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ON ROBUST PI-CONTROL OF INFINITE-DIMENSIONAL SYSTEMS*

HARTMUT LOGEMANN? AND HANS ZWART$

Abstract. A PI-controller is applied to a class of linear multivariable infinite-dimensional minimum-
phase systems satisfying a generalized "relative-degree one" condition. It is shown that the closed-loop
system is stable and tracks asymptotically constant reference signals in the presence of asymptotically
constant disturbances, provided that the controller gains are sufficiently large. It turns out that the closed-loop
system has nice robustness properties under high-gain conditions. In particular, robustness criteria for
external and internal stability are given if the closed-loop system is subjected to perturbations induced by
nonlinearities in the feedback loop. The analysis is based on frequency-domain as well as state-space methods.
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1. Introduction. The concepts of classical control theory such as root locus plots,
Nyquist diagrams, and PI- and PID-controllers are still very popular among control
engineers because oftheir simplicity and their applicability to a great variety of practical
problems. Designs based on classical frequency-domain methods lead to low-
dimensional controllers, which are easy to implement. Although it was developed
mainly for finite-dimensional systems, classical control theory has been applied by
engineers to infinite-dimensional systems for many years, despite the fact that few
precise theoretical results were available. Since the late 1970s, there has been a renewed
theoretical interest in the use of methods from classical control theory for designing
control laws for (multivariable) infinite-dimensional systems; see, e.g., Pohjolainen
[33], Banks and Abbasi-Ghelmansarai [1], and Byrnes and Gilliam [3] for root-locus
techniques; Boyd and Desoer [2] and Freudenberg and Looze [9] for a priori perform-
ance bounds on feedback systems such as Bode-type integral relationships; Desoer
and Wang [7], Harris and Valenca [11], and Logemann [18], [19], [21] for Nyquist-type
stability criteria; Pohjolainen [34], Jussila and Koivo [15], Kobayashi [17], and
Logemann and Owens [24] for low-gain PI-control; and Logemann and Owens [22],
[23] for high-gain PI-control.

In this paper we continue the work on high-gain PI-control of infinite-dimensional
systems started by Logemann and Owens [22], [23]. We investigate stability, tracking,
disturbance rejection, and robustness properties achieved by a high-gain PI-controller
applied to an infinite-dimensional minimum-phase system satisfying a generalized
"relative-degree one" condition. In particular, we study the robustness of closed-loop
stability with respect to various classes of measurement nonlinearities. Our analysis is
based on time-domain input-output methods, frequency-domain methods, as well as
state-space methods. To relate frequency-domain results, on one hand, and state-space
results, on the other hand, we express frequency-domain conditions in state-space
terms, and vice versa (cf. 4). Moreover, recent results on the relationship between
input-output stability and internal stability of linear infinite-dimensional systems (see
Jacobson [13], Jacobson and Nett [14], and Curtain [5]) will play an important role
in5.
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The content of the paper is as follows. Section 2 contains some preliminaries and
introduces the notation used in the sequel. In 3 we consider systems described by
(not necessarily rational) transfer matrices G of the form

(1.1) G(s)= I+-D-1H(s) -D-1,
S S

where H is a "stable" transfer matrix (see 3 for a precise definition) and D is a
nonsingular constant matrix. We derive a necessary and sufficient condition for a
transfer matrix to be of the form (1.1) in terms of its zeros and its behaviour as Isl --> o

in the right half-plane. A PI-controller is given that achieves input-output stability and
tracking of asymptotically constant reference signals in the presence of asymptotically
constant disturbances, provided that the controller gains are sufficiently large. It turns
out that the transient performance of the closed-loop system improves as the controller
gains increase and that it is perfect for infinitely large gains. Moreover, we investigate
the robustness of closed-loop stability with respect to (possibly time-varying) finite-gain
stable nonlinearities in the feedback loop. Static, as well as dynamic, nonlinearities
are considered, and sufficient conditions for input-output stability of the nonlinear
closed-loop system are given. We emphasize that wellposedness questions (i.e., the
problem of existence and uniqueness of solutions) are carefully treated. Sections 4
and 5 are devoted to the special situation when the plant transfer matrix G can be
realized by an abstract infinite-dimensional state-space system with bounded control
and observation operators. In 4 we prove that the zeros of an infinite-dimensional
state-space system (as defined, e.g., in Zwart [40]) coincide with the zeros of its transfer
matrix (as defined in 2), provided that the system is exponentially stabilizable and
exponentially detectable. Furthermore, we derive various sufficient conditions in state-
space terms for (1.1) to be satisfied. In 5 we deal with the problem of internal stability
of the closed-loop system perturbed by nonlinearities in the feedback loop. Assuming
that the realizations of the plant and the controller are both exponentially stabilizable
and exponentially detectable, we show that the criterion for input-output stability given
in 3 also ensures global exponentially stability of the nonlinear feedback scheme if
the nonlinearities in the loop are static. In the case of dynamical nonlinearities, we
can prove that the origin of the closed-loop system is globally attractive. The proofs
of some of the results in 3-5 are relegated to Appendices and 2. For the convenience
of the reader, we have included some recent material on exponential stabilizability
and exponential detectability of infinite-dimensional systems in Appendix 3.

2. Notation and preliminaries.
--C, := {s C IRe (s) > a), a.
inLet U c C be open, then (U) and (U) denote the holomorphic and meromorphic

functions on U, respectively.
--H := {f’C --> C If bounded and holomorphic}.
H_:= U <o H.
reConsider distributions of the form

(2.1) f =f, +
j=0

where f, / - C is measurable, f e C, to 0, > 0 for j >- 1, and : denotes the Dirac
distribution with support in {ts}. Let sg be the set of all distributions f of the form
(2.1) such that

(2.2) Ilfll. :- I/.(t)l dt q-
j=O
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is a convolution algebra and, provided with the norm given by (2.2), it becomes
a Banach algebra (cf. Hille and Phillips [12, p. 141]).

---:= {f 1 there exists e > 0: fe’ .}.
--’,

_
is the set consisting ofthe Laplace transformed elements of, _, respectively.

Realize that c H and

_
c H_.

--f denotes the inverse Laplace transform of f
--0 denotes the unit step.
--Let M (mo) C_,pp, then

IIMII :- max__</<=p jP= Im0[ unless stated otherwise, t(M):= largest singular value of
M, W(M) := numerical range of M (cf. Halmos [10]).

--Let X be a Banach space and A: D(A)= X X a linear operator, then o-(A):=
spectrum of A, O-p(A):= point spectrum of A, and p(A):= resolvent set of A.

--For F (fj) (LI(R+))pxp define IIFll, := maxl=</=<p ;= Iif0[[,.
--Let F (fj) pxp, then IIFII :- maxl__<izp ;=1 IIf ll .
--Iff= (f,... ,fp)’ (Lq(R+))p, then IIFIl := max_<_j__<p
--For F H)pp define IlFIl := sup.   o
--Let f be a function defined on an interval [a, b), a < b -< c; then we define, for -> a,

J’f(-r), a --< "r -< t,
(Tr,f)(’) ..--

0, ’> t.

--Define the space LLq(+) by LL (+) := {f: + If measurable and r,f Lq(+)
for all => 0}, i.e., f LL(+), if and only if If]" is locally integrable.
We need three additional concepts:
H_-stability. Let G(G)PP and K (E)qP for some a <0; then it is

convenient to denote the feedback system shown in Fig. 1 by [G, Kl, and we say
that [G, K] is H_-stable if

(I + KG)-’K -(I + KG)-’KG]
(I+GK)-IGK (I+GK)-IG

is in (H_)p+qP+q.
Zeros of a square meromorphic matrix. Let M ( U)pp. Since it is well known

that (U) is the quotient field of (U) and (U) is a Bezout domain (see, e.g.,
Rudin [35]), it follows that M admits a right coprime factorization over (U), i.e.,
there exist matrices N,D,X, Y(U)pp such that det(D)0, M=ND-1, and
XD + YN =-I. Right coprime factorizations are unique up to multiplication from the
right by units of (U)pp (see, for example, Vidyasagar, Schneider, and Francis [37]).
The zeros of M are, by definition, the zeros of det (N).

FIG.

An integral domain is called Bezout domain if every finitely generated ideal is principal.
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Asymptotically constant signals. A function f: +->(P is called asymptotically
constant if there exists cCp such that limt_f(t)= c.

3. Robust Pl-control of infinite-dimensional systems: Results on input-output
stability. Let G be a meromorphic transfer function of size p x p such that on Ca (for
some a < 0)

(3.1) G-l(s)=sD+H(s), where DCpp, det(D)#0, and He(H_)pp.

Of course, (3.1) is equivalent to

(3.2) G(s) I +- D-’H(s) D-.
S S

Hence (3.1) means that G can be decomposed, as shown in Fig. 2. The following
proposition gives a necessary and sufficient condition for G to be of the form (3.2).

1D-
S

G(s)
FIG. 2

PROPOSITION 3.1. Let G be a transfer matrix of size p x p, which is meromorphic in

Ca for some ce < O. Then O- is of the form (3.1) if and only if there exist a number
with a < fl < 0 and an invertible matrix D (pxp such that G has no zeros in Ct3 and
sG(s) D- 0(1/s) as Isl-> o in Ct3.

As a consequence, we have the following corollary.
COROLLARY 3.2. Suppose that A (H_)nn, B Cnp, and C Cp", and define

G(s) := C(sI-A(s))-B and X(s) := det (sI A(s)
C

Ifdet (CB) # 0 and ifx has no zeros in Co, then G-1 is oftheform (3.1) with D (CB) -1.
The proof of the proposition and the corollary can be found in Appendix 1.
We give two classes of infinite-dimensional systems whose transfer matrices satisfy

(3.1).
Example 3.3 (Retarded systems). Consider the retarded system

I2(t)= dA(7")x(t+’)+Bu(t), y(t)=Cx(t),
-h

where h > 0 is the length of the delay, the function A’[-h, 0] is of bounded
variation, Bnxp, and C eNp. It is straightforward to show that (s):=
o__ dA(-) e d" is holomorphic and bounded on Ca for any a . In particular, weh
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have A(H_)nx". The transfer matrix of the above retarded system is given by
G(s)= C(sI-.(s))-lB. It follows from Corollary 3.2 that G-1 is of the form (3.1),
provided the conditions det (CB) 0 and

-0det
sI (s)

0 for allseoC

are satisfied.
Example 3.4 (Volterra integrodifferential systems). Consider the system

)(t) Aox(t)+ Al(t-’)x(’) d-+ Bu(t), y( t) Cx( t),

where Ao ,xn, B ,xp, C px,, and e’A( LI(+) for some e > 0. Noting that
the Laplace transform A1 of A is in (H)"", it follows from Corollary 3.2 that the
transfer matrix G(s)= C(sI-Ao-(s))-B will satisfy (3.1) if det (CB) 0 and

det( sI-A-A(s)C -oB) 0 forallseo.

It is fairly obvious that Examples 3.3 and 3.4 can be extended to certain classes of
retarded systems with infinite delay and Volterra-Stieltjes integrodifferential systems.

Consider the PI-controller

(3.3) Kk(S):=F diag ik+ c+---],
<=j<-p \ S l

where FCpp, det(F)#0, k=(kl,... ,kp)’, k>0, cj>0forallj= 1,2,... ,p. Some-
times it will be useful to emphasize the dependence of the controller (3.3) on the "gain
vector" k, since we will be interested in the high-gain situation, where k-, j
1,..-, p. That is why we introduced the subscript k in (3.3).

The above controller was investigated in Owens and Chotai [31] when applied to
finite-dimensional systems. The infinite-dimensional case is studied in Logemann and
Owens [22], [23].

The following theorem gives sufficient conditions for robust stability when the
controller (3.3) is applied to a system satisfying (3.1).

THEOREM 3.5. Let G be a transfer matrix such that (3.1) is satisfied. Then (i) the
feedback system o[ G, Kk] is H_-stable for all sufficiently large kj, j 1,. ., p, if
(3.4) IIr-’(r-D)ll < 1,

where II. any submultiplicative norm on _PP with the additional property that
[[diag (a)]]-< max ]a[ for arbitrary a ,..., ap C; and (ii) under the additional assump-
tion that k yK with > 0 fixed (j 1,..., p) the feedback scheme [O, Kk] is
H_-stable for a sufficiently large if

(3.5) o" (diag (y)r-’D) c Co

Or

(3.6) w(r-D)=Co.

Proof See Logemann and Owens [22].
Remark 3.6. (i) Note that Kk does not depend on H. Trivially, (3.4)-(3.6) are

satisfied if F D. Obviously, F D would be a natural choice in (3.3). However, D
might not be exactly known to the designer.
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(ii) Further applications of the concept of numerical range to control problems
can be found in Mees [25].

To study the tracking and output disturbance rejection properties of if[G, Kk]
(cf. Fig. 3), define Lk:=(I+GKk)-GKk and Hk:=(I+GKk)-1.

PROPOSITION 3.7. Let G be a square meromorphic transfer matrix such that G-1 is

of theform (3.1). If[G, Kk] is H_-stable, then the closed-loop system tracks asymptoti-
cally constant reference signals in the presence of asymptotically constant output disturb-
ances, i.e.,for r: + Cp and d: + Cp such that limt_. r(t) ro and lim,_. d (t)
we have

lim (k * r)(t) roo and lim (/-itk d)(t) 0.
t--)

Proof It follows from the stability of f[G, Kk] that Lk, Hk (H_)pp. Now it is
easy to see that sLk(s) and s(Hk(s) I) are bounded on C for some/3 < 0, and hence
we obtain, using a result in Mossaheb [27] (cf. also Logemann [18]), that
(LI(/))pp and e’/-)k (6o+ L(I))pp for all a (0,-/3A), and thus Lk and
(_)PP. By the final value theorem for transfer functions in 4_ (cf. Callier and Winkin
[4]), it is sufficient to show that Lk(0)= I and Hk(0)=0.

An elementary calculation gives

Lk(S) (( O(s)Kk(S))-l + I)-1

S [’,-1
s kj -F ej -F kjcj

sD + H s + I

Since kj, cj>O, j= 1,..., p, it follows that Lk(O)-L Since Hk--I--Lk, we obtain
Hk(O) =0. El

To investigate the transient performance of [, K] and the robustness of
closed-loop stability with respect to measurement nonlinearities, the following lemma
is useful.

LEMMA 3.8. Let G be a square meromorphic transfer matrix such that G-1 is of the
form (3.1), define Kk as in (3.3), and set

G*(s) :=- F-1 and
S

L* (s) := (I + G*Kk)-1G*Kk.

Then the following hold" (i) If F--D, we have

(3.7) lim IIL *- L ll, =o

(by k c, we mean minl=<j__<p (kj)- c);
(ii) If IIr-’ r- D)II =: < then

(3.8)
2E

lim sup II/Z * II, -<
k--, --2e

r

FIG. 3



ROBUST PI-CONTROL 579

The proof of Lemma 3.8 can be found in Appendix 2. Part (i) was proved in

Logemann and Owens [22] under the extra assumption that H in (3.1) belongs to
sgP_p. It should be noted that it is, in general, considerably more difficult to check if
a given transfer function is in s_ than to verify that it belongs to H_.

Remark 3.9. (i) Define 0j := ej0, where ej (0,..., 1,..., 0)’ NP. We consider
the transient performance of the feedback system 0%[ G*, Kk]. It is easy to see that the
transfer matrix L* is given by

(s + k)(s + )]
Since we are interested in high-gain feedback, we may assume without loss of generality
that kj > cj, j 1, , p. A routine calculation gives the following estimates for the
overshoot Oj, the rise time T, and the settling time T) in the jth loop (see, e.g.,
Franklin, Powell, and Emami-Naeini [8] for the notions of overshoot, rise time, and
so forth).

We have Oj<-cj/(kj-cj), T<-1/2rj, and T)<=max (1/2,0, -1/cj ln ((kj-cj)/lOO cj)),
where 5 (2(In (kj)-ln (cj))/(kj-cj)) is the time when the maximal overshoot occurs.
The settling time T) is defined here as the time required for the signal (L. Oj)j(t) to
stay within the interval [0.99, 1.01].

The estimates show that the transient performance of the feedback system
0%[ G*, K] improves as the gains kj,j 1,. ., p, increase.

(ii) Suppose that F D. In this case, part (i) of this remark and (3.7) show that
the transient performance of the feedback system o%[G, K] improves as the gains kj,
j 1,..., p increase. If F D, then (3.8) gives a bound on the performance degrada-
tion, provided that the condition of Lemma 3.8 (ii) is satisfied.

In the following, we investigate the effect of measurement nonlinearities on the
stability of 0%[G, K]. First, we will concentrate on memoryless nonlinearities. We
consider functions q :N+ x Cp - Cp, which satisfy the following conditions:

(N1) q(t, x) is continuous in and locally Lipschitz continuous in x, uniformly
in on bounded intervals;

(N2) q is unbiased, i.e., q(t, 0) 0, for all => 0;
(N3) q idc,, + ql + (42, where ql and q2 satisfy

and
for all _-> 0, x 6 Cp,
and some constants A 1,/2 0.

Furthermore, for a function q :+ x Cp-* Cp, let N denote the operator induced by
q, i.e., (Nu)(t)- q(t, u(t)) for any function u: N+Cp.

The following result gives a sufficient condition for the stability of the feedback
system shown in Fig. 4.

THEOREM 3.10. Let G be a square transfer matrix such that G- is of the form
(3.1). Let the controller gk be given by (3.3), suppose that q :R+ x CP- Cp satisfies

r
0 gk

+

FIG. 4
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(N1)-(N3), and assume that the reference signal r is bounded on bounded intervals. Then,
irA1 < 1 and

(3.9)

there exists k* > 0 such that for all kj > k* (j 1, , p) the nonlinearfeedback system
given by

(3.10) y=O*e, e=Ik*(r--N(y))

is well posed (i.e., there exists a unique globally defined solution of (3.10)) and L-stable
in the sense that there exist nonnegative constants ml and m2 such that

(3.11) Ilyll_-< ml + m2ll rll
for all r (L(N+))P.

Proof First, realize that for all sufficiently large kj (j 1,..., p)

(3.12)

This follows from (3.9), Lemma 3.8(ii), and the fact that limk_.oo II,-- (of. Logemann
and Owens [22]), where L* is defined as in Lemma 3.8. Equation (3.10) can be written
in the form

(3.13) y=k*r--k*(N(y)+N(y)),

which is a nonlinear Volterra integral equation in y. It follows from Theorem 1.2 and
Corollary 2.7, in Miller [26] that (3.13) has a unique (continuous) solution that can
be extended to the right as long as it remains bounded. Now pick > 0 such that the
solution of (3.13) exists on [0, t]. Application of the truncation operator 7r, to (3.13)
gives

(3.14) -<

where Yt := k* r is the output of the linear feedback system if[G, Kk]. Setting A :=
t; Ill, we obtain

(1 AA 1)II 7r,(y y,) II-< a(a, 7r,y, 1[oo + A),

and hence (//1 < 1 by (3.12))

A
(3.15) [17r,(y y,)IIoo--< (/111 qTtY, Iloo qt_/-2)--AA1

Inequality (3.15) shows that the solution of (3.13) exists on N+, since IIr,y/ll is
finite for all N+. Moreover, it follows that (3.11) holds with ml AA2(1- AA1) -1 and
m2=A(1-AA1)-1. I-I

Remark 3.11. (i) The proof shows that Theorem 3.10 remains true if we replace
oo by q 1, 2, 3,..., provided that o2=0.

(ii) Equation (3.15) yields an upper bound on the difference of the output signals
of the linear and nonlinear feedback system corresponding to the same input signal r.
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We now turn our attention to a certain class of dynamical measurement non-
linearities. We consider operators (I) from (LLq([+))p onto itself, which satisfy the
following assumptions:

(N4) (I) is causal, i.e., 7r,(I)= 7r, CI)Tr, for all t-> 0 (cf. Willems [38]);
(N5) (I) is locally Lipschitz continuous, i.e., for all >= 0 there exists l, => 0 such

that II,(u -v)llq --< 1,11 ,(u v)llq for all u, v (LLq(I+))p (cf. Willems
[38]);

(N6) is unbiased, i.e., (I)(0)=0;
(N7) =id+q, where satisfies IIqullq<=,lllUllq+,2 for all ue(Lq(+))p and

some nonnegative constants ,1 and
Remark 3.12. Consider the nonlinearity N induced by the function

Cp. Then, in general, N will not fulfill (N5) unless satisfies a global Lipschitz
condition.

THEOREM 3.13. Let G be a square transfer matrix such that G-1 is of the form
(3.1), let the controller Kk be given by (3.3), suppose that : (LLq(N+))p--->(LLq(N+))p

satisfies (N4)-(N7), and assume that r(LLq(N+))p. Then we have (i) the nonlinear
feedback system given by

(3.16) y= .e, e= gk *(r-(y))
is well posed in the sense that there exists a unique (globally defined) solution y
(LLq(ff+))P; and (ii) suppose that 11 < and

(3.17)
then for all sufficiently large kj (j= 1,..., p), the feedback system (3.16) is Lq-stable in
the sense that there exist nonnegative constants ml and m2 such that Ilyll -<- ml + m211rll,
for all re (Lq(+))p.

Proof Equation (3.16) can be written in the form

(3.18) Y =/k * r-/-k * (Y).
It follows from Corollary 4.1.2 in Willems [38] that (3.18) admits a unique solution
in (LLq(+))p. The stability result can be shown, as in the proof of Theorem 3.10. [3

4. Conditions in state-space terms for (3.1) to be satisfied. In this section we will
give sufficient conditions for a system in state-space form to satisfy the decomposition
(3.1). Our state-space system is given by

(4.1a) 2 Ax + Bu; x(O) Xo,

(4.1b) y Cx,

where (i) A: D(A)c X X, X is a Banach space, generates a strongly continuous
semigroup, denoted by T(t)’, (ii) B’P-- X (u up)’ --Pi= biui, where biX,

1,. , p; and (iii) C :X - P, x - ((x, e), , (x, Cp))’, where ci X*; 1, , p.
In 3 we have seen that the zeros of the system play an essential role in determining

if it has a decomposition (3.1). The next definition gives an equivalent definition for
zeros of a state-space system.

DEFINITION 4.1. Let z C; then z is a zero of system (4.1) if the kernel of the
operator [zla 1]. D(A)tp -> X((,p is nonzero.

LEMMA 4.2. If system (4.1) is a-exponentially stabilizable and a-exponentially
detectable, then the zeros in Ca of (4.1) are the same as the zeros ofG(s) := C(sI-A)-B
as defined in 2.

For the definitions of a-exponentially stabilizability and detectability, see
Appendix 3.
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Proof Since the state-space system is a-exponentially stabilizable, there exists a
bounded linear operator F:X EP such that the semigroup generated by A+ BF,
TBF(t), satisfies IIT(t)ll <=Me’, fl < a. With this feedback, we can construct the
following right coprime factorization of G(s) over g((Ca) (see Jacobson 13] and Nett,
Jacobson, and Balas [30]):
G=NM-1, where N(s)=C(sI-A-BF)-IB, M(s)=I+F(sI-A-BF)-B.

Let uCp, u#O, satisfy C(SoI-A-BF)-Bu=O for some soC. Then, by the
coprimeness of N and M, u+F(soI-A-BF)-Bu#O, and

C -u F(soI-A- BF)-Bu
On the other hand, if

for some (x, u) (0, 0)e D(A)Cp, then

(4.4) (SoI- A- BF)x + B(u + Fx) O.

Premultiplying (4.4) with C(soI-A-BF)- gives

0= Cx + C(soI A- BF)-IB(u + Fx) O+ C(soI A- BF)-IB(u + Ix).

So, if (u+Fx)O, then So is a zero of the transfer matrix G. If u+Fx=O, then
(4.4) with the invertibility of (SoI- A-BF) would imply that x 0. Hence also u 0,
since u u + Fx- Fx. This is in contradiction with (x, u) # (0, 0). [3

For the system under consideration, we will prove that under certain conditions
the transfer function can be decomposed in a similar way as in (3.1).
LEMMA 4.3. Suppose that (A, B) is a-exponentially stabilizable. Assume further that
det (CB) 0 and let y C. Then

(4.5) G-’(s)=s[CB]-’+(T-s)[CB]-’CA(sI-A-BF)-’B[CB]-’
holds on Ca p(A) 0 p(A + BF), where G(s) C(sI-A)-B and

(4.6) F := CB]-’{-CA + TC}.

Proof. The feedback F defined by (4.6) is an A-degenerate operator (Kato [16,
Chap. IV, 6]). Since (A, B) is a-exponentially stabilizable, the spectrum of A in Ca
is pure point spectrum with finite multiplicity (see Jacobson and Nett 14] or Appendix
3). Together with the fact that A generates a Co-semigroup, this implies that A + BF
has pure point spectrum with finite multiplicity in Ca (see Kato [16, Chap. IV, 6]).
So, with the exception of countably many points, we may calculate (sI-A-BF)-for s C. Let s p(A + BF) fq p(A); then

CA(sI A BF)-B CA(sI A)-B + CA(sI A BF)-BF(sI A)-BCA(sI-A)-B
+ CA(sI A BF)-1 B[ CB]-’(-1)CA(sI A)-IB
+ CA(sI A BF)-’ B[ CB]-1 TC(sI A)-’B

{I-(1-)CA(sI-A-BF)-IB[CB]-I}CA(sI-A)-’B
+’)’ CA(sI- A- BF)-’B,

S
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where in the last equality we have used that C(sI A)-IB 1/s(CB + CA(sI- A)-IB).
So

(1-) CA(sI A BF)-IB { I (1-) CA(sI A BF)-IB[CB -1}
x CA(sI-A)-IB

C(s--[c]-= - - C(s--l-[c]-
Using the equality [I Q(s)]- Q(s) [I Q(s)]- I gives

{ }_1CA(sI-A)-’[CB]-1= I- 1- CA(sI-A-BF)-IB[CB]-1 -I.

So

Thus

sG(s) sC(sI A)-IB CB + CA(sI A)-IB

{I-(1-)CA(sI-A-BF)-IB[CB]-I}-1

[CB].

G-l(s) s[ CB]-1 + (T s)[ CB]-1CA(sI A BF)-1 B[ CB]-1. [3

So, the above lemma gives a decomposition similar to (3.1), but we do not know
if H(s) T s)[ CB]-1CA(sI A BF)-1 B[ CB]-1 H_(pp). This result will be given
in Theorem 4.5. First, we will prove that, with the feedback F defined by (4.3),
(sI- A-BF) is invertible in Ca, provided that G(. has no zeros there.

LEMMA 4.4. Suppose that (A, B) is a-exponentially stabilizable and (C, A) is
a-exponentially detectable. If system (4.1) has no zeros in C and T < a, then (s- A-
BF) is invertible on Ca, where F is defined by (4.6).

Proof. From the proof of Lemma 4.3 we know that A + BF has only point spectrum
on Ca. Let A be an eigenvalue of (A+ BF) in Ca. Then there exists an x X, x # 0
such that

(AI A BF)x 0:> (AI A + B[ CB]-1CA)x TB[ CB]-1Cx O.

Premultiplying with C gives ACx- CAx + CAx- yCx O. Hence A Y or Cx O. The
first possibility is excluded by assumption, so suppose that Cx O. Then we have that

X

Thus it is a zero, but this is also excluded. So cr(A + BF)VI Ca . [3

So, if the zeros of the system are in C\Ca, then G-l(s) exists everywhere on Ca.
We may always write G-l(s) as G-l(s)= sD+ H(s), where H(s) has no poles in Ca.
However, this is not enough to ensure that H (H_)pp. The next theorem will give
sufficient conditions for this to hold.

THEOREM 4.5. Suppose that (A, B) is exponentially stabilizable, C, A) is exponen-
tially detectable, system (4.1) has no zeros in C for some a < O, and det (CB) # O. Then
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the transfer matrix G(s) C(sI-A)-IB has the property that G-(s) s[ CB]- + H(s)
with H (H_)pxp, provided that either

(i) c, D(A*2); i= 1,. p, or
(ii) bi 6 D(A), tieD(A*); l, p, or
(iii) bi D(A2); i= 1,. p, or
(iv) A generates an analytic semigroup and bi D(A), 1, , p, or
(v) A generates an analytic semigroup and ci D(A*), i= 1,. , p.

Furthermore,

(4.7) H(s) (T- s)[ CB]-1 CA(sI A- BF)-B[CB]-
with

(4.8) F=[CB]-I{-CA+TC},
where y < O.

Proof Note that if (A, B, C) is exponentially stabilizable and detectable, then it
is also/3-exponentially stabilizable and detectable for some/3 < 0. So, without loss of
generality, we may assume that the system is a-exponentially stabilizable and detectable
and that it has no zeros in Ca for some negative c. Moreover, let 3’ < a. These conditions
ensure that on Ca we have by Lemmas 4.3 and 4.4 that

G-’(s) s[ CB]- + y- s)[ CB]-1 CA(sI A- BF)-lB[ CB]-1.

So we must show that H(s) := (T- s)[ CB]- CA(sI A- BF)-IB[CB]- is analytic
and bounded on Ca.

Assume first that c 6 D(A*); 1, , p. So CA is a bounded operator from X
to NP, and thus F is bounded. Since (A, B) is exponentially stabilizable and since
A+ BF has no eigenvalues in Ca (Lemma 4.4), we have that TBF(t) is exponentially
stable (see Appendix 3, Theorem A.6), and hence 3’[ CB]-1 CA(s A- BF)-IB[ CB]-1

is in (H_)pp. This is, in general, not sufficient to ensure that H (H_)pxp. We can
rewrite the operator sCA(sI- A- BF)-IB as

CAs(sI A BF)-1B

=CA(sI A- BF)(sI A- BF)-B + CA(A+ BF)(sI A- BF)-IB
(4.9) =CAB+CA(A+BF)(s-A-BF)-B
(4.10) -CAB+CA(sI-A-BF)-I(A+BF)B.
From (4.9) we see that H (H_)pp if c D(A*2); i= 1,..., p, and from (4.10) we
see that He (H_)pp if ce D(A*) and b D(A), i= 1,...,p. So we have proved
that conditions (i) and (ii) imply the desired property. Now we will prove that condition
(iii) does the same.

If bi e D(A2), 1, , p, then let us consider a new realization (A,, B,, C,) of
G(s), namely A, A, B, AB, and C, CA-1, where we have assumed that 0 p(A),
but this is not essential. If (A, B, C) is exponentially stabilizable and exponentially
detectable, then (A,, B,, C,) is, also. This follows easily from Theorem A.5 in Appendix
3, the "dual" version of Theorem A.5, and the definitions of A,, B,, and C,. Since
Im B, D(A,) and Im C*, D(A*,), we have by part (ii) that

(4.11) H,,(s)=(T-s)[C.B.]-C.A.(sI-A.-B.F)-B.[C.B]-
is an element of(H_)pxp, where F, := C,B,]-I{-C,A, + TC,}. It is clear that F, FA-1

with F given by (4.8), and hence H H,. So it remains to show that condition (iv)
or (v) is sufficient, also.
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The feedback law F, as defined in (4.8), is an A-degenerate operator. From Zabczyk
[39] it is known that if A generates an analytic semigroup, so does A+ BF, for an
A-degenerate feedback F. So, since any analytic semigroup satisfies the spectrum
determined growth condition, and tr(A + BF) fq Ca , there exists M > 0 such that

M
II(sI-A-BF)-’II<=[s_[, smc..

Thus, if c D(A*); 1," , p, then

On the other hand. if b e D(A). then we can rewrite H(s) as

H(s)=(-s)[CB]-’C(sI-A-ABFA-)-AB[CB]-’; sC..
and we have that

IIH(s)ll=ls. al Ilc[[ [[AB[I [[[CB]-I[[; s6C,

for some suitable constant > 0. Thus in both cases H (HT)pp.
Remark 4.6. Since G(s) and s[CB]- are independent of y, we must have that

H(. is independent of y. In fact, for y > a the zero at y introduced by the term s-y
is cancelled by the pole at y of (s- A-BF)- (see the proof of Lemma 4.4).

Remark 4.7. Retarded systems do not satisfy any of the smoothness conditions
(i)-(v) in Theorem 4.5. However, by Example 3.3, there is a whole class of retarded
systems whose transfer matrices admit a decomposition of the form (3.1). This shows
that the conditions ofTheorem 4.5 are sufficient but not necessary for (3.1) to be satisfied.

5. Internal stability. The stability results in 3 are formulated in input-output
terms. Suppose that the transfer matrix G of a state-space system of the form (4.1)
satisfies condition (3.1) (Theorem 4.5 gives conditions in state-space terms for this to
be true). If we apply Theorem 3.10 or Theorem 3.13 to G, can we expect internal
stability of the closed-loop system? In the linear case (i.e., N in Theorem 3.10 and

in Theorem 3.10 are equal to the identity) the answer is yes, provided that the
state-space realizations of the plant and the controller are both exponentially stabiliz-
able and exponentially detectable. This follows from recent results on the equivalence
of input-output and internal stability for infinite-dimensional systems (eft Jacobson
and Nett [14] and Cuain [5]). In this section we investigate the internal asymptotic
behaviour of the nonlinear feedback systems considered in 3.

LEMMA 5.1. Let T( t) be an exponentially stable, strongly continuous semigroup on
the Banach space X, denote the generator of T(t) by A, let B: P X and C: X P be
bounded linear operators, and suppose that f: n+ xP satisfies (N1) and If(t, x) A[x
for all O, x Pfor some A > O. Moreover, set R( t) CT( t)B andfor to 0 and Xo X
let x( t; to, Xo) denote the mild solution of

i(t)=ax+Sf(t, Cx(t)), tto,
(5.1)

X(to) x0.

If IIRIIA < 1, then (5.1) has a unique, globally defined mild solution and there exist

positive constants M and e such that Ilx(t; to, Xo)ll Me-’-’[Xoll for all xoX and
ttoO.
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Remark 5.2. The assumptions made in Lemma 5.1 ensure that (5.1) admits a

unique mild solution that can be continued to the right as long as it remains bounded
(see Pazy [32]).

The proof of Lemma 5.1 is similar to the proof of Theorem 3.2 in Logemann [21]
and is therefore omitted.

Now let us turn our attention to dynamical nonlinearities.
LEMMA 5.3. Let X, T(t), A, B, C, and R(t) be as in Lemma 5.1. Suppose that

F: (LLq(+))p - (LLq(+))p (q 1, 2, 3," q 0o) is causal, unbiased, and locally
Lipschitz continuous. Then the following statements hold. (i) The equation

(5.2) x(t)= T(t)Xo+ T(t-’)BF(Cx(’))(’) dr

admits for all Xo X a unique globally defined continuous solution x(., Xo): [0,)X,
which will be called the mild solution of
(5.3) (t) Ax(t)+ BF(Cx(. ))(t), x(0) x0;

and (ii) suppose that F additionally satisfies the condition

for all u (Lq(R+))p, where A1 and A2 are nonnegative constants; then the origin will be
globally attractive (i.e., lim,_ x(t; Xo) 0 for all Xo X) if
(5.4) IIRIIA < 1.

Proof. (i) It is clear that the mapping u(. - F(Cu(. )) is causal, unbiased, and
locally Lipschitz continuous. Hence it follows from Corollary 4.1.2 in Willems [38]
that (5.2) has a unique solution x in LLq(R+, X). Since the right-hand side of (5.2)
is continuous in t, we see that x(t) is continuous as well.

(ii) Consider the equation

y(= cr(xo+C r(-,(y(.(,

=cr(Xo+ (-(y(.(,.

If x(t):= x(t; Xo) is the solution of (5.2), then it is clear that Cx(t) is a solution
of (5.5). Using (5.4) and the fact that CT(. )Xo6 (Lq(+))P, itfollows from the small-gain
theorem that Cx(. ) (Lq(+))p and hence z(. ):= BF(Cx(. )) Lq(+, X). It remains
to show that w(t) := o T(t -)z(-) dr tends to zero as . By the exponential stability
of T(t), there exist positive constants N and 3’ such that T(t)ll N e-’ for all 0.

Suppose for a moment that q 1, and define q’ by 1/q’+ 1/q 1:

0 t/2

N e-’llz(t-)l[ dr+ e-’(’-)llz()ll d
t/2 t/2

N e-q’v" dr Ilz(t- r)l q dr
t/2 t/2

t )l/q’(t+ e-q’vt-) dr IIz( )ll dr
t/2 /2
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We obtain

w(t)ll <- N e-q’w d- IlZllq 4-[[ e-’-llq, Ilz(-)ll q dr
t/2 t/2

Now lim,_ ,/2 e-q’r dr=0 and lim,_ ,/2 IIz(’)]l q d’=0 and thus lim,_ Ilw(t)ll =0.
A similar argument holds for the case where q 1. [3

Remark 5.4. If in Lemma 5.3 (ii) A2 =0, then it is not difficult to see that the
origin of (5.2) is globally asymptotically stable; i.e., lim,_ x(t; Xo)=0 for all Xo X,
and for all e > 0 there exists 3 > 0 such that IIx011-< 6 implies IIx(t; Xo)ll--< e for all _>- 0.

In the following, let the plant be given by

(5.6) :(t) Ax(t)4- Bu(t), X(to)= Xo, y(t) Cx(t),

where the linear operator A generates a strongly continuous semigroup T(t) on a
Banach space X, B: [P --> X, C: X --> EP are bounded linear operators, (A, B) is exponen-
tially stabilizable, and (C, A) is exponentially detectable. A minimal realization of the
controller Kk defined in (3.3) is given by

(5.7) 2(t)= diag (kjcj)v(t), Z(to)=Zo, w(t)=Fz(t)+F diag (kj+cj)v(t).
l<=j-p ljp

Let be an operator mapping (LLq(+))p into itself. We will interpret as a
measurement nonlinearity in the feedback interconnection of (5.6) and (5.7) as follows:

(5.8) u=w, v =-(y).

THEOREM 5.5. Suppose that G(s):=C(sI-A)-B satisfies condition (3.1) (f
Theorem 4.5), and define xc(t) := (x(t), z(t))’. The following statements hold. (i) If
in (5.8) is given by N, where p satisfies (N1)-(N3), A1 < 1, A2=0, and IIr-  r D)ll
1/2(1 A 1) then for all sufficiently large gains k, j 1, , p, there exist positive constants
M and e (dependent on k) such that IIx (t)ll for all xc(to)6 X P,
>- to > O, i.e., the nonlinearfeedback system given by (5.6)-(5.8) is globally exponentially

stable; and (ii) if in (5.8) satisfies (N4)-(N7), q < c, A < 1, and IIr-  r D)II <
1/2(1-A), then for all sufficiently large k, j= 1,..., p, the feedback system (5.6)-(5.8)
is internally stable in the sense that the origin is globally attractive; i.e., lim,_ x(t)= 0

for all x(O) X P.
Proof (i) Set Bk := diagl=p (kjc) and Dk := F diagl=p (k + c). A routine

calculation then shows that

(5.9)

where

(t) Ax( t) Bcql (t, Ccx( t)),

Ac=Ac(k): B=B(k):=
B /

C:=(C 0).
__BkC

We know from Theorem 3.5(i) that [G, Kk] is H_-stable for all sufficiently large kj,
j= 1,...,p, and thus, by a result of Jacobson and Nett [14] (cf. also Curtain [5]),
A(k) generates an exponentially stable semigroup Tc,k(t on X x[p for all large
enough kj, j=l,...,p. It follows from the condition IIF- (F-D)II<k(1-A ) and
Lemma 3.8(ii) that for all sufficiently large kj (j= 1,... ,p) 1o (Here we
have used that limk_ II/k*lll 1; cf. Logemann and Owens [22].) Finally, realize that
/k (t) CT,k (t) Bc (k), and apply Lemma 5.1 to (5.9).

(ii) Using the same arguments as in (i) and applying Lemma 5.3 instead of Lemma
5.1, we can prove the second claim. [3
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Remark 5.6. It is well known that the retarded system of Example 3.3 admits an
abstract state-space realization of the form (5.6), where the state space X is given by
M2(-h, 0; E") := " x L2(-h, 0; "). Using the notation of Example 3.3, let us assume
that

for all s Co.

In particular, it follows from (5.10) that

rk(sI -(s) B)= n

and

rk(sI-(s))C
=n

for all s Co

for all s Co.

Hence the abstract state-space realization of the retarded system is exponentially
stabilizable and exponentially detectable (see, e.g., Salamon [36]), and using Example
3.3 we see that under the extra assumption det (CB) # O, Theorem 5.5 applies to retarded
systems.

Appendix 1.

Proof of Proposition 3.1. "Only if" Since G- admits a decomposition of form
(3.1) with nG(n)pp for some y<0 we obtain

s(sa(s)- D-1) s D/- H(s) D-1

s

D+1H(s) s I- D+-H(s)
s s

O/- H(s) H(s)D-1,

which shows that sG(s)-D-= O(1/s) as Isloo in ;o, where (% 0) is arbitrary.
To show that G has no zeros in Co, pick holomorphic matrices N, D (C)PP such
that N and D are right coprime and G ND-1. Then, trivially, G-= DN-1 and by
the right coprimeness of D and N it follows from the analyticity of G-1 in C, that
det (N) has no zeros in C Co.

"If" Setting F(s) := (s + y)G(s), y > Jill, it follows from the assumption that

(A.1)

and, in particular,

(A.2)

F(s)-D-’= O(s-’) as [s[-->oo in Co

lim F(s)= D-.
Hence there exists p >0 such that F-(s) is bounded on [s[> p, sCo. Moreover,
F-(s)=(1/(s+y))G-(s) and since G has no zeros in o, it follows that F-l(s) is
bounded on Is[ _-< p, s Co. Therefore F- is a bounded holomorphic function on Co,
i.e. F-1 (-IehPPo Now realize that

(A.3) /(s) := (s + y)(F-(s) D)

(A.4) (s + 7)F-(s)(D-1- F(s))D.
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It follows from (A.3) that H is holomorphic on C and, furthermore,, we obtain from
(A.1), (A.2), and (A.4), using the boundedness of F- on C, that H is bounded on

C hence H (H)pp. Finally, we obtain

G-I(s)--(s+ T)F-I(s)--(s+ T)D+ IY-I(s) sD+ H(s),

where H(s) := yD+ H(s).
Proof of Corollary 3.2. Since A(s) is bounded on C for some y <0 there exists

p > 0 such that

O(s) =1 C A(s) B CB +- C A(s) B
S j=0 S S j---1 S

for all s e C v such that [s[ _-> p. Hence

(A.5) sG(s)-CB=O() as [s[--> o in C.

Moreover, since det (CB)# 0, there exists an invertible matrix Q C such that

Partition the matrix Q-A(.)Q as follows:

Q-’A(.)Q=
A2( A22(

where A(. ), A(. ), A2(" ), and A22 are matrices with entries in H_ of size p x p,
p x (n -p), (n -p) x p, (n -p) x (n -p), respectively. As in Logemann [20], it follows
that

(A.6) X(s)=(-1)p det (CB) det (sI-Az2(s)).

Now A2 is holomorphic and bounded on Ca for some a < 0, and therefore det (sI-
A22(s)) has at most finitely many zeros in C for any /z> a. Since, by assumption
X(s) 0 for all s Co, we obtain, using (A.6),

(A.7) X(s) # 0 for all s C
for a negative /3 of sufficiently small modulus (without loss of generality, we may
assume that y<fl). Let G= ND- be a right coprime factorization over gE(C) and
use a well-known formula for the determinant of a four-block matrix to obtain

(A.8)
X(s) det (sI A(s)) det (G(s))

det(sI-A(s))
det (N(s)).

det (D(s))

It is known that det (D(s)) divides det (sI-A(s)) (in Yg(Cr)) (cf. Logemann [18]),
and hence, by (A.8), we have that det (N) divides X (in Yg(Cv)). Thus, by (A.7),

(A.9) det (N(s)) # 0 for all s C.
The claim now follows from (A.5), (A.9), and Proposition 3.1. ]

Appendix 2.
Proof of Lemrna 3.8. An elementary computation shows that

(a. 10) Lk Lk* {[I- Jk(I F-1D)+ Pk]-1- I}L*k
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where

(s)Jk s :=
<=
ag s + kj

and

l" s := d2. (s+kj)(s+c)
F-’H(s)+ ldiag<=<=p (c)(I V-’D)

Note that we can factorize Pk as Pk JkQ, where

Q(s) := j=l,...,pdiag/\| s+lc]\/{F-1H(s)+ diag (cj)(I-F-1D)}.

Using a result by Mossaheb [27] (cf. also Logemann [18]), we see that
(LI(N+))pp for all sufficiently small e > 0. Moreover, we have

lim [[/k ]]1 lim k * O [[1 O,(A.11)
k-oo k-co

which can be derived using the equation -/k 6oI-diagl<_<=p (k9 e-) and Lemma A.1.
In the case where F D, we obtain from (A.10), by taking inverse Laplace transforms,

(A.12) Lk- k* {(601+ kk)-I- 6ol}*

It follows from (A.11) that the inverse of 6o1+ [’k exists (in the Banach algebra Mpp)
if minl<___<_p (k./) is sufficiently large. Hence (A.12) makes sense for large kj,j 1, , p.
Part (i) of the lemma now follows from (A.12), (A.11), and the fact that

(a.13) lim IIL *lll- 1
k-->

(cf. Logemann and Owens [22] for (A.13)).
To prove part (ii), set Mk:=Jk(I-F-1D) and realize that IlhT/k[]_--<

IILIIIII-F-’DII_<-2<I. Taking inverse Laplace transforms, using (A.11), and
employing the fact that Mpp is a Banach algebra, it follows from (A.10) that

Lk-- L*k {[6OI--(lk-- k)]-l-- 60I)* ’ ,2 (llk-- k)" * L’
=1

for all sufficiently large kj, j 1,..., p. Moreover,

)[ILk Lk]] 2=1 (2e + [k 1) Lkff:[I

for all sufficiently large k, j 1,..., p. We obtain, by using (A.13) and (A.11),

2E
lim sup 11Lk L* II, =<

k-oo 1-2e’

which is (ii). ]

LEMMA A.1. Set ek(t): ke-k’O(t), t>-O, k>-O. Then limk_, Ile*f-fll=o for
allf6L’(ff+).

Remark A.2. Note that ek is not a so-called approximate identity or Dirac
sequence, because the support of ek does not shrink to {0} as k-* .
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(A.14)

Proof of Lemma A.1. In the following set f(t) := 0 for all < 0

O
ek(t s)f(s) ds-f(t) dt

ek(’)(f( z) f( t)) dr dt

<- ek(’) If(t--r)--f(t)l dt dr.

It is well known that for a given e > 0 there exists > 0 such that J’o If( r) -f(t)[ dt
for all r[0, 6]. Hence it follows from (A.14) that

fo (foIlek.f -fll,--< ek(’) If(t-O-f(t)l at} d/2llflll ek(’)

--< e / 21lflli e---< 2e

for all sufficiently large k.

Appendix 3. In this appendix we will present the most important results on
stabilizability of infinite-dimensional systems. We use the same notation as in 4.

DEFINITION A.3. System (A, B) is a-exponentially stabilizable if there exists a
bounded linear operator F L(X, P) such that the semigroup TnF(t) generated by
A + BF satisfies TBF(t)[I -< M em for some M _-> 1 and/3 < a. System (A, B) is exponen-
tially stabiiizable if it is 0-exponentially stabilizable. System (C, A) is a-exponentially
detectable if there exists a bounded linear operator K L(p, X) such that the semi-
group Tl<c(t) generated by A+ KC satisfies T c(t)ll <= Me for some M =>1 and
/3 < a. System (C, A) is exponentially detectable if it is 0-exponentially detectable.

LEMMA A.4. Suppose that the underlying space X is reflexive. Then System (A, B)
is a-exponentially stabilizable if and only if (B*, A*) is a-exponentially detectable.

We now have the following important theorem.
THEOREM A.5. The following conditions are equivalent. (i) System (A, B) is

exponentially stabilizable; and (ii) the state space can be decomposed in two semigroup-
invariant subspaces X Xs O)Xu, where X. and Xu satisfy
--II II-<- M e M > 1, /3 < a,
--dim (Xu) < oo,
--cr(A Ix,) or(A)f’) Crp(A) fq,
--The finite-dimensional system (A Ix., Px.B) is controllable, where Px. is the projection

on X, along Xs.
For the proof, see Desch and Schappacher [6], Nefedov and Sholokhovich [29],

Jacobson and Nett [14], or Curtain [5].
It is easy to show that Xu is the span of all unstable (generalized) eigenvectors

of A.
The following theorem is used frequently in 4.
THEOREM A.6. Assume that (A, B) is a-exponentially stabilizable and let Q L(X)

be compact. Then A + Q generates an a-exponentially stable semigroup if and only if
Crp(A + Q) C, .

Proof It follows from Theorem A.5 that the essential exponential growth bound
toe(T(" )) of T(t) (cf., e.g., Nagel [28]) satisfies toe(T(" ))< a. Since Q is compact, we
have that toe(To(" )) toe(T(" )) < a. Let to(To(. )) denote the exponential growth
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bound of the semigroup To(t). We must prove that to(To(. ))< a. Let us assume the
contrary. Then to(To(. ))> toe(To(. )) and we can show, as in [28, p. 74], that there
exists h trp (A + Q) satisfying Re (A) to To(.)) >- a. This leads to a contradiction
because trp (A + Q) f’) C by assumption.
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