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1. Introduction

The purpose of this article is to give an overview of an approach to adaptive control
of infinite-dimensional systems which is universal in that it does not involve param-
eter estimation or identification nor does it use any persistently exciting probing sig-
nals. The approach is in the spirit of the corresponding finite-dimensional theory due
to Nussbaum [60], Byrnes & Willems [3], Willems & Byrnes [82] and Martensson [51,
52]. In this context the adaptive control problem can be described as follows: Given
a set ^3 of plants/processes/systems with m inputs {u\,..., um)T = u and p outputs
(y\, • • •. yp)r = y, the objective is to synthesize a single control law of the form

u(t) = F(t, g(t), y(t)), g(t) = H(t, g(t), y(t)), g(to) e R'

which guarantees that for every member of Cp the resulting closed-loop system exhibits
some prescribed dynamic behaviour (for example, attractivity or stability of an equilibrium
or asymptotic output tracking of some reference signal). In the above equations, H should
be interpreted as an adaptation rule driven by the plant output y{t), while F should be
considered as a feedback law which is adjusted to the particular plant (unknown to the
controller) via the parameter vector g(t).

The area of universal adaptive control has its origins in questioning to what extent the
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176 HARTMUT LOGEMANN AND STUART TOWNLEY

four 'classical' assumptions of adaptive control of linear systems (i.e. an upper bound of the
McMillan degree of the plant is known, the relative degree of the plant is known, the sign
of the high-frequency gain is known and the plant is minimum-phase) are necessary for
the existence of stabilizing adaptive controllers. A systematic and rigorous analysis of this
question began in the first half of the 1980s. The theory continues to develop with a current
emphasis on universal adaptive control of nonlinear and infinite-dimensional systems. For
a survey of the finite-dimensional theory, see Ilchmann [22]; see also the special issue of
the MA J. of Math. Control &. Information edited by Ryan [66].

In this paper we give an overview of adaptive control of infinite-dimensional sys-
tems without parameter estimation. In particular, we intend to demonstrate how the well-
posedness, admissibility and stabilizability results, which were derived primarily for tack-
ling the linear quadratic control problem (see Pritchard & Salamon [64], Curtain et al.
[8], and the recent regular linear systems framework of Weiss [76, 77, 78], find natural
applications in formulating and proving the convergence of many adaptive algorithms for
infinite-dimensional systems. We emphasize that the work summarized in this article re-
flects our own personal involvement in the development of the theory, which has benefited
greatly from our awareness of, and involvement in, the development of abstract theories for
infinite-dimensional systems introduced to capture both state-space and frequency-domain
techniques. Whilst the theory of universal adaptive control for infinite-dimensional systems
is by no means complete, it turns out that many of the finite-dimensional results do have
counterparts for quite general classes of infinite-dimensional systems.

The article is organised as follows: Section 2 describes an approach to high-gain adap-
tive control of infinite-dimensional systems which is sufficiently general to encompass
all other known approaches. Section 3 describes recent progress on the integral low-gain
adaptive control problem for the class of regular systems, which—in a loose sense—is the
inverse of the high-gain adaptive stabilization problem. Finally, in Section 4 we describe
more general techniques from universal adaptive control which are applicable to classes
of systems which are stabilizable and detectable, but not necessarily stabilizable by high-
gain proportional output feedback or by a low-gain integrator. Here the main approach
is to switch through the parameter space for a class of controllers in which a stabilizing
controller is known to exist An important role is played by stabilizability and detectabil-
ity notions which have been developed recently for infinite-dimensional systems [8]. In
each section we describe the main problems and present the most comprehensive results.
The end of each section includes a note and references section, where a number of open
problems requiring further research efforts are posed.

There have, of course, been attempts to generalize 'traditional' adaptive control algo-
rithms to classes of infinite-dimensional systems: the papers by Kobayashi [29, 32] and by
Wen & Balas [80, 81], deal with model-reference adaptive control for semigroup systems
defined on Hilbert spaces. In [16], Fernandez et al. it shows that some standard adaptive
schemes designed for first order systems remain (locally) stable in the presence of 'small'
input delays. Ortega et al. present in [61] a globally stable adaptive controller for scalar
plants with one exactly known delay in the input. A 2-D-system approach is taken by Jo-
hannson in [26], where a class of delay-differential systems, with the delays consisting of a
finite number of point delays, all having a rational relationship is considered. By utilizing
algebraic methods, a standard model-reference adaptive controller for this class is pro-
posed. In [21], Hong & Bentsman develop averaging techniques to prove the convergence
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ADAPTIVE CONTROL WITHOUT PARAMETER ESTIMATION 177

and stability of a model-reference adaptive controller applied to a class of uncertain, linear
parabolic partial differential equations of spatial dimension n. Finally, Duncan & Pasik-
Duncan [13, 14] develop an adaptive control algorithm for classes of infinite-dimensional
stochastic systems using linear quadratic ideas combined with an indirect self-tuning reg-
ulator approach.

Notation: For a e R define Ca := {s e C | Re j > a}. Moreover, set

/ /oo ( CpX B 1 ) : = {y : Co -> C x m | / is holomorphic and bounded}.

Let X and Y be Banach spaces. The set of all linear bounded operators from X to Y is
denoted by B(X, Y). If A is a linear operator defined on X, we set

D(A) := domain of A , a (A) := spectrum of A , Q(A) :— resolvent set of A .

The Laplace transform is denoted by £ or by the superscript" " ".
Finally, let / be a function defined on [0, T), where 0 < T ^ oo, and let r e [0, T). We
define

2. Adaptive high-gain control

Results on (non-adaptive) high-gain stabilization for finite-dimensional systems are usu-
ally (at least in the single-input single-output case) derived using classical root-locus
techniques. Although recently some progress in the development of root-locus ideas for
infinite-dimensional systems has been made—see for example Byrnes et al. [2] and Rebar-
ber & Townley [65]—a fairly complete parallel of the finite-dimensional root-locus theory
for abstract infinite-dimensional systems is by no means available. Nevertheless, various
well-known high-gain stabilization results extend to infinite-dimensional systems; see [2],
Logemann & Owens [41] and Logemann & Zwart [48]. In this section we describe an
input-output approach to adaptive high-gain control of infinite-dimensional systems which
encompasses most of the results available in the literature. Since the approach is based on
an external description of the plant, an abstract state-space representation of the plant is
not required. However, non-zero initial conditions are taken into account by using 'initial-
condition terms'.

System description

We assume that the plant is described externally by a transfer-function matrix G of size
m x m which is meromorphic on Co and satisfies

G-'Cs) = sG~l+li(s), )
\ (21)

where G e R m x m , det(G) ^ 0 and H e / / ° ° ( C m x m ) . j

Of course (2.1) is equivalent to

/ 1 1

G(s) =
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178 HARTMUT LOGEMANN AND STUART TOWNLEY

J * s

H

FIG. 1. G written as a feedback system

i.e. G is the feedback interconnection of the integrator (l/s)G and the transfer-function
matrix H; see Fig. 1. It has been shown by Logemann & Zwart [48] that condition (2.1)
can be characterized in terms of the zeros and the high-frequency behaviour of G. More
precisely, the following result holds true.

PROPOSITION 2.1 Let G(s) be a meromorphic transfer-function matrix of size m x m
defined on a region n D CQ'. Then G ~ ' ( J ) admits a decomposition of the form (2.1) if
and only if the following two conditions are satisfied

(i) The limit G := lim^i-n*,, s£Qc G(S) exists, det G ^ 0 and

sG(s) -G = O(- )
5

as \s\ —>• oo in Co . (2.2)

(ii) G(.y) has no zeros in

Note that condition (2.2) is a generalization of the relative-degree-one condition for finite-
dimensional single-input single-output systems.

It is not difficult to show that, if (2.1) is satisfied and if a(G) C Co, then the plant
described by G can be stabilized by static output feedback of the form u = —ky, provided
the feedback gain k is positive and sufficiently large. The following proposition which is a
consequence of results in [41] makes this more precise.

PROPOSITION 2.2 Suppose that the transfer-function matrix G satisfies condition (2.1)
and let the matrix K e Rm x m be such that o(GK) c Co. Then there exists k* > 0 such
that for all k > k*

G(I+kGKyl eH°°(Cmxm),

i.e. for all k > k* the feedback u = —kKy leads to a L2-stable closed-loop system.

It is natural to seek ways of tuning the parameters k and K adaptively. This will be the
topic of the next subsection.

In the following we shall assign an operator H : Z,2(R+, Cm) -»• Z.2(R+, Cm) to the
transfer-function matrix H by defining H := C~xMHC where L denotes the Laplace
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ADAPTIVE CONTROL WITHOUT PARAMETER ESTIMATION 179

transform and /An denotes the multiplication by H on the Hardy space H2(Cm). The oper-
ator Ti is linear, bounded, and shift-invariant (in the sense of Vidyasagar [73]). As a conse-
quence "H is causal (see [73]) and therefore has a unique causal extension to Lfoc(JSl+, Cm).
This extension will also be denoted by H.

The function G satisfying (2.1) can be thought of as being the transfer-function matrix
of

y = G(u- Oiy + u»)) , y(0) = >'o € Rm , (2.3)

where u e Ll
loc(R+, Rm) and w e L2(R+, Rm) takes account of non-zero initial conditions

in the system with transfer-function matrix H. The initial value problem (2.3) is a special
case of the following initial-value problem which will play an important role in this section.
Consider

t^a, (2.4a)

V l (2.4b)

where a ^ 0 and S, f\ and fa satisfy the following conditions:
(i) S maps Ljoc(R+, R") into itself, <S(0) = 0 and we assume that there exists A. > 0

such that \\P,(Sx - Sx')\\2 < A.||P,(* - x')\\2 for all x,x' e Ljoc(R+, R") and for all
t ^ 0, i.e. S is unbiased, causal and of finite incremental gain;

(ii) /i : R+ x R" -*• R" is such that f\(t, x) is continuous in t and locally Lipschitz
continuous in x, uniformly in t on bounded intervals;

Of course, if a = 0 in (2.4b), then C([0, a], R") = R". In order to define what we
mean by a solution of the initial value problem (2.4), we have to give a meaning to Sx if
x e C([0, fi), R"), where a < p ^ oo (remember that 5 operates on functions whose
domain of definition is R+). We set (Sx)(t) = (SPxx)(t) forO ^ / ^ r < /3. Since S is
causal, this definition does not depend on the choice of r. A solution of (2.4) on [0, 0) is a
continuous function which is absolutely continuous on [a, fi), satisfies (2.4a) a.e. on [a, fl)
and satisfies the initial condition (2.4b).

THEOREM 2.3 The initial-value problem (2.4) has a unique maximal solution. Precisely:
there exists rmax e (a, oo] such that (2.4) has a unique solution Xmax on [0, Tmax) a nd
moreover, if xmax < oo, then there exists a sequence f/ e (0, xmax), satisfying lim^oo tj =
*max, and such that

Km ||JW(f,)|| = o o .
(-•oo

The above theorem has been proved by Logemann & Owens [42]. Similar results can
be found in Gripenberg et al. [18], pp. 359, and Hinrichsen & Pritchard [20]. Theorem
2.3 implies in particular that the initial-value problem (2.3) has a unique solution for all
w 6 L2(R+, Rm), u e L}0C(R+, Rm), and y0 e Rm.

Adaptive high-gain stabilization

In the following, we need a result from linear algebra which has been proved by MSrtensson
(1986, 1991). Form > 1 wecallasetli C GL(m.R) unmixing, if for any M e GL(m.R)
there is a U 6 tlsuch thaXo(MU) C Co-
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180 HARTMUT LOGEMANN AND STUART TOWNLEY

PROPOSITION 2.4 For all m > 1, there exist unmixing sets of finite cardinality.

Unfortunately the cardinality of the unmixing sets constructed in [52, 54] is much larger
than would be convenient for applications. In fact, hardly anything is known on the min-
imum cardinality of unmixing sets. However, for m = 1 the set {1, —1} is obviously un-
mixing, while for m = 2 there exists an unmixing set of cardinality 6. It has been shown
by Zhu [84] that CL(3, R) can be unmixed by a set having cardinality 32.

In the following, let {^i,..., Kt) be an unmixing set for GL(m, R). Since (2.3) can be
stabilized by high-gain feedback of the form u(t) = —ky(t), provided that a(G) C Co and
A: is a sufficiently large positive number, it seems reasonable to consider the following adap-
tive control law, which was introduced by Byrnes & Willems [3] in a finite-dimensional
state-space set-up:

«(/) = -k(t)Kzm))y{t), (2.5a)

*(0 = lly(0ll2. * ( O ) = * o € R . (2.5b)

In (2.5a) the function E : R - • (1,..., t] is given by

I I , K € [—Ki,K\)
(2.6)

i , K e [Kji+i, Kjt+,+\) U [-Kjt+i+\,-Kjc+i) for some j e N ,

where the sequence (KJ) is defined by

Kj+i - K ) , KX > 1. (2.7)

Note that the gain k(t) is monotonically increasing, and thus the function E ensures that
Kx(k(t)) will hit some stabilizing gain matrix Kt if k(t) diverges. The growth condition
(2.7) captures the intuitive idea that the length of the intervals [KJ, KJ+\) should increase
rapidly, in order to to enable the closed-loop system to settle down.

Although the closed-loop system given by (2.3) and (2.5) is of the form (2.4), Theorem
2.3 cannot be applied straight away in order to establish well-posedness of the closed loop,
since the map R -*• {K\,..., Kt], K (-»• Kz(t) is not continuous. However, Theorem 2.3 can
be used to prove the following lemma; see Logemann & Ilchmann [38].

LEMMA 2.5 For each pair of initial conditions (yo, ko) e Rm x R and for each w e
L2(R+, Rm) the closed-loop system given by (2.3) and (2.5) has a unique absolutely con-
tinuous solution (y, k) which can be extended to the right as long as it remains bounded.

Using the above well-posedness result, the following theorem on adaptive stabilization can
be proved. It says that the control law (2.5) stabilizes any system of the form (2.3), or in
other words (2.5) is a universal adaptive control law for this class of systems. The proof
is based on a combination of ideas due to Byrnes & Willems [3] with a technical lemma
which can be found in Ilchmann & Logemann [24], see [38] for the details.

THEOREM 2.6 The solution (y, k) of the closed-loop system given by (2.3) and (2.5)
exists on R+ and has the following properties:

(i) lim^oo k(t) exists and is finite,
(ii) y e L2(R+, Rra) n L 0 0 ^ , IRm),
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ADAPTIVE CONTROL WITHOUT PARAMETER ESTIMATION 181

(iii) lim,^

It is not difficult to see that the sequence given by (2.7) can be replaced by any strictly
increasing sequence (KJ) satisfying limj-^ooKJ+I/KJ — oo [24, 67J.

Next we formulate an open problem on the limiting closed-loop system. If the assump-
tions of Theorem 2.6 are satisfied, then lim,_>oo)t(0 = ^ ( w , yo, kq) exists and is finite.
The linear system

= -G (fcooOu, jn). *o)^r(*00(u,,».t0))5
i + Hy + w) , (2.8a)

= y0 6 Rm , we L2(R+, Rm) (2.8b)

is called the limit system of the nonlinear closed-loop system given by (2.3) and (2.5).
It is easy to see that (2.8) does not satisfy l im, -^ y(O = 0 for arbitrary (w, yo) e
L2(R+, R**) x R>. Indeed, consider the special case that H = 0 and choose w = 0,
y0 = 0, and *o = 0 in (2.3) and (2.5). Since ^ ( 0 , 0 , 0 ) = 0, it follows that the solution
y of (2.8) is given by y(t) = y0- G /„' w(r) dx, and hence y(t) does in general not con-
verge to 0 as / —*• oo. However, recent work of Townley [72] on adaptive stabilization of
finite-dimensional systems leads us to the following problem.

Open problem. Let ito e R be given. Does there exist an open and dense set 3(fco) C
L2(R+, Rm) x Rm such that the limit system (2.8) is stable in the sense that

yeI?CiL°°(]BL+,'Rm) and lim y(t) = 0 for all (u>, y0) 6 L2(R+, Rm) xRm ,
/ - • o o

provided that (w, y0) 6 3(ko) ?
Finally, we close this subsection with some remarks on the single-input single-output

(SISO) case where somewhat 'stronger' results can be proved. Consider the feedback law

u(t) = fC{g(t))y(t); g(t) = y2(t), g(0) = g0eR, (2.9)

where AC : R -*• R is continuously differentiable and satisfies

sup —-— f K.(y)dy = +oo , inf — - — I >C(y)dy = - o o (2.10)
a>ao a - Oo Jao a>a° a ~ <*0 Jao

for some ao € R. The condition (2.10) has its origin in Nussbaum's (1983) paper . Func-
tions which satisfy (2.10) will be called Nussbaum functions. In the SISO case we can
replace the discontinuous feedback (2.5a) by the smooth feedback law (2.9) to obtain a sta-
bilizing controller. More precisely, we have the following result whose proof can be found
in [42].

THEOREM 2.7 The solution (y, g) of the closed-loop system given by (2.3) and (2.9)
exists on R+ and has the following properties

(i) Mm,-,.,*,g(t) exists and is finite,
(ii) y € L2(R+) n L°°(R+),

(iii)
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182 HARTMUT LOGEMANN AND STUART TOWNLEY

A Nussbaum function K. is called scaling-invariant if the function (S£ o tC))C is a Nuss-
baum function for all a, {} > 0, where 3% is given by

I a if tc >0
0 if K=0

p if K < 0

An example of a scaling-invariant Nussbaum function is given by

£(y) =cos ( -y )exp(y 2 ) .

The concept of scaling invariance for Nussbaum functions was introduced in [42]. It is
shown in [42] that Theorem 2.7 remains true when the plant G is subjected to a large
class of sector-bounded static actuator and sensor nonlinearities, provided the Nussbaum
function AC is scaling invariant. The effect of actuator and sensor nonlinearities in the multi-
input multi-output (MIMO) case is an interesting topic for future research.

Adaptive high-gain tracking

In this subsection we present a single controller such that the closed-loop system asymp-
totically tracks any reference trajectory r belonging to a precspecified finite-dimensional
vector space for all plants of the form (2.1). Let />, be real monic polynomials, 1 ^ i < m,
and set p := (p\,..., pm)T. The reference signals belong to the set given by

\r : R + -• Rm | Pi (—J r, = 0 , i = 1,..., m l .V\p := <r

The well-known internal model principle from linear control theory (see e.g. Vidyasagar
[74: p. 294] and Wonham [83: p. 203] for the finite-dimensional case, and Callier & Des-
oer [4], Curtain [7] and Francis [17] for the infinite-dimensional case) suggests that the
dynamics of the reference signals should be replicated in the loop via a precompensator.
To this end set

p(s) = lcm (s, pi (5),..., pm(s)) ,

where we choose p to be monic. Moreover, let q by a monic polynomial which is Hurwitz
and satisfies deg(<?) = deg(p). We define the precompensator C(i) containing the internal
model to be

Let G c denote the precompensated plant, i.e. Gc(s) = G(s)C(s). Now realize that, by
(2.1),

G c ' ( s ) = ^\{sG~l + H(s)) = sG~ ' + H c ( j ) ,

where
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ADAPTIVE CONTROL WITHOUT PARAMETER ESTIMATION 183

C(s)

FIG. 2. High-gain adaptive tracing controller

belongs to /f°°(Cmxm). The important point here is that the structural property (2.1) of
the plant G remains invariant under precompensation by C(s). Consider the adaptive con-
troller shown in Fig. 2 and formally given by

u(s) = C(s)v(s),

v(t)=k(t)Krm))(r(t)-y(t)),

= \\r(t)-y(t)f HO) =

(2.11a)

(2.11b)

(2.11c)

where L is given by (2.6) and, as in the previous subsection, the matrices K\,..., Ki form
an unmixing set for GL(m, R).

Setting He '•= £~x MnoC*, w e obtain the following time-domain description of the
closed-loop system given by (2.3) and (2.11)

y(t) = G (w(0 - Hcy)(t) - u;c(O)

v(t)=k(.t)KEmn(r(t)-y(t)),

k(t) = \\r(t) - y(t)\\2 ,

= y0, wc e ^ O R + . R " ) , (2.12a)

(2.12b)

(2.12c)

where iwc takes account of non-zero initial conditions.
The following result shows that (2.11) is a universal adaptive tracking controller for the

class of systems given by (2.1).

THEOREM 2.8 The solution (y, k) of the closed-loop system (2.12) exists on R+ and has
the following properties

(i) lim^oo k(t) exists and is finite,
(ii) y-r e L2(R+, Rm) n LCO(R+, R m ) ,

(iii) lim,_

The proof of the above result can be found in [83]. Note that, by construction, C(s) con-
tains an integrator. This is required for a technical argument in the proof of Theorem 2.8.
For a corresponding result on high-gain asymptotic disturbance rejection, see [38].

t As before, the unique causal extension of H e to Lj .̂(IR+, K"1) will be denoted by the same symbol He-
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184 HARTMUT LOGEMANN AND STUART TOWNLEY

Application to retarded systems

Let A 6 BV([a, b], R"*"), B e R"xm and C e Rmx" and consider the retarded system

fh

x(t)= dA(r)x(t - z) + Bu(t), (2.13a)
Jo

y(t) = Cx(t), (2.13b)

JCiHM, = *o € C([-h, 0], R"). (2.13c)

We assume that

det(CB)^0, (2.14)

and

s[ A ( J ) - B ^ Q f0r all 5 e Q ' , (2.15)det

where A(s) := /0
Aexp(—ST)dA(r) denotes the Laplace-Stieltjes transform of A. The

transfer-function matrix G(s) of (2.13) is given by

The condition (2.15) is a generalization of the well-known finite-dimensional minimum-
phase condition. It can be shown that (2.15) holds if and only if the following three condi-
tions hold.

(i) The transfer-function matrix G(s) has no zeros in CQ',
(ii) rank (si - A(s), B) = n for all s e C£',

(iii) rank ( sI A ( s ) )=n for all s e Co
c/.

Although each of the Theorems 2.6-2.8 is applicable to the class of retarded systems given
by (2.13)—(2.15), we shall concentrate here on the application of the tracking result given
in Theorem 2.8.

Let p, p and q be as in the previous subsection and let

i-=Act-+Bcv, £(O)=£oeR', (2.16a)

Imv (2.16b)

be a stabilizable and detectable realization of C(s) = [q(s)/p(s)]Im. Let r e 9tp and
consider the closed-loop system given by (2.13), (2.16),

v(t) = k(t)Krw))(j(t) - r(0), (2.17a)

*(O = lly(O-r(OII2 , *(O) = JfcoeR (2.17b)

and

(2-18)

The following result shows that the universal adaptive controller presented in the previous
subsection achieves asymptotic tracking and disturbance rejection for the class of retarded
systems satisfying (2.14) and (2.15).
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ADAPTIVE CONTROL WITHOUT PARAMETER ESTIMATION 185

THEOREM 2.9 If (2.14) and (2.15) are satisfied, then for any x0 e C([-/i ,0],R"), ?0 e
R', fco e R and r e Dip the closed-loop system given by (2.13) and (2.16M2.18) has the
following properties:

(i) lim,_).0O k(t) exists and is finite,
(ii) y-r e L2(R+, Rm) n L°°(R+, Rm) ,
(iii) l\m,^oo(y(t)-r(t))=0,
(iv) (JC, £) e L0O(R+, Rn+I), provided r(•) is bounded.

The proof of the above result can be found in [38]. It is based on the observation that the
conditions (2.14) and (2.15) imply that

where H e //°°(Cm x m), i.e. G ~ ' ( J ) admits a decomposition of the form (2.1).
Theorem 2.9 remains true if the class of retarded systems given by (2.13)—(2.15) is

replaced by a class of Volterra integrodifferential systems satisfying conditions similar to
(2.14) and (2.15); see [38, 42].

Notes and references

There is a rich literature on adaptive high-gain control of finite-dimensional systems. To
our knowledge, the first contributions in this tradition are due to Nussbaum [60], Willems
& Byrnes [82] and Byrnes & Willems [3]. For a detailed treatment of finite-dimensional
adaptive high-gain control, the reader is referred to Ilchmann's research monograph [23].

The first results on high-gain adaptive stabilization of infinite-dimensional systems were
obtained by Dahleh & Hopkins [11], Kobayashi [31] and Byrnes [1]. The main result in
Dahleh & Hopkins [11] (see also Dahleh [10]) is on the adaptive stabilization of a class
of single-input single-output delay systems. It is contained as a special case in Theorem
2.7. Kobayashi [31] generalizes the result in [82] to a class infinite-dimensional systems
described by semigroups on a Hilbert space. The fairly restrictive smoothness assumptions
imposed on the plant in Kobayashi [31] can be relaxed as was shown by Logemann &
Zwart [47]. More precisely, consider a system of the form

x = Ax + Bu, y = Cx, (2.19)

evolving on a Banach space X, where A is the generator of a Co-semigroup, B e B(Rm, X)
and C e B(X, Rm). It is shown in [47] that, if

(i) (2.19) has no zeros in C a for some a < 0 and det(CB) ^ 0,
(ii) (2.19) is exponentially stabilizable,

(iii) imfl C D(A),
(iv) i m C ' C £>(/**),

then the transfer function G of (2.19) admits a decomposition of the form (2.1) and hence
Theorems 2.6-2.7 can be applied. If A generates a holomorphic semigroup then only one
of the assumptions (iii) and (iv) is needed. Notice that any common abstract model for
the retarded system given by (2.13)—(2.15) does not satisfy the smoothness assumptions
(iii) and (iv). Nevertheless, the transfer function of (2.13) satisfies condition (2.1). This
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186 HARTMUT LOGEMANN AND STUART TOWNLEY

leads us to the following open problem on high-gain stabilization of infinite-dimensional
state-space systems.

Open problem. Suppose that (2.19) satisfies the assumptions (i) and (ii) and let K e
GL(m, R) be such that a(CBK) c Q . Does there exist it* > 0 such that for all k ^ k*
the application of the feedback u = — kKy leads to an exponentially stable closed-loop
system?

Byrnes [1] considers high-gain adaptive stabilization of abstract infinite-dimensional
systems of the form (2.19) with bounded generator A. In this case the smoothness as-
sumptions (iii) and (iv) are trivially satisfied and consequently the main result in [1] can be
recovered as a special case of the results in [47]. In [2] Byrnes etal. proves high-gain stabi-
lization results for a class of distributed-parameter systems which in general do not satisfy
the generalized relative-degree-one condition (2.2). The problem of synthesizing adaptive
high-gain controllers for this class deserves the attention of future research activities.

A modification of the adaptive stabilization scheme developed in [42] has been given
by Logemann [34], presenting an algorithm which stabilizes a class of nonlinear retarded
processes, with a prescribed rate of exponential decay (cf. also Logemann & Owens [44]).

Finally, Theorem 2.8 guarantees asymptotic tracking of any reference signal belonging
to the kernel of a prespecified ordinary differential operator with constant coefficients. In
a finite-dimensional set-up, Ilchmann & Ryan [25] have presented an adaptive high-gain
strategy to control the output to track any reference signal in Wl°°, with tracking error
asymptotic to a ball of arbitray prescibed radius. It is an interesting topic for future research
to investigate to what extent this approach extends to the infinite-dimensional setting of this
section.

3. Adaptive low-gain control

In Section 2 the emphasis was on the adaptive high-gain P-control of classes of uncer-
tain unstable infinite-dimensional systems. In this section we focus on adaptive low-gain
control of uncertain stable infinite-dimensional systems. The synthesis of low-gain I and
PI controllers for uncertain stable plants has received considerable attention in the last 20
years. Let G be a stable proper rational transfer function matrix. The main existence result
on robust (non-adaptive) low-gain I control of finite-dimensional systems says that, for any
matrix Ko satisfying <r(G(0)tf0) C Q , there exists k* > 0 such that for all k e (0, k*)
the controller (l/s)kK0 stabilizes G and the resulting closed-loop system asymptotically
tracks arbitrary constant reference signals. This result is essentially due to Davison [12]
(see the subsection Notes and references for a short discussion of the literature). It is in-
teresting to note that the low-gain control problem is, in a loose sense, the 'inverse' of the
high-gain problem: in low-gain control we assume that the plant is stable and we impose
an unmixing or invertibilty condition on the steady-state gain, whilst high-gain control
schemes apply to minimum-phase systems whose high-frequency gain satisfies a suitable
unmixing or invertibilty assumption.

There are two parts to the design of low-gain tracking controllers: choosing KQ and
tuning k. In this section we describe how this controller design approach, called 'tuning
regulator theory' can be extended to a large class of infinite-dimensional systems, the class
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ADAPTIVE CONTROL WITHOUT PARAMETER ESTIMATION 187

of so-called regular systems. Moreover, for this class we present nonlinear low-gain control
laws which solve the tuning problem for k and KQ adaptively. Regular systems encompass
a large class of partial differential equations with boundary control and observation and
functional differential equations with delays in the state, input and output variables and
form the largest class of abstract infinite-dimensional systems for which there exist conve-
nient representations both in state space and frequency domain.

Regular linear systems

A general class of m-input m-output continuous-time infinite-dimensional systems would
be the well-posed systems as introduced by Salamon in [69]. The class of well-posed sys-
tems captures the systems theoretic properties of linearity, time-invariance and causality
together with natural continuity properties of the input-to-state, state-to-output and input-
to-output maps. Moreover, every well-posed system has a well-defined transfer function
G(s). A regular system is a well-posed system satisfying the extra requirement that

lim G(.s) = D
i->oo,jeR

exists. The theory of regular systems was developed by Weiss [75-78].
Let X be a real Hilbert space. Given an input function «(•) e Lfoc(R+, Rm) the state of

a regular linear system, with state space X, is described by

x(.Q) = xoe X. (3.1)

Here

• A is the generator of a Co-semigroup T(f) on X,
• B e B(Rm ,X_i) and X_i is the completion of X with respect to ||JC||X_, :=\\(fil-

A)~lx\\x, where 0e Q(A).

It is well-known that T(t) extends to a Co-semigroup onX_,. The generator of this semi-
group is a bounded operator from X to X_| which extends A. The extended semigroup
and its generator will be denoted by the same symbols T(f) and A, respectively. Equality
in (3.1) holds in X_\.

Continuity of the input-to-state map is expressed by

i

T(t - x)Bu(x)dx\\x ^ *,||«(-)llt*(O.«:B->. (3.2)

where b, ^ 0. If XQ e X, then the mild solution, given by

x(t) = T(f)xo + I T(t- x)Bu(x) dx , (3.3)
Jo

evolves continuously in X. The control operator B is called bounded if B e B(Rm, X).
To introduce an observation for (3.3), let X\ denote the domain of A, as an operator de-

fined on X, endowed with the graph norm. The semigroup T(f) restricts to a Co-semigroup
T(f) on X\. The exponential growth bounds of T(f) are the same on all three spaces X\,
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188 HARTMUT LOGEMANN AND STUART TOWNLEY

X and X_ j . If u() = Oandxo e X\, then the output of a regular (or well-posed system) is
given by

= CT(t)x0,

where the observation operator C is in B(X\, Rm). Continuity of the state-to-output map
guarantees that for every t ^ 0 there exists c, > 0 such that

I|CT(-)JC||I.»(O.,:R.) ^ c,||x||x for all x e X, . (3.4)

The observation operator C is called bounded if C can be extended to an operator in
B(X,Rm).

The continuity of the input-to-output map for a regular system combined with (3.4) gives
an output y(-) € L2(0, T; Rm) defined for almost all t ^ 0 by

y(t) = CLx(t) + Du(t). (3.5)

Here C^ is the Lebesgue extension of C; see Weiss [75]. In particular, we have X\ C
D(CL). The following properties of Ci are consequences of regularity:

for each x e X, T(t)x e D(CL) for a.e. t ^ 0,
im ((si - A)'1 B) c D(CL) for all s e Q(A) .

In the following, we denote the regular system given by (3.3) and (3.5) by ZJpianl. The
transfer function G(s) of Epiant can be written as

G(s) = CL(sl - A)~lB + D.

The operators A, B, C and D are called the generating operators of ^piant.
It follows from Salamon [70] that any function G(s) which is holomorphic and bounded

in some right half-plane and for which limj-^ocgRG^) exists, admits a regular state-
space realization. Consequently, any function G(s) satisfying (2.1) is in fact the transfer
function of a regular system.

Finally, consider the nonlinear system given by

,?oeR, (3.6a)

w ( t ) = fC(g(t))v(t), r > 0 , (3.6b)

where v e L^0C(R+, Rm) is the input and w denotes the output. The function K. : R —*• R
is assumed to be locally Lipschitz. In the following we need a well-posedness result for
the feedback interconnection of Hpimi and (3.6). More precisely, consider the feedback
system given by (3.3), (3.5), (3.6) and the interconnection equations

v = y , u = —w.

The closed-loop equations for y and g then take the form

y(t) = CLT(t)x0 -{ (£" ' G) • [(K o g)y]}(t), (3.7a)

g(t) = go+ f\y(T)fdv. (3.7b)
Jo

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
ci/article/14/2/175/648969 by U

niversity of Bath user on 26 June 2024



ADAPTIVE CONTROL WITHOUT PARAMETER ESTIMATION 189

FIG. 3. Series connection

Let r € (0, oo]. A function (y, g) : [0, T) -> Rm x R is called a solution of (3.7) on
[0, r) if

(i) (y, g) e L2([0, T'] , Rm) x AC([0, r ' ] , R) for all r ' e [0, r) , where AC([0, r ' ] , R)
denotes the absolutely continuous functions on [0, r '] with values in R.

00 (y> 8) satisfies (3.7) almost everywhere on [0, r) .

If (3.7) has a solution (y, g) on [0, r) , then the corresponding state trajectory of 27p/an,
is given by

-rjr(O=T(O*o- / T(t-r)BfC{g(r))y(T)dr.
J<

PROPOSITION 3.1 Suppose that £~ 'G e L ;
1

oc(R+ ,Rmxm). Then for any (xo.^o) e Xx
R there exists a maximal solution of (3.7). Precisely: there exists xmax e (0, oo] such that
(3.7) has a unique solution (ymax, gmax) on [0, rmax), and moreover

< oo
Jo

The proof of Proposition 3.1 can be found in Logemann & Townley [45].

The above well-posedness result is sufficient for low-gain adaptive control of regular
systems. Notice that it is restricted to systems whose impulse response satisfies the as-
sumption £ ~ ' G e L]0C(R+,Rmxm) and to feedback laws given by (3.6). The investiga-
tions of more general well-posedness problems for the feedback connections of regular
linear systems and and nonlinear controllers is an interesting topic for future research.

Non-adaptive low-gain control

In the following let Epian, be exponentially stable, i.e. T(f) is exponentially stable. Then it
follows that Epian is also L2-stable, i.e. G e H°°(C'nxm). Let Ein, denote the integrator
described by

z(0 = zo+ /
Jo

v(r)dr,

where v e ) is the integrator input.
We will consider the series connection E of Ein, followed by Epian, shown in Fig. 3. It
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190 HARTMUT LOGEMANN AND STUART TOWNLEY

r6(t) u(t) yd)

FlG. 4. Low-gain control system

is not difficult to show that E is a regular system; see [45]. Clearly, the feedthrough D of
E satisfies D = 0. The remaining generating operators of E are given by

) • ' - ( ? ) • e-«r"D)-
where

D(A) = {(x, u) e £>(CL) x Rm | Ax + Bu e X].

The Co-semigroup generated by A is denoted by T(f). If B is bounded, then it follows
easily that D(A) = D(A) x Rm. Note that any unboundedness of B is absorbed into the
unboundedness of A and that hence the control operator B of E is bounded. Trivially, the
function G(s) := (\/s)G(s) is the transfer function of E.

In the following we apply static output feedback to E. Using results from [78] it is
easy to see that for any feedback matrix K e Rm x m , the resulting closed-loop system is
again a regular system, which we denote by EK. The corresponding Co-semigroup and its
generator are denoted by TK(t) and AK, respectively.

LEMMA 3.2 For every K e R " x r n the domain of the closed-loop generator AK is given
by

D{AK) = D(A) = {(x, u) e X x Rm | Ax + Bu e X].

Consider the feedback system shown in Fig. 4, where 6{t) denotes the Heaviside step-
function and «o denotes the initial state of the integrator. Since the output y(t) depends
on the initial states XQ and «o we write y(t) = y(t; (x0, wo))- Moreover, we define the
corresponding error by

e(f, (xo, «o)) = r6{t) - y(t; (x0, «o)) •

THEOREM 3.3 Let r e Rm. Suppose that detG(O) / 0 and let Ko e Rmxm be such
that CT(G(0)K0) C CO. Then there exists k* > 0 such that for any k. e (0, k*) the closed-
loop semigroup T**0(f) is exponentially stable and e(-; (x0, u0)) e L2(R+, Rm) for all
(x0, UQ) e X xRm. Furthermore,

lim e(t; (x0, M0)) = 0
( - •oo

for all (xo, «0) e D(A).
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ADAPTIVE CONTROL WITHOUT PARAMETER ESTIMATION 191

If the observation operator C is bounded, then the above equation holds for all (XQ, UQ) e
X x R m .

We close this subsection with a lemma which will be needed in the following to reformulate
adaptive tracking problems as adaptive stabilization problems.

LEMMA 3.4 For any r e Rm there exists (xr, ur) € D(A) such that

CT(t)(xr,ur) = r forallr^O.

The proofs of Theorem 3.3 and Lemmas 3.2 and 3.4 can be found in [45].

Adaptive low-gain control of multivariable systems with sign-definite steady-state gain

In the previous subsection the main result was that, given a stable system with transfer
function G, if a(G(0)Ko) c Co, then the closed-loop semigroup T**0^) is exponentially
stable for all sufficiently small k > 0. A natural problem is to seek ways of tuning the
parameter k and selecting Ko adaptively. How this adaptation is achieved depends strongly
on which system information is available in the controller synthesis.

For Hermitian matrices M, N e C m x m , we write M < N if A' — M is positive definite,
and M >~ N if N - M is negative definite. Similarly, we write M ;< N if N — M is positive
semi-definite, and M > N if N — M is negative semi-definite. Moreover, for a complex
matrix M let MH denote the conjugate transpose of M.

In this subsection we consider the adaptive low-gain control of systems with sign-definite
steady-state gains G(0), that is where either G(0) >• 0 or G(0) -< 0. This situation arises
most naturally in the single-input single-output case where we need to assume only that the
steady-state gain is non-zero. A crucial tool is the following proposition which is of some
interest in its own right.

PROPOSITION 3.5 Let G be the transfer function of an m-input m-ouput exponentially
stable regular system and suppose that det G(0) / 0. For k e R define

G * ( J ) = G(s)(/ + kG(s))~x = -G(s ) ( / + -GCO)-1 .
s s

Under these conditions there exists k* > 0 such that for all k e (0, k*)

116*1100 = 1 (3.8)

if and only if G(0) >- 0. Moreover, the claim remains true if we replace k by —k in (3.8)
and G(0) >- 0 by G(0) -< 0.

The proof of the above result can be found in [45].
The following theorem is the main result on adaptive low-gain control of systems with

sign-definite steady-state gains.

THEOREM 3.6 Let 27p/an, be a m-input m-ouput exponentially stable regular system.
Suppose that the transfer function G of EpiaM is such that G(0) is sign-definite. Let r 6{t),
r e Rm, be an arbitrary constant vector-valued reference signal, set

:= (log" Y) cos(Iogu y) (3.9)
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192 HARTMUT LOGEMANN AND STUART TOWNLEY

and consider the control law

«(0 = uo+ f IC(g(x))e(T)dz , (3.10a)
Jo

«(0 = ll«(0ll2. 8(0) = go, (3.10b)

where e(t) = r — y(t) and /i ^ 0 < v and v - 2\i < 1. Then for all (x0> «o) 6 X x Km

and go > 1. where X denotes the state-space of Epiant, the following statements hold true

(i) Hm^oo g(0 = goo < oo,
(ii) ||.r(f)|| and u(t) remain bounded as t -*• oo,

(iii) e € L2(R+ , Rm) .

Moreover, if (AT0, U0) e D(A), then

lim e(t) = lim (y(f) - r) = 0. (3.11)
/->OO f-*0O

If the observation operator C of Epiant is bounded, then (3.11) is true for all (xo, «o) €
X x R m .

In the control law (3.10a) the integrator gain is given by tC(g(t)), where g(t) is driven by
the adaption law (3.10b). The controller is of low-gain nature in the sense that fC(g(t)) ->• 0
asg(f) -> oo. Moreover, £(•) oscillates, enabling the controller to 'learn' the sign of G(0).
Note that AC(-) is not a Nussbaum function in the sense of (2.10).

The above result is proved in [45]. The outline of the proof is as follows. By Proposition
3.1 the nonlinear closed-loop system has a unique solution. The next step is to use Lemma
3.4 to convert the tracking problem into a stabilization problem. Then the idea is to use
Proposition 3.5 and the stability of the closed-loop semigroup for sufficiently small gains
(cf. Theorem 3.3) to bound the possible growth in g(t) and then to exploit the nature of
the control law (3.10a) and (3.10b) to contradict the possible unboundedness of g(t). Once
the boundedness of g(t) is established we have immediately that e(-) e Z-2(R+, Rm). The
remainder of the proof then follows by exploiting the internal stability of Eplant-

Note that in Theorem 3.6 the tuning function fC(y) = (log*1 y) cos(logw y) decays to
0 like a fractional power of log y as y -*• oo. In the finite-dimensional case, Cook [5]
and Logemann & Townley [45] have shown that tuning functions K(y) can be used which
decay to 0 like a fractional power of y. In the infinite-dimensional case, but with sign G(0)
known, we can use tuning functions which decay to 0 like a fractional power, although
more slowly than in the finite-dimensional case. More precisely, the following result holds.

PROPOSITION 3.7 Suppose that the conditions of Theorem 3.6 hold and that additionally
G(0) >- 0. If

«(O = «o+ f g-v(r
Jo

«(O=lk(OH2. g(O)=go>o,

and 0 < v < 1 /2, then the conclusions of Theorem 3.6 hold.
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Sketch of Proof (see [45] for more details). It is sufficient to show that g ( ) is bounded.
Let [0, r) be the maximal interval of existence. If g() is unbounded on [0, r) , then there
exists U ^ 0 such that, with g\ = g(ti), k\ = gj~v is a stabilizing gain. For any t e (tu x)
we have that, on [fi, t],

L,,P,e = ¥*„(*(/,)) - Ffi, ,(L,,P,(ACog-ki)e).

Here L, and P , are the left-shift and truncation operators respectively, that is (L,f)(s) =
f(t + s) and (P,f)(s) = f(s) ifs ^ t and 0 otherwise. Moreover, <£*_!,, and Fflfl denote
the state-to-output map and the input-to-output map at time t — t\, respectively, of the
closed-loop system obtained by applying static output feedback with gain k\ to the series
connection T, shown in Fig. 3.

We can assume that k\ is small enough so that, using Proposition 3.5 and estimating, we
obtain

for some c > 0 and all t e [t], r) . This inequality clearly contradicts the unboundedness
of g(-) and the assumption that v < 1/2.

For finite-dimensional systems Proposition 3.7 actually holds for all v e (0, 1), see [5,45].
Whether or not this is also true for regular infinite-dimensional systems is a topic for future
research.

Adaptive low-gain control of multivariable systems with sign-indefinite steady-state gain

In this subsection we consider the adaptive low-gain tracking problem, for regular sys-
tems with square m x m transfer functions G ( J ) . In the previous subsection, under the
assumption that G(0) is sign-definite, we could exploit the fact that for all gains k having
the 'correct' sign and with |it| sufficiently small, HĜ Hoo = l/|Jt| (see Proposition 3.5).
If G(0) is sign-indefinite or even non-symmetric, then, again by Proposition 3.5, we no
longer have this result.

To overcome this problem, we do not use a tuning function K, reflecting the low-gain
nature of the problem in the sense that lim^oo K.(y) = 0. but resort instead to a gain
which oscillates smoothly between 0 and 2 (in fact, 2 could be replaced by any positive
number.)

We assume throughout that Epiant is a m-input m-output exponentially stable regular
system. We will first consider the case when the spectrum of G(0) is unmixed in the sense
that <J (G(0) ) C Co- As usual let «(•) and y(-) denote the plant input and plant output,
respectively, and set «(•) = r — y(-), where r e R"1 is a demand vector. Consider the
control law given by

u(t) = uo+ [I+ cos(\ogv g(r))]e(r)dz , where 0 < v < 1, (3.12a)
Jo

«(0 = lk(0ll2 . S(0) = go- (3.12b)

THEOREM 3.8 Assume that CT(G(0)) C CO. Let r e Rm be an arbitrary demand vector.
If u(t) is given by (3.12a), with gain adaptation (3.12b), then for each (x0, u0) e X x Rm

and go > 1 w e
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(i) lim^oo g(t) = gx < OO ,
(ii) |[jc(r)|| and ||M(/)|| remain bounded as t -*• oo,

(iii) e € L2(R+, R m ) .

Moreover, if (XQ, «O) e D(A), then

lim e(t) = lim(y(t) -r) = 0. (3.13)
( • o o r*oo( -•oo

If the observation operator C is bounded, then (3.13) holds for all (xo, uo) e X xRm.

Specialized to the case where G(0) >• 0, it is natural to compare the control law in Theorem
3.8 to the one in Proposition 3.7. Intuitively, it should have advantages to use the controller
in Proposition 3.7, since in this case the gain passes into the 'correct' parameter region
once and remains there, whereas the gain in the controller in Theorem 3.8 may pass in and
out of the 'correct* region several times before converging and small disturbances could
lead to further cycles in the gain adaptation.

In Theorem 3.8 we assumed that <r(G(0)) c Co. We now consider the case when we
know only that det G(0) ^ 0. An application of Proposition 2.4 shows that there exists a
finite set {ATj,..., Kt) C Rm x m so that given any real invertible m x m matrix M there
exists j e {1, 2, . . . , £} such thatcr(Af Kj) c Co- We now use this result in order to unmix
the spectrum of G(0). Consider the feedback law

/ g (3.14)

o

combined with the adaptation rule (3.12b), where 0 < v < 1, go ^ exp(v^jr) and

Z(y) = j if (2K)-1 log" y e {Nl + j , NI + J + 1) for some N eN.
THEOREM 3.9 Assume that detG(O) ^ 0. Let r e Rm be an arbitrary demand vector.
If u(t) is given by (3.14), with adaptation (3.12b), then for each (x0, u0) e X x Rm and
go ^ exp(v/2Jr) we have

(i) lim,_^oog(0 = goo < oo,
(ii) ||x(/)|| and | |M(0| | remain bounded as / —>• oo,

(iii) ee L2(R+,Rm) .

Moreover, if (JC0, UQ) e D(A), then (3.13) holds. If the control operator C is bounded, then
(3.13) holds for all (XQ, U0) e X x Rm.

The proofs of Theorems 3.8 and 3.9 can be found in [45].

Notes and references

Non-adaptive low-gain control in a finite-dimensional setting has been considered by Davi-
son [12] and Lunze [49] using state-space methods, and by Grosdidier et al. [19] and
Morari [58] using frequency-domain methods. Applications of these and related results
to industrial control problems can be found in Coppus et al. [6] and Lunze [50]. Pohjo-
lainen [62, 63], Jussila & Koivo [27], Logemann & Owens [43] and Logemann et al. [37]
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have extended the finite-dimensional tuning regulator results to various classes of infinite-
dimensional systems.

The question how much integral action a stable finite-dimensional control system can
tolerate was answered by Mustafa [59]. He derived a closed formula, in terms of a minimal
state-space realization, for the radius of integral controllability of an integral controllable
plant, i.e. a formula for the largest possible Jt* > 0 such that (k/s)I stabilizes the plant for
all k 6 (0, it*). The question whether there is a similar result in infinite dimensions leads
to the following

Open problem. Is there a closed formula for the radius of integral controllability of a
regular infinite-dimensional system in terms of its generating operators?

Low-gain universal adaptive controllers which achieve asymptotic tracking of constant
reference signals for finite-dimensional linear plants have been presented by Cook [5] and
by Miller & Davison [56,57]. * The controller given in [5] is smooth, while the control laws
derived in [56, 57] are 'piecewise constant'. Cook's paper [5] is restricted to the single-
input single-output case. The controller given in [57] satisfies a control input constraint.
We mention that the main result in Cook [5] (at least as we understand it) relies on the
Kalman-Yakubovich lemma. A straightforward extension of the approach in [5] to regular
infinite-dimensional systems is not possible, since the existence of an appropriate infinite-
dimensional version of the Kalman-Yakubovich lemma is a difficult open problem. The
piecewise constant controllers presented in Miller & Davison [56, 57] seem unnecessarily
complicated and do not generalize to the infinite-dimensional case either.

It is natural to add a proportional part to the integrator to produce an adaptive PI
controller. If the proportional and integral gains are equal and the underlying plant is a
Pritchard-Salamon system (see Section 4) without direct feedtrough, then the results of
this section carry over with no changes. The problems of tuning the two gain parameters
independently and of extending the results to the more general class of regular systems
are challenges requiring further research. In the former we would need to find suitable
two-parameter adaptation strategies while, in the latter, well-posedness problems for the
nonlinear closed-loop system arise.

Non-adaptive sampled-data versions of tuning regulators for certain classes of infinite-
dimensional systems were obtained by Kobayashi [30, 33] using state-space methods.
Kobayashi's results were extended to the class of regular infinite-dimensional systems by
Logemann and Townley [46] using a frequency-domain approach. Moreover, in the same
paper they developed an approach to adaptive low-gain sampled-data control for regular
systems. The adaptive tracking results in [46] guarantee not only asymptotic tracking at
the sampling instants, but also in the sampling interval.

4. Adaptive controllers for classes of stabilizable and detectable systems

In this section we present results on adaptive stabilization which do not require the as-
sumptions of minimum-phase and generalized relative-degree one, or open-loop stability

| Surprisingly, the low-gain adaptive tracking problem has received less attention than its high-gain counter-
part; see Ilchmann [23], Logemann & Ilchmann [38], Ryan [68] and the references therein.
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196 HARTMUT LOGEMANN AND STUART TOWNLEY

and invertibility of the steady-state gain, which played crucial roles in the adaptive high-
and low-gain stabilization results of Sections 2 and 3, respectively. We present two main
results. The first deals with smooth adaptive stabilization of systems which are stabilizable
by scalar static output feedback. In a sense this result is a direct generalization of the re-
sults of Sections 2 and 3. The second result is the synthesis of switching controllers which
adaptively stabilize fairly large classes of stabilizable and detectable systems. The results
in this section apply to so-called Pritchard-Salamon systems—a class of systems which
allows for unboundedness in the control and observation, but which is less general than the
class of regular systems. The relationship between Pritchard-Salamon systems and regular
systems is described more precisely in Emirsajlow etal. [15].

Pritchard-Salamon systems

As in Section 3 the system is formally represented by the abstract differential equation

x{t) = Axif) + Buff), (4.1a)

y(t) = Cx(t). (4.1b)

In this section we assume that there exist real Hilbert spaces W C V, with continuous
dense injection, so that A is the generator of a strongly continuous semigroup, T(f), on
both W and V (with A denoting the generator on V with domain DV(A)) and that B €
B(Rm, V) and C 6 B(W, RP). In this sense, both B and C are unbounded.

We assume that the triple (A, B, C) forms a Pritchard-Salamon system; that is, for each
t > 0 there exist positive constants b and c such that

(PS1) | | /0 T(f - x)Bu(x)dx\\w < 6||K(-)IIZ.J(O.;:R») f o r a l l u ( ) e W'-2(0,/; Rm) ,
(PS2) ||CT(-)jr|k2(o./:R») *J c\\x\\v for all x e W.

B is termed an input-admissible operator while C is an output-admissible operator. Note
that if T ( 0 is exponentially stable on IV, respectively V then (PS1), respectively (PS2),
hold with t = oo.

If x0 e W, then the mild solution of (4.1a), given by

x(t) = T(t)x0 + I T(t- x)Bu(x) dx , (4.2)

evolves continuously in W, and the output given by (4.1b) defines a continuous function
with values in Rp. Most systems-theoretic properties of finite-dimensional systems extend
to this class of infinite-dimensional systems. Three such properties of this class of systems
which we require in this section are the well-posedness under arbitrary linear feedbacks;
the equivalence of internal and external stability and, in the case of smooth adaptive sta-
bilization, the well-posedness under locally Lipschitz nonlinear perturbations. This third
property is particularly relevant for adaptive control. For a comprehensive treatment of this
class of infinite-dimensional systems, in a linear quadratic or systems-theoretic setting, the
reader is urged to consult Pritchard & Salamon [64] and Curtain et al. [8]. * While the

X For duality theory and H°°-optimal control of Pritchard-Salamon systems see also van Keulen [28].
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ADAPTIVE CONTROL WITHOUT PARAMETER ESTIMATION 197

Pritchard-Salamon class does include many examples of partial differential systems with
boundary control and observation and of functional differential systems with delayed con-
trol and sensing action, it is less general than the class of regular systems, described in
Section 3 in the context of low-gain adaptive control.

The following lemma, which can be found in [8], shows that the Pritchard-Salamon
class is invariant under static output feedback.

LEMMA 4.1 For each K eRmxp there exists a Co-semigroup, denoted by TA+BKc(t),
defined on W and V, such that for each x0 e V, respectively xo e W, x(t) = TA+BKc(t)xo
is the unique solution, continuous in V, respectively W, of

= T(r)*o+ / T{t-x)BKCx{x)dx.
Jo

Moreover, (A + BKC, B, C) is a Pritchard-Salamon system.

Let Q(A) denote the resolvent set of A considered as an operator on the space V. The
transfer function of (4.1) is given by

G{s) = C{sl - A)~lB ,

which is defined for all s e Q(A). In the sequel we need the following stabilizability and
detectability concepts.

DEFINITION 4.2 (i) (A,B) is admissibly exponentially stabilizable {stabilizable for
short) if there exists an output-adfnissible feedback F e B{W, Rm) such TA+BF(t) de-
fines an exponentially stable semigroup on V and W.

(ii) (A, C) is admissibly exponentially detectable {detectable for short) if there exists
an input-admissible operator H e B(RP, V) such that TA+HC{t) defines an exponentially
stable semigroup on V and W.

(iii) {A, B, C) is externally stabilizable if there exists K e Rmx '7 such that the closed
loop transfer function G( / + KG)~l e H

PROPOSITION 4.3 Assume that (A, B) is stabilizable and that (A, C) is detectable. Then
K e Rmxp stabilizes (A, B, C) externally, if and only if TA+BKCC) is exponentially
stable on W and V.

The above proposition has been proved in [8]. It is useful for adaptive stabilization of
systems stabilizable by static output feedback. In the case that only stabilizability and de-
tectability is imposed on the system to be controlled, then the natural approach is to use
finite-dimensional dynamic output feedback. Let

z(t) = Fz(t) + Gy(t), z(t) e R', (4.3a)

u{t) = Hz(t) + Ky(t) (4.3b)

be a finite-dimensional compensator of order /. For / = 0, (4.3) is understood as u(t) =
Ky(t). If I > 0, then (4.3) can still be interpreted as static output feedback. More precisely,
we regard the dynamic feedback as static feedback

u{t) = Ky(t), (4.4)
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198 HARTMUT LOGEMANN AND STUART TOWNLEY

applied to the augmented plant described formally by

(4.5a)

= Cx(t), (4.5b)

where

o j - B = [ o o \ ' c = [ o i \- K = Z [ G F \- (46)

It is clear that the triple (-4, B, C) defines a Pritchard-Salamon system on the extended
state spaces

V = V © R'. (4.7)

Note that the stabilizability and detectability notions introduced in Definition 4.2 will be
inherited by the augmented system.

Let T(f) denote the strongly continuous semigroup on W and V generated by A. If we
apply the compensator (4.3) to the plant (4.1), or equivalently, if we apply the static output
feedback (4.4) to the augmented system (4.5), then by Lemma 4.1 there exists a strongly
continuous semigroup Tci(f) such that for all Jco e W and all f ^ 0

Tci(0*o = T(O-*o + I T(t - r)BKCtci(r)x0dT .
Jo

If for some choice of (4.3) the semigroup Tci(O is exponentially stable on W and V, then
we say that (4.1) is exponentially stabilizable by dynamic output feedback. The next result
shows that any stabilizable and detectable Pritchard-Salamon system can be stabilized by
a finite-dimensional compensator.

PROPOSITION 4.4 If (4.1) is stabilizable and detectable (in the sense of Definition 4.2),
then there exists / e N and a compensator of the form (4.3) which exponentially stabilizes
(4.1).

The above proposition follows from a combination of a number of well-known results
on stabilizability and stabilization of Pritchard-Salamon systems; see Logemann [36] for
details.

One of the basic tools in the area of adaptive stabilization without identification is the
bounding of the state dynamics in terms of the initial state and the input and output, see
Logemann & Martensson [39].

PROPOSITION 4.5 If (4.1) is exponentially detectable, then

(i) there exists positive constants CQ and c\ such that

ll*(0llw < co \\xo\\w + c\

for all t > 0 and u e Ljoc(R+; Rm);
(ii) for each xo e W, if u e L2(R+, Rm) produces an output y e L2(R+, Rp) , then

/Hm||jc(O| |w=0.
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Smooth stabilization of systems which are stabilizable by scalar static output feedback

In this subsection we will show that the simple control law

«(/) = AC(g(r))y(O. g«) = h(')f (4.8)

with

fC(y) = (log" y) cosGog" y ) , where fi, v > 0, 3/x + v < 1, (4.9)

stabilizes any exponentially stabilizable and detectable Pritchard-Salamon system which
is externally stabilizable by scalar output feedback u(t) = ky(t), for some k e R. * Notice
that K. is of the same form as the low-gain tuning function (3.9). However, the choice of
the parameters (i and v is different, and in fact, in the present case, K. given by (4.9) is a
Nussbaum function satisfying (2.10).

First we need a lemma on the existence and uniqueness of the solutions to the nonlinear
closed-loop system given by (4.1) and (4.8).

LEMMA 4.6 Let a ^ - c o , K e Rm x p and let AC : (a, oo) -*• R be a locally Lipschitz
function. If XQ e W and go e (a, oo), then there exists a unique solution (xmax, gmaz) 6
C(0, w ; W x R) of

x(t) = T(t)x0 + [ T(t - z)K(g{T))BKCx(T)dx , (4.10a)
Jo

(r)||2</r. (4.10b)f
Jo
f

Jo

on a maximal interval of existence [0, r ^ j ) , where 0 < xmax ^ oo. If xmax < oo, then

Hm (||

The proof of the above result follows easily from lemma 4 in Logemann [35].

THEOREM 4.7 Suppose that (4.1) is stabilizable and detectable and that the function K,
is given by (4.9). If (4.1) is externally stabilized by the ouput feedback K = kl, for some
k e R, then for all x0 e W and go e R, go > 1, the solution (x(t), g(t)) of the closed-loop
system given by (4.10a) and (4.10b) exists for all t ^ 0 and

(i) lim,_oog(0 = go, < oo,
(ii) l im,^o o |

In Townley [71 ] this result is proved using a Lyapunov approach under the extra assumption
that Dy(A) c W, i.e. when the Pritchard—Salamon system is smooth. We give a sketch of
an alternative proof which does not require the extra smoothness assumption.

| In one sense this result circumvents the 'adaptive analogue' of the open question posed at the end of Section
2, that u the tuning of the proportional gain in the case that high-gain stabilization of the system is possible,
without a need to characterize and exploit any special features which might exist in this case.
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200 HARTMUT LOGEMANN AND STUART TOWNLEY

Sketch of the proof of Theorem 4.7 Let [0, tmax) be the maximal interval of existence.
From Proposition 4.5 and using (4.10b), which defines the adaptation of g(), we can show
that for / € [0, xmax)

+c , max [l + £2(y)] (g(t) - g0), (4.11)

where Co, c\ > 0 are suitable constants. Define K e R by

| | G ( / + ^ G ) - I | | o o = l//c. (4.12)

Seeking a contradiction, suppose that g(t) —• oo as t /* xmax. Then it is easy to see from
the form of )€(•) that there exists an increasing sequence to, t\,... such that

K{g(.t2j))=k-K/2, IC(g(t2j+l))=k+K/2, (4.13)

with K.{y) e(k- K/2, k + *r/2) for y e (g(t2j), g(t2j+\)) and g(tj) -» oo. The change in
g (t) on [t2J, f2;+i] is given by

- g(t2J) = f V+> \\Cx(z)fdr ^ 4\\CTA+kBc(-)x(t2j)\\lHlvlv+i). (4.14)

The estimate (4.14) is obtained by using (4.13) in a routine argument of small-gain type
applied to the system (A + kBC, B, C) on the interval [t2j, fy+i). combined with the
definition of K as the inverse of the closed-loop gain, cf. (4.12). Combining (4.11) and
(4.14), and using the specific form of £(•). we have

g(h]+\) ~ g«2j) ^ c0 Hxollw + c, [1 + \og2li(g(t2j))](g(t2j) - go) (4.15)

for some positive constants Co and c\. It is now easy to show, using again the specific form
of AC(-) to estimate g(ty+i) — g(hj) in terms of \o%g[t2j) and g(ty), that the unbounded-
ness of g(-) leads to a contradiction. Hence g ( ) is bounded on [0, rmax). As a consequence,
y e L2(0, rmax; K

m) and thus ||jr()||w is bounded on [0, xmax). Using Lemma 4.6 we ob-
tain that xmax = oo and y 6 L2(R+, Rm) with «(•) = K.{g(-))y(-) e L2(R+, Rm). The
remainder of the result follows from Proposition 4.5 (ii).

Adaptive stabilization by switching

In the seminal paper [51], MSrtensson proved that knowledge of the order of a stabilizing
compensator is sufficient a priori information for the synthesis of adaptive stabilizers for
finite-dimensional linear systems." In this section we describe the extensions of this basic
result to infinite-dimensional systems. The complete details can be found in Logemann &
M&rtensson [39].

Let C = {C,},€N be a countable set of controllers of the form (4.3), indexed by /. Of
course C could be obtained by cycling through a finite set of controllers, as would be the
more realistic situation. By M(-) = Cy{-) we mean the operator relationship between «(•)
and y(), for some initial condition z(0), which is to be considered as a part of the operator
C. Further, let (y,) be a sequence of real numbers, increasing towards infinity. We call a
function I : K - f N a switching function with switching points y< if for all a e R it holds
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Switching Mechanism

FIG. 5. Switching controller

that £([a, oo)) = N and its discontinuity points are y,-. For convenience, we require E to
be right continuous.

The switching controller associated with C and (4.1) is defined by

II" II2, g ( 0 ) = *0.

(4.16a)

(4.16b)

The above controller is illustrated in Fig. 5. We consider the switching sequence given by

Yj+\=Yj 0 = 1,2,...), y , > l , (4.17)

which is the same sequence as in (2.7). The control law (4.16) says that all controllers
C, are processing the plant output for all t ~£ 0. Thus, unless all (or 'most') of C, are
memoryless, (4.16) is an infinite-dimensional controller. If all the C, have a realization
on a common state space R', with a common initial condition z(0), this difficulty can be
avoided by considering each dynamic control as static ouput feedback v = Ky applied to
the augmented plant (4.5). The algorithm becomes one of searching through a set of static
output feedback gain matrices. Indeed we rewrite the controller (4.16) in the form

"(0 = (4.18a)

(4.18b)
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202 HARTMUT LOGEMANN AND STUART TOWNLEY

where K\ is given by the expression for K in (4.6) indexed by i. The mild form of the
augmented plant (4.3) is given by

x(t) = f(OJro+ f t(r - x)Bu(x)dx , xo e W , (4.19a)
Jo

y(O = CJc(O, (4.19b)

with notation as in (4.6) and (4.7).
A solution on [0, a) of the closed-loop system given by (4.19) and (4.18) is a W x Un-

valued function (x, g) such that x is continuous in W, the function g is absolutely continu-
ous and (4.19) and (4.18) are satisfied for almost every t e [0, a). It is not difficult to show
that there exists a unique solution which can be continued to the right as long as it remains
bounded.

Mirtensson [52, 53] proved a general theorem on adaptive stabilization of finite-
dimensional linear systems by switching controllers. We present here the natural gener-
alization to infinite-dimensional systems which was obtained in [39].

THEOREM 4.8 Assume that C = (C,},eN is a set of controllers of the type (4.3) (with a
bound on the /'s), with the property that there is a controller C e € which exponentially
stabilizes (4.1). Then the controller (4.18), with y, given by (4.17), adaptivley stabilizes
(4.19) in the sense that for each x(0) 6 W and g(0) 6 R we have that (\\x(t)\\$, £(0) ~»
(0, goo) (where #<» < oo) as t -*• oo.

Notes and references

The result in Theorem 4.7 can be extended, using the spectrum-unmixing techniques of
Section 2, to construct adaptive controllers for systems which are stabilizable by k.K,t for
some it e R and i e {1,..., t) where {K ],..., Kt] is a fixed set of feedback matrices.

For a class of retarded systems, a result similar to Theorem 4.8 was proved by Dahleh
[9]. However, one of the assumptions in [9] is that the plant is continuously initially ob-
servable, which is very restrictive (see [39] for a discussion). A discrete-time version of
Theorem 4.8 can be found in Logemann & Martensson [40]. Since the adaptive control
law in Theorem 4.8 is based on a piecewise constant adaptation of the gain, it seems likely
that it can be extended to regular systems by using recent results of Weiss & Curtain [79]
on dynamic stabilization of regular systems. However, the question whether the smooth
controller in Theorem 4.7 extends to the class of regular systems leads to the following
open problem.

Open problem. Is the smooth controller given by (4.8) and (4.9) an adaptive stabilizer
for the class of regular systems, with zero feedthrough which are stabilizable by output
feedback «(/) = ky{t) for some k e 1 ?

The main difficulty appears to be establishing the existence and uniqueness of solutions
to the resulting closed-loop nonlinear equations.

Another interesting topic for future research is the question of how to use Theorem 4.8
for the synthesis of adaptive tracking controllers. A natural approach, of course, is to prec-
ompensate the plant using a suitable system containing an internal model of the dynamics
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of the reference signals and then to reformulate the tracking problem as a stabilization
problem. To make this idea work, a general form of Lemma 3.4 is needed, i.e. a result
which ensures that every reference signal can be 'realized' as the output of the uncon-
trolled precompensated plant by a suitable choice of the initial state.

In Section 2 we stated an open problem on the limiting behaviour of the closed-loop
system in the context of smooth high-gain adaptive stabilization. An analogous open prob-
lem can be formulated for the adaptive switching controller in Theorem 4.8. Notice that
the closed-loop dynamics of the evolution of x(t) in (4.19a) are piecewise linear. Making
use of this, Townley [71] has proved, in the case of finite-dimensional systems, that for all
initial values (x(0), g(0)) in an open and dense set, the limiting closed-loop system result-
ing from one application of the adaptive switching controller (4.18) is exponentially stable.
Whether the same is true in the infinite-dimensional Pritchard—Salamon set-up remains an
open problem.

In a finite-dimensional setting Martensson [51] (see also Martensson & Polderman [55])
has shown that the switching controller (4.18) with piecewise constant gain adaptation can
be replaced by a smooth control law. It is easily seen that this generalizes to Pritchard-
Salamon systems. Finally, in the subsection on adaptive stabilization by switching we have
exclusively considered stabilization by finite-dimensional controllers. Due to the progress
in VLSI technology and, to a lesser extent, computer technology in general, a future exclu-
sive emphasis on finite-dimensional stabilization seems unnatural.
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