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Abstract: 1t is the purpose of this note to show that a first-order
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high-frequency gain. Knowledge of the sign of the high-
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1. Introduction

Generalizing a result by Nussbaum [12] Wil-
lems and Byrnes [15] constructed a sign-switching
high-gain adaptive controller which globally
stabilizes any finite-dimensional single-input
single-output minimum-phase system with invert-
ible high-frequency gain. In recent years it was
shown by several authors (see Dahleh [3], Dahleh
and Hopkins [4], Kobayashi [7], Logemann [8] and
Logemann and Owens [9]) that the adaptive al-
gorithm presented in [15] stabilizes certain classes
of infinite-dimensional systems as well. In [3], [4]
and [8] the main result of [15] was extended to
various classes of retarded systems. Generaliza-
tions to distributed parameter systems described
by analytic semigroups were given in [7], while an
input-output theory of high-gain adaptive stabili-
zation of systems described by non-rational trans-
fer functions was developed in [9].

In the following we shall consider systems of
the form

X=Ax+ Bu, y=Cx, (1.1)

where A4 generates a strongly continuous semi-
group S(¢) on a Banach space X and B:R —» X
and C: X — R are bounded linear operators. Sup-
pose that the system (1.1) has no zeros in Re(s) > a
for some a <0 and CB # (. Under these condi-
tions it was shown by Kobayashi [7] that the
adaptive control law given in [15] will globally
stabilize the system (1.1) provided that
(i) X is a Hilbert space,

(i) A is selfadjoint and has a complete ortho-
normal system of eigenvectors,

(ii1) S(2) is analytic,

(iv) im B and im C* are contained in the
domain of A.

In this paper we will answer the question posed
in [7] whether the conditions (iii) and (iv) are
really necessary for adaptive stabilization. We will
show that (i)—(iv) can be relaxed considerably. In
particular it will turn out that

e (i)—(iii) can be dropped,

e (iv) can be relaxed if (iii) holds.

The paper is organized as follows. Section 2 is
devoted to preliminaries concerning the class of
systems under consideration. Moreover it contains
some technical lemmas which will be used in
Section 3 in order to prove the main results of this
paper. In the Appendix we prove the existence of
a well-defined transfer function for a class of
infinite-dimensional systems with unbounded ob-
servation operator. This result, which is needed in
Section 3, might be of some independent interest.

Notation

For a € R define

C,={s€C|Re(s)>a}.
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Let H; denote the algebra of functions which
are analytic and bounded on C .

Let X and Y be normed spaces. The vector
space of all linear bounded operators from X to Y
1s denoted by £ (X, Y).

Let A be a linear operator. Then we define
D(A) = domain of 4, a(A):= spectrum of 4 and
p(A) = resolvent set of A4.

2. Preliminaries and system description

In the following we shall consider systems of
the form
x(t) =Ax(t) + Bu(t),
y(t)=Cx(1), t=0,

x(0) = x,, (2.1a)

(2.1b)

where A generates a strongly continuous semi-
group S(¢) on a real Banach space X, B&
Z[R, X) and C €Z(X, R). Sometimes it will be
necessary to consider the complexifications of X,
A, B, and C. For simplicity these will be denoted
by X, 4, B, and C as well.

The notion of exponential stabilizability will
play an important role in the sequel.

2.1. Definition. The system (2.1) (or the pair
(A, B)) is called exponentially stabilizable if there
exists K €.2(X, R) such that the strongly con-
tinuous semigroup generated by 4 + BK is ex-
ponentially stable.

2.2. Lemma. Suppose that the pair (A, B) is ex-
ponentially stabilizable and 6(A) C C\ C, for some
a < 0. Then the strongly continuous semigroup S(t)
generated by A will be exponentially stable.

The proof of the above lemma follows easily
from Nefedov and Sholokhovich [11] or Jacobson
and Nett [5] (cf. also Curtain [2]).

The following definition will make precise what
we mean by a zero of the system (2.1).

2.3. Definition. A number A € R is called a zero
of the system (2.1) if the kernel of the operator

(}\I—A B

: O):D(A)eBC—»XeBC

1s non-trivial.

24. Remark. Let A € C be a zero of the system
(2.1) and suppose that A € p( A). Then it is easy to
show that A is a zero of the transfer function

G(s)=C(sI—A4) 'B
of (2.1).

Let us introduce the following assumptions

(Al) CB #0.

(A2) The system (2.1) has no zeros in C, for
some a < 0.

(A3) The system (2.1) is exponentially stabiliz-
able.

(Ad) im BC D(A).

(AS)im C* C D(A*).

(A6) im B C D(A?).

(A7) im C* C D(A*?).

The next lemma establishes the existence of a
feedback operator which shifts the spectrum of A
into the left half plane.

2.5. Lemma. Ler (A1)-(A3) be satisfied and define
E,=(CB) '(—C4 +C), (2.2)
where y < 0. Then there exists a € (v, 0) such that

o(A+BF,)cC\C,.

Proof. By (A3) there exists 8 <0 such that the
spectrum of A4 in C, consists of isolated eigenval-
ues with finite multiplicities (see Jacobson and
Nett [5] or Curtain [2]). Moreover we have

Conp(A+BE)+8

by Appendix I. Since BF, is an A-degenerate
operator it follows from Theorem 6.2 and Theo-
rem 6.5 in Chapter IV of Kato’s book [6] that the
spectrum of A4 + BF, in Cp consists of at most
countably many eigenvalues with finite multiplici-
ties. By (A2) there exists a number a < 0 such that
the system (2.1) has no zeros in C,. W.lo.g. we
may assume max(f, y) < a. Suppose that there
exists A in (A4 + BF,)NC,. Then A is an eigen-
value of A4 + BF, and there exists x€ X, x#0
such that

(M —A—-BF,)x=0.
Hence

(A —A4+B(CB) 'CA)x~yB(CB) 'Cx=0.
(2.3)
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Applying C to both sides of the above equation
gives (A —y)Cx =0. Since y <a <Re(A) it fol-
lows that Cx = 0. We obtain using (2.3),

(e ollem™rens) =)

Thus A is a zero of (2.1) which is not possible by
assumption. Hence we have shown

o(A+BE)NC,=0.

2.6. Lemma. Let F, be defined as in (2.2). Suppose
that (Al) holds and that A+ BF, generates a
strongly continuous semigroup S,(t). Under these
conditions we have

S,(t)ker CCker C Vt=0.
Proof. Let x € ker C. For s € p(A + BF,) we have
x=(sI—A—BF)(sI—4~-BF) 'x
= [s1-4-B(CB) (- C4 ++0)]
-(sI—A—-BF,) 'x.

Applying C to both sides of the above equation
we obtain

0=(sC—CA+CA—yC)(sI—A—BF,) 'x
= (s—v)C(sI—A—-BE) 'x.
Hence we have shown for all s€p(4 + BF),
s # v, that
(sI—A—BFy)_lkerCCkerC.

The claim now follows from Pazy [13], p. 121.

2.7. Remark. The feedback law F, was introduced
by Curtain in [1], Section 8 in the context of
disturbance decoupling for infinite-dimensional
systems (cf. also Zwart [17]).

3. Main results
Let us recall the definition of a Nussbaum gain.

3.1. Definition. A measurable locally bounded
function N:R — R is called a Nussbaum gain if
for some t, € R,

1
1=t

sup
t>1,

ft'rN('r) dr=+ow
to

and

inf
t>1tg -1

ftTN(T) dr= —o0.
‘o

3.2. Example. A continuously differentiable Nuss-
baum gain is given by

N(1) =cos(3nr) exp(7?),
cf. Nussbaum [12] or Logemann and Owens [9].

In this section we shall apply the following
control law to the system (2.1):

u(t) =N(k()) k(1) y(2),

k(1) =y*(1), k(0)=k ER,

where N is a Nussbaum gain. The control law
(3.1) has been introduced by Willems and Byrnes

[15] for finite-dimensional systems.
Defining

A;:D(A)XR - XXR,
[6) =17
k o/
FiXXR > XXR,
x N(k)kBCx
- 2
k (Cx)
and

(3.1)

x40=(“”y

k(2)

we can write the closed-loop system as follows:
x (1) =Ax (1) +f(x.(2)), =0, (3.2a)

X
xc(0)=(k0) € XXR. (3.2b)
0
A continuously differentiable D( A )-valued func-
tion which satisfies (3.2) is called a classical solu-
tion of (3.2). A mild solution of (3.2) is a continu-
ous function satisfying

xe(£) = S.()x(0) + [[S.(¢=7)f(xe(r)) dr,

where S_(¢) denotes the strongly continuous semi-
group generated by A..

The following lemma shows that (3.2) is well-
posed.
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3.3. Lemma. (i) If N satisfies a local Lipschitz
condition then for all x (0) € X X R, (3.2) has a
unique mild solution which can be continued to the
right as long as it remains bounded.

(1) If N is continuously differentiable then for all
x.(0) € D(A) X R, (3.2) has a unique classical solu-
tion which can be continued to the right as long as it
remains bounded.

Proof. (i) It is easy to show that f satisfies a local
Lipschitz condition, i.e. for any /> 0 there exists
L > 0 such that

/() =f( )N <Ljlz—2"|

for all z, z’ € X X R satisfying || z]|, ||z'| </,
where the norm ||-|] on XXR is defined by
L-11=1l"lix+ || The claim follows now from

Segal [14], Theorem 1 (cf. also Pazy [13], pp. 185).

(ii) It is routine to show that f is continuously
Fréchet-differentiable. Moreover f satisfies a local
Lipschitz condition (notice that this does not fol-
low necessarily from the C'-property in the in-
finite-dimensional case). Application of Theorem
1 and Lemma 3.1 in Segal [14] (cf. also Martin
[10], pp. 347) proves the claim.

We are now in the position to state our main
results.

3.4. Theorem. Suppose that assumptions (Al)-(AS)
are satisfied and that N is a continuously differentia-
ble Nussbaum gain. The following statements hold
true.

(1) Forall (xq, ko) € D(A) X R the closed-loop
system given by (2.1) and (3.1) has a unique glob-
ally defined classical solution (x(t), k(t)) with the
following properties:

lim k(t) exists and is finite, (3.3)
t— o0
x(-)€L*0, 0; X)N L0, w0; X), (3.4)
lim x(¢) =0. (3.5)
11—

(i) For all (x4, k) € XXR the closed-loop
system given by (2.1) and (3.1) has a unique glob-
ally defined mild solution (x(t), k(t)) satisfying
(3.3)-(3.5).

Proof. (i) Define the linear bounded operator
P, X— X by

P,x=B(CB) 'Cx.

Then P, is a projection and im P, =im B. More-
over set P,:=]— P.. It is obvious that im P, =
ker C and X=1im B ® ker C. Let (x(¢), k(t)) de-
note the classical solution of the feedback system
given by (2.1) and (3.1) with initial value (x,, k)
€ D(A) X R and let [0, ¢;) denote its maximal
interval of existence. Realizing that

(A + BF,)(D(A) Nker C) Cker C,
im P, C D(A), P,(D(A))c D(A)
and
P\AP,x = —BF,P,x Vx€D(4),
we obtain from (2.1),
Px(t)=P,Ax(t) + Bu(1)

=P AP x(t) — BF,P,x(t) + Bu(t)
and
P,x(t)=P,(A+ BF,)x(1)

= (A + BF,)P,x(1) + P,APx(1).

Noticing that P;x(z)= B(CB) 'y(¢) and setting
z(t) = P,x(1) it follows

B(CB) 'y(1)=B(CB) 'CAB(CB) 'y(t)
+ B(u(t) — F,z(1)),
#(t)=(A+BFE)z(1) + P,AB(CB) 'y(1).

We conclude that the initial value problem given
by (2.1) and (3.1) can be written as

y(t) = CBuv,(t), y(0)=Cxy, (3.6)
#(t)=(A4+ BE)z(t)
+ P,AB(CB) 'v,(1). z(0)=P,x,.

(3.7a)
w(t) =F,z(t) — (CB) "'CAB(CB) 'vy(1),

(3.7b)
vi(1) =u(t) —w(t), v(1)=y(1). (3.8)
k(1) =y*(1), k(0) =k, (3.92)
u(2) =N(k(£))k(r)y(2). (3.9b)

Hence we have shown that (x(2), k(t)) solves the
initial value problem given by (2.1) and (3.1)
(where x, € D(A)) on [0, ¢,) if and only if

x(1)=z(1) + B(CB) 'y(1), (3.10)
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where (z(?), y(2), k(1)) is a solution of the initial
value problem defined by (3.6)-(3.9) on [0, #,).

We obtain from (A4) and (A5) that P,AB
(CB)™}, F, and (CB)™! CAB(CB)™ ') are bound-
ed linear operators. Hence it follows in particular
that A+ BF, generates a strongly continuous
semigroup which will be denoted by S, (#). Using
Lemma 2.6 we obtain that S (¢) is a strongly
continuous semigroup on ker C. Therefore (3.7) is
a well-defined semigroup system on ker C. Clearly,
by (A3), the pair (4 + BF,, B) is exponentially
stabilizable. Applying Lemma 2.2 and Lemma 2.5
we see that S (¢) is exponentially stable. As a
consequence the transfer function of (3.7) is in
HZ for some a<0. It now follows from Loge-
mann and Owens [9] that the pair (y(¢), k(¢)) is
bounded on [0, 7,) which implies via (3.7) and
(3.10) that (x(t), k(¢)) is bounded on [0, ¢y).
Using Lemma 3.3(ii)) we obtain ¢, = oo, ie. the
closed-loop system given by (2.1) and (3.1) has a
unique globally defined classical solution. Finally
it follows again from Logemann and Owens [9]
that (3.3)-(3.5) hold with x replaced by y, which
proves the claim because of (3.10) and the ex-
ponential stability of (3.7).

(i) It follows as in the proof of (i) that
(y(t), k(1)) is bounded on [0, ¢,). Hence, by the
exponential stability of (3.7) and Lemma 3.3(i) we
have that the mild solution (z(2), y(t), k(1)) of
the initial value problem (3.6)-(3.9) is globally
defined. Moreover as in the proof of (i) we con-
clude that (3.3)-(3.5) hold true with x replaced by
y. In order to prove the claim it is sufficient to
show that

(z(t) + B(CB) 'y(1), k(1))

is the mild solution of the initial value problem
given by (2.1) and (3.1). We have already shown in
the proof of (i) that this is true if x, € D(A).
Therefore it remains true in the general case (i.e.
x5 € X), since D(A) is dense in X and mild
solutions depend continuously on their initial val-
ues (cf. Segal [14], Corollary 1.5).

3.5. Remark. (i) Notice that in the proof of Theo-
rem 3.4 we have decomposed the original plant
(2.1) into a feedback system consisting of an in-
tegrator in the forward loop and an (exponen-
tially) stable system in the feedback loop (see
(3.6)-(3.8)). Adaptive stabilization of systems ad-

mitting such a decomposition has been investi-
gated by Logemann and Owens [9] using an in-
put—output approach.

(i) Kobayashi [7] proved a result similar to
Theorem 3.4. However he had to assume that X is
a Hilbert space and that A4 is a selfadjoint oper-
ator on X having complete orthonormal system of
eigenvectors and generating an analytic semi-
group. In particular Theorem 3.4 gives an affirma-
tive answer to the question posed in [7] whether
the assumption on the analyticity of the semi-
group can be relaxed.

3.6. Corollary. Suppose that assumptions (Al)-(A3)
and (Ab6) are satisfied and that N is a continuously
differentiable Nussbaum gain. Under these condi-
tions statement (1) of Theorem 3.4 holds true.

Proof. Let A € p(4) and define a new state-space
system (A4, B, C)by A=A, B==(AI— A)B and
C:=C(AI— A)™'. Notice that the transfer func-
tions of (A4, B, C) and (/f, B, C~') are the same. It
is clear that 4, B and C satisfy (A1), (A2), (Ad)
and (AS). Moreover it follows from Jacobson and
Nett [5] or Curtain [2] via (A3) that (A, B) is
exponentially stabilizable. Let x, € D(A) and de-
note the mild solution of

2(t) = Ax(¢) + Bu(r), x(0)=(A—A)x,,

y(1) =Cx(1),
u(r) = N(k(2)) k(1) y(2),
k(t)=y*(1), k(0) =k,

by (£(1), k(1)). Tt follows from Theorem 3.4(ii)
that (%(2), k(¢t)) is globally defined and satisfies
(3.3)-(3.5) with x and k replaced by % and k.
Finally notice that the pair (x(¢), k(1)) defined by

x(t)=(A—A4)"'%(t) and k(1)=Fk(r)

is a classical solution of the initial value problem
given by (2.1) and (3.1).

3.7. Corollary. Suppose that the assumptions (Al)—
(A3) and (A7) are satisfied and that N is a continu-
ously differentiable Nussbaum gain. Under these
conditions the statements (i) and (i) of Theorem
3.4 hold true.

Proof. Let A € p(4) and define A=A, B=(\I
— A)"'B and C:= C(AI — A). As in the proof of
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chrollarz 3.6 we have that the system given by
(A, B, C) satisfies (A1)-(A5). Let x,€ X and
denote the classical solution of

%(t) =Ax(t) + Bu(t), x(0)=(A—A) 'x,,

(3.11a)
(1) = Cx(1), (3.11b)
u(t) =N(k(1))k(e)y(2), (3.11c¢)
k(t)=y*(1), k(0)=k,, (3.11d)

by (%(1), k(t)). By Theorem 3.4(i), (X(¢), k(1)) is
globally defined and satisfies (3.3)-(3.5) with x
and k replaced by % and k. Notice that the pair
(x(t), k(1)) defined by

x(t)=(A—A)%(t) and k(1r)=k(1)

is a mild solution of the initial value problem
given by (2.1) and (3.1). It will be a solution in the
classical sense if x, € D(A). We have

2(1)=S(1)%, + f’s(z—T)Ba(T) dr,  (3.12)

where %,:= (A — A)"'x, and
(1) =N(k(t))k(t)Cz(2).

Since the pair (A, B)is exponentially stabilizable,
there exist closed subspaces X, and X, of X such
that

- X=X X, X, is finite-dimensional and
X,C D(A4) = D(A);

— the projections P,: X - X, and P,: X - X,
commute with S(¢) and 4 = 4;

— the strongly continuous semigroup S,(¢):=
S(#)|x, on X, is exponentially stable.
(See Jacobson and Nett [5] or Curtain [2].)

Setting

2.(1)=S.(1)P.xo+ fo'ss(z —7)P,Bii(7) dr
and
2,(1) = S,(t)P,%, + fo'su(z — 7)P,Ba(r) dr,

where S,(7) = S(7) | x, we obtain from (3.12),
(1) =z,(t) + (A= A) " 'z,(2).
Since %, z, € L*(0, o0; X) N L0, co; X) and

lim £(¢) = lim z,(z) =0,
1> o0 {00

the same is true for z,(7). Realizing that (AJ -
A)ly, is a bounded operator (X,C D(A) is
finite-dimensional) it follows from

x(t)= (A -A)F(t)=z,(1) + (M= A) |y 2,(1)
that x € L*(0, oo; X) N L™(0, o0; X) and
lim x(z)=0.

t— 0

Hence the pair (x (1), k(¢)) satisfies (3.3)-(3.5).

In Theorem 3.4 it was required that (A4) and
(A5) hold. The next two results show that either
(A4) or (AS) become superfluous provided that
the semigroup S(¢) generated by A4 is analytic.

3.8. Theorem. If (Al1)-(A4) are satisfied, N is a
continuously differentiable Nussbaum gain and the
semigroup S(t) generated by A is analytic, then
statement (1) of Theorem 3.4 holds true.

Proof. As in the proof of Theorem 3.4 we can
show that the closed-loop system given by (2.1)
and (3.1) is equivalent to the system (3.6)—(3.9).
Since BF, is an A-degenerate operator it follows
from Zabczyk [16] that 4 + BF, generates an ana-
lytic semigroup S,(z). Now analytic semigroups
satisfy the spectrum determined growth assump-
tion and hence §,(¢) is exponentially stable by
Lemma 2.5. The stability result follows from [9] as
in the proof of Theorem 3.4 provided that

(1) the transfer function H of (3.7) belongs to
HY for some a <0, and

(i) the function f(r):= FYSZ(t)sz0 produced
by the initial condition is in L“(0, o).

Notice that (i) and (ii) do not follow triviaily
because F, is unbounded. Define

Ri=A+BF,, D= —(CB) 'CAB(CB)”'
and
E=P,AB(CB) ™"

It follows from Appendix II that the transfer
function H of (3.7) is given by

H(s)=F(sI-R) 'E+D.
Using the fact that 0 € p(R) we obtain
H(s)=FR 'R(sI-R) 'E+D
=FR (s(sI—R) '—I)E+D
=sF,R"'(sI-R) 'E— F,R"'E+D.
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Now realizing that F,R™" is a bounded operator
(by the closed-graph theorem) and using that R
generates an exponentially stable analytic semi-
group it follows that there exist $ <0 and M >0
such that H is holomorphic on C, and

-1 M
I(sI-R) || =81 for all s € Cg.
Hence H € H? for all a > S8, which shows that (i)
holds true.

In order to prove (ii), write

f(1) = F,R7'RS, (1) Pyxo = F,R™'S, (1) RP;x,

where we have used that P,x, € D(A) which is
true because x, € D(A) and im P, C D(A).

3.9. Corollary. If (Al)-(A3) and (AS) are satis-
fied, N is a continuously differentiable Nussbaum
gain and the semigroup generated by A is analytic
then the statements (i) and (i) of Theorem 3.4
hold.

Proof. Define 4, B and C as in the proof of
Corollary 3.7 and verify that the system given by
(4, B, C) fulfils (A1)-(A4). Application of Theo-
rem 3.8 gives that for x;€ X the solution
(%(1), k(1)) of the initial value problem (3.11)
satisfies (3.3)-(3.5) with x and k replaced by *
and k. Now proceed as in the proof of Corollary
3.7.

3.10. Remark. Notice that Theorem 3.8 and
Corollary 3.9 improve the result by Kobayashi [7].
They give an affirmative answer to the question
raised in [7] whether the assumption that both
(A4) and (A5) are satisfied can be relaxed.

4. Appendices

Appendix 1

In the proof of Lemma 2.5 we have made use of
the following result:

4.1. Lemma. If the operator F, is given by (2.2)
then

CoNp(A+BF)+4.

Proof. Set G, (s):=F,(sI —A)™'B. Since A4 gener-
ates a strongly continuous semigroup there exists
a €[0, o) such that C, c p(A4). Hence G,(s) is
well defined for all s C,.

Step 1: We claim that s € p(4 + BF))if s€C,
and G,(s) # 1. Notice that for s€C ,

I=(sI—A—BF)(sI—A)"'+BE,(sI-4)"
(4.1)
so that
B(1-G,(s))=(sI—4 - BE))(sI -~ 4)"'B.
(4.2)
For s € C, satisfying G,(s) # 1 we obtain
B=(sI—A—-BE)(sI-4)"'B(1-G,(s))"".
(4.3)
Substituting (4.3) into (4.1) gives
I=(sI—A—BF)(sI—A)"
r+B-6,()) B (1=, (44)

We obtain from the definition of F, that the
operator

H/(s)= (sI-A4)""
14 B =6,(5) " E(s1 - 4) 7]

is bounded. Equation (4.4) shows that H,(s) is a
right inverse of s/ — A — BF,. The claim now fol-
lows since it is not difficult to show that H, (s) is
a left inverse of s/ — A — BF, as well.

Step 2: It remains to show that there exists
§ € C,, satisfying G, (§) # 1. We will prove that

lim G,(A)=0 (4.5)
A— o0
where A is a real variable. Since 4 generates a

strongly continuous semigroup there exist real
numbers M and B such that

NAT—A4)"" < A{lﬁ for all A > 8. (4.6)

In order to prove that (4.5) holds true it is suffi-
cient to show

Jim | A(AT—A4)"'B|| =0. (4.7)
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Notice that

AN =4) " = IAAT=4) " =1

MM

Sl-l—}\—:ﬁ V}\>min(0, ,3)

Thus there exists A, > max(0, 8) such that

NAAI—A) | <142M VA>A,. (4.8)

Let £ >0 be given. Set x = B(1) and choose z €
D( A) satisfying

€
Hx~z||$m. (4.9)
Moreover let A; > A, be such that

%l—gu Az|| <38 VA>AL (4.10)

Then it follows from (4.6) and (4.8)-(4.10),
| AN —4) "B = | A(A—4) x|
< AAT-4) " x—z]

+ (AL =4) 7| || Az
<e VA>A,

which proves (4.7).
Appendix I1

Consider the system
x(t)=Ax(t) + Bu(t),
y(t)=Cx(1), 120,

x(0) = x,, (4.11a)

(4.11b)

where A4 generates a strongly continuous semi-
group S(7) on a Banach space X, BE€Z(R, X)
and C: D(C)— R is an A-bounded linear oper-
ator. If x, € D(A) and u € C'(0, c0; R) there ex-
ists a unique classical solution x(¢) € D(A4) (Vt =
0) and hence the output y is well defined.

In the following let A denote the exponential
growth constant of S(z). As usual the Laplace
transformation is denoted by the superscript )

4.2. Proposition. Suppose x,=0 and let ue
CY(0, wo; R) be Laplace transformable such that
2(s) exists on C, for some a € R. Then the Laplace
transform $(s) of the output of (4.11) exists for all
s € C satisfying Re(s) > max(a, A) and is given by

$(s)=C(sI —A)"'Ba(s).

Moreover the expression C(sI — A)™'B is analytic
in C}\.

4.3. Remark. The above proposition says that there
exists a transfer function for the system (4.11) and
that it is given by C(sI — A) " 'B. This seems like a
trivial fact. However, since C is unbounded, we
have to prove that C can be taken out of the
Laplace integral.

Proof of Proposition 4.2. W.l.o.g. we may assume
that A <0 and hence 47 ' €.2(X, X). It is well
known from semigroup theory that

d _

(47 T(7)B) .., =T(1)B.
Using (4.12), the variation-of-constants formula
and partial integration we obtain

(4.12)

x0)=—1£dJA_WTr*ﬂB)MT)dT
= ’/;A_lT(t —7)Bu'(7) dr

— A7 'Bu(t) + A7'T(¢) Bu(0).

Applying C to both sides of the equation, using
the fact that CA~! is bounded and taking Laplace
transforms gives

P(s)=CA (sl - 4) " B(sit(s) — u(0))
— CA™'Bi(s) + CA (s — A) "' Bu(0)
=CA Y s(sI—A) ' —1}Ba(s)
= CA™ ' A(sT— 4)" "} Ba(s)
= C(sI—A) 'Bi(s).

It is clear that the above equations hold for all
s € C satisfying Re(s) > max(a, A). Moreover it
follows from the identity

C(sI—A4) 'B=CA s(sI-4) " —1}B
that C(sI —A)7'B is analytic in C,.
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