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and £G(0) > 0. Therefore, if a plant is known to be stable and if
the sign of G(0) is known (this information can be obtained from
plant step response data), then the problem of tracking by low-gain
integral control reduces to that of tuning the gain paramet&uch a
controller design (“tuning regulator theory” [4]) has been successfully
applied in process control; see, for example, Copgual. [3] and
Lunze [9]. The approach has been extended to various classes of
infinite-dimensional systems; see Logemann and Townley [7] and [8]
and the references therein. Furthermore, the problem of tuning the
Abstract—Closing the loop around an exponentially stable single- integrator gain adaptively has been addressed recently in a number

input/single-output regular linear system, subject to a globally Lipschitz Of papers (again we refer the reader to [7] and [8] and the references
and nondecreasing actuator nonlinearity and compensated by an integral therein).

controller, is known to ensure asymptotic tracking of constant reference In a recent paper, Logemanet al. [6] have proved that the
signals, provided that: 1) the steady-state gain of the linear part of the L . . .
plant is positive; 2) the positive integrator gain is sufficiently small; and a_bove . p”“C'P'e remains true if _th(_a _plaqt to F’e Comro“ed Is a
3) the reference value is feasible in a very natural sense. Here lower Single-input/single-output regular infinite-dimensional linear system
bounds are derived for the maximal regulating gain for various special subject to an input nonlinearity (see Fig. 2). More precisely, it is

cases including systems with nonovershooting step-response and secondshown in [6] that for an exponentially stable system wit0) > 0,
order systems with a time-delay in the input or output. The lower bounds hare existg” > 0 such that for all nondecreasing globally Lipschitz
are given in terms of open-loop frequency/step response data and the . " . . . -
Lipschitz constant of the nonlinearity, and are hence readily obtainable. nonlinearitiess with Lipschitz constani and allk € (0, £/2), the
outputy(t) of the closed-loop system shown in Fig. 2 converges to
r ast — oc, provided that{G(0)] ' € clos(im ¢). In particular,
K is the supremum of the set of &ll> 0 such that the function
G(s)
5
is positive real. In this paper, we show thidtcan be obtained from
The synthesis of low-gain integral (1) and proportional-plus-integrlequency and step-response experiments performed on the linear part
(P|) controllers for uncertain stable plants has received COﬂSiderabehe p|ant. Moreover, we present an eas”y obtainable lower bound
attention in the last 20 years. The following principle is welfor K. For a number of special cases, we show that= 1/|G'(0)];

] ) ] determination of G’ (0)| (and hence ofy), in principle, requires only
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Il. PRELIMINARIES b(u)
Let Ry :=[0,00) and, fora € R, setC.:={s € C|[Res> a}.
The algebra of all holomorphic and bounded functions ©n ‘

[|flloo = sup,eg, 1£(s)| and, as is well-known, we havgf||- =

sup,cg |f(iw)|. The Hardy space, of order two, of holomorphic

functions defined orC. is denoted byH.. Let L (R+) denote Fig. 3. Nonlinearity with saturation and deadzone.
the space of all locally square-integrable functiofissuch that

the weighted functiont — f(t)e™*" is in L*(R;). Moreover,

is denoted byH:". If f € HZ for some a <0, we define \ u

let M(R,) denote the set of all bounded Borel measuresRgon If C'is bounded, then for alleo, ug) € X xR, the unique solution
For « € R, let M.(R.) denote the set of all locally bounded(z(),u(-)) of (1) exists on[0, >c) and satisfies:
Borel measureg. on Ry such thate™ ' (dt) belongs toM (R4.). 1) limy—oo d(u(t)) = v
The Laplace transform is denoted W If 1 € M. (Ry+), then 2) limi—oo ||z(t) + A~ Bo,|| = 0;
L(p) € H and, moreoverfL(u)(s) exists and is continuous on  3) lim;—.o (r — y(¢)) = 0, wherey(t) = Cua(t) + Do(u(t));
the closedright-half planeRe s > « (see [5] for details). 4) if ¢, € im ¢, then
In the following, we will use some concepts from the theory
of linear regular infinite-dimensional systems. For a comprehensive lim dist(u(t),¢ " (¢,)) =0

t—oo

treatment of regular systems, see Weiss [14], [15] and the references
therein. For a treatment of regular systems specific to low-gaingy if 4 ¢ int(im ¢), thenu(-) is bounded.
control, the reader is referred to [6] and [7]. We remark that most .
linear distributed parameter systems and time-delay systems aristihgt,C*I(G) € M(Ry) andao is in the domain of4.

in control engineering fall within the framework of regglar sysFems. In particular, 4) states that(#) converges as — oc if the set
Let (A4, B,C,D) be the generating operators of a linear single;_

. ; 4 ; . 7' (¢,) is a singleton, which, in turn, is true i, is not a critical
input/single-output regular system with state space Hilbert space. value of¢. The conditions imposed in Theorem 2.1 ¢rare satisfied
Let T denote the strongly continuous semigroup generatedipy ' '

: ~ 7 by saturation and deadzone nonlinearities and combinations of the
lde(;ncc;;ledtir:amt?at:;‘esrofﬁzlcl:(teignLi(k;gS%u%eg)e na/imﬁfgggoftg;)a two, as shown in Fig. 3. The assumptic_)n_tlzfz-f_tl(G) € M(Ry) is
transfer functionf has a reaul o o AP Inot very restrictive and seems to be satisfied in all practical examples

gular state-space realization if and on of systems withH *°-transfer functions. Generally, a measurec
if H € HY for somea € R andlime_... ¢cr H(E) exists and VI(R;) can be written in the form ' '
is finite. Such transfer functions are callesyular. Suppose that the +
linear regular system generated by, B, C, D) is subject to an input oo
nonlinearity¢. We assume that € N(\), where N () denotes the p(dt) = a(t) dt + Za‘jétj (dt) + ps(dt)
set of all nondecreasing globally Lipschitz nonlinearitfesR — R j=0
with Lipschitz constanf\. Denoting the constant reference signal by
r and the output of the system lgy an application of the integrator wherea(-) € L'(Ry), 72, a;6,, and u., respectively, represent
" the absolutely continuous, the discrete, and the singular pants of
w(t) = uo + k/ [r —y(r)] dr In particular,é,, denotes the unit point mass gt > 0 and thea;
0 are real numbers such thBf2, |a;| < co. In most applications one

If C'is unbounded, then the statements 1)-5) remain true provided

-t
, haspus, = 0.
= : r—C L — KN 1
wo /0 [r = Cua(r) = Dolu(m))]dr For the application of Theorem 2.1, especially in process control,

it is important to develop formulas or lower bounds ferin terms

i easily obtainable open-loop data, such as Nyquist diagrams and
step-response data. This development will be addressed in the next
i =Ax+ Bo(u) x(0)=20 € X (1a) Section.

@ =k[r—Crz — Do(u)] u(0)=ug € R. (1b)

where k is a real parameter (see Fig. 2), leads to the followin
nonlinear system of differential equations:

o ) ) ) lll. ESTIMATION AND DETERMINATION OF I{
If, for somea <0, G € H;° (this is true ifT; is exponentially

stable or if£ (@) € M, (R4)) andG(0) > 0, then it is not difficult
to show that

We shall invoke one or both of the following two assumptions
where appropriate:

1+kRe €% S0 foralls e g, @ AL GeHT for somea <0
S

A2) G(3) = G(s)for all s € Co.
for all sufficiently smallk > 0 (see Lemma 3.1 below). We define

K := sup {k > 0](2) holds}. ?3) ) ) o )
We mention that A2) is satisfied for all systems with real param-
Clearly, (2) holds for allk € [0, K'). Moreover, if K < oo, then eters. Fork >0 set
the supremum in (3) is attained. It is easy to construct examples for .
which K = oo, as i§ the case in Example 3.5, part _1). Gi(s) = ﬁG(s) <1 + Eg(s)) .
The following tuning regulator result was proved in [6]. s s

Theorem 2.1:Let A >0 and ¢ € N(A). Assume thatT; is ] ) ]
exponentially stableG(0) > 0,k € (0, K/)), andr € Ris suchthat  Clearly,Gi is the transfer function of the feedback system obtained
by applying the integral controllek/s to G.

ér :=[G(0)] "7 € clos(im ¢). The next result is a trivial consequence of [7, Lemma 3.10].
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Lemma 3.1: Assume that A1) holds and thé&t(0) > 0. Then (2) Example 3.5:
holds for all sufficiently smalk >0 (and soX > 0). Moreover, for 1) ConsideiG(s) = (25+1)/(s+1). Obviously,G € HZ for all
givenk >0, (2) holds if and only if||G} /2| = 1. o € (=1,0), andG(0) = G'(0) = 1 > 0. An easy calculation

In Corollary 3.2, we give a graphical characterization of the yields
number K. To this end, letk >0 and defineD, to be the open

disc in the complex plane of radidsand with centre(—%,0), i.e., Re G('“’) -1
Dy = {s € C||s + k| < k}. The inverse Nyquist curve df(s)/s tw 1+o?
given by showing thatk” = oc.
i 2) As a second example considél(s) = (s + 1)/(s + 2)°.
N = { Glio) ‘w € IR} ThenG € HZ® for all o« € (—2,0),G(0) = 1/4>0, and
G'(0) = 0. Since
Corollary 3.2: Assume that Al) holds and thé&(0) > 0. Then, . 5
N n D, = § for all sufficiently smallk >0, and Re Gliw) _ —w

iw (4 — w?)? + 16w?
0< sup{k>0|NND,=0}=K/2.

) we see thafi’ < co. a
Proof: Setting Gi.(s) = (s/G(s) + k)7*, it follows that  |n the following we introduce a condition which will guarantee
G (s) = kG(s). Clearly, for anyk >0, we have that K = 1/|G'(0)]. To this end, let(-) denote thestep-responsef
[|Gilloe =1 < ||Gi|lo = 1/k < NN Dy = 0. Er:(a) rsgular systenid, B, C, D) and define thestep-response error
By Lemma 3.1,K/2 = sup {k > 0]||G«||- = 1}, and therefore o
the claim follows from the above equivalences. O e(t) = a(t) - G(0)
It will turn out to be convenient to introduce the following auxiliaryyith Laplace transforms given byC(s)l(s) = G(s)/s and
transfer function [£(2)](s) = E(s). respectively. Under the assumption that
N / . 7 . PR
E(s):= l(G(s) — G(0)). L7G) € M(R.) it follows trivially that lim . 2(t) = 0.
5 This is in general not true under Assumption Al). However, we can

The above definition makes sense forad 0 for which G(s) is  prove the following lemma. _
defined. IfG(s) is holomorphic at zero (which is the case if A1) is Lemma 3.6:If Al) holds, then there exists <0 such thats €

satisfied), then we seE(0) = G'(0). LZ(Ry).
Lemma 3.3: Assume that Al) holds and th&¥(0)>0 and let Proof: Choosea <0 such thatG € HZ°. Then, E € H.
k> 0. Then the following statements are equivalent: and by a well-known theorem of Paley and Wiemer £L~'(E) €
1) 14 kRe(G(s)/s) > 0 for all s € Co: LaRe). . O
2) 1+ kRe(G(iw)/iw) > 0 for all w € R\{0}; If A2) is satisfied then _tht_a step-response error is r_egl-valued and we
3) 1+ kReE(iw) > 0 for all w € R; say that the system satisfies the-overshoot conditiofif (¢) < _O
4) 1+ kReE(s)é 0 for all s € Co. for almost allt € R;. We say that the step-respons€-) is

o L . . T essentially nondecreasini there exists a nondecreasing function
Proof: Trivially, 1) implies 2), and sincé&/(0) is real, 2) implies #(-) such thato(t) = &(t) for almost allt € Ry. If £ (G) €

3). In orQer .to show that 4) follows from 3), assume that 3) holdil(R”’ then the step-response-) is continuous, and henae(-)
By considering . - N o .
is essentially nondecreasing if and onlydf-) is nondecreasing.
o~k Re E(s) _ e~ (LHEEG)| However, if £7*(G) ¢ L*(Ry), theno(-) might be discontinuous,

_ ) _ and consequently (-) might be essentially nondecreasing, but not
applying the maximum modulus theorem and using the fact thaéndecreasing. If A1) and A2) hold, then it follows from Lemma 3.6
E(s) — 0 as|s| — oo in Cy, it then follows that that systems with an essentially nondecreasing step-response satisfy

1+EkReE(s) >0 forallse Co the no-overshoot condition.. We mention that.sysFems with monotone
step-responses havg received some attention in the robust control
which is (4). Finally, since7(0) > 0 we have thaRe (G(0)/s) >0 literature; see, e.g.Astrom [1]. For an early, rigorous paper on

for all s € Co, and therefore (1) is implied by (4). O systems with monotone step-responses, see Zemanian [16].
The following corollary provides a lower bound and an upper Corollary 3.7: Assume that A1) and A2) hold and th&{0) > 0.
bound for I in terms of the transfer functiod. If the system satisfies the no-overshoot condition, t&&f)) < 0
Corollary 3.4: Assume that Al) holds and thé&t(0) >0. Then and K = 1/|G'(0)| (where we define /0 = o).
1 k< {1/|ReE(())|, if Re E(0) <0 Proof: By the no-overshoot condition, we obtain ferc Co
sPsec, [ReE(s)] = = L oc, "Re B0 2 0.(4) ~G'(0) = —E(0) = —/oof(r)dr
, ; |

Proof: For k >0 we have that

1+kReE(s)>1—ksup |ReE(s)] forallsé€ Co.
s€Co

= /m le(r)|d7 > |E(s)| > |Re E(s)|.
0

By A2), E(0) € R, and thus the above inequality leads to
Combining this with Lemma 3.3 and the definition &fyields the

first inequality in (4). Moreover, using Lemma 3.3 again, it follows —Re E(0) = -G'(0) = sup |ReE(s)| = || E|| . (5)
from the definition of A" that1+ K Re E(0) > 0. If Re E(0) <0, we S
may conclude thafk < 1/|Re E(0)|, yielding the second inequality  Therefore, in particularG’(0) < 0. If G'(0) <0, then the claim

in (4). follows from (5) and Corollary 3.4. IiG'(0) = 0, then by (5),
The following examples show that Re E(0) = ReG'(0) > 0, E(s) = 0, and soG(s) = G(0), which in turn implies that
then cases of finitédh" and infinite ' can occur. K = . a
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Remark 3.8: The quantityE(0) = G'(0) plays an important role SinceG € HZ for any a > —ax? andlimg_.o ccr G(€) = 0, the
in Corollaries 3.4 and 3.7. The following remarks show that thisansfer functionG is regular. Clearly, a positive injection of heat at
guantity can be obtained from step as well as frequency-responseproduces a nonnegative response:atand so the step-response

data. We assume that Al) and A2) are satisfied. is nondecreasing. Therefore, the no-overshoot condition is satisfied,
1) By Lemma 3.6 € L'(R;), and henceG'(0) = E(0) = and thus by Corollary 3.7
1§¢ e(r)dr, i.e,, G'(0) is equal to the area enclosed between i 1 Ga>
the graphs of ~ o(f) andt — G(0). / . K= IG0)] ~ an(l—ao)(l—a2 —(1—2.)2)
2) The curvature: of N at zero is given by = 2|G’(0)| (this
follows from a straightforward calculation which is left to the o U
diagram ofG(s)/s. O no-overshoot condition is sufficient for the formula = 1/|G'(0)|

to hold. However, not surprisingly, the no-overshoot condition is
fﬁ%t necessary for the validity of the latter formula. The next result
identifies a class of second-order systems with time-delay for which
K = 1/|G'(0)|, but which may have overshoot.

Example 3.9: Assume thatG satisfies Al) and A2)G(0) >0,
and the no-overshoot condition holds. Then the same is true for
transfer function

H(s) = G(s) Z e (6) Proposition 3.11: LetG(s) = e *" /(s> +as+b), wherea, b > 0
=0 andh > 0. If
where~,,, h. > 0 and 5 b2h
Yoy o 2 2> 9p —
oo @ 22 a4+ bh ™
o, Ohy .
0< Z Yn€C <0 fOI’ Someé>0. thenI( — 1/|GI(0)| — bz/(ﬂ+bh)
n=0 Note that the right-hand side of (7) is decreasing as a function of
By Corollary 3.7, the constarik” (for H) is then given by L. In particular, if
—1
; . - 2> 9 8
K=1/|H'(0)| = (Z |G (0) - hnG<0>|> : v ©
n=0 then (7) is satisfied for alh > 0, and consequently the formula

Note thatH is regular ifG is. Let us consider two specific examples& = 1/|G'(0)| holds independently of the length of the delay

1) Consider the following first-order system with time delay ~ Clearly, condition (8) is satisfied if and only if the poles 61s)
e belong to the sectofs € C|37/4 < args < hn/4}.

H(s)=-° Proof of Proposition 3.11:1In view of Lemma 3.3, it suffices to
l+7s prove that the function
where k. > 0 and 7 > 0. Then, by the above remarkd! ’ p(w)
satisfies the no-overshoot condition and hence w f(w):=—Re E(iw) = )
K=1/|H(0)]=1/(h+7). attains its maximum at = 0, where, for convenience, we have
2) Consider introduced
oo ()= acoswh+ (b — w?)sin (wh)/w, w#0
H(s)= p T a+ bh, w=0

(14 7s)(1 — ve4s)

wherea, 3 > 0,7>0, andy € (0,1). The above transfer and

function has been used to model a heat circulation process; see g(w)i= (b —w?)” + a0
Blanchini [2]. In this application;y = 1 —#, wheren is a heat
exchange efficiency index (which by definition is positive an
smaller than one).

d We will first show thatf(w) < f(0) for all w with w* < b.
Let0 < w? < b. Thenp(w) < a+ (b — w?)h and so

Settingv, = 7", hn = a+nf, andG(s) = 1/(1 + 7s), H can F(w) < glw) = (a+bh) — w?h
be written in the form (6). Hence TN = glw)s= q(w) )
-1 (1—7)° By direct calculation
- 7 - - — E .
O] (at+7)(1=7)+8 , 2[h — 20 (a + bh) — hb® — (a + bh)(a® — 2b)]
o dW= 7*(w) '

Example 3.10: Consider a diffusion process (with diffusion co- Using (7)
efficient« > 0 and with Dirichlet boundary conditions) on the one- 9
dimensional spatial domaih = [0, 1], with scalar pointwise control hb® + (a + bh)(a® — 2b) > hb> — hb®> =0
action (applied at point:; € I) and pointwise scalar observation
(output at pointz, € I,x. > x4). We formally write this single- and S0 we may conclude that

input/single-output system as wy'(w) < 2w*hw® — 2(a 4 bh)]/¢*(w)
zi(t, @) =azpe(tx) +6(x —wp)u(t),  y(t) = z(t,2c) <0 forallw € [-vb, V.
z(t,0) =0 = z2(t, 1), for all + > 0. Therefore
The transfer function of this system is given by F(w) < g(w) < g(0) = £(0) forallw € [_\/g’ \/g]_
G(s) = siuh (‘“"/S%) Sil_lh (- ;L’C)\/S/ia). We complete the proof by showing that, for every €
ay/s/asinh \/s/a N, f(w) < £(0) for all w with nb < w? < (n + 1)b.
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Let n € N and letw € R be such that
nb < w® < (n+1)b.
Then
p(w)<a+ (w’ = b)h=a+nbh — ((n+1)b—w?)h
<a-+nbh < n(a+bh)
and [again using (7)]
W) =04+ o' + (a® = 20)w” > b + ' — bt
Sincenb < w? < (n + 1)b, we have—bw? > —w/n and

(n—1)
n

4
a(w) > b* + Y > —n41) > nb’

We may now conclude that

a+ bh
flw)< = £(0).
This completes the proof. O
Example 3.12: Consider
e—hs
Gls) = s24as+b

whereh > 0 anda,b > 0. Suppose that
4b > a® > 2.
Then, by Proposition 3.11, it follows that
K =1/|G'(0)] = b°/(a + bh) for all h > 0.

(1]
(2]
(3]
(4]
(5]
(6]

(7]
(8]
El

[10]
(1]
[12]
[13]

[14]

[15]

Note thatG does not satisfy the no-overshoot condition. Indeed

since4b > o>, the maximum overshoot is *™/V*=* /> 0; see
for example [13, p. 191]. O
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