =

{
ψ̃(2ks, 0), (s, t) ∈ R+ × {0, 1, . . . , θ}
ψ̃(2ks, t− θ), (s, t) ∈ R+ × {θ + 1, θ + 2, . . .}

and ϕ2 ∈ K by

ϕ2(s) := ϕ̃(s) + ψ̃(2ks, 0) ∀ s ∈ R+,

177



(5.36) can be written as

‖x̃(t+ θ;x0, d)‖ ≤ ψ2(‖x0 − x∗‖, t+ θ) + ϕ2(‖d‖t+θ) ∀ t ∈ N0,

which holds for all x0 ∈ Rn
+ with ‖x0‖ ≥ ε and all d : N0 → Rn

+.

Finally, setting

ψ := max(ψ1, ψ2) ∈ KLD

and

ϕ := max(ϕ1, ϕ2) ∈ K,

and invoking (5.35), we obtain

‖x̃(t;x0, d)‖ ≤ ψ(‖x0 − x∗‖, t) + ϕ(‖d‖t) ∀ t ∈ N0,

from which it follows

‖x(t;x0, d)− x∗‖ ≤ ψ(‖x0 − x∗‖, t) + ϕ(‖d‖t) ∀ t ∈ N0,

which holds for all x0 ∈ Rn
+ with ‖x0‖ ≥ ε and all d : N0 → Rn

+.

The next ISS result we present is a semi-ISS result. This terminology is

motivated by the fact that we restrict our attention to a bounded set of initial

conditions and a bounded set of disturbances.

Theorem 5.5.10. Consider the system (5.5). Assume (A5.1)-(A5.6),

(A5.8) and (A5.10) hold. Also assume that f(y) > 0 for all y > 0. The

equilibrium x∗ = (I−A)−1bpy∗ is semi-ISS in the sense that, for every compact

set Γ ⊂ Rn
+ with 0 /∈ Γ and ∆ > 0, there exists ψ ∈ KLD and ϕ ∈ K such that

for all x0 ∈ Γ and all d : N0 → Rn
+ such that ‖d(t)‖∞ ≤ ∆,

‖x(t;x0, d)− x∗‖ ≤ ψ(‖x0 − x∗‖, t) + ϕ(‖d‖t) ∀ t ∈ N0.

Proof. Let Γ ∈ Rn
+ be a compact set with 0 /∈ Γ and ∆ > 0. By Lemma 5.5.7

there exists η > 0 and θ ∈ N0 such that for all x0 ∈ Γ and all d : N0 → Rn
+

with ‖d‖∞ ≤ ∆,

cTx(t;x0, d) ≥ η ∀ t ∈ N0, t ≥ θ. (5.37)

Define f̃ : R→ R by

f̃(y) =

{
f(y + y∗)− f(y∗) for y ≥ −y∗ + η

f(η)− f(y∗) for y < −y∗ + η.
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Then, by (A5.8),

p|y| − |f̃(y)| > 0 ∀ y 6= 0,

and, by (A5.10),

p|y| − |f̃(y)| → ∞ as |y| → ∞.

Combining this with the fact that D(0, p) ⊆ S(A, b, cT ), it follows from Theo-

rem 5.2.4 that the system

z(t+ 1) = Az(t) + bf̃(cT z(t)) + d̃(t), z(0) = z0, (5.38)

is ISS in the sense that there exists ψ̃ ∈ KLD and ϕ̃ ∈ K such that, for every

z0 ∈ Rn and every d̃ : N0 → Rn
+ with ‖d̃‖∞ ≤ ∆,

‖z(t; z0, d̃)‖ ≤ ψ̃(‖x0‖, t) + ϕ̃(‖d̃‖t), ∀ t ∈ N0, (5.39)

where z(t; z0, d̃) denotes the solution of (5.38).

Let x0 ∈ Γ and d : N0 with ‖d‖∞ ≤ ∆. Define

x̃(t;x0, d) = x(t;x0, d)− x∗ ∀ t ∈ N0,

and set

x̃θ(t;x
0, d) := x̃(t+ θ;x0, d) and dθ(t) := d(t+ θ) ∀ t ∈ N0.

By (5.37),

cT x̃d(t;x
0, d) ≥ −y∗ + η ∀ t ∈ N0,

and it can easily be seen that x̃θ(t;x
0, d) solves (5.38) with z0 = x̃θ(0, x

0, d)

and d̃ = dθ. Therefore, by (5.39), for all x0 ∈ Γ and all d : N0 → Rn
+ with

‖d‖∞ ≤ ∆,

‖x̃θ(t;x0, d)‖ ≤ ψ̃(‖x̃θ(0;x0, d)‖, t) + ϕ̃(‖dθ‖t) ∀ t ∈ N0. (5.40)

Moreover, for t = 0, 1, . . . , θ, x̃(t;x0, d) satisfies

x̃(t+ 1;x0, d) = Ax̃(t;x0, d) + bf̂(cT x̃(t;x0, d)) + d(t) ∀ t = 0, 1, . . . , θ,

where f̂ : [−y∗,∞)→ [−py∗,∞) is defined by

f̂(y) = f(y + y∗)− f(y∗) = f(y + y∗)− py∗ ∀ y ≥ −y∗.

It is clear that |f̂(y)| ≤ p|y| for all y ≥ −y∗ and using the variation-of-
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parameters formula, it follows that there exist constants k1 ≥ 1 and k2 > 0

such that, for all x0 ∈ Γ and all d : N0 → Rn
+ with ‖d‖ ≤ ∆,

‖x̃(t;x0, d)‖ ≤ k1(‖x0 − x∗‖+ ‖d‖t−1) + k2

t−1∑
s=0

‖x̃(s)‖ ∀ t = 1, . . . , θ

≤ k1(‖x0 − x∗‖+ ‖d‖θ) + k2

t−1∑
s=0

‖x̃(s)‖ ∀ t = 1, . . . , θ.

Hence, by Lemma 5.5.8,

‖x̃(t;x0, d)‖ ≤ k1e
k2θ(‖x0 − x∗‖+ ‖d‖θ) ∀ t = 0, 1, . . . , θ,

holds for all x0 ∈ Γ and all d : N0 → Rn
+ with ‖d‖∞ ≤ ∆.

Setting k := k1e
k2θ and defining ψ1 ∈ KLD and ϕ1 ∈ K by

ψ1(s, t) := keθ−ts ∀ s ∈ R+, ∀ t ∈ N0,

and

ϕ1(s) := ks ∀ s ∈ R+,

it can be seen that for all x0 ∈ Γ and all d : N0 → Rn
+ with ‖d‖∞ ≤ ∆,

‖x̃(t;x0, d)‖ ≤ k(‖x0 − x∗‖+ ‖d‖θ)
≤ ψ1(‖x0 − x∗‖, t) + ϕ1(‖d‖θ) ∀ t = 0, 1, . . . , θ.

(5.41)

In particular, for all x0 ∈ Γ and all d : N0 → Rn
+ with ‖d‖θ ≤ ∆,

‖x̃θ(0;x0, d)‖ = ‖x̃(θ;x0, d)‖ ≤ k(‖x0 − x∗‖+ ‖d‖θ),

Combining this with (5.40), yields that, for all x0 ∈ Γ and all d : N0 → Rn
+

with ‖d‖∞ ≤ ∆,

‖x̃(t+ θ;x0, d)‖ ≤ ψ̃(2k‖x0−x∗‖, t) + ψ̃(2k‖d‖θ, 0) + ϕ̃(‖d‖t+θ) ∀ t ∈ N0.

(5.42)

Defining ψ2 ∈ KLD by

ψ2(s, t) =

{
ψ̃(2ks, 0), (s, t) ∈ R+ × {0, 1, . . . , θ}
ψ̃(2ks, t− θ), (s, t) ∈ R+ × {θ + 1, θ + 2, . . .}

and ϕ2 ∈ K by

ϕ2(s) := ϕ̃(s) + ψ̃(2ks, 0) ∀ s ∈ R+,
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(5.42) can be written as

‖x̃(t+ θ;x0, d)‖ ≤ ψ2(‖x0 − x∗‖, t+ θ) + ϕ2(‖d‖t+θ) ∀ t ∈ N0,

which holds for all x0 ∈ Γ and all d : N0 → Rn
+ with ‖d‖∞ ≤ ∆.

Finally, setting

ψ := max(ψ1, ψ2) ∈ KLD

and

ϕ := max(ϕ1, ϕ2) ∈ K,

and invoking (5.41), we obtain

‖x̃(t;x0, d)‖ ≤ ψ(‖x0 − x∗‖, t) + ϕ(‖d‖t) ∀ t ∈ N0,

from which it follows

‖x(t;x0, d)− x∗‖ ≤ ψ(‖x0 − x∗‖, t) + ϕ(‖d‖t) ∀ t ∈ N0,

which holds for all x0 ∈ Γ and all d : N0 → Rn
+ with ‖d‖∞ ≤ ∆.

Example 5.5.11. Consider the system considered in Example 5.5.4, however

the nonlinearity is now given by

f(y) =
6y

5 + y
, y ≥ 0.

Assume that the disturbance is the same as that considered in Example 5.5.4.

Noting that p = 0.625, there exists a unique y∗ > 0 such that f(y∗) = py∗

meaning that (A5.6) holds, where y∗ = 4.6. By the results in Section 2.4.3,

(A5.8) and (A5.9) hold. It is also clear that (A5.10) holds.

Now we can apply Theorem 5.5.10 to this system, noting that ‖d‖∞ ≤ 3 <

∞. This means for every compact set Γ ∈ Rn
+ with 0 /∈ Γ, there exist ψ ∈ KL

and ϕ ∈ K such that, for every x0 ∈ Γ,

‖x(t;x0, d)− x∗‖ ≤ ψ(‖x0 − x∗‖, t) + ϕ(‖d‖t) ∀ t ∈ N0,

where

x∗ =
(

11.5 2.3 2.3
)T

.

We illustrate this bound in Figure 5.11 in which we simulate this example for

three random disturbance vectors and plot the error ‖x(t;x0, d) − x∗‖, for an

arbitrary x0 6= 0 with ‖x0‖ < 50.
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Figure 5.11: Numerical simulations for Example 5.5.11. Error ‖x(t;x0, d)−x∗‖
for three different d : N0 → [0, 1]3.

5.6 Application to Population Ecology

In this section we will demonstrate how the results developed in this chapter

can be used in an ecological context. We will be using the Leslie-Plus matrix

of a species of wallabies (Onychogalea fraenata) from Section 2.2.2, given by

L+ =


0 0 0 3.1

0.93 0 0 0

0 0.82 0 0

0 0 0.47 0.8

 .

Let

A =


0 0 0 0

0.93 0 0 0

0 0.82 0 0

0 0 0.47 0.8

 , b =


1

0

0

0

 and c =


0

0

0

3.1

 . (5.43)

We begin by noting that L+ = A+bcT , therefore, using what we established

in Section 2.2.2, A+ bcT is a primitive matrix and so (A5.3) holds. Also note

that trivially (A5.1) holds. It is easily shown that ρ(A) = 0.8, therefore A is

stable and (A5.2) is satisfied.

If we choose f(y) = y, then the systems

x(t+ 1) = Ax(t) + bf(cTx(t)), x(0) = x0 ∈ Rn
+ (5.44)

and

x(t+ 1) = L+x(t), x(0) = x0 ∈ Rn
+
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are identical. Noting that p = 0.18, if follows that

inf
y>0

f(y)

y
= 1 > 0.18 = p.

By Theorem 5.4.1, for any initial condition x0 ∈ Rn
+ with x0 6= 0,

lim
t→∞

xi(t) =∞, (5.45)

where xi(t) is the i-th component of x(t).

Figure 5.12 is a time history of x(t) for an arbitrary nonnegative and

nonzero initial condition which clearly illustrates the divergence property (5.45).
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x2(t)

x3(t)

x4(t)

Figure 5.12: Time history of x(t) for the system (5.44).

What this means is using this linear model for wallabies, the total popu-

lation, and indeed the population in each stage-class, will diverge to infinity.

This clearly is not a biologically realistic model for asymptotic behavior. One

way of dealing with this population divergence is to introduce an upper bound

on the number of adults (members of the final stage-class) reproducing each

year. This can by achieved by replacing f by a Beverton-Holt type nonlinear-

ity. This nonlinearity was introduced in Section 2.4.3, and is given by

f(y) =
my

k + y
.

It is easily seen that as y → ∞, f(y) → m and as y → 0, f(y)/y → m/k.

If we wish to introduce an upper bound of 500 adults reproducing each per

time step, we therefore require that m = 500. It is easily seen that f(y) is

an increasing function with decreasing derivative, therefore f(y) ≤ m for all

y ≥ 0. If we also want the system to behave in a similar manner to the linear

system for small values of y we require m/k = 1, therefore, k = 500.

183



We now consider the system (5.4) with nonlinearity given by

f(y) =
500y

500 + y
, (5.46)

and linear part given by (5.43). This will model population of wallabies in a

similar way to (5.44), however there will be at most 500 adults reproducing

per time step. Noting that p = 0.18, there exists a unique y∗ > 0 such that

f(y∗) = py∗, meaning that (A5.6) holds, where y∗ = 20500/9. By the results

in Section 2.4.3, (A5.8) and (A5.9) hold.

It remains to show that (A5.5) is satisfied, then we will be able to ap-

ply Theorem 5.4.16 to establish the existence of a semi-globally exponentially

stable, nonzero equilibrium of the system. This is easily done noting that the

controllability and observability matrices for (5.43) are

C =


1 0 0 0

0 0.93 0 0

0 0 0.7626 0

0 0 0 0.3584


and

O =


0 0 0 3.1

0 0 1.457 2.48

0 1.1947 1.1656 1.9840

1.1111 0.9558 0.9325 1.5872


respectively, which both are of full rank.

Now by Theorem 5.4.16, there exist constants γ > 0 and g ≥ 1 such that,

for every x0 which lies in a compact set, not containing zero,

‖x(t;x0)− x∗‖ ≤ ge−γt‖x0 − x∗‖ ∀ t ∈ N0,

where

x∗ = (I − A)−1bpy∗ =


410.001

381.301

312.667

734.767

 . (5.47)

Figure 5.13(a) plots the nonlinearity and shows that it satisfies the strict

sector condition and Figure 5.13(b) contains the time history of x(t) with the

initial condition x0 = (200, 100, 150, 300)T and shows it converges to x∗.

We now address the issue of a hard limit we have imposed on the maxi-

mum number of parents reproducing each year. In some years, the number of

newborns could be more than 500, which we do not currently allow. To deal
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Figure 5.13: Example of a population model for wallaby where we include an
upper limit on the number of adults reproducing each year. (a) The nonlin-
earity f(y) = 500y/(500 + y) satisfying a sector condition. (b) Time history
plot of x(t) in the colored lines and the steady state x∗ as a dotted black line.

with this we can think of f(y) being the lower bound for the number of adults

reproducing each year. The actual number of adults reproducing each year will

now be 500y/(500 + y) + d1, where d1 : N0 → [0, 50]. d1 is a disturbance term

which represents additional adults reproducing each year and takes a random

value between 0 and 50. The system now takes the form (5.5) where (A, b, cT )

is given by (5.43), f(y) is given by (5.46) and

d(t) =


d1(t)

0
...

0

 , where d1 : N0 → [0, 50]. (5.48)

Clearly (A5.10) holds. With ∆ = 50, ‖d‖∞ < ∆, therefore we are in

a position to apply Theorem 5.5.10. This means that for every compact set

Γ ⊆ Rn
+, with 0 /∈ Γ, there exist ψ ∈ KLD and ϕ ∈ K such that for all x0 ∈ Γ

and d(t) given by, (5.48)

‖x(t;x0, d)− x∗‖ ≤ ψ(‖x0 − x∗‖, t) + ϕ(‖d‖t) ∀ t ∈ N0. (5.49)

What this means in a biological context is that even if we do not know

the exact number of adults which reproduce each time step, just that it lies in

the interval [500y/(500 + y), 500y/(500 + y) + 50], where y is the number of

individuals in the final stage-class, we do know that the difference between the

total population and the population x∗ given by (5.47) is bounded by (5.49).

This is illustrated in Figure 5.14, where the error, ‖x(t;x0, d)− x∗‖ is plotted
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Figure 5.14: Example of a population model for a wallaby where the number
of adults reproducing lies in the interval [500y/(500 + y), 500y(500 + y) + 50]
with three initial conditions given by (5.50).

for the three initial conditions

x1(0) =


400

400

350

700

 , x2(0) =


350

350

350

700

 , x3(0) =


400

400

300

750

 , (5.50)

and three different, yet similarly defined disturbances, d(t).
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Chapter 6

Integral Control of Discrete

Time Nonnegative Lur’e

Systems for Population

Management

This chapter is mainly based on [53].

6.1 Introduction

Regulation or management to a constant set-point is fundamental across the

natural and man-made world. Examples include the regulation of blood sugar

by insulin [127]; bacterial chemotaxis in living cells [154]; calcium homeostasis

[36]; the regulation of temperature in a central heating system [57]; or the

navigation of a supertanker across stormy seas [76, 4]. Such examples span

a huge range of time and length scales. In conservation management or pest

control, population managers would aim to regulate the population to a desired

density. A key feature in all of these applications is that set-point regulation

must be robust to parametric uncertainty and observation errors. So how is

such robust set-point regulation achieved? [154] argue that the robustness of

many homeostatic mechanisms must use integral control. Integral control is

a simple yet powerful technique developed by control engineers, and is one

component of a family of so-called PID (P for proportional, I for integral

and D for derivative) controllers. PID controllers are used widely in industrial

processes [5] and have been described as one of the “Success Stories in Control”

[122, p. 103]. One striking feature of integral controllers, and PID controllers

in general, is that they can be implemented on the basis of both minimal

knowledge of the system to be managed or regulated, and in the presence of
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considerable system uncertainty. It is these two features that makes them

appealing for population management/conservation.

Conservation is crucial to maintaining biodiversity and species viability in

environments facing a range of pressures, such as those from habitat destruc-

tion, climate change, invasion and changing land use. Likewise, pest control

or management is key to controlling unwanted or invasive populations which

possibly have uncertain or unmodeled vital rates. However, that said, the first

two sentences of the abstract of [147] read “Too much of wildlife management

is today still more of an art than a science. Turning the art into a much needed

predictive science requires including research in the management process”. In

response to Walker’s claim there have been many theoretical approaches to

population management in the ecological and conservation literature (see Sec-

tion 6.2.1 for references). As far as we can tell, integral control (and PID

control more generally) has not been considered as a technique for regulating

a population by restocking or removing members. Here we present such an

approach to conservation; describing how integral control arises naturally and

is suitable for the task. In doing so we draw on a large body of existing the-

oretical work on integral control, which we adapt to a context of population

management. Our focus in this chapter is conservation and so we concen-

trate on supplementing populations. We comment, however, that managing a

(possibly growing ambient) unwanted population to lower population densities

can also be achieved using a combined proportional and integral (PI) control

strategy.

This chapter is organized as follows. Section 6.2 contains a nontechnical

overview of integral control and describes the key concepts. Integral control,

indeed PID control in general, is an extensively studied subject and it is clearly

not possible, or indeed our purpose, to include a complete treatment here. Sim-

ilarly, there are many other theoretical approaches to population management

in the ecological and conservation literature, and in Section 6.2.1 we compare

and contrast the methods proposed here to some existing techniques, such

as partially observable Markov decision processes. Section 6.3 describes the

mathematics of integral control and progressively adds additional features to

the model necessitated by the specific demands of population modeling. These

additional features are described on page 199 and addressed in Sections 6.3.1-

6.3.5. Throughout this chapter we will illustrate theoretical concepts with

ecological examples. We seek to give a workable overview of integral control,

the suitable modifications geared towards conservation using ecological models

and cite relevant sources for further reading. We summaries our results and

their applications in the discussion in Section 6.5.
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6.2 Integral Control for Population Conserva-

tion

Our objective is to present a method to restock a managed, but declining,

population. We assume that the population is modeled by an age- or stage-

structured population projection model, see Section 2.2. These are discrete-

time models where the time-steps are assumed fixed: a week, month, or breed-

ing cycle for instance. First, we need to have access to an observation of the

population. In a typical application, we do not know, and cannot measure,

the entire population distribution at any given time; in fact, in practice there

are stage-classes about which we have no knowledge. For instance, we might

be able to measure population density of only the reproductive adults, and so

in this case it is that stage only which is the observation. It is this part of the

system which we seek to regulate. An important specification in the problem

statement, therefore, is that only information of the measured stage-class (or

classes) is available.

Second, we need to be able to replenish a stage (or combination of stages),

that is, add new (or remove existing) population members. In a context of

conservation, say of an endangered plant, such an action might be restocking by

planting seedlings grown in a greenhouse. We describe a method for choosing

management actions that result in the densities of the measured stages reaching

a chosen reference value. Figure 6.1 contains a diagram of the setup described

thus far.

Population

model
Management Observation

Figure 6.1: Diagram of the restocking scheme: management acts by adding or
removing members of the population of certain stage-classes and a portion of
the population is observed. The goal is to choose a management strategy so
that the observed observations reach a chosen reference value.

The above problem fits naturally into a “classical” control theory setting,

and we draw on techniques developed in that field to present a solution. A

precomputed or open-loop control is a choice of management strategy that is

determined entirely by the model parameters and the chosen reference value.

It is called open-loop because the corresponding block diagram, Figure 6.1, is

an open-loop as there is no feedback loop. It is straightforward to show that

under mild assumptions on the model, such as stability of the unforced system,
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a suitably chosen constant management strategy, that is, a fixed number of

new members of the population being added at each time-step results in the

observations converging to the reference value.

As an illustrative example, a matrix population projection model for fe-

males of the declining population of wild boar (Sus scrofa), in poor environ-

mental conditions, is given in [9]. The matrix has three stage-classes, struc-

tured according to age. Suppose that at each time-step the density of the third

stage-class, here denoting adult female boar, is measured. Similarly, assume

that we have access to the same stage-class, so that we can release female adults

into the population. The model is described in detail in Example 6.3.3. From

each of three random initial population distributions our goal is to raise the

female adult density to 500 (and to maintain that density). Here the chosen

reference abundance is arbitrary but typical of wild boar density from [73, p.

447-449]. Figure 6.2(a) contains the results of applying a precomputed control;

the observed abundances of female adult boar of the unmanaged population

are declining with time and the observed abundances of female adult boar of

the managed population are converging to the target reference of 500.
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Figure 6.2: Precomputed control applied to the declining wild boar matrix
PPM considered in Section 6.2. In both plots the solid lines and dashed lines
denote observations with and without precomputed control respectively. The
black dotted lines denote the target reference abundance r = 500. The three
different colours represent three initial conditions. (a) Observed female adult
boar population. (b) Observed female adult boar with randomly perturbed
model parameters.

Precomputed control provides a simple method for raising population den-

sity via restocking. It does suffer from a major flaw, however. Precomputed

control is not updated according to observations taken and requires exact

knowledge of the model parameters, here denoting modeled vital rates, in

order to be implemented as intended. Applying precomputed control when

these model parameters are uncertain can often result in the management ob-

jective failing. For example, Figure 6.2(b) contains projections of the wild
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boar projection model considered above, but with randomly perturbed model

parameters. The precomputed control is based on the nominal estimate of

these parameters; those given in Example 6.3.3. It is evident that here the

precomputed control does not achieve the desired outcome of 500 female adult

boar. Although there are perturbations where the precomputed control does

give rise to eventual observations larger than the reference r, there are also

cases where the observations are smaller than r. Furthermore, in general it is

not possible to predict the effect of arbitrary model uncertainty on the result-

ing observations of a precomputed control strategy, greatly limiting the appeal

of precomputed control in this situation.

The above example shows that precomputed control is in general not robust

to parameter uncertainty, which is a particular instance of model uncertainty;

a term we make precise in the present context in Section 6.3.1. The lack of

robustness of precomputed control is problematic because ecological models

are inherently noisy, often parametrized statistically from limited time-series

data (see [104] or [17, Chapter 6]) and subject also to many other forms of

uncertainty (see [149, 114]). Naturally, based on the above remarks we desire

a method for raising population density via restocking that is robust to these

sources of uncertainty.

The problem statement, therefore, is:

Design a method to restock a managed, but declining, population.

The method should be implemented with only access to specified

observations of that population and in a manner that is both inde-

pendent of the initial population distribution and is robust to model

uncertainty.

Similar problem statements arise in many engineering contexts (as dis-

cussed earlier). It is well-known to engineers that the solution is to base the

management strategy on a feedback law. In words, the management action to

be taken at each time-step is based on observations of the population. Such a

scheme is represented in Figure 6.3. Feedback control is often called closed-loop

control because the loop in Figure 6.3 is closed.

Without yet going into the mathematical details; the choice of feedback

control used depends on both the model to be controlled and the desired goal.

The choice of feedback control is guided by the internal model principle [43]

which states that the controller, in this case the management strategy, must be

able to reproduce the dynamics of the reference signal. Hence, if we wish to use

a feedback control to regulate the population to a constant value, it will need

to include an integrator and hence will be an integral controller. Furthermore,

there is inherent robustness in this type of control, as we explain in Section
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Population

model

Management

strategy

Management Observation

Figure 6.3: Feedback control for population management: the management
strategy is determined by the observations of that population. The goal is
to design a management strategy so that the observed observations reach a
chosen reference value.

6.3.1.

In the remainder of this chapter we demonstrate that integral control is

a suitable feedback strategy for population management via restocking. We

proceed in Section 6.3 to give a mathematical presentation of integral control.

Figure 6.4 shows projections of the uncertain wild boar model subject to an

integral control management strategy. We see that the desired outcome of 500

female adult boar is achieved.

Integral control, as presented in this chapter, dates back to the 1970s and

early contributions include [27, 95, 102, 52], while the later results we present

draw on contemporary material, which we cite in the text. We conclude this

section with a brief overview of other modeling approaches to population man-

agement prevalent in the literature to which we compare and contrast integral

control.

6.2.1 Comparison with existing approaches to popula-

tion management

There are both deterministic and stochastic modeling approaches to popula-

tion management in the literature. For populations modeled by matrix PPMs

one approach is to investigate the effects of changing life history parameters

on the dominant eigenvalue, which characterizes the asymptotic growth rate

of the population. A dominant eigenvalue greater than one gives rise to an

asymptotically increasing population under a few technical, but reasonable,

mathematical conditions such as primitivity (see Theorem 2.1.23). This can

be achieved by sufficient increase in the entries of the matrix specifying the
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Figure 6.4: Integral control (6.9) applied to the declining wild boar matrix
PPM of Example 6.3.3 with randomly perturbed model parameters. In each
plot the solid lines are corresponding simulations subject to the integral control
system (6.9). The dashed lines are projections from the uncontrolled model
(6.1). (a) Observations of female adult boar. The dotted lines are the reference
r = 500 and r± 10%. (b) Total female population density. (c) The number of
new individuals added at each time-step, determined by the integral control
management strategy (6.8).

PPM [7, p. 27]. A sensitivity [30] or elasticity [29] analysis can be used to

quantify how small changes in particular vital rates affect the dominant eigen-

value; often guiding or even directing conservation efforts. Examples include,

but are by no means restricted to, [24, 67, 152, 93, 141].

Biologically, the above procedure corresponds to improving the vital rates

for a population, for example by improving the quality or access to food, or

by removing or limiting predation or poaching. Mathematically, the above

procedure is a form of perturbation analysis and over recent years new tools

have been added by [65, 66, 32, 92] to analytically describe the dependence

of the dominant eigenvalue on the perturbation. These methods largely draw

on the stability radius for robust control developed by [59, 58]. The above

framework is not directly comparable to integral control because (a) it is not

a restocking or reintroduction scheme and (b) perturbations to vital rates are

generally not modeled dynamically; they are considered as a static (that is,

193



instant) intervention.

Stochastic models for population management are also prevalent in the

literature. Markov decision processes (MDP) (see, for example, [110]) are,

roughly speaking, Markov chains where at each time-step the state transition

function depends on an action chosen by the modeler. Associated with each

action and state are rewards (and/or costs), which are combined to form a

so-called value function. As with feedback control, MDPs have been extended

to the situation where, at each time-step, the entire state is not available to the

modeler and instead only an observation (which is a stochastic or deterministic

function of the state) is available. In this situation a partially observable MDP

(POMDP) is used instead. Since their inception POMDPs have been used in a

wide variety of fields and we refer the reader to the survey [101] or the tutorial

paper [87] for examples and a history of their development.Worked examples

in the conservation literature include [18, 19] and POMDPs have also been

applied for detecting and managing an ecological invasion, for example, in [56]

and [115] and the references therein.

Although POMDPs are used in the literature with the same population

management objective as that here (in some sense); we note that POMDPs

are used in a slightly different fashion and as a result have different advantages

and disadvantages. In the examples given above, the aim is to choose actions

optimally, that is, to maximize the expected rewards obtained (and/or mini-

mize the expected costs incurred) through the value function. Integral control

is an example of feedback control – it is not an optimal control technique, and

thus is a complimentary method. Two advantages of integral control are, first,

that the models are very straightforward to use. This is especially pertinent

because finding optimal policies for POMDPs is, in general, computationally

very intensive [16], especially as the size of the state-space grows. The same is

also true for models for population management that use stochastic dynamic

programming (SDP), such as [129, 97, 148, 142, 99]. Second, integral control

is demonstrably robust to model uncertainty, a key consideration in ecologi-

cal models. Optimal controls (including those obtained from classical results

such as the Pontryagin Maximum Principle) are not always robust to model

uncertainty [33, 121]; an increase in performance is traded-off against a loss

of robustness. Robustness to model uncertainty for POMDP models has been

discussed in [41] and appeals to the theory of (active) adaptive management

[150, 151].

We conclude this section by remarking on active adaptive management

[147, 130, 151]. Precomputed control is an example of management that is

not adaptive – the same number of individuals are released every time-step

and no monitoring of the resulting population takes place. Conversely integral
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control, and feedback control more generally, is an example of active adap-

tive management. After every management event (that is, at each time-step)

observations are collected and used to update the management action at the

next step; this is the fundamental ingredient of feedback control, as depicted

in Figure 6.3.

6.3 Mathematical Formulation of Integral

Control

This section contains a mathematical presentation of integral control for pop-

ulation management. We first consider matrix population projection models

(PPMs) and the reader is also referred to Section 2.2 for further details. Sup-

pose that the population can be described by n distinct age- or stage-classes.

If the population density in each stage-class is xj, for j = 1, . . . , n, then we let

x(t) = (x1(t), . . . , xn(t))T denote the population vector which has dynamics

described by the PPM

x(t+ 1) = Ax(t), x(0) = x0, ∀ t ∈ N0, (6.1)

where x0 denotes the initial population distribution. Throughout this chapter

we assume that the unmanaged population modeled by (6.1) is in asymptotic

decline for every initial population distribution x0, which means that the spec-

tral radius of A is less that one. Recall that the spectral radius of a matrix M

can be defined as

ρ(M) = lim
t→∞
‖M t‖ 1

t ,

where ‖ · ‖ denotes any matrix norm, which captures the asymptotic growth

rate of the norm of M t.

Since we shall always consider matrices A that are nonnegative it follows

from [7, p. 26] that the spectral radius of A equals the dominant eigenvalue.

For such matrices this is often referred to as the asymptotic growth rate.

Throughout this chapter we introduce a set of assumptions, the first of

which is given below.

(A6.1) A ∈ Rn×n
+ and ρ(A) < 1.

It is often the case that we do not know the entire population distribution

x(t) in (6.1) precisely because there are stage-classes about which we have no

information. It is probable, for instance, that the full initial population x0

is unavailable. However, we assume that we do have access to a measured
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variable, or observation, y(t) described by

y(t) = cTx(t), ∀ t ∈ N0. (6.2)

The variable y(t) represents the total knowledge about x(t) available for

management decisions, and might take the form of the results of a census or

survey. Here c in (6.2) is a column vector, so that cT is a row vector, called the

observation vector. By way of an example, suppose that we are considering a

population with five stage-classes. If the abundance of the penultimate stage

is measured at each time-step, then

cT =
(

0 0 0 1 0
)
, with y(t) = cTx(t) = x4(t).

The second facet of the model is to allow the population to be supplemented

or depleted by the arrival or removal of new members respectively. To describe

this we include a control term bu(t) in (6.1), to obtain the controlled population

model

x(t+ 1) = Ax(t) + bu(t), x(0) = x0, ∀ t ∈ N0. (6.3)

The term bu(t) describes the addition (if bu(t) ≥ 0) or removal (if bu(t) <

0) of population members distributed across population stages through the

column vector b. The vector b is the choice of the modeler, although probably

subject to implementation constraints. The population model (6.3) together

with the observation (6.2) is combined to give

x(t+ 1) = Ax(t) + bu(t) , x(0) = x0,

y(t) = cTx(t),

}
∀ t ∈ N0. (6.4)

The time-dependent variable u(t) is the management strategy and y(t) is the

observation, both at time step t.

Recalling that we do not know the population x(t) exactly, we are interested

in what effect u(t) has on y(t). Under the assumption (A6.1), the linearity of

(6.4) means that it is straightforward to demonstrate that if

lim
t→∞

u(t) = ũ, then lim
t→∞

y(t) =: ỹ = cT (I − A)−1bũ. (6.5)

The constant cT (I−A)−1b is called the steady-state gain as it is the multiplier

(or gain) that when applied to a constant input signal gives the resulting

eventual observation. Using the fact

cT (I − A)−1b =
∞∑
k=0

cTAkb = cT (I + A+ A2 + . . .)b, (6.6)
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another interpretation of the steady-state gain is that it is the measure cu-

mulative contribution to the observation over all time from a constant influx

of ũ = 1 population members structured by b. When b and c are nonneg-

ative vectors, then from (6.6) it follows that cT (I − A)−1b ≥ 0 as well. If

cT (I−A)−1b > 1 then ũ is amplified after a long period of time and conversely

if cT (I − A)−1b < 1 then ũ it is attenuated.

Assuming that cT (I − A)−1b > 0, we see from (6.5) that in order for the

observations to eventually reach a chosen value r, so that ỹ = r, then

u(t) = ũ :=
r

cT (I − A)−1b
, ∀ t ∈ N0, (6.7)

and this precomputed control achieves y(t) tending to r for any initial popu-

lation distribution x0.

We introduce a second assumption which rules out the degenerate case that

the steady-state gain of (A, b, cT ) is zero.

(A6.2) The matrix A and vectors b and cT are such that cT (I −
A)−1b > 0.

Remark 6.3.1. (A6.2) is always satisfied if A satisfies (A6.1), A is irre-

ducible and b and cT are nonnegative and nonzero.

Irreducibility is a natural assumption for ecologically meaningful PPMs

(see [140]) and hence (A6.2) is not overly restrictive.

The integral control feedback scheme is the dynamic, time-dependent strat-

egy

u(0) = u0, u(t) = u0 + g
t−1∑
j=0

(r − y(j)), ∀ t ∈ N, (6.8)

where r is the chosen reference value, g > 0 is a design parameter (often called a

gain parameter) and the value of u0 is arbitrary. The strategy (6.8) is a discrete

time integrator because at time-step t the control signal u(t) is determined by

summing the previous deviations of the observation y(t) from the reference r.

This is equivalent to integrating in discrete time. The combination of (6.4)

and (6.8) leads to the feedback system

x(t+ 1) = Ax(t) + bu(t) , x(0) = x0,

u(t+ 1) = u(t) + g(r − cTx(t)) , u(0) = u0,

}
∀ t ∈ N0. (6.9)

Before stating the first result we need some more notation. The transfer

function G of the linear system (6.4) is defined by

z 7→ G(z) := cT (zI − A)−1b, z ∈ C, (6.10)
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which is certainly defined for every complex z that is not an eigenvalue of A.

The transfer function is a ubiquitous concept in control engineering with many

uses, and has also been used in ecological modeling, see [65]. For our present

purposes it is sufficient to note that under assumption (A6.1) the steady-state

gain is equal to G(1), the transfer function evaluated at one.

Theorem 6.3.2. Assume that the linear system (6.4) satisfies assumptions

(A6.1) and (A6.2). Then there exists g∗ > 0 such that for all g ∈ (0, g∗),

every r > 0 and all initial conditions (x0, u0) ∈ Rn
+ × R+, the solution (x, u)

of (6.9) has the following properties:

(1) lim
t→∞

u(t) =
r

G(1)
,

(2) lim
t→∞

x(t) = (I − A)−1b
r

G(1)
,

(3) lim
t→∞

y(t) = lim
t→∞

cTx(t) = r.

The proof of this result can be found in [91]. We do however provide an

illustration of both how integral control works and the role of g. First, note

that if (x∗, u∗) is an equilibrium of the feedback system (6.9), then by definition

x∗ = Ax∗ + bu∗ ⇒ x∗ = (I − A)−1bu∗,

u∗ = u∗ + g(r − cTx∗) ⇒ cTx∗ = r,
(6.11)

where for the second implication we have used that g > 0. The final equality

in (6.11) shows that the x∗ component of any equilibrium (x∗, u∗) of (6.9) gives

rise to an output cTx∗ equal to the reference r.

Using (6.11), the feedback system (6.9) can be written as(
x(t+ 1)− x∗
u(t+ 1)− u∗

)
=

(
A b

−gcT 1

)
︸ ︷︷ ︸

=:Ag

(
x(t)− x∗
u(t)− u∗

)
, ∀ t ∈ N0. (6.12)

By inspection of (6.12) we see that Theorem 6.3.2 holds precisely for g > 0 such

that ρ(Ag) < 1, where ρ(Ag) is the spectral radius of Ag. Under assumption

(A6.1), when g = 0 the eigenvalues of A0 are those of A and 1, thus ρ(A0) = 1.

However, for small but positive g it can be shown that ρ(Ag) < 1. If g is too

large then ρ(Ag) ≥ 1 and the theorem fails. As such, Theorem 6.3.2 is a

so-called “low-gain” result since it guarantees that, if the gain parameter g is

small enough, then the control objective is achieved. Consequently, in these

circumstances, integral control provides a solution to our original problem

of restoring population levels via restocking, in a manner that only requires
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knowledge of the available observations y(t) and for any initial population

distribution x0.

The conclusions (1)-(3) of Theorem 6.3.2 demonstrate that the integral con-

troller (6.9) solves the replenishment problem. The model (6.9) is reasonable

general and is suited to a wide range of scientific and engineering applications.

In the context of population management, the following potential problems

need to be addressed:

(P1) What types of uncertainty can integral control tolerate? Ecological

systems are inherently noisy, with many forms of uncertainty that the

model (6.9) does not yet address.

(P2) Can integral control be extended to incorporate additional feasibility

constraints on the input u(t)? The feedback strategy (6.8) can generate

either very large or negative values of u(t). Large input signals might

be too large for practical implementation given limited resources. Neg-

ative u(t) requires managers to remove members from the population,

which seems illogical when our ultimate goal is to boost or at least con-

serve population density. Negative control signals may even result in

the integral control system (6.9) predicting negative populations, which

is clearly absurd.

(P3) How small does the gain g in the feedback strategy (6.8) need to be?

Theorem 6.3.2 requires that the parameter g is small enough and al-

though it is always possible to choose such a g, the theorem gives no

indication of what this is or how to find it.

(P4) Can the rate of convergence of the observations to the reference be

improved? Theorem 6.3.2 guarantees that the observations converge to

the reference, but the integral control model (6.9) does not yet include

additional features that can alter the rate of convergence.

(P5) Can integral control be applied to other population models? Matrix

PPMs model a single population in discrete stage-classes and, for exam-

ple, have no explicit spatial components.

Sections 6.3.1-6.3.5 sequentially address the above problems. Each subsec-

tion begins with a verbal outline of the solution that proceeds the mathematical

details. Section 6.4.1 describes how the solutions of these problems combine.
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6.3.1 What types of uncertainty can integral control tol-

erate?

Here we describe types of uncertainty likely to be present in integral control

and qualify the extent to which integral control can tolerate these uncertainties

(P1).

Several authors have proposed frameworks for describing and reducing un-

certainty in ecological modeling, and we appeal to the terminology of [149,

150, 114]. Since we are describing the modeling aspects of integral control, we

are focusing on epistemic uncertainty, in the language of [114], as opposed to

linguistic uncertainty. Mathematically, we argue that there are three types of

uncertainty present that integral control needs to be able to cope with: Several

authors have proposed frameworks for describing and reducing uncertainty in

ecological modeling, and we appeal to the terminology of [149, 150, 114]. Since

we are describing the modeling aspects of integral control, we are focusing on
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aspects of integral control, we are focusing on epistemic uncertainty, in the

language of [114], as opposed to linguistic uncertainty. Mathematically, we
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language of [114], as opposed to linguistic uncertainty. Mathematically, we
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needs to be able to cope with: Several authors have proposed frameworks

for describing and reducing uncertainty in ecological modeling, and we appeal

to the terminology of [149, 150, 114]. Since we are describing the modeling
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language of [114], as opposed to linguistic uncertainty. Mathematically, we

argue that there are three types of uncertainty present that integral control
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for describing and reducing uncertainty in ecological modeling, and we appeal

to the terminology of [149, 150, 114]. Since we are describing the modeling

aspects of integral control, we are focusing on epistemic uncertainty, in the

language of [114], as opposed to linguistic uncertainty. Mathematically, we

argue that there are three types of uncertainty present that integral control

needs to be able to cope with: Several authors have proposed frameworks for

describing and reducing uncertainty in ecological modeling, and we appeal to

the terminology of [149, 150, 114]. Since we are describing the modeling aspects

of integral control, we are focusing on epistemic uncertainty, in the language

of [114], as opposed to linguistic uncertainty. Mathematically, we argue that

there are three types of uncertainty present that integral control needs to be

able to cope with:

(i) model uncertainty;
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(ii) measurement errors;

(iii) activation errors.

The connections between these descriptions and those already established in

the literature are described in Table 6.1.

Williams (2001) [149] Regan et al. (2002) [114]
(i) Environmental variation Natural variation

Structural uncertainty Inherent randomness
Model uncertainty

(ii) Partial observability Measurement error
Systematic error

(iii) Partial controllability

Table 6.1: Connecting types of uncertainty to which integral control is subject
with existing descriptions of uncertainty in the ecology literature.

Robust control is an important and well-studied topic in control engineering

with many textbooks dedicated to the subject, for example [34, 47, 156, 155].

Quoting [34, p. 8], “Generally speaking, the notion of robustness means that

some characteristic of the feedback system holds for every plant in the set

P”. The term plant in control engineering denotes the model to be studied or

controlled and comes historically from power and chemical plants. We need

to identify the set of plants and the desired characteristics. In our context

the set of plants P is all integral control models of the form (6.9) with the

collection of uncertainties (i)-(iii). The desired characteristics to hold are the

conclusions of Theorem 6.3.2. Quoting [47, p. xi], “Systems that can tolerate

plant variability and uncertainty are called robust - · · · ”.

We now discuss the types of uncertainty in more detail.

(i) Model uncertainty amounts to not knowing the model parameters A, b

and cT in (6.1). Uncertainty in A can arise quite naturally. Parameter values

in A may be only estimates or statistical means of some “true” value. Or,

the structure of A may be uncertain. For instance, A could be age-structured

or stage-structured, which can model the same underlying process but have

different mathematical realizations. in some cases the input vector b will be

known, for example, when b represents restocking into a well-defined devel-

opmental stage-class in the model. However, b could be uncertain; say, when

restocking seedlings which recruit into an unknown distribution of size classes.

Often the observation vector cT is known, for the same reason as b - when

cT captures counting abundance of a well-defined development stage, such as

female nesting adult turtles. However, cT could be uncertain; in a size based

model, not all of the stage-classes need to be specified in order to count the
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abundances of a given size. Such a situation leaves cT unknown. Finally, the

dimension n of the model itself could be uncertain. Integral control is robust

to all of these model uncertainties for the following reasons.

The two crucial assumptions placed on the model parameters A, b and

cT for integral control are (A6.1) and (A6.2). Assumption (A6.1) does not

require knowledge of A and holds for any population model of the form (6.1) in

asymptotic decline. Similarly, assumption (A6.2) does not require knowledge

of A, b and cT , or indeed the exact value of G(1) = cT (I −A)−1b, only that it

is positive, which is true when A is nonnegative and irreducible and b and cT

are nonnegative and nonzero. As we have commented earlier, irreducibility is

a natural assumption for matrix PPMs [140]. Knowledge of A, b or cT is not

needed for the implementation of integral control. In fact, assumptions (A6.1)

and (A6.2) are necessary for low-gain integral control and so we cannot allow

greater uncertainty.

Example 6.3.3. The wild boar matrix PPM considered in Section 6.2 had

matrix A, control vector b and observation vector cT given by

A =

0.13 0.56 1.64

0.25 0 0

0 0.31 0.58

 , b =

0

0

1

 , cT =
(

0 0 1
)
. (6.13)

For the simulations in Figure 6.4 each of the nonzero entries of A is randomly

perturbed by up to 20%. The same gain parameter g = 0.12 is used for each

simulation. We see that each simulated observation converges to the reference

r = 500. However, the total female population densities and the number of

new individuals added per time-step in Figure 6.4(b) and (c) respectively are

converging to different limits. This is because by Theorem 6.3.2 (1) and (2),

the respective limits

lim
t→∞
‖x(t)‖1 = lim(x1(t) + x2(t) + x3(t)) =

∥∥∥∥(I − A)−1b
r

G(1)

∥∥∥∥
1

and

lim
t→∞

u(t) =
r

G(1)
,

both depend on A (noting that G(1) also depends on A), which is being per-

turbed in this example.

(ii) Observation errors. The integral control model (6.9) assumes that

the observations y(t) taken at each time-step are correct. In practice there

are bound to be errors incurred in the counting or measuring process. This is

conceivably a problem because the integrator (6.8) feeds back the observation
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y(t) into the control signal.

Here we describe how integral control responds in the presence of measure-

ment errors. In what follows y(t) denotes the measured observation, whilst

the actual observation is cTx(t). As always we are assuming that A, b and cT

in (6.4) satisfy (A6.1) and (A6.2) and further that g > 0 in (6.8) is chosen

sufficiently small so that Theorem 6.3.2 holds for the integral control system

(6.9). A general additive observation error d(t) can be incorporated into (6.9)

as
x(t+ 1) = Ax(t) + bu(t), x(0) = x0,

y(t) = cTx(t) + d(t),

u(t+ 1) = u(t) + g(r − y(t)), u(0) = u0,

 t ∈ N0. (6.14)

If d(t) equals a constant d̃ for each t (that is, a constant systematic observa-

tion error is made), or d(t) converges to d̃, then it is elementary to demonstrate

that the measured variable y(t) converges to r− d̃. In words, there is offset in

the tracking.

If d(t) is periodic (the observation error is seasonal for example), say

d(t) = d̃ cos(θt)

for some d̃ ∈ R and θ > 0, then again it is elementary to demonstrate that the

measured variable y(t) settles to the periodic signal

r − d̃Aθ cos(θt+ ϕθ),

which oscillates around r with magnitude d̃Aθ and phase shift ϕθ, where

Aθ =

∣∣∣∣∣gG(eiθ)

eiθ − 1

(
1 +

gG(eiθ)

eiθ − 1

)−1
∣∣∣∣∣

and

ϕθ = arg

(
gG(eiθ)

eiθ − 1

(
1 +

gG(eiθ)

eiθ − 1

)−1
)
.

For complex z, the notation arg(z) denotes the argument of z. For arbitrary

additive observation error d(t) one can show that

lim sup
t→∞

|y(t)− r| ≤ µg lim sup
t→∞

|d(t)|, (6.15)

where the constant µg can be computed and is given by

µg :=
∞∑
j=0

∣∣∣∣∣∣
(
cT 0

)( A b

−gcT 1

)j (
0

g

)∣∣∣∣∣∣ ,
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and is finite since by assumption g > 0 is such that

Ag =

(
A b

−gcT 1

)

has ρ(Ag) < 1. The significance of the bound in (6.15) is that for large t

the error between the measured observation and the reference is linear in the

magnitude of d(t).

It is important to note that assumptions (A6.1) and (A6.2) and the size

of the gain parameter g are all independent of measurement errors when these

errors occur additively, as in (6.14).

Example 6.3.4. Simulations of the integral control system with additive out-

put error (6.14) applied to the wild boar model of Example 6.3.3 are plotted in

Figure 6.5. For the same A, b, cT , x0, u0, r and g as in that example, Figure

6.5(a) contains three projected observations subject to the additive observation

errors plotted in Figure 6.5(b). The specific d(t) considered are constant with

value −50 (blue), converging to 125 (red) and periodic (green). The resulting

observations are convergent to r − d = 500 − (−50) = 550, 500 − 125 = 375

and periodic respectively.

0 20 40 60 80 100
t in years

200

300

400

500

600

700

F
em

al
e
ad

u
lt
b
oa
r,
y
(t
)

(a)

0 20 40 60 80 100
t in years

-100

-50

0

50

100

150

O
b
se
rv
at
io
n
er
ro
r,
d
(t
)

(b)

Figure 6.5: Integral control with additive observation errors (6.14) applied
to the wild boar matrix PPM of Example 6.3.3. See Example 6.3.4. (a)
Observations. The dotted lines are the reference r = 500 and r ± 10%. (b)
Observation errors

A potentially more plausible description of observation error is that it is

proportional to the observation taken, which is described by

y(t) = (1 + ε(t))cTx(t), ∀ t ∈ N0. (6.16)

The term ε(t) is the error which is unknown and assumed to be close to zero.

For example, ε(t) taking value −0.1, −0.12 and 0.05 in three consecutive time-

steps corresponds to measuring 90, 88 and 105% of the actual population
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respectively. The case ε(t) = 0 corresponds to the measured and actual ob-

servations coinciding so that (6.2) is recovered. We assume that ε(t) > −1

for every t, so that a positive observation is always taken. For applications,

what is often important is knowing the “worst case scenario”, which amounts

to knowing the largest possible observation errors.

If we assume that the observation errors are random, that is, each ε(t)

is a random variable, then each observation y(t) is also a random variable.

The main result of this section is Theorem 6.3.5 below that states that if

the errors are assumed independent and identically distributed (IID) then the

expectation of the observations y(t) converge to the reference r . If additionally

the variance of the errors is not too large then the variance of the observation

y(t) converges to a finite computable quantity.

Let ⊗ denote that Kronecker product and 0m×p denote the m × p zero

matrix.

Theorem 6.3.5. Assume that the linear system (6.4) satisfies assumptions

(A6.1) and (A6.2), and that g > 0 is such that

ρ(Ag) < 1, where Ag =

(
A b

−gcT 1

)
.

Assume that (ε(t))∞t=0 is a sequence of IID random variables with zero mean

and variance σ2 and let y(t) denote the measured observations of the integral

control system (6.9) with observation error (6.16). It follows that

(1) y(t) converges in expectation to r, that is

lim
t→∞

E(y(t)) = r.

(2) If

σ2 <
1

g2 max|z|=1

∣∣∣Ẽ(zI − Ag ⊗ Ag)−1D̃
∣∣∣ , (6.17)

where D̃ = (01×(n2+2n), 1)T and Ẽ =
(
(cT , 0)⊗ (cT , 0)

)
, then

lim
t→∞

var y(t) =
(
cT 0

)
C∞

(
c

0

)
<∞.

Here the matrix C∞ = CT
∞ solves the symmetric linear matrix equation

[111]

C∞ − AgC∞ATg − g2σ2(DE)C∞(DE)T − g2r2σ2DDT = 0,
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where

D =

(
01×n

1

)
and E =

(
cT 0

)
.

Proof. Let (x, u) denote the solution of

x(t+ 1) = Ax(t) + bu(t), x(0) = x0,

u(t+ 1) = u(t) + g(r − (1 + ε(t))cTx(t)), u(0) = u0,

}
t ∈ N0, (6.18)

the integral control system (6.9) with proportional observation errors ε(t).

When ε is a sequence of random variables then so are x and u. We let

x∗ = (I − A)−1b
r

G(1)
, u∗ =

r

G(1)
,

which are equilibria of (6.9) as in (6.11). For notational convenience we define

the random variable

z(t) :=

(
x(t)− x∗
u(t)− u∗

)
, ∀ t ∈ N0, (6.19)

a vector with n + 1 components. A short calculation using (6.11) and (6.18)

demonstrates that z(t) has dynamics given by

z(t+ 1) =

((
A b

−gcT 1

)
−
(

0

1

)
gε(t)

(
cT 0

))
z(t)

−
(

0

1

)
grε(t), ∀ t ∈ N.

(6.20)

We introduce the notation

Ag :=

(
A b

−gcT 1

)
, D :=

(
0n×1

1

)
, E :=

(
cT 0

)
,

where recall that 0n×1 is a column vector of n zeros. With this notation (6.20)

can be more concisely expressed as

z(t+ 1) = (Ag − gε(t)DE)z(t)−Dgrε(t), ∀ t ∈ N0. (6.21)

Letting z(t) = E(z(t)) denote the expectation of z(t), we take expectations in

(6.21) to yield that

z(t+ 1) = Agz(t), ∀ t ∈ N0, (6.22)
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where we have used the facts that expectation is linear, ε(t) = 0 and that ε(t)

and z(t) are independent. We are assuming that the gain parameter g > 0 is

such that ρ(Ag) < 1, and hence from (6.22) we conclude that

lim
t→∞

z(t) = 0,

and thus

lim
t→∞

y(t) = lim
t→∞

(
cT 0

)
z(t) + r = r,

establishing claim (1).

We now consider the covariance

cov (z(t), z(t)) = E
((

z(t)− z(t)
)(

z(t)− z(t)
)T)

= E
(
z(t)zT (t)

)
− z(t) · zT (t)

=: C(t)− z(t) · zT (t), ∀ t ∈ N0 (6.23)

where zT (t) = (z(t))T . We focus on the quantity C(t), which, appealing to

(6.21), has dynamics

C(t+ 1) = E
(
z(t+ 1)zT (t+ 1)

)
= E([(Ag − gε(t)DE)z(t)−Dgrε(t)]

[(Ag − gε(t)DE)z(t)−Dgrε(t)]T )

= E
(
Agz(t)(Agz(t))T

)
+ E

(
Agz(t)zT (t)(−gε(t))(DE)T

)
+ E

((
Agz(t)zT (t)(−gε(t))(DE)T

)T)
+ E

(
Agz(t)ε(t)DTgr

)
+ E

((
Agz(t)ε(t)DTgr

)T)
+ g2σ2E

(
DEz(t)zT (t)(DE)T

)
+ g2r2σ2DDT + E

(
D(−gε(t))Ez(t)ε(t)(−DTgr)

)
+ E

((
D(−gε(t))Ez(t)ε(t)(−DTgr)

)T)
, (6.24)

for all t ∈ N0. Equation (6.24) simplifies to

C(t+ 1) = AgC(t)ATg + g2σ2(DE)C(t)(DE)T + g2σ2r2DDT

+ rg2σ2DEz(t)DT + rg2σ2(DE)TDzT (t), ∀ t ∈ N0.

(6.25)
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Defining A1 := Ag, A2 := gσDE and writing

c(t) : = vec C(t),

p(t) : = vec
(
g2σ2r2DDT + rg2σ2DEz(t)Dt + rg2σ2(DE)TDzT (t)

)
,

(6.26)

where if xi are the columns of the n× n matrix X = (x1, . . . , xn) then

vec X :=
(
xT1 xT2 · · · xTn

)T
∈ Rn2

.

Arguing as in [111], the matrix difference equation (6.25) can be written as

the (n+ 1)2 × (n+ 1)2 linear system

c(t+ 1) =

(
2∑
i=1

Ai ⊗ Ai
)
c(t) + p(t), ∀ t ∈ N, (6.27)

where ⊗ denotes the Kronecker product. Using the fact z(t) → 0 as t → ∞
it follows from (6.26) that

lim
t→∞

p(t) = vec (g2σ2r2DDT ) =: p∞.

Consequently, if

ρ

(
2∑
i=1

Ai ⊗ Ai
)

= ρ(A1 ⊗ A1 + A2 ⊗ A2) < 1, (6.28)

then for any initial condition c(0) the solution of c of (6.27) converges to a

finite limit c∞ satisfying

c∞ =

(
2∑
i=1

Ai ⊗ Ai
)
c∞ + p∞. (6.29)

Assuming that (6.28) holds, defining C∞ as the matrix such that

c∞ = vec C∞,

we have from (6.29) that C∞ must satisfy

C∞ = AgC∞A
T
g + g2σ2(DE)C∞(DE)T + g2σ2r2DDT .

Furthermore, as C(t) converges to C∞ the iterative scheme (6.25) provides a

method for approximating C∞.

It remains to find a characterization of the stability condition (6.28). Re-
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calling that for square matrices X,Y

σ(X ⊗ Y ) = {λµ : λ ∈ σ(X), µ ∈ σ(Y )},

we have

ρ(A1 ⊗ A1) = ρ(Ag ⊗ Ag) = ρ(Ag)
2 < 1,

and thus we can view A1 ⊗ A1 + A2 ⊗ A2 as a structured perturbation of

A1 ⊗ A1. Therefore we can characterize the condition (6.28) by appealing

to stability radius arguments [58, 59]. A calculation shows that A2 ⊗ A2 is a

rank one perturbation, namely

A2 ⊗ A2 = g2σ2

(
0 0

cT 0

)
⊗
(

0 0

cT 0

)

= g2σ2

(
0(n2+2n)×1

1

)((
cT 0

)
⊗
(
cT 0

))
=: g2σ2D̃Ẽ.

Hence, condition (6.28) is satisfied if, and only if,

σ2g2 <
1

max|z|=1

∣∣∣Ẽ(zI − Ag ⊗ Ag)−1D̃
∣∣∣ ,

which is equivalent to the condition (6.17). We can now take the limit as

t→∞ in (6.23) and use that z(t) converges to zero to deduce that

lim
t→∞

cov (z(t), z(t)) = lim
t→∞

C(t) = C∞. (6.30)

The variance of the output satisfies

var y(t) = var (y(t)− r) = var
((
cT 0

)
z(t)

)
= cov

((
cT 0

)
z(t),

(
cT 0

)
z(t)

)
=
(
cT 0

)
cov (z(t), z(t))

(
c

0

)
, ∀ t ∈ N0. (6.31)

Therefore taking limits in (6.31) and invoking (6.30) we have that

lim
t→∞

var y(t) =
(
cT 0

)
C∞

(
c

0

)
<∞,

proving claim (2).
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The quantity of the right hand side of (6.17) can be readily computed

numerically, and provides an estimate for the largest permitted variance in

observation error so that the resulting observation has finite variance.

Example 6.3.6. Theorem 6.3.5 is applied to the wild boar model of Example

6.3.3. For the same A, b, cT , x0, u0, r and g as in that example the integral

control system (6.9) with proportional observation error ε(t) as in (6.16) is

simulated. The errors ε(t) are normally distributed with zero mean and con-

stant variance σ2 = 0.09. Figure 6.6(a) plots three observation simulations

y(t) as well as the expected observation E(y(t)). Figure 6.6(b) contains the

corresponding three sequences of input signals u(t), as well as the expected in-

put sequence. In this example the variance of y(t) converges to ∼ 530, so that

the standard deviation of y(t) is ∼ 72, and the constant in (6.17) equals 3.04.

Hence, in this example the variance of y(t) will converge for any observation

error with σ2 < 3.04.
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Figure 6.6: Integral control with proportional observation errors (6.9), (6.16)
applied to the wild boar matrix PPM of Example 6.3.3. See Example 6.3.6.
(a) Observations plotted blue, red and green solid lines. The solid black line
and the dashed black lines are the expected observation E(y(t)) and E(y(t))±√

var y(t). The dotted black lines are the reference r = 500 and r ± 10%. (b)
Inputs plotted in the matching line style as the corresponding observations in
(a)

(iii) Activation errors. The integral control model (6.9) assumes that

the input signals are exact, that is, the number of individuals specified by the

integral control strategy (6.8) is equal to the number of individuals released (or

planted etc.) at each time-step. In the context of restocking schemes we expect

that activation errors are generally less prevalent than measurement errors, and

so only give a brief treatment. Accommodating an additive activation error
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d(t), (6.9) becomes

x(t+ 1) = Ax(t) + b(u(t) + d(t)), x(0) = x0,

y(t) = cTx(t),

u(t+ 1) = u(t) + g(r − y(t)), u(0) = u0,

 ∀ t ∈ N0, (6.32)

where g is small enough so that the conclusions of Theorem 6.3.2 apply to the

integral control system (6.9). One advantage of integral control is it rejects

constant, or convergent activation errors. Specifically, if d(t) equals a constant

d̃ for each t (that is, a constant systematic activation error is made), or d(t)

converges to d̃, then the observations y(t) still converge to r.

The effect of periodic or general additive activation errors on the observa-

tions mirror those in the observation error case. Specifically, if d(t) = d̂ cos(ωt)

for some d̂ ∈ R and ω > 0, then again it is elementary to demonstrate that

the measured variable y(t) settles to the periodic signal

r + d̂Mω cos(ωt+ ψω),

which oscillates around r with magnitude d̂Mω and phase shift ψω, where

Mω =

∣∣∣∣ (eiω − 1)G(eiω)

eiω − 1 + gG(eiω)

∣∣∣∣
and

ψω = arg

(
(eiω − 1)G(e−ω)

eiω − 1 + gG(eiω)

)
.

For arbitrary additive activation errors d(t) one can show that

lim sup
t→∞

|y(t)− r| ≤ νg lim sup
t→∞

|d(t)|, (6.33)

where

νg :=
∞∑
j=0

∣∣∣∣∣∣
(
cT 0

)( A b

−gcT 1

)j (
b

0

)∣∣∣∣∣∣ .
As with the estimate (6.15), the bound (6.33) depends linearly on the mag-

nitude of the activation error. As with observation errors, we note that as-

sumptions (A6.1) and (A6.2) and the size of the gain parameter g are all

independent of the activation errors considered in (6.32).
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6.3.2 Can integral control be extended to incorporate

additional feasibility constraints on the input u(t)?

If we require that the input u(t) satisfied 0 ≤ u(t) ≤ U , where U is a chosen per

time-step upper bound, and if the reference r is such that 0 < r < G(1)U then

a modified integral control model still achieves the desired control objective

(P2). Furthermore, if r ≥ G(1)U then the control objective cannot be solved

by replenishment alone. The main result of this section which establishes the

above claims is Theorem 6.3.7, and is a special case of [23, Theorem 3.2].

We bound the input in the integral control system (6.9) by applying a

filter to the input. To that end we introduce the saturation nonlinearity ϕ,

which replaces negative control signals by zero and includes the upper bound

U chosen by the modeler for the maximum control signal:

ϕ : R→ R, ϕ(v) :=


0, for 0 < v,

v, for 0 ≤ v ≤ U,

U, for U < v.

(6.34)

The feedback system (6.9) is replaced by

x(t+ 1) = Ax(t) + bu(t), x(0) = x0,

w(t+ 1) = w(t) + g(r − cTx(t)), w(0) = w0,

u(t) = ϕ(w(t)),

 ∀ t ∈ N0. (6.35)

The inclusion of ϕ in (6.35) ensures that a nonnegative population is always

predicted. The scalar w(t) is the integrator state, and is generated by the

integrator (6.8). The control u(t) is the filtered integrator state ϕ(w(t)). Figure

6.7 contains a diagram of this arrangement.

In addition to tackling (P2), Theorem 6.3.7 also provides the upper bound

1/|γ| for the integrator gain g, where the constant γ is given by

γ := sup
q≥0

{
inf

θ∈[0,2π)
Re

[(
q

eiθ
+

1

eiθ − 1

)
G(eiθ)

]}
∈ R, (6.36)

and G is the transfer function from (6.10).

Theorem 6.3.7. Assume that the linear system (6.4) satisfies assumption

(A6.1) and (A6.2) and let γ be as in (6.36). Then, for every U > 0, every

r ∈ (0,G(1)U), every g ∈ (0, 1/|γ|) and all initial conditions (x0, w0) ∈ Rn
+ ×

R+, the solution (x, u) of (6.35) has properties (1)-(3) of Theorem 6.3.2 and

furthermore the integrator state w(t) converges to r/G(1) as t→∞.

Theorem 6.3.7 is proven in [23, Theorem 3.2]. We do however provide some
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controller

ϕ
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x(t)

w(t)

u(t) y(t) r

− +

r − y(t)

Figure 6.7: Block diagram of the feedback system (6.35). The control signal
u(t) applied to the population equals the filtered integrator state ϕ(w(t)),
where w(t) is generated by the integrator (6.8).

remarks.

Remark 6.3.8. Although the conclusions (1)-(3) of Theorem 6.3.7 are the

same as those in Theorem 6.3.2, there is a crucial difference in the hypotheses

of these theorems. Specifically, in Theorem 6.3.7 the desired reference value

r is not completely free: it is constrained by the steady-state gain G(1) and

input bound U by the requirement that r < G(1)U . This is not unreasonable;

in the presence of no control, population density is declining. If the upper limit

on the number of new arrivals U is too low, or alternatively, the chosen ref-

erence r is too high, then the observations of the population cannot reach r by

restocking alone. We comment further that, mathematically, this limitation is

not unique to integral control. A consequence of the model under considera-

tion (in particular (6.5)) is that if u(t) is bounded from above by U then any

restocking scheme cannot lead to the eventual observations ever being larger

than G(1)U . If r > G(1)U then the observations cannot asymptotically reach

r by restocking alone.

Remark 6.3.9. As with Theorem 6.3.2, Theorem 6.3.7 is a low-gain result

and provides the upper bound 1/|γ| for the gain g that will ensure convergence.

It is shown in [22] that

−∞ < γ ≤ −G(1)

2
.

214



The parameter γ can be estimated numerically from its definition (6.36) al-

though this may not always be straightforward. If (A6.1) and (A6.2) hold

and if b and cT are nonnegative then

κ :=
2

G(1) + 2|G′(1)| ≤
1

|γ| , (6.37)

where G′ denotes the derivative of G. The constant κ is much easier to com-

pute than γ. The derivation of (6.37) follows after this remark. Consequently,

under the assumptions (A6.1) and (A6.2), every gain g ∈ (0, κ) is a “reg-

ulating gain” in the sense that conclusions (1)-(3) of Theorem 6.3.2 hold for

(6.35).

We prove the inequality in (6.37). For a sequence v we use the notation v̂

to denote the Z-transform of v given by

v̂(z) =
∞∑
j=0

v(j)z−j,

defined for all complex z where the summation converges absolutely. The step

response of the linear system (6.4) is the output of (6.4) subject to zero initial

state (x0 = 0) and constant input ũ = 1 and is given by

s(0) = 0, s(t) =
t−1∑
j=0

cTAjb, ∀ t ∈ N.

Assumption (A6.1) ensures that s(t) → G(1) as t → ∞. Furthermore, a

calculation shows that s has Z-transform

ŝ(z) =
zG(z)

z − 1
, z ∈ C, |z| > 1.

Under the assumptions that A, b, cT ≥ 0 and (A6.2) it follows that s(t) ≥ 0

and is nondecreasing. We define the step response error

e(t) = s(t)−G(1), ∀ t ∈ N0,

which is consequently nonpositive, nondecreasing and converges to 0. Further-

more, the Z-transform of e satisfies

ê(z)

z
=

G(z)−G(1)

z − 1
, (6.38)

for every complex z with modulus greater than one. Since G is differentiable
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at z = 1 we note that

lim
z→1

ê(z) = lim
z→1

ê(z)

z
= lim

z→1

G(z)−G(1)

z − 1
= G′(1). (6.39)

As z 7→ ê(z)/z is continuous outside of the unit disc the above shows that we

can extend z 7→ ê(z)/z continuously to z = 1 with

ê(1) =
ê(1)

1
= G′(1). (6.40)

We now use (6.40) and the property that e(t) ≤ 0 for every t to show that for

any complex z with modulus one,

−G′(1) = −ê(1) = −
∞∑
k=0

e(k) =
∞∑
k=0

|e(k)| · |e−(k+1)| ≥
∣∣∣∣ ê(z)

z

∣∣∣∣
≥ Re

(−ê(z)

z

)
= Re

(
G(1)−G(z)

z − 1

)
= −G(1)

2
− Re

(
G(z)

z − 1

)
. (6.41)

Rearranging (6.41) gives

Re

(
G(z)

z − 1

)
≥ G′(1)− G(1)

2
, ∀ z ∈ C, |z| = 1,

which implies that

inf
|z|=1

Re

(
G(z)

z − 1

)
= inf

θ∈[0,2π)
Re

(
G(eiθ)

eiθ − 1

)
≥ G′(1)− G(1)

2
. (6.42)

From [23] we have that γ satisfies

−∞ < γ ≤ −G(1)

2
< 0

as G(1) > 0, and so

0 > γ ≥ inf
θ∈[0,2π)

Re

(
G(eiθ)

eiθ − 1

)
≥ G′(1)− G(1)

2
, (6.43)

where we have used the estimate (6.42). It is clear from γ ≤ −G(1)/2 and

(6.43) that G′(1) < 0 and consequently inequality (6.43) is equivalent to

0 < −γ = |γ| ≤ −G′(1) +
G(1)

2
= |G′(1)|+ G(1)

2
=:

1

κ
,

which implies (6.37).
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Example 6.3.10. Consider a planting program to raise levels of the savannah

grass Setaria incrassata in the presence of heavy grazing. [105] contains matrix

PPMs of Setaria incrassata where the population is partitioned into five stage-

classes according to tuft circumference in cm. The specific divisions are given

in [105, Table 2]. The matrix we use is the average over 4 years [105, Table 3,

first row]. We control the second stage-class, plants of tuft diameter 11−20 cm,

and observe the total density of all plants with tuft diameter greater than 11

cm, that is, stages two to five. The matrix A, control vector b and observation

vector cT are thus given by

A =


0.5925 0.5900 0.5825 0.8100 4.5650

0.2075 0.3775 0.2475 0.4675 0.1675

0.0050 0.1250 0.4225 0.1850 0.2625

0 0 0.0850 0.2750 0.1225

0 0 0 0.0325 0.6600

 ,

b =


0

1

0

0

0

 , cT =
(

0 1 1 1 1
)
.

(6.44)

Figure 6.8(a) demonstrates the results of the filtered integral control system

(6.35) for different U and also the original integral control system (6.9). Here

U denotes the maximum number of individuals that can be planted each year.

From a random initial population distribution with total density 200 the goal is

to raise the total measured population density to 800. In this example, G(1) =

8.1081 and so for fixed r = 800 the condition r < G(1)U necessitates that U

satisfies
r

G(1)
= 98.6673 < U,

for the conclusions of Theorem 6.3.7 to hold. As expected, therefore, for U = 50

the observation does not reach the reference. As A, b and cT are nonnegative

we can use the constant κ in (6.37) as an upper bound for a regulating gain g

which gives

κ =
2

G(1) + 2|G′(1)| =
2

8.10 + 2× 126.42
= 0.0077.

We thus take g = 0.0076 < κ. Figure 6.8(b) contains the resulting filtered input

signals ϕ(w(t)) for each U and the unfiltered signal u(t) given by (6.8). We see

that the linear feedback system (6.9) exhibits a large transient amplification, but

also that the tracking takes longer and there is larger subsequent undershoot.
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Observe that here each filtered signal is truncated at U and that as U gets larger

both the input and the observed population density behave more like the linear

case as the filter effect is reduced.
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Figure 6.8: Integral control with filtered input (6.35) applied to the savannah
grass matrix PPM of Example 6.3.10 with different U values. (a) Observations
as colored solid lines, labeled with the corresponding U value. The black
dashed line is the observation subject to the unfiltered integral control system
(6.9). The dotted lines are the reference r = 800 and r ± 10%. (b) Filtered
input signal u(t) = ϕ(w(t)) in colored lines labeled with corresponding U value.
The black dashed line is the unfiltered input generated by (6.8).

Remark 6.3.11. We comment that Theorem 6.3.7 can be extended to the feed-

back system (6.35) with the nonlinear filter ϕ replaced by other nonlinearities.

For example, if ϕ is replaced by a function that grows sublinearly then there

are increasingly diminishing returns from larger input signals. In the context

of a plant population, if the control term bu(t) denotes sowing seeds, then at

high densities the proportion of seeds that become plantlings may not depend

linearly on the number of seeds sown owing to density-dependence effects. Such

an effect can be modeled by a suitable choice of ϕ in (6.35).

6.3.3 How small does the gain g in the feedback strategy

(6.8) need to be?

Here we discuss the design parameter g in more detail. We seek to explain

its role and how suitable g can be chosen or estimated. Finally, we include

another feature in the integral control model which computes g adaptively,

circumventing the need to choose it altogether (P3).

The choice of g affects the performance of integral control. As a tuning

parameter; a larger g usually corresponds to a faster response, which is some-

times desirable. As the next precautionary example demonstrates, however,

choosing g too large may result in failure of the control objective.
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Example 6.3.12. We revisit the wild boar PPM considered in Example 6.3.3.

For fixed A, b, cT , x0, u0 and r as in that example, we project the filtered inte-

gral control system (6.35) with U = 200 for increasing gains g = 0.05, 0.3, 0.6

and have plotted the results in Figure 6.9 . We see that the observations oscil-

late around r with greater magnitude as g increases, and fails to converge to

the reference for g = 0.6. Note that the filtered input u(t) is truncated at both

0 and U .
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Figure 6.9: Integral control with filtered input (6.35) applied to the wild boar
matrix PPM of Example 6.3.3 with different gain parameters. See Example
6.3.12. The three colored lines represent the three values of g, see the legend.
(a) Observations. The dotted black lines are the reference r = 500 and r±10%.
(b) Filtered input signals with U = 200. The dotted line is r/G(1)

Recall the characterization from (6.12) of which gains g result in conver-

gence of the observations - those such that ρ(Ag) < 1. Describing the depen-

dence of ρ(Ag) on g analytically is, in general, intractable. It is of course true

that for each candidate g > 0, ρ(Ag) can be computed numerically, but this

does not provide a systematic method of finding how large g can be, or the

qualitative behavior of the resulting dynamics. Notwithstanding the above,

the root locus method developed in [39, 40] is a graphical method of describing

how the eigenvalues of Ag in this instance (more precisely, the poles of the

closed-loop system (6.12)) change with the parameter g. This powerful tech-

nique can be used to choose g in such a manner that both of the conclusions

of Theorem 6.3.2 apply and qualitative and quantitative properties of the re-

sulting dynamics are specified. Many textbooks provide a modern treatment

of the root locus method and we refer the reader to [44, Chapter 4] for more

information.

Regarding model uncertainty, we comment that the choice of g is robust

to model uncertainty in the following sense. If g∗ > 0 is such that ρ(Ag∗) < 1

then there exists ε > 0 such that ρ(Ãg∗) < 1 for all Ãg∗ with ‖Ag∗ − Ãg∗‖ < ε.
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In words, if g∗ is a regulating gain for a given Ag then g∗ is a regulating gain

for all Ãg∗ “close-enough” to Ag∗ . Recalling that Ag depends on A, b, cT and

g, this amounts to model uncertainty in A, b and cT that is “small enough”.

The terms “close enough” and “small enough” can be precisely quantified by

appealing to stability radius arguments [58, 59].

The presence of the nonlinear filter ϕ in the integral control system (6.35)

prevents the root locus method from being applied here and the proof of The-

orem 6.3.7 is more subtle. Here it is very difficult in general to find an exact

expression for the largest gain that results in convergence, and so in order to

apply Theorem 6.3.7 a positive lower bound for 1/|γ| is required. The constant

κ in (6.37) is such a bound in the (usual) case where A, b and cT are nonnega-

tive. However, the same problem arises as with the precomputed control (6.7)

because the formula for κ depends on the model data A, b and cT . Although

γ and κ are robust to model uncertainty in a similar sense to g as described

above (that is, “small” perturbations to A, b and cT can be tolerated), in the

presence of severe uncertainty in A, b and cT , using (6.37) may not give a

correct lower bound for the “true” 1/|γ|.
A different approach, therefore, may be desirable for choosing g. The next

method we present is an example of adaptive control (see [84, 3]), where in this

instance the parameter g is determined via a suitable adaptation rule. That

is, we allow the gain parameter g also to change with time, determined by a

dynamical system included in the feedback loop. Specifically, we set

g(t) =
1

h(t)
, h(t+ 1) = h(t) + |r − y(t)|, ∀ t ∈ N0,

which yields the adaptive integral control system

x(t+ 1) = Ax(t) + bu(t), x(0) = x0,

w(t+ 1) = w(t) + (h(t))−1(r − cTx(t)), w(0) = w0,

h(t+ 1) = h(t) + |r − y(t)|, h(0) = h0,

u(t) = ϕ(w(t)).


∀ t ∈ N0.

(6.45)

Figure 6.10 contains a diagram of the arrangement in (6.45). The main

result of this section is Theorem 6.3.13 below, which is a special case of a

result in [88], and is an adaptive version of Theorem 6.3.7 which obviates the

need to choose a gain parameter g.

Theorem 6.3.13. Assume that the linear system (6.4) satisfies assumptions

(A6.1) and (A6.2). Then, for every U > 0, every r ∈ (0,G(1)U) and all

initial conditions (x0, w0, h0) ∈ Rn
+×R+×(0,∞), the solution (x, u, h) of (6.45)

has properties (1)-(3) of Theorem 6.3.2, the integrator state w(t) converges to
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Figure 6.10: Block diagram of the adaptive feedback system (6.45). The con-
stant gain parameter g is replaced by a dynamic signal h(t) which itself is
determined by the difference r − y(t).

r/G(1) as t→∞ and additionally

(4) the nonincreasing gain g(t) = 1/h(t) converges to a positive limit de-

pending on (x0, w0, h0) as t→∞.

Remark 6.3.14. Theorem 6.3.13 is remarkable because it ensures that the

integral control system (6.45) achieves the desired objective in the presence of

very little information. The reference r, observations y(t) and assurance that

r < G(1)U are required, but knowledge of A, b, cT , x0 and crucially a suitable

gain g > 0 is not.

As with Theorem 6.3.7, the version of Theorem 6.3.13 presented is a special

case of a more general result, where the filter ϕ can be replaced by other

function. We provide more details of these.

Theorem 6.3.7 applies when ϕ in (6.34) is replaced by any function ϕ :

R→ R that satisfies a so-called Lipschitz condition, namely:

(A6.3) There exists L > 0 such that 0 ≤ ϕ(v)−ϕ(w) ≤ L(v−w) for

all v ≥ w.

The constant L in assumption (A6.3) is called the Lipschitz constant of ϕ

and, for example, the function ϕ in (6.34) satisfies (A6.3) with L = 1.

For a function ϕ : R→ R and a set X ⊆ R we let imϕ and ϕ−1(X) denote

the image of ϕ and the preimage of X under the function ϕ respectively.
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In this more general setting, Theorem 6.3.7 can be restated as: Assume that

(6.35) satisfy (A6.1)-(A6.3). Then, for every r ∈ R such that r/G(1) ∈ imϕ,

every g ∈ (0, 1/|γL|) and all initial conditions (x0, u0) ∈ Rn×R, statements (1)-

(3) of Theorem 6.3.2 hold. Moreover, if additionally ϕ−1(r/G(1)) is a singleton

then (xr, ur) is a globally asymptotically stable equilibrium of (6.35).

The adaptive integral control result, Theorem 6.3.13, can be restated as:

Assume that (6.45) satisfies assumptions (A6.1)-(A6.3). Then, for every

r ∈ R such that r/G(1) ∈ imϕ, and all initial conditions (x0, u0, h0) ∈ Rn ×
R× (0,∞),

(1)

lim
t→∞

u(t) =
r

G(1)
,

(2)

lim
t→∞

x(t) = xr := (I − A)−1b
r

G(1)
,

(3)

lim
t→∞

y(t) = lim
t→∞

cTx(t) = r.

Moreover, if ϕ−1(r/G(1)) is a singleton, then

(4) the nonincreasing gain k(t) = 1/h(t) converges to a positive limit as

t→∞,

(5)

lim
t→∞

w(t) = wr,

where ϕ(wr) = r/G(1).

Example 6.3.15. Theorem 6.3.13 is applied to the wild boar model of Example

6.3.3. For the same A, b, cT as in that example, but with r = 200, the adaptive

integral control system (6.35) for gains g determined adaptively via (6.45) is

projected for three different (x0, w0, h0) triples. The results are plotted in Figure

6.11. Here the convergence of the observations to the reference ensured by

Theorem 6.3.13 is slow, note the log x-axes in the figure. This is because in

the adaptive control scheme (6.45) the gain g(t) = 1/h(t) always decreases

and can become small very quickly resulting in sluggish performance. Recall,

however, that the control scheme has no knowledge of A, b or cT , only that

ρ(A) < 1, G(1) > 0 and that r < G(1)U .
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Figure 6.11: Adaptive integral control (6.45) applied to the wild boar matrix
PPM of Example 6.3.3 with different initial triples (x0, w0, h0). See Example
6.3.15. In each plot the blue, red and green lines are corresponding simulations.
(a) Observations. The dotted lines are the reference r = 200 and r± 10%. (b)
Filtered input signals and limiting input r/G(1) in dotted line. (c) Adaptive
gain parameters g(t) = 1/h(t).

6.3.4 Can the rate of convergence of the observations

to the reference be improved?

By adding a proportional part to the integral (PI) control feedback strategy

(6.8) the resulting rate of convergence of the observations to the reference can

be increased (P4).

So far, we have been using integral control to move the equilibrium of a

declining model to a chosen nonzero equilibrium as mentioned in the introduc-

tion of this chapter. Integral control is just one part of PID-control. Loosely

speaking, the observations resulting from a PI control strategy converge faster

to the reference.

We proceed to give the details. In the first instance we replace the integral
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control system (6.9) by

x(t+ 1) = Ax(t) + bu(t), x(0) = x0,

w(t+ 1) = w(t) + g(r − cTx(t)), w(0) = w0,

u(t) = w(t) + g(r − cTx(t)),

 ∀ t ∈ N0. (6.46)

In (6.46), w is the integrator state and u is the control, now given by

u(t) = w0 + g

t∑
j=0

(r − y(j)), ∀ t ∈ N0. (6.47)

Recall (6.8) which is

u(0) = u0, u(t) = u0 + g
t−1∑
j=0

(r − y(j)), ∀ t ∈ N.

The difference between (6.8) and (6.47) is that in the later, at each time-step t,

u(t) depends of the current observation error r−y(t) and not just the previous

errors. In our original system (6.9) we had u(t) = w(t), that is, the control

was simply an integrator - I control. We now compute u by adding to w the

current error r− y(t). The motivation for using such a control strategy is that

the current error r − y(t) acts as a proportional (P) part which increases the

rate of convergence.

As we are considering population models, where x(t) needs to be nonneg-

ative, for the model (6.46) to be meaningful we require the constraint that

A − gbcT is component-wise nonnegative, which we note may not always be

satisfied. However, whenever this is the case, the conclusions of Theorem 6.3.2

and Theorem 6.3.13 hold for the integral control system (6.46) with small

enough gain g and suitably modified adaptive case respectively. The conclu-

sions of Theorem 6.3.7 also hold (see [22]), but with γ in (6.36) replaced by

γ0 := sup
q≥0

{
inf

θ∈[0,2π)
Re

[(
q +

eiθ

eiθ − 1

)
G(eiθ)

]}
.

Under the assumptions (A6.1) and (A6.2) and if b and cT are nonnegative,

we demonstrate that

κ0 :=
2

G(1) + 2|G(1) + G′(1)| ≤
1

|γ0|
, (6.48)

so that the conclusions of the theorem hold for the system (6.46) for every gain

g such that g ∈ (0, κ0), Furthermore, we show that κ < κ0, so that certainly

the range of regulating gains for (6.46) is not smaller than that for (6.9).
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For complex z with modulus greater than or equal to one the transfer

function G given by (6.10) of the linear system (6.4) can be written as

G(z)
∞∑
j=0

gjz
−j, where gj =

{
0, j = 0,

cTAj−1b, j ≥ 1 .

We define z 7→ G̃(z) := zG(z) and introduce the constant

γ̃ := sup
q≥0

{
inf

θ∈[0,2π)
Re

[(
q

eiθ
+

1

eiθ − 1

)
G̃(eiθ)

]}
.

We know that −∞ < γ̃ ≤ −G̃(1)/2 = −G(1)/2. By inspection of the defini-

tion of G̃, the constant γ̃, and γ0 in (6.48) we see that

γ̃ = γ0, (6.49)

G̃′(z) = G(z) + zG′(z) and so G̃′(1) = G(1) + G′(1). (6.50)

We note that from (6.50) it follows that

G̃′(1) = G(1) + G′(1) =
∞∑
j=1

gjz
−j −

∞∑
j=1

jgjz
−j

=
∞∑
j=1

(1− j)gjz−j ≤ 0, (6.51)

and consequently we can apply the estimate (6.37) to G̃ to yield that

2

G̃(1) + 2|G̃′(1)|
≤ 1

|γ̃| . (6.52)

In light of (6.49), (6.50) and the following definition of κ0, (6.52) implies that

κ0 :=
2

G(1) + 2|G(1) + G′(1)| =
2

G̃(1) + 2|G̃′(1)|
≤ 1

|γ̃| =
1

|γ0|
.

Finally, as G(1) > 0, it is clear from (6.51) that G′(1) ≤ G̃′(1) ≤ 0 and thus

|G(1) + G′(1)| = |G̃′(1)| < |G′(1)|. (6.53)

From inequality (6.53) we deduce that

κ =
2

G(1) + 2|G′(1)| <
2

G(1) + 2|G(1) + G′(1)| = κ0,

as required.
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The rate of convergence of the observation to the reference can be tuned

even further in the linear integral control case by making the following alter-

ation. We consider now the feedback scheme

x(t+ 1) = Ax(t) + bu(t), x(0) = x0,

w(t+ 1) = w(t) + g(r − cTx(t)), w(0) = w0,

u(t) = w(t) + k(r − cTx(t)),

 ∀ t ∈ N0. (6.54)

The term k(r − cTx(t)) is a proportional feedback and the parameter k > 0

is called the proportional feedback gain. We note that the integral control

system (6.46) is a special case of (6.54) where k = g, but in general they need

not be the same. Although the parameter k introduces another choice that has

to be made by the modeler, its inclusion often results in faster convergence of

the observations to the reference. Our main result for PI control is Theorem

6.3.16 below.

Theorem 6.3.16. Assume that the linear system (6.4) satisfies assumptions

(A6.1) and (A6.2) and assume that k > 0 is such that A−kbcT is nonnegative

with b and cT also assumed nonnegative. Then there exists g∗ > 0, which

depends on k, such that for all g ∈ (0, g∗), every r > 0 and all initial conditions

(x0, w0) ∈ Rn
+×R+, the solution (x, u) of (6.54) satisfies properties (1)-(3) of

Theorem 6.3.2 and additionally the integrator state w(t) converges to r/G(1)

as t→∞.

Proof. By assumption k > 0 is chosen so that A − kbcT is component-wise

nonnegative. Since A, b and cT are also component-wise nonnegative we clearly

have that A ≥ A− kbcT and so Corollary 2.1.24 implies that

0 ≤ ρ(A− kbcT ) ≤ ρ(A) < 1.

We deduce that assumption (A6.1) holds for A − kbcT . Moreover, one can

show that the transfer function of (A− kbcT , b, cT ) is

z 7→ Gk(z) =
G(z)

1 + kG(z)
,

so that

Gk(1) =
G(1)

1 + kG(1)
> 0,

implying that assumption (A6.2) applies to (A−kbcT , b, cT ). Therefore, The-

orem 6.3.2 now applies to the feedback system (6.54), that is the original

integral control system (6.9) with A replaced by A − kbcT . It is straightfor-

ward to demonstrate that the equilibria (x∗, u∗) of (6.54) are the same as those
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of (6.9).

Example 6.3.17. We compare the rates of convergence of the observations

to the reference of the integral control systems (6.9), (6.46) and (6.54) when

applied to the wild boar model of Example 6.3.3. The results are plotted in

Figure 6.12. The systems (6.9) and (6.46) both have the same gain parameter

g = 0.12, as in Example 6.3.3. We see that the observations of (6.46) converges

faster and in a less oscillatory manner than those of (6.9). For the PI system

(6.54) we take increasing proportional gain parameter k = 0.2, 0.3, and k =

0.4 and note the progressively faster convergence of the observations to the

reference.
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Figure 6.12: Integral control (6.9), integral control with proportional feedback
(6.46) and PI system (6.54) applied to the wild boar matrix PPM of Example
6.3.3. See Example 6.3.17. (a) Observations. The dotted black lines are the
reference r = 500 and r ± 10%. (b) Inputs. In both (a) and (b): the blue line
is the original system (6.9) with g = 0.12, the red line is the system (6.46)
with g = 0.12 and the green, purple and gold lines are the PI system (6.54)
with increasing k = 0.2, 0.3 and 0.4 respectively.

6.3.5 Can integral control be applied to other popula-

tion models?

Here we demonstrate that integral control can be applied to integral projection

models (IPMs) and that the results on integral control for PPMs from Sections

6.3.2 and 6.3.3 extend to IPMs. We also comment on how certain spatially

structured models fit into an integral control framework (P5).

IPMs are a relatively recent approach to population modeling, introduced

in [35]. Since their inception several models have been published in, for exam-

ple [37, 21, 113, 107]. We refer the reader to [35], or the tutorial paper [14],

for full details and only give a brief overview here. Typically an IPM takes the
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form

n(ξ, t+ 1) =

∫
s∈Ω

k(s, ξ)n(s, t)ds, n(ξ, 0) = n0(ξ), ξ ∈ Ω, t ∈ N0.

(6.55)

Here n(ξ, t) denotes the population at stage ξ ∈ Ω and time-step t, where Ω

is the range of size or stage-classes and is usually an interval of real numbers,

although general sets are permitted (see [37]). For each fixed t, n(ξ, t) is a

function of ξ. The function k is called a projection kernel and describes the

life history parameters of survival, growth and fecundity of the population.

The model (6.55) can be written in the form (6.1), where A now denotes

the operator

A : L1(Ω)→ L1(Ω), (Av)(ξ) =

∫
s∈Ω

k(s, ξ)v(s)ds, (6.56)

where L1(Ω) is the space of Lebesgue measurable functions (see, for example

[38, p. 647]) with finite L1 norm

L1(Ω) =

{
f : Ω→ R : f Lebesgue measurable and

∫
x∈Ω

|f(x)|dx <∞
}
.

In order to convert the IPM (6.1) (where A is now given by (6.56)) into a

controlled and observed system (6.4) we need to introduce appropriate control

vector b and observation vector c (the superscript T is omitted as we are no

longer considering matrix transposition).

Example 6.3.18. Suppose that for an IPM, Ω = [α, β], the interval from the

minimal size α to the maximal size β. In such a framework the control action

is a mapping R→ L1(Ω) and a suitable choice for b is a function in L1(Ω) so

that the control term bu(t) in (6.4) is b multiplied by the scalar u(t). To model

the distribution of new individuals arriving uniformly between stage-classes ξ1

and ξ2 with α ≤ ξ1 < ξ2 ≤ β we define b by

b(s) =


1

ξ2 − ξ1

, s ∈ [ξ1, ξ2],

0, otherwise.

(6.57)

The function b distributes new arrivals uniformly between ξ1 and ξ2. In

some applications, it may be more realistic that the distribution of new arrivals

is not uniform, and perhaps centered around some point between ξ1 and ξ2.

Such a control vector represents a ‘smoother’ version of b in (6.57). There are
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many such functions with this property. The quartic function

b′(s) =


30

(ξ2 − ξ1)5
(s− ξ1)2(s− ξ2)2, s ∈ [ξ1, ξ2],

0, otherwise,

(6.58)

is one example. The scaling of b′ is chosen so that b′ integrates to one.

For matrix PPMs the observation vectors we consider are row vectors. The

equivalent of a row vector in the IPM context is a linear mapping L1(Ω)→ R.

For example, the mapping

v 7→ cv :=

∫ ξ2

ξ1

v(s)ds, (6.59)

models the measurement of the population density of v between stage-classes

ξ1 and ξ2. When Ω = [α, β] and ξ1 = α, ξ2 = β then c in (6.59) measures the

entire population density.

Mathematically, PPMs and IPMs are very similar, although the latter in-

volves some extra technicalities. Theorem 6.3.19 is the main result of this

section and demonstrates that our main results for matrix PPMs carry over

to IPMs. Theorem 6.3.19 is a combination of special cases of results originally

proven in [23] and [88].

The two key assumptions (A6.1) and (A6.2) in the matrix PPM case cap-

tured the properties that the uncontrolled population is in asymptotic decline

and that the control, model and observation are chosen so that the steady-state

gain is nonzero respectively. The same assumptions are required for IPMs al-

though the formulation is slightly more technical: specifically, let X denote a

Banach space,

(A6.4) the bounded linear operator A : X → X has ρ(A) < 1,

(A6.5) the operators A : X → X, b : R → X and c : X → R are all

bounded and such that c(I − A)−1b > 0.

We comment that assumption (A6.4) can be checked numerically and as-

sumption (A6.5) generally holds for the IPMs presented here. In more detail,

for Ω = [α, β] the space L1(Ω) is a Banach space and for “reasonable” kernels

k, (for instance, if k is square integrable) the operator A in (6.56) is compact.

Compact operators can be uniformly approximated by finite dimensional op-

erators, so the spectral radius A can be estimated by computing the spectral

radii of a sequence of finite dimensional approximations of A. More precisely,

if (An)∞n=1 is a matrix sequence that approximates A uniformly, then by, for

example, [28, Theorem 2.1] the spectral radii ρ(An) converges to ρ(A).

229



Assumption (A6.5) means that a constant positive input signal eventually

gives rise to a positive observation. Alternatively, suppose that the controlled

and observed IPM is given by A (for reasonable kernels k), input b and obser-

vation c as in (6.56), (6.57) and (6.59) respectively. If A, b and c are uniformly

approximated by An, bn and cn then

Gn(1) := cn(I − An)−1bn → c(I − A)−1b = G(1) as n→∞,

and so the computable steady-state gain of An, bn and cn converge to that of

A, b and c.

Theorem 6.3.19. Given the controlled and observed projection system (6.9)

in the IPM case, then under assumptions (A6.4) and (A6.5) the conclusions

of Theorem 6.3.2 hold. If additionally the input bound U > 0 and reference

r > 0 are such that r ∈ (0,G(1)U) then the conclusions of Theorems 6.3.7 and

6.3.13 apply to the IPM versions of (6.35) and (6.45) respectively.

For a proof of the above result we refer the reader to [23, 22] for the first

two claims and [88] for the third.

Example 6.3.20. We consider an IPM for platte thistle (Cirsium canescens)

based on that from [118], discussed also in [14]. Here the stages are structured

according to stem diameter; a continuous variable assumed to take values be-

tween ∼ 0.6 and ∼ 33 mm. The distribution of plants of stage ξ at time t is

denoted by n(ξ, t). We have altered some of the parameters in the model from

those in [118] so that the ambient population is in asymptotic decline.

To supplement this population we suppose that individuals of stem diameter

centered around 2.5 mm are planted at each step, distributed by b′ from (6.58)

with ξ1 = 2.5−e0.5 mm and ξ2 = 2.5+e0.5 mm. The distribution of new plants

is plotted in Figure 6.13.

The observation y(t) of the population at each time-step is the total density

of all plants with diameter between 22 and 30mm, described by

y(t) = (cn)(t) =

∫ 30

22

n(s, t)ds.

From a random initial population of total density 10 we seek to raise the total

density of thistles with diameter in the range 22−30 mm to r = 40. In order to

simulate the model we discretize the IPM; which we do so via a finite element

(FE) method, a standard technique in numerical analysis. Such a scheme

produces a matrix equation that approximates the controlled and observed IPM,

but is different from one obtained by parameterizing a PPM model.
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Figure 6.13: Graph of function b′ describing distribution of new plants at each
time-step of IPM Example 6.3.20. Here ξ1 = 2.5− e0.5 and ξ2 = 2.5 + e0.5.

We provide details of the approximations. Following [14] we take Ω =

[e−0.5, e3.5], so that α = e−0.5 ≈ 0.6 and β = e3.5 ≈ 33. The kernel k is divided

into

k(y, x) = p(y, x) + f(y, x),

where p denotes the survival components and f denotes the reproductive com-

ponents. These have respective decompositions

p(y, x) = s(x)(1− fp(x))g(y, x)

and

f(y, x) = PeJ(y)s(x)fp(x)S(x).

For our simulations we use the functions given in [14, Table 1] for fp, g and

J . For the functions s and S, and the constant Pe we make modifications so

that the population is declining and to demonstrate the results better. We use

s(x) = 0.7
e0.85x−0.65

1 + e0.85x−0.65

S(x) = e0.05x+0.04

Pe = 0.05.

Finite element approximations are one method of reducing the infinite-

dimensional IPM to a finite-dimensional difference equation by discretizing

the spatial domain. That is, the function space L1(Ω) is approximated by an

indexed sequence of finite-dimensional subspaces which get ‘closer’ to L1(Ω) as

the index N increases. In what follows we give a very brief description of how

finite elements is used to derive an approximation of the IMP and refer the

reader to the texts [75] or [13] for a thorough treatment.
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For an integer N , the interval [α, β] is partitioned into N subintervals with

N + 1 equally spaced endpoints si defined by

si = α +
(i− 1)(β − α)

N
, 1 ≤ i ≤ N + 1.

In particular s1 = α and sN+1 = β. The N + 1 ‘hat’ or ‘tent’ functions δi are

defined by

δi(s) =



s− si−1

si − si−1

s ∈ [si−1, si],

si+1 − s
si+1 − si

s ∈ [si, si+1],

0 otherwise,

1 ≤ i ≤ N + 1, (6.60)

where s0 = s1 = α and sN+2 = sN+1 = β. The hat functions are more readily

understood visually, and some examples are plotted in Figure 6.14.
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Figure 6.14: Three sample hat functions defined by (6.60) with α = 0, β = 1
and N = 10. The functions δ1, δ5 and δ11 are plotted in blue, red and green
lines respectively.

Loosely speaking, the finite element method assumes that functions in L1(Ω)

are well approximated by a linear combination of finitely many of the δi func-

tions. And so, supposing that n is a solution of the IPM (6.4), using (6.56),

(6.58) and (6.59), with input u and output y then for any continuous function

v the following equation is satisfied∫
ξ∈Ω

v(ξ) [n(ξ, t+ 1)− (An)(ξ, t)− b(ξ)u(t)] dξ = 0, ∀ t ∈ N0. (6.61)

We assume that v and n can be written as a linear combination of the δi, that
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is, as

v(t, ξ) =
N+1∑
i=1

vi(t)δi(ξ), n(t, ξ) =
N+1∑
j=1

nj(t)δj(ξ), (6.62)

for some coefficients vi and nj. Substituting (6.62) into (6.61) and simplifying

gives the following matrix equation

Mn(t+ 1) = Dn(t) + Ju(t), ∀ t ∈ N0, (6.63)

where n(t) = (n1(t), . . . , nN+1(t))T and the matrices M , D and the vector J

have components given by

Mij =

∫
ξ∈Ω

δi(ξ)δj(ξ)dξ,

Dij =

∫
ξ∈Ω

δi(ξ)

∫
s∈Ω

k(ξ, s)δj(s)dsdξ,

Ji =
(
J1 · · · JN+1

)T
,

Ji =

∫
ξ∈Ω

δi(ξ)b(ξ)dξ,


1 ≤ i, j ≤ N + 1.

It is straightforward to see that the matrix M is invertible; if q ∈ CN+1 has

i-th component qi then we see that

qTMq =
N+1∑
i,j=1

qiMijqj =

∫
ξ∈Ω

∥∥∥∥∥
N+1∑
i=1

qiδi(ξ)

∥∥∥∥∥
2

dξ ≥ 0. (6.64)

Furthermore, if qTMq = 0 then as ξ 7→ ∑N+1
i=1 qiδi(ξ) is continuous if follows

from (6.64) that

N+1∑
i=1

qiδi(ξ) = 0, ∀ ξ ∈ Ω ⇒ qi = 0 ∀ i ∈ {1, . . . , N + 1},

and thus q = 0, proving that M is invertible.

When the output is of the form

y(t) =

∫ ξ2

ξ1

n(s, t)ds, ∀ t ∈ N0, (6.65)

where ξ1 < ξ2 denotes the range of stage-classes observed, then substituting

(6.62) into (6.65) gives y(t) = Fn(t), where the row vector

F =
(
F1 · · · FN+1

)
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has components

Fi =

∫ ξ2

ξ1

δi(s)ds, 1 ≤ i ≤ N + 1.

Therefore, we have the following system with N + 1 states

n(t+ 1) = M−1Dn(t) +M−1Ju(t),

y(t) = Fn(t),

}
∀ t ∈ N0, (6.66)

which is an approximation of the IPM (6.4) and can be readily implemented.

The matrix M and vector F can be found analytically, whilst D and J generally

need to be computed numerically. This can be achieved using quadrature, or for

example the Matlab function integral and integral2. In principle, larger N

gives rise to a closer approximation, but clearly adds complexity to simulations.

We denote by GN the transfer function of (6.66) so the steady-state gain of

(6.66) is

GN(1) = F (I −M−1D)−1M−1J,

whenever ρ(M−1D) < 1. For our example we worked on the log of the interval

[α, β], as this gave better results. As such the above goes through with s1 =

−0.5, sN+1 = 3.5. Figure 6.15 plots both the spectral radius of M−1D and

the steady state gain GN(1) for increasing N . The figure suggests that both

converge for N ≥ 10 and thus we choose N = 12 for the simulations in Figure

6.16. Furthermore, this suggests that the model in this example satisfies both

assumptions (A6.4) and (A6.5).
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N + 1
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G(1)

Figure 6.15: Spectral radius in blue and steady-state gain in red of the finite
element approximations (6.66) of the IPM model of platte thistle of Example
6.3.20.

We assume that the input filter ϕ is present, with input bound U = 17.5,

and since G(1) = 2.9324, in order for the results of Theorem 6.3.19 to apply
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we require

r < G(1)U = 51.32.

The results of the simulations are plotted in Figure 6.16. We see that, as

expected, each control scheme achieves the desired control objective.
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Figure 6.16: Integral control applied to the (discretization of the) platte thistle
IPM of Example 6.3.20. (a) Observations. (b) Total population densities. (c)
Inputs. (d) Adaptive gains. In (a)-(c) the blue lines denote the original integral
control system (6.9), the red lines are the filtered integral control system (6.35)
and the green lines are the adaptive integral control system (6.45). The gold
line is the precomputed control and the dotted black lines denote the reference
r = 40 and r ± 10%. The dashed black lines in (a)-(b) denote projections
from the uncontrolled model. Each projection is from the same random initial
population distribution. Here r = 40, U = 17.5 and g = 0.075

6.4 Further Development to Integral Control

In this section with two remarks on other directions in which integral control

can be developed.

Remark 6.4.1. Integral control can be developed for population models that

contain a spatial component. The theoretical results we have drawn upon and
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derived here are predicated on the underlying population model being density-

independent (that is, linear) and provided that linearity is preserved in the

presence of spatial dynamics, then integral control is still applicable. It is

beyond the scope of the present contribution to give comprehensive details for

such situations but we do consider two examples. The first is a controlled

and observed matrix metapopulation model (for example [109] or more recently

[119]), so that a population changes over time and across N discrete patches,

for integer N. The stage-structured population in the i-th patch at time-step t

is denoted xi(t) and has dynamics described by

xi(t+ 1) = Aixi(t) +
N∑
j=1

Dijxj(t) + biu(t), xi(0) = x0
i , ∀ t ∈ N0,

(6.67)

for i ∈ {1, 2, ..., N}. Here Ai describes the survival and recruitment of the

i-th patch, Dij are dispersal matrices, describing the movements of individuals

to patch i from patch j and bi is the control vector of the i-th patch. Spatial

inhomogeneity is incorporated when the vital rates and dispersal rates vary

across patches. The model (6.67) can be reformulated in the form (6.4) by

concatenating the population vectors and patch matrices as

x(t) :=


x1(t)

x2(t)
...

xN(t)

 , A :=


(A1 +D11) D12 · · · D1N

D21
. . .

...
...

. . . . . . D(N−1)N

DN1 · · · DN(N−1) (AN +DNN)

 ,

b :=


b1

b2

...

bN


(6.68)

and by defining an observation y(t) as some linear combination of the states

y(t) = cTx(t) as usual. It is important to note that the Dij may not be

component-wise nonnegative, as they describe both movement in to and out

of a given patch and so therefore A in (6.68) may have negative components.

However, the nonnegativity assumed in (A6.1) is not required for integral con-

trol, only that ρ(A) < 1. Assumption (A6.2) is unchanged, and when these

assumptions hold for the above A, b and cT then integral control is applicable

and the results we have presented carry over. As mentioned in Section 6.3.1,

full knowledge of Ai , Dij is not required for these assumptions to hold.

The second example is a linear, integro-difference model (for examples in
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ecology, see [80] or [81] and the references therein). A single stage-structured

population over a (possibly inhomogeneous) spatial domain Ω at time-step t

and position ξ ∈ Ω is denoted by n(ξ, t) and has dynamics given by

n(ξ, t+ 1) =

∫
s∈Ω

k(ξ, s)Rn(s, t)ds+ b(ξ)u(t) ,

n(ξ, 0) = n0(ξ),

y(t) =

∫
Ω1

(
1 1 . . . 1

)
n(s, t)ds,


∀ t ∈ N0. (6.69)

In (6.69), R is a matrix that models survival and recruitment of the population,

n0 denotes the initial population distribution, k = k(ξ, s) is a dispersal kernel

which is a probability distribution describing the probability that an individ-

ual from position s disperses to position ξ at each time-step and the function

b = b(ξ) describes the distribution of new individuals at position ξ. The obser-

vation y(t) has been chosen as the number of individuals in the region Ω1 ⊆ Ω,

although of course other observations are permitted. Similarly to the IPM

(6.55), (6.69) can be reformulated as (6.4), although we do not give the details

here.

Remark 6.4.2. Further developments of integral control allow regulation of

more than one observation and with access to more than one management ac-

tion at each time-step. For example, suppose that we seek to regulate both

the total population abundance and the abundance of a given single stage-

class, and we can replenish more than one stage-class (or combination of

stage-classes) independently. This leads to a framework called multi-input,

multi-observation in control engineering and conceptually the extension from

the single-input, single-observation case is usually straightforward, although

mathematically there are often additional difficulties to overcome. That said,

integral control feedback systems have been designed where at each time-step

t, m control actions are made and p observations are recorded for positive

integers m and p; for example [78]. The reference is now a vector of cho-

sen values r ∈ Rp. However, existing results do not address integral control

where additionally component-wise nonnegativity has to be preserved; clearly a

requirement for meaningful population models. Combining these two ideas is

seemingly not straightforward. One immediate issue is that not every nonneg-

ative reference vector can be a target for management. In our example con-

sidered above, obviously the former observation (total population abundance)

shall always be larger than the latter (abundance of a single stage-class). Such

a constraint must therefore also be present in the choice of reference. We

comment that integral control that preserves nonnegativity in the multi-input,
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multi-observation case is the subject of ongoing research.

6.4.1 How the solutions to (P1)-(P5) interact

The solutions proposed to problems (P1)-(P5) interact as follows. Robust-

ness to model uncertainty (P1) (i) is encapsulated in assumptions (A6.1)

and (A6.2), which are necessary and sufficient conditions for low-gain in-

tegral control and are hence assumed throughout. The same is true of the

infinite-dimensional versions of these assumptions (A6.4) and (A6.5). Thus

the solutions to (P2)-(P5) include this same robustness to model uncertainty.

The material presented in addressing (P2), (P3) and (P5) is cumulative, so

our solution to (P3) (adaptive gain selection) incorporated the solution to

(P2) (filtering the input signal). We addressed problem (P4), namely that

of increasing the rate of convergence of the observations to the reference, by

including a proportional controller to augment the integral controller. For

simplicity our main result of Section 6.3.4, Theorem 6.3.16, only considered

the linear integral control system (6.9). However, Theorems 6.3.7, 6.3.13 and

6.3.19 can all be extended to the PI feedback system (6.46) (where the propor-

tional k and integral gains g are equal). It is possible to extend versions of all

the theorems presented to incorporate additive observation errors and additive

activation errors ((P1) (ii) and (iii) respectively). The proportional observa-

tion errors (6.16) are trickier to incorporate into the solutions to (P2)-(P5),

and a treatment of such is beyond the scope of this contribution. However, ap-

pealing to techniques such as λ-tracking [68, 69] and funnel control [70] would

provide insight in this direction.

6.5 Discussion

We have introduced integral control as a potential tool for population manage-

ment. A brief overview of the method has been given, which seeks to motivate

both the necessity of integral control for robust population management via

restocking and indeed further how integral control is suitable for such a task.

Sections 6.2 and 6.3 contain a verbal and mathematical “road-map” respec-

tively of how integral control is applied. Although well-established in control

engineering and, as mentioned in the introduction, now starting to appear in

the biological literature; PI control has not been applied to population man-

agement, to which it seems well suited. It has been suggested elsewhere in the

literature that there is ample scope for using control theory in ecology [51, 12]

but often it seems that the focus is on optimal control [85]. As mentioned

in Section 6.2.1, the trade-off between performance and robustness has pro-
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duced an unfortunate discord between theory and practice, so much so that in

[121] it says “By 1975, the much lamented gap between academic theory and

engineering practice in the control field has grown to prodigious proportions”.

Integral control is a particular instance of feedback control, which is known

to control engineers to be incredibly robust to model uncertainty. Moreover,

appealing in part to recent mathematical results, the basic integral control

model can be extended to meet several challenges that arise in population

ecology.

Furthermore, integral control is straightforward to implement (at least the-

oretically) once a PPM or IPM is available. It does not suffer the so-called

“curse of dimensionality” present in SDP which necessitates low-dimensional

models to be realized practically. Of course population management models

that use POMDPs and SDP (such as those cited in Section 6.2.1) treat an

issue that we have omitted; namely that of managing optimality. The reason

for this omission is, in part, because it is not the aim of this chapter. We have

sought to describe a robust approach to population management via restock-

ing. With the material presented, however, and given costs of reintroduction

and observation one could easily investigate by simulation which choices of b,

cT and g (reintroductions, measurements, and gain) give rise to lowest cost or

fastest responses. Such costs could also be traded off against set rewards of

having certain abundances of populations.

Another important consideration is that we, to use a medical analogy, have

presented a treatment of symptoms rather than a cure of the underlying condi-

tion, as managing via integral control requires that populations are restocked

indefinitely to secure persistence. Such a policy is clearly infeasible in prac-

tice, at least in many cases. Although conservation biologists often rely on

captive rearing, translocations and species reintroductions [126]; methods that

fit our mathematical framework, such conservation programs are expensive,

laborious and risk the welfare of endangered species. A possibly more practi-

cal approach would be to combine integral control in the short term to raise

population abundances with additional conservation efforts to ensuring future

population persistence, for example by improving environmental conditions.

The aim might be to restock to sufficient population densities that ensure

population viability; that is, the population persists unaided.

239



240



Main Assumptions

Chapter 3

(A3.1) The matrix A is a Metzler matrix and b, c ∈ Rn
+ are nonzero.

(A3.2) The matrix A is Hurwitz.

(A3.3) The matrix A+ bcT is irreducible.

(A3.4) f : R+ → R+ is locally Lipschitz.

(A3.5) There exists y∗ > 0 such that f(y∗) = py∗.

(A3.6) f satisfies ∣∣∣∣f(y)− f(y∗)

y − y∗
∣∣∣∣ ≤ p, ∀ y ∈ R+\{y∗}.

(A3.7) f satisfies ∣∣∣∣f(y)− f(y∗)

y − y∗
∣∣∣∣ < p ∀ y ∈ R+\{0, y∗}.

(A3.8) f satisfies

lim sup
y→y∗

∣∣∣∣f(y)− f(y∗)

y − y∗
∣∣∣∣ < p.

(A3.9) f satisfies

lim sup
y→∞

∣∣∣∣f(y)− f(y∗)

y − y∗
∣∣∣∣ < p.

(A3.10) For all y0 > 0

sup
y≥y0, y 6=y∗

∣∣∣∣f(y)− f(y∗)

y − y∗
∣∣∣∣ < p.

(A3.11) f(0) = 0.

(A3.12) py − f(y)→∞ as y →∞.
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Chapter 4

(A4.1) For all, ξ ∈ Y , and all z ∈ Rp with z 6= 0

‖f(z + ξ)− f(ξ)−Kz‖ < γ‖z‖.

(A4.2) For all ξ ∈ imC and all z ∈ Rp with z 6= 0,

‖f(z + ξ)− f(ξ)−Kz‖ < γ‖z‖.

(A4.3) For every ξ ∈ imC there exists αξ ∈ K∞ such that

‖GK‖H∞
‖f(z + ξ)− f(ξ)−Kz‖

‖z‖ ≤ 1− αξ(‖z‖)
‖z‖

for all z ∈ Rp with z 6= 0.

(A4.4) For all ξ, z ∈ Rp with z 6= 0,

‖f(z + ξ)− f(ξ)−Kz‖ < γ‖z‖.

(A4.5) A ∈ Rn×n is Metzler and b, c ∈ Rn
+, b, c > 0,

(A4.6) f : R+ → R+ is locally Lipschitz.

(A4.7) The matrix A+ bcT is irreducible.

Chapter 5

(A5.1) The matrix A is nonnegative and the vectors b and c are nonnega-

tive and nonzero.

(A5.2) The matrix A is stable.

(A5.3) The matrix A+ bcT is primitive.

(A5.4) f : R+ → R+ is continuous.

(A5.5) At least one of the following statements hold.

• There exists z0 with |z0| = 1 such that p|G(z0)| < 1.

• (A, b, cT ) is controllable and observable.

(A5.6) There exists y∗ > 0 such that f(y∗) = py∗.
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(A5.7) f satisfies ∣∣∣∣f(y)− f(y∗)

y − y∗
∣∣∣∣ ≤ p ∀ y ≥ 0, y 6= y∗.

(A5.8) f satisfies ∣∣∣∣f(y)− f(y∗)

y − y∗
∣∣∣∣ < p, ∀ y > 0, y 6= y∗.

(A5.9) f satisfies

lim sup
y→y∗

∣∣∣∣f(y)− f(y∗)

y − y∗
∣∣∣∣ < p.

(A5.10) py − f(y)→∞ as y →∞.

Chapter 6

(A6.1) A ∈ Rn×n
+ and ρ(A) < 1.

(A6.2) The matrix A and vectors b and cT are such that cT (I−A)−1b > 0.

(A6.3) There exists L > 0 such that 0 ≤ ϕ(v) − ϕ(w) ≤ L(v − w) for all

v ≥ w.

(A6.4) the bounded linear operator A : X → X has ρ(A) < 1,

(A6.5) the operators A : X → X, b : R → X and c : X → R are all

bounded and such that c(I − A)−1b > 0.
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