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Integral Control of Linear Systems
with Actuator Nonlinearities: Lower

Bounds for the Maximal Regulating Gain

H. Logemann, E. P. Ryan, and S. Townley

Abstract—Closing the loop around an exponentially stable single-
input/single-output regular linear system, subject to a globally Lipschitz
and nondecreasing actuator nonlinearity and compensated by an integral
controller, is known to ensure asymptotic tracking of constant reference
signals, provided that: 1) the steady-state gain of the linear part of the
plant is positive; 2) the positive integrator gain is sufficiently small; and
3) the reference value is feasible in a very natural sense. Here lower
bounds are derived for the maximal regulating gain for various special
cases including systems with nonovershooting step-response and second-
order systems with a time-delay in the input or output. The lower bounds
are given in terms of open-loop frequency/step response data and the
Lipschitz constant of the nonlinearity, and are hence readily obtainable.

Index Terms—Actuator nonlinearities, infinite-dimensional systems, in-
tegral control, input saturation, monotone step-response, robust tracking,
systems with time-delay.

I. INTRODUCTION

The synthesis of low-gain integral (I) and proportional-plus-integral
(PI) controllers for uncertain stable plants has received considerable
attention in the last 20 years. The following principle is well
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Fig. 1. Low-gain control system.

Fig. 2. Low-gain control with input nonlinearity.

known (see Davison [4], Lunze [10] and Morari [11]): closing
the loop around a stable finite-dimensional continuous-time single-
input/single-output plant, with transfer functionGGG(s); compensated
by a pure integral controllerk=s (see Fig. 1), will result in a stable
closed-loop system which achieves asymptotic tracking of arbitrary
constant reference signals, provided thatjkj is sufficiently small
and kGGG(0)> 0: Therefore, if a plant is known to be stable and if
the sign ofGGG(0) is known (this information can be obtained from
plant step response data), then the problem of tracking by low-gain
integral control reduces to that of tuning the gain parameterk: Such a
controller design (“tuning regulator theory” [4]) has been successfully
applied in process control; see, for example, Coppuset al. [3] and
Lunze [9]. The approach has been extended to various classes of
infinite-dimensional systems; see Logemann and Townley [7] and [8]
and the references therein. Furthermore, the problem of tuning the
integrator gain adaptively has been addressed recently in a number
of papers (again we refer the reader to [7] and [8] and the references
therein).

In a recent paper, Logemannet al. [6] have proved that the
above principle remains true if the plant to be controlled is a
single-input/single-output regular infinite-dimensional linear system
subject to an input nonlinearity (see Fig. 2). More precisely, it is
shown in [6] that for an exponentially stable system withGGG(0)> 0;
there existsK> 0 such that for all nondecreasing globally Lipschitz
nonlinearities� with Lipschitz constant� and allk 2 (0;K=�); the
outputy(t) of the closed-loop system shown in Fig. 2 converges to
r as t ! 1; provided that[GGG(0)]�1r 2 clos(im�): In particular,
K is the supremum of the set of allk> 0 such that the function

1 + kRe
GGG(s)

s

is positive real. In this paper, we show thatK can be obtained from
frequency and step-response experiments performed on the linear part
of the plant. Moreover, we present an easily obtainable lower bound
for K: For a number of special cases, we show thatK = 1=jGGG0(0)j;
determination ofjGGG0(0)j (and hence ofK), in principle, requires only
frequency and step-response data. In particular, the latter formula for
K applies to systems with nonovershooting step-response and a class
of second-order systems with a time-delay in the input or output.
We remark that, in the finite-dimensional and linear case, Mustafa
[12] has recently derived a formula for the smallestk> 0 such that
the closed-loop system shown in Fig. 1 is unstable: this formula is
in terms of a minimal realization ofGGG and hence requires exact
knowledge of the system.
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II. PRELIMINARIES

Let + := [0;1) and, for� 2 ; set � := fs 2 jRe s>�g:
The algebra of all holomorphic and bounded functions on�
is denoted byH1

�
: If f 2 H1

�
for some �< 0; we define

jjf jj1 = sups2 jf(s)j and, as is well-known, we havejjf jj1 =
sup!2 jf(i!)j: The Hardy space, of order two, of holomorphic
functions defined on � is denoted byH2

�: Let L2�( +) denote
the space of all locally square-integrable functionsf such that
the weighted functiont 7! f(t)e��t is in L2( +): Moreover,
let M( +) denote the set of all bounded Borel measures on+:
For � 2 ; let M�( +) denote the set of all locally bounded
Borel measures� on + such thate��t�(dt) belongs toM( +):
The Laplace transform is denoted byL: If � 2 M�( +); then
L(�) 2 H1� and, moreover,L(�)(s) exists and is continuous on
the closedright-half planeRe s � � (see [5] for details).

In the following, we will use some concepts from the theory
of linear regular infinite-dimensional systems. For a comprehensive
treatment of regular systems, see Weiss [14], [15] and the references
therein. For a treatment of regular systems specific to low-gain
control, the reader is referred to [6] and [7]. We remark that most
linear distributed parameter systems and time-delay systems arising
in control engineering fall within the framework of regular systems.
Let (A;B;C;D) be the generating operators of a linear single-
input/single-output regular system with state spaceX; a Hilbert space.
Let TTT t denote the strongly continuous semigroup generated byA;
let CL denote the so-called Lebesgue extension ofC, and letGGG(s)
denote the transfer function of(A;B;C;D): We mention that a
transfer functionHHH has a regular state-space realization if and only
if HHH 2 H1� for some� 2 and lim�!1;�2 HHH(�) exists and
is finite. Such transfer functions are calledregular. Suppose that the
linear regular system generated by(A;B;C;D) is subject to an input
nonlinearity�: We assume that� 2 N(�); whereN(�) denotes the
set of all nondecreasing globally Lipschitz nonlinearitiesf : !
with Lipschitz constant�: Denoting the constant reference signal by
r and the output of the system byy; an application of the integrator

u(t) =u0 + k
t

0

[r � y(�)] d�

=u0 + k
t

0

[r � CLx(�)�D�(u(�))]d�

where k is a real parameter (see Fig. 2), leads to the following
nonlinear system of differential equations:

_x =Ax +B�(u) x(0) = x0 2 X (1a)

_u = k[r � CLx�D�(u)] u(0) = u0 2 : (1b)

If, for some�< 0; GGG 2 H1� (this is true ifTTT t is exponentially
stable or ifL�1(GGG) 2M�( +)) andGGG(0)> 0; then it is not difficult
to show that

1 + kRe
GGG(s)

s
� 0 for all s 2 0 (2)

for all sufficiently smallk> 0 (see Lemma 3.1 below). We define

K := sup fk> 0j(2) holdsg: (3)

Clearly, (2) holds for allk 2 [0; K): Moreover, ifK<1; then
the supremum in (3) is attained. It is easy to construct examples for
which K = 1; as is the case in Example 3.5, part 1).

The following tuning regulator result was proved in [6].
Theorem 2.1:Let �> 0 and � 2 N(�): Assume thatTTT t is

exponentially stable,GGG(0)> 0; k 2 (0;K=�); andr 2 is such that

�r := [GGG(0)]�1r 2 clos(im�):

Fig. 3. Nonlinearity with saturation and deadzone.

If C is bounded, then for all(x0; u0) 2 X� ; the unique solution
(x(�); u(�)) of (1) exists on[0;1) and satisfies:

1) limt!1 �(u(t)) = �r;
2) limt!1 jjx(t) + A�1B�rjj = 0;
3) limt!1 (r � y(t)) = 0; wherey(t) = Cx(t) +D�(u(t));
4) if �r 2 im�; then

lim
t!1

dist(u(t); ��1(�r)) = 0

5) if �r 2 int(im�); thenu(�) is bounded.

If C is unbounded, then the statements 1)–5) remain true provided
thatL�1(GGG) 2 M( +) andx0 is in the domain ofA:

In particular, 4) states thatu(t) converges ast ! 1 if the set
��1(�r) is a singleton, which, in turn, is true if�r is not a critical
value of�: The conditions imposed in Theorem 2.1 on� are satisfied
by saturation and deadzone nonlinearities and combinations of the
two, as shown in Fig. 3. The assumption thatL�1(GGG) 2 M( +) is
not very restrictive and seems to be satisfied in all practical examples
of systems withH1-transfer functions. Generally, a measure� 2
M( +) can be written in the form

�(dt) = a(t)dt+

1

j=0

aj�t (dt) + �s(dt)

where a(�) 2 L1( +);�
1
j=0 aj�t and �s; respectively, represent

the absolutely continuous, the discrete, and the singular parts of�:
In particular,�t denotes the unit point mass attj � 0 and theaj
are real numbers such that�1j=0 jaj j<1: In most applications one
has �s = 0:

For the application of Theorem 2.1, especially in process control,
it is important to develop formulas or lower bounds forK in terms
of easily obtainable open-loop data, such as Nyquist diagrams and
step-response data. This development will be addressed in the next
section.

III. ESTIMATION AND DETERMINATION OF K

We shall invoke one or both of the following two assumptions
where appropriate:

A1) GGG 2 H1� for some�< 0

A2) GGG(s) = GGG(s) for all s 2 0:

We mention that A2) is satisfied for all systems with real param-
eters. Fork> 0 set

Gk(s) =
k

s
GGG(s) 1 +

k

s
GGG(s)

�1

:

Clearly,GGGk is the transfer function of the feedback system obtained
by applying the integral controllerk=s to GGG:

The next result is a trivial consequence of [7, Lemma 3.10].
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Lemma 3.1: Assume that A1) holds and thatGGG(0)> 0: Then (2)
holds for all sufficiently smallk> 0 (and soK> 0). Moreover, for
given k> 0; (2) holds if and only ifjjGGGk=2jj1 = 1:

In Corollary 3.2, we give a graphical characterization of the
numberK: To this end, letk> 0 and defineDk to be the open
disc in the complex plane of radiusk and with centre(�k; 0); i.e.,
Dk = fs 2 jjs + kj<kg: The inverse Nyquist curve ofGGG(s)=s
given by

N =
i!

GGG(i!)
! 2 :

Corollary 3.2: Assume that A1) holds and thatGGG(0)> 0: Then,
N \Dk = ; for all sufficiently smallk> 0; and

0< sup fk> 0jN \Dk = ;g = K=2:

Proof: Setting ~GGGk(s) = (s=GGG(s) + k)�1; it follows that
GGGk(s) = k ~GGGk(s): Clearly, for anyk> 0; we have

jjGGGkjj1 = 1, jj ~GGGkjj1 = 1=k, N \Dk = ;:

By Lemma 3.1,K=2 = supfk> 0jjjGGGkjj1 = 1g; and therefore
the claim follows from the above equivalences.

It will turn out to be convenient to introduce the following auxiliary
transfer function

EEE(s) :=
1

s
(GGG(s)�GGG(0)):

The above definition makes sense for alls 6= 0 for whichGGG(s) is
defined. IfGGG(s) is holomorphic at zero (which is the case if A1) is
satisfied), then we setEEE(0) = GGG0(0):

Lemma 3.3: Assume that A1) holds and thatGGG(0)> 0 and let
k> 0: Then the following statements are equivalent:

1) 1 + kRe (GGG(s)=s) � 0 for all s 2 0;
2) 1 + kRe (GGG(i!)=i!) � 0 for all ! 2 nf0g;
3) 1 + kReEEE(i!) � 0 for all ! 2 ;
4) 1 + kReEEE(s) � 0 for all s 2 0:

Proof: Trivially, 1) implies 2), and sinceGGG(0) is real, 2) implies
3). In order to show that 4) follows from 3), assume that 3) holds.
By considering

e�(1+kReEEE(s)) = je�(1+kEEE(s))j

applying the maximum modulus theorem and using the fact that
EEE(s) ! 0 as jsj ! 1 in 0; it then follows that

1 + kReEEE(s) � 0 for all s 2 0

which is (4). Finally, sinceGGG(0)> 0 we have thatRe (GGG(0)=s)> 0
for all s 2 0; and therefore (1) is implied by (4).

The following corollary provides a lower bound and an upper
bound forK in terms of the transfer functionEEE:

Corollary 3.4: Assume that A1) holds and thatGGG(0)> 0: Then

1

sups2 jReEEE(s)j
� K �

1=jReEEE(0)j; if Re EEE(0)< 0
1; if Re EEE(0) � 0

:

(4)
Proof: For k> 0 we have that

1 + kReEEE(s) � 1� k sup
s2

jReEEE(s)j for all s 2 0:

Combining this with Lemma 3.3 and the definition ofK yields the
first inequality in (4). Moreover, using Lemma 3.3 again, it follows
from the definition ofK that1+K ReEEE(0) � 0: If ReEEE(0)< 0; we
may conclude thatK � 1=jReEEE(0)j; yielding the second inequality
in (4).

The following examples show that ifReEEE(0) = ReGGG0(0) � 0;
then cases of finiteK and infiniteK can occur.

Example 3.5:

1) ConsiderGGG(s) = (2s+1)=(s+1):Obviously,GGG 2 H1
� for all

� 2 (�1; 0); andGGG(0) = GGG0(0) = 1> 0: An easy calculation
yields

Re
GGG(i!)

i!
=

1

1 + !2

showing thatK = 1:
2) As a second example considerGGG(s) = (s + 1)=(s + 2)2:

ThenGGG 2 H1
� for all � 2 (�2; 0);GGG(0) = 1=4> 0; and

GGG0(0) = 0: Since

Re
GGG(i!)

i!
=

�!2

(4� !2)2 + 16!2

we see thatK<1:

In the following we introduce a condition which will guarantee
thatK = 1=jGGG0(0)j: To this end, let�(�) denote thestep-responseof
the regular system(A;B;C;D) and define thestep-response error
"(�) by

"(t) = �(t)�GGG(0)

with Laplace transforms given by[L(�)](s) = GGG(s)=s and
[L(")](s) = EEE(s); respectively. Under the assumption that
L�1(GGG) 2 M( +) it follows trivially that limt!1 "(t) = 0:
This is in general not true under Assumption A1). However, we can
prove the following lemma.

Lemma 3.6: If A1) holds, then there exists�< 0 such that" 2
L2
�( +):

Proof: Choose�< 0 such thatGGG 2 H1
� : Then,EEE 2 H2

�;
and by a well-known theorem of Paley and Wiener" = L�1(EEE) 2
L2
�( +):
If A2) is satisfied then the step-response error is real-valued and we

say that the system satisfies theno-overshoot conditionif "(t) � 0
for almost all t 2 +: We say that the step-response�(�) is
essentially nondecreasingif there exists a nondecreasing function
~�(�) such that�(t) = ~�(t) for almost all t 2 +: If L�1(GGG) 2
L1( +); then the step-response�(�) is continuous, and hence�(�)
is essentially nondecreasing if and only if�(�) is nondecreasing.
However, ifL�1(GGG) 62 L1( +); then�(�) might be discontinuous,
and consequently�(�) might be essentially nondecreasing, but not
nondecreasing. If A1) and A2) hold, then it follows from Lemma 3.6
that systems with an essentially nondecreasing step-response satisfy
the no-overshoot condition. We mention that systems with monotone
step-responses have received some attention in the robust control
literature; see, e.g.,̊Aström [1]. For an early, rigorous paper on
systems with monotone step-responses, see Zemanian [16].

Corollary 3.7: Assume that A1) and A2) hold and thatGGG(0)> 0:
If the system satisfies the no-overshoot condition, thenGGG0(0) � 0
andK = 1=jGGG0(0)j (where we define1=0 = 1).

Proof: By the no-overshoot condition, we obtain fors 2 0

�GGG0(0) =�EEE(0) = �
1

0

"(�) d�

=
1

0

j"(�)j d� � jEEE(s)j � jReEEE(s)j:

By A2), EEE(0) 2 ; and thus the above inequality leads to

�ReEEE(0) = �GGG0(0) = sup
s2

jReEEE(s)j = jjEEEjj1: (5)

Therefore, in particular,GGG0(0) � 0: If GGG0(0)< 0; then the claim
follows from (5) and Corollary 3.4. IfGGG0(0) = 0; then by (5),
EEE(s) � 0; and soGGG(s) � GGG(0); which in turn implies that
K =1:
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Remark 3.8: The quantityEEE(0) = GGG0(0) plays an important role
in Corollaries 3.4 and 3.7. The following remarks show that this
quantity can be obtained from step as well as frequency-response
data. We assume that A1) and A2) are satisfied.

1) By Lemma 3.6," 2 L1( +); and henceGGG0(0) = EEE(0) =
s10 "(�)d�; i.e.,GGG0(0) is equal to the area enclosed between
the graphs oft 7! �(t) and t 7! GGG(0):

2) The curvature� of N at zero is given by� = 2jGGG0(0)j (this
follows from a straightforward calculation which is left to the
reader), hencejGGG0(0)j can be obtained from the inverse Nyquist
diagram ofGGG(s)=s:

Example 3.9: Assume thatGGG satisfies A1) and A2),GGG(0)> 0;
and the no-overshoot condition holds. Then the same is true for the
transfer function

H(s) = GGG(s)

1

n=0


ne
�h s (6)

where 
n; hn � 0 and

0<

1

n=0


ne
�h <1 for some� > 0:

By Corollary 3.7, the constantK (for HHH) is then given by

K = 1=jHHH 0(0)j =
1

n=0


njGGG0(0)� hnGGG(0)j
�1

:

Note thatHHH is regular ifGGG is. Let us consider two specific examples.

1) Consider the following first-order system with time delay

HHH(s) =
e�hs

1 + �s

where h � 0 and � > 0: Then, by the above remarks,HHH
satisfies the no-overshoot condition and hence

K = 1=jHHH 0(0)j = 1=(h+ �):

2) Consider

HHH(s) =
e��s

(1 + �s)(1� 
e��s)

where�; � � 0; � > 0; and 
 2 (0; 1): The above transfer
function has been used to model a heat circulation process; see
Blanchini [2]. In this application,
 = 1� �; where� is a heat
exchange efficiency index (which by definition is positive and
smaller than one).

Setting
n = 
n; hn = � + n�; andGGG(s) = 1=(1 + �s);HHH can
be written in the form (6). Hence

K =
1

jHHH 0(0)j =
(1� 
)2

(�+ �)(1� 
) + 
�
:

Example 3.10:Consider a diffusion process (with diffusion co-
efficient a> 0 and with Dirichlet boundary conditions) on the one-
dimensional spatial domainI = [0; 1]; with scalar pointwise control
action (applied at pointxb 2 I) and pointwise scalar observation
(output at pointxc 2 I; xc � xb). We formally write this single-
input/single-output system as

zt(t; x) = azxx(t; x) + �(x� xb)u(t); y(t) = z(t; xc)

z(t; 0) =0 = z(t; 1); for all t> 0:

The transfer function of this system is given by

GGG(s) =
sinh (xb s=a) sinh ((1� xc) s=a)

a s=a sinh s=a
:

SinceGGG 2 H1
� for any �>�a�2 and lim�!1;�2 GGG(�) = 0; the

transfer functionGGG is regular. Clearly, a positive injection of heat at
xb produces a nonnegative response atxc; and so the step-response
is nondecreasing. Therefore, the no-overshoot condition is satisfied,
and thus by Corollary 3.7

K =
1

jGGG0(0)j =
6a2

xb(1� xc)(1� x2b � (1� xc)2)
:

If A1) and A2) are satisfied, then Corollary 3.7 shows that the
no-overshoot condition is sufficient for the formulaK = 1=jGGG0(0)j
to hold. However, not surprisingly, the no-overshoot condition is
not necessary for the validity of the latter formula. The next result
identifies a class of second-order systems with time-delay for which
K = 1=jGGG0(0)j; but which may have overshoot.

Proposition 3.11: LetGGG(s) = e�sh=(s2+as+b); wherea; b> 0
and h � 0: If

a2 � 2b� b2h

a+ bh
(7)

thenK = 1=jGGG0(0)j = b2=(a + bh):
Note that the right-hand side of (7) is decreasing as a function of

h: In particular, if

a2 � 2b (8)

then (7) is satisfied for allh � 0; and consequently the formula
K = 1=jGGG0(0)j holds independently of the length of the delayh:
Clearly, condition (8) is satisfied if and only if the poles ofGGG(s)
belong to the sectorfs 2 j3�=4 � arg s � 5�=4g:

Proof of Proposition 3.11:In view of Lemma 3.3, it suffices to
prove that the function

! 7! f(!) :=�ReEEE(i!) =
p(!)

q(!)

attains its maximum at! = 0; where, for convenience, we have
introduced

p(!) :=
a cos!h+ (b� !2) sin (!h)=!; ! 6= 0
a+ bh; ! = 0

and

q(!) := (b� !2)2 + a2!2:

We will first show thatf(!) � f(0) for all ! with !2 � b:
Let 0 � !2 � b: Thenp(!) � a + (b� !2)h and so

f(!) � g(!) :=
(a+ bh)� !2h

q(!)
:

By direct calculation

g0(!) =
2![h!4 � 2!2(a+ bh)� hb2 � (a+ bh)(a2 � 2b)]

q2(!)
:

Using (7)

hb2 + (a+ bh)(a2 � 2b) � hb2 � hb2 = 0

and so we may conclude that

!g0(!) � 2!4[h!2 � 2(a+ bh)]=q2(!)

� 0 for all ! 2 [�
p
b;
p
b]:

Therefore

f(!) � g(!) � g(0) = f(0) for all ! 2 [�
p
b;
p
b]:

We complete the proof by showing that, for everyn 2
; f(!)<f(0) for all ! with nb � !2 � (n + 1)b:
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Let n 2 and let! 2 be such that

nb � !2 � (n+ 1)b:

Then

p(!)<a+ (!2 � b)h = a+ nbh� ((n+ 1)b� !2)h

� a+ nbh � n(a+ bh)

and [again using (7)]

q(!) = b2 + !4 + (a2 � 2b)!2 � b2 + !4 � b!2:

Sincenb � !2 � (n + 1)b; we have�b!2 � �!4=n and

q(!) � b2 +
(n� 1)!4

n
� b2(n2 � n+ 1) � nb2:

We may now conclude that

f(!)<
a+ bh

b2
= f(0):

This completes the proof.
Example 3.12:Consider

GGG(s) =
e�hs

s2 + as+ b

whereh � 0 and a; b> 0: Suppose that

4b>a2 � 2b:

Then, by Proposition 3.11, it follows that

K = 1=jGGG0(0)j = b2=(a+ bh) for all h � 0:

Note thatGGG does not satisfy the no-overshoot condition. Indeed,

since4b>a2; the maximum overshoot ise�a�=
p

4b�a =b> 0; see
for example [13, p. 191].
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