Some remarks on adaptive stabilization of infinite-dimensional systems

Hartmut Logemann

Institute for Dynamical Systems, University of Bremen, Postfach 330440, 2800 Bremen 33, FRG

Hans Zwart

Department of Applied Mathematics, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands

Received 18 August 1990

Abstract: It is the purpose of this note to show that a first-order adaptive controller stabilizes a large class of infinite-dimensional systems described by strongly continuous semigroups. It is assumed that the plant is minimum-phase and has invertible high-frequency gain. Knowledge of the sign of the highfrequency gain is not required.

Keywords: Infinite-dimensional systems; adaptive stabilization; strongly continuous semigroups; semilinear evolution equations.

1. Introduction

Generalizing a result by Nussbaum [12] Willems and Byrnes [15] constructed a sign-switching high-gain adaptive controller which globally stabilizes any finite-dimensional single-input single-output minimum-phase system with invertible high-frequency gain. In recent years it was shown by several authors (see Dahleh [3], Dahleh and Hopkins [4], Kobayashi [7], Logemann [8] and Logemann and Owens [9]) that the adaptive algorithm presented in [15] stabilizes certain classes of *infinite-dimensional* systems as well. In [3], [4] and [8] the main result of [15] was extended to various classes of retarded systems. Generalizations to distributed parameter systems described by analytic semigroups were given in [7], while an input-output theory of high-gain adaptive stabilization of systems described by non-rational transfer functions was developed in [9].

In the following we shall consider systems of the form

 $\dot{x} = Ax + Bu, \quad y = Cx,$ (1.1)

where A generates a strongly continuous semigroup $S(t)$ on a Banach space X and $B: \mathbb{R} \to X$ and $C: X \rightarrow \mathbb{R}$ are bounded linear operators. Suppose that the system (1.1) has no zeros in Re(s) $\ge \alpha$ for some $\alpha < 0$ and $CB \neq 0$. Under these conditions it was shown by Kobayashi [7] that the adaptive control law given in [15] will globally stabilize the system (1.1) provided that

(i) X is a Hilbert space,

(ii) \vec{A} is selfadjoint and has a complete orthonormal system of eigenvectors,

(iii) $S(t)$ is analytic,

(iv) im B and im C^* are contained in the domain of A.

In this paper we will answer the question posed in [7] whether the conditions (iii) and (iv) are really necessary for adaptive stabilization. We will show that (i)-(iv) can be relaxed considerably. In particular it will turn out that

 \bullet (i)–(iii) can be dropped,

• (iv) can be relaxed if (iii) holds.

The paper is organized as follows. Section 2 is devoted to preliminaries concerning the class of systems under consideration. Moreover it contains some technical lemmas which will be used in Section 3 in order to prove the main results of this paper. In the Appendix we prove the existence of a well-defined transfer function for a class of infinite-dimensional systems with unbounded observation operator. This result, which is needed in Section 3, might be of some independent interest.

Notation

For
$$
\alpha \in \mathbb{R}
$$
 define
\n
$$
\mathbb{C}_{\alpha} := \{ s \in \mathbb{C} \mid \text{Re}(s) > \alpha \}.
$$

0167-6911/91/\$03.50 © 1991 - Elsevier Science Publishers B.V. (North-Holland)

Let H_{α}^{∞} denote the algebra of functions which are analytic and bounded on \mathbb{C}_{α} .

Let X and Y be normed spaces. The vector space of all linear bounded operators from X to Y is denoted by $\mathcal{L}(X, Y)$.

Let A be a linear operator. Then we define $D(A)$ = domain of *A*, $\sigma(A)$ = spectrum of *A* and $p(A)$:= resolvent set of A.

2. Preliminaries and system description

In the following we shall consider systems of the form

$$
\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0,
$$
 (2.1a)

$$
y(t) = Cx(t), \quad t \ge 0,
$$
\n(2.1b)

where A generates a strongly continuous semigroup $S(t)$ on a real Banach space X, $B \in$ $\mathscr{L}(\mathbb{R}, X)$ and $C \in \mathscr{L}(X, \mathbb{R})$. Sometimes it will be necessary to consider the complexifications of X , A, B, and C. For simplicity these will be denoted by X , A , B , and C as well.

The notion of exponential stabilizability will play an important role in the sequel.

2.1. Definition. The system (2.1) (or the pair (A, B)) is called *exponentially stabilizable* if there exists $K \in \mathcal{L}(X, \mathbb{R})$ such that the strongly continuous semigroup generated by $A + BK$ is exponentially stable.

2.2. Lemma. *Suppose that the pair (A, B) is exponentially stabilizable and* $\sigma(A) \subset \mathbb{C} \setminus \mathbb{C}_\alpha$ *for some* α < 0. Then the strongly continuous semigroup $S(t)$ *generated by A will be exponentially stable.*

The proof of the above lemma follows easily from Nefedov and Sholokhovich [11] or Jacobson and Nett [5] (cf. also Curtain [2]).

The following definition will make precise what we mean by a zero of the system (2.1).

2.3. Definition. A number $\lambda \in \mathbb{R}$ is called a *zero* of the system (2.1) if the kernel of the operator

$$
\begin{pmatrix} \lambda I - A & B \\ C & 0 \end{pmatrix} : D(A) \oplus \mathbb{C} \to X \oplus \mathbb{C}
$$

is non-trivial.

2.4. Remark. Let $\lambda \in \mathbb{C}$ be a zero of the system (2.1) and suppose that $\lambda \in \rho(A)$. Then it is easy to show that λ is a zero of the transfer function

$$
G(s) = C(sI - A)^{-1}B
$$

of (2.1).

Let us introduce the following assumptions $(A1)$ $CB \neq 0$.

(A2) The system (2.1) has no zeros in \mathbb{C}_{α} for some α < 0.

 $(A3)$ The system (2.1) is exponentially stabilizable.

(A4) im
$$
B \subset D(A)
$$
.
\n(A5) im $C^* \subset D(A^*)$.
\n(A6) im $B \subset D(A^2)$.
\n(A7) im $C^* \subset D(A^{*2})$.

The next lemma establishes the existence of a feedback operator which shifts the spectrum of A into the left half plane.

2.5. Lemma. Let (A1)-(A3) *be satisfied and define*

$$
F_{\gamma} := (CB)^{-1}(-CA + \gamma C), \qquad (2.2)
$$

where γ < 0. Then there exists $\alpha \in (\gamma, 0)$ such that

$$
\sigma(A+BF_{\gamma})\subset\mathbb{C}\setminus\mathbb{C}_{\alpha}.
$$

Proof. By (A3) there exists $\beta < 0$ such that the spectrum of A in \mathbb{C}_β consists of isolated eigenvalues with finite multiplicities (see Jacobson and Nett [5] or Curtain [2]). Moreover we have

$$
\overline{\mathbb{C}}_0 \cap \rho(A + BF_\gamma) \neq \emptyset
$$

by Appendix I. Since BF_γ is an A-degenerate operator it follows from Theorem 6.2 and Theorem 6.5 in Chapter IV of Kato's book [6] that the spectrum of $A + BF_{\gamma}$ in C_{β} consists of at most countably many eigenvalues with finite multiplicities. By (A2) there exists a number α < 0 such that the system (2.1) has no zeros in C_{α} . W.l.o.g. we may assume max $(\beta, \gamma) < \alpha$. Suppose that there exists λ in $\sigma(A + BF_{\gamma}) \cap \mathbb{C}_{\alpha}$. Then λ is an eigenvalue of $A + BF_{\gamma}$ and there exists $x \in X$, $x \neq 0$ such that

$$
(\lambda I - A - BF_\gamma)x = 0
$$

Hence

$$
(\lambda I - A + B(CB)^{-1}CA)x - \gamma B(CB)^{-1}Cx = 0.
$$
\n(2.3)

Applying C to both sides of the above equation gives $(\lambda - \gamma)Cx = 0$. Since $\gamma < \alpha < \text{Re}(\lambda)$ it follows that $Cx = 0$. We obtain using (2.3),

$$
\begin{pmatrix} \lambda I - A & B \\ C & 0 \end{pmatrix} \begin{pmatrix} x \\ (CB)^{-1}CAx \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.
$$

Thus λ is a zero of (2.1) which is not possible by assumption. Hence we have shown

$$
\sigma(A+BF_{\gamma})\cap\mathbb{C}_{\alpha}=\emptyset.
$$

2.6. Lemma. Let F_y be defined as in (2.2). Suppose *that* (A1) *holds and that* $A + BF$ _v generates a *strongly continuous semigroup* $S_{\gamma}(t)$. *Under these conditions we have*

$$
S_{\gamma}(t) \text{ ker } C \subset \text{ker } C \quad \forall t \geq 0.
$$

Proof. Let $x \in \text{ker } C$. For $s \in \rho(A + BF_x)$ we have

$$
x = (sI - A - BF_{\gamma})(sI - A - BF_{\gamma})^{-1}x
$$

=
$$
[sI - A - B(CB)^{-1}(-CA + \gamma C)]
$$

$$
\cdot (sI - A - BF_{\gamma})^{-1}x.
$$

Applying C to both sides of the above equation we obtain

$$
0 = (sC - CA + CA - \gamma C)(sI - A - BF_{\gamma})^{-1}x
$$

= $(s - \gamma)C(sI - A - BF_{\gamma})^{-1}x$.

Hence we have shown for all $s \in \rho(A + BF_{\gamma})$, $s \neq \gamma$, that

$$
(sI - A - BF_{\gamma})^{-1} \ker C \subset \ker C.
$$

The claim now follows from Pazy [13], p. 121.

2.7. Remark. The feedback law F_r was introduced by Curtain in [1], Section 8 in the context of disturbance decoupling for infinite-dimensional systems (cf. also Zwart [17]).

3. Main results

Let us recall the definition of a Nussbaum gain.

3.1. Definition. A measurable locally bounded function $N : \mathbb{R} \to \mathbb{R}$ is called a *Nussbaum gain* if for some $t_0 \in \mathbb{R}$,

$$
\sup_{t>t_0}\frac{1}{t-t_0}\int_{t_0}^t \tau N(\tau)\,d\tau=+\infty
$$

and

$$
\inf_{t>t_0}\frac{1}{t-t_0}\int_{t_0}^t \tau N(\tau)\,d\tau=-\infty.
$$

3.2. Example. A continuously differentiable Nussbaum gain is given by

$$
N(\tau) = \cos(\frac{1}{2}\pi\tau) \exp(\tau^2),
$$

cf. Nussbaum [12] or Logemann and Owens [9].

In this section we shall apply the following control law to the system (2.1):

$$
u(t) = N(k(t))k(t)y(t),
$$

\n
$$
\dot{k}(t) = y^{2}(t), \quad k(0) = k_{0} \in \mathbb{R},
$$
\n(3.1)

where N is a Nussbaum gain. The control law (3.1) has been introduced by Willems and Byrnes [15] for finite-dimensional systems.

Defining

$$
A_c: D(A) \times \mathbb{R} \to X \times \mathbb{R},
$$

\n
$$
\binom{x}{k} \mapsto \binom{Ax}{0};
$$

\n
$$
f: X \times \mathbb{R} \to X \times \mathbb{R},
$$

\n
$$
\binom{x}{k} \mapsto \binom{N(k)kBCx}{(Cx)^2},
$$

and

$$
x_{c}(t) := \binom{x(t)}{k(t)},
$$

we can write the closed-loop system as follows:

$$
\dot{x}_{c}(t) = A_{c}x_{c}(t) + f(x_{c}(t)), \quad t \ge 0,
$$
 (3.2a)

$$
x_{c}(0) = \begin{pmatrix} x_{0} \\ k_{0} \end{pmatrix} \in X \times \mathbb{R}.
$$
 (3.2b)

A continuously differentiable $D(A_c)$ -valued function which satisfies (3.2) is called a *classical solution* of (3.2). A *mild solution* of (3.2) is a continuous function satisfying

$$
x_{c}(t) = S_{c}(t)x_{c}(0) + \int_{0}^{t} S_{c}(t-\tau) f(x_{c}(\tau)) d\tau,
$$

where $S_c(t)$ denotes the strongly continuous semigroup generated by A_c .

The following lemma shows that (3.2) is wellposed.

3.3. Lemma. (i) *If N satisfies a local Lipschitz condition then for all* $x_c(0) \in X \times \mathbb{R}$, (3.2) *has a unique mild solution which can be continued to the right as long as it remains bounded.*

(ii) *lf N is continuously differentiable then for all* $x_c(0) \in D(A) \times \mathbb{R}$, (3.2) has a unique classical solu*tion which can be continued to the right as long as it remains bounded.*

Proof. (i) It is easy to show that f satisfies a local Lipschitz condition, i.e. for any $l > 0$ there exists $L > 0$ such that

$$
|| f(z) - f(z') || \le L || z - z' ||
$$

for all z, $z' \in X \times \mathbb{R}$ satisfying $||z||$, $||z'|| \le l$, where the norm $\|\cdot\|$ on $X \times \mathbb{R}$ is defined by $|| \cdot || = || \cdot ||_X + | \cdot |$. The claim follows now from Segal [14], Theorem 1 (cf. also Pazy [13], pp. 185).

(ii) It is routine to show that f is continuously Fréchet-differentiable. Moreover f satisfies a local Lipschitz condition (notice that this does not follow necessarily from the C^1 -property in the infinite-dimensional case). Application of Theorem 1 and Lemma 3.1 in Segal [14] (cf. also Martin [10], pp. 347) proves the claim.

We are now in the position to state our main results.

3.4. Theorem. *Suppose that assumptions* (A1)-(A5) *are satisfied and that N is a continuously differentiable Nussbaum gain. The following statements hold true.*

(i) *For all* $(x_0, k_0) \in D(A) \times \mathbb{R}$ *the closed-loop system given by* (2.1) *and* (3.1) *has a unique globally defined classical solution* $(x(t), k(t))$ with the *following properties:*

 $\lim k(t)$ exists and is finite, (3.3) $t\rightarrow\infty$

 $x(\cdot) \in L^2(0, \infty; X) \cap L^{\infty}(0, \infty; X),$ (3.4)

$$
\lim_{t \to \infty} x(t) = 0. \tag{3.5}
$$

(ii) For all $(x_0, k_0) \in X \times \mathbb{R}$ the closed-loop *system given by* (2.1) *and* (3.1) *has a unique globally defined mild solution (x(t), k(t)) satisfying* (3.3) – (3.5) .

Proof. (i) Define the linear bounded operator $P_1: X \rightarrow X$ by

$$
P_1x = B(CB)^{-1}Cx.
$$

Then P_1 is a projection and im $P_1 = \text{im } B$. Moreover set $P_2 := I - P_1$. It is obvious that im $P_2 =$ ker C and $X = \text{im } B \oplus \text{ker } C$. Let $(x(t), k(t))$ denote the classical solution of the feedback system given by (2.1) and (3.1) with initial value (x_0 , k_0) \in *D(A)* \times R and let [0, $t₀$) denote its maximal interval of existence. Realizing that

$$
(A + BF_{\gamma})(D(A) \cap \ker C) \subset \ker C,
$$

im $P_1 \subset D(A),$ $P_2(D(A)) \subset D(A)$
and

and

$$
P_1AP_2x = -BF_{\gamma}P_2x \quad \forall x \in D(A),
$$

we obtain from (2.1),

$$
P_1\dot{x}(t) = P_1Ax(t) + Bu(t)
$$

= $P_1AP_1x(t) - BF_\gamma P_2x(t) + Bu(t)$

and

$$
P_2\dot{x}(t) = P_2(A + BF_{\gamma})x(t)
$$

= $(A + BF_{\gamma})P_2x(t) + P_2AP_1x(t)$.

Noticing that $P_1x(t) = B(CB)^{-1}y(t)$ and setting $z(t) = P_2x(t)$ it follows

$$
B(CB)^{-1} \dot{y}(t) = B(CB)^{-1}CAB(CB)^{-1}y(t) + B(u(t) - F_{\gamma}z(t)),
$$

$$
\dot{z}(t) = (A + BF_{\gamma})z(t) + P_2AB(CB)^{-1}y(t).
$$

We conclude that the initial value problem given by (2.1) and (3.1) can be written as

$$
\dot{y}(t) = CBv_1(t), \quad y(0) = Cx_0,
$$
\n(3.6)
\n
$$
\dot{z}(t) = (A + BF_{\gamma})z(t) + P_2AB(CB)^{-1}v_2(t), \quad z(0) = P_2x_0,
$$
\n(3.7a)

$$
w(t) = F_{\gamma} z(t) - (CB)^{-1} CAB(CB)^{-1} v_2(t),
$$
\n(3.7b)

$$
v_1(t) = u(t) - w(t), \quad v_2(t) = y(t), \tag{3.8}
$$

$$
k(t) = y2(t), \quad k(0) = k0, \tag{3.9a}
$$

$$
u(t) = N(k(t))k(t)y(t).
$$
 (3.9b)

Hence we have shown that $(x(t), k(t))$ solves the initial value problem given by (2.1) and (3.1) (where $x_0 \in D(A)$) on [0, t_0) if and only if

$$
x(t) = z(t) + B(CB)^{-1}y(t),
$$
 (3.10)

where $(z(t), y(t), k(t))$ is a solution of the initial value problem defined by (3.6) - (3.9) on $[0, t_0)$.

We obtain from $(A4)$ and $(A5)$ that P_2AB $(CB)^{-1}$, F_{γ} and $(CB)^{-1}$ $CAB(CB)^{-1}$) are bounded linear operators. Hence it follows in particular that $A + BF_y$ generates a strongly continuous semigroup which will be denoted by $S_{\gamma}(t)$. Using Lemma 2.6 we obtain that $S_{y}(t)$ is a strongly continuous semigroup on ker C. Therefore (3.7) is a well-defined semigroup system on ker C. Clearly, by (A3), the pair $(A + BF_x, B)$ is exponentially stabilizable. Applying Lemma 2.2 and Lemma 2.5 we see that $S_n(t)$ is exponentially stable. As a consequence the transfer function of (3.7) is in H_{α}^{∞} for some α < 0. It now follows from Logemann and Owens [9] that the pair $(y(t), k(t))$ is bounded on $[0, t_0)$ which implies via (3.7) and (3.10) that $(x(t), k(t))$ is bounded on [0, t_0). Using Lemma 3.3(ii) we obtain $t_0 = \infty$, i.e. the closed-loop system given by (2.1) and (3.1) has a unique globally defined classical solution. Finally it follows again from Logemann and Owens [9] that (3.3) – (3.5) hold with x replaced by y, which proves the claim because of (3.10) and the exponential stability of (3.7).

(ii) It follows as in the proof of (i) that $(y(t), k(t))$ is bounded on [0, $t₀$). Hence, by the exponential stability of (3.7) and Lemma 3.3(i) we have that the mild solution $(z(t), y(t), k(t))$ of the initial value problem (3.6) – (3.9) is globally defined. Moreover as in the proof of (i) we conclude that (3.3) – (3.5) hold true with x replaced by y. In order to prove the claim it is sufficient to show that

$$
(z(t) + B(CB)^{-1}y(t), k(t))
$$

is the mild solution of the initial value problem given by (2.1) and (3.1). We have already shown in the proof of (i) that this is true if $x_0 \in D(A)$. Therefore it remains true in the general case (i.e. $x_0 \in X$), since $D(A)$ is dense in X and mild solutions depend continuously on their initial values (cf. Segal [14], Corollary 1.5).

3.5. Remark. (i) Notice that in the proof of Theorem 3.4 we have decomposed the original plant (2.1) into a feedback system consisting of an integrator in the forward loop and an (exponentially) stable system in the feedback loop (see (3.6) - (3.8)). Adaptive stabilization of systems admitting such a decomposition has been investigated by Logemann and Owens [9] using an input-output approach.

(ii) Kobayashi [7] proved a result similar to Theorem 3.4. However he had to assume that X is a Hilbert space and that A is a selfadjoint operator on X having complete orthonormal system of eigenvectors and generating an analytic semigroup. In particular Theorem 3.4 gives an affirmative answer to the question posed in [7] whether the assumption on the analyticity of the semigroup can be relaxed.

3.6. Corollary. *Suppose that assumptions* (A1)-(A3) *and* (A6) *are satisfied and that N is a continuously differentiable Nussbaum gain. Under these conditions statement* (i) *of Theorem* 3.4 *holds true.*

Proof. Let $\lambda \in \rho(A)$ and define a new state-space system $(\tilde{A}, \tilde{B}, \tilde{C})$ by $\tilde{A} := A$, $\tilde{B} := (\lambda I - A)B$ and $\tilde{C} = C(\lambda I - A)^{-1}$. Notice that the transfer functions of (A, B, C) and $(\tilde{A}, \tilde{B}, \tilde{C})$ are the same. It is clear that \tilde{A} , \tilde{B} and \tilde{C} satisfy (A1), (A2), (A4) and (A5). Moreover it follows from Jacobson and Nett [5] or Curtain [2] via (A3) that (\tilde{A}, \tilde{B}) is exponentially stabilizable. Let $x_0 \in D(A)$ and denote the mild solution of

$$
\dot{x}(t) = \tilde{A}x(t) + \tilde{B}u(t), \quad x(0) = (\lambda I - A)x_0,
$$

\n
$$
y(t) = \tilde{C}x(t),
$$

\n
$$
u(t) = N(k(t))k(t)y(t),
$$

\n
$$
\dot{k}(t) = y^2(t), \quad k(0) = k_0,
$$

by $(\tilde{x}(t), \tilde{k}(t))$. It follows from Theorem 3.4(ii) that $(\tilde{x}(t), \tilde{k}(t))$ is globally defined and satisfies (3.3) – (3.5) with x and k replaced by \tilde{x} and k. Finally notice that the pair $(x(t), k(t))$ defined by

$$
x(t) := (\lambda I - A)^{-1}\tilde{x}(t)
$$
 and $k(t) := \tilde{k}(t)$

is a classical solution of the initial value problem given by (2.1) and (3.1).

3.7. Corollary. *Suppose that the assumptions* (A1)- (A3) *and* (A7) *are satisfied and that N is a continuously differentiable Nussbaum gain. Under these conditions the statements* (i) *and (fi) of Theorem* 3.4 *hold true.*

Proof. Let $\lambda \in \rho(A)$ and define $\tilde{A} := A$, $\tilde{B} := (\lambda I)^T$. $(-A)^{-1}B$ and $\tilde{C} := C(\lambda I - A)$. As in the proof of Corollary 3.6 we have that the system given by $(\tilde{A}, \tilde{B}, \tilde{C})$ satisfies (A1)-(A5). Let $x_0 \in X$ and denote the classical solution of

$$
\dot{x}(t) = \tilde{A}x(t) + \tilde{B}u(t), \quad x(0) = (\lambda I - A)^{-1}x_0,
$$
\n(3.11a)

$$
y(t) = \tilde{C}x(t), \tag{3.11b}
$$

$$
u(t) = N(k(t))k(t)y(t), \qquad (3.11c)
$$

$$
\dot{k}(t) = y^2(t), \quad k(0) = k_0, \tag{3.11d}
$$

by $(\tilde{x}(t), \tilde{k}(t))$. By Theorem 3.4(i), $(\tilde{x}(t), \tilde{k}(t))$ is globally defined and satisfies (3.3) – (3.5) with x and k replaced by \tilde{x} and \tilde{k} . Notice that the pair $(x(t), k(t))$ defined by

$$
x(t) := (\lambda I - A)\tilde{x}(t) \text{ and } k(t) := \tilde{k}(t)
$$

is a mild solution of the initial value problem given by (2.1) and (3.1) . It will be a solution in the classical sense if $x_0 \in D(A)$. We have

$$
\tilde{x}(t) = S(t)\tilde{x}_0 + \int_0^t S(t-\tau)\tilde{B}\tilde{u}(\tau) d\tau, \qquad (3.12)
$$

where $\tilde{x}_0 := (\lambda I - A)^{-1}x_0$ and

$$
\tilde{u}(t) = N(\tilde{k}(t))\tilde{k}(t)C\tilde{x}(t).
$$

Since the pair (\tilde{A}, \tilde{B}) is exponentially stabilizable, there exist closed subspaces X_s and X_u of X such that

- $X = X_s \oplus X_u$, X_u is finite-dimensional and $X_u \subset D(\tilde{A}) = D(A);$

- the projections $P_s: X \to X_s$ and $P_u: X \to X_u$. commute with $S(t)$ and $\tilde{A} = A$;

- the strongly continuous semigroup $S_s(t)$:= $S(t)|_{X_t}$ on X_s is exponentially stable.

(See Jacobson and Nett [5] or Curtain [2].)

Setting

$$
z_{s}(t) := S_{s}(t) P_{s} x_{0} + \int_{0}^{t} S_{s}(t-\tau) P_{s} B \tilde{u}(\tau) d\tau
$$

and

$$
z_u(t) := S_u(t) P_u \tilde{x}_0 + \int_0^t S_u(t-\tau) P_u \tilde{B} \tilde{u}(\tau) d\tau,
$$

where $S_u(t) = S(t)|_{X_u}$, we obtain from (3.12),

$$
\tilde{x}(t) = z_u(t) + (\lambda I - A)^{-1} z_s(t).
$$

Since $\tilde{x}, z_s \in L^2(0, \infty; X) \cap L^{\infty}(0, \infty; X)$ and

$$
\lim_{t \to \infty} \tilde{x}(t) = \lim_{t \to \infty} z_s(t) = 0,
$$

the same is true for $z_u(t)$. Realizing that $(\lambda I A)|_{X_u}$ is a bounded operator $(X_u \subset D(A))$ is finite-dimensional) it follows from

$$
x(t) = (\lambda I - A)\tilde{x}(t) = z_s(t) + (\lambda I - A)|_{X_u} z_u(t)
$$

that $x \in L^2(0, \infty; X) \cap L^{\infty}(0, \infty; X)$ and

$$
\lim_{t \to \infty} x(t) = 0.
$$

Hence the pair $(x(t), k(t))$ satisfies (3.3)–(3.5).

In Theorem 3.4 it was required that (A4) and (A5) hold. The next two results show that either (A4) or (A5) become superfluous provided that the semigroup $S(t)$ generated by A is analytic.

3.8. Theorem. *If* $(A1)$ – $(A4)$ *are satisfied, N is a continuously differentiable Nussbaum gain and the semigroup S(t) generated by A is analytic, then statement* (i) *of Theorem* 3.4 *holds true.*

Proof. As in the proof of Theorem 3.4 we can show that the closed-loop system given by (2.1) and (3.1) is equivalent to the system (3.6) – (3.9) . Since BF_{γ} is an A-degenerate operator it follows from Zabczyk [16] that $A + BF_{\gamma}$ generates an analytic semigroup $S_{\gamma}(t)$. Now analytic semigroups satisfy the spectrum determined growth assumption and hence $S_{\gamma}(t)$ is exponentially stable by Lemma 2.5. The stability result follows from [9] as in the proof of Theorem 3.4 provided that

(i) the transfer function H of (3.7) belongs to H_{α}^{∞} for some $\alpha < 0$, and

(ii) the function $f(t) := F_y S_y(t) P_2 x_0$ produced by the initial condition is in $L^2(0, \infty)$.

Notice that (i) and (ii) do not follow trivially because F_{γ} is unbounded. Define

$$
R := A + BF_{\gamma}, \quad D := -(CB)^{-1}CAB(CB)
$$

and

$$
E:=P_2AB(CB)^{-1}.
$$

It follows from Appendix II that the transfer function H of (3.7) is given by

$$
H(s) = F_{\gamma}(sI - R)^{-1}E + D.
$$

Using the fact that $0 \in \rho(R)$ we obtain

$$
H(s) = F_{\gamma} R^{-1} R (sI - R)^{-1} E + D
$$

= $F_{\gamma} R^{-1} (s (sI - R)^{-1} - I) E + D$
= $sF_{\gamma} R^{-1} (sI - R)^{-1} E - F_{\gamma} R^{-1} E + D.$

Now realizing that $F_{\gamma}R^{-1}$ is a bounded operator (by the closed-graph theorem) and using that R generates an exponentially stable analytic semigroup it follows that there exist $\beta < 0$ and $M > 0$ such that H is holomorphic on \mathbb{C}_8 and

$$
\| (sI - R)^{-1} \| \le \frac{M}{|s - \beta|} \quad \text{for all } s \in \mathbb{C}_{\beta}
$$

Hence $H \in H_{\alpha}^{\infty}$ for all $\alpha > \beta$, which shows that (i) holds true.

In order to prove (ii), write

$$
f(t) = F_{\gamma} R^{-1} R S_{\gamma}(t) P_2 x_0 = F_{\gamma} R^{-1} S_{\gamma}(t) R P_2 x_0
$$

where we have used that $P_2x_0 \in D(A)$ which is true because $x_0 \in D(A)$ and im $P_1 \subset D(A)$.

3.9. Corollary. *If* (A1)-(A3) *and* (A5) *are satisfied, N is a continuously differentiable Nussbaum gain and the semigroup generated by A is analytic then the statements* (i) *and* (ii) *of Theorem* 3.4 hold.

Proof. Define \tilde{A} , \tilde{B} and \tilde{C} as in the proof of Corollary 3.7 and verify that the system given by $(\tilde{A}, \tilde{B}, \tilde{C})$ fulfils (A1)–(A4). Application of Theorem 3.8 gives that for $x_0 \in X$ the solution $({\tilde{x}}(t), \tilde{k}(t))$ of the initial value problem (3.11) satisfies (3.3)–(3.5) with x and k replaced by \tilde{x} and \tilde{k} . Now proceed as in the proof of Corollary 3.7.

3.10. Remark. Notice that Theorem 3.8 and Corollary 3.9 improve the result by Kobayashi [7]. They give an affirmative answer to the question raised in [7] whether the assumption that both (A4) and (A5) are satisfied can be relaxed.

4. Appendices

Appendix I

In the proof of Lemma 2.5 we have made use of the following result:

4.1. Lemma. *If the operator* F_{γ} *is given by* (2.2) *then*

 $\overline{\mathbb{C}}_0 \cap \rho(A + BF_x) \neq \emptyset.$

Proof. Set $G_v(s) := F_v(sI-A)^{-1}B$. Since A generates a strongly continuous semigroup there exists $\alpha \in [0, \infty)$ such that $C_{\alpha} \subset \rho(A)$. Hence $G_{\gamma}(s)$ is well defined for all $s \in \mathbb{C}_{\alpha}$.

Step 1: We claim that $s \in \rho(A + BF_{\gamma})$ if $s \in \mathbb{C}_{\alpha}$ and $G_{\gamma}(s) \neq 1$. Notice that for $s \in \mathbb{C}_{\alpha}$,

$$
I = (sI - A - BF_{\gamma})(sI - A)^{-1} + BF_{\gamma}(sI - A)^{-1}
$$
\n(4.1)

so that

$$
B(1 - G_{\gamma}(s)) = (sI - A - BF_{\gamma})(sI - A)^{-1}B.
$$
\n(4.2)

For $s \in \mathbb{C}_{\alpha}$ satisfying $G_{\gamma}(s) \neq 1$ we obtain

$$
B = (sI - A - BF_{\gamma})(sI - A)^{-1}B(1 - G_{\gamma}(s))^{-1}.
$$
\n(4.3)

Substituting (4.3) into (4.1) gives

$$
I = (sI - A - BF_{\gamma})(sI - A)^{-1}
$$

$$
\cdot [I + B(1 - G_{\gamma}(s))^{-1}F_{\gamma}(sI - A)^{-1}]. \quad (4.4)
$$

We obtain from the definition of F_y that the operator

$$
H_{\gamma}(s) := (sI - A)^{-1}
$$

$$
\cdot [I + B(1 - G_{\gamma}(s))^{-1} F_{\gamma}(sI - A)^{-1}]
$$

is bounded. Equation (4.4) shows that $H_{\gamma}(s)$ is a right inverse of $sI - A - BF$. The claim now follows since it is not difficult to show that $H_r(s)$ is a left inverse of $sI - A - BF_{\gamma}$ as well.

Step 2: It remains to show that there exists $\xi \in \mathbb{C}_{\alpha}$ satisfying $G_{\gamma}(\xi) \neq 1$. We will prove that

$$
\lim_{\lambda \to \infty} G_{\gamma}(\lambda) = 0 \tag{4.5}
$$

where λ is a real variable. Since A generates a strongly continuous semigroup there exist real numbers M and β such that

$$
\|(\lambda I - A)^{-1}\| \le \frac{M}{\lambda - \beta} \quad \text{for all } \lambda > \beta. \tag{4.6}
$$

In order to prove that (4.5) holds true it is sufficient to show

$$
\lim_{\lambda \to \infty} \|A(\lambda I - A)^{-1}B\| = 0. \tag{4.7}
$$

Notice that

$$
\|A(\lambda I - A)^{-1}\| = \|\lambda (\lambda I - A)^{-1} - I\|
$$

$$
\leq 1 + \frac{M\lambda}{\lambda - \beta} \quad \forall \lambda > \min(0, \beta).
$$

Thus there exists λ_0 > max(0, β) such that

$$
\|A(\lambda I - A)^{-1}\| \le 1 + 2M \quad \forall \lambda > \lambda_0. \tag{4.8}
$$

Let $\varepsilon > 0$ be given. Set $x = B(1)$ and choose $z \in$ $D(A)$ satisfying

$$
||x-z|| \leq \frac{\varepsilon}{2(1+2M)}.
$$
\n(4.9)

Moreover let $\lambda_1 \geq \lambda_0$ be such that

$$
\frac{M}{\lambda - \beta} \| Az \| \le \tfrac{1}{2} \varepsilon \quad \forall \lambda > \lambda_1. \tag{4.10}
$$

Then it follows from (4.6) and (4.8) – (4.10) ,

$$
\|A(\lambda I - A)^{-1}B\| = \|A(\lambda I - A)^{-1}x\|
$$

\n
$$
\le \|A(\lambda I - A)^{-1}\| \|x - z\|
$$

\n
$$
+ \|(\lambda I - A)^{-1}\| \|Az\|
$$

\n
$$
\le \varepsilon \quad \forall \lambda > \lambda_1,
$$

which proves (4.7).

Appendix H

Consider the system

$$
\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0, \quad (4.11a)
$$

$$
y(t) = Cx(t), \quad t \ge 0,
$$
\n(4.11b)

where A generates a strongly continuous semigroup $S(t)$ on a Banach space X, $B \in \mathscr{L}(\mathbb{R}, X)$ and $C: D(C) \to \mathbb{R}$ is an A-bounded linear operator. If $x_0 \in D(A)$ and $u \in C^1(0, \infty; \mathbb{R})$ there exists a unique classical solution $x(t) \in D(A)$ ($\forall t \geq$ 0) and hence the output y is well defined.

In the following let λ denote the exponential growth constant of $S(t)$. As usual the Laplace transformation is denoted by the superscript $\hat{ }$.

4.2. Proposition. *Suppose* $x_0 = 0$ *and let* $u \in$ $C^1(0, \infty; \mathbb{R})$ *be Laplace transformable such that* $\hat{u}(s)$ exists on \mathbb{C}_{α} for some $\alpha \in \mathbb{R}$. Then the Laplace *transform* $\hat{y}(s)$ *of the output of* (4.11) *exists for all* $s \in \mathbb{C}$ *satisfying* $\text{Re}(s) > \max(\alpha, \lambda)$ *and is given by*

$$
\hat{y}(s) = C\left(sI - A\right)^{-1}B\hat{u}(s).
$$

Moreover the expression $C(sI - A)^{-1}B$ is analytic *in* \mathbb{C}_{λ} .

4.3. Remark. The above proposition says that there exists a transfer function for the system (4.11) and that it is given by $C(sI - A)^{-1}B$. This seems like a trivial fact. However, since C is unbounded, we have to *prove* that C can be taken out of the Laplace integral.

Proof of Proposition 4.2. W.l.o.g. we may assume that $\lambda < 0$ and hence $A^{-1} \in \mathscr{L}(X, X)$. It is well known from semigroup theory that

$$
\frac{\mathrm{d}}{\mathrm{d}\tau}\left(A^{-1}T(\tau)B\right)|_{\tau=t}=T(t)B.\tag{4.12}
$$

Using (4.12), the variation-of-constants formula and partial integration we obtain

$$
x(t) = -\int_0^t d_\tau (A^{-1}T(t-\tau)B)u(\tau) d\tau
$$

=
$$
\int_0^t A^{-1}T(t-\tau)Bu'(\tau) d\tau
$$

$$
-A^{-1}Bu(t) + A^{-1}T(t)Bu(0).
$$

Applying C to both sides of the equation, using the fact that CA^{-1} is bounded and taking Laplace transforms gives

$$
\hat{y}(s) = CA^{-1}(sI - A)^{-1}B(s\hat{u}(s) - u(0))
$$

\n
$$
- CA^{-1}B\hat{u}(s) + CA^{-1}(sI - A)^{-1}Bu(0)
$$

\n
$$
= CA^{-1}\Big\{s(sI - A)^{-1} - I\Big\}B\hat{u}(s)
$$

\n
$$
= CA^{-1}\Big\{A(sI - A)^{-1}\Big\}B\hat{u}(s)
$$

\n
$$
= C(sI - A)^{-1}B\hat{u}(s).
$$

It is clear that the above equations hold for all $s \in \mathbb{C}$ satisfying $\text{Re}(s) > \max(\alpha, \lambda)$. Moreover it follows from the identity

$$
C\left(sI - A\right)^{-1}B = CA^{-1}\left\{s\left(sI - A\right)^{-1} - I\right\}B
$$

that $C(sI - A)^{-1}B$ is analytic in \mathbb{C}_{λ} .

References

- [1] R.F. Curtain, Invariance concepts in infinite dimensions, *SlAM .L Control Optim. 24* (1986) 1009-1031.
- [2] R.F. Curtain, Equivalence of input-output stability and exponential stability for infinite-dimensional systems, *Math. Systems Theory* 21 (1988) 14-48.
- [3] M. Dahleh, Generalization of Tychonov's theorem with applications to adaptive control of SISO delay systems, *Systems Control Lett.* 13 (1989) 421-427.
- [4] M. Dahleh and W.E. Hopkins, Jr., Adaptive stabilization of single-input single-output delay systems, *IEEE Trans. Automat. Control* 31 (1986) 577-579.
- [5] C.A. Jacobson and C.N. Nett, Linear state-space systems in infinite-dimensional space: the role and characterization of joint stabilizability/detectability, *IEEE Trans. Automat. Control* 33 (1988) 541-549.
- [6] T. Kato, *Perturbation Theory for Linear Operators* (Springer, Berlin, 2nd ed., 1976).
- [7] T. Kobayashi, Global adaptive stabilization of infinite-dimensional systems, *Systems Control Lett.* 9 (1987) 215- 223.
- [8] H. Logemarm, Adaptive exponential stabilization for a class of nonlinear retarded processes, *Math. Control Signals Systems* 3 (1990) 255-269.
- [9] H. Logemann and D.H. Owens, Input-output theory of high-gain adaptive stabilization of infinite-dimensional systems with non-linearities, *lnternat. J. Adaptive Control and Signal Process.* 2 (1988) 193-216.
- [10] R.H. Martin, Jr., *Nonlinear Operators and Differential Equations in Banach Spaces* (J. Wiley, New York, 1976).
- [11] S.A. Nefedov and F.A. Sholokhovich, A criterion for the stabilizability of dynamical systems with finite-dimensional input, *Differentsial'nye Uravneniya* 22 (1986) 163- 166.
- [12] R.D. Nussbaum, Some remarks on a conjecture in parameter adaptive control, *Systems Control Lett.* 3 (1983) 243- 246.
- [13] A. Pazy, *Semigroups of Linear Operators and Applications to Partial Differential Equations* (Springer, New York, 1983).
- [14] I. Segal, Non-linear semigroups, *Ann. of Math. 78* (1963) 339-364.
- [15] J.C. Willems and C.I. Byrnes, Global adaptive stabilization in the absence of information on the sign of the high-frequency gain, in: *Proc. INRIA Conf. on Analysis and Optimization of Systems,* Lecture Notes in Control and Information Sciences, No. 62 (Springer, New York, 1984) 49-57.
- [16] J. Zabczyk, On decomposition of generators, *SIAM J. Control Optim.* 16 (1978) 523-534.
- [17] H.J. Zwart, Equivalence between open-loop and closedloop invariance for infinite-dimensional systems: a frequency-domain approach, *SIAM J. Control Optim. 26* (1988) 1175-1199.