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Discrete-Time Low-Gain Control of Uncertain
Infinite-Dimensional Systems

Hartmut Logemann and Stuart Townley

Abstract—Using a frequency-domain analysis, it is shown that
the application of a feedback controller of the formk=(z� 1) or
kz=(z � 1), where k 2 IR, to a power-stable infinite-dimensional
discrete-time system with square transfer-function matrixG(z)
will result in a power-stable closed-loop system which achieves
asymptotic tracking of arbitrary constant reference signals, pro-
vided that i) all the eigenvalues ofG(1) have positive real parts,
and ii) the gain parameter k is positive and sufficiently small.
Moreover, if G(1) is positive definite, we show how the gain
parameter gaink can be tuned adaptively. The resulting adaptive
tracking controllers are universal in the sense that they apply to
any power-stable system withG(1) � 0; in particular, they are
not based on system identification or plant parameter estimation
algorithms, nor is the injection of probing signals required.
Finally, we apply these discrete-time results to obtain adaptive
sampled-data low-gain controllers for the class of regular systems,
a rather general class of infinite-dimensional continuous-time
systems for which convenient representations are known to exist,
both in state space and in frequency domain. We emphasize
that our results guarantee not only asymptotic tracking at the
sampling instants but also in the sampling interval.

Index Terms— Adaptive tracking, discrete-time systems,
frequency-domain methods, infinite-dimensional systems,
sampled-data control, state-space methods.

I. INTRODUCTION

T HE synthesis of low-gain I and PI-controllers for uncer-
tain stable continuous-time plants has received consider-

able attention in the last 20 years. Let be a stable proper
rational continuous-time transfer function matrix. The main
existence result on robust low-gain I-control states that if

spectrum C

then there exists such that for all
the controller stabilizes , and the resulting closed-
loop system asymptotically tracks arbitrary constant reference
signals. This result has been proved by Davison [5] and Lunze
[20] using state-space methods and by Grosdidieret al. [6] and
Morari [26] using frequency-domain methods (see also the
book by Lunze [22, ch. 10] and the textbook by Morari and
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Zafiriou [27, p. 362]). This controller design approach, called
“tuning regulator theory” [5], has been successfully applied to
industrial control problems; see Coppuset al. [3] and Lunze
[21].

The above tuning regulator result has been extended by Po-
hjolainen [28], [29], Pohjolainen and Lätti [30], Logemannet
al. [14], Logemann and Owens [18], and Logemann and Town-
ley [19] to various classes of (abstract) infinite-dimensional
continuous-time systems and by Koivo and Pohjolainen [12]
and Jussila and Koivo [9] to differential-delay systems.

If the plant uncertainty is large, the parameterneeds to
be tuned adaptively. For continuous-time plants low-gain uni-
versal adaptive controllers which achieve asymptotic tracking
of constant reference signals have been presented by Cook [2]
and by Miller and Davison [24], [25] in the finite-dimensional
case and by Logemann and Townley [19] in the infinite-
dimensional case.1 By “universal” we mean that the controllers
are not based on system identification or plant parameter
estimation algorithms.

In this paper, we consider the problem of low-gain I-
control for the class of discrete-time power-stable infinite-
dimensional systems. We apply our results to the sampled-data
control of continuous-time regular systems, a large class
of infinite-dimensional systems introduced and studied by
Weiss [40], [41]. Regular systems encompass a large class
of partial differential equations with boundary control and
observation and functional differential equations with delays
in the state, input, and output variables. The low-gain control
problem for discrete-time systems appears to have received
less attention than its continuous-time counterpart. Kobayashi
[10], [11] has obtained nonadaptive sampled-data versions
of the existence result above for various classes of infinite-
dimensional systems. However, to the best of our knowledge
there are no results on discrete-time adaptive low-gain control
available in the literature.

In Section II, we develop a frequency-domain approach
to nonadaptive low-gain discrete-time control which is more
general than the state-space approach in [10] and [11]. We
show that if is any given input–output stable discrete-time
transfer function matrix such that all eigenvalues of the steady-
state gain have positive real parts, then the integrators

and achieve closed-loop stability and
asymptotic tracking of constant reference signals, provided the
gain parameter is positive and small enough.

1Surprisingly, the low-gain adaptive tracking problem has received less
attention than its high-gain counterpart; see Ilchmann [7], Logemann and
Ilchmann [15], Ryan [34], and the references therein.
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It is natural to tune the scalar gain adaptively, and
therefore Section III is devoted to universal adaptive low-
gain control of discrete-time infinite-dimensional systems.
Whilst universal adaptive continuous-time control of infinite-
dimensional systems has been developed quite extensively
(see, e.g., [15], [16], [19], and [37]), surprisingly, to the best of
our knowledge the only result on universal adaptive discrete-
time control of infinite-dimensional systems is contained in
the note by Logemann and M˚artensson [17] which extends
an earlier finite-dimensional result by Mårtensson [23]. One
possibility for adaptive tuning of is to use discrete-time
versions of M̊artensson’s switching controllers, see [23] and
[17], to perform a “dense” search for the gain in an interval
of the form , . However, we do not pursue this
approach because it is not clear how this type of algorithm
would exploit the low-gain features of the problem. Instead
we restrict our attention to the case when is positive
or negative definite, where Proposition 2.8 will prove to be
extremely useful in constructing adaptive controllers which
do, indeed, exploit the low-gain features of the problem. A
basic idea in Section III is to set the integrator gainequal
to , where , and to adjust by a suitable
adaptation law.

In Section IV, we develop an approach to adaptive low-
gain sampled-data control for regular systems. We emphasize
that our results guarantee not only asymptotic tracking at
the sampling instants but also in the sampling interval. In
Section V, we illustrate our results by some examples and
simulations. Finally, we draw some conclusions in Section VI.

Notation: For and define
C and C C . Moreover, set

C

C is meromorphic

C

C is holomorphic and bounded

C

C

If , then we write C ,
C , and

C .
Let and be Hilbert spaces. The set of all linear bounded

operators from to is denoted by . Moreover, if
is a linear operator from into , we set

domain of

spectrum of

resolvent set of

Finally, for we define

If C or , then we write . As usual,
denotes the space of all locally-integrable

functions with values in .

Fig. 1. Closed-loop systemF(G; K).

II. NONADAPTIVE LOW-GAIN

CONTROL OF DISCRETE-TIME SYSTEMS

A function is called a (discrete-time)transfer-
function or a (discrete-time) transfer-function matrix if

C for some . For any
transfer-function matrices and , the feedback system
shown in Fig. 1 will be denoted by . We shall call
the feedback system input–output stable if every
transfer function that occurs around the loop has
all its entries in C . More precisely, we give
the following definition.

Definition 2.1: Let C and
C for some . The feedback system

is calledinput–output stableif and

C

We say that stabilizes if is input–output stable.
Notice that the above concept of input–output stability is

stronger than -stability, which is equivalent to
C . However, Definition 2.1 has the ad-

vantage that it guarantees the analyticity of the closed-loop
transfer function on for some , a property which
will be needed in the following.

Remark 2.2:

i) It is trivial that stabilizes if and only if stabilizes
.

ii) Let denote the quotient field of , i.e.,
. If is

input–output stable, then and .
iii) C , then is input–output

stable if and only if and
is in C .

iv) A left coprime factorizationof over is a
pair C C
such that , , and there exist

C satisfying .
Right coprime factorizationsover are defined
in an analogous way. It follows from Smith [36] that
and admit left and right coprime factorizations over

if is input–output stable.

An application of a standard result in fractional representa-
tion theory (c.f., Vidyasagaret al. [38]) yields the following
necessary and sufficient algebraic condition for closed-loop
stability in the terms of coprime factors.
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Proposition 2.3: Let C and
C for some . Suppose that there exist a right-

coprime factorization of and a left-coprime
factorization of [both over . Then the
feedback system is input–output stable if and only
if the matrix is unimodular over ,
i.e., if and only if

In the following, let denote the -transform and let
denote the convolution of two sequences. Moreover, we set

if
if .

For completeness we state and prove the final-value theorem
for transfer functions in C .

Lemma 2.4: If C and C , then
.

Proof: Since there exists such that is
holomorphic and bounded on , it follows that can be
written as

for all

where C . Now

and therefore

We are now in the position to formulate the main result
of this section. It forms the discrete-time counterpart of
the continuous-time results due to Pohjolainen [28], [29],
Logemann and Owens [18], and Logemann and Townley [19],
and it shows that low-gain integrators achieve stability and
asymptotic tracking of constant reference signals for large
classes of input–output stable plants.

Theorem 2.5:Suppose that C and set
, where . If

C (1)

then there exists such that for all
the feedback system is input–output stable and
moreover

(2)

Lemma 2.4 and (2) imply that the closed-loop system asymp-
totically tracks reference signals of the form , where

.

Proof of Theorem 2.5:Setting and
, it is clear that is a left-coprime

factorization of . By Proposition 2.3, we only need to show
that there exists such that

det

for all (3)

Seeking a contradiction, suppose that there is no such
that (3) is true. Then there exists a sequence such that
for all IN

(4)

Since and is bounded on , it follows
from (4) that there exist numbers C with and
such that for all IN

(5)

Since we may conclude that

(6)

Moreover, we obtain from (5) that

(7)

As an immediate consequence of (7) we have

for all IN (8)

By (1) it is clear that there exists such that
C . Hence, it follows from (6) that there exists IN such
that for all , C . Combining this with (7)
shows that for all

C (9)

In particular, we have for all

(10)

Setting , and making use of (10) and the fact
that , we obtain for all

Since, by (6), , we conclude that

(11)

Now
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and therefore by (8), (9), and (11)

This yields a contradiction, since by construction

for all IN

Hence there exists such that is input–output
stable for all . In particular, this means that

C for all .
Therefore we obtain, using the invertibility of

which establishes (2).
In the following we apply Theorem 2.5 to state-space

systems. To this end consider a discrete-time system

(12a)

(12b)

evolving on a real Hilbert space . Here ,
, , and . A

system of the form (12) is calledpower stableif is power
stable, i.e., there exist and such that

for all IN

The transfer function of (12) is given by

Clearly, if (12) is power stable, then C .
Let and consider the control law given by

where (13)

Setting

(14)

the closed-loop system can be written as

where

(15)

Corollary 2.6: Suppose that (12) is power stable and
C . Then there exists such that for

all the closed-loop operator is power stable
and moreover for all .

The proof follows from a combination of Theorem 2.5 and
a result by Logemann [13] on the equivalence of input–output
and power stability (see [13, Th. 2]).

Remark 2.7:Condition (1) is crucial both in Theorem 2.5
and Corollary 2.6. Notice that in principle it can be checked
by performing step-response experiments on the plant. If (1)
is replaced by the weaker assumption , and if a
matrix is known such that C , then Theorem
2.5 and Corollary 2.6 remain true, provided the integrator gain

is replaced by .
For a matrix C , we write in the following

if is positive definite, i.e., for all C ,
. We write if is positive semidefinite, i.e.,

for all C . Moreover, we write
if is negative definite, and if is negative
semidefinite. For a complex matrix let denote the
conjugate transpose of . Recall that if is positive or
negative semidefinite, then .

The next result will be an important tool in Section III,
although it is interesting in its own right. For

C we define and

(16)

Proposition 2.8: Let C and suppose
that . Then there exists such that for
all

(17)

if and only if .
The -norm in (17) is defined to be the supremum over

of , the largest singular value of .
Proposition 2.8 is an immediate consequence of the follow-

ing Lemma.
Lemma 2.9: If C , then the following

statements hold.

i) Suppose that and . Then (17) is true
if and only if for all .

ii) There exists such that
for all and for all if and only if

.

Note that if for real , then
for all if and only if

is positive real.
Proof of Lemma 2.9:

i) The continuous-time argument given in [19] (see the proof
of Lemma 3.10) applies to the discrete-time case as well
and will not be repeated here.

ii) Since is holomorphic at 1, we can write

(18)

where C and the power series in (18) converges
and is bounded in some disc centered at one and with
radius . Consequently

for all (19)
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where

Moreover, since is bounded on , there exists
such that

for all (20)

Suppose first that . Then, using (19) and (20) it
remains to show that

for all (21)

for some .
If has , then, since is bounded

on , it follows that the left-hand side of (21) is positive
semidefinite for all sufficiently small . If has

, then

Thus we may conclude that the left-hand side of (21) is
positive semidefinite for all sufficiently small. Hence we
have shown that there exists a such that (21) holds true.
Choosing we see that

for all and all .
Conversely, suppose that there exists a such that

for all and all .
Then, by (19), we obtain for any C that

for all

Hence, it follows that for all , all C , and
all

(22)

It follows immediately from (22), by considering
with , that for any C

To prove that , it only remains to show

for all C (23)

Seeking a contradiction, suppose that (23) is not true. Without
loss of generality we may assume that . For

with

where

we obtain

Denoting the left-hand side of (22) by , it then follows
that

as

which contradicts (22).
Remark 2.10:It is not difficult to show that Theorem 2.5,

Corollary 2.6, and Proposition 2.8 remain true if the integrator
is applied instead of the (strictly proper) integrator
.

III. A DAPTIVE LOW-GAIN CONTROL

OF DISCRETE-TIME SYSTEMS

Throughout this section we assume that the quadruple
defines a power-stable -input/ -output

discrete-time system given by (12), with transfer function
. Let and denote

the state-space operators for the state-space realization of
the series connection of a discrete-time integrator followed
by . The transfer function of the series connection is
denoted by . We consider the integrators and

. In the first case , , ,
and are given by (14) and ; in the second case

, , and remain the same, whilst

and

From the results of Section II we know that if C
then proportional negative output feedback applied towill
result in a stable closed-loop system, provided the feedback
gain is positive and sufficiently small. It is natural to tune
the scalar gain , adaptively, and this section is devoted to this
problem. As already mentioned in the introduction, for most
of the results in this section we need to assume that ,
which is of course stronger than C (c.f. Remark
3.3).

First, we record a simple result which shows that the refer-
ence signal can be realized internally. This internal realization
of the reference signal is inspired by the internal model
principle and converts the tracking problem ( ) into the
stabilization problem .
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Lemma 3.1: Suppose . For each , if
and , then

(24)

and hence

for all IN (25)

The easy proof of the above lemma is left to the reader.
Theorem 3.2:Let (12) describe an -input/ -output,

power-stable system. Suppose that the transfer function of
the plant satisfies . Let , be an arbitrary
constant reference signal and consider the control law

(26a)

(26b)

where and . If
and , then:

i)
ii) and

iii) and

iv)

Proof: First note that by Lemma 3.1, .
Hence, we can rewrite the error, , as

(27)

where

(28)

The next step is to show that is bounded. If is
unbounded, then by Proposition 2.8 there exists such
that, with , is a stabilizing controller,
in the sense that given by (16) is in C .
Moreover, . It follows from Corollary 2.6
that the operator given by (15) is power stable. For all

we can rewrite (27) and (28) as

(29)

Let be a sequence in . Then using Schwartz’s
inequality and Parseval’s theorem

Hence

(30)

where the existence of a positive constantis guaranteed by
the power-stability of . Hence

for all

This inequality clearly contradicts the unboundedness of
and the assumption that . Therefore is
bounded. Hence, exists, proving i). Using
(26b), we have that . To prove ii), iii), and
iv), simply note that by (27) and (28)

so that is the solution of a power-stable system driven
by an -input. Hence and ,
from which ii), iii), and iv) follow readily.

Remark 3.3:Suppose that and that is
power stable. Then, using a well-known result on positive
definite operators (see Rudin [33, p. 313]), it follows that the
condition is satisfied, provided that

and

Theorem 3.2 is the exact discrete-time analog of the
continuous-time adaptive low-gain result given by [19,
Proposition 4.6]. In the high-gain stabilization of continuous-
time, finite-dimensional systems, exponential decay to zero
of the state can be guaranteed by using piecewise-linear gain
adaptation; see, for example, Ilchmann and Owens [8]. In
the particular situation here we can exploit certain spectrum-
decomposition properties of stabilizable discrete-time systems
(see, e.g., Logemann [13]) to obtain similar results in the
present setting.

Lemma 3.4:Let the assumptions of Theorem 3.2 be satis-
fied and let . If as , then there exists

and such that

for all IN
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Proof: By Corollary 2.6, there exists and
such that

C

Thus the pair is stabilizable. Now is compact,
and hence it follows from [13, Th. 4] that admits
a decomposition

so that is finite-dimensional, ,
, is power stable, and the eigenvalues

of all have modulus greater than or equal
to one. If we decompose with respect to and as

, then clearly , and therefore, using
power-stability of restricted to , we have

for some and .
Theorem 3.5:Suppose the conditions of Theorem 3.2 hold.

Let be any strictly decreasing sequence of positive real
numbers with . With the control law

(31a)

if (31b)

where , the conclusions of Theorem 3.2 hold true.
Moreover, all convergences are exponential.

Proof: Arguing as in the proof of Theorem 3.2 we can
readily obtain

so that is bounded and therefore i)–iv) of Theorem 3.2
hold. In particular, as . Since

, there exist nonnegative integers and so that
and

for all

It follows from Lemma 3.4 that for some
and .

So far we have assumed that the discrete-time integrator
is . If , then we can also use the integrator

. Due to the proportional part contained in ,
this integrator will usually produce faster responses than the
strictly proper integrator . Under the conditions of
Theorem 3.2, the conclusions of Theorems 3.2 and 3.5 remain
true if and if (26) is replaced by

(32a)

(32b)

respectively, (31) is replaced by

(33a)

where

if (33b)

(33c)

However, if (as will be the case in Section IV), then we
can use (32) or (33) only if we assume that for some
known , where denotes the spectral radius of.

Theorem 3.6:Suppose the conditions of Theorem 3.2 hold.
If for some known and and are
given by (32), respectively (33), with , then the
conclusions of Theorem 3.2, respectively, Theorem 3.5, hold.

Proof: Suppose the controller is given by (32), then the
error satisfies

(34)

where is given by (28). Equation (34) is in general not
solvable for if . This possibility is ruled out
by assuming that . Therefore

(35)

where

In (35) we choose the gain sufficiently small to
ensure that is power stable (see Corollary 2.6) and that

. Using (35), the remainder of the proof
follows closely that of Theorem 3.2 and Theorem 3.5 and is
therefore omitted. The case when the controller is given by
(33) follows similarly.

So far we have assumed that . Trivially, we can
also deal with the case , simply by changing the sign
of the integrator gain. For completeness we now consider the
situation when the steady-state gain is sign-definite,that
is, where either or . This situation arises
most naturally in the single-input/single-output case where we
only need to assume that the steady-state gain is nonzero,
i.e., , but the sign of is unknown. Unlike the
known sign case, where the current gain is determined purely
as a function of the adaptation parameter, we now use a
controller involving an additional sign-switching component.

Theorem 3.7:Suppose that (12) describes an-input/ -
output, power-stable system and that is sign-definite.
Let , be an arbitrary constant reference signal,
and consider the control law defined recursively by

(36)

where

if
else

(37)

if
else

(38)
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and . If and , then
the conclusions of Theorem 3.2 hold.

In the switching strategy given by (37) and (38) the current
sign of the gain is held in , the modulus of
the gain is determined by , and subsequent halvings
of the gain are monitored by .

Proof: Note that it is sufficient to consider the stabiliza-
tion problem ( ) and that the proof is complete if we can
show that is bounded. If is unbounded, then we can
choose a sequence with
so that:

i) for all IN
ii) for all

IN
iii) for all IN
iv) for all IN where

.

Using arguments similar to those in the proof of Theorem
3.2, we obtain

(39)

where is given by (15). In (39) we used the fact that
for and

and . Therefore

Now

and using the fact that is a stabilizing gain, we obtain

for some positive constants and . Hence

where and are positive constants. If is defined by
, then

(40)
Applying the mean-value theorem to on
gives

where . Hence, it follows from (40) that

Using the monotonicity of logarithm we obtain

(41)

But so that (41) contradicts the unboundedness
of . It follows that is bounded. The rest of the proof
is exactly the same as that of Theorem 3.2.

IV. SAMPLED-DATA LOW-GAIN

CONTROL OF REGULAR SYSTEMS

In Sections II and III we obtained results on low-gain
control for discrete-time systems. We now apply these discrete-
time results to the sampled-data control of regular systems,
an important class of continuous-time infinite-dimensional
systems introduced and studied by Weiss [40], [41]. Let
the continuous-time system to be controlled have a transfer
function . In [19], it is shown that for continuous-time
low-gain control it is necessary that and
natural to assume that the plant is exponentially stable. In this
section we show that these two properties are mapped, under
appropriate and naturally defined sampling, into the conditions
needed in discrete-time low-gain control, which in turn permits
application of the results obtained in Sections II and III. In
the case of a regular system with a bounded observation
operator, the system is sampled using sample/hold. In the case
of a regular system with unbounded observation we have to
“smooth” the output by averaging prior to sample/hold.
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A. Regular Systems

A general class of -input/ -output continuous-time
infinite-dimensional systems would be thewell-posedsystems
as introduced by Salamon in [35]. The class of well-posed
systems captures the systems theoretic properties of linearity,
time-invariance, and causality together with natural continuity
properties. Moreover, every well-posed system has a well-
defined transfer function . A regular system is a
well-posed system satisfying the extra requirement that

exists. Let be a real Hilbert space. Given an input function
, the state of a regular linear system

with state-space is described by

(42)

Here:

• is the generator of a C-semigroup on
• , and is the completion of

with respect to , where
.

It is well known that extends to a C-semigroup on
. The generator of this semigroup is a bounded operator

from to which extends . The extended semigroup
and its generator will be denoted by the same symbols
and , respectively. Equality in (42) holds in .

Continuity of the input-to-state map is expressed by

(43)

where . If , then the mild solution, given by

(44)

evolves continuously in . Moreover, (43) implies that
for all C with greater than

the exponential growth bound of .
To introduce an observation for (44), let denote the

domain of , as an operator defined on, endowed with the
graph norm. The semigroup restricts to a C-semigroup

on . The exponential growth bounds of are the
same on all three spaces , , and . If and

, then the output of a regular (or well-posed system)
is given by

where the observation operator is in . Conti-
nuity of the state-to-output map guarantees that

for all (45)

for some .
The continuity of the input-to-output map for a regular

system, combined with continuity of the state-to-output map,
guarantees that for each and the
output is well-defined in and satisfies

for a.e. (46)

Here is the Lebesgue extension of ; see Weiss [39]. In
particular, we have . The following properties of

are consequences of regularity:

• for each , for a.e.
• im for all .

Moreover, the transfer function of a regular system
can be written as

Detailed definitions of regular and well-posed systems can be
found in [35], [40], and [41] and are summarized in the context
of continuous-time low-gain control in [19].

Let be an arbitrary sequence. If

for each IN (47)

and if , then the state will satisfy

(48)

We see that for all and IN, and
accordingly we define by

(49)

Moreover, and
define appropriate state-space operators for the state evolution
of the discretization. However, in general, regularity only
guarantees that so that even with
piecewise-constant input functions, standard sampling at the
output is not defined. Moreover, even if the output function
is continuous, so that standard sampling is defined, in general
the resulting discrete-time system will not have a bounded
observation operator. We therefore consider two cases.

i) The observation operator is bounded. In this case
extends to a bounded operator fromto and

. This case includes, in particular, the
well-known class of Pritchard–Salamon systems; see for
example Pritchard and Salamon [32] and Curtainet al. [4].

ii) The observation operator is unbounded in the sense that
cannot be extended to an operator in .

In case i), if , then the output is continuous and
standard sampling is defined, while in case ii) we first average
the output over one sampling interval.

B. Bounded Observation

Suppose that . If and is
given by (47), then the output given by (46) is piecewise-
continuous, the discontinuities being at. It is clear that
is right-continuous at . We define

(50)

and

(51)
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Proposition 4.1: Suppose that (44) and (46) describe an
exponentially stable, regular system with bounded observation
operator . Fix as the sampling interval and let

. If given by (47) is applied to (44) and
(46), then and given by (49) and (50) satisfy

(52a)

(52b)

where is given by (51). Moreover, is power
stable and

(53)

Here denotes the transfer function of (52).
Proof: It is clear that and satisfy (52). More-

over, is power stable because is exponentially stable
on . All that remains is to verify (53). Using (51) we have

If (44) and (46) describe an exponentially stable, regular
system with a bounded observation operator and

, then (52) describes a power-stable, discrete-time system
with . We can therefore apply the discrete-
time low-gain results of Section II, and in the case when the
steady-state gain is sign-definite, the adaptive, low-gain
discrete-time results of Section III, to guarantee that

(54)

We are also interested in the response of the continuous-time
system to these digitally computed controls.

We will concentrate on applying the adaptive results of
Section III to sampled-data control of square plants with sign-
definite, steady-state gains. Applications of the nonadaptive
results of Section II to general multivariable square systems
can be obtained in the same manner.

Theorem 4.2:Suppose that the system given by (44) and
(46) is an exponentially stable regular system with bounded
observation operator . Suppose that . Fix
and set , where is given by (50).

a) If and are obtained by applying (26) to (52),
and , defined by (47), is applied to (44) and (46),
then for all :

i)
ii) .

b) If and are obtained by applying (31) to (52),
and , defined by (47), is applied to (44) and (46),
then for all there exists
such that:

i)
ii) .

Proof:

(a) Using Theorem 3.2 and Proposition 4.1, we see that
, and

. Applying the corresponding obtained
from via (44), we have that for each IN
and all

(55)

Therefore i) follows from the exponential stability of
and the fact that . To prove

ii), we use (46) so that

(b) In this case exponentially, by Theorem 3.5.
It follows that the right-hand side of (55) tends to

exponentially. Statement ii) follows
similarly.

Unbounded Observation:In this case, we cannot define a
sampled output via (50). Instead we first average the output
over one sampling interval and define

(56)

Proposition 4.3: Suppose that the system given by (44) and
(46) is exponentially stable and regular. Fix as the
sampling interval, and let . If is given by
(47), then and , given by (49) and (56), respectively,
satisfy the discrete-time equations given by (52), where we
have (57), as shown at the bottom of the page. Moreover,
is power stable and

(58)

Proof: We already know from Proposition 4.1 that (52a)
is true. Combining (48) and (46) gives

for a.e. (59)

Let , and choose and such that

(57)
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Fig. 2. Closed-loop plots with controller (26).

and

Define

(60)

Using the continuity of the state-to-output map [c.f. (45)] we
see that

(61)

On the other hand, since , we may take
out of the integral in (60) and hence obtain the following

formula:

Now letting and using (61) yields

(62)

which is (52b) with and given by (57). Since is
exponentially stable, is power stable. Finally, to show (58),
we use (57) to obtain

In the following let denote the Laplace transform and let
denote the set of all distributions of the form

where , , denotes the unit point mass
at and . The set of all matrices with
entries in is denoted by .

We now combine Theorems 3.2 and 3.5 and Proposition 4.3
to prove the following result on adaptive low-gain sampled-
data control for regular systems with unbounded observation.

Theorem 4.4:Let (44) and (46) describe a regular, expo-
nentially stable system. Suppose that . Fix
and set , where is given by (56).

a) If and are obtained by applying (26) to (52),
and , defined by (47), is applied to (44) and (46),
then for all :

i)
ii) .

Under the extra assumptions that

and (63)

we have .
b) If and are obtained by applying (31) to (52),

and , defined by (47), is applied to (44) and (46),
then for :

i) for some and
all

ii) for some .
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Fig. 3. Closed-loop plots with controller (31).

If the extra assumptions

and

for some (64)

are satisfied, then there exist such that
for all .

The assumption that is not very re-
strictive and seems to be satisfied in all practical examples of
systems with -transfer-function matrices.

Proof of Theorem 4.4:

a) Using Theorem 3.2 and Proposition 4.3 we know that
. Part i) is the same as

that in Theorem 4.2. For part ii) note that for almost all

Since , the result follows by using the
fact that and observing that

for all . If (63)

is satisfied, then, by the exponential stability of on
, we have that , and hence

where denotes continuous-time convolution ap-
plied component-wise. Since and

, it is easy to show that

and hence .
b) In this case exponentially (by Theorem 3.5).

It follows that the right-hand side of (55) tends to
exponentially. Statement ii) follows

similarly. Finally, suppose the extra assumptions (64)
hold. Using the fact that for
some and some , it is not difficult to
show that there exist such that

c.f. Callier and Winkin [1]. The claim now follows,
since converges to zero exponentially (by the
assumption that ).
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Fig. 4. Closed-loop plots with controller (32).

Remark 4.5:Theorems 4.2 and 4.4 have been obtained by
applying Theorems 3.2 and 3.5 to the sampled system (52).
In the same manner we may derive sampled-data versions of
Theorems 3.6 and 3.7.

V. EXAMPLES AND SIMULATIONS

The results of Sections II and III apply to the general
class of infinite-dimensional, discrete-time systems, whilst the
results of Section IV apply to the general class of continuous-
time regular linear systems. For the purpose of illustration we
consider a simple example of an uncertain finite-dimensional
system with output delay to which we apply the adaptive
low-gain, sampled-data controllers of Section IV. In the sim-
ulations we used Matlab.

Example 5.1:We consider a class

(65)

of systems with output delay. Here , ,
, and . The transfer function of (65) is

given by . The system (65)
can be represented as a Pritchard–Salamon system with state
space ; see, e.g., Pritchard and Salamon
[31], [32]. As remarked in Section IV, Pritchard–Salamon
systems can be represented as regular systems with bounded
observation operators. It follows from the results of Section IV
that (65) can be sampled using Proposition 4.1 to obtain a
discrete-time system. The results of Sections II–IV, and, in
particular, the discrete-time, adaptive low-gain results, can
be applied to the discrete-time system obtained by sampling,

provided that C and . To
use the results of Sections III and IV we must assume that

is sign-definite.
To be specific, let , , and

In this case so that
, where denotes the transfer function of

the corresponding discretization.
In the simulations we set

for all

and

if
if

In Fig. 2 we show plots of , , and for
the closed-loop system obtained by using (26), applied to the
sampled version of (65), with the response of (65) to
the control input computed using the corresponding , and

given by (47); see Theorem 4.2.
In Fig. 3 we show the same closed-loop plots but with (26)

replaced by (31) and plotted instead of . Recall that
this controller guarantees that the error converges to zero
exponentially. Both of these controllers use the discrete-time
integrator .

In Figs. 4 and 5 we show the same closed-loop plots but
with (26) and (31) replaced by (32) and (33), respectively,
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Fig. 5. Closed-loop plots with controller (33).

Fig. 6. Closed-loop plots with controller (36)–(38) andS0 = +1.

that is, when we use the discrete-time integrator . As
expected, due to the proportional part in , the closed-
loop responses shown in Figs. 4 and 5 have smaller overshoot
than those in Figs. 2 and 3.

In Figs. 6 and 7 we show the closed-loop plots for the
controller given by (36)–(38) with , where
and , respectively. This controller is appropriate if we
do not know the sign of . Notice that the closed-loop
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Fig. 7. Closed-loop plots with controller (36)–(38) andS0 = �1.

response in the case when is poor. This corresponds
to the case when the controller started with the incorrect sign,
producing an unstable closed-loop system until the controller
switches to the correct sign at approximately 13 s, after which
the closed-loop system is stable and the error converges
to zero.

VI. CONCLUDING REMARKS

We have considered nonadaptive and adaptive low-gain
control for linear infinite-dimensional discrete-time systems. In
particular, for power-stable systems with sign-definite, steady-
state gain we have derived explicit techniques for tuning the
integral gain in the low-gain controller. We have applied our
results to the adaptive, sampled-data, low-gain control of regu-
lar linear (infinite-dimensional continuous-time) systems. Our
results are illustrated by simulations for a finite-dimensional
unknown (but stable) system with fixed but unknown output
delay.

Several problems still require further work. For example,
can our approach tolerate input–output nonlinearities such
as saturation, deadzone, and hysteresis. Preliminary works
suggest that this is the case, at least for nonadaptive low-gain
control.

A more challenging problem would be to show that the
sufficient condition for nonadaptive low-gain control, namely

C (the steady-state gain matrix has unmixed
spectrum), is also sufficient for adaptive-low gain control via
techniques which make explicit use of the low-gain nature
of the problem. We note that adaptive controllers based on
the dense searching techniques of Logemann and Mårtensson
[17] could be used in this context.
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