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Discrete-Time Low-Gain Control of Uncertain
Infinite-Dimensional Systems

Hartmut Logemann and Stuart Townley

Abstract—Using a frequency-domain analysis, it is shown that Zafiriou [27, p. 362]). This controller design approach, called
the application of a feedback controller of the form%/(= —1) or  “tuning regulator theory” [5], has been successfully applied to

kz/(z—1), where k € IR, to a power-stable infinite-dimensional - j,qystrial control problems; see Coppesal. [3] and Lunze
discrete-time system with square transfer-function matrix G(z) [21] ’

will result in a power-stable closed-loop system which achieves .
asymptotic tracking of arbitrary constant reference signals, pro-  The above tuning regulator result has been extended by Po-
vided that i) all the eigenvalues ofG (1) have positive real parts, hjolainen [28], [29], Pohjolainen andaitti [30], Logemanret

and ii) the gain parameter & is positive and sufficiently small. g, [14], Logemann and Owens [18], and Logemann and Town-
Moreover, if G(1) is positive definite, we show how the gain 1oy 119] to various classes of (abstract) infinite-dimensional

parameter gain k& can be tuned adaptively. The resulting adaptive - . . N
tracking controllers are universal in the sense that they apply to CcONntinuous-time systems and by Koivo and Pohjolainen [12]

any power-stable system withG (1) = 0; in particular, they are ~ and Jussila and Koivo [9] to differential-delay systems.
not based on system identification or plant parameter estimation  If the plant uncertainty is large, the paramekeneeds to

algorithms, nor is the injection of probing signals required. pe tuned adaptively. For continuous-time plants low-gain uni-
Finally, we apply these discrete-time results to obtain adaptive yqrgq| adaptive controllers which achieve asymptotic tracking

sampled-data low-gain controllers for the class of regular systems, f tant ref . s h b ted by Cook [2
a rather general class of infinite-dimensional continuous-time ©' constantreierence signais have been presented by 00 (2]

systems for which convenient representations are known to exist, @hd by Miller and Davison [24], [25] in the finite-dimensional
both in state space and in frequency domain. We emphasize case and by Logemann and Townley [19] in the infinite-

that our results guarantee not only asymptotic tracking at the dimensional caséBy “universal” we mean that the controllers

sampling instants but also in the sampling interval. are not based on system identification or plant parameter
Index Terms— Adaptive tracking, discrete-time systems, estimation algorithms.

frequency-domain  methods, infinite-dimensional  systems, |n this paper, we consider the problem of low-gain I-

sampled-data control, state-space methods. control for the class of discrete-time power-stable infinite-
dimensional systems. We apply our results to the sampled-data
I. INTRODUCTION control of continuous-time regular systems, a large class

. . of infinite-dimensional systems introduced and studied by
HE synthesis of low-gain | and PI-controllers for uncer;,, .

) . . . — Weiss [40], [41]. Regular systems encompass a large class
tain stable continuous-time plants has received conside

able attention in the last 20 years. L@, be a stable proper of partial differential equations with boundary control and

. . . . : .observation and functional differential equations with delays
rational continuous-time transfer function matrix. The main

. . .. In the state, input, and output variables. The low-gain control
existence result on robust low-gain I-control states that if . . .
problem for discrete-time systems appears to have received

spectrunjG.(0)] C {s € C|Re s > 0} less attention than i'Fs continuous-ti_me counterpart. Kobayf':\shi

[10], [11] has obtained nonadaptive sampled-data versions

then there exists:* > 0 such that for allk € (0, k*) of the gxistence result above for various classes of infinite-

the controllerk//s stabilizesG., and the resulting closed- dimensional systems. However, to the best of our knowledge
loop system asymptotically tracks arbitrary constant referentere are no results on discrete-time adaptive low-gain control

signals. This result has been proved by Davison [5] and Lun@ailable in the literature.

[20] using state-space methods and by Grosdielied.[6] and !N Section Il, we develop a frequency-domain approach
Morari [26] using frequency-domain methods (see also tfi@ nonadaptive low-gain discrete-time control which is more

book by Lunze [22, ch. 10] and the textbook by Morari anfeéneral than the state-space approach in [10] and [11]. We
show that ifG is any given input—output stable discrete-time
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It is natural to tune the scalar gaih adaptively, and
therefore Section Ill is devoted to universal adaptive low- u?
gain control of discrete-time infinite-dimensional systems._u! e! O N NN y’
Whilst universal adaptive continuous-time control of infinite- + +

dimensional systems has been developed quite extensively
(see, e.g., [15], [16], [19], and [37]), surprisingly, to the best of
our knowledge the only result on universal adaptive discrete-
time control of infinite-dimensional systems is contained i
the note by Logemann and awtensson [17] which extends
an earlier finite-dimensional result by @&tensson [23]. One
possibility for adaptive tuning of: is to use discrete-time [l. NONADAPTIVE LOW-GAIN
versions of Martensson’s switching controllers, see [23] and CONTROL OF DISCRETETIME SYSTEMS

[17], to perform a “dense” search for the gain in an interval A function G is called a (discrete-time)transfer-
of the form (0, 6), & > 0. However, we do not pursue thisfunction or a (discrete-time)transfer-function matrix if
approach because it is not clear how this type of algorithm < M(E,, C™™) for some« > 0. For anym x m
would exploit the low-gain features of the problem. Insteagiansfer-function matricelG and K, the feedback system
we restrict our attention to the case whek(1) is positive shown in Fig. 1 will be denoted bfF (G, K). We shall call
or negative definite, where Proposition 2.8 will prove to bghe feedback systenf(G, K) input-output stable if every
extremely useful in Constructing adaptive controllers WhiCﬂansfer functionu? — yl that occurs around the |00p has
do, indeed, exploit the low-gain features of the problem. Ay its entries inH>(E;, C™™). More precisely, we give
basic idea in Section Ill is to set the integrator gairequal the following definition.

to v, 7, where0 < p < 1/2, and to adjusty,, by a suitable  Definition 2.1: Let G € M(IE,, <™*™) and K € M
adaptation law. (E,, C™*™) for somea > 0. The feedback systetA(G, K)

In Section IV, we develop an approach to adaptive 10Ws calledinput—output stabléf det [I + G(z) K(z)] # 0 and
gain sampled-data control for regular systems. We emphasize
that our results guarantee not only asymptotic tracking at K(I+GK)! -KGU+KG)!
the sampling instants but also in the sampling interval. In £(G, K) := GK(I+GK)"! G(I+KG)"
Section V, we illustrate our results by some examples and oo Imx2m
simulations. Finally, we draw some conclusions in Section VI. € HZ(E,, C )-

Notation: For « > 0 andw € R defineE, = {z €
C||z| > a} andC,, := {s € C|Re s > w}. Moreover, set  We say thaK stabilizesG if 7(G, K) is input-output stable.
mxm Notice that the above concept of input—output stability is
M(Ea, € ) stronger thari?-stability, which is equivalent t&'(G, K) €
:={f : Eo — C™*™|fis meromorphi¢, H>(IE;, C*™*?¥™). However, Definiton 2.1 has the ad-
H>(E,, C™™) vantage that it guarantees the analyticity of the closed-loop

—f. mxm) ¢ ; transfer function o, for somex € (0, 1), a property which
={f:E,— C"* hol h d bound _ . . ’
s - |75 holomorphic and boundgd will be needed in the following.

Eig. 1. Closed-loop systef (G, K).

HZ(Eq, €M) Remark 2.2:
= U H>(Eg, C™™). i) Itis trivial that K stabilizesG if and only if G stabilizes
0< B K.
If m = 1, then we writt M(E.) = M(E., C™%™), ii) Let Q denote the quotient field o/ °(IE;), i.e., Q =

{n/d|n,d € HX(Ey),d(z) # 0}. If F(G,K) is
input—output stable, the@r € Q™*™ andK € Q™*™,
d) G € HZ(E, C" ™), then F(G, K) is input—output
stable if and only ifdet [I + G(2)K(#)] #Z 0 and K(J +
GK) ! is in HX(IE;, C™ ™).
iv) A left coprime factorizationof G over H>(IE,) is a
D(S) := domain ofS pair (D, N) € HX(E;, C™*™) x HX(E;, C"™)
o(S) := spectrum of$ such thatdet D # 0, G = D™!N, and there exist
X, Y € HX(E,, C"™) satisfyingDX + NY = I.
Right coprime factorization®ver H>(IE;) are defined

H>*(E,) = H>(E,, C"™), and HZ(E,) :=
Hzo(]Eou q:rnxrn).

Let V andW be Hilbert spaces. The set of all linear bound
operators fron” to W is denoted by3(V, W). Moreover, if
S is a linear operator fronV into V, we set

o(S) := resolvent set ofS.

Finally, for p > 0 we define in an analogous way. It follows from Smith [36] thé&t
o and K admit left and right coprime factorizations over
E(V) = {(vo, v1, va, - )i €V, Y [Juill? < o0} H>(IE,) if F(G, K) is input-output stable.
:=0

An application of a standard result in fractional representa-
If V= CorV =R, then we writel}, := % (V). As usual, tion theory (c.f., Vidyasagaet al. [38]) yields the following
LY (0, oo; V) denotes the space of all locallyintegrable necessary and sufficient algebraic condition for closed-loop

functions with values inV. stability in the terms of coprime factors.
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Proposition 2.3: Let G € M(E,, C"*™) andK € M Proof of Theorem 2.5:SettingNy, := kI/z andD(z) :=
(E,, C"*™) for somea > 0. Suppose that there exist a right{(z — 1)/z]Z, it is clear that (D, N;) is a left-coprime
coprime factorization(Ng, Dg) of G and a left-coprime factorization ofK;. By Proposition 2.3, we only need to show
factorization(Dk , Nk ) of K [both overH2°(IE;)]. Then the that there existg* > 0 such that

feedback systenf (G, K) is input—output stable if and only k 2_1
if the matrix Nx Ng + Dk Dy is unimodular oveH > (IE, ), nf det[—G(z) + —7} ‘ >0
i.e., if and only if for allk € (0, k*). 3)

inf | det [Nkx(2)Ng(z)+ Dkg(2)Da(2)]| > 0. , - .
zlenlE1| et [Nk (2)Ne(2) + Dk (2)De (2] Seeking a contradiction, suppose that there igho- 0 such

that (3) is true. Then there exists a sequehgd 0 such that

In the following, let Z denote thez-transform and letx
eftor all n € IN

denote the convolution of two sequences. Moreover, we s

9. — 1 |'|:7’L:O7]_727 ’inf
0 ifn:—]_7—27.... z€E;

kny, z—1

det [ G(z)+ z I} ‘ =0. (4)
4 4

rS}rr{celimn_,C><> k, = 0 and G is bounded onE, it follows

8 (4) that there exist numbees, € C with |z,| > 1 and

such that for alln € IN

For completeness we state and prove the final-value theo
for transfer functions inH=(IE,, €™ ™).
Lemma 2.4:If G € HZ(IE;, C™*™) andv € C™, then
limj—oo[Z7HG) * {v0,}]; = G(1)v. det [k, G(zn) + (2, — D)I] = 0. (5)
Proof: Since there existsx € (0, 1) such thatG is )
holomorphic and bounded o, it follows that G can be Sincelimy .ok, G(z,) = 0 we may conclude that

written as lim 2, = 1. ©)
G(z) =) Giz™", forallz € E, Moreover, we obtain from (5) that
:=0
1-—=2,
where {G;} € IL(C™*™). Now o € o [G(zn)]. ()

J As an immediate consequence of (7) we have
[Z27HG) x {vbn}], = Y Gj—ivbi

=0 ‘ =) o 1G], for all n € N. (8)
j mn
= Z Giv By (1) it is clear that there exis{8 > 0 such thato[G(1)] C
=0 Cs. Hence, it follows from (6) that there exisfé € IN such
and therefore that for alln > N, ¢[G(z,)] C Cs. Combining this with (7)
oo shows that for alln > N
lim [Z27YHG) % {v8,}]. = G 1—2,
500 [ ]J z:% A “ € (D@. (9)
= G(wv. "

In particular, we have for alh > N
We are now in the position to formulate the main result
of this section. It forms the discrete-time counterpart of Rez, <1. (10)
the continuous-time results due to Pohjolainen [28], [Zggsettingzl := 1 +¢Im z,, and making use of (10) and the fact
Logemann and Owens [18], and Logemann and Townley [19}, |Zn|"> 1, we obtain for alln > N
and it shows that low-gain integrators achieve stability and - -

asymptotic tracking of constant reference signals for large |2 = 2 _ 1-Rez,

classes of input—output stable plants. I1—2n]  \/2(1 =Rezy) + |22 = 1
Theorem 2.5:Suppose thaG € HZ(IE,, C™*™) and set < 1—Rez,

Ki(2) == kI/(z — 1), wherek € RR. If > —2(1 “Rez)

g[G(1)] C Cy 1) _ L V1 —Rez,.

2
then there existst* > 0 such that for allk € (0, k*) . V2
the feedback systen¥(G, K;) is input-output stable and Since, by (6)lim,,—., Rez, = 1, we conclude that

moreover |7 = 2l
lim —*& =0. (11)
[GK(I + GK;)~'|(1) = I. ) n—oo |1 =z
Lemma 2.4 and (2) imply that the closed-loop system asym%pW ) )
totically tracks reference signals of the forfwé,,}, where L=z 1=z Zm—zl-
r ¢ R™. kn, kn, 1—2, ky,
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and therefore by (8), (9), and (11) Remark 2.7: Condition (1) is crucial both in Theorem 2.5
, and Corollary 2.6. Notice that in principle it can be checked
liminf Re —— 27 > 8> 0. by performing step-response experiments on the plant. If (1)
n—eo no is replaced by the weaker assumptitst G(1) # 0, and if a

matrix I is known such that[G(1)['] C Cy, then Theorem
2.5 and Corollary 2.6 remain true, provided the integrator gain
k is replaced bykl'.
For a matrixAd € C™*™, we write in the followingM > 0
if M is positive definite, i.e.{¢, M¢) > 0 for all £ € C™,
Hence there existg* > 0 such thatF(G, Kj) is input-output ¢ =£ 0. We write M > 0 if M is positive semidefinite, i.e.,
stable for allk € (0, k). In particular, this means that(¢, M¢) > 0 for all ¢ € C™. Moreover, we writeM < 0
GKi(I + GK;) ' € HX(Ey, €™™) for all k € (0, k*). if M is negative definite, and/ < 0 if M is negative
Therefore we obtain, using the invertibility & (1) semidefinite. For a complex matri%/ let A/* denote the
) . _, conjugate transpose a¥/. Recall that if M is positive or
[GK (I + GK)™7](1) = lim kG (2)[(z = DI +EG(2)] negative semidefinite, thet/ = A H.
-7 The next result will be an important tool in Section Il
although it is interesting in its own right. FoG €
which establishes (2). O HZ(E:;, C"™) we defineG(z) := [1/(z — 1)]G(z) and
In the following we apply Theorem 2.5 to state-space ~ ~ ~ _
systems. To this end consider a discrete-time system Gi(2) = G(2) [ + kG(2)] . (16)

This yields a contradiction, since by construction

_ /
RelkZ":O, for all n € IN.

Proposition 2.8: Let G € H(E;, C"*"™) and suppose

a1 = Az + Bun (122) ynat det G(1) # 0. Then there existd* > 0 such that for
Yn = Cxy + Duy, (12b) anl & e (0, k)
evolving on a real Hilbert spac&. Here A € B(X, X), 1G]loe = 1 (17)
B e B(R™, X), C € B(X, R™), andD € B(R™, R™). A k
system of the form (12) is callepower stablef A is power if and only if G(1) > 0.
stable, i.e., there exist/ > 0 andp € (0, 1) such that The H>*-norm in (17) is defined to be the supremum over

IE; Of 0yax [Gi(2)], the largest singular value &&(z).

n n
A" < Mp",  forall neN. Proposition 2.8 is an immediate consequence of the follow-

. L ing Lemma.
The transfer functiorG of (12) is given by Lemma 2.9:If G € HZ(E;, C"*™), then the following
G(z) = C(2I — A)"'B + D. statements hold.
i) Suppose thatlet G(1) # 0 andk > 0. Then (17) is true
Clearly, if (12) is power stable, theG € H(E,, C"*™). if and only if I + kG(z) + kG"(z) = 0 for all z € ;.
Let r € R™and consider the control law given by ii) There existsk* > 0 such thatl + kG(z) + kG (2) = 0
for all z € IE; and for all & € (0, k*) if and only if
U1 = Up + k(10 — yn), wherek € R. (13) G(1) = 0.
_ Note that if G(z) € R™*™ for real z, thenl + kG(z) +
Setting kGH(z) = 0 for all z € IE; if and only if (1/2)I + kG(z)

. A B . 0 . is positive real.
A= <0 7 ), B:= <I>’ C:= (C,D) (14 Proof of Lemma 2.9:
i) The continuous-time argument given in [19] (see the proof

the closed-loop system can be written as of Lemma 3.10) applies to the discrete-time case as well
N N and will not be repeated here.
(Tp1s Unt1) = Ap(Tn, un) + EBro, ii) Since G is holomorphic atz = 1, we can write
where G(2) = G+ Y Gz — 1) (18)
Ay = A-EkBC. (15) =1

whereG; € C™*™ and the power series in (18) converges
Corollary 2.6: Suppose that (12) is power stable and and is bounded in some digs. centered at one and with
c[G(1)] € Co. Then there exist%* > 0 such that for radiuse > 0. Consequently
all &£ € (0, k*) the closed-loop operatad;, is power stable

and moreovetim,, .o, ¥, = r for all (zo, ug) € X x R™. I+ kG(z) + kG (z)
The proof follows from a combination of Theorem 2.5 and . k k H
a result by Logemann [13] on the equivalence of input—output =1+ z—1 G+ z—1 GT()
and power stability (see [13, Th. 2]). + kH(z), forall z e A, (19)
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where Seeking a contradiction, suppose that (23) is not true. Without
oo oo loss of generality we may assume tHat> 0. For 2, =
H(Z) — ZGZ(Z _ 1)i—1 + Zfo(z _ 1)2‘—1' Tn + oy, € IE; N A, with
=1 =1 1 3
N Ln = 1 + ) Yn = /_
Moreover, sincea(z) is bounded orE; \ A, there exists " "
where
ki > 0 such that a
/3 > Z
I +kG(2) + EGH(2) = 0, _
forall z € By \ A, k € (0, ky). (20) e obtain
Rez, -1 n
Suppose first thaG(1) = 0. Then, using (19) and (20) it lzn — 12~ 142
remains to show that Im 2, Bn
. _ =112 1452
4 2B =D Gy k() 2 0 o =1l
|z —1] Denoting the left-hand side of (22) iy z, &), it then follows
forall z e B NA,, k € (0, kz) (21) that
2kn
for someky > 0. Lz, ) = (a— Bb) + ||I€I1? + k(& H(z,)E)
If z€ E;NA, hasRez > 1, then, sincéH(z) is bounded 143
on A., it follows that the left-hand side of (21) is positive — 00 asn — o0
1s%em|d<ef|{1|t§zhfe(;r all sufficiently smakt. If 2 € [E; N A, has which contradicts (22). O
€z ' Remark 2.10:1t is not difficult to show that Theorem 2.5,
Rez—-1 Rez -1 Corollary 2.6, and Proposition 2.8 remain true if the integrator
|z — 12 - (Rez)2 + (Imz)2 + 1 — 2Rez z/(z — 1) is applied instead of the (strictly proper) integrator
S Rez -1 1/(z = 1).
~2(1 —Rez)
__1 lll. ADAPTIVE LOW-GAIN CONTROL

2 OF DISCRETETIME SYSTEMS
Thus we may conclude that the left-hand side of (21) is Throughout this section we assume that the quadruple
positive semidefinite for all sufficiently small. Hence we (4 B, ¢, D) defines a power-stablem-inputhn-output
have shown that there existska such that (21) holds true. discrete-time system given by (12), with transfer function
Choosing k* = min (ky, k2) we see thatl + kG(z) + G(z) = C(zI — A)"'B + D. Let A, B, C, and D denote
kGH(z) = 0 for all z € IE; and allk € (0, k*). the state-space operators for the state-space realization of

Conversely, suppose that there existé*a> 0 such that the series connection of a discrete-time integrator followed
I+kG(2) +kG"(z) = Oforall € IE; and allk € (0, £*). by G(z). The transfer function of the series connection is

Then, by (19), we obtain for ang € C™ that denoted byG(z). We consider the integratody/(z — 1) and
L z/(z = 1). In the first caseG(z) = [1/(z — 1)]G(z), 4, B,
2Re <§, —G(1)§> + [|€]12 + k{¢, H(2)¢) > 0, and C are given by (14) and) = 0; in the second case
z—1 G(2) = [z/(z — 1)]G(z), A, andC remain the same, whilst

forallz e E; NA,, k€ (0, k).
D=D and B= <B>

Hence, it follows that for alk € IE; N A,, all £ € C™, and I
all £ € (0, k*) ) ]
From the results of Section Il we know thatdfG(1)] C Cy,
2k then proportional negative output feedback appliedtovill
|z — 1]? [(Rez=1Re (&, G(1)S) result in a stable closed-loop system, provided the feedback
— ImzIm (¢, G(1)E)] + ||¢]12 gain k is positive and sufficiently small. It is natural to tune
+ k(€ H(2)E) > 0. (22) the scalar gairk, adaptively, and this section is devoted to this

problem. As already mentioned in the introduction, for most
of the results in this section we need to assume@t) > 0,

It foll [ diately f 22),b ideri E;NnA. L
ollows immediately from (22), by consideringe I, N A which is of course stronger tharfG(1)] C C, (c.f. Remark

with Im » = 0, that for anyé € C™

3.3).
e (€, G(1)¢) > 0. First, we record a simple result which shows that the refer-
- ence signal can be realized internally. This internal realization
To prove thatG(1) > 0, it only remains to show of the reference signal is inspired by the internal model

principle and converts the tracking problem-£ 0) into the
b:=Im{(, G(1)§) =0, forall £e C™. (23) stabilization problem: = 0).
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Lemma 3.1: Supposealet G(1) # 0. For eachr € IR™, if
u" = G7H1)r andz” = (I — A)~'Bu", then
A", u") = (2", ") (24)
and hence
CA™(z", u") =C(z", u")
=7, for all n € IN. (25)

The easy proof of the above lemma is left to the reader.

Theorem 3.2:Let (12) describe anm-input/m-output,

power-stable system. Suppose that the transfer function of

the plant satisfie€&x(1) > 0. Letr8,, r € R™ be an arbitrary
constant reference signal and consider the control law

(26a)
(26b)

Unt1 =Un +Tnlen

=Y+ ||Cn||2
%. If (370, U,o) e X xR™

Yn+1

wheree,, = r —y, and0 < p <
and -, > 0, then:
) limp oo Yn = Yoo < 00;
i) limp—oo un =u" = G71(1)r and{u, —u"} € I3 (R™);
i) lim,—eor, =a" = —-A)"'Bu" € X and{z,—2"} €
13 (X);
iv) lim, oo 4¥n = 7.
Proof: First note that by Lemma 3.t,= CA"(z", u").
Hence, we can rewrite the errofe, }, as

e, =Cz, (27)
where
Ty = A" — xg, U — ug) — Z A"_]_leyj_pej. (28)
3=0

The next step is to show thdty, } is bounded. If{~,} is
unbounded, then by Proposition 2.8 there exists> 0 such
that, with k; = ~, 7, k1 /(2 — 1) is a stabilizing controller,
in the sense tha€, given by (16) is iNHZ(IE,, €M),
Moreover, ||Gk1||C><> = 1/k;. It follows from Corollary 2.6

27

Hence

1/2

Z le;I?

j=ny

1/2
< Z IC AL o, ||
o\ 1/2
Z ZCA’ TEB(y P - kye
j=n1 |li=n1
1/2

L

< co+ 1 Z les 1 (30)

_nl

where the existence of a positive constants guaranteed by
the power-stability of4;,. Hence

1/2

V Tn+l — Yny — Z ||GJ||2

_nl

<cok1vh < cokivh ., foralln > n;.
This inequality clearly contradicts the unboundednesgaf
and the assumption that < p < % Therefore {v,,} is
bounded. Hencdim,, ..o ¥» = Yoo €XiSts, proving i). Using
(26b), we have thafe,} € I3 (IR™). To prove ii), iii), and
iv), simply note that by (27) and (28)
Tptl = zzlkl.f?n + B(/ﬁ - ’y;p)en

so that{z,} is the solution of a power-stable system driven
by ani?-input. Hence{z,} € 13 (X) andlim, oo &, = 0,
from which ii), iii), and iv) follow readily. O

Remark 3.3: Suppose thatlet G(1) # 0 and thatA4 is
power stable. Then, using a well-known result on positive
definite operators (see Rudin [33, p. 313]), it follows that the

that the operatord;, given by (15) is power stable. For allcondition G(1) > 0 is satisfied, provided that

n > ny We can rewrite (27) and (28) as

n—1

S C B -

Jj=n1

en = C A iy, — kpe;. (29)

Let {w,} be a sequence iR™. Then using Schwartz’s
inequality and Parseval's theorem

n j—1 o 2\ 1/2
> £ cai-ts
j=n1 |li=n1
1/2
n
<G floo [ D MNewyll?

j=n1

1/2
Z w2

'—nl
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A=A, B=C*, and D= D*>»0.
Theorem 3.2 is the exact discrete-time analog of the
continuous-time adaptive low-gain result given by [19,
Proposition 4.6]. In the high-gain stabilization of continuous-
time, finite-dimensional systems, exponential decay to zero
of the state can be guaranteed by using piecewise-linear gain
adaptation; see, for example, llchmann and Owens [8]. In
the particular situation here we can exploit certain spectrum-
decomposition properties of stabilizable discrete-time systems
(see, e.g., Logemann [13]) to obtain similar results in the
present setting.

Lemma 3.4:Let the assumptions of Theorem 3.2 be satis-
fied and letk € R. If fl}j To — 0 asn — oo, then there exists
M > 0andp € (0, 1) such that

|ARiol| < Mp", forall neN.
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Proof: By Corollary 2.6, there exist&* > 0 anda € However, ifD # 0 (as will be the case in Section 1V), then we
(0, 1) such that can use (32) or (33) only if we assume thaD) < d for some
- known d > 0, wherer(D) denotes the spectral radius bf
o(Ap) C{A € Cl[Al < a}. Theorem 3.6:Suppose the conditions of Theorem 3.2 hold.

Thus the pair(A,, B) is stabilizable. Now3 is compact, T 7(D) < d for some knownd > 0 ?”d_‘g)“n} and{v,} are
and hence it follows from [13, Th. 4] that x R™ admits 9iven by (32), respectively (33), with,™ < 1/d, then the

a decomposition conclusions of Theorem 3.2, respec;tivgly, Theorem 3.5, hold.
B B Proof: Suppose the controller is given by (32), then the
XxR" =Xy ®Xs error {e,} satisfies
so thatX, is finite-dimensional A (Xy) € Xy, Ax (Xs) C en = Cdy — Dy Pey, (34)

Xs, Ax : Xs — Xs is power stable, and the eigenvalue§here i, is given by (28). Equation (34) is in general not

of 4 : Xy — Xy all have modulus greater than or equado|yable fore, if —y2 € o(D). This possibility is ruled out
to one. If we decomposg, with respect toXs and Xy s py assuming that;? < 1/d. Therefore

To = Ts + Zv, then clearlyzy =0, and therefore, using

r n—1
ower-stability ofA;, restricted toXg, we have 5 Tneng ~ S i1 _
P YOl >d tods en =Cly AL Gy = 3 o AP By (477 = ke
| Az Zo || = [| Ay zs || < Mp" . j=m1
= Dy, (7,7 = k1)en (35)

for someM > 0 andp € (0, 1). O
Theorem 3.5:Suppose the conditions of Theorem 3.2 holdvhere
Let {~;} be any strictly decreasing sequence of positive real - (A B _1, (B
numbers withlim; _, x; = 0. With the control law A=\ ) UHERD) k| J(CD)
I+kD)™! <§3 )

I+ le)_lC
where0 < p < 1/2, the conclusions of Theorem 3.2 hold true. Dkl = (I+ le)—lp_

Moreover, all convergences are exponential. . o
Proof: Arguing as in the proof of Theorem 3.2 we carl (35) we choose the gaik; > 0 sufficiently small to

Yot =+ llenll?s 0 = K57 (31a) Bi, = (
Untl =Un + Kjcn, 7 € (Kj41, 5] (31b) S
Ckl = (

readily obtain ensure thatdy, is power stable (see Corqllary 2.6) and that
L det (I + k1.D) # 0. Using (35), the remainder of the proof
c .
\/m < 0R1 < cokyy? < COkng follows close!y that of Theorem 3.2 and Theorem.3.5. and is
Kj therefore omitted. The case when the controller is given by
so that{~, } is bounded and therefore i)—iv) of Theorem 3.£33) follows similarly. O

So far we have assumed th@t(1) > 0. Trivially, we can
also deal with the cagé (1) < 0, simply by changing the sign
of the integrator gain. For completeness we now consider the
situation when the steady-state g&ii1) is sign-definitethat
in = A2, forall n > no. is, where eitheiG(1) = 0 or G(1) < 0. This situation arises
most naturally in the single-input/single-output case where we
It follows from Lemma 3.4 thalz,.|| < Mp" forsomeM >0 only need to assume that the steady-state gain is nonzero,
andp € (0, 1). 0 ie., G(1) # 0, but the sign ofG(1) is unknown. Unlike the
So far we have assumed that the discrete-time integraf@iown sign case, where the current gain is determined purely
is 1/(z —1). If D = 0, then we can also use the integratogs a function of the adaptation parametgr we now use a
z/(z—1). Due to the proportional part contained4f\(z — 1),  controller involving an additional sign-switching component.
this integrator will usually produce faster responses than theTheorem 3.7:Suppose that (12) describes aninputin-

strictly proper integratod /(z — 1). Under the conditions of output, power-stable system and th@{1) is sign-definite.
Theorem 3.2, the conclusions of Theorems 3.2 and 3.5 remait ¢, » € IR™ be an arbitrary constant reference signal,

hold. In particularz, — 0 asn — oc. Sincelimy,—oo 7,7 =
~v>F, there exist nonnegative integets and: so thaty ? €
("Ji-l—la Iﬁ;i] and

true if D = 0 and if (26) is replaced by and consider the control law defined recursively by
Up+1 = Un + Un+1, Un = ’Yrjpen (32&) Yn4+1l = Tn + ||6n||2
Ynt+1 =Yn + ||6n||2 (32b) Upt1 =Upn + Sy log P (yn)en (36)
respectively, (31) is replaced by where
S, if log™ v,41 > 3 log™® 7,
Up41 = Up + Ung1 (33&) Sn-l—l = { -s, els(;,g Tt 2108 K (37)
where . - -
_ _lm if log™? vp41 > 5 log L 38
Un =hjen Iy € (Kjt1, K] (33b) Tt {fynﬂ else (38)
Ynt+1 =Yn + HenH2 (33c) So=1, mo="0
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and0 < p < 1/2. If (zg, up) € X x R™ and~y > 1, then and using the fact that,, is a stabilizing gain, we obtain
the conclusions of Theorem 3.2 hold.
In the switching strategy given by (37) and (38) the current ny,;—1

sign of the gainS,, log™? ~,, is held in S, the modulus of gy, || < co +e1 Z el
the gain is determined blpg ™ ~,,, and subsequent halvings T
of the gain are monitored by,.

Proof: Note that it is sufficient to consider the stabilizazg, gome positive constants and ¢;. Hence
tion problem ¢ = 0) and that the proof is complete if we can

show that{~, } is bounded. I+, } is unbounded, then we can N ——— ! Y
" " X ' o — Yo < 2|k | log? .. (6o + 6 o —
choose asequeneg < n; < ng < -+ with lim;_,o n; = 00 na it = Tnay < 2hing | 1087 i, (B0 + 813/ 3z, =0 )

1/2

=0

so that: i, . .
. . . wherecy and ¢, are positive constants. i,,, is defined by
i) SiG(1) >0, foralli=ng, -, nyjy1,J € N; oo 6. — L loa—? then
i 7 TP oy 1 ;P 5 — R R 0g n2; T 2 og rynzjl
i) log™ v > 5log Py, foralli = nyj, -+, nojy,
J € N;
iil) 10g7™? Yy, 41 < 5 log™ p,,, forallj e N; \/ Orzs = nz; < 2lkng | Log? Y, (€0 + ELy/rma; — 70 )
V) |G, llo = 1/|kn,, |, forallj € IN, wherek,,; := (40)

Applying the mean-value theorem log™ ~ on [v,,,, On,,]

Sny; log™ . |
I%lves

Using arguments similar to those in the proof of Theore
3.2, we obtain

1 — _2(9n2j - ’7712_7')
n2j41 Y2 (log™ &y, )’ log™ v,
2
> el .
i=ng; where&,.,; € [Vn,;, bno,]. Hence, it follows from (40) that
1/2
n2jit41

IN

o 2 _
D |G s, o, log™" iy, L

ngy 024 =2 =2 2 Ok, | log? v,.. (6 + ¢ s — .
i=naz; ’ 2p IOg_p_l Snzj - | 0| & 23( 0 LV e ,YO)

o\ 1/2

Nn2j41 1—1

+| D0 |1 DC CAT B(log™ i = Fay, e

i=n2j l=TL2j _ . .
1/2 \/Snzj logl 2 Snzj S 2 V 2p|kn0 | (CO +c \/ Snzj - ’70)

n2j+1

Using the monotonicity of logarithm we obtain

|kn0 | N Fi—n2; ~ 2 (41)
N |I€n2j| _z: ‘CAk”O Tnz;
e 12 But 0 < p < 1/2 so that (41) contradicts the unboundedness
1 n2jt1 of {7,}. It follows that{~, } is bounded. The rest of the proof
+ Wlknzj — Ky | Z lles | (39) is exactly the same as that of Theorem 3.2. O
n2j i=ng;
where flknzj is given by (15). In (39) we used the fact that IV. SAMPLED-DATA LOW-GAIN
forz ¢ X xIR™ andk € R CONTROL OF REGULAR SYSTEMS
n—1 In Sections Il and 1l we obtained results on low-gain
(A—kBCY'i =(A - ky,BC)"ii — Z(A — kyn, BC)"~1~%  control for discrete-time systems. We now apply these discrete-
i=0 time results to the sampled-data control of regular systems,
(k= kny ) BC(A - EBC)'i an important class of continuous-time infinite-dimensional
systems introduced and studied by Weiss [40], [41]. Let
and ||Gkn0 | = 1/kn,. Therefore the continuous-time system to be controlled have a transfer
function G.(s). In [19], it is shown that for continuous-time
N2t 12 low-gain control it is necessary thalet G.(0) # 0 and
\/m — Z lles])? natural to assume that the plant is exponentially stable. In this
i=ng; section we show that these two properties are mapped, under
1/2 appropriate and naturally defined sampling, into the conditions
<9 Ko | nil i 2 ' neec_ied _in discrete-time Iow-gai_n con_trol, wh_ich in turn permits
=k, |\ £ kng 723 application of the results obtained in Sections Il and Ill. In
S the case of a regular system with a bounded observation
Now operator, the system is sampled using sample/hold. In the case
of a regular system with unbounded observation we have to
Fng1 = Ag,, Fn — B(log™" v = kny )en “smooth” the output by averaging prior to sample/hold.
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A. Regular Systems Here Cy is the Lebesgue extension 6f; see Weiss [39]. In
A general class ofm-inputim-output continuous-time Particular, we haveX; C D(Cy). The following properties of

infinite-dimensional systems would be thell-posedsystems Cz &€ consequences of regularity:

as introduced by Salamon in [35]. The class of well-posed*® for eachz € X, T(t)x € D(Cy) for a.e.t > 0;

systems captures the systems theoretic properties of linearity, im[(s] — A.)"'B.] € D(Cy) for all s € g(A.).

time-invariance, and causality together with natural continuity Moreover, the transfer functiof.(s) of a regular system

properties. Moreover, every well-posed system has a wethn be written as

defined transfer functionG.(s). A regular system is a

well-posed system satisfying the extra requirement that G.(s) = Cr(sl — A.)"*B. + D..
S_}E}geR Ge(s) = D. Detailed definitions of regular and well-posed systems can be

. . . ) . found in [35], [40], and [41] and are summarized in the context
exists. LetX be a real Hilbert space. Given an input function -ontinuous-time low-gain control in [19].

u(-) € L% (0, oo; IR™), the state of a regular linear system Let {u,} ¢ R™ be an arbitrary sequence. If

loc

with state-spaceX is described by
#(t) = A(t) + Bau(t), z(0)=zo€ X. (42) wnt+t)=u, eR™,  foreachn €N, ¢ [0, 1) (47)

Here: and if 0 € p(A,.), then the state:(nr + t) will satisfy
» A. is the generator of a §&semigroupZ’(¢) on X; 1
* B, € B(R™, X_;), and X_; is the completion ofX z(nt +1t) = T(t)z(nr) + [T(t) — I] A7 Beun.  (48)
with respect to||z||x_, = ||(3] — A.)"'z|/x, where
B e olA). We see thate(nr +¢) € X for all ¢ € [0, 7) andn € IN, and

It is well known that7'(¢) extends to a gsemigroup on accordingly we definer,, € X by

X_1. The generator of this semigroup is a bounded operator

from X to X_; which extendsA.. The extended semigroup
and its generator will be d_eno_ted by the same symigis Moreover,T(r) € B(X) and[T(r)—I| A-'B, € B(R™, X)

and Acr re_spectlvely_. Equality in (42) h_olds ;. define appropriate state-space operators for the state evolution

Continuity of the input-to-state map is expressed by o the discretization. However, in general, regularity only
t guarantees thay(-) € L?(0, oo;IR™) so that even with

H/o T(t—v)Beu(v)dv . < bellu()llz2 0,1y (43) piecewise-constant input functions, standard sampling at the
output is not defined. Moreover, even if the output function

whereb, > 0. If zo € X, then the mild solution, given by  is continuous, so that standard sampling is defined, in general
t the resulting discrete-time system will not have a bounded

z(t) = T(t)zo + /0 T(t — v)Beu(v) dv (44)  observation operator. We therefore consider two cases.

i) The observation operator is bounded. In this c#@%e
extends to a bounded operator frathto R™ andC, =
Cr € B(X, R™). This case includes, in particular, the
well-known class of Pritchard—Salamon systems; see for
example Pritchard and Salamon [32] and Curttial. [4].

ii) The observation operator is unbounded in the sense that

C. cannot be extended to an operatordalX, IR™).

In case i), ifzg € X, then the output is continuous and

andard sampling is defined, while in case ii) we first average

e output over one sampling interval.

Tn = x(nT). (49)

evolves continuously itX. Moreover, (43) implies thatsl —
A.)7IB. € B(R™, X) for all s € € with Res greater than
the exponential growth bound @ (¢).

To introduce an observation for (44), 1&; denote the
domain ofA., as an operator defined o, endowed with the
graph norm. The semigrouf(¢) restricts to a @-semigroup
T(t) on X;. The exponential growth bounds @%¢) are the
same on all three spacég;, X, and X_;. If u(-) = 0 and ¢
zo € X1, then the output of a regular (or well-posed systerrﬁ)I

is given by

y(t) = CTI(t)zo B. Bounded Observation
where the observation operat6t, is in B(X;, R™). Conti- Suppose that’, € B(X, R™). If 29 € X andu(:) is
nuity of the state-to-output map guarantees that given by (47), then the outpyt-) given by (46) is piecewise-

continuous, the discontinuities beingrat. It is clear thaty(-
ICT )l 220, 1wy < allzllx, forallz € Xy (45) g rignt-continuous atir. We defineg v
for somec; > 0.

The continuity of the input-to-output map for a regular Yn = y(n7) (50)
system, combined with continuity of the state-to-output map,

guarantees that for eaafy € X andu(-) € L2(0, T; R™) the 2"d
outputy(-) is well-defined inL2?(0, 7; IR™) and satisfies <A B) . |:T(7') [T(r) — | AT'B.

= 51
y(t) = Cra(t) + Deu(t)  foraet>0.  (46) ¢ D Ce D. G
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Proposition 4.1: Suppose that (44) and (46) describe an b) If {u,} and{~,} are obtained by applying (31) to (52),
exponentially stable, regular system with bounded observation andw(-), defined by (47), is applied to (44) and (46),

operatorC.. Fix 7 > 0 as the sampling interval and let then for all (zg, up) € X x R™ there existsM, w > 0
{u,} C R™. If u(-) given by (47) is applied to (44) and such that:
(46), thenz,, andy, given by (49) and (50) satisfy ) |lz(t) = 2"|lx < Me™%
i) [lr — (@) < Me™".
Tnt1 = Azy + Buy (52a) Proof:
Yn =Czp + Duy (52b)  (a) Using Theorem 3.2 and Proposition 4.1, we see that
lim,—oo Uy, = u" = G.(0)7tr, and {u, — u"} €
where(A, B, C, D) is given by (51). Moreover4 is power IZ(IR™). Applying the corresponding:(-) obtained
stable and from {u,} via (44), we have that for each € IN

and allt € [nr, (n 4+ 1)7)

— A —
G)=CU - A" B+D = G0).  (53) £(t) = T(t)zo + Tt — n7)[T(r) — 1]
n—1
Here G(z) deljotes the transfer function of_ (52). . Z T(n—j — 1)7] AT Bo(u; — u")
Proof: Itis clear that{x,} and{y, } satisfy (52). More- =
over, A is power stable becaugg(t) is exponentially stable _ _ —1 o
on X. All that remains is to verify (53). Using (51) we have + It = n7) {] Ac ] Be(ttn = ")
+ [T(t) — I] A Beu'". (55)
C(I = A" B+ D =C[I = T(N]T(r) = []AT'B. Therefore i) follows from the exponential stability of
+ D, T(t) and the fact thafu,, — v"} € I3 (IR™). To prove
—_C.AT'B. + D, i), we use (46) so that
=G.(0). O tlim y(t) = —C. AT Bau” + D" = 7.

(b) In this caseu,, — «" exponentially, by Theorem 3.5.

If (44 d (46) d ib tially stable, I . .
(44) and (46) describe an exponentially stable, regular It follows that the right-hand side of (55) tends to

system with a bounded observation operator &tdG.(0) # . i . : )
0, then (52) describes a power-stable, discrete-time system * —AZ7"B.u" exponentially. Statement ii) follows
with det G(1) # 0. We can therefore apply the discrete- similarly. _ _ =

time low-gain results of Section I, and in the case when the Unbounded Observationin this case, we cannot define a

steady-state gai6.(0) is sign-definite, the adaptive, |OW_gainsampIed output via (50). Instead we first average the output

discrete-time results of Section lll, to guarantee that over one sampling interval and define
.
im u, =u" = G7H0)r, lim y, = 7 (54) Yn =2 /0 y(nT +t)dt. (56)
n—oo n—oo

Proposition 4.3: Suppose that the system given by (44) and
We are also interested in the response of the continuous-timg) is exponentially stable and regular. Fix> 0 as the
system to these digitally computed controls. sampling interval, and lefu,} C IR™. If u(-) is given by
W(_a will concentrate on applying the adaptive re§ults. Qﬁ?),then{xn} and{y, }, given by (49) and (56), respectively,
Section 1l to sampled-data control of square plants with SigRatisfy the discrete-time equations given by (52), where we

definite, steady-state gains. Applications of the nonadaptiMgve (57), as shown at the bottom of the page. Moreaxer,
results of Section Il to general multivariable square systems power stable and

can be obtained in the same manner. L

Theorem 4.2:Suppose that the system given by (44) and G()=C(I -4 B+D= G0). (58)
(46) is an exponentially stable regular system with bounded p oo \We already know from Proposition 4.1 that (52a)
observation operata?.. Suppose tha.(0) = 0. Fixr € R™ g trye. Combining (48) and (46) gives
and sete,, = r — y,, Wherey,, is given by (50). .

a) If {u.} and{~,} are obtained by applying (26) to (52), ¥(n7 +1) =CrT () zn + CLT (¢) A7" Beun + Ge (0) un

and u(-), defined by (47), is applied to (44) and (46), for a.e.t € [0, 7). (59)
thgn for all (@o, uo) G,X xR . Let e > 0, and chooser;, € X; and#, € X such that
) limy—ooz(t) = 2" := —AZI1Bu" € X; i
i) limg oo y(t) = 7. ;L{%Hxn —apllx =0
A BY T(7) [T(1) - I| A7 B. (57)
C D) \77CT(r) - IATY 771CL(T(r) — A2 B, + G.(0)
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Fig. 2. Closed-loop plots with controller (26).

and In the following let£ denote the Laplace transform and let
. . A denote the set of all distributions of the form
llII(l) || By, — b5 || x_, =0.

Define 9=9a+>_ g,

=0
Y (nT 4+ 1) :=CrT(t)zs + CLT(H) AT, + G.(0)uy,
1 /" whereg, € L1(0, >), t; > 0, &, denotes the unit point mass
Yn 12—/ Y (nT + 1) dt. (60) att; and {g;} € I%. The set of allm x m matrices with
0 entries inA is denoted by4™x™,
Using the continuity of the state-to-output map [c.f. (45)] we We now combine Theorems 3.2 and 3.5 and Proposition 4.3
see that to prove the following result on adaptive low-gain sampled-
data control for regular systems with unbounded observation.
Theorem 4.4:Let (44) and (46) describe a regular, expo-
nentially stable system. Suppose tiat(0) > 0. Fix r € R™

Snd sete,, = 7 — vy, Wherey,, is given by (56).

T

(61)

lim %5 = yn.
e—0

On the other hand, sinc€; € B(X;, R™), we may take
Cr, out of the integral in (60) and hence obtain the followin

formula:

v, =T CLT(r) — [ AT e,
+ 77O () = I] A726E, 4 Go(0)u,,.
Now lettinge — 0 and using (61) yields
Yp =7 TCL[T(T) = 1| AT 2,
+ {r7ICL[T(T) = ] A7?B. + Go(0) }up,
which is (52b) withC' and D given by (57). SinceT(t) is

exponentially stabled is power stable. Finally, to show (58),
we use (57) to obtain

G(1) =77 Co[I(r) = AT = T()] M [I(7) = 11 A7* Be
+ [rrOL[I(r) — I A7? B, 4 G.(0)]
=G.(0). O

(62)

a) If {u,} and{y,} are obtained by applying (26) to (52),
and u(-), defined by (47), is applied to (44) and (46),
then for all (zg, up) € X x IR™:

) limy—ooz(t) = 2" := —AZI1Bu" € X;
i) [r—w(-)] € L0, oo;IR™).
Under the extra assumptions that

o€ X; and L7H(G.) e A™™ (63)
we havelim,_...[r — y(t)] = 0.

b) If {u,} and{~,} are obtained by applying (31) to (52),
and u(-), defined by (47), is applied to (44) and (46),
then for (zg, ug) € X x R™:

) |lz(t) — 2"||x < Me™“* for someM, w > 0 and
all t > 0;
i) 57 |lr = y(®)]|?e*** dt < oo for somew > 0.
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Fig. 3. Closed-loop plots with controller (31).

If the extra assumptions

zo € X3
and

exp (a)L7HG)() € A™*™  for somen >0  (64)
are satisfied, then there ex@f, w > 0 such tha|r —y(¢)|| <
Me=«t for all t > 0.

The assumption that=1(G,.) € A™X™ is not very re-
strictive and seems to be satisfied in all practical examples of
systems withH >°-transfer-function matrices.

Proof of Theorem 4.4:

a) Using Theorem 3.2 and Proposition 4.3 we know that
lim, — oo %, = 6" = G.(0)~1r. Part i) is the same as
that in Theorem 4.2. For part ii) note that for almost all
t € [nr, (n+ 1)7)

y(t) =CrT()xo + CrT(t —nr) [T(7) — 1]

' i T{(n=j=1r] AT Be(u; — u")
+Cp[I(t = nt) = N AT Be(un — u")
+ Dc(un - U'T)

+ CLT(H) A Bou™ 4+ G (0)u".

Since G.(0)u”™ = r, the result follows by using the
fact that {u, — «"} € [3(R™) and observing that
CLT(-).IO S LQ(O, OO;]R,m) for all zg € X. If (63)

30 35 40 45 50

is satisfied, then, by the exponential stabilityZoft) on
Xi, we have thatim;_,., Cp7(t)zo = 0, and hence
lim y(t) = tlim {C.T(t)xo

+ [L7HGe) *ul(h)}
= lim [C7H(Ge) > u](t)

where * denotes continuous-time convolution ap-
plied component-wise. SincBm;_...u(t) = «" and
L7YG,) € A™*™ it is easy to show that

lim [£7Y(G.) xu](t) = G.(0)u" = 7

t—oo

and hencdim; ... y(t) = 7.

b) In this caseu,, — u” exponentially (by Theorem 3.5).

It follows that the right-hand side of (55) tends to
" = —A7!B.u" exponentially. Statement ii) follows
similarly. Finally, suppose the extra assumptions (64)
hold. Using the fact that =!(G.) = G exp (-« ) for
someGG € A™*™ and somex > 0, it is not difficult to
show that there exisd, w > 0 such that

[ = [£7H(Ge) ] (B
= Ge(0)u" = [£7H(Ge) x ] (1)
< Me™t

c.f. Callier and Winkin [1]. The claim now follows,
sinceCLT(t)xo converges to zero exponentially (by the
assumption thaty € X;). O
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3.5

Fig. 4. Closed-loop plots with controller (32).

Remark 4.5: Theorems 4.2 and 4.4 have been obtained Ipyovided thats(A.) N C = ¢ anddet (C.AZ1B.) # 0. To
applying Theorems 3.2 and 3.5 to the sampled system (5@3e the results of Sections Ill and IV we must assume that
In the same manner we may derive sampled-data versionspfA-! B, is sign-definite.

Theorems 3.6 and 3.7. | To be specific, letn = 1, n = 2, and
0 1 0
V. EXAMPLES AND SIMULATIONS A, = <_2 _3>, B, = <1 ), C.= (1,0).

The results of Sections Il and IIl apply to the general
class of infinite-dimensional, discrete-time systems, whilst the this caseC.A;'B. < 0 so thatG(1) = G.(0) =
results of Section IV apply to the general class of continuous-C.A;*B. > 0, where G denotes the transfer function of
time regular linear systems. For the purpose of illustration wie corresponding discretization.
consider a simple example of an uncertain finite-dimensionalln the simulations we set
system with output delay to which we a.pply the adapt.ive h=05, z(t) = (1,1.5)7 forall te [=h, 0],
low-gain, sampled-data controllers of Section IV. In the sim-

ulations we used Matlab. T=1u = 03,7 = 05,p= 025

Example 5.1:We consider a class and
#(t) = Acx(t) + Beu(t) () = {3 if + <15
y() =Cex (t—h) (65) Tl ift>15.

of systems with output delay. Heré. € R"*", B. € R"*™, In Fig. 2 we show plots of{y(n7)}, y(-), and {y,?} for

C, ¢ R™*", andh > 0. The transfer function of (65) is the closed-loop system obtained by using (26), applied to the
given by G.(s) = e "*C.(sI — A.)"!B.. The system (65) sampled version of (65), withy(-) the response of (65) to
can be represented as a Pritchard—Salamon system with stfagecontrol input computed using the corresponding}, and
spacelR™ x L?(—h, 0;IR"); see, e.g., Pritchard and Salamom(-) given by (47); see Theorem 4.2.

[31], [32]. As remarked in Section IV, Pritchard—Salamon In Fig. 3 we show the same closed-loop plots but with (26)
systems can be represented as regular systems with bourggthced by (31) and:; plotted instead ofy,?. Recall that
observation operators. It follows from the results of Section Ithis controller guarantees that the eregt) converges to zero
that (65) can be sampled using Proposition 4.1 to obtaineaponentially. Both of these controllers use the discrete-time
discrete-time system. The results of Sections II-IV, and, integratorl/(z — 1).

particular, the discrete-time, adaptive low-gain results, canin Figs. 4 and 5 we show the same closed-loop plots but
be applied to the discrete-time system obtained by samplingth (26) and (31) replaced by (32) and (33), respectively,

Authorized licensed use limited to: UNIVERSITY OF BATH. Downloaded on June 26,2024 at 14:24:48 UTC from IEEE Xplore. Restrictions apply.



LOGEMANN AND TOWNLEY: DISCRETE-TIME LOW-GAIN CONTROL 35

35
s - y(t)
2.5 y(nT)

1.5

0.51

0 1 i 1

0 5 10 15 20 25 30 35 40 45 50
t
Fig. 5. Closed-loop plots with controller (33).
451
———————— y(t)
y(nr)
————  Snlog™"(7n)
4 ) N P el
/] o T
— A t . :
0 1 i i 1 1 1 { 1 1 ]
0 5 10 15 20 25 30 35 40 45 50
t
Fig. 6. Closed-loop plots with controller (36)—(38) ad = +1.
that is, when we use the discrete-time integrattiz — 1). As In Figs. 6 and 7 we show the closed-loop plots for the
expected, due to the proportional partif{ z— 1), the closed- controller given by (36)—(38) with, = 1.5, whereSy = +1
loop responses shown in Figs. 4 and 5 have smaller overshaotlS, = —1, respectively. This controller is appropriate if we
than those in Figs. 2 and 3. do not know the sign ofG.(0). Notice that the closed-loop
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y(nT)

Snlog™"(vn)

_o5 1 ! 1 1 | 1 1 1 1 ]
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t
Fig. 7. Closed-loop plots with controller (36)—(38) atd = —1.
response in the case whé = —1 is poor. This corresponds ACKNOWLEDGMENT

to the case when the controller started with the incorrect sign,the authors would like to thank A. Ruiz for producing
producing an unstable closed-loop system until the controllgfgs_ 2.7

switches to the correct sign at approximately 13 s, after which

the closed-loop system is stable and the e&foy converges

to zero. O
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