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1. Introduction 

Generalizing a result by Nussbaum [12] Wil- 
lems and Byrnes [15] constructed a sign-switching 
high-gain adaptive controller which globally 
stabilizes any finite-dimensional single-input 
single-output minimum-phase system with invert- 
ible high-frequency gain. In recent years it was 
shown by several authors (see Dahleh [3], Dahleh 
and Hopkins [4], Kobayashi [7], Logemann [8] and 
Logemann and Owens [9]) that the adaptive al- 
gorithm presented in [15] stabilizes certain classes 
of infinite-dimensional systems as well. In [3], [4] 
and [8] the main result of [15] was extended to 
various classes of retarded systems. Generaliza- 
tions to distributed parameter systems described 
by analytic semigroups were given in [7], while an 
input-output theory of high-gain adaptive stabili- 
zation of systems described by non-rational trans- 
fer functions was developed in [9]. 

where A generates a strongly continuous semi- 
group S ( t )  on a Banach space X and B : R  ~ X 
and C: X ~ R are bounded linear operators. Sup- 
pose that the system (1.1) has no zeros in Re(s) > a 
for some et < 0 and CB ~ O. Under these condi- 
tions it was shown by Kobayashi [7] that the 
adaptive control law given in [15] will globally 
stabilize the system (1.1) provided that 

(i) X is a Hilbert space, 
(ii) A is selfadjoint and has a complete ortho- 

normal system of eigenvectors, 
(iii) S ( t )  is analytic, 
(iv) im B and im C* are contained in the 

domain of A. 
In this paper we will answer the question posed 

in [7] whether the conditions (iii) and (iv) are 
really necessary for adaptive stabilization. We will 
show that (i)-(iv) can be relaxed considerably. In 
particular it will turn out that 

• (i)-(iii) can be dropped, 
• (iv) can be relaxed if (iii) holds. 

The paper is organized as follows. Section 2 is 
devoted to preliminaries concerning the class of 
systems under consideration. Moreover it contains 
some technical lemmas which will be used in 
Section 3 in order to prove the main results of this 
paper. In the Appendix we prove the existence of 
a well-defined transfer function for a class of 
infinite-dimensional systems with unbounded ob- 
servation operator. This result, which is needed in 
Section 3, might be of some independent interest. 

Notation 

For a ~ R define 

c °  ,= (s C I P,e(s) > 
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Let H,~ denote the algebra of functions which 
are analytic and bounded on e ~. 

Let X and Y be normed spaces. The vector 
space of all linear bounded operators from X to Y 
is denoted by SF(X, Y). 

Let A be a linear operator. Then we define 
D(A) := domain of A, o(A) := spectrum of A and 
p (A) .'= resolvent set of A. 

2. Preliminaries and system description 

In the following we shall consider systems of 
the form 

2 ( t ) = a x ( t ) + B u ( t ) ,  x(0)  = x0, (2.1a) 

y ( t )  = Cx( t ) ,  t > O, (2.1b) 

where A generates a strongly continuous semi- 
group S(t)  on a real Banach space X, B e  
£P(R, X) and C eL,°(X, R). Sometimes it will be 
necessary to consider the complexifications of X, 
A, B, and C. For simplicity these will be denoted 
by X, A, B, and C as well. 

The notion of exponential stabilizability will 
play an important role in the sequel. 

2.1. Definition. The system (2.1) (or the pair 
(A, B)) is called exponentially stabilizable if there 
exists K~LP(X,  R) such that the strongly con- 
tinuous semigroup generated by A + BK is ex- 
ponentially stable. 

2.2. Lemma. Suppose that the pair ( A, B) is ex- 
ponentially stabilizable and o ( A ) c C \ C ~ for some 
a < O. Then the strongly continuous semigroup S( t )  
generated by A will be exponentially stable. 

The proof of the above lemma follows easily 
from Nefedov and Sholokhovich [11] or Jacobson 
and Nett  [5] (cf. also Curtain [2]). 

The following definition will make precise what 
we mean by a zero of the system (2.1). 

2.3. Definition. A number X e R is called a zero 
of the system (2.1) if the kernel of the operator 

XI-Ac 0 B)  : D ( A ) ~ C  ~ X ~ C  

is non-trivial. 

2.4. Remark. Let X e C be a zero of the system 
(2.1) and suppose that X e p(A). Then it is easy to 
show that X is a zero of the transfer function 

G(s )  = C ( s l -  A) ~B 

of (2.1). 

Let us introduce the following assumptions 
(A1) CB ~ O. 
(A2) The system (2.1) has no zeros in C ,  for 

some a < 0. 
(A3) The system (2.1) is exponentially stabiliz- 

able. 
(A4) im B c D(A). 
(A5) im C* c D(A*).  
(A6) im B c D(A2). 
(A7) im C* c D(A*2).  
The next lemma establishes the existence of a 

feedback operator which shifts the spectrum of A 
into the left half plane. 

2.5. Lemma. Let (A1)-(A3) be satisfied and define 

F v := ( C B ) - I ( -  CA + 7C), (2.2) 

where y < O. Then there exists a e ( y, O) such that 

o (A  + BFv) c C \C , ~ .  

Proof. By (A3) there exists fl < 0 such that the 
spectrum of A in C~ consists of isolated eigenval- 
ues with finite multiplicities (see Jacobson and 
Nett  [5] or Curtain [2]). Moreover we have 

Co A o (A  + BF~) 4=,~ 

by Appendix I. Since BF~ is an A-degenerate 
operator it follows from Theorem 6.2 and Theo- 
rem 6.5 in Chapter IV of Kato 's  book [6] that the 
spectrum of A + BF v in C¢ consists of at most 
countably many eigenvalues with finite multiplici- 
ties. By (A2) there exists a number a < 0 such that 
the system (2.1) has no zeros in C a. W.l.o.g. we 
may assume m a x ( t ,  y ) <  a. Suppose that there 
exists X in o(A + BFv) C~ C a. Then ?t is an eigen- 
value of A + BF~, and there exists x e X, x 4:0 
such that 

( X I - A  - B F y ) x = O .  

Hence 

(XI  - A  + B(CB)  1CA)x - "yB(CB)-ICx = O. 

(2.3) 
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Applying C to both sides of the above equation 
gives (X - "l)Cx = 0. Since - /< a < Re(X) it fol- 
lows that Cx = 0. We obtain using (2.3), 

( X I c A  B O ) ( ( c B ) x l c A x ) = ( O 0 ) .  

Thus X is a zero of (2.1) which is not possible by 
assumption. Hence we have shown 

o ( A  + BFv) ¢~ C a =#J. 

2.6. Lemma. Let F v be defined as in (2.2). Suppose 
that (A1) holds and that A + BF v generates a 
strongly continuous semigroup Sv(t ). Under these 
conditions we have 

S v( t )  k e r C c k e r C  Y t > 0 .  

Proof. Let x ~ ker C. For s ~ P (A + BF v) we have 

x ( s t - A  B F v ) ( s I - A  BFv) -1 

= [ S I - - A -  B ( C B ) - I ( - c A  + yC)] 

• ( s I - A  BFv) -a - -  X .  

Applying C to both sides of the above equation 
we obtain 

0 ( s C - C A + C A - y C ) ( s I - A  BFv) - '  

= (s - y ) C ( s I  - A - BFv) - ' x .  

Hence we have shown for all s ~ p(A + BFv), 
s 4: 1', that 

( sI - A - BF v ) - a ker C c ker C. 

The claim now follows from Pazy [13], p. 121. 

2.7. Remark. The feedback law F v was introduced 
by Curtain in [1], Section 8 in the context of 
disturbance decoupling for infinite-dimensional 
systems (of. also Zwart [17]). 

3. Main results 

Let us recall the definition of a Nussbaum gain. 

3.1. Definition. A measurable locally bounded 
function N : R ~ R is called a Nussbaum gain if 
for some t o ~ R, 

sup ~'N(~') d~'= +oo 
t > l  o 

and 

inf 1 [tTN(,c) d ' r =  - o o .  
t > l  o ~ .].t o 

3.2. Example. A continuously differentiable Nuss- 
baum gain is given by 

N(~') = cos(½v~) exp(~-2), 

cf. Nussbaum [12] or Logemann and Owens [9]. 

In this section we shall apply the following 
control law to the system (2.1): 

u( t )  = N ( k ( t ) ) k ( t ) y ( t ) ,  
(3.1) 

/ ~ ( t ) = y 2 ( t ) ,  k ( 0 ) = k  0 ~ R ,  

where N is a Nussbaum gain. The control law 
(3.1) has been introduced by Willems and Byrnes 
[15] for finite-dimensional systems. 

Defining 

A c : D ( A  ) X g~ ~ X X  R, 

f : X X R  ~ X X N ,  

(Cx) 2 ]' 

and 

x c ( t ) : = ( x ( t ) )  
I k ( t  ) ' 

we can write the closed-loop system as follows: 

2 c ( t ) = A c x c ( t ) + f ( x c ( t ) ) ,  t>O,  (3.2a) 

(x0 / 
= ~ X × n .  (3.2b) xc(0) ko 

A continuously differentiable D(Ac)-valued func- 
tion which satisfies (3.2) is called a classical solu- 
tion of (3.2). A mild solution of (3.2) is a continu- 
ous function satisfying 

xc(t  ) = Sc(t)xc(O ) + fotSc(t - ~')f(Xc(~')) d~', 

where S~(t) denotes the strongly continuous semi- 
group generated by A¢. 

The following lemma shows that (3.2) is well- 
posed. 
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3.3. Lemma. (i) I f  N satisfies a local Lipschitz 
condition then for all xc(0 ) ~ X × R, (3.2) has a 
unique mild solution which can be continued to the 
right as long as it remains bounded. 

(ii) l f  N is continuously differentiable then for all 
Xc(0 ) ~ D( A) × R, (3.2) has a unique classical solu- 
tion which can be continued to the right as long as it 
remains bounded. 

Proof. (i) It is easy to show that f satisfies a local 
Lipschitz condition, i.e. for any l > 0 there exists 
L > 0 such that 

II f ( z )  - f ( z ' )  II -< t II z - z '  II 

for all z, z '  ~ X x R satisfying II z II, 11 z ' l l  -< l, 
where the norm I1" II on X ×  R is defined by 
I1"11 = I1" Ilx + I" I- The claim follows now from 

Segal [14], Theorem 1 (cf. also Pazy [13], pp. 185). 
(ii) It is routine to show that f is continuously 

Fr6chet-differentiable. Moreover f satisfies a local 
Lipschitz condition (notice that this does not fol- 
low necessarily from the C-proper ty  in the in- 
finite-dimensional case). Application of Theorem 
1 and Lemma 3.1 in Segal [14] (cf. also Martin 
[10], pp. 347) proves the claim. 

We are now in the position to state our main 
results. 

3.4. Theorem. Suppose that assumptions (A1)-(A5) 
are satisfied and that N is a continuously differentia- 
ble Nussbaum gain. The following statements hold 
true. 

(i) For all (Xo, ko) ~ D(A)  x R the closed-loop 
system given by (2.1) and (3.1) has a unique glob- 
ally deft'ned classical solution (x (t), k ( t)) with the 
following properties: 

lim k ( t ) exists and is finite, (3.3) 
t---~ o¢~ 

x ( . )  ~L2(0 ,  oo; X ) A L ~ ( 0 ,  oo; X) ,  (3.4) 

lim x ( t )  = 0. (3.5) 
/ ----~ OO 

(ii) For all (x o, k 0 ) ~ X x R  the closed-loop 
system given by (2.1) and (3.1) has a unique glob- 
ally defined mild solution (x(t) ,  k(t))  satisfying 
(3.3)-(3.5). 

Proof. ( i )Def ine  the linear bounded 
P] : X ~ X by 

P]x = B(CB) -aCx .  

operator 

Then P~ is a projection and im P1 = im B. More- 
over set 1'2 '= I -  P1- It is obvious that im Pz = 
ker C and X = im B • ker C. Let (x(t) ,  k(t))  de- 
note the classical solution of the feedback system 
given by (2.1) and (3.1) with initial value (x o, k0) 

D(A)  × R and let [0, to) denote its maximal 
interval of existence. Realizing that 

(A + B F y ) ( D ( A )  (~ ker C)  c ker C, 

i m P ,  c D ( A ) ,  P 2 ( D ( A ) ) c D ( A )  

and 

PIAP2x = -BFvP2x Vx ~ D ( A ) ,  

we obtain from (2.1), 

P,Y(( t ) = P1Ax( t ) + Bu( t ) 

= P, AP]x ( t )  - BFvP2x(t ) + Bu( t )  

and 

P25:(t) = Pz(A + BFv)x ( t )  

= (A + Bgv)P2x( t  ) + PzAP]x( t ) .  

Noticing that P]x( t )=  B(CB) - ]y ( t )  and setting 
z(t)  .'= Pzx(t)  it follows 

B ( C B )  ' 9 ( t ) = B ( C B ) - 1 C A B ( C B )  l y ( t )  

+ B ( u ( t ) -  Fyz(t)) ,  

2( t ) = ( A + BFv)z(  t ) + P2AB( CB ) - ] y (  t ). 

We conclude that the initial value problem given 
by (2.1) and (3.1) can be written as 

f '(t) = CBva(t), y(O) = Cx o, (3.6) 

2(t )  = (A + BFv)z( t  ) 

+ P z A B ( C B )  iv2(/) ,  z (0 )=P 2 x 0 ,  

(3.7a) 

w( t ) = Fvz( t ) - ( CB ) -  ' CAB( CB ) -  lv2( t ), 

(3.7b) 

vl(t  ) = u ( t ) - w ( t ) ,  Vz(t ) = y ( t ) ,  (3.8) 

k ( t ) = y Z ( t ) ,  k ( O ) = k o ,  (3.9a) 

u( t )  = U ( k ( t ) ) k ( t ) y ( t ) .  (3.98) 

Hence we have shown that (x( t) ,  k(t))  solves the 
initial value problem given by (2.1) and (3.1) 
(where x o ~ D(A))  on [0, to) if and only if 

x ( t ) = z ( t ) +  B ( C B )  ' y ( t ) ,  (3.10) 
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where (z(t), y(t) ,  k(t)) is a solution of the initial 
value problem defined by (3.6)-(3.9) on [0, to). 

We obtain from (A4) and (A5) that P2AB 
(CB) -a, F v and (CB) -1 CAB(CB) -1) are bound- 
ed linear operators. Hence it follows in particular 
that A + BFv generates a strongly continuous 
semigroup which will be denoted by Sv(t). Using 
Lemma 2.6 we obtain that Sv(t) is a strongly 
continuous semigroup on ker C. Therefore (3.7) is 
a well-defined semigroup system on ker C. Clearly, 
by (A3), the pair (A + BFv, B) is exponentially 
stabilizable. Applying Lemma 2.2 and Lemma 2.5 
we see that Sr(t) is exponentially stable. As a 
consequence the transfer function of (3.7) is in 
H ~  for some a < 0. It now follows from Loge- 
mann and Owens [9] that the pair (y(t),  k(t)) is 
bounded on [0, to) which implies via (3.7) and 
(3.10) that (x(t), k(t)) is bounded on [0, to). 
Using Lemma 3.3(ii) we obtain t o = o0, i.e. the 
closed-loop system given by (2.1) and (3.1) has a 
unique globally defined classical solution. Finally 
it follows again from Logemann and Owens [9] 
that (3.3)-(3.5) hold with x replaced by y, which 
proves the claim because of (3.10) and the ex- 
ponential stability of (3.7). 

(ii) It follows as in the proof of (i) that 
(y(t),  k(t)) is bounded on [0, to). Hence, by the 
exponential stability of (3.7) and Lemma 3.3(i) we 
have that the mild solution (z(t), y(t), k(t)) of 
the initial value problem (3.6)-(3.9) is globally 
defined. Moreover as in the proof of (i) we con- 
clude that (3.3)-(3.5) hold true with x replaced by 
y. In order to prove the claim it is sufficient to 
show that 

( z ( t )  + B ( C B ) - l y ( t ) ,  k ( t ) )  

is the mild solution of the initial value problem 
given by (2.1) and (3.1). We have already shown in 
the proof of (i) that this is true if x o ~ D(A). 
Therefore it remains true in the general case (i.e. 
x 0~  X), since D(A) is dense in X and mild 
solutions depend continuously on their initial val- 
ues (cf. Segal [14], Corollary 1.5). 

3.5. Remark. (i) Notice that in the proof of Theo- 
rem 3.4 we have decomposed the original plant 
(2.1) into a feedback system consisting of an in- 
tegrator in the forward loop and an (exponen- 
tially) stable system in the feedback loop (see 
(3.6)-(3.8)). Adaptive stabilization of systems ad- 

mitting such a decomposition has been investi- 
gated by Logemann and Owens [9] using an in- 
put-output  approach. 

(ii) Kobayashi [7] proved a result similar to 
Theorem 3.4. However he had to assume that X is 
a Hilbert space and that A is a selfadjoint oper- 
ator on X having complete orthonormal system of 
eigenvectors and generating an analytic semi- 
group. In particular Theorem 3.4 gives an affirma- 
tive answer to the question posed in [7] whether 
the assumption on the analyticity of the semi- 
group can be relaxed. 

3.6. Corollary. Suppose that assumptions (A1)-(A3) 
and (A6) are satisfied and that N is a continuously 
differentiable Nussbaum gain. Under these condi- 
tions statement (i) of Theorem 3.4 holds true. 

Proof. Let k ~ p(A) and define a new state-space 
system (A, B, C) by .4 .'= A, J~ "-= ( h i  - A)B and 
C:=  C ( k I - A )  -1. Notice that the transfer func- 
tions of (A, B, C) and (A, /~, C) are the same. It 
is clear that .~, B and C satisfy (A1), (A2), (A4) 
and (A5). Moreover it follows from Jacobson and 
Nett [5] or Curtain [2] via (A3) that (A, B) is 
exponentially stabilizable. Let x o ~ D(A) and de- 
note the mild solution of 

. ~ ( t ) = . ~ x ( t ) + B u ( t ) ,  x ( O ) = ( X l - A ) x o ,  

y ( t ) = C x ( t ) ,  

u(t)  = N ( k ( t ) ) k ( t ) y ( t ) ,  

k ( t ) = y Z ( t ) ,  k ( 0 ) = k  0, 

by (2(t) ,  lc(t)). It follows from Theorem 3.4(ii) 
that (if(t), k(t)) is globally defined and satisfies 
(3.3)-(3.5) with x and k replaced by Y and k. 
Finally notice that the pair (x(t), k(t)) defined by 

x ( t ) : = ( h I - A ) - l ~ ( t )  and k ( t ) : = k ( t )  

is a classical solution of the initial value problem 
given by (2.1) and (3.1). 

3.7. Corollary. Suppose that the assumptions (A1)- 
(A3) and (A7) are satisfied and that N is a continu- 
ously differentiable Nussbaum gain. Under these 
conditions the statements (i) and (fi) of Theorem 
3.4 hold true. 

Proof. Let ?t ~ o(A) and define .4 :=A,  /].'= (2~I 
- A ) - I B  and C.'= C ( k I - A ) .  As in the proof of 
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Corolla~ 3.6 we have that the system given by 
(A, B, C) satisfies (A1)-(A5). Let x 0 ~ X and 
denote the classical solution of 

~ ( t ) = . ~ x ( t ) + B u ( t ) ,  x ( O ) = ( X I - A ) - ' X o ,  
(3.11a) 

y ( t )  = Cx( t ) ,  (3.11b) 

u( t )  = N ( k ( t ) ) k ( t ) y ( t ) ,  (3.11c) 

k ( t ) = y 2 ( t ) ,  k ( 0 ) = k 0 ,  (3.11d) 

by (2(0 ,  ~:(t)). By Theorem 3.4(i), (2(t) ,  ~:(t)) is 
globally defined and satisfies (3.3)-(3.5) with x 
and k replaced by Y and k. Notice that the pair 
(x(t) ,  k(t))  defined by 

x ( t ) : = ( X I - A ) Y , ( t )  and k ( t ) :=~c( t )  

is a mild solution of the initial value problem 
given by (2.1) and (3.1). It will be a solution in the 
classical sense if x o ~ D(A).  We have 

2 ( t )  = S ( t ) 2  o + fotS(t - r )  J~fi('r) d'r, (3.12) 

where Xo := ( h i  - A)-aXo and 

fi(t) := N(~c( t ) ) f c ( t )C2( t ) .  

Since the pair (/1, /}) is exponentially stabilizable, 
there exist closed subspaces X s and X~ of X such 
that 

- X =  X~ (D X~, X~ is finite-dimensional and 
X, c D(A) = D(A); 

- the projections P~ : X --) X, and P~ : X --) X. 
commute with S(t)  and .4 = A; 

- the strongly continuous semigroup S~(t):= 
S( t )  [x, on X s is exponentially stable. 
(See Jacobson and Nett [5] or Curtain [2].) 

Setting 

z , ( t )  := S~(t)P~x o + fotSs(t - r)P~Bfi('r) d r  

and 

z~(t)  := S~(t)P~Y, o + fotS~(t - r ) P ,  J3fi(~r) d~', 

where S,( t )  := S(t)  Ix,, we obtain from (3.12), 

2 ( t )  = zu(t ) + ( h I - A ) - l z s ( t ) .  

Since 2, z s ~ L2(0, ~ ;  X) O L~(0, ~ ;  X) and 

lim 2 ( t ) =  lim z~ ( t )=  O, 
I ~ O O  l -,--) ~ 

the same is true for z,,(t). Realizing that ( > , l -  
A)lx,, is a bounded operator ( X u c D ( A )  is 
finite-dimensional) it follows from 

x ( t )  = ( X l -  A ) £ ( t )  = z , ( t )  + ( X l -  A)Ix, Z~(t) 

that x ~ L2(0, ~ ;  X) • L~>(0, ~ ;  X) and 

lim x ( t ) = O. 

Hence the pair (x( t ) ,  k( t ) )  satisfies (3.3)-(3.5). 

In Theorem 3.4 it was required that (A4) and 
(A5) hold. The next two results show that either 
(A4) or (A5) become superfluous provided that 
the semigroup S(t )  generated by A is analytic. 

3.8. Theorem. I f  (A1)-(A4) are satisfied, N is a 
continuously differentiable Nussbaum gain and the 
semigroup S( t )  generated by A is analytic, then 
statement (i) of Theorem 3.4 holds true. 

Proof. As in the proof of Theorem 3.4 we can 
show that the closed-loop system given by (2.1) 
and (3.1) is equivalent to the system (3.6)-(3.9). 
Since BFy is an A-degenerate operator it follows 
from Zabczyk [16] that A + BFy generates an ana- 
lytic semigroup Sv(t ). Now analytic semigroups 
satisfy the spectrum determined growth assump- 
tion and hence Sv(t) is exponentially stable by 
Lemma 2.5. The stability result follows from [9] as 
in the proof of Theorem 3.4 provided that 

(i) the transfer function H of (3.7) belongs to 
H~  for some o~ < 0, and 

(ii) the function f ( t ) . '= FvSz(t)P2x o produced 
by the initial condition is in L~(0, ~) .  

Notice that (i) and (ii) do not follow trivially 
because Fv is unbounded. Define 

R : = A + B F y ,  D : = - ( C B ) - ' C A B ( C B )  -1 

and 

E := P2AB(CB)  -1. 

It follows from Appendix II that the transfer 
function H of (3.7) is given by 

g ( s )  = F v ( s I -  R ) - I E  + D. 

Using the fact that 0 ~ p(R)  we obtain 

H ( s )  = F v R - a R ( s I -  R ) - a E  + D 

= r v R - ' ( s ( s Z - R  ) ' - I ) E + D  

= sF~R-I ( s I  - R ) - I E  - F v R - ' E  + D. 



H. Logemann, H. Zwart /Adaptive stabilization of infinite-dimensional systems 205 

Now realizing that FvR -a is a bounded operator 
(by the closed-graph theorem) and using that R 
generates an exponentially stable analytic semi- 
group it follows that there exist fl < 0 and M > 0 
such that H is holomorphic on C a and 

M 
I [ ( s I - R ) - l l [ <  i ~ _ f l l  f o r a l l s ~ C a .  

Hence H ~ H~  for all a > fl, which shows that (i) 
holds true. 

In order to prove (ii), write 

f ( t ) = FvR-  aRSv ( t ) P2xo = FvR-1Sv ( t ) RP2xo 

where we have used that P2xo ~ D ( A )  which is 
true because x o ~ D( A) and im 1'1 c D( A). 

3.9. Corollary. I f  (A1)-(A3) and (A5) are satis- 
fied, N is a continuously differentiable Nussbaum 
gain and the semigroup generated by A is analytic 
then the statements (i) and (ii) of Theorem 3.4 
hoM. 

Proof. Define .4, /~ and C as in the proof of 
Corollary 3.7 and verify that the system given by 
(.d, /~, C) fulfils (A1)-(A4). Application of Theo- 
rem 3.8 gives that for x 0 ~ X the solution 
(~7(t), k(t))  of the initial value problem (3.11) 
satisfies (3.3)-(3.5) with x and k replaced by 
and k. Now proceed as in the proof of Corollary 
3.7. 

3.10. Remark. Notice that Theorem 3.8 and 
Corollary 3.9 improve the result by Kobayashi [7]. 
They give an affirmative answer to the question 
raised in [7] whether the assumption that both 
(A4) and (A5) are satisfied can be relaxed. 

4. Appendices 

Appendix I 

In the proof of Lemma 2.5 we have made use of 
the following result: 

4.1. Lemma. I f  the operator Fv is given by (2.2) 
then 

n o(A +BF ) 

Proof. Set Gv(s ) := F v ( s I - A ) - l B .  Since A gener- 
ates a strongly continuous semigroup there exists 
a E [0, oo) such that C~ c o(A) .  Hence Gv(s ) is 
well defined for all s ~ C ~. 

Step 1: We claim that s ~ o (A  + BFy) if s ~ C a 
and Gv(s ) 4: 1. Notice that for s ~ C 4, 

I = ( s I  - A - B r , ) ( s I  - A)  -1 + BF~(sI - A ) - 1  

(4.1) 

so that 

B(1 - Gv(s) )  = ( s I -  A - B F v ) ( s I -  A ) - I B .  

(4.2) 

For s ~ C ,  satisfying Gv(s ) ~ 1 we obtain 

B =  ( s I - -  A - B F v ) ( s I -  A ) - I B ( 1  - Gv(s))  -1. 

(4.3) 

Substituting (4.3) into (4.1) gives 

I = ( s I  - A - B F , ) ( s I  - A ) - 1  

• [ I + B ( 1 - G , ( s ) ) - a F y ( s I - A ) - I ] .  (4.4) 

We obtain from the definition of Fv that the 
operator 

:= ( s I - A )  -1 

• [ I +  B ( 1 - G , ( s ) ) - I F , ( s I - A )  -11 

is bounded. Equation (4.4) shows that H~(s) is a 
right inverse of sI - A - B F  v. The claim now fol- 
lows since it is not difficult to show that Hr(s  ) is 
a left inverse of sI - A - BFy as well. 

Step 2: It remains to show that there exists 
~ C~ satisfying G~(~) 4: 1. We will prove that 

lim Gy(X) = 0 (4.5) 

where X is a real variable. Since A generates a 
strongly continuous semigroup there exist real 
numbers M and 13 such that 

M 
I I ( X I - A ) - a l I ~  X - f l  foral l  X > f l .  (4.6) 

In order to prove that (4.5) holds true it is suffi- 
cient to show 

lim II A ( h I  - A ) - I B  I1 = 0. (4.7) 
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Notice that 

I I A ( ) t I - A )  -1 l[ = I [ ) t ( ) t I -  A ) - '  - III 

M)t 
_ < l + ) t _ B  V)t > rain(0, B). 

Thus there exists )t o > max(0, /3) such that 

[ I A ( X I - A ) - l l l  < l + 2 M  V) t>) t  o. (4.8) 

Let e > 0 be given. Set x := B(1) and choose z 
D(A) satisfying 

e (4.9) 
II x - z II -< 2(1 + 2 M ) "  

Moreover let )ta >-- )to be such that 

M 
)t _/311 a z  II < ½e v)t  > )t]. (4.10) 

Then it follows from (4.6) and (4.8)-(4.10), 

II A(  ) t I -  A ) - ] B  II = II A ( ) t I -  h ) - l x  ll 

< - I l h ( ) t I - A ) - l l l  I I x - z l l  

+ I I ( M - A ) - ~ I I  IIAzll 

__<e V)t >) t  1, 

which proves (4.7). 

Appendix H 

Consider the system 

2 ( t ) = A x ( t ) + B u ( t ) ,  x ( 0 ) = x  0, (4.11a) 

y ( t )  = C x ( t ) ,  t >  O, (4.11b) 

where A generates a strongly continuous semi- 
group S( t )  on a Banach space X, B ~La(R,  X) 
and C : D(C)  ~ R is an A-bounded linear oper- 
ator. If x o ~ D(A)  and u ~ C1(0, oo; R) there ex- 
ists a unique classical solution x(  t ) ~ D(  A ) (V t > 
0) and hence the output y is well defined. 

In the following let X denote the exponential 
growth constant of S(t) .  As usual the Laplace 
transformation is denoted by the superscript 

Moreover the expression C ( s l -  A) IB is analytic 
in C x. 

4.3. Remark. The above proposition says that there 
exists a transfer function for the system (4.11) and 
that it is given by C(sI  - A) - lB .  This seems like a 
trivial fact. However, since C is unbounded, we 
have to prove that C can be taken out of the 
Laplace integral. 

Proof of Proposition 4.2. W.l.o.g. we may assume 
that )t < 0 and hence A -1 E ,~ (X,  X). It is well 
known from semigroup theory that 

-d-d ( h  1T(~)B) [  = T ( t ) B .  (4.12) 

Using (4.12), the variation-of-constants formula 
and partial integration we obtain 

x ( t )  = - fo 'd,(  A - ] T ( t -  z ) B ) u ( ' r )  dr  

= f o ' A - ' T ( t  - r ) B u ' ( ' r )  dr  

- A -1Bu( t )  + A - l T ( t ) B u ( O ) .  

Applying C to both sides of the equation, using 
the fact that C A -  ] is bounded and taking Laplace 
transforms gives 

~ ( s )  = CA -~ ( s t  - A) - ' B ( s a ( s )  - u(O)) 

- CA-1B~t(s)  + CA I ( s I - A ) - I B u ( O )  

= C A - I (  s ( s I -  A ) - I  - I } B~( s )  

= C A - I ( A ( s I - A ) - ' } B f t ( s )  

= C ( s l - A ) - ~ B h ( s ) .  

It is clear that the above equations hold for all 
s ~ C satisfying Re(s) > max(a, )t). Moreover it 
follows from the identity 

C ( s I - A ) - ] B = C A  ] { s ( s I - A ) - I - I } B  

that C ( s I -  A ) - I B  is analytic in C a. 

4.2. Proposition. Suppose x o = 0 and let u 

C1(0, ~ ;  R) be Laplace transformable such that 
~( s ) exists on C , for some a ~ R. Then the Laplace 
transform fi(s) of the output of (4.11) exists for all 
s E C satisfying Re(s) > max(a, )t) and is given by 

f ( s )  = C ( s I -  A ) - a B ~ ( s ) .  
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