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Abstract: It is well known that if the steady-state
gain G(0) of a stable lumped system, with transfer
function G(s), is positive, then compensating the
system by an integral controller k/s, where k is a
gain parameter, leads to a stable closed-loop
system which achieves tracking of arbitrary
constant reference signals, provided that the gain
parameter k is positive and sufficiently small. It is
also well known that this result extends to certain
classes of differential-delay and distributed
parameter systems. The authors derive an
adaptive version of the above result for the class
of stable lumped systems with output delay, i.e.
they show that the gain parameter k can be tuned
adaptively, so that tracking is achieved for any
system of this class. The resulting adaptive
tracking controller is not based on system
identification or parameter estimation algorithms,
nor is the injection of probing signals required.  

1 Introduction 

In this paper we consider adaptive integral control of
time delay systems. We emphasise that this paper is
tutorial in the sense that it gives a self-contained treat-
ment of a result which is a special case of a much more
general theory presented in Logemann and Townley
[1]. However, in [1] the approach is based on functional
analysis and the theory of regular infinite-dimensional
systems, whereas in this paper we use standard engi-
neering mathematics. 

The synthesis of low-gain I and PI-controllers for
uncertain stable plants has received considerable atten-
tion in the last 20 years. For a stable single-input, sin-
gle-output, lumped parameter system with positive
steady-state gain, the main existence result on robust
low-gain I-control states that there exists k* > 0 such
that for all k ∈  (0, k*), the controller k/s is stabilising
and the resulting closed-loop system asymptotically
tracks arbitrary constant reference signals. This result
has been proved by Davison [2] and Lunze [3] using
time-domain methods, and by Grosdidier et al. [4] and
Morari [5] using frequency-domain methods (see also
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[3], chapter 10, and [6], pp. 362). Methods for tuning
the integral gain k by means of experiments and simu-
lations have been developed and discussed in many
places, we only mention [2, 3, 7], and the papers by
Owens and Chotai [8] and Penttinen and Koivo [9].
Such a controller design approach (called ‘tuning regu-
lator theory’ [2]) has been successfully applied in proc-
ess control, see, e.g. Coppus et al. [10] and Lunze [7]. 

The tuning regulator result mentioned above has
been extended by Jussila and Koivo [11] and Koivo
and Pohjolainen [12] to differential delay systems, and
by Logemann and Owens [13], and Pohjolainen [14], to
certain classes of distributed parameter systems. 

If the plant uncertainty is large and/or if reliable step
response data is not available then the gain parameter
k has to be tuned adaptively. Low-gain universal adap-
tive I-controllers which achieve asymptotic tracking of
constant reference signals for stable lumped plants have
been presented by Cook [15] and by Miller and Davi-
son [16, 17]. By ‘universal’ we mean that the controllers
are not based on system identification or parameter
estimation algorithms. The controller given in [15] is
smooth, while the control laws derived in [16, 17] are
‘piecewise-constant’. The controller given in [16] satis-
fies a control input constraint. 

In this paper we consider the problem of low-gain I-
control, and especially adaptive I-control, for stable
lumped systems with output delay, which we will call
stable time-delay systems. 

2 Non-adaptive integral control 

As usual, let H∞ denote the set of all functions F(s)
which are analytic and bounded on the open right-half
plane Re s > 0. If a transfer function F is in H∞, then
we define the H∞-gain of F to be 

The H∞ transfer functions we will be dealing with in
the following will have the extra property that they are
analytic in an open right-half plane of the form Re s >
–ε for some ε > 0. For such transfer functions F an
important property is that the H∞-gain of F is given by
the maximal distance of the Nyquist diagram of F to
the origin, i.e. 

Fig.1 Low-gain control with output delay 
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For the rest of this paper let G(s) be a stable strictly
proper real-rational transfer function (this means in
particular that G is in H∞). We say that the feedback
system shown in Fig. 1 is input-output stable if the
closed-loop transfer function 

has no poles in the closed-right halfplane, equivalently
if Hk is in H∞. 

Proposition 1: If G(s) is a stable strictly proper real-
rational transfer function with G(0) > 0 (i.e. the steady-
state gain is positive), then there exists k* > 0 (depend-
ing on h) such that for all k ∈  (0, k*) the closed-loop
transfer function Hk is in H∞, i.e. for such k the feed-
back system shown in Fig. 1 is input-output stable. 

Proof: Clearly, under the above assumptions on G(s),
Hk(0) = 1, so that the closed-loop transfer function Hk
has no poles in the closed-right half plane if and only if
the function 

has no zeros in the closed right-half plane. For |s|
small, a series expansion of Lk(s) at s = 0 yields 

Since G(0) > 0, an inspection of eqn. 5 shows that we
can find k1 > 0 and % > 0 such that 

Moreover, since the expression G(s)e–hs/s is bounded
for s with |s| > % and Re s ≥ 0, we can find k2 > 0 such
that

Combining eqns. 6 and 7 and choosing k* = min(k1, k2)
completes the argument. u

Proposition 1, combined with a straigthforward
application of the final value theorem from Laplace
transforms, yields the following corollary. 

Corollary 1: If G(s) is a stable strictly proper real-
rational transfer function with G(0) > 0, then there
exists k* > 0 (depending on h) such that for all k ∈  (0,
k*) the output y of the closed-loop system shown in
Fig. 1 asymptotically tracks any constant reference r. 

The following proposition shows that the H∞-gain of
the feedback system shown in Fig. 1 is equal to 1 for
all sufficiently small k > 0. This result will be used as
the main tool in Section 3, but it is of some interest in
its own right. 

Proposition 2: If G(s) is a stable strictly proper real-
rational transfer function with G(0) > 0, then there
exists k** > 0 (depending on h) such that for all k ∈  (0,
k**) 
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Proof: Clearly 

Using the fact that G(0) > 0, a simple calculation,
shows that the radius of curvature %0 of the inverse
Nyquist diagram of kG(s)e–hs/s, i.e. of the curve 

at 0 ∈  C is given by 

Clearly, %0 → ∞ as k ↓  0. Moreover, the imaginary axis
is the tangent of Nk at 0. Let k* be the constant of
Proposition 1. It follows that there exists k** ∈  (0, k*],
so that for all k ∈  (0, k**), no points inside the circle
centred at (–1, 0) with radius 1 lie on Nk. In particular,
||Hk||∞ = |Hk(0)| = 1, so that eqn. 8 holds. u

So far we have considered the feedback system
shown in Fig. 1 from an input-output point of view. If
Fig. 1 describes a system with internal dynamics, then
we must also consider the effects of non-zero initial
conditions. This we will do in the following. To this
end let A ∈  Rn×n be asymptotically stable, b, c ∈  Rn

and set G(s) = cT(sI – A)–1b. The closed-loop system
shown in Fig. 1 can then be described by  

In the following we will be interested in the internal
stability of the above system, and therefore we will
assume that r = 0. Then eqns. 12 and 13 can be
expressed as 

Eqn. 14 is a so called delay-differential equation. There
is a well-established mathematical theory for delay-dif-
ferential equations (sometimes also called functional
differential equations), see for example the books by
Driver [18] and by Hale and Verduyn Lunel [19]. An
immediate mathematical question is, what kind of ini-
tial condition should one use in order to obtain a
unique solution to eqn. 14. A moment’s thought shows
that the specification of an initial function on the inter-
val [–h, 0] is the most natural answer. This means we
require 

for a given function φ. The fundamental solution X(t)
of eqn. 14 is a function which is defined for all t ∈  [–h,
∞), its values are (n + 1) × (n + 1)-matrices, it satisfies
the matrix differential-delay equation 

for all t ≥ 0 and, finally, it satisfies the initial condition

The characteristic equation of eqn. 14 is given by 
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Notice that qk(s) is not a polynomial, but it is a so
called quasi-polynomial in s. If all the zeros of qk(s)
have negative real parts, then, as is the case for ordi-
nary differential equations, the system eqn. 14 is expo-
nentially stable in the sense that any solution of this
equation decays exponentially, or equivalently that
there exist numbers M ≥ 1 and µ > 0 such that 

where ||·|| denotes any matrix norm (for example the
largest singular value). 

We now show, using the input-output result Proposi-
tion 1, that for all sufficiently small k > 0 the system in
eqn. 14 is exponentially stable. 

Corollary 2: Let G(s) = cT(sI – A)–1b, where A ∈  Rn×n is
an asymptotically stable matrix, and suppose that G(0)
= –cT A–1b > 0. Then there exists k* > 0 (the same k* as
in Proposition 1) such that for all k ∈  (0, k*) the delay-
differential system of eqn. 14 is exponentially stable. 

Proof: We need to show that for any sufficiently small
k > 0, all the zeros of qk have negative real parts. To
this end note that 

By assumption, all the zeros of det(sI – A) have nega-
tive real parts. From Proposition 1 we know that there
exists k* > 0 such that for all k ∈  (0, k*), Lk(s) has no
zeros in the closed right-half plane. Moreover, for s = 0
we have that qk(0) = (–1)nkG(0) det A ≠ 0. Combining
these arguments with eqn. 20 shows that for all k ∈  (0,
k*), all the zeros of qk(s) have negative real parts. u

The tuning regulator result for stable time-delay sys-
tems given in Corollary 2 is not new. It can be found in
[11] and [12]. For the sake of completeness, and in
order to make the paper self-contained, we have
included the short proof. Note that our development is
different to the approaches in [11] and [12] in that we
first give an input-output version of the tuning regula-
tor result in Proposition 1 (which is needed in the proof
of the important Proposition 2) and then apply it to
obtain the corresponding internal version in Corollary
2. 

3 Adaptive integral control 

In Section 2 we saw that tracking of constant reference
signals can be achieved for stable time-delay systems
with positive steady-state gain by integral control
action if the integral gain parameter is positive and suf-
ficiently small (Proposition 1). If reliable step-response
data is available, then there are techniques for off-line
tuning of the integral gain parameter so as to achieve
the required tracking, see [11, 12]. However, if the step-
response data is unreliable, or it is difficult to obtain a
sufficiently good model, then an adaptive on-line tun-
ing mechanism for the integral gain parameter is
required. In this section, the main result gives a simple
adaptation rule for the on-line tuning of the gain. The
main tool in proving this adaptive I-control result is
Proposition 2, where we showed that if the integral
gain is sufficiently small, then the closed-loop H∞-gain
is equal to one. 
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To formulate this adaptive I-control result, consider
the system  

where A ∈  Rn×n and b, c ∈  Rn. Clearly, setting G(s) =
cT(sI – A)–1b, the transfer function of eqns. 21 and 22 is
given by G(s)e–hs. 
Theorem 1: Fix a set point r ∈  R and suppose that A is
asymptotically stable and G(0) > 0. Define the input
u(t) in eqn. 21 by  

and let 

be the initial conditions for the closed-loop nonlinear
delay-differential system given by eqns. 21, 23 and 24. 

If p ∈  (0, 1/2), then for every continuous initial func-
tion φ and γ0 > 0 we have 
(i) limt→∞ x(t) = xr := –A–1bG(0)–1r; 
(ii) limt→∞ u(t) = ur := G(0)–1r; 
(iii) limt→∞ γ(t) = γ∞ < ∞ and 
(iv) limt→∞ y(t) = r. 
Statements (i) and (ii) simply mean that the internal
variables describing the system converge, (iii) states
that the adaptation parameter converges, and (iv),
being most important, states that the plant output
asymptotically tracks the given set-point. 
Proof of Theorem 1: Let z(t) = x(t) – xr and v(t) = u(t)
– ur. For any k ∈  R we can rewrite the closed-loop
equations eqns. 21 and 22 in the form of a forced dif-
ferential-delay equation 

Here k is an ‘artificial’ gain parameter whose value will
be specified later. For convenience let 

We observe that conclusions (i) and (ii) above, for x(t)
and u(t) become limt→∞ x̃(t) = 0. 

Using the variation of parameters formula for a
delay system with a forcing term  (see for example
[19, 20]) we have, for any T ≥ 0, that 

Here ξ(t; x̃T, 0) denotes the solution of the unforced lin-
ear system 

starting at time 0 with initial function 

and Ξk(t) is the fundamental solution of eqn. 29. 
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Now let k be sufficiently small so that, in the sense of
Proposition 2, the closed loop H∞-gain is one, i.e. 

where Hk(s) is given by eqn. 3. We first show that state-
ment (iii) holds. Since γ(t) is non-decreasing, this will
follow if we can prove that γ(t) is bounded. The claims
(i), (ii) and (iv) will then follow easily. Now, either γ–

p(t) is always greater than or equal to k for all t ≥ 0 so
that γ(t) is bounded, or else we can choose T ≥ 0 in
eqn. 28 (fixed from now on) so that γ–p(t) ≤ k for all t ≥
T. We will show that γ(t) is also bounded in the latter
case. 

Denoting the error by e(t), we have that 

Hence, by eqn. 28 

Consider the map 

Of course, Mk can be considered as the input-output
operator of a linear system. By taking Laplace trans-
forms (denoted by L) we obtain the corresponding
transfer function 

Since ||Hk||∞ = 1, we obtain 

If ∫0
∞ w2(τ) dτ < ∞, then it follows from a combination

of eqn. 35 considered for s = jω, eqn. 36 and
Plancherel’s theorem from Fourier transforms that 

Defining 

it follows that 
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Hence, by eqn. 37 

Moreover, we know from the exponential stability of
the delay-differential system eqn. 29 that 

for some M, µ > 0, where M depends on x̃T and c. 
Hence, estimation in eqn. 33, using eqns. 40 and 41,

gives 

Here we used the fact that γ–p(t) is non-increasing as a
function of t and that, by our choice of T, γ–p(t) ≤ k for
all t ≥ T. Now, by eqn. 24 

and therefore eqn. 42 becomes 

Since γ(t) is non-decreasing, on squaring both sides of
eqn. 44 and re-arranging, we obtain 

Estimating all T-dependent terms (recall T is fixed) we
arrive at 

where N > 0 is some suitably chosen constant (depend-
ing only on T, x̃T, γ0 and k). Since p ∈  (0, 1/2) it follows
that γ(t) is bounded. Indeed, we have that 

so that the left hand side grows with γ(t), while the
right hand side grows like a fractional power γq(t),
where q ∈  (0, 1). 

We have so far shown that γ(t) is bounded. It follows
using eqn. 24 that ∫0

∞ e2(τ) dτ < ∞. Hence combining
eqns. 28 and 41 and the exponential decay of the fun-
damental solution Ξk(t), it follows that limt→∞ x̃(t) = 0.
Here we used the well known fact that the convolution
of two square integrable functions tends to zero as t →
∞. By definition of x̃(t), it follows that statements (i)
and (ii) hold. Statement (iv) follows easily from state-
ment (i). 

We note that in the square, multivariable case, if the
steady-state gain G(0) is positive definite, then the sim-
ple modification  
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of eqns. 23 and 24, achieves asymptotic tracking of
arbitrary reference vectors. In eqn. 49, ||·|| denotes the
Euclidean norm. 

4 Example 

We illustrate the results of Section 3 by a simple second
order time-delay system. In eqns. 13 and 14 suppose
that 

so that 

If h = 0, then u̇  = –ky is stabilising for all k ∈  (0, 11).
Using a stability window analysis, see Walton and
Marshall [20], we can compute for each h, the largest
k(h) so that u̇  = –ky is stabilising for all k ∈  (0, k(h)). In
Fig. 2, k(h) is plotted against h.  

Recall that the proof of Theorem 1 relies on the fact
that eqn. 8 holds for all k ∈  (0, k**), for some small
enough k** > 0. In this simple case we can show that
the largest value for k** is 10/(11h + 10), see Loge-
mann, Ryan and Townley [21]. 

Let H(t) denote the Heaviside step function. We
choose a reference signal r(t) = –0.5H(t) + 1.5H(t – 20)

Fig.2 Allowable gain k(h) as a function of h 

Fig.3 Reference, output and integral gain with adaptive gain γ –0.49 
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– 0.5H(t – 60). It is clear that the same adaptive
algorithm allows any reference signal which has finitely
many steps. Fig. 3 shows plots of the reference signal
r(t), the output y(t) and the adaptive gain γ–p(t) against
t for eqns. 23 and 24 with p = 0.49, when h = 2, x(0) =
0, u(0) = 0 and y(t) = 0 for t < 0, whilst Fig. 4 shows a
plot of the input u(t) and, for purposes of comparison,
the required steady state input. In this case, the
stability window analysis shows that any integrator
gain in (0, 0.588) is stabilising and eqn. 8 holds if k ∈
(0, 0.3125).  In  the simulation  the limiting  value,
γ–0.49(∞), of the adaptive gain is 0.2296. Notice also
that initially the adaptive gain equals 1 which is not a
stabilising value and that the closed-loop response is
poor until the adaptive-gain is below 0.3125, the value
of gain for which the important property in eqn. 8
holds. 

5 Notes, comments and concluding remarks 

In Section 3 we presented a simple adaptive I-controller
which, when applied to any stable system with output
delay, achieves asymptotic tracking of constant refer-
ences, provided that the steady-state gain is positive.
The main emphasis of this paper was to present a
mathematically rigorous convergence proof for the
adaptation, based only on elementary mathematical
techniques. Of course, we only addressed the problem
of tuning the integrator gain. In a real control engi-
neering application this would be just one aspect
amongst many others. Other aspects to be considered
would include the effects of disturbances, input satura-
tion and speeding up the transient response by adding
a proportional part to the controller. Output distur-
bances could result in ever decreasing integrator gain,
so leading to an unacceptably slow transient behaviour.
In practice, this problem could be overcome by includ-
ing a reset mechanism in the gain adaptation. The issue
of input saturation is dealt with in Logemann and
Ryan [22]. A proportional part could be added to the
controller quite easily if more plant information was
available. For example, if an upper bound M for the
H∞-gain of the open-loop plant is known, then we
could replace eqn. 23 by 

where |kP|M < 1. However, the above strategy does not
address the problem of how to tune both the integrator

Fig.4 Input and steady-state input with adaptive gain γ –0.49 



and proportional gains simultaneously. This problem
of improving, adaptively, the transient performance is
an interesting topic for future research. 

In this paper we considered lumped systems with out-
put delays. These are widely used in chemical process
control. More elaborate models, taking into considera-
tion the distributed nature of chemical processes, would
naturally give rise to more general classes of infinite-
dimensional or distributed parameter systems. How-
ever, it is likely that certain salient features would be
retained in these more complicated models, namely that
the system is stable and the steady-state gain is positive
(or non-zero). In [1], we considered low-gain control of
a general class of infinite-dimensional systems — so
called regular linear systems (see Weiss [23]). Starting
from an abstract point of view this class of systems
takes into account various natural properties that any
linear, time-invariant model should possess, such as
continuous dependence on data (input data and initial
conditions). Lumped systems with output delay are
included as a special case, as are many systems
described by partial differential equations. The main
result in [1] states that if a process is described by a
multivariable square stable regular linear system with
positive-definite steady-state gain, but which is other-
wise completely unknown, then asymptotic tracking of
arbitrary constant reference vectors can be achieved by
using the adaptive I-controller (eqns. 48 and 49). In
Logemann and Townley [24] we have considered sam-
pled-data versions of this adaptive I-controller. Indeed,
if yn denotes a sampled version of the continuous-time
plant output (obtained by some natural sampling oper-
ation), then the input 

where un is given by the discrete-time adaptive I-con-
troller 

when applied to any multivariable square stable regular
system with positive steady-state gain, achieves contin-
uous-time asymptotic tracking of arbitrary constant
reference vectors. 

Both papers [1] and [24] rely very much on functional
analysis and the theory of abstract linear systems so
that their contribution, for a control engineering audi-
ence, can be obscured by the level of abstraction. We
hope that the self-contained treatment in this paper of
a more concrete case, bridges the gap. 
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