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Abstract 

It is well-known that exponential stabilization of a neutral system with unstable difference operator is only possible by 
allowing for control laws containing derivative feedback. We show that closed-loop stability of a neutral system with unstable 
open-loop difference operator obtained by applying a derivative feedback scheme is extremely sensitive to arbitrarily small 
time delays in the feedback loop. 
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I. Introduction 

The phenomenon of destabilization of feedback sys- 
tems by arbitrarily small delays in the loop has been 
well-known for many years. To the best of  our knowl- 
edge the paper [1] by Barman et al. is the first one de- 
voted to this topic. More recently, researchers working 
in control of partial differential equations, 'rediscov- 
ered' the destabilizing effect of small delays in various 
examples involving vibrating systems, see, for exam- 
ple, [5-8]. Whilst these papers are based on partial 
differential equation and related techniques, a 
frequency-domain point of view is taken in [1]. The 
approach developed by Logemann and Rebarber [18] 
and Logemann et al. [19] is similar in spirit to that 
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in [1], but is not tied to the restrictions imposed in 
[ 1 ] such as the assumption that the open-loop transfer 
function has at most finitely many poles in the closed 
right-half plane. In this paper we show, using results 
from [19], that small delays in the feedback loop 
can also have a destabilizing effect on certain neutral 
functional differential equations. 

The problems of stability, stabilizability and 
stabilization for neutral systems has received 
considerable attention in the last 15 years, see 
[2, 10, 12, 15-17,21,22,24] to mention just a few ref- 
erences. For neutral systems the problem of feedback 
stabilization is in general considerably more difficult 
than for retarded systems. The reason for this is the 
fact that a neutral system with unstable difference 
operator possesses at least one unstable infinite root 
chain, i.e. a sequence of eigenvalues (si) such that 
limi~o~ [Si] : (2<3 and l imi~Resi  = a/> 0. A si- 
multaneous shifting of these eigenvalues to a 'stable' 
region of the form Re s ~< c~, for some ~ < 0, re- 
quires a change of the associated functional difference 
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equation. Hence, exponential stabilization of  a neu- 
tral system with unstable difference operator is only 
possible by allowing for control schemes containing 
derivative feedback (this important fact has first been 
recognized in [21] for systems with a single point 
delay). Our main results show that if  a neutral system 
with unstable difference operator can be exponentially 
stabilized by a state feedback of  the form 

u(t) = F[2(r) ,x (r ) ; t  - h <~ T ~ t], 

then there exist time delays ei with c~ > 0 and 
l imi~,~ ci = 0 such that for all i 6 N the delayed 
feedback 

u(t) = F[2(z ) ,x (r ) ; t  - g i  - h <~ r <~ t - ci] 

leads to a closed-loop system which has an unstable 
infinite root chain. 

The paper is organized as follows. In Section 2 we 
present some preliminaries and state two results from 
[ 19] which are needed later in the paper. In Section 3 
we prove a destabilization result for a class of  feedback 
controlled functional difference equations and discuss 
how it is related to a well-known sensitivity result in 
the literature [10]. Finally, in Section 4 we apply the 
result of  Section 3 to neutral systems. 

U3 

Y 
P 

Fig. 1. Feedback system with delay. 

I f  det(I  + e--='H(s)) ~ O, then the function G ~ 
defined by 

G~(s) := H ( s ) ( I  + e - e ' H ( s ) )  -I (2.1) 

is a transfer function, the so-called closed-loop transfer 
function of  the feedback system shown in Fig. 1. 

As usual we say that G ~ is L2-stable if  G~E 
(HeC) m×m. Equivalently, in the time domain, L 2- 
inputs are mapped boundedly to L2-outputs. It is easy 
to see that if  G -~' is L2-stable for some e0 E [0, oc), 
then H E M~ × ' .  

Definition 2.1. Let H be a transfer function. H is 
called well-posed if  H 6 (H~)  m×m for some c~ E E. 
Moreover, H is called regular if  it is well-posed and 
if the limit l im~_,+~ H ( ¢ )  exists (where ~ E ~).  This 
limit is called thefeedthrough matrix of  H .  

2. Destabilization by small delays in the frequency 
domain 

For :~,/~ E E with ~ </~ we define C~ := {s E C I 
Res  > c~}. Let C cl denote the closure of  C~, i.e. C~ I = 
{s E C IRes  >~ c~}. Moreover, we set 

Ct~,~] : = { s C C l ~ R e s ~ < / ~  }, 

C(~,/j) := { s ~ C  ]c~ < Res  < fl}. 

The field of  all meromorphic functions on C~ is de- 
noted by M:, while H ~  denotes the algebra of  all 
bounded holomorphic functions defined on C~. We 
write H ~ for H ~ .  Let f2 C C. A function H : f2 
C m×m is called a (cm×m-valued) transfer function if  
there exists ~ E ~ such that C: C I2 and H I c  ~ E M m×m. 

Let H be a transfer function and consider the 
feedback system shown in Fig. 1, where u is the in- 
put function, y is the output function and the block 
with transfer function e - ~  represents a delay of  
length e ~> 0. Delayed state feedback for functional 
difference and neutral systems is captured by the 
configuration shown in Fig. 1 (see Sections 3 and 4). 

Well-posed and regular transfer functions play an 
important role in the theory of  abstract linear control 
systems, see [23, 25]. For a transfer function H ,  let 
~lSn denote the set of  poles o f H .  I f H  is meromorphic 
on Co we define 

7 ( H )  := lira sup r ( H ( s ) ) ,  (2.2) 
Isl ~ee.sE Co \ '~n 

where r ( H ( s ) )  denotes the spectral radius of  H(s) .  
The following destabilization result for regular 

transfer functions was proved by Logemann et al. 
[19]. 

Theorem 2.2. Let H be a regular transJbr Junction. 
I f  G ° is' L2-stable, a n d / f T ( H )  > 1, then there exists 
sequences ( ei ) and (si ) with 

z i > 0 ,  lira c i = 0 ,  s i E C o ,  lim I lmsi]=cxD, 

so that Jor all i E N, si is a pole o f  Gei. Moreover, 
the instability o f  the transfer functions G ~' is" ro- 
bust in the sense that there exist numbers 3i @ (0, Ci ) 
such that G ~ has at least one pole in Co for  all 

~ U i ~  (~  - 6i, ci + 6i). 
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It was also shown in [19] that if 7(H) < 1, then 
L2-stability of G o is robust with respect to small 
delays in the loop (i.e. there exists e* > 0 such that 
G ~ - C ( H ~ )  mxm for all eE(0 ,e*) ) ,  provided that 
7(H) < 1. 

We close this section with the statement of a simple 
lemma which has been proved in [19]. 

Lemma 2.3. Let  U C C and H be a transfer function 
and suppose that G O is bounded and holomorphic on 
U. Ifsup,Eu r ( H ( s ) )  < oo, then sUP~Eu [[H(s)[[ < oc. 

3. A destabilization result for functional difference 
systems 

Consider a functional difference equation of the 
form 

OG 

x( t )  = ~ Dix(t  - hi) ,  t >~ O, (3.1) 
i = 1  

where 0 < hg ~< h, for some h > 0, and the matri- 
ces D i E ~ n x n satisfy 0¢ oo. ~ i  = 1 HOi ]] < Defining the 
bounded linear operator 

~ d  C([-h,O], ~ ' )  ~ ~ ' ,  

(3O 

~h ~-~ O ( O ) -  Y '~DiO(-h i ) ,  
i=1 

(3.2) 

and setting x~(r)= x(t  + z) for z E [ -h ,  0], Eq. (3.1) 
can be written as 

~ d X t = O ,  t >~0. (3.3) 

An operator of the form (3.2) is called a difference op- 
erator. The concept of a solution for (3.1) or, equiva- 
lently, for (3.3) must include initial functions defined 
on I -h ,  0]. As the set of all admissible initial functions 
we choose 

c~,, :=  {q~ ~ C([ -h ,O] ,  R') I ~dO = o}.  

It is well-known (see [10, p. 274]) that for any ini- 
tial function ~ E C~,~, (3.3) admits a unique solution 
x(., ~b ) E C ( [ - h ,  oo ), ~ ' )  satisfing x0(., ~,) = ~,. More- 
over, the family of operators defined by Sa(t)O = 
xt( . ,O),  t >~ O, defines a strongly continuous semi- 
group on C~,~. Setting 

we have that the exponential growth of Sd(t) is given 
by 

COd := sup{Res ] detAd(s)  = 0}. 

The difference operator ~d is called stable if cod < 0. 
Consider the controlled functional difference 

equation 

c~dXt = Bu( t ) ,  where B E ~ n x m  , (3.5) 

and apply the feedback u(t) = Ydxt-~,  where e/> 0 
and 

g~:C({-h,O],~')  ~ ~ ' ,  

(3.6) 
0 ~ ~ F i O ( - k i )  • 

i = l  

Here 0 < ki ~ h and the feedback matrices Fi C [~m×n 
satisfy ~-~i~l I[FiN < oc. The resulting closed-loop 
difference operator @5 is given by 

~ : C ( [ - h  - c,0], ~ ' )  ~ ~ ' ,  

(3O 

tp ~ ~b(O) - ~_, Di~b(-hi) - B ~ FiO(-k i  - c) .  
i = 1  i = 1  

(3.7) 

Clearly, c~  is stable if 

co~ := sup{Res ] act A~(s)= 0} < 0, 

where 

A S ( s ) = I -  ~ D i e - h " - e - ; ~ S B  ~ Fie -~'' . (3.8) 
i = 1  i = 1  

We can now formulate the main result of this section. 

Theorem 3.1. Suppose that cod >~ 0 and coo < O. 
Then there exist sequences (ci) and (si) with ci > 0, 
limi~oo ~i = 0, s i E C o  and limi~.~ [Imsi] = o~, so 
that f o r  all i E N 

det A~' (si) = O, 

i.e. f o r  all i E N we have that CO~' > O. Moreover, 
there exist numbers 6i E (0, ci ) such that det ACd has at 
least one zero in Co for  all ~ E U i E ~J (ci - 6i, ci + 6i). 

Before we prove Theorem 3.1 we make some com- 
ments concerning its interpretation and give a short 
discussion of related results in the literature. 

o c  

Aa(s) := I - ~-~Die -h~s , (3.4) 
i = 1  

Remark 3.2. (i) The assumption COd ~> 0 says that the 
open-loop system is unstable, whilst co o < 0 means 
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that the feedback u(t)=£fdXt is stabilizing. Neccessary 
and sufficient conditions for the existence of a stabiliz- 
ing feedback operator ,~-j in terms of rank (Aa(s), B) 
have been given in special cases by Salamon [22] and 
by Spong [24]. In [22] a difference operator ~0 with 
finitely many commensurable delays hi is considered. 
The case of finitely many noncommensurable delays 
is studied in [24] using a stronger concept of stabil- 
ity. The conclusion of Theorem 3.1 is that closed- 
loop stability is not robust with respect to small delays 
in the feedback loop, i.e. closed-loop stability can be 
destroyed by arbitrarily small delays in the feedback 
loop. 

(ii) Let hi E [0, oo) and Di¢ ~, ,xn for i = 1 . . . . .  / ,  
and set h := maxl ~i<~/hi, h := (ht . . . . .  h/) and/)  := 
(D1 . . . . .  De). It is well-known that the stability of a 
'finite' difference operator of the form 

; s ( L D ) : c ( [ - h , O [ ,  ~ )  ~ ~ " ,  

/ 

~b ~ t~(O)- ~ Di¢(-hi )  
i = 1  

can be very sensitive to small changes in the de- 
lay parameters hi, see [3, 9, 10,20]. The main re- 
sult is that the stability of ~ (h ,D)  is insensitive to 
small perturbations in the parameters h i i f  and only 
if ~(h,D)  is strongly stable, i.e. ~(h,D)  is stable 
for each h E [0, oc)/, see [9, 10]. However, Theorem 
3.1 does not follow from this result, since absence 
of strong stability does not guarantee that ~¢o can be 
destabilized by the highly structured one-parameter 
perturbation ki -.--~ ki Jr- ~. 

(iii) For 'finite' difference operators it is shown in 
[22] that in the case of independent delays in the given 
equation and in the feedback loop, any control law of 
the form u(t) = ~ax~ leads to a degradation in the 
strong stability behaviour of the closed-loop system. 
However, this does not imply that the closed-loop sys- 
tem is actually destabilized by arbitrarily small delays 
in the feedback loop. 

Proof of Theorem 3.1. We proceed in several steps. 
Step 1 : For the controlled system (3.5) we introduce 

the following 'artificial' output: 

y(t) = --~dX, . (3.9) 

Setting 

o o  
m k, s Fd(S) := ~ Fie , 

i = 1  

we obtain the following expression for the transfer 
function H of the controlled and observed system 
given by (3.5) and (3.9) 

H(s)  = --Fd(s)Adt(S)B. (3.10) 

It is easy to see that H is a regular transfer function 
with feedthrough matrix Omxm. 

Consider the delayed negative output feedback 

u(t )  = v( t )  - y ( t  - c ) ,  

where v is the external input for the closed-loop sys- 
tem. In the frequency-domain the relation between v 
and the closed-loop output y is given by the closed- 
loop transfer function 

G-(s) =H(s) ( l  + e-CSH(s)) i 

= - Fa(s)(Aa(s) - e-CSBFd(s)) lB. (3.11) 

Using (3.8), it follows that 

G g s  ) = - F d ( s ) (  ~t~(s) ) -  ~ B.  (3 .12 )  

Step 2: We show that G o E (H °°)mxm. By combin- 
ing (3.12) with Cramer's rule we obtain 

(, o G ° = - F j  ~ a d j A d ~ B ,  (3.13) 
det A d / 

where adj M denotes the adjugate of the matrix M. 
It follows from (3.8) and the summability of the se- 
quences (Di) and (Fi ~ that there exists a number/~ > 0 
such that 

inf ]detA°(s)] > 0 (3.14) 
s C { / ;  

Since by assumption ~o ° < 0, there exists a constant 
< 0 such that det A°a(s) ~ 0 for all s E C [~,/q. Now 

det A°a(s) is an almost periodic function in every ver- 
tical strip in the complex plane (cf. [4, p. 73]), and 
therefore, by a result in Levin's book [14, p. 268], we 
obtain that 

inf IdetA°(s)] > 0. (3.15) 

Obviously A ° is in (H°°) nx", and combining (3.14) 
and (3.15) shows that A ° is a unimodular matrix in 
(H°°) nxÈ, i.e. 

inf IdetA°(s)l > 0. (3.16) 
s C Co 

Since Fd E: (H °° )mxn and adj A ° E (H °° ),~ x.,, it follows 
from (3.13) and (3.16) that G o E (H°°)  mxm. 
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Step 3: We claim that there exists a sequence (si) 
in C~ 1 with l i m i ~  ]Imsil = c~, such that 

lim detAd(si)  = 0. (3.17) 
i~o<~  

To this end we distinguish between two cases. 
Case (A): If  there exists z EC~ I such that 

det Ad(z)  ---- 0, then the claim follows from the almost 
periodicity of  Ad. 

Case (B): If  detAd(s)  ¢ 0 for all sEC~  l, then, 
by the assumption that rod ~> 0, there exists a se- 
quence zi E C with Rezi  < 0, limi~c~ Rezi  = O, 
l i m i ~  Imzi  = zxD and such that for all i E [~ 

det Ad(zi) = 0. (3.18) 

Now for any ~ < fl, detAd(S) is holomorphic and 
bounded on the open vertical strip C (~,/~), and thus, 
by a result in [4, p. 72], det Ad(s) is uniformly contin- 
uous on any closed vertical strip C [~,/q. Therefore, it 
follows from (3.18) and the fact that limi~o¢ Rezi = 0  
that (3.17) holds true with si = z Im zi, where z denotes 
the imaginary unit. 

Step 4: Our aim is to show that 7(H)  -- oo, where 
7(H)  is defined by (2.2). By Step 3 there exists a 
sequence (si) in C~ I with l i m i ~  IIm si l= cx~ and such 
that 

lim IIA~- '(s , ) l l  = ~ .  (3.19) 
i ~  

Setting X :-- (A°) -1 it follows that Ad(s )X(s )  - 
BFa(s )X(s )  = I and hence 

X ( s )  - A~ l ( s )BFa( s )X ( s )  = Af f l ( s ) .  

Now, by (3.16), the entries of X(s)  are in H ~ ,  and so 
are the entries of Fa (s). Combining the above equation 
with 113.19) we obtain that 

lim IIa~'(s~)BII - -  ~ .  (3.20) 
i----* ~ 

Moreover, multiplying the identity X ( s ) A d ( S ) -  
X(s )BFa(s )  = 1 from the right by A~l ( s )B  and using 
(3.10) leads to 

X ( s ) B  + X ( s ) B H ( s )  = A d l ( s ) B .  

It follows from the boundedness of  X ( s )  and from 
(3.20) that 

lim IIH(s~)ll = oo, 
i----~ oo 

and thus, by Lemma 2.3 

lim r (H(s i ) )  = co.  
i ~ o o  

Step 5: We have shown that G o is L2-stable (Step 
2) and that 7(H)  > 1 (Step 4), and hence we may ap- 
ply Theorem 2.2 to obtain that there exists sequences 
(ei) and (si) with E" i > 0 ,  l i m i ~  ei = O, S i E C O and 
l i m i ~  Ilmsil = ~ and such that for any iE ~,  si is 
a pole of the transfer function G ~ given by (3.11 ). 
Consequently, using (3.12), si is a pole of (A~i) -1 
and hence a zero of det A~'. Moreover, it follows 
from Theorem 2.2 that there exist numbers 6i E (0, e~) 
such that det A~ has at least one zero in Co for all 

E c U i E ~ ( C i - -  f~i, E i + r i ) .  [] 

4. An application to neutral systems 

Consider the neutral system 

d 
~ x t  = S x t ,  x o = O E C ( [ - h ,  Ol, Nn),  (4.1) 

where ~ and L~ are linear bounded operators from 
C( [ -h ,  0] ,~ n) to ~n. We asssume that c~ is atomic 
at 0 (cf. [10, p. 52]) and moreover, without loss of 
generality we normalize the point mass of ~ at 0 to 
be the identity matrix. Using the Riesz representation 
theorem, we may write 

/ ~ b  =~,(0) - dA(z)~b(z), 
h 

/ 5(~ = dA(z)¢(z) ,  
h 

where A, A E B V ( [ - h ,  0], ~n×n) and A is left-contin- 
uous at 0 (that is the measure induced by A has no 
point mass at 0). We define 

F F O(s)  := I - dA(z )e  s~ , L(s )  := dA( z ) e  s~ , 
h . h 

and 

z t ( s )  : =  sO(s)  - L ( s ) .  

The function det d (s) is called the characteristic func-  
tion of (4.1). 

It is well known that any function of bounded 
variation can be written as the sum of an absolutely 
continuous function, a singular function and a jump 
function (cf., for example, [13, p. 341]). We will 
need the following assumption 

(NS) The function A does not have a singular part. 
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If the assumption (NS) holds, then ~ = , ~ / -  2,,, 
where ~d is given by (3.2) and 

derivative feedback, and therefore we consider control 
laws of the form 

~ : C ( [ - h , 0 ] , ~  ~) -~  A,,, 

0 I "  
H [ D~(r)O(z)dr, 

J _  - h  

with Da E L 1 ( [ - h ,  0],  ~n  x n ). Correspondingly, using 
(3.4), we obtain 

.0 I 
1)(S)  = A d ( s  ) -- I D a (  z)e'~ d r .  

• t h 

The neutral system (4.1) defines a strongly continuous 
semigroup S( t )  on C([-h,0],N~),  see [10, p. 263]. 
Under the assumption (NS), S( t )  satisfies the spec- 
trum determined growth assumption and the exponen- 
tial growth constant ~o of S(t)  is given by 

~o = sup{Res I det A(s) = 0}, 

see [1 l] (cf  also [10, p. 269]). Alternatively, the neu- 
tral system (4.1) can be considered in the state-space 
~ x LP([ -h ,  0], N~ ). The exponential growth constant 
of the resulting semigroup is again given by co. 

The following well-known lemma (of. [22, p. 160] ) 
shows that the stability behaviour of (4.1) and its as- 
sociated functional difference equation 2jx~ = 0 are 
closely related. 

Lemma4.1. Suppose that (NS) holds' and let 
:~ < fl be given, Then the ,~dlowing statements are 
equivalent: 

(i) There exists z E C ~,#) such that det dd(Z ) =0. 
(ii) There exists some 6 > 0 and a sequence (si) 

such that S i ~ C[~+6,fl_6l , l i m i ~  [Imsi[ = oc and 
det A(si) =- O for  all i E N. 

The above lemma says, in particular, that if z is 
a zero of det Aa, then there exists a sequence (s~) 
of zeros of detA such that l i m , ~  R e s  i = Rez and 
l i m i ~  Jim s,[ = oc. Such a sequence is called an infi- 
nite root chain of det A (or of (4.1)). The infinite root 
chain (si) is called exponentially unstable i fRez  > 0. 

Let us consider the controlled neutral system 

d 
~-~x t  = 5£xt + Bu( t ) ,  where B E ~nxm. 

Since Lemma 4.1 implies that ~o >/rod, it follows 
that in the case ~od >>- 0 exponential stabilization by 
state feedback requires a stabilization of the difference 
operator ~a. This is only possible by allowing for 

u( t ) = ,~12~-~ + ,Na£-~- + .~x,_~ , (4.2) 

where c represents a time delay in the feedback loop. 
Here ,Na is given by (3.6) and ~ and ~ are bounded 
linear operators from C ( [ - h ,  0], N #) to N m given by 

,~.~ = / [  F,(r)~b(z) dr ,  

f -N0 =.  d4~(z)0(z), 
h 

respectively, where F, EL t ( [ -h ,0 ] ,R  TM) and 
~b E B V([-h,  0], R m ×" ). We define 

? F(s)  := dq~(r)C'. 
h 

The difference operator ~} of the closed-loop system 
is then given by (3.7) and for the exponential growth 
rate cd of the closed-loop neutral system we have 

( , / =  sup{Res I detA~-(s) = 0}, 

where 

~t<(s) :=  

- L ( s )  - e ~:"F(s), 

with A~/given by (3.8). 
A combination of Lemma 4.1 and Theorem 3,1 

yields the following result. 

Corollary 4.2. Suppose that (NS) holds. I f  ~Od >~ 0 
and ~o ° < 0, then there exists a sequence (ei) with 
~i > O and l i m i ~ e i  = 0 and such that fo r  any 
i E ~ ,  the closed-loop characteristic' function det A e' 
has an exponentially unstable infinite root chain. In 
particular, co ~ > OJbr all i E N. Moreover, there ex- 
ist numbers 6i E (O, ei) such that detd ~ has at least 
one exponentially unstable infinite root chain for  all 

s E U ~ c ~  (ci - 6i, ci + 6i). 

We close this section with a simple example. 

Example 4.3. Consider the neutral system 

2(t)  - D2(t - h) = L x ( t )  + Mx(t  - k )  + u(t),  (4.3) 
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where D , L , M  E ~ and h,k  > 0. Clearly, Ad(S) = 1 -- 
De  -hs, and hence, if D >~ 1, the difference equation 
x( t )  - Dx( t  - h) = 0 is unstable, and so is the neutral 
system (4.3). An application of  the control law 

u(t )  = - D ' A ( t  - h)  - L ' x ( t )  

leads to the following closed-loop system 

Yc(t) -- (D - D' ) . i ( t  - h)  

=(L - L ' ) x ( t )  + M x ( t  - k ) .  
(4.4) 

It is straightforward to show that (4.4) is exponen- 
tially stable for all choices of  the parameters D' and 
L' satisfying 

- 1  < D - D ' < 0 ,  L - L ' < - I M [ ,  

I D -  D'I IL - L' I 
(1  - ID  - D ' I )  2 2 h  

However, Corollary 4.2 guarantees that there exists a 
sequence of  delays (el) with ei > 0 and limi~o~ ci = 
0 and such that for any i E [~ the delayed feedback 
control 

u ( t ) = - D ' ~ ( t - h - ~ i ) - L ' x ( t - c i )  

leads to a closed-loop system which has an exponen- 
tially unstable infinite root chain. 

Finally, consider (4.3) for D - 1 and k = h. Then 
Ad and A are given by 

Ad(S) = 1 -- e -hs ,  

A ( s )  = s ( l  - e - h s ) - M e  -hs - L .  

It is easy to show that if  L < - IMI, then A ( s )  # 0 

for all s E C~ 1, and moreover, the feedback 

u( t )  = - ½ i ( t  - h)  

is exponentially stabilizing. However, by Corollary 
4.2 there exist delays ei > 0 with limi~o~ ci = 0 and 
such that for any i E [~ the delayed feedback control 

u ( t )  = - ½ ~ ( t  - h - ~ i )  

leads to a closed-loop characteristic function A ~' 
which has an exponentially unstable infinite root 
chain. Hence the stability behaviour of  the delayed 
closed-loop system is worse than the stability be- 
haviour of  the original open-loop system. 
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