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Stability and Asymptotic Behaviour of Nonlinear

Systems: An Introduction

Hartmut Logemann and Eugene P. Ryan

7.1  Introduction

To motivate a study of asymptotic behaviour of nonlinear systems modelled by ordinary differ-

ential equations and differential inclusions, we indicate how such equations/inclusions arise

naturally in control of dynamical process by feedback. The concept of control pertains to

modifying the behaviour of the process, by manipulation of inputs to the process, in order

to achieve some prescribed goal. Fundamental to this is the notion of feedback: a strategy in

which the inputs to the process are determined on the basis of concurrent observations on (or

outputs from) the process.

Consider first a finite-dimensional, continuous-time dynamical process, the state of which

process-inputs -outputs

?�strategy�

6

Fig. 7.1. Control loop

evolves in R
N and is governed by a controlled ordinary differential equation, with initial data

(t0,x
0), of the general form

ẋ(t) = g(t,x(t),u(t)), x(t0) = x0, (7.1)

where the function u is the input or control and the output or observation y is generated via an

output map c:

y(t) = c(t,x(t)). (7.2)

Under feedback, the input u(t) at time t is determined by the output y(t) via a feedback map

h:

u(t) = h(t,y(t)) = h(t,c(t,x(t))). (7.3)
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Introducing the function f given by f (t,ξ ) = g(t,ξ ,h(t,c(t,ξ ))), we see that the conjunction

of (7.1) and (7.3) gives rise to an initial-value problem of the following type.

ẋ(t) = f (t,x(t)), x(t0) = x0. (7.4)

Clearly, in order to ensure that this problem is well posed, the function f is required to be suf-

ficiently regular. In due course, we will make precise the requisite regularity conditions which

imply continuity – in their second arguments – of g, c and h. Are these continuity conditions

reasonable? Perhaps not in the case of the feedback map h – since many feedback strategies

are inherently discontinuous e.g., “bang-bang” or “on-off” control actions. A prototype ex-

ample is the signum function sgn, which can be embedded in the following set-valued map

defined on R:

x 7→






{+1}, x > 0

[−1,+1], x = 0.
{−1}, x < 0

The graph of this map is depicted below.

R

Fig. 7.2. Signum function

Extrapolating this prototype, we see that situations can arise in which one resorts to a discon-

tinuous feedback which can be embedded in an appropriately-defined set-valued map H:

u(t) ∈ H(t,y(t)) = H(t,c(t,x(t)). (7.5)

Introducing the set-valued map F given by

F(t,ξ ) = {g(t,ξ ,u) : u ∈ H(t,c(t,ξ ))},

we see that the conjunction of (7.1) and (7.5) gives rise to an initial-value problem for a

differential inclusion:

ẋ(t) ∈ F(t,x(t)), x(t0) = x0. (7.6)

Again, in order to ensure well-posedness of this problem, F is required to be sufficiently reg-

ular (in a sense to be made precise in due course).

The essence of the paper is therefore a study of existence and asymptotic properties of solu-

tions of initial-value problems of the form (7.4) or (7.6). Qualitative results on the long-term

behaviour of such dynamical processes are of great importance in the applications of differ-

ential equations, dynamical systems, and control theory to science and engineering. Although

Lyapunov’s famous memoire on the stability of motion (published in 1892 in Russian) was

translated into French in 1907 and reprinted in the USA in 1949 (it was eventually trans-

lated into English [13] by A T Fuller in 1992, a hundred years after the publication of the

original), it was only at the end of the 1950s that scientists in the West began to appreciate,

use, and further develop Lyapunov’s seminal contributions to stability theory. This contrasted
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with the pre-eminence Lyapunov’s direct method had achieved in the former Soviet Union

as a major mathematical tool in the context of linear and nonlinear stability problems. To-

day, Lyapunov’s direct method is a standard ingredient of the syllabuses of university courses

on differential equations, dynamical systems, and control theory taught in mathematics and

engineering departments worldwide. With Lyapunov’s direct method as exemplar, the paper

provides a self-contained and elementary approach to the analysis of certain aspects of the

asymptotic behaviour of solutions of ordinary differential equations and differential inclu-

sions. A compendium of results pertaining to asymptotic behaviour of functions is developed.

This is achieved by elementary arguments based on concepts of meagreness and weak mea-

greness which help to capture certain asymptotic properties of functions. This compendium

then forms the basis for a unified approach to various results (including generalizations of

LaSalle’s invariance principle) on asymptotic behaviour of solutions of (nonautonomous) or-

dinary differential equations and (autonomous) differential inclusions. The material presented

in the paper is based on [20] and its precursors [11,19]. Before embarking on this presentation,

we assemble some terminology, notation and background analytical concepts.

7.2  Terminology and Notation

Throughout, N denotes the set of positive integers, and R+ := [0,∞). The Euclidean inner

product and induced norm on R
N are denoted by 〈·, ·〉 and ‖ · ‖, respectively. Let A be a

nonempty subset of R
N , and let h : A → R

P. For a subset U of R
P, h−1(U) denotes the preim-

age of U under h, that is, h−1(U) := {ξ ∈ A : h(ξ ) ∈U}; for notational simplicity, if u ∈ R
P,

then we write h−1(u) in place of the more cumbersome h−1({u}). We recall that h is contin-

uous at a point ξ0 ∈ A if, for every ε > 0, there exists δ > 0 such that ‖h(ξ0)− h(ξ )‖ ≤ ε
for all ξ in A with ‖ξ0 − ξ‖ ≤ δ . If h is continuous at ξ for all ξ in a subset B of A, then h

is said to be continuous on B; if B = A, then we simply say that h is continuous. The func-

tion h is uniformly continuous on a subset B of A if, for every ε > 0, there exists δ > 0 such

that ‖h(ξ1)− h(ξ2)‖ ≤ ε for all points ξ1 and ξ2 of B with ‖ξ1 − ξ2‖ ≤ δ ; if B = A, then

we say that h is uniformly continuous. It is convenient to adopt the convention that h is uni-

formly continuous on the empty set /0. If h is continuous and B ⊂ A is compact, then h is

uniformly continuous on B. If h is scalar-valued (that is, if P = 1), then h is lower semicon-

tinuous if liminfξ ′→ξ h(ξ ′) ≥ h(ξ ) for all ξ in A, while h is upper semicontinuous if −h is

lower semicontinuous; we remark that h is continuous if, and only if, it is both upper and

lower semicontinuous. The Euclidean distance function for a nonempty subset A ⊂ R
N is the

function dA : R
N → R+ given by dA(v) = inf{‖v− a‖ : a ∈ A}. The function dA is globally

Lipschitz with Lipschitz constant 1, that is, ‖dA(v)− dA(w)‖ ≤ ‖v−w‖ for all v,w ∈ R
N . A

function x : R+ → R
N is said to approach the set A if dA(x(t)) → 0 as t → ∞. For ε > 0,

Bε (A) := {ξ ∈ R
N : dA(ξ ) < ε} (the ε-neighbourhood of A); for a in R

N , we write Bε (a) in

place of Bε ({a}). It is convenient to set Bε ( /0) = /0. The closure of A is denoted by cl(A).

7.3  Background Concepts in Analysis

In the context of the real numbers R, Lebesgue measure µ is a map from a set (the Lebesgue

measurable sets) of subsets of R to the extended non-negative reals [0,∞]. It is an extension

of the classical notation of length of an interval in R to more complicated sets. Whilst there
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exist subsets of R which are not measurable, the Lebesgue measurable sets include, for ex-

ample, all open and closed sets and all sets obtained from these by taking countable unions

and intersections. Lebesgue measure has a number of intuitively appealing properties. For ex-

ample, (i) if A,B ⊂ R are measurable sets with A ⊂ B, then µ(A) ≤ µ(B), (ii) if A = ∪n∈NBn

is a disjoint union of countably many measurable sets, then µ(A) = ∑n∈N µ(Bn), (iii) µ is

translation invariant, that is, if A ⊂ R is measurable, then its translation by b ∈ R, given by

B := {a+B : a ∈ A} is measurable and µ(A) = µ(B). The notion of a set of zero (Lebesgue)

measure has a simple characterization: µ(A) = 0 if, for each ε > 0, there exists a countable

collection of intervals In of length |In| such that

∑
n∈N

|In| < ε and A ⊂ ∪n∈NIn.

If A is a closed and bounded interval [a,b], then its Lebesgue measure is the length of the

interval µ(A) = b−a and, since each of the sets {a},{b} and {a,b} has measure zero, each of

the intervals (a,b], [a,b) and (a,b) also has measure b−a.

Let I ⊂ R be an interval and X ⊂ R
N an non-empty set. Two functions x,y : I → X are said to

be equal almost everywhere (a.e.) if the subset (of I) on which they differ has zero measure,

precisely, if

{t ∈ I : x(t) 6= y(t)} is a set of zero measure.

Let x : I → X and consider a sequence (xn) of functions I → X . The sequence (xn) is said to

converge almost everywhere (a.e.) to x if the subset of points t ∈ I at which (xn(t)) fails to

converge to x(t) has measure zero. A function x : I → R
N is said to be a measurable function

if there exists a sequence (xn) of piecewise constant functions I → X converging almost every-

where to x. We remark that the composition f ◦x of a semicontinuous (upper or lower) function

f and a measurable function x is a measurable function. A measurable function x : I → X is

said to be essentially bounded if there exists K such that ‖x(t)‖ ≤ K for almost every (a.e.)

t ∈ I (equivalently, the set of points t ∈ I at which ‖x(t)‖ > K has measure zero): the set of

such functions x is denoted by L∞(I;X). A measurable function x : I → X is said to be locally

essentially bounded if the restriction of x to every compact (that is, closed and bounded) subset

of I is essentially bounded: the set of such functions is denoted by L∞
loc(I;X). The (Lebesgue)

integral ∫

I
x(t)dt

of a measurable function x : I →X may be defined via the limit of integrals of a suitably chosen

sequence of piecewise constant approximants of x. The function x is said to be integrable if
∫

I
‖x(t)‖dt < ∞.

The set of such integrable functions x is denoted1 by L1(I;X). The function x is said to be

locally integrable if the restriction x|J of x to every compact subinterval J of I is integrable

(that is,
∫

J ‖x(t)‖dt < ∞): the set of such functions x is denoted by L1
loc(I;RN). A function y

that is the indefinite integral of a locally integrable function x is said to be locally absolutely

continuous, that is, a function of the form

1 More generally, for 1 ≤ p < ∞, the set of measurable functions x : I → X with the property

that ∫

I
‖x(t)‖pdt < ∞

is denoted by Lp(I;RN).
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t 7→ y(t) =
∫ t

c
x(s)ds

for some c∈ I and x∈ L1
loc(I;X); moreover, y is differentiable almost everywhere (a.e.), that is,

the set of points t ∈ I at which the derivative ẏ(t) fails to exist has measure zero; furthermore

ẏ(t) = x(t) for almost all t ∈ I. Thus, one may identify locally absolutely continuous functions

as those functions for which the Fundamental Theorem of Calculus holds in the context of

Lebesgue integration.

7.4 Initial- alue Problems: Existence of Solutions

We proceed to develop a theory of existence of solutions of the initial-value problems (7.4) and

(7.6): for clarity of exposition, we will assume t0 = 0 in each and, in the context of the latter

problem, we restrict attention to the case of an autonomous differential inclusion ẋ ∈ F(x).

7.4.1  Ordinary Differential Equations

Consider the initial-value problem (7.4) (with t0 = 0), viz.

ẋ(t) = f (t,x(t)), x(0) = x0 ∈ R
N . (7.7)

The ensuing results pertaining to problem (7.7) can be found in standard texts (see, for ex-

ample, [1, 8, 28, 30]). In order to make sense of the notion solution of (7.7), it is necessary

to impose some regularity on the function f : R+ ×R
N → R

N . A classical result is: if f is

continuous, then (7.7) has at least one solution, that is, a continuously differentiable function

x : I → R
N , on some non-trivial interval I containing 0, with x(0) = x0 and satisfying the

differential equation in (7.7) for all t ∈ I. However, to insist on continuity of f in its t depen-

dence is difficult to justify (for example, the t-dependence of the function f may arise from

modelling extraneous disturbances impinging on a dynamical system - there is no reason to

suppose that such disturbances are continuous). What can we say about existence of solutions

in such cases: indeed, how do we even define the concept of solution? Given that we have

decided against imposing, on f , continuity with respect to its first argument, we have to con-

tend with the possibility of “solutions” of (7.7) which fail to be continuously differentiable.

As a first attempt at arriving at a sensible notion of solution, consider the integrated version of

(7.7):

x(t) = x0 +
∫ t

0
f (s,x(s))ds. (7.8)

We might now consider a solution of (7.7) to be a function x : [0,ω) → R
N such that (7.8))

holds for all t ∈ [0,ω). For this definition to have substance, the integral on the righthand

side must make sense. As outlined in the previous section, the integral does indeed make

sense (as a Lebesgue integral) if the integrand s 7→ f (s,x(s)) is a locally integrable function

which implies, in particular, that its indefinite integral is locally absolutely continuous. There-

fore, we define a (forward) solution of (7.7) to be a locally absolutely continuous function

x : [0,ω) → R
N , 0 < ω ≤ ∞, such that (7.8) holds (or, equivalently, such that x(0) = x0 and

the differential equation in (7.7) is satisfied for almost all t ∈ [0,ω)). Consequently, a basic

requirement on f is sufficient regularity to ensure that, if x(·) is locally absolutely continuous,

Stability and Asymptotic Behaviour of Nonlinear Systems
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then s 7→ f (s,x(s)) is locally integrable. The following hypotheses (usually referred to as the

Carathéodory conditions are sufficient for this to hold:

(H):






for each fixed ξ , f (·,ξ ) is a measurable function;

for each fixed t, f (t, ·) is a continuous function;

for each compact K ⊂ R
N , there exists a locally integrable function

m such that ‖ f (t,ξ )‖ ≤ m(t) for all (t,ξ ) ∈ R×K.

A solution x : [0,ω) → R
N of (7.7) is said to be maximal, and [0,ω) is said to be a maximal

interval of existence, if x does not have a right extension that is also a solution. We are now in

a position to state the fundamental existence result for the initial-value problem (7.7).

Theorem 7.1. Let f satisfy hypothesis (H). Then, for each x0 ∈ R
N , (7.7) has a solution and

every solution can be extended to a maximal solution. If x : [0,ω)→ R
N is a maximal solution

and ω < ∞, then, for every τ ∈ [0,ω) and every compact set K ⊂ R
N , there exists σ ∈ [τ,ω)

such that x(σ) 6∈ K.

This theorem asserts that, under hypothesis (H) and for each x0, the initial-value problem (7.7)

has at least one solution (there may be multiple solutions) and every solution can be maximally

extended. By imposing further regularity on f , we can infer the existence of precisely one

maximal solution (the uniqueness property). Additional regularity sufficient for uniqueness is

the following local Lipschitz condition:

(L) :

{
for each compact K ⊂ R

N , there exists λ ∈ L1
loc(R+;R+) such that

‖ f (t,ξ )− f (t,ζ )‖ ≤ λ (t)‖ξ −ζ‖ for all t ∈ R+ and all ξ ,ζ ∈ K.

Theorem 7.2. Let f satisfy hypotheses (H) and (L). Then, for each x0 ∈R
N , (7.7) has a unique

maximal solution.

Next, we consider the autonomous counterpart of (7.7), viz.

ẋ(t) = f (x(t)), x(0) = x0 ∈ R
N , (7.9)

where f : R
N → R

N is locally Lipschitz:

(La) :

{
for each compact K ⊂ R

N , there exists λ > 0 such that

‖ f (ξ )− f (ζ )‖ ≤ λ‖ξ −ζ‖ for all ξ ,ζ ∈ K.

In this autonomous setting, we are interested in solutions of (7.9) in both forwards and back-

wards time: thus, we deem a continuously differentiable function x : (α ,ω) → R
n to be a

solution if 0 ∈ (α ,ω), x(0) = x0 and the differential equation in (7.9) holds for all t ∈ (α ,ω).
A solution is maximal if it has no proper left or right extension that is also a solution.

Theorem 7.3. Let f satisfy hypothesis (La). Then, for each x0 ∈ R
N , the autonomous system

(7.9) has unique maximal solution x : (α ,ω) → R
N .

This theorem implies the existence of a map (t,x0) 7→ ϕ(t,x0) defined by the property that,

for each x0, ϕ(·,x0) is the unique maximal solution x of (7.9). The domain of ϕ is given by

D = dom(ϕ) = {(t,x0) ∈ R×R
N : t ∈ I(x0)}
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Proposition 7.1. D is an open set and ϕ is continuous.

A set S ⊂ R
N is said to be ϕ-invariant or invariant under the flow ϕ if, for every x0 ∈ S, the

unique maximal solution of (7.9) has trajectory in S.

7.4.2  Autonomous Differential Inclusions

We now turn attention to the autonomous counterpart of the initial-value problem (7.6), viz.

ẋ(t) ∈ F(x(t)), x(0) = x0 ∈ R
N , (7.10)

where ξ 7→ F(ξ )⊂R
N is a set-valued map defined on R

N . There is growing literature (see, for

example, [2], [6], [7], [10], [12], [27]) pertaining to the study of differential inclusions. By a

(forward) solution of (7.10), we mean a locally absolutely continuous function x : [0,ω)→R
N ,

0 < ω ≤ ∞, with x(0) = x0, such that the differential inclusion in (7.10) is satisfied for almost

all t ∈ [0,ω). A solution x : [0,ω) → R
N is maximal, and [0,ω) is a maximal interval of

existence, if x has no right extension that is also a solution. We proceed to address the issue

of identifying regularity conditions on F sufficient to guarantee the existence of at least one

solution of (7.10). To this end, let U denote the class of set-valued maps ξ 7→ F(ξ ) ⊂ R
N ,

defined on R
N , that (a) take nonempty convex compact values (that is, for each ξ ∈ R

N , F(ξ )
is a non-empty, convex and compact subset of R

N ) and (b) are upper semicontinuous at each

ξ ∈R
N . A set-valued map F is upper semicontinuous at ξ ∈R

N if, for each ε > 0, there exists

δ > 0 such that F(ξ ′) ⊂ Bε (F(ξ )) for all ξ ′ in Bδ (ξ ), as illustrated below.

F(ξ ′)
b

b

ξ

ξ ′

Bδ (ξ )

F

F(ξ )

Bε (F(ξ ))

Fig. 7.3. Upper semi-continuity of set-valued map

Theorem 7.4. Let F ∈ U . For each x0 ∈ R
N , (7.10) has a solution and every solution can be

extended to a maximal solution. If x : [0,ω) → R
N is a maximal solution with ω < ∞, then x

is unbounded.

A set S ⊂ R
N is said to be weakly invariant with respect to the differential inclusion in (7.10)

if, for each x0 ∈ S, there exists at least one maximal solution of (7.10) with trajectory in S.

where I(x0) = (α ,ω) denotes the maximal interval of existence of the maximal solution of

(7.9). We refer to ϕ as the flow generated by f .

Stability and Asymptotic Behaviour of Nonlinear Systems
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7.4.3 ω- imit Sets

In his well-known book [4, pp. 197], Birkhoff introduced the notion of an ω-limit point in

the context of trajectories of dynamical systems. For the purposes of this paper, it is useful to

define the concept of an ω-limit point for arbitrary R
N -valued functions defined on R+. Let

x : R+ → R
N . A point ξ ∈ R

N is an ω-limit point of x if there exists an unbounded sequence

(tn) ⊂ R+ such that x(tn) → ξ as n → ∞; the (possibly empty) ω-limit set of x, denoted by

Ω(x), is the set of all ω-limit points of x. The following two lemmas highlight well-known

properties of ω-limit sets (see, for example, [1], [12], [14], and [30]).

Lemma 7.1. The following hold for any function x : R+ → R
N :

(a) Ω(x) is closed.

(b) Ω(x) = /0 if and only if ‖x(t)‖→ ∞ as t → ∞.

(c) If x is continuous and bounded, then Ω(x) is nonempty, compact, and connected, is ap-

proached by x, and is the smallest closed set approached by x.

(d) If x is continuous and Ω(x) is nonempty and bounded, then x is bounded and x approaches

Ω(x).

If x happens to be a maximal solution of (7.9) or of (7.10), then we can say more.

Lemma 7.2

(a) Let x : R+ → R
N be a bounded solution of (7.9). Then Ω(x) is nonempty, compact, con-

nected, is approached by x, is the smallest closed set approached by x, and is invariant under

the flow ϕ generated by f .

(b) Let x : R+ → R
N be a bounded solution of (7.10). Then Ω(x) is nonempty, compact, con-

nected, is approached by x, is the smallest closed set approached by x, and is weakly invariant

with respect to the differential inclusion in (7.10).

Lyapunov Stability

A function y : R+ → R is Riemann integrable (on R+) if the improper Riemann integral∫ ∞
0 y(s)ds exists, that is, y is Riemann integrable on [0, t] for each t ≥ 0 and the limit

limt→∞
∫ t

0 y(s)ds exists and is finite. If y belongs to L1 and is Riemann integrable on [0, t]
for each t ≥ 0, then y is Riemann integrable on R+.

First, we highlight the following simple observation, due to Barbălat [3].

Lemma 7.3 (Barbălat’s lemma). If y : R+ → R is uniformly continuous and Riemann inte-

grable, then y(t) → 0 as t → ∞.

Proof. Suppose to the contrary that y(t) 6→ 0 as t → ∞. Then there exist ε > 0 and a sequence

(tn) in R+ such that tn+1 − tn > 1 and |y(tn)| ≥ ε for all n in N. By the uniform continuity of

y, there exists δ in (0,1) such that, for all n in N and all t in R+,

|tn − t| ≤ δ =⇒ |y(tn)− y(t)| ≤ ε/2 .

H. Logemann and E. P. Ryan
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Therefore, for all t in [tn, tn + δ ] and all n in N, |y(t)| ≥ |y(tn)| − |y(tn)− y(t)| ≥ ε/2, from

which it follows that ∣∣∣∣
∫ tn+δ

tn

y(t)dt

∣∣∣∣=
∫ tn+δ

tn

|y(t)|dt ≥ εδ

2

for each n in N, contradicting the existence of the improper Riemann integral
∫ ∞

0 y(t)dt. ⊓⊔

Lemma 7.3 was originally derived in [3] to facilitate the analysis of the asymptotic be-

haviour of a class of systems of nonlinear second-order equations with forcing. Subsequently,

Barbălat’s lemma has been widely used in mathematical control theory (see, for example, [9, p.

89], [23, p. 211], and [26, p. 205]).

The following corollary is an immediate consequence of statement (c) of Lemma 7.1

and Lemma 7.3.

Corollary 7.1. Let G be a nonempty closed subset of R
N , and let g : G → R be continuous.

Assume that x : R+ → R
N is bounded and uniformly continuous with x(R+) ⊂ G. If g ◦ x is

Riemann integrable, then Ω(x) ⊂ g−1(0) and x approaches g−1(0).

We will use Corollary 7.1 to derive LaSalle’s invariance principle. Let the vector field f :

R
N → R

N be locally Lipschitz and consider the initial-value problem

ẋ = f (x) , x(0) = x0 ∈ R
N . (7.11)

Let ϕ denote the flow generated by f , and so t 7→ ϕ(t,x0) is the unique solution of (7.11)

defined on its maximal interval of existence I(x0). If R+ ⊂ I(x0) and ϕ(· ,x0) is bounded on

R+, then, by assertion (a) of Lemma 7.2, Ω(ϕ(· ,x0)) is invariant with respect to the flow ϕ .

The following integral-invariance principle provides an intermediate step towards LaSalle’s

principle and is a consequence of Corollary 7.1.

Theorem 7.5 (Integral-invariance principle). Let G be a nonempty closed subset of R
N , let

g : G → R be continuous, and let x0 be a point of G. Assume that R+ ⊂ I(x0), ϕ(· ,x0) is

bounded on R+, and ϕ(R+,x0) ⊂ G. If the function t 7→ g(ϕ(t,x0)) is Riemann integrable on

R+, then ϕ(· ,x0) approaches the largest invariant subset contained in g−1(0).

Proof. Since ϕ(· ,x0) is bounded on R+ and satisfies the differential equation, it follows that

the derivative of ϕ(· ,x0) is bounded on R+. Consequently, ϕ(· ,x0) is uniformly continuous

on R+. An application of Corollary 7.1 together with the invariance property of Ω(ϕ(· ,x0))
establishes the claim. ⊓⊔.

Before proceeding to derive LaSalle’s principle, we briefly digress to an example which illus-

trates that the above integral-invariance principle is of independent interest.

Example 7.1. Theorem 7.5 is particularly useful in the context of observed systems. In appli-

cations, it is frequently impossible to observe or measure the complete state x(t) of (7.11) at

time t. To illustrate the latter comment, consider the observed system given by (7.11) and the

observation

z = c(x) , (7.12)

where c : R
N → R

P is continuous with c(0) = 0. The observation z (also called output or

measurement) depends on the state and should be thought of as a quantity that can be observed

Stability and Asymptotic Behaviour of Nonlinear Systems
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ẋ = f (x), x(0) = x0 x
c z = c(x)

Fig. 7.4. Observed system

or measured: an important special case occurring when z is given by one component of the

state. Observability concepts relate to the issue of precluding the possibility that different

initial states generate the same observation: the initial state of an observable system can, in

principle, be recovered from the observation. The system given by (7.11) and (7.12) is said to

be zero-state observable if the following holds for each x0 in R
N :

z(·) = c(ϕ(· ,x0)) = 0 =⇒ ϕ(· ,x0) = 0 ,

that is, the system is zero-state observable if x(·) = 0 is the only solution generating the zero

observation z(·) = 0. The following corollary of Theorem 7.5 is contained in [5, Theorem 1.3]

and essentially states that, for a zero-state observable system, every bounded trajectory with

observation in Lp necessarily converges to zero.

Corollary 7.2. Assume that the observed system given by (7.11) and (7.12) is zero-state ob-

servable. For given x0 in R
N assume that R+ ⊂ I(x0) and that ϕ(· ,x0) is bounded on R+. If∫ ∞

0 ‖c(ϕ(t,x0))‖pdt < ∞ for some p in (0,∞), then limt→∞ ϕ(t,x0) = 0.

Proof. By the continuity and boundedness of ϕ(· ,x0), it follows from Lemma 7.1 that ϕ(· ,x0)
approaches its ω-limit set Ω := Ω(ϕ(· ,x0)) and that Ω is the smallest closed set approached

by ϕ(· ,x0). An application of Proposition 7.5 with G = R
N and g(·) = ‖c(·)‖p shows that

Ω ⊂ g−1(0) = c−1(0). Let ξ be a point of Ω . By the invariance property of Ω , ϕ(t,ξ ) lies in Ω
for all t in R. Consequently, c(ϕ(· ,ξ )) = 0. Zero-state observability ensures that ϕ(· ,ξ ) = 0,

showing that ξ = 0. Hence Ω = {0}, so limt→∞ ϕ(t,x0) = 0. ⊓⊔

Theorem 7.5 is essentially contained in [5, Theorem 1.2]: the proof given therein is not based

on Barbălat’s lemma. The above proof of Theorem 7.5 is from [11]. LaSalle’s invariance

principle (announced in [15], with proof in [16]) is now a straightforward consequence of

Theorem 7.5. For a continuously differentiable function V : D ⊂ R
N → R (where D is open),

it is convenient to define the directional derivative V f : D → R of V in the direction of the

vector field f by V f (ξ ) = 〈∇V (ξ ), f (ξ )〉.

Corollary 7.3 (LaSalle’s invariance principle). Let D be a nonempty open subset of R
N , let

V : D → R be continuously differentiable, and let x0 be a point of D. Assume that R+ ⊂ I(x0)
and that there exists a compact subset G of R

N such that ϕ(R+,x0)⊂ G ⊂ D. If V f (ξ )≤ 0 for

all ξ in G, then ϕ(· ,x0) approaches the largest invariant subset contained in V−1
f (0)∩G.

Proof. By the compactness of G and the continuity of V on G, the function V is bounded on

G. Combining this with

∫ t

0
V f (ϕ(s,x0))ds =

∫ t

0
(d/ds)V (ϕ(s,x0))ds = V (ϕ(t,x0))−V (x0) ,

we conclude that the function t 7→ ∫ t
0 V f (ϕ(s,x0))ds is bounded from below: but this function

is also nonincreasing (because V f ≤ 0 on G) and hence must converge to a finite limit as
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t → ∞. Therefore, the function t 7→V f (ϕ(t,x0)) is Riemann integrable on R+. An application

of Theorem 7.5 (with g = V f |G) completes the proof. ⊓⊔

Assume that f (0) = 0, that is, 0 is an equilibrium of (7.11). The equilibrium 0 is said to

be stable if for every ε > 0 there exists δ > 0 such that if ‖x0‖ ≤ δ , then R+ ⊂ I(x0) and

‖ϕ(t,x0)‖ ≤ ε for all t in R+. The equilibrium 0 is said to be asymptotically stable if it

is stable and there exists δ > 0 such that ‖ϕ(t,x0)‖ → 0 as t → ∞ for every x0 satisfying

‖x0‖ ≤ δ .

Theorem 7.6 (Lyapunov’s stability theorem). Let D be a nonempty open subset of R
N such

that 0 ∈ D, and let V : D → R be continuously differentiable with V (0) = 0. If V (ξ ) > 0 for

all ξ in D\{0} and V f (ξ ) ≤ 0 for all ξ in D, then 0 is a stable equilibrium.

Proof. Let ε > 0 be arbitrary. Without loss of generality, we may assume that the closed ball

B̄ε (0) is contained in D. Since the sphere Sε := {ξ ∈ R
N : ‖ξ‖ = ε} is compact and V is

continuous and positive-valued on Sε , we see that V achieves a minimum value m > 0 on Sε ,

that is,

V (ξ ) ≥ m for all ξ ∈ Sε and V (ξ ) = m for some ξ ∈ Sε .

By continuity of the non-negative valued function V and since V (0) = 0, there exists δ ∈ (0,ε),
such that

‖ξ‖ < δ =⇒ V (ξ ) < m.

Let x0 be such that ‖x0‖ < δ . Let x(·) = ϕ(·,x0) be the maximal solution of (7.11) with

maximal interval of existence I(x0) = (α ,ω). Seeking a contradiction, suppose x(τ) ∈ Sε for

some τ ∈ (0,ω) and assume τ is the first such time (and so ‖x(t)‖< ε for all t ∈ [0,τ)). Then,

d

dt
V (x(t)) = V f (x(t)) ≤ 0 ∀ t ∈ [0,τ].

Therefore, t 7→V (x(t)) is non-increasing on [0,τ], whence the contradiction

m ≤V (x(τ)) ≤V (x(0)) = V (x0) < m.

Therefore, the positive trajectory x([0,ω)) is contained in the closed ball of radius ε centred

at the origin in R
N (and so ω = ∞). This completes the proof. ⊓⊔

Combining Corollary 7.3 and Theorem 7.6, we immediately obtain the following asymptotic

stability theorem.

Theorem 7.7 (Asymptotic stability theorem). Let D be a nonempty open subset of R
N such

that 0 ∈ D, and let V : D → R be continuously differentiable with V (0) = 0. If V (ξ ) > 0 for

all ξ in D \ {0}, V f (ξ ) ≤ 0 for all ξ in D, and {0} is the largest invariant subset of V−1
f (0),

then 0 is an asymptotically stable equilibrium.

Example 7.2. In this example, which can also be found in [30], we describe a typical appli-

cation of Theorem 7.7 in the context of a general class of nonlinear second-order systems.

Consider the system

ÿ(t)+ r(y(t), ẏ(t)) = 0 , (y(0), ẏ(0)) = (p0,v0) ∈ R
2 , (7.13)
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where r : R
2 → R is locally Lipschitz and differentiable with respect to its second argu-

ment. Furthermore, we assume that r(0,0) = 0. Setting x(t) = (x1(t),x2(t)) = (y(t), ẏ(t)),
the second-order system (7.13) can be expressed in the equivalent form (7.11), where f :

R+ ×R
2 → R

2 and x0 ∈ R
2 are given by

f (p,v) = (v,−r(p,v)) , x0 = (p0,v0) . (7.14)

Let ε > 0, set D = (−ε,ε)× (−ε,ε), and define

V : D → R, (p,v) 7→
∫ p

0
r(s,0)ds+ v2/2.

It follows from the mean-value theorem that, for each (p,v) in D, there exists a number θ =
θ(p,v) in the interval (0,1) such that

V f (p,v) = −v(r(p,v)− r(p,0)) = −v2 ∂ r

∂v
(p,θv) . (7.15)

CLAIM. Consider (7.11) with f and x0 given by (7.14). If pr(p,0) > 0 for all p in (−ε,ε) \
{0} and (∂ r/∂v)(p,v) > 0 for all (p,v) in D satisfying pv 6= 0, then the equilibrium 0 is

asymptotically stable.

We proceed to establish this claim.Using the hypotheses and (7.15), we infer that V (p,v)>0

for all (p,v) in D\{0} and Vf (p,v)≤ 0 for all (p,v) in D. Writing ϕ(t,x0) = (x1(t),x2(t)), we

see that for x0 = (p0,0) in D with p0 6= 0, ẋ2(0) = −r(p0,0) 6= 0. Similarly, for x0 = (0,v0)
in D with v0 6= 0, ẋ1(0) = v0 6= 0. We conclude that solutions with these initial conditions do

not remain in V−1
f (0), showing that {0} is the largest invariant subset of V−1

f (0). The claim

now follows from Theorem 7.7.

As a special case of (7.13), consider the nonlinear oscillator usually referred to as the Liénard

equation

ÿ(t)+d(y(t))ẏ(t)+ k(y(t)) = 0 , (y(0), ẏ(0)) = (p0,v0) ∈ R
2 ,

where d(y)ẏ represents a friction term that is linear in the velocity and k(y) models a restoring

force. We assume that the functions d : R → R and k : R → R are locally Lipschitz and k(0) =
0. It follows from the foregoing discussion on the stability of (7.13) (with r now given by

r(p,v) = d(p)v + k(p)) that 0 is an asymptotically stable equilibrium state of the Liénard

equation, provided that there exists ε > 0 such that pk(p) > 0 and d(p) > 0 for all p in (−ε,ε)
with p 6= 0.

7.6  Generalizations of Barbalat’s Lemma˘

In Theorems 7.8 and 7.9 below, we present generalizations of Barbălat’s lemma and of Corol-

lary 7.1, which will be exploited in subsequent analyses of the behaviour of solutions of

non-autonomous differential equations and autonomous differential inclusions. To this end,

we introduce the notion of (weak) meagreness that will replace the assumption of Riemann

integrability in Barbălat’s lemma. The concept of meagreness is defined via the Lebesgue

measure µ . However, for the purposes of this tutorial paper, we do not wish to assume famil-

iarity with measure theoretic concepts. As an alternative, we also introduce the notion of weak

meagreness (which does not require measure theory).
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Definition 7.1

(a) A function y : R+ → R is said to be meagre if y is Lebesgue measurable and µ({t ∈ R+ :

|y(t)| ≥ λ}) < ∞ for all λ > 0.

(b) A function y : R+ → R is said to be weakly meagre if

lim
n→∞

( inf
t∈In

|y(t)|) = 0

for every family {In : n ∈ N} of nonempty and pairwise disjoint closed intervals In in R+

with infn∈N |In| > 0, where |In| denotes the length of the interval In.

From Definition 7.1 it follows immediately that a meagre function is weakly meagre. The

converse is not true, even in the restricted context of continuous functions. We remark that,

if a function y : R+ → R is weakly meagre, then 0 belongs to Ω(y). The property of (weak)

meagreness of a function implies that the function is “close to zero” in some sense: however,

it is not the case that (weakly) meagre functions converge to zero as t → ∞. Indeed, there exist

continuous and unbounded functions that are (weakly) meagre: the following is an example

of one such function.

Example 7.3. A continuous unbounded meagre function

Consider the continuous unbounded function

R+ → R+, t 7→ x(t) = ∑
n∈N

xn(t)

where, for each n ∈ N, xn is continuous and supported on In := [n,n + 1/n2], with graph as

shown below. For every λ > 0, the total “length” (measure) of the set {t ∈ R+ : |x(t)| ≥ λ}

b b

xn(t)

t
n

n+1/n2

n

0

Fig. 7.5. A continuous unbounded meagre function

cannot exceed the sum of the lengths |In|= 1/n2 of the intervals In = [n , n+(1/n2)], whence,

µ
(
{t ∈ R+ : |x(t)| ≥ λ}

)
≤ ∑

n∈N

1

n2
< ∞ ∀ λ > 0.

and so x is meagre (and, a fortiori, weakly meagre).

The above definitions of (weak) meagreness are somewhat obscure: the following result gives

more tangible sufficient conditions for meagreness and weak meagreness, respectively.

Proposition 7.2. Let y : R+ → R be measurable. Then the following statements hold:
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(b) If there exists τ > 0 such that limt→∞
∫ t+τ

t |y(s)|ds = 0, then y is weakly meagre.

(c) If y is continuous and for every δ > 0 there exists τ in (0,δ ) such that
∫ t+τ

t y(s)ds con-

verges to 0 as t → ∞, then y is weakly meagre.

Proof. We prove only part (c) (the proofs of parts (a) and (b) are even more straightfor-

ward). Let y : R+ → R be continuous. We show that if y is not weakly meagre, then there

exists δ > 0 such that for every τ in (0,δ ) the integral
∫ t+τ

t y(s)ds does not converge to 0 as

t → ∞. The claim follows then from contraposition. So assume that y is not weakly meagre.

Then there exists a family {In : n ∈ N} of nonempty, pairwise disjoint closed intervals with

δ = infn∈N µ(In) > 0 and a number ε > 0 such that inft∈In
|y(t)| ≥ ε for each n. Since y is

continuous, the function y has the same sign on In for each n. Without loss of generality, we

may assume that there are infinitely many intervals In on which y is positive. Then there exists

a sequence (nk) in N such that y has positive sign on Ink
for all k. Denoting the left endpoint

of Ink
by tk, we obtain ∫ tk+τ

tk

y(s)ds ≥ ετ > 0,

for each k in N and τ in (0,δ ), showing that the integral
∫ t+τ

t y(s)ds does not converge to 0 as

t → ∞. ⊓⊔

It follows immediately from Proposition 7.2(a) that, if y belongs to Lp for some p ∈ [1,∞),
then y is meagre (and, a fortiori weakly meagre).

The following result will play a role in the subsequent derivation of generalized versions of

Barbălat’s lemma.

Lemma 7.4. Let A and B be nonempty subsets of R
N such that cl(Bλ (B))⊂ A for some λ > 0.

If x : R+ → R
N is uniformly continuous on x−1(A), then there exists τ > 0 such that

t ∈ R+, x(t) ∈ B =⇒ x(s) ∈ Bλ (B) ∀ s ∈ [t − τ , t + τ]∩R+ . (7.16)

Proof. Seeking a contradiction, suppose that property (7.16) does not hold. Then there exist

sequences (sn) and (tn) in R+ such that x(tn) ∈ B and x(sn) 6∈ Bλ (B) for all n, and sn − tn → 0

as n → ∞. Evidently, sn 6= tn for all n. Define In to be the closed interval with left endpoint

min{sn, tn} and right endpoint max{sn, tn}, and write Tn = {s ∈ In : s 6∈ x−1(Bλ (B))}. For

each n, let τn in Tn (a compact set) be such that

|τn − tn| = min
s∈Tn

|s− tn|.

Clearly, dB(x(τn)) = λ and dB(x(tn)) = 0 for each n. Combining this information with the

facts that τn belongs to In and limn→∞(sn − tn) = 0, we conclude that

(i) ‖x(tn)− x(τn)‖ ≥ |dB(x(tn))−dB(x(τn))| = λ > 0,

(ii) tn,τn ∈ x−1(A),

(iii) |tn − τn| → 0 as n → ∞,

contradicting the hypothesis of the uniform continuity of x on x−1(A). Therefore, property

(7.16) holds. ⊓⊔

(a) If there exists a lower semicontinuous function α : R+ → R such that α−1(0) = {0},

infs≥σ α(s) > 0 for all σ > 0, and α(|y(·)|) belongs to L1, then y is meagre.
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Theorem 7.8. Let G be a nonempty closed subset of R
N , let g : G → R be a function, and let

x : R+ → R
N be continuous with x(R+) ⊂ G. Assume that each ξ in G for which g(ξ ) 6= 0

has a neighbourhood U such that

inf{|g(w)| : w ∈ G∩U} > 0 (7.17)

and x is uniformly continuous on x−1(U). If g ◦ x is weakly meagre, then the following state-

ments hold:

(a) Ω(x) is contained in g−1(0).
(b) If g−1(0) is bounded and Ω(x) 6= /0, then x is bounded and x approaches g−1(0).
(c) If x is bounded, then g−1(0) 6= /0 and x approaches g−1(0).
(d) If x is bounded and g−1(0) is totally disconnected, then Ω(x) consists of a single point x∞

which lies in g−1(0) (in particular, limt→∞ x(t) = x∞).

Proof. If Ω(x) = /0, then statement (a) holds trivially. Now assume that Ω(x) 6= /0. Let ξ be a

point of Ω(x). Since G is closed and x(R+)⊂ G, Ω(x)⊂ G and thus ξ belongs to G. We show

that g(ξ ) = 0. Seeking a contradiction, suppose that g(ξ ) 6= 0. By the hypotheses, there exists

a neighbourhood U of ξ such that (7.17) holds and x is uniformly continuous on x−1(U).
Choose δ > 0 such that the closure of Bδ (ξ ) lies in U . Then

ε = inf{|g(w)| : w ∈ G∩Bδ (ξ )} > 0 . (7.18)

Choose δ1 in (0,δ ). Since ξ is an element of Ω(x), there exists a sequence (tn) in R+ with

tn+1 − tn > 1 and x(tn) in Bδ1
(ξ ) for all n. An application of Lemma 7.4 (with A = U , B =

Bδ1
(ξ ) and λ = δ −δ1) shows that there exists τ in (0,1) such that x(t) is in Bδ2

(ξ ) for all t

in ∪n∈N[tn, tn + τ]. Therefore, by (7.18),

|(g◦ x)(t)| ≥ ε (t ∈ [tn, tn + τ], n ∈ N) . (7.19)

Finally, since tn+1−tn > 1 for all n and τ belongs to (0,1), the intervals [tn, tn +τ] are pairwise

disjoint. Combined with (7.19) this contradicts the weak meagreness of g ◦ x and establishes

(a). A combination of statement (a) and Lemma 7.1 yields statements (b)-(d). ⊓⊔

We remark that lower semicontinuity of the function ξ 7→ |g(ξ )| is sufficient to ensure that

(7.17) holds for some neighbourhood U of any ξ in G with g(ξ ) 6= 0.

Barbălat’s lemmafollows immediately from an application of Theorem7.8(b) tothesituation

wherein N = 1, G = R, g = idR, and x = y, in conjunction with the observation that a uniformly

continuous and Riemann integrable function y : R+ → R is weakly meagre, implying that 0 is

a member of Ω(y) and thus ensuring that Ω(y) 6= /0. Corollary 7.1 is a simple consequence of

statements (a) and (c) of Theorem 7.8.

When compared with Theorem 7.8, the next result (Theorem 7.9) posits that x be uniformly

continuous on x−1 (Bε (g
−1(0))) for some ε > 0. We remark that, in certain situations (for

The following two theorems, the main results of this section, provide our generalizations of

Barbălat’s lemma.

Stability and Asymptotic Behaviour of Nonlinear Systems



210

Theorem 7.9. Let G be a nonempty closed subset of R
N , and let g : G→R be such that g−1(0)

is closed and, for every nonempty closed subset K of G,

K ∩g−1(0) = /0 =⇒ inf
ξ∈K

|g(ξ )| > 0 . (7.20)

Furthermore, let x : R+ → R
N be continuous with x(R+) ⊂ G. If (i) x is uniformly continu-

ous on x−1(Bε (g
−1(0))) for some ε > 0 and (ii) g ◦ x is weakly meagre, then the following

statements hold:

(a) g−1(0) 6= /0, x approaches g−1(0), and Ω(x) is contained in g−1(0).
(b) If g−1(0) is bounded, then x is bounded, x approaches g−1(0), and Ω(x) is a nonempty

subset of g−1(0).
(c) If g−1(0) is bounded and totally disconnected, then Ω(x) is a singleton {x∞}, where x∞ is

a point of g−1(0) (hence, limt→∞ x(t) = x∞).

Proof. For convenience, we set Z = g−1(0). It is clear that Z 6= /0 (otherwise, by (7.20) and the

closedness of G, γ = infξ∈G |g(ξ )| > 0 and so |g(x(t))| ≥ γ for all t in R+, which contradicts

the weak meagreness of g◦ x). To prove statements (a) and (b), it now suffices to show that x

approaches Z. From the closedness of Z it then follows immediately that Ω(x)⊂ Z; moreover,

if Z is bounded, then we can conclude that x is bounded and so Ω(x) 6= /0. Since, by assumption,

the trajectory of x is contained in G, it is immediate that, if G = Z, then x approaches Z.

Consider the remaining case, wherein Z is a proper subset of G. By the closedness of Z, there

exists δ in (0,ε/3) such that G\Bδ (Z) 6= /0. For θ in (0,δ ), define

ι(θ) = inf{|g(ξ )| : ξ ∈ G\Bθ (Z)} > 0 ,

wherein positivity is a consequence of (7.20) and the closedness of G\Bθ (Z).

Seeking a contradiction, we suppose that limt→∞ dZ(x(t)) 6= 0. Then there exist λ in (0,δ )
and a sequence (tn) in R+ with tn → ∞ as n → ∞ and dZ(x(tn)) ≥ 3λ for all n. By the weak

meagreness of g◦x, there exists a sequence (sn) in R+ with sn → ∞ as n → ∞ and |g(x(sn))|<
ι(λ ) for all n, so dZ(x(sn)) ≤ λ for all n. Extracting subsequences of (tn) and (sn) (which we

do not relabel), we may assume that sn is in (tn, tn+1) for all n. We now have

dZ(x(tn)) ≥ 3λ , dZ(x(sn)) ≤ λ , sn ∈ (tn, tn+1)

for all n. By the continuity of dZ ◦ x, there exists for each n a number σn in (tn,sn) such that

x(σn) belongs to B := {ξ ∈ G : dZ(ξ ) = 2λ}. Extracting a subsequence (which, again, we do

not relabel), we may assume that σn+1 −σn > 1 for all n. Noting that cl
(
Bλ (B)

)
⊂ Bε (Z)

and invoking Lemma 7.4 (with A = Bε (Z)), we conclude the existence of τ in (0,1) such that

dZ(x(t)) ≥ λ for all t in [σn,σn + τ] and all n. Therefore,

{t ∈ R+ : |g(x(t))| ≥ ι(λ )} ⊃ ∪n∈N[σn,σn + τ],

ample, if g−1(0) is finite), this assumption is weaker than the uniform continuity assumption

imposed on x in Theorem 7.8. On the other hand, the assumption imposed on g in Theorem 7.9

is stronger than that in its counterpart in Theorem 7.8. However, under these modified hypothe-

ses, Theorem 7.9 guarantees that x approaches g−1(0) 6= /0 without assuming the nonemptiness

of Ω(x) or the boundedness of x.
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7.7  Nonautonomous Ordinary Differential Equations

Consider again the initial-value problem (7.7) for a nonautonomous ordinary differential equa-

tion

ẋ(t) = f (t,x(t)), x(0) = x0 ∈ R
N , (7.21)

where f : R+×R
N →R

N is a Carathéodory function, that is, f satisfies hypothesis (H). Recall

that, by Theorem 7.1, for each x0 ∈ R
N , (7.21) has at least one solution and every solution

can be extended to a maximal solution. With a view to highlighting a particular subclass of

Carathéodory functions f , we introduce the notion of uniform local integrability.

Definition 7.2. A function m : R+ →R is uniformly locally integrable if m belongs to L1
loc and

if for each ε > 0 there exists τ > 0 such that

∫ t+τ

t
|m(s)|ds ≤ ε

for all t in R+.

Clearly, a locally integrable function m : R+ → R is uniformly locally integrable if, and only

if, the function t 7→ ∫ t
0 |m(s)|ds is uniformly continuous. It is readily verified that, if m belongs

to Lp for some p (1 ≤ p ≤ ∞), then m is uniformly locally integrable. We now introduce a

particular subclass of Carathéodory functions.

Definition 7.3. For a nonempty subset A of R
N , F(A) denotes the class of Carathéodory func-

tions f : R+ ×R
N → R

N with the property that there exists a uniformly locally integrable

function m such that ‖ f (t,ξ )‖ ≤ m(t) for all (t,ξ ) in R+ ×A.

The next proposition shows that under suitable uniform local integrability assumptions relating

to f , solutions of (7.21) satisfy the uniform continuity assumptions required for an application

of Theorems 7.8 and 7.9.

Proposition 7.3. Let A and B be nonempty subsets of R
N with the property that Bε (A)∩B 6= /0

for some ε > 0, and let f belong to F(Bε (A)∩B). If x : R+ → R
N is a global solution of

(7.21) such that x(R+) ⊂ B, then x is uniformly continuous on x−1(A).

Proof. If x−1(A) = /0, then the claim holds trivially. Assume that x−1(A) 6= /0. Since f belongs

to F(Bε (A)∩B), there exists a uniformly locally integrable function m such that ‖ f (t,w)‖ ≤
m(t) for all (t,w) in R+ × (Bε (A)∩B). Let δ in (0,ε) be arbitrary. Choose τ > 0 such that∫ t+τ

t m ≤ δ for all t in R+. Let t1 and t2 be points of x−1(A) with 0 ≤ t2 − t1 ≤ τ . We will

complete the proof by showing that ‖x(t2)− x(t1)‖ ≤ δ . If we define

J = {t > t1 : x(s) ∈ Bε (A) for all s ∈ [t1, t]},

it follows that

‖x(t)− x(t1)‖ ≤
∫ t

t1

m(s)ds ≤
∫ t1+τ

t1

m(s)ds ≤ δ

Stability and Asymptotic Behaviour of Nonlinear Systems

which (on noting that the intervals [σn,σn + τ], are each of length τ > 0 and form a pairwise

disjoint family) contradicts the weak meagreness of g◦x. Therefore, x approaches Z, implying

that statements (a) and (b) hold. Finally, invoking the fact that the ω-limit set of a bounded

continuous function is connected, we infer statement (c) from statement (b). ⊓⊔

for all t in J with t ≤ t1 + τ . Since δ < ε , t1 + τ belongs to J, whence ‖x(t2)− x(t1)‖ ≤ δ . ⊓⊔
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Theorem 7.10. Let G be a nonempty closed subset of R
N , and let g : G → R be a function.

Assume that each ξ in G for which g(ξ ) 6= 0 has a neighbourhood U such that (7.17) holds

and f belongs to F(U ∩G). If x : R+ →R
N is a global solution of (7.21) with x(R+)⊂ G and

g◦ x is weakly meagre, then statements (a)-(d) of Theorem 7.8 hold.

Proof. Let ξ in G be such that g(ξ ) 6= 0. By the hypotheses, there exists a neighbourhood

U of ξ such that (7.17) holds and f belongs to F(U ∩G). Let ε > 0 be sufficiently small so

that B2ε (ξ ) lies in U . Then, setting A = Bε (ξ ), we see that f is in the class F(Bε (A)∩G).
By Proposition 7.3, it follows that x is uniformly continuous on x−1(A). An application of

Theorem 7.8 completes the proof. ⊓⊔

We remark that Theorem 7.10 contains a recent result by Teel [29, Theorem 1] as a special

case. In the next theorem, it is assumed that f is a member of F(Bε (g
−1(0))∩G) for some

ε > 0. Under the additional assumption that g satisfies (7.20), it is then guaranteed that x

approaches g−1(0) (without positing the boundedness of x).

Theorem 7.11. Let G be a nonempty closed subset of R
N , and let g : G → R be such that

g−1(0) is closed and (7.20) holds for every nonempty closed subset K of G. Assume that f

belongs to F(Bε (g
−1(0))∩G)) for some ε > 0. If x : R+ → R

N is a global solution of (7.21)

with x(R+) ⊂ G and g◦ x is weakly meagre, then statements (a)-(c) of Theorem 7.9 hold.

Proof. Fix δ in (0,ε). By Proposition 7.3, x is uniformly continuous on the set x−1(Bδ (g−1(0))).
An application of Theorem 7.9 completes the proof. ⊓⊔

In the following we use Theorem 7.10 to obtain a version of a well-known result on ω-

limit sets of solutions of nonautonomous ordinary differential equations. For a nonempty

open subset D of R
N and a continuously differentiable function V : R+ ×D → R, we define

V f : R+×D→R (the derivative of V with respect to (7.21) in the sense that (d/dt)V (t,x(t)) =
V f (t,x(t)) along a solution x of (7.21)) by

V f (t,ξ ) =
∂V

∂ t
(t,ξ )+

N

∑
i=1

∂V

∂ξi
(t,ξ ) fi(t,ξ )

for all (t,ξ ) ∈ R+ ×D, where f1, . . . , fN denote the components of f .

Corollary 7.4. Let D be a nonempty open subset of R
N , and let V : R+ ×D → R be continu-

ously differentiable. Assume that V satisfies the following two conditions:

(a) for each ξ in cl(D) there exists a neighbourhood U of ξ such that V is bounded from

below on the set R+ × (U ∩D);
(b) there exists a lower semicontinuous continuous function W : cl(D) → R+ such that

V f (t,ξ ) ≤−W (ξ ) for all (t,ξ ) in R+ ×D.

Furthermore, assume that for every ξ in cl(D) there exists a neighbourhood U ′ of ξ such

that f belongs to F(U ′∩D). Under these assumptions, if x : R+ → R
N is a global solution of

(7.21) with x(R+) ⊂ D, then Ω(x) ⊂W−1(0).

In the following, we combine Proposition 7.3 with Theorems 7.8 and 7.9 to derive results on

the asymptotic behaviour of solutions of (7.21).
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Proof. If Ω(x)= /0 there is nothing to prove, so we assume that Ω(x) 6= /0. Since (d/dt)V (t ,x(t))=
V f (t,x(t)) for all t in R+, it follows from assumption (b) that the function t 7→ V (t,x(t)) is

nonincreasing, showing that the limit l of V (t,x(t)) as t → ∞ exists, where possibly l = −∞.

Let ξ ∈ Ω(x) ⊂ cl(D). Then there exists a nondecreasing unbounded sequence (tn) in R+

such that limn→∞ x(tn) = ξ . By assumption (a) there exists a neighbourhood U of ξ such that

V is bounded from below on R+ × (U ∩D). Now x(R+) ⊂ D, so there exists n0 such that

x(tn) ∈ U ∩D whenever n ≥ n0. Consequently, the nonincreasing sequence (V (tn,x(tn))) is

bounded from below, showing that l > −∞. Therefore

0 ≤
∫ ∞

0
(W ◦ x)(t)dt ≤−

∫ ∞

0
V f (t,x(t))dt

= −
∫ ∞

0
(d/dt)V (t,x(t))dt = V (0,x0)− l < ∞ ,

verifying that W ◦ x is in L1, hence is weakly meagre. By assumption, for each ξ in cl(D)
there exists an open neighbourhood U ′ of ξ such that f belongs to F(U ′ ∩D), implying that

f is in F(U ′ ∩ cl(D)). Therefore, an application of Theorem 7.10 with G = cl(D) and g = W

establishes the claim. ⊓⊔

Corollary 7.4 is essentially due to LaSalle [17] (see also [14, Satz 6.2, p. 140]). However,

we point out that the assumption imposed on f in Corollary 7.4 is weaker then that in [14]

and [17], wherein it is required that, for every ξ in cl(D), there exists a neighbourhood U ′

of ξ such that f is bounded on the set R+ × (U ′ ∩D). Furthermore, we impose only lower

semicontinuity on the function W (in contrast to [14] and [17], wherein continuity of W is

assumed).
The next result is a consequence of Theorem 7.11. It shows, in particular, that under a mild

assumption on f every global Lp-solution of (7.21) converges to zero.

Corollary 7.5. Assume that there exists ε > 0 such that f belongs to F(Bε (0)), and let x :

R+ → R
N be a global solution of (7.21). Then the following statements hold:

(a) If ‖x(·)‖ is weakly meagre, then limt→∞ x(t) = 0.

(b) If x belongs to Lp for some p in (0,∞), then limt→∞ x(t) = 0.

Proof. If ‖x(·)‖ is weakly meagre, then an application of Theorem 7.11 with G = R
N and

g = ‖ ·‖ shows that limt→∞ x(t) = 0. This establishes statement (a). To prove statement (b), let

x be in Lp for some p in (0,∞). Then, by Proposition 7.2(a), the function ‖x(·)‖ is meagre and

hence is weakly meagre. By part (a) of the present result, limt→∞ x(t) = 0. ⊓⊔

Obviously, if (7.21) is autonomous (i.e., the differential equation in (7.21) has the form ẋ(t) =
f (x(t))), then the assumption that f belongs to F(Bε (0)) for some ε > 0 is trivially satisfied.

Thus we may conclude that every weakly meagre global solution t 7→ x(t) of an autonomous

ordinary differential equation converges to 0 as t → ∞.

7.8  Autonomous Differential Inclusions

In Section 5, we investigated the behaviour of systems within the framework of ordinary dif-

ferential equations with Carathéodory righthand sides. However, as already alluded to in the

Stability and Asymptotic Behaviour of Nonlinear Systems
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Introduction, there are many meaningful situations wherein this framework is inadequate for

purposes of analysis of dynamic behaviour. A prototypical example is that of a mechanical

system with Coulomb friction which, formally, yields a differential equation with discontin-

uous right-hand side. Other examples permeate control theory and applications: a canonical

case is a discontinuous feedback strategy associated with an on-off or switching device. Reit-

erating earlier comments, such discontinuous phenomena can be handled mathematically by

embedding the discontinuities in set-valued maps, giving rise to the study of differential inclu-

sions. The next goal is to extend our investigations on ordinary differential equations in this

direction. Recall that U denotes the class of set-valued maps ξ 7→ F(ξ )⊂R
N , defined on R

N ,

that are upper semicontinuous at each ξ in R
N and take nonempty, convex, and compact val-

ues. The object of our study is the initial-value problem (7.10) for an autonomous differential

inclusion, viz.

ẋ(t) ∈ F(x(t)), x(0) = x0 ∈ R
N , F ∈ U . (7.22)

Recall that, by Theorem 7.4, for each x0 ∈ R
N , (7.22) has at least one solution and every

solution can be extended to a maximal solution.
The following proposition shows that, under suitable local boundedness assumptions on F,

the solutions of (7.22) satisfy the uniform continuity assumptions required for an application

of Theorems 7.8 and 7.9. For a subset A of R
N and for a member F of U we denote (in a

slight abuse of notation) the set ∪a∈AF(a) by F(A).

Proposition 7.4. Let A and B be subsets of R
N. Assume that F(Bε (A)∩B) is bounded for

some ε > 0 and that x : R+ → R
N is a solution of (7.22) with x(R+)⊂ B. Then x is uniformly

continuous on x−1(A).

Proof. If x−1(A) = /0, then the assertion holds trivially. Assume that x−1(A) 6= /0, and let δ
in (0,ε) be arbitrary. Define θ = sup{‖v‖ : v ∈ F(Bε (A)∩B)}, and let τ > 0 be sufficiently

small so that τθ ≤ δ . Adopting an argument similar to that used in the proof of Proposition

7.3, it can be shown that ‖x(t2)− x(t1)‖ ≤ δ for all t1 and t2 in x−1(A) with 0 ≤ t2 − t1 ≤ τ ,

proving that x is uniformly continuous on x−1(A). ⊓⊔

We now invoke Theorems 7.8 and 7.9 to derive counterparts of Theorems 7.10 and 7.11 for

differential inclusions.

Theorem 7.12. Let G be a nonempty closed subset of R
N, let g : G →R have the property that

each ξ in G for which g(ξ ) 6= 0 has a neighbourhood U such that (7.17) holds. If x : R+ →R
N

is a solution of (7.22) with x(R+) ⊂ G and g◦x is weakly meagre, then statements (a) and (d)

of Theorem 7.8 hold. Moreover, the following statements are true:

(b′) If g−1(0) is bounded and Ω(x) 6= /0, then x is bounded and x approaches the largest

subset of g−1(0) that is weakly invariant with respect to (7.22).

(c′) If x is bounded, then g−1(0) 6= /0 and x approaches the largest subset of g−1(0) that is

weakly invariant with respect to (7.22).

Proof. Let ξ in G be such that g(ξ ) 6= 0. By hypothesis, there exists ε > 0 such that (7.17)

holds with U = Bε (ξ ). By the upper semicontinuity of F , together with the compactness of

its values, F(Bε (U)∩G) is bounded (see [2, Proposition 3, p. 42]. By Proposition 7.4, x is

uniformly continuous on x−1(U). Therefore, the hypotheses of Theorem 7.8 are satisfied, so

statements (a)-(d) thereof hold. Combining statements (b) and (c) of Theorem 7.8 with the

weak invariance of Ω(x) yields statements (b′) and (c′). ⊓⊔
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Theorem 7.13. Let G be a nonempty closed subset of R
N , let g : G →R be such that g−1(0) is

closed and (7.20) holds for every nonempty closed subset K of G. Assume that F(Bε (g
−1(0))∩

G) is bounded for some ε > 0. If x : R+ → R
N is a global solution of (7.21) with x(R+) ⊂ G

and g ◦ x is weakly meagre, then statements (a) and (c) of Theorem 7.9 hold. Moreover, the

following also holds:

(b′) If g−1(0) is bounded, then x is bounded and x approaches the largest subset of g−1(0)
that is weakly invariant with respect to (7.22).

Proof. Fix δ in (0,ε). By Proposition 7.4, x is uniformly continuous on the set

x−1(Bδ (g−1(0))). It follows immediately from Theorem 7.9 that statements (a)-(c) thereof

hold. Assuming that g−1(0) is bounded, a combination of statements (b) of Theorem 7.9 with

the weak invariance of Ω(x) yields statement (b′). ⊓⊔

If there exists a locally Lipschitz function f : R
N → R

N such that F(x) = { f (x)} (in this case,

the differential inclusion (7.22) “collapses” to an autonomous differential equation which, for

every x0 ∈ R
N , has a unique solution satisfying x(0) = x0), then the conclusions of Theo-

rems 7.12 and 7.13 remain true when every occurence of “weakly invariant” is replaced with

“invariant”. We mention that precursors of Theorems 7.12 and 7.13 have appeared in [11]

and [25].

Next, we exploit Theorem 7.13 to generalize LaSalle’s invariance principle(see Corollary 7.3)

to differential inclusions.

Corollary 7.6. Let D be a nonempty open subset of R
N , let V : D → R be continuously differ-

entiable, and set VF (ξ ) = maxy∈F(ξ )〈∇V (ξ ),y〉 for all ξ in D. Let x : R+ → R
N be a solution

of (7.22) and assume that there exists a compact subset G of R
N such that x(R+) ⊂ G ⊂ D.

If VF (ξ ) ≤ 0 for all ξ in G, then x approaches the largest subset of V−1
F (0)∩G that is weakly

invariant with respect to (7.22).

Proof. For later convenience, we first show that the function VF : D→R is upper semicontinu-

ous. Let (ξn) be a convergent sequence in D with limit ξ in D. Define l = limsupn→∞ VF (ξn).
From (VF (ξn)) extract a subsequence

(
VF (ξnk

)
)

with VF (ξnk
) → l as k → ∞. For each k,

let yk be a maximizer of the continuous function y 7→ 〈∇V (ξnk
),y〉 over the compact set

F(ξnk
), so VF (ξnk

) = 〈∇V (ξnk
),yk〉. Let ε > 0 be arbitrary. By upper semicontinuity of F ,

F(ξnk
) ⊂ Bε (F(ξ )) for all sufficiently large k. Since yk lies in F(ξnk

), F(ξ ) is compact and

ε > 0 is arbitrary, we infer that (yk) has a subsequence (which we do not relabel) converging

to a point y∗ in F(ξ ). Therefore,

limsup
n→∞

VF (ξn) = l = lim
k→∞

VF (ξnk
) = lim

k→∞
〈∇V (ξnk

),yk〉

= 〈∇V (ξ ),y∗〉 ≤VF (ξ ) ,

confirming that VF is upper semicontinuous.

Evidently,
d

dt
V (x(t)) = 〈∇V (x(t)), ẋ(t)〉 ≤VF (x(t)) ≤ 0

for almost every t in R+, which leads to
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V (x(t))−V (x(0)) ≤
∫ t

0
VF (x(s))ds ≤ 0 (7.23)

for all t in R+. Since x is bounded, we conclude that the function t 7→ ∫ t
0 VF (x(s))ds is bounded

from below. But this function is also nonincreasing (because VF ≤ 0 on G), which ensures that

limt→∞
∫ t

0 VF (x(s))ds exists and is finite. Consequently, VF ◦ x is an L1-function, showing that

VF ◦ x is weakly meagre. Since VF is upper semicontinuous and VF ≤ 0 on G, the function

G→R given by ξ 7→ |VF (ξ )| is lower semicontinuous. Therefore, each ξ in G with VF (ξ ) 6= 0

has a neighbourhood U such that inf{|VF (w)| : w ∈ G∩U} > 0. By statement (c′) of Theorem

7.12 (with g = VF |G) it follows that x approaches the largest subset of V−1
F (0)∩G that is

weakly invariant with respect to (7.22). ⊓⊔

In Corollary 7.6, it is assumed that the solution x is global (that is, defined on R+) and has

trajectory in some compact subset G of D. These assumptions may be removed at the expense

of strengthening the conditions on V by assuming that its sublevel sets are bounded and that

VF (ξ ) ≤ 0 for all ξ in D.

Corollary 7.7. Let D, V , F, and VF be as in Corollary 7.6. Assume that the sublevel sets of V

are bounded and that VF (ξ ) ≤ 0 for all ξ in D. If x : [0,ωx) → R
N is a maximal solution of

(7.22) such that cl(x([0,ωx))) ⊂ D, then x is bounded, ωx = ∞, and x approaches the largest

subset of V−1
F (0) that is weakly invariant with respect to (7.22).

Proof. Since (d/dt)V (x(t)) = VF (x(t))≤ 0 for almost all t in [0,ωx), we have the counterpart

of (7.23): V (x(t)) ≤ V (x(0)) for all t in [0,ωx). Since the sublevel sets of V are bounded, it

follows that x is bounded. By assertion (b) of Lemma 7.2, ωx = ∞. An application of Corollary

7.6, with G = cl(x(R+)), completes the proof. ⊓⊔

Example 7.4. In this example we describe a typical application of Corollary 7.7. In part (a) of

the example we analyze a general class of second-order differential inclusions; in part (b) we

discuss a special case, a mechanical system subject to friction of Coulomb type.

(a) Let k : R → R be continuous with the property

lim
|p|→∞

∫ p

0
k = ∞. (7.24)

Let (p,v) 7→ C(p,v) ⊂ R be upper semicontinuous with nonempty, convex, compact values

and with the property that, for all (p,v) in R
2,

C∗(p,v) := max{vw : w ∈C(p,v)} ≤ 0 . (7.25)

Consider the system

ÿ(t)+ k(y(t)) ∈C(y(t), ẏ(t)), (y(0), ẏ(0)) = (p0,v0) ∈ R
2 . (7.26)

Setting x(t) = (y(t), ẏ(t)), the second-order initial-value problem (7.26) can be expressed in

the equivalent form

ẋ(t) ∈ F(x(t)), x(0) = x0 = (p0,v0) ∈ R
2 , (7.27)

where the set-valued map F ∈ U is given by

H. Logemann and E. P. Ryan



217

F(p,v) = {v}×{−k(p)+w : w ∈C(p,v)}. (7.28)

By Theorem 7.4, (7.27) has a solution and every solution can be extended to a maximal solu-

tion; moreover, every bounded maximal solution has interval of existence R+.

CLAIM A. For each x0 = (p0,v0) in R
2, every maximal solution x = (y, ẏ) of (7.27) is bounded

(hence, has interval of existence R+) and approaches the largest subset E of C−1
∗ (0) that is

weakly invariant with respect to (7.27).

To establish this claim, we define V : R
2 → R by

V (p,v) =
∫ p

0
k(s)ds+ v2/2 .

Observe that, by property (7.24) of k, V is such that, for every sequence (ξn) in R
2, V (ξn)→∞

as n → ∞ and, as a result, every sublevel set of V is bounded. Moreover,

VF (p,v) = max
θ∈F(p,v)

〈∇V (p,v),θ〉 = C∗(p,v) ≤ 0 for all (p,v) ∈ R
2 .

Let x0 = (p0,v0) be a point in R
2 and let x = (y, ẏ) be a maximal solution of (7.27). An

application of Corollary 7.7, with D = R
2, completes the proof of Claim A.

(b) As a particular example, consider a mechanical system wherein a mass is subject to a

restoring force k friction force of Coulomb type: the system can be written formally as

ÿ(t)+ sgn(ẏ(t))+ k(y(t)) = 0.

Again, we assume that k is continuous with property (7.24). This system may be embedded in

the differential inclusion (7.26) with the set-valued map C given by

C(p,v) :=






{−1}, v > 0

[−1,1], v = 0

{+1}, v < 0.
(7.29)

CLAIM B. For each x0 = (p0,v0) in R
2, every maximal solution x = (y, ẏ) of (7.27) (with F

and C given by (7.28) and (7.29)) is bounded and approaches the set k−1([−1,1])×{0}.

To prove this claim, we first note that in this case the function C∗ (defined in (7.25)) is given

by

C∗(p,v) = −|v| ≤ 0.

Therefore, C−1
∗ (0) = R× {0}. By Claim A, for each x0 = (p0,v0) in R

2, every maximal

solution x = (y, ẏ) of (7.27) is bounded, is defined on R+, and approaches the largest subset E

of R×{0} that is weakly invariant with respect to (7.27) (equivalently, (7.26)). Clearly (0,0)∈
E and so E is non-empty. To conclude Claim B, it suffices to show that E ⊂ k−1([−1,1])×{0} .
Let (p1,0) ∈ E be arbitrary. By weak invariance of E, there exists a solution (z, ż) : R+ → R

2

of z̈ + k(z(t)) ∈ C(z(t), ż(t)), with (z(0), ż(0)) = (p1,0), such that (z(t), ż(t)) ∈ E ⊂ R×{0}
for all t ∈ R+. Therefore, for all t ∈ R+, z(t) = p1 and ż(t) = 0 = z̈(t). By the differential

inclusion, it follows that k(p1) ∈C(p1,0) = [−1,1] and so p1 ∈ k−1([−1,1]). This completes

the proof of Claim B.
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