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CONDITIONS FOR ROBUSTNESS AND NONROBUSTNESS OF THE
STABILITY OF FEEDBACK SYSTEMS WITH RESPECT TO SMALL

DELAYS IN THE FEEDBACK LOOP*

HARTMUT LOGEMANNt, RICHARD REBARBER$, AND GEORGE WEISS

Abstract. It has been observed that for many stable feedback control systems, the introduction
of arbitrarily small time delays into the loop causes instability. In this paper we present a systematic
frequency domain treatment of this phenomenon for distributed parameter systems. We consider
the class of all matrix-valued transfer functions which are bounded on some right half-plane and
which have a limit at + along the real axis. Such transfer functions are called regular. Under the
assumption that a regular transfer function is stabilized by unity output feedback, we give sufficient
conditions for the robustness and for the nonrobustness of the stability with respect to small time
delays in the loop. These conditions are given in terms of the high-frequency behavior of the open-
loop system. Moreover, we discuss robustness of stability with respect to small delays for feedback
systems with dynamic compensators. In particular, we show that if a plant with infinitely many
poles in the closed right half-plane is stabilized by a controller, then the stability is not robust with
respect to delays. We show that the instability created by small delays is itself robust to small delays.
Three examples are given to illustrate these results.

Key words, small time delays, robust stabilization, linear distributed parameter systems,
regular transfer functions, dynamic stabilization
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1. The main results. Consider the linear feedback system shown in Fig. 1,
where u is the input function and y is the output function, both Cm-valued. H is
the open-loop transfer function, with values in Cmx’ which we assume to be regular
and in particular well posed. Wellposedness means that H is bounded on some right
half-plane, and regularity means that, in addition, H has a limit at +c along the
real axis (see 2 for more detail on these concepts). The block with transfer function
e-8 represents a delay by , where _> 0. The transfer function of the closed-loop
system is given by

G(s) H(s) (I + e-SH(s)) -1

can be obtained from G by

(1.2) G(s) G(s) [I (1 e-)G(s)] -1

To avoid possible complications with domains of transfer functions, we make the
following convention: If a meromorphic function is defined on some right half-plane
and can be extended meromorphically to a greater right half-plane, we will not make
any distinction between the initial function and its extension. This will not lead to
confusions.
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NONROBUSTNESS WITH RESPECT TO SMALL DELAYS 573

We say that G is L2-stable if G E H(cmm); i.e., G is a bounded analytic
function on the open right half-plane Co {s E C Re s > 0}. Indeed, as is
well known, this property is equivalent to the one that u L2([0, c), Cm) implies
y e L2([0, c), cm).

H
Y

FIG. 1. Feedback system with delay.

In many engineering applications the aim is to stabilize a plant by a feedback
controller. Here, stability may have various meanings--for example, exponential sta-
bility in the state space. We may think of H as the transfer function of the plant and
the controller connected in cascade, and the stability of the corresponding closed-loop
system implies that GO is L2-stable. However, stability might be lost if tiny (and
often inevitable) delays are present in the feedback loop, leading to the feedback sys-
tem shown in Fig. 1. Indeed, it might be that for arbitrarily small e > 0, G has
poles in Co, which implies that the system cannot be stable in any reasonable state
space sense either. Our aim in this paper is to find conditions on H (necessary and/or
sufficient) for this phenomenon (observed by many authors) to happen.

We say that Go is robustly stable with respect to delays if there is an e0 > 0 such
that for any [0, 0], G is L2-stable. The absence of this property means that
arbitrarily small destabilizing delays can be found for GO

If the transfer function H is meromorphic on the half-plane Co, then we denote
by H the (discrete) set of its poles in C0. (We say that p is a pole of H if p is a
pole of at least one entry of H.) We define

(1.3) -), limsup r(H(s)),
8C0\3H

where r(H(s)) denotes the spectral radius of the matrix H(s). It might happen that
7 cnfr example, if H is scalar and has an unbounded sequence of poles on the
imaginary axis. If GO is L2-stable, then from the formula H Go(/- G)-1 it is
not difficult to see that H is meromorphic on Co. Indeed, for s in the half-plane
where H(s) was originally defined, I G(s) (I + H(s)) -1 so that det(I- G(s))
is not identically 0. Hence, if GO is L2-stable, then (1.3) makes sense. This fact is
used implicitly in the statement of our main result, which is the following theorem.

THEOREM 1.1. Let H be a C’X’-valued regular transfer function and suppose
that G H(I + H)-1 is L2-stable. Let " be defined by (1.3).

(i) If / < 1, then Go is robustly stable with respect to delays.
(ii) If " > 1, then GO is not robustly stable with respect to delays.
The proof of (i) is much easier than the proof of (ii) and is in 6. It is shown in

the same section that (i) cannot be extended to multidelay perturbations. The proof
of (ii) is very involved, so in order to present the ideas clearly, without multivariable
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technicalities, we first give the proof for m 1 in 3 and 4. The multivariable case is
treated in 5. We were not able to prove a general result for the case - 1. However,
trivial examples (e.g., H(s) _-- I) show that Go will in general not be robustly stable
with respect to delays if - 1.

In 7 we show that the instability created by a small delay in the closed loop is
itself robust to small delays.

In 8 we discuss destabilization and robustness with respect to delays for systems
with dynamic feedback. Let P and K be meromorphic functions on Co of appropriate
dimensions such that the products PK and KP exist. We say that K stabilizes P if

[ ]-I P
-K I

is L2-stable. Intuitively, this means that if we connect the plant P and the controller
K in a feedback loop with two external inputs, then all the possible transfer functions
in the loop are L2-stable (see 8 for details).

Let us denote K(s) e-K(s). We say that K stabilizes P robustly with respect
to delays if there is an s0 > 0 such that for any s [0, s0] Ke stabilizes P. Intuitively,
this means that the introduction of sufficiently small delays into the feedback loop
mentioned earlier does not destroy its stability. By a corollary of Theorem 1.1 stated
in 8, if H PK is regular and - is defined by (1.3), then < 1 implies that K
stabilizes P robustly, while 7 > 1 implies that the opposite is true. Let (l denote
the closure of C0. Using the above mentioned corollary and a lemma of independent
interest, we prove (still in 8) the following theorem.

THEOREM 1.2. Let P and K be matrix-valued meromorphic functions on a right
open half-plane containing C. Assume that PK is regular and K stabilizes P. If
P has infinitely many poles in C), then K does not stabilize P robustly with respect
to delays.

Thus, roughly speaking, if a plant with infinitely many poles in C is given, we
cannot find a controller such that the resulting feedback system is robustly stable
with respect to small delays in the loop.

In 9 we give three simple examples.

2. Preliminaries and discussion of earlier results. There are many exam-
ples in the literature of systems described by partial differential equations which are
exponentially stabilized by a feedback but are destabilized by arbitrarily small time de-
lays in the feedback loop. The first example of this sort appeared in Datko, Lagnese,
and Polis [9], where a one-dimensional wave equation with boundary feedback was
studied. The same phenomenon has been subsequently described in many other ex-
amples; see Datko [10], Desch, Hannsgen, Renardy, and Wheeler [13], Hannsgen,
Renardy, and Wheeler [20], Bontsema and deVries [3] and Grimmer, Lenczewski, and
Schappacher [19]. In a more abstract framework, this destabilization by small de-
lays was demonstrated for classes of distributed parameter feedback systems in Datko
[10], [11] and Desch and Wheeler [12]. In these classes of systems the open loop semi-
group is unitary, and only one stabilizing feedback is considered for each given plant,
typically a type of co-located control.

In contrast with the works referred to above, we will take a frequency domain
approach here, which is not tied to a specific form for the stabilizing feedback. Our
approach is similar in spirit to that in the considerably older paper of Barman, Callier,
and Desoer [1]. In that paper, necessary and sufficient conditions were given for a
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class of single-input single-output (SISO) systems to be robustly stable with respect to
delays. The results in [1] are limited by several restrictions, including the requirement
that the open-loop transfer function has at most finitely many poles in the closed right
half-plane. These results were applied to some systems described by partial differential
equations in [3].

A more general class of perturbations of feedback systems, including small delays
in the loop, were considered by Georgiou and Smith [17], [18] (see also Curtain [8]).
Their concept of w-stability is considerably stronger than robust stability with re-
spect to delays; it covers a large class of perturbations which represent high-frequency
modelling uncertainties. The necessary and sufficient criterion for w-stability in [18]
resembles our Corollaries 8.2 and 8.4, especially in the SISO case. For multiple-
input multiple-output (MIMO) systems, there is a curious difference: the result for
w-stability is in terms of the norms of the transfer functions, while our result for
robustness with respect to delays is in terms of their spectral radius. The proof of
destabilization results for w-stability is considerably easier than for robustness with
respect to delays.

We will now recall some concepts and results needed in this paper. We will work
with finite-dimensional input and output spaces, but we mention that these concepts
and results have natural counterparts for Hilbert space-valued input/output functions,
which means operator-valued transfer functions.

Let c E]R. We will use the notation

C {sEC Res>a},

and H(Cpm) will denote the space of all bounded analytic Cpm-valued functions
on Ca. We write H for H. The norm IIGIIo of a function G e H is the
supremum of IIG(s)l over Ca, the matrix norm being defined as the greatest singular
value. After the identification of functions with their meromorphic extensions, which
was mentioned in 1, we have that

H C H if c 5ft.

DEFINITION 2.1. A well-posed cpm-valued transfer function is an element of
one of the spaces H Cp "

Well-posed transfer functions correspond to shift invariant operators on Loc[O
with finite growth bound; see Weiss [32, 3]. In particular, the transfer function of
any abstract linear system is well posed, as follows from [32, Prop. 4.1]. Conversely,
for any well-posed transfer function H we can find an abstract linear system whose
transfer function is H, as follows from results in Salamon [29].

DEFINITION 2.2. A well-posed matrix-valued transfer function H is regular if the
limit lim_+o H() D exists (where is real). Then D is the feedthrough matrix
oyH.

Practically all well-posed transfer functions of interest are regular. (In fact, it is
a nontrivial exercise in complex analysis to construct an example of a well-posed and
nonregular transfer function.) If the transfer function of an abstract linear system is
regular (such systems are called regular), then the system has a simple and convenient
state space representation, like finite-dimensional systems; see [32, 2].

For SISO systems, we will use the term feedthrough value instead of feedthrough
matrix. We introduce a notation for angular domains in C: for any number (0, r],

w() e (0, e (-, )}.
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We will need the following simple fact about regular transfer functions.
PROPOSITION 2.3. Let H be a regular matrix-valued transfer function, with

feedthrough matrix D. Then for any E (0, ),

lim H(s) D.

This follows from Duren [14, Thm. 1.3], after mapping the half-plane onto the unit
disk. It follows also from the results in [32, 5], where Laplace transform techniques
are used.

Remark 2.4. If H and (]e are related as in (1.1) and s > 0, then it is easy to see
that H is well posed (regular) if and only if Ge is well posed (regular). If H and GO

are both well posed, then one of them is regular if and only if the other is. Similar
statements are true for operator-valued transfer functions but are more difficult to
prove; see Weiss [33].

3. Nonrobustness: The SISO case with IDI
_

1. In this section we prove
(ii) of Theorem 1.1 for SISO systems and under the additional assumption that D,
the feedthrough value of H, satisfies ID[ <_ 1. This situation is fairly typical for
transfer functions of unstable vibrating systems. Since we can say slightly more than
what is written in (ii) of Theorem 1.1, we restate the result.

THEOREM 3.1. Let H be a regular SISO transfer function and, for any >_ O, the
function (] be defined by (1.1). Let D denote the feedthrough value of H. Assume
that

(1) GO e H, so that 7 can be defined by (1.3),
(2) >
(3) ID[ _< 1.
Then there exist sequences () and (p,) with

n > O, -,0, Pn e Co, ]Impn[o

and such that for any n N, Pn is a pole of
Proof. From condition (1), using (1.1) we can see that the point -1 has a neigh-

borhood which does not intersect the range of H (regarded as a meromorphic function
on C0). This implies that there exist > 0 and 71 > 1 such that the set

does not intersect the range of H:

(3.1) H(s) $1 V s Co.

Since we may choose 71 arbitrarily close to 1, by condition (2) we may assume

(3.2) 1 < 71 < 7.

The definition of 7 and (3.2) enable us to show that there exists a sequence (z=)
in Co with the following properties:

(a) [z[-, o as n - c;
(b) for any n E N,

[H(z)[ > ;
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(c) for any n E N, H is analytic on the ray

Fn {z,+a ae[0, cx)}

(i.e., there are no poles on these rays).
By Proposition 2.3, for any e (0, ) there exists an re > 0 such that for any s

W() with Isl > re we have IH(s)-DI < "h-1. Using that IH(s)l _< IDI+IH(s)-D
and condition (3), we get that, for s as above, IH(s)l < 1. By property (b) it follows
that the sequence (zn) lies in the set {s e Co lsl _< rv or args >_ }. Here and
in the rest of this proof, the argument of a (nonzero) complex number s is defined
such that args (-,r]. By property (a), for n sufficiently large, IZnl <_ r is
not possible, so that arg znl _> . Since the choice of E (0, ) was arbitrary, we
conclude that

(3.3) nlim Irgzl .
Together with property (a) this implies that

(3.4) lim IIm z,l .
We may assume without loss of generality that for all n N, Im Zn > 0. Indeed,

if such a subsequence does not exist, then a similar argument can be made assuming
that Im z < 0 for all n N.

By property (c), H is continuous on each ray Fn, and by Proposition 2.3, H(s) --.
D as s c on F. Since IDI <_ 1 (by condition (3)), the numbers

max{a e [0, ) IH(z + a)l _> 1 },an
" min{a [a, cx] IH(z, + a)l < 1}an

I!are well defined. (If IDI- 1, then it might happen that an oc.) Put

It II
Zn Zn+an Zn Zn+an
II(It might happen that zn oc.) We will be looking for poles of Ge in the open

horizontal segments (z, z) C F.
and " using property (c) we see that the image ofFrom the definition of zn z,

[Zn, z] through H is a curve Hn contained in { s C 1 _< Is[ _< "1 }. The possibility
that z x is not disturbing since (by Proposition 2.3) H is continuous at infinity
along the ray F. By (3.1) H cannot enter S1, so it is confined to the set

$2 { rei r [1, 1], I1 };
see Fig. 2. Thus we have

(3.5) II c: $2 V n N.

Using (1.1) we see that p is a pole of Ge if and only if

e-ePH(p) -1.

A sufficient condition for this is

(3.6) log H(p) ep -iT,
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,.- log

i !1

where we choose the branch of the logarithm to be log z log Izl + i argz, with
arg z E (-r, r], as agreed earlier, and log Izl

For each s e C0 with Im s > 0, the ray R(s) { log H(s)- es e [0, o)}
intersects the horizontal line L {s C Ims -Tr} in a point w(s) ir. Indeed,
for e 0 the corresponding point of R(s) is above L, while for large e > 0 the
corresponding point of R(s) is below L. Thus we can define the real-valued functions
w(s), e(s) for each s C0 with Im s > 0 such that e(s) > 0 and

log H(s) e(s)s w(s) izr.

A simple computation shows that

(a.s)
arg H(s) + 7r

(3.9) w(s) log IH(s)l
(arg H(s) + zr)Re s

Im s

CLAIM. For all n N sufficiently large, there is a point p, (Z’n, Z"n) such that
o.

Figure 3 is intended to give an intuitive picture of this claim. In this figure we see
the curve log IIn which, according to (3.5), is contained in the rectangle log $2. It is

" is finite The rays R(z), R(z), and R(p) (dottedassumed in the picture that z
lines) and the horizontal line L are marked.

Proof of the claim. We define

Then, as a [-cx3, oo)-valued function, w is continuous on each segment [z, z]. In-
" is finite then thedeed, by (3.5) arg H(s) has no jumps on such a segment. If zn

Itcontinuity of w is clear from (3.9). If zn cx3, then it is easy to see from (3.9) that
lims-o w(s)= -oo, where s e (z, z).



NONROBUSTNESS WITH RESPECT TO SMALL DELAYS 579

|ra

FIG. 3. The claim (the existence of pn).

Next we show that for all n N sufficiently large,

(3.10) w(z) > 0 and w(z) < O.

The sequence (zn) shares with (zn) properties (a) and (b) (also (c), but this is not
needed now). By the exact same argument used to prove (3.3), and by the assumption
Im z > 0, we get that

lim argzn-o 2

Hence

(3.11) lim
(argH(zn) / zr)Rezn O.

-o Im zn

On the other hand, it is clear that

(arg H(z) / r)Rez > O.

and " IH(z)l "1 > 1 and IH(z)l 1. ThereforeBy the definition of zn zn,
log [H(zn)[ log-l > 0 and log [H(z) 0. Combining this with (3.9), (3.11), and
(3.12) we see that for all n sufficiently large, (3.10) holds.

Since w(s) is continuous on [z, z], (3.10) implies that for all n e 11 sufficiently
Zlarge there exists p, E (,,z) such that w(p,) 0. (This is indicated in Fig. 3 by

having the ray R(pn) go through -ir.) This completes the proof of the claim.
Returning to the main proof, we may now assume without loss of generality that

t!for each n E N there is a p, (z,zn) such that w(p,) 0. (If not, select an
appropriate subsequence.) We denote an e(p,). By (3.7) (with s Pn) we get
that Pn and an satisfy (3.6), so pn is a pole of G". By (3.8), an > 0. Since
Imp, Imzn, by (3.4) we have IImpn[--, cx). By (3.8) and (3.4) we have an - 0.
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4. Nonrobustness: The SISO case with IDI > 1. In this section we prove
(ii) of Theorem 1.1 for SISO systems and under the additional assumption that D,
the feedthrough value of H, satisfies IDI > 1. Then obviously 7 > 1, so that this
does not have to be assumed. In fact, we will prove a stronger result, in which the
assumption that GO is L2-stable is not needed. We do not even need that H should
be meromorphic on Co.

THEOREM 4.1. Let H be a regular SISO transfer function and, for any >_ O,
the function G be defined by (1.1). Let D denote the feedthrough value of H and
assume that

IDI > 1.

Then there exist sequences (,) and (Pn) with

n > O, en O, Re Pn cx Im Pn oo

and such that, for any n e I, Pn is a pole of G
Proof. If D is not a negative real number, then we define the argument of any

(nonzero) complex number s such that arg s 6 (-zr, r], as in the proof of Theorem
3.1. If D is negative then it is more convenient to change the definition such that
arg s 6 (-, ] (to avoid a jump discontinuity at D). The function log is defined
by log s log Isl + i arg s with log Isl R.

For any r > 0, Br will denote the closed disk of radius r with center in D. Due
to IDI > 1 and the way in which we have defined the function log, we can find a
p > 0 such that (1) Izl > 1 for all z Bp and (2) arg (and hence log) is continuous
on Bp.

The simple inequalities

min (arg z + r) > 0,
z6B

rain loglz[ > 0
zB,

enable us to find numbers 0 < a < such that for any z 6 Bp

(4.1) log [z[
arg z + r

< O, log [z[
arg z + 7r

a 3
>0.

Let e (0, ) be such that < tg. By Proposition 2.3, there exists a a > 0
such that

(4.2) H(s) e Bp V s e W()N C,.

(The notation Ca was introduced in 2.) Let (xn) be a sequence of real numbers with

xn > a and such that xn --* oc. Define

(1 +ia)x,, "z, zn (1 + i)xn.

We will be looking for poles of G in the open vertical segments n, zn).
The remainder of this proof resembles the part of the proof of Theorem 3.1 which

starts after (3.5), so we will be brief. Using (1.1) we see that p is a pole of G if and
only if e-ePH(p) -1. A sufficient condition for this is that (3.6) holds.

For each s 6 Co with Im s > 0, the ray R(s) { log H(s)-s 6 [0, oc)} inter-

sects the horizontal line L {s C Ims -r} in a point w(s)-ir, as explained in
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the previous proof. Thus we can define the functions w(s), e(s) for each s E Co with
Im s > 0 such that e(s) > 0 and (3.7) holds. These functions are given by (3.8) and
(3.9). The following claim is almost identical to the one in the proof of Theorem 3.1.

Z
i/CLAIM. For all n e N there exists Pn n, zn) such that w(pn) -O.

The proof is simpler in this case: By (4.2) and property (2) it is clear that w is
continuous on each segment [zn,z]. Moreover, (3.9), (4.1), and (4.2) imply (3.0),
from which the claim follows.

We return to the proof of the theorem. We denote n e(p,). By (3.7) (with
8 Pn) we get that Pn and n satisfy (3.6), so Pn is a pole of Gn By the definition
of the function e(.), n > 0. We have Re p Xn so that Re Pn - oo. Since Im
Pn > OXn, we also have Im p - oe. Now by (3.8) we have - 0. D

5. Nonrobustness: The MIMO case. In this section we show that the results
in 3 and 4 extend to the multivariable case. In particular, we prove part (ii) of
Theorem 1.1 for m > 1. In order to do this, it is convenient to state some preliminary
facts and results. If V C U C C, we say that V is a discrete set in U if V has no
accumulation points in U. Let 9a denote the ring of holomorphic functions defined
on Ca and 3Via denote the field of meromorphic functions on Ca. The vector spaces
of Cpm-valued holomorphic functions and of Cp’-Valued meromorphic functions
on Ca will be denoted by 9a(Cpm) and :M:a(cPm), respectively. It is clear that
-a(Cpm) -Capxm and V[a(Cpm) lapm. A complex number so e Ca is a
pole of H e 3V[a(Cp’) if and only if so is a pole of at least one of the entries of H.

In the following let H be in 3V[a(cm’). The set of all poles of H is denoted by
H. Moreover, define

(.,/k) := det(AI- H(.)) e

where 3VIa[A] denotes the ring of polynomials over :h4a. Since 3Via is a field, there exist
a unique g E N and unique monic irreducible polynomials (., A) 2VIa[A] such that

II
i--0

Let A(.) 3Via denote the discriminant of (., A) 3VIa[A]. If so n, then it
is not difficult to show that the coefficients of the polynomials (., A) are holomorphic
in a sufficiently small neighborhood of so (cf. Baumg/irtel [2, p. 397]) and hence A(s0)
is the discriminant of (s0, A) e C[A]. Thus (s0, A) has only simple zeros if and
only if A(s0) 0; see, for example, Cohn [7, p. 175]. Since (., A) is irreducible, it
follows that A(s) 0 and hence the set S of critical points of H defined by

H 8 Ca Ai(8 0
i=0

is a discrete set in Ca. We shall need the following lemma from Forster [15, p. 52].
LEMMA 5.1. Let so C, let U C C be an open neighborhood of so, and suppose

that Cl(S),... ,c,(s) are holomorphic functions on U. If A0 e C is a simple zero of
the polynomial

n_[_Cl(80)n--l... -Cn(80) e C[],
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then there exists an open neighborhood V C U of so and a function holomorphic on
V such that (so) o and

+ + o Vs e y.

For so E Ca, E [0,2r), and 0 < a _< oc set F {so + eiCt[O < t < a}. Hence
F is a half-line (a cx) or a line segment (a x) with initial point so.

PROPOSITION 5.2. Suppose that Fel C Ca \ (3H tA CH). /f )0 a(H(so))
(the spectrum of H(s0)), then there exists a region V C Ca satisfying Fcl C V C
Ca \ (H tA I-I) and a function holomorphic on V such that (so) iko and

(s, (s)) det((s)I- H(s)) 0 V s e V.

Moreover, if a cx, then under the extra assumption that the limit

lim H(s) D e C"’

exists, it follows that

lim (s) =" oo e a(D).

The above proposition remains true if F is replaced by more general curves. How-
ever, for our purposes Proposition 5.2 is sufficient.

Proof. Let Ao E a(H(s0)). After a suitable renumbering we may assume that
Co(so, o) 0. Let us first consider the case when a c. Define -(t) := so + et
for t [0, hi. It follows from the assumption that for any t e [0, a] the polynomial
o(’(t),A) C[A] has no multiple zeros. Let n denote the degree of o(" ,A) and
Atl,..., A denote the n different simple zeros of o(q’(t), A) e C[A]. Moreover, for
t E [0, hi let fl3t denote the set of all open balls Bt with center in -(t) such that
Bt C Ca \ (H t2 H) and such that there exist n functions holomorphic on Bt
satisfying (-(t)) A,

(s) # Jt(s) Vs e Bt, Vi, j e n, # j, and bo(S,(s)) =O Vs e Bt, Vi e n_n_,

where n_n_ denotes the set {1,..., n}. By Lemma 5.1 the set fl3t is nonempty, and by
setting t "= UBtBt Bt we obtain the maximal element of 3t. Denoting the radius

of/}t by 0t we claim that

(5.1) 0:= inf Or>0.
te[o,]

Assume that (5.1) is not true. Then there exist numbers tj E [0, a] such that

(5.2) lim Otj 0.
j-*cx

Since a < cx, we may assume without loss of generality that limj__. tj =: t*
[0, a] exists. By assumption 7(t*) Ca \ (H kJ EH) and hence Or* > 0. Using
limj_o 7(tj) 7(t*), we conclude that there exist j0 N and > 0 such that
B(7(tj),5) C [t. for all j _> j0, where B(7(tj),5) denotes the open ball of radius
with center in 7(tj). But this implies that B(7(tj),3 e ft3tj for all j > jo and

therefore B(7(tj), ) C [tj for all j >_ jo (by the maximality of/}tj ). Thus we obtain
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that ytj _> for all j > jo, which contradicts (5.2). It follows that (5.1) holds, and
therefore there exists a largest number m E N such that m <_ a. Setting Tj "-- j it
is clear that

B(/(Tj), 0) C/7-j for j 0,..., m and Fcl C U B(/(Tj), ).
j=o ,m

Let jo E n be such that Ajo Ao A0, and set7"0

:= go
Now So := B(7(0), )D B(’(’I), ) = is contained in Ca \ (H U :H), and hence,
for any s So, the polynomial 0(s, A) C[A] has n different simple zeros, which are
given by 1 (s),..., 7-n (s). On the other hand we have

Co(s, o Vs e So,

and hence there must exist jl n_n_ such that

 0(s) v e ,So.

Setting

(s) := {(s) Vs e B(/(T ), O) and S "= B(/(T),y)D B(’(T2), ) = ,
the same argument can be used to conclude that there exists j2 E n_ such that

(8) 22(8) V8 e 1"

Repeating the above argument shows that there exist m -4- 1 holomorphic functions
j B(/(Tj),O) --, C (j 0,...,rn) such that j+(s) j(s) for all s e Sj :=
B(/(j),0) D B(/(Tj+I),g) (j O,...,m- 1). On the region

v:= U
j=O m

we define a function (s) by setting

{(s) := {j(s) if s e B(/(Tj), ).

By construction is a well-defined holomorphic function on V such that (s0) o
and det((s)I H(s)) 0 for all s e Y.

Let us now consider the case when a cx3. For j E N define Fj :- {s0/
eiCtlO < t < j}. The above construction shows that there exist regions Vj satisfying

F C Vj C Ca \ (3H UgH) and Vj C Vj+ and functions j holomorphic on V.
such that {j(so) k0, o(s,{j(s)) 0 for all s E Vj and {j+l[Vj {j" Hence on
V := Uj= Vi we obtain a well-defined holomorphic function {(s) with the desired
properties by setting

(s) :- j(s) if s e V.
Finally, the last statement in the proposition is a consequence of the fact that the

eigenvalues of H(7(t)) are continuous in t; see Kato [21, p. 106]. El
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The next result extends Theorem 3.1 to the multivarable case.
THEOREM 5.3. Let H(s) be a cmm-valued regular transfer function and define

for any >_ 0

(5.3) G(s) := H(s)(I + e-eSH(s)) -1.

Let D E Cmm denote the feedthrough matrix of H and assume the following:
(1) GO e H(cmxm),
(Z) limsuplsl_.,eCo r(H(s)) =: /> 1,
(3) r(D) <_ 1.
Then there exist sequences (n) and (p) with

>0, Cn-0, p

and such that for any n N, Pn is a pole of
Remark 5.4. (i) Since r(H(s)) is not defined, if s is a pole of H, condition (2)

in the previous theorem should be formulated more precisely as

lim sup r(H(s)) =" , > 1.
Isl-., eCo\H

TO simplify the notation, we make the convention that if s H, then r(H(s)) 0.
(ii) Suppose that limt,t0 H(# + iw) =- H(iw) exists for almost all w JR. (For

example, this is the case if H E H(cmxm).) Then condition (2) in Theorem 5.3 is
satisfied if

(5.4) lim ess sup{r(H(iw)) lwl > } > 1.

Under the extra assumption that H(iw) is almost periodic, (5.4) holds if

esssup{r(H(iw) lw e I} > 1.

For the proof of Theorem 5.3 we need the following simple lemma.
LEMMA 5.5. Let the set A c Co be discrete in Co. Then for any > 0 and, there exists Yo ] such that

lYo l <_ and {x + iyo lx
Proof. It is easy to see that A is countable, so we can choose y0

such that Y0 Im A.
Proof of Theorem 5.3. As in the SISO case it follows from the assumptions (1)

and (2) that there exist constants ? > 0 and "1 E (1,’) such that the set

does not intersect a(H(s)) for all s Co \

(5.5) a(H(s)) r’} S1 q} V 8 e C0 \ S.
Since ’1 < "f, by assumption (2) there exists a sequence (sn) in Co \ n such that

Isnl oo and r(H(sn)) > for all n e N. It is obvious that we can find numbers
6n (0, 1) such that the vertical segment Jn "= [Sn i6, S + i6n] is contained in
(0 \S and

r(H(s)) >_ Vs E Ugn.
nEl
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It follows from Lemma 5.5 that there exists zn E Jn such that the ray

+al e

does not intersect the set 3H U EI:

# VnEN.

Using assumption (3) it can be shown as in the SISO case that

(5.7) lim

Again, without loss of generality, we may assume that Im z, > 0 for all n N.
By construction we have that r(H(z)) >_ 1 and hence there exists AN a(H(zn))
such that IAI _> ffl > 1. Since (5.6) holds, an application of Proposition 5.2 shows
that for all n N there exists a region Vn satisfying F, C V C C0 \ (iII U EIq) and
a function holomorphic on V such that (z) An and

Moreover, by Proposition 2.3

lim H(s) D,
Isl-o, sr

and hence we obtain by Proposition 5.2 that

lim n(s) =" F C

exists and n a(D). As a consequence of assumption (3) we have that 15 1 _< 1.
Therefore the extended real numbers

" cx3.) Settingare well defined. (If r(D) 1, it might happen that aN

and "zn =ZnA’an Zn =Zn+an

(where zn o0 is possible), we will be looking for poles of G in , z). Notice that
z tta sufficient condition for p n, Zn) to be a pole of (] is that

log,(p) ap = -ir.

By (5.5) it follows that for all n E N

(5.8)

It follows that logn and arg (where log and arg are defined as in 2) are continuous
functions on [zn, z]. For s [zn, z] define

n,(s) := {log,(s)- eslz e [0, o)}.
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Then for each n e N and s e [zn,z] the ray Rn(s) intersects the line L {s e
C lIm s -Tr} in a point wn(s)-iTr. Thus we can define functions w, en [zn, z]

such that en(s) > 0 for all s e [z, z] and

logan(s) en(s)s wn(s) iTr Vs e [Zn,Z], Vn e N.

As in the proof of Theorem 3.1 it follows that for all sufficiently large n there
exists Pn e (Zn,Z)such that Wn(p)= 0. Thus, by (5.9)

logn(P, en(p)pn -iTr

Finally, it is clear that

argn(Pn) + 7r

ImPn

The sequence (arg n(Pn)) is bounded, and by (5.7), we have that Im p Im Zn --* c
as n --* c. Therefore we obtain from (5.10) that limn--.en(pn) 0. Setting
n en(Pn) it follows that Gem has a pole in Pn E Co. [’l

Along the same lines a multivariable extension of Theorem 4.1 can be obtained.
We state this result without proof.

THEOREM 5.6. Let H be a cmxm-valued re9ular transfer function, and for any
>_ 0 let G be defined by (5.3). Let D denote the feedthrough matrix of H, and

assume that

r(D) > 1.

Then there exist sequences (n) and (pn) with

sn>0, n--+0, Repn--+cx, Impnc

and such that for any n N, p is a pole of G
Combining Theorem 5.3 and Theorem 5.6 yields part (ii) of Theorem 1.1.

6. Robustness of stability. So far we have proved only part (ii) of Theorem
1.1. In this section we conclude the proof. In fct, since for part (i) of Theorem 1.1 the
wellposedness and regularity assumptions re not needed and we obtain additionally
uniform boundedness for the matrices Ge, we restate our result.

THEOREM 6.1. Suppose G H(Cmxm) and denote H G(I- G)-1 (80
that H e 0(Cx)). If

(6.1) limsup r(H(s))< 1,

then there exist numbers o > 0 and M > 0 such that G(s) e
H (Cm m) and IIG II M for aZZ

Remark 6.2. Suppose that H H(CX). Then, as is well known,

liraH( + iw) =: H(iw)
0

exists for lmost all w . It is easy to show that r(H(s)) is a subharmonic func-
tion on C0. Using standard results on subharmonic functions (see, for example,
Nrasimhan [25, p. 227]) it is not difficult to prove that

e C0} e
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As a consequence, (6.1) will be satisfied if esssup{r(H(iw) lw e 1} < 1.
The proof of Theorem 6.1 requires some preparation. If H E :M:0(Cmxm) and so

is a pole of H, then trivial examples show that r(H(s)) does not necessarily blow up
as s so. However, the next lemma reveals that this phenomenon cannot occur if
H(I + H)-1 is L2-stable.

LEMMA 6.3. Let U c C, suppose GO is bounded and holomorphic on U, and
denote H Go(/- G)-1. If supsev r(H(s)) < c, then supsv

Proof. Assume the claim is not true; i.e., there exists a sequence (sn) in U such
that limn-o IIH(sn)l] oc. Using Cramer’s rule and the boundedness of GO on U,
it follows that

lim det(I G(sn)) O.

Now (G(sn)) is a bounded sequence in Cmxm, and hence we may assume without
loss of generality that limn-o G(sn) =: DO Cmxm exists. From (6.2) it follows
that 1 G a(D). This in turn implies that there exist eigenvalues An a(H(sn)) such
that limn-o[An/(1 + An)] 1. But this leads to a contradiction, since the sequence
(An) is bounded by assumption.

Proof of Theorem 6.1. Step 1: For > 0 set

(6.3)

By (6.1) there exists R > 0 and q e (0, 1) such that

(6.4) r(H(s))_<q<l VseC0R.

Combining (6.4) and Lemma 6.3 shows that H(s) is bounded on C0.
Step 2: We claim that there exists a number L > 0 such that IIG(s)]l _< L for all

_> 0 and for all s E C. Suppose the claim is not true. Then, since by Step 1 H(s)
is bounded on C0R, it follows from Cramer’s rule that there exists a sequence (sn) in

C0 and a sequence (n) of nonnegative numbers such that

(6.5) lim det(I + e-e"s"H(sn)) O.

Now (H(sn)) is a bounded sequence in Cmx’ and le-sl _< 1 for all n e N, and
therefore (as in Step 1) we may assume without loss of generality that the limits
limn-o e-s --: d and limn-o H(sn) E exist. Using (6.4) and the fact that
[d[ _< 1 we see that r(dE) < 1. On the other hand it follows from (6.5) that -1
a(dE), a contradiction.

Step 3: Choose e0 > 0 such that for any s Co with Is[ _< R and any [0, e0]

1

The identity Ge(s) G(s)(/- (1- e-es)G(8))-1 shows that, for all s and as
above, ][G(s)[[

_
21[G[[.

Combining Steps 2 and 3, we obtain that G H(Crem) and IIGII
_
M

for all e [0, e0], where M "= max(L, 211Gll).
Theorem 6.1 deals with delay perturbations of the form e-s. A natural question

to ask is whether it remains true for multidelay perturbations of the form diag_<j_<m e-s),
where e

_
0, j 1,..., n. The answer is no, as the following example shows.
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Example 6.4. Consider the transfer function H(s) D, where D is given by

-1 1/2

The matrix D is nilpotent; i.e., a(D) {0} and hence G(s) H(s)(I + H(s)) -1 _=

D(I + 0)-1 belongs to H(C22). Moreover

limsup r(H(s)) r(D) O,
Islo,seCo

and thus, by Theorem 6.1, GO is robustly stable with respect to delays. Setting
A .= diag(1,-1), a trivial computation shows that a(AD) {-1, 0}. Therefore,

2r/n and 2 r/n, it follows thatdefining ’= :=

det(I + diag(e-in, e-ine)D) det(I + AD) 0 Vn e N.

As a consequence, for all n E N, p, in is a pole of the closed-loop transfer function
2Gn with multidelay en (el, en), defined by

Gn (s) := H(s)(I + diag(e-e8,e-8)H(s))-1

In order to give a sufficient condition for robust stability in the presence of mul-
tidelay perturbations, set

:= {diagl<j<_m(Sj) lsj e C} C Cmxm

and define the structured singular value #z(M) of M Cmxm with respect to A by

1
#z(M) "=

min{llAiii A e A, det(I- MA) 0}

unless no A Zk makes I- MA singular, in which case #,(M) := 0 (cf. Packard
and Doyle [26]).

THEOIEM 6.5. Suppose GO H(Crem) and denote H Go(/- G)-1 (so
that H E :Mo(Crr)). If

(6.6) lim sup #, (H(s)) < 1,
Isl-, seCo

then there exist numbers 5 > 0 and M > 0 such that

(6.7) Ge(s) := H(s)(I + diagl<j<m(e-eaS)H(s))-1 e H(Crem)

and [IGII < M for all e (E Em) e m satisfying I[EII <
Using standard properties of structured singular values [26] the proof of Theorem

6.5 is a straightforward extension of the proof of Theorem 6.1 and is therefore left to
the reader.

Condition (6.6) holds if

(6.8) limsup IIH(s)ll < 1
I1o, 8Co
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is satisfied. Equation (6.8) is not necessary for robustness with respect to multidelay
perturbations, as the following simple example shows.

Example 6.6. Let hi, h2, and h3 be in H with Ilhlllo < 1, IIh311o < 1 and

If we define

limsup Ih2(s) > 1.
Isloc, sCo

0 h3

then it is clear that limsuplsl_,seo IIH(s)ll > 1, so (6.8) is not satisfied. Since

e-28)H(s)) (1 + e-18 e-.2 ,e2) e,det(I + diag(e-1, hi (s))(1 + h2(s)) V (1

it follows that, denoting (1, 2) R,
inf inf ]det(I + diag(e- -e,e )n(s))] > 0.
eR sCo

Let G be defined by (6.7). Using Cramer’s rule we obtain that G H(C2x2)
and supe }[G][ < ; in particular, we have robust stability with respect to

multidelay perturbations.
It seems to be a difficult open problem whether the condition

limsup p(H(s))> 1
Isl, seCo

implies lack of robustness with respect to small multidelay perturbations.

7. Robustness of instability. Given a transfer function H of size m x m, we
have shown in the previous sections that, under certain conditions, there exists a
positive sequence (s) with Sn 0 such that the closed-loop transfer function G
has at least one pole in C0 for all n N. In this section we show that this property
is robust in the following sense: For any n N there exists 5n (0, Sn) such that for
any m+ with (sl,...,) Une(Sn- , + 5n)m, G (defined by (6.7))
has a pole in C0.

In the following we shall need the notion of a right-coprime (or left-coprime)
factorization of a matrix-valued meromorphic function.

LEMMA 7.1. Suppose H (cpxm). Then the following statements hold:
(i) H admits a right-coprime factorization over ; i.e., there exist matrices

g e a(cpxm), D, Y e a(CX), and Z e a(Cmxp) such that

H ND- and XN + YD I.

The matrices N and D are unique up to multiplication from the right by a unimodular

factor. A number so E Ca is a pole of H if and only if det D(so) O.
(ii) H admits a left-coprime factorization over 9; i.e., there exist matrices N

-c(Cpm), b, ]r e c(Cpxp), and f( e c(Cmxp) with

H= D- and fV +D I.

The matrices 1 and J are unique up to multiplication from the left by a unimodular

factor. A number so Ca is a pole of H if and only if det/)(so) 0.
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(iii) If H ND-1 is a right-coprime factorization over Ka and H b-11 is a
left-coprime factorization over 9<, then the zeros of det D and det D in C. coincide
(counting multiplicities).

Proof. It is well known that the ring 9<a is a Bzout domain; i.e., every finitely
generated ideal is principal (see, for example, Narasimhan [25, p. 136]). Now
is the quotient field of 9<, and statements (i) and (ii) follow from Vidyasagar [31,
p. 330]. Statement (iii) is proved in [31, p. 76] for rational matrices. An inspection
of the proof in [31] shows that it only utilizes the fact that the elementary divisor
theorem holds for the ring of stable rational functions; i.e., any matrix with stable
rational entries is equivalent to its Smith form. Since this is also true for the ring
(see [25, p. 139]), it follows that the proof in [31] carries over to matrices with entries
in :M:.

If f E (l:o and V c Co is compact, let Z(f, V) denote the number of zeros of
f in V, counting multiplicities. Moreover, if "y [0, 1] --. C is a closed curve and
a e C \ "7([0, 1]), we denote the winding number (index) of /around a by ind(’7, a).

PROPOSITION 7.2. Let H be in ([0(Crnm) and suppose that H(s)(I + H(s)) -1
has at least one pole in Co. Then there exists > 0 such that ( defined by

G(s) H(s)(I + diagl<_j<m(ens)n(s))-I
has at least one pole in Co for all l 011, lm) cm satisfying IIlll < 6.

Proof. Let H ND-1 be a right-coprime factorization over 9<o and so Co be
a pole of H(I + H)-1. Set V :-- {s C Iso s[ < } and choose > 0 such that

(7.1) V C Co and Z(det(D + Y), OV) # 0 V s e OV.

Let /y [0, 1] --, C be the continuous parametrization of OV given by t -. so + oe2it.
For / (r/1 /m) E cm set

N(s) := diagl<j<m(eVS)N(s),
Fv(t := det[D(’Iy(t)) + Nv(’y(t))]

It is clear that

(7.) lim | sup IFo(t)- F,(t)l] 0.
v/--*0 ]

Now it follows from (7.1) that

inf Iro()l > o,
tel0,1]

and therefore we may conclude, using (7.2), that there exists 6 > 0 such that

(7.3) inf IF,(t)l > 0 for all /e C such that ] < 6.
e[o,1]

Choose g E Cm with IIg < 6, and define the map

h: [0, ] [0, ] c, (, ) r,().
Then A is continuous and, by (7.3), 0 h([0, 1] x [0, 1]). ivially, it holds that

h(, 0) r0() v e [0,1],
h(, 1) r,() v e [0,1],
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and furthermore we obtain for all T E [0, 1] that

A(0, ) r(o) r() h(, ).

Thus we have shown that F0 and F are homotopic in C \ {0}, and therefore (cf.
Rudin [27, Thm. 10.40]) it follows that

(7.4) ind(r0, 0) ind(r,, 0).

Using the principle of the argument we obtain

(7.5) Z(det(D + N), Y) ind(F, 0) ind(F0, 0) Z(det(D + N), V).

Now, so E Y c Co is a pole of H(I + H)-1 or equivalently det(D(s0) + N(so)) 0,
and thus, by (7.5)

(7.6) Z(det(D + N), V) Z(det(D + g), V) -- 0.

It is easy to see that Gu N(D + Nv) -1 is a right-coprime factorization over 90,
and thus it follows from (7.6) that G has a pole in V c Co. [:1

Combining Proposition 7.2 and Theorem 5.3 we obtain the main result of this
section, a "robust" version of Theorem 5.3.

THEOREM 7.3. Let H(s) be a Cmm-valued regular transfer function and, for
(el,... ,m) ( R, Ge be given by (6.7). /.f the conditions (1)-(3) of Theorem 5.3 are
satisfied, then there exist sequences (,) and (5,) with , > O, O, 5n (O,n)
and such that G has poles in Co for all [Je(n 5, + 5n)".

It is clear that Theorem 5.6 can be strengthened in a similar way.

8. Dynamic output feedback. In this section we apply our results to systems
with dynamic output feedback. In particular we show thatroughly speaking--for
a plant with infinitely many unstable poles there does not exist any stabilizing (dy-
namic) output feedback compensator such that the stability of the closed-loop system
is robust with respect to small delays.

DEFINITION 8.1. If P ([a(CpXm) and K /[a(CmXp) for some a I, we
say that g stabilizes P if det(I + P(s)K(s)) 0 and

(8.1) -K I e H(c(m+P)(ra+P)).

It follows from a well-known formula of Frobenius (see Gantmacher [16, p. 73])
that K stabilizes P if and only if det(I + P(s)K(s)) 0 and the transfer function

(8.2) F(P, K)-- ( g(1-1- PK)-1 -KP(I -t- KP)-1 )PK(I + PK)-1 P(I + KP)-1

is in Hc(c(m+p)x(m+P)). Note that F(P,K) is the transfer function from (u, u2)
to (yl, y2) of the feedback system shown in Fig. 4, if we take there s 0. If K e
H(cmp), then K stablizes P if and only if P(I + KP)-1 H(CP’). The next
result follows trivially from Theorems 5.3 and 5.6.

COROLLARY 8.2. Let P and K be matrix-valued transfer functions of size p x m
and m )< p, respectively. Suppose that PK is regular, and for >_ 0 set Ke(s) "=

e-SK(s) and define

( K(/+ PK)-1 -KP(/+ KP)-1 )(8.3) F(P’ K):= PK(I + PK)-1 P(I + KP)-
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Then, if K stabilizes P (i.e., F(P,K)E H(C(m+P)(m+P))) and

limsup r(P(s)K(s))= limsup r(K(s)P(s))> 1,
Isl--,o, seCo Isl---,, sCo

there exist sequences (,) and (Pn) with

,>0, ,0, pneCo, [Imp,}--,o

and such that for any n E N, Pn is a pole of PK(I + PKg.)-1 and hence of the
overall closed-loop transfer function Fe-(P, K).

Ul
K P

y2

FIG. 4. Feedback system with plant, compensator, and delay.

The feedback system corresponding to Fe(P,K) is shown in Fig. 4; in particular
we have that (yl,y2)T Fe(P,K)(ul,u2)T. It is clear that F(P, Ke) is L2-stable if
Fe(P, K) is. Conversely, under the assumptions that P and K are well posed and P
stabilizes K, it is easy to show that Fe(P, K) is L2-stable if F(P, Ke) is.

In order to apply Theorem 6.1 to systems with dynamic output feedback we need
the following lemma.

LEMMA 8.3. For some a E ]R let P and K be in 3V[,(Cvxm) and /[a(cmxp),
respectively, and suppose that K stabilizes P. If U C Co and

sup IIP(s)ll o or sup IlK(s)ll ,
sEU sEU

then it foos that SUpsev IIP(s)K(s)ll .
Proof. From the assumption that K stabilizes P it follows that the entries of P

and K belong to the the quotient field of H; i.e., they can be written as the fraction
of two H-funetions. Moreover, it follows from Smith [30] that P and K both have
right- and left-eoprirne faetorizations over H. This means in partieuiar that there
exist matrices Nv, Dp, -v, Iv, NK, D, X, and YK with entries in H satisfying

pp + bp]Yp I,
XKNK + YKDK I.

Moreover, since by assumption the closed-loop system is stable, it follows trivially that
I stabilizes PK. Therefore, using again the result in Smith [30], we conclude that

If PK is well posed and P stabilizes K, then Lemma 8.3 shows that P and K are well posed.



NONROBUSTNESS WITH RESPECT TO SMALL DELAYS 593

PK admits a right-coprime factorization over H; i.e., there exist matrices N, D, X,
and Y with entries in Ha such that

(8.4) PK ND-1 XN + YD I

It is well known (see Vidyasagar [31, p. 364]) that closed-loop stability is equivalent
to

(s.5) inf Idet([gp(s)DK(s)+/,(s)_NK(s)) > 0.
sECo

Let us assume that supEu IIP(s)ll-- oc. Then there exists a sequence (sn) in U such
that limn__. IIP(sn)ll x, and hence, using the boundedness of/),(s) and/,(s),
we obtain

(8.6) lim det(D,(Sn)) O.

Realizing that

det(/)pDK + pNK) det(/)p)det(DK)det(I + PK)
det(/),) det(D) det(D + N)det(D)

and combining (8.5)-(8.7) we see that

(8.8) lim det(D(sn)) O.
n---,o

Moreover, using (8.4), it follows that

(8.9) det(XPK + Y) det(D)

Finally, (8.8), (8.9), and the boundedness of the matrices X(s) and Y(s) imply that
limno IIP(sn)K(sn)ll x and thus supseu IIP(s)K(s)ll cx. With a similar
argument we can prove the claim if we assume that supseu

COROLLARY 8.4. Let P E :M:(Cpxm) and K E 9V[a(Cmxp) for some a IR. If
F(P, K) H(C(m+p)x(m+p)) and

(8.10) limsup r(P(s)K(s))< 1,

then there exist numbers So > 0 and M > 0 such that Fe(P, K) H(C(m+p)x(m+p))
and liFe(P, K)llo <_ M for all

Proof. For > 0 let Gg be defined by (6.3). Combining (8.10)1 the fact that
PK(I + PK)-I’ E H(CpxP), and Lemma 6.3, we see that there exists numbers
R1 > 0 and L > 0 such that

IIP(s)K(s)]l _< L1 V s e C0R1.

Hence we obtain using Lemma 8.3 that

(8.11)
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where L2 and R2 are suitable positive constants. By Theorem 6.1 there exist numbers
el > 0 and M1 > 0 such that

(8.12) IIPK(I + PK)-IlIo <_ M Ve e [0,1]
and so

I[(I + PK)-]lo _< 1 + M V e [0,].

Therefore, and by (8.11), there exists/t:/2 > 0 such that

(8.13) [[K(s)(I + P(s)K(s))-ll[ <_ h:/2 Vs e Con Ve e [0, eli

Setting L "= K(I + PK,)-1, we have Lo E H(Cmp) and PLo e Hc(CpXB).
Choosing 2 e (0, 1] such that for any s e Co with Is] _< R2 and any

1
I1 e-Sl <_

211PLol]
and realizing that

L(s) Lo(s)[l (1 e-e)P(s)Lo(s)] -1,

we obtain that for all s and e as above

(8.14) [IL(s)ll <_ 2

Combining (8.13) and (8.14) shows that

(8.15) I[K(I + PK)-II[ <_ M2 V e [0,2],

where M2 := max(/t:/2,2[[L01[o). Finally, using similar arguments, it can be shown
that

I[KP(I + Kp)-I[Io
_
M3 V e [0,3]

and

liP(/+ KeP)-1

where M3, M4, e3, and e4 are suitable positive numbers. The claim now follows from
(8.12) and (8.15)-(8.17).

Using Corollary 8.2 and Lemma 8.3 it is easy to give the proof of Theorem 1.2.
More precisely, we prove the following result which is slightly stronger than Theorem
1.2.

THEOREM 8.5. Let P ([c(Cpxm) and K ([c(Crep) for some a , and
suppose that PK is regular. Then, if K stabilizes P and limsuplsl_,seCo liP(s)[[-
oc, there exist sequences (en) and (pn) with

en > 0, Sn ---’ 0, Pn E Co, IImpn[ "-+ oc

and such that, for any n N, Pn is a pole of PK(I + PKe)-1 and hence of the
overall closed-loop transfer function Fe(P,K) given by (8.3).

Proof. Since limsuplsl__.oc, seco I[P(s)ll- c and K stabilizes P, it follows from
Lemma 8.3 that limsupll_..oc,eco [[P(s)K(s)l cx). Now, by assumption, PK(I +
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PK)- H(CPP), and hence an application of Lemma 6.3 and .Corollary 8.2 yields
the claim.

The following remark shows that for a large class of transfer functions which are
bounded at high frequencies there always exists a stabilizing compensator such that
the stability of the closed loop is robust with respect to small delays.

Remark 8.6. Define 9" [.Ja<0H + spu, where spu denotes the ring of
strictly proper totally unstable rational functions, i.e., fftsp :- {f e C(s) f(oc
0 and f(s) : x) for all s e C \ cl). Note that if P e ’P m, then

limsup IIP(s)ll <
Isl-,o, sCo

which implies in particular that P has at most finitely many poles in C1. The ring 9"
contains the so-called Callier-Desoer ring of transfer functions (cf. Callier and Desoer
[4],[5]). It is known that for any P E 9"pm there exists a strictly proper rational
compensator K such that F(P, K) E Hc(c(m+P)(m+P)); see Logemann [24] and the
references therein. Combining this result with Corollary 8.4, it follows that for any
p pm there exists a compensator K mp and a number 0 > 0 such that
F(P,K) H(C(m+p)x(m+p)) for all e [0,e0].

Remark 8.7. We claim that the conclusions of Theorem 8.5 do not remain true if
the assumption limsuplsl_,o,seco IIP(s)ll- cx) is replaced by the weaker assumption
that there exist a sequence of poles of P in the open left half-plane going to cxz
tangentially along the imaginary axis. To this end let P be the transfer function of
the following neutral system:

&2(t) &2(t h) 1

x (t)

0 ) (Xl(t) 1
_o

1 1
P(s)

s + ls(1 e-h) + a

where a, h > 0. It is shown in Logemann [23] that P E H. Trivially, for any com-
pensator K H satisfying IIPKII < 1 the closed-loop transfer function Fe(P, K)
is in H(C22) for all >_ 0. However, using Rouch’s theorem, it is not difficult to
show that there exist a sequence of poles Pn C \ C of P and numbers n N with
g oc as n --. c such that

27r
limo IP -i-l o,

9. Examples. In this section we illustrate Theorem 1.1 with three examples.
Example 9.1. In this example we analyze the robustness with respect to delays

for a damped wave equation. For x (0, 1) and t > 0 we consider the following
system:

(9.1) wtt(x, t) w(x, t) + 2awt(x, t) + a2w(x, t) O,

(9.2) w(O, t) O, w(1, t) u(t),
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(9.3) y(t) kwt(1, t)

We assume here that the viscous damping parameter a is nonnegative and the bound-
ary damping parameter k is positive. It is known that the feedback control

(9.4) u(t) -y(t)

exponentially stabilizes the system (see, for instance, Chen [6]). Hence, if the transfer
function of (9.1)-(9.3) is denoted by H, then it follows that H(I + H)-1 E H. An
easy computuation shows that H is given by

H(s)
8 -[- a 1 -[- e-2(s+a)

In Datko, Lagnese, and Polis [9] the robustness of the closed loop system (9.1)-(9.4)
with respect to small delays was analyzed. We will obtain frequency domain versions
of their results, using Theorem 1.1. We need to compute , as defined by (1.3) for this
system.

CLAIM.
e2a + 1

q, limsup IH(s)l ]ge2a---’---"

Proof. The following simple estimates are clear for Re s > 0:

[1 e-u(s+")] _< 1 + e-’ [1 + e-2(s+a)[ >_ 1 e-a
8

8q-a

These estimates show that /<_ k(e2a + 1)/(e2- 1). To obtain the opposite inequality,
let Sn (I/n) + i(2n + 1)r/2 for n E N. Then

k8n 1 + e-2/ne-2a
lim H(sn) lim

n----oc n--,o 8n a 1- e-2/ne-2a
e2a + 1

k
e2a,_ 1

This shows that />_ (e2a -- 1)/(e2a 1), completing the proof of the claim.
Let us apply Theorem 1.1 to this system. We consider two cases.
Case 1" k _> 1. In this case q, > 1 for any a >_ 0, so the transfer function

H(s)(I + e-SH(s)) -1 has poles in Co for arbitrarily small > 0.
Case 2" k < 1. In this case - > 1 if and only if

If a satisfies this estimate, then the same conclusion as in case 1 holds. When

1 l+k
a > In

1_---,
the delayed feedback system is L2-stable for all sufficiently small delays.

Example 9.2. We consider the following first-order neutral system:

it(t) aic(t h) -bx(t) + u(t)
y(t) cic(t- h).
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Here a _> 1, b > 0, c E , and h > 0. We consider the feedback u(t) -y(t), so the
free dynamics of the closed loop are described by

it(t) + (c- a)2(t h) -bx(t)

This system is exponentially stable if Ic- a < 1. The open-loop transfer function is

H(s)
-hs8C

s(1 ae-Sh) + b"

H is clearly well posed and regular with feedthrough 0. If a > 1, then the equation
1-ae-Sh 0 has a zero at s log(a)/h, which is in C0. Hence, by a result in Salamon
[28, p. 160], the characteristic equation s(1 ae-h) + b 0 has infinitely many zeros
in 0. (This follows also directly from the periodicity of 1- ae-h and an application
of Rouch’s theorem.) As a consequence "), x > 1, so the closed-loop stability is
destroyed by arbitrarily small delays. If a 1, then the equation 1 -e-h 0 has
a zero at s 0. It is easy to see that H(s) has no poles in C. However, as shown
in Logemann [23], we have that limsup_ IH(iw)l c. Hence c > 1, and so
the closed-loop system is not robustly stable with respect to delays.

Example 9.3. In this example the input space and the output space are 2. We
consider two coupled vibrating strings, one with spatial extent 0

_
x _< 1 and the

other with spatial extent 1 _< x _< 2. Each string satisfies the damped wave equation

wtt(x, t) wxx(x, t) + 2awt(x, t) + a2w(x, t) 0, x e (0, 1) t2 (1, 2),

where the viscous damping parameter a _> 0. At the linkage we assume the displace-
ment is continuous, so

w(1- t)=w(1+ t)

and we set the discontinuity of the vertical tension force equal to a control variable:

wx(1-,t) wx(l+,t) ul(t).

We take the right endpoint fixed, and at the left endpoint we set the vertical tension
force equal to another control variable, leading to

0, t)

We take one observation proportional to the velocity at the linkage, and the other
observation negatively proportional to the velocity at the left endpoint, leading to

y(t) kwt(1,t),

for kl, k2 _> 0. Let u(t) [ul (t), u2(t)]T and y(t) [yl (t), y2(t)]T
function H for this system can be computed to be

The transfer

8
H(s) s+a

kl e-4(s+a) 1
2 e-4(s+a) -- 1

(e-(s+a)(e-2(s+a) l) )k2 e-4(s+a) + 1

kl
e-(S+a)(e-2(+a) 1)

e-4(s+a) + 1

k2
e-4(s+a) -- 1
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TABLE
Values of " for given values of a, kl, and k2.

(kl,k2) a .1 a .25 a =.5 a 3 a 10
(.1, .1) .7562 .3146 .1755 .1005 .1’
(.1, .5) 2.7790 1.1714 ’.6881 .5003 .
(.1, 1) 5.3112 2.2513 1.3426 1.0090 1’
(.5, .1) 1.7647 .7348 .4120 .2508 .25
(.5, .5) 3.7810 1.5730 .8777 .5024 :5
(:5 1) 6.3051 2.6337’ 1.4992 1.0016 1’
’(1, .1) 3.0278 1.2673 .7274 :5006 :5
(1, .5) 5.0410 2.0957 1.1633 .5351 .5003
(1, 1) 7.5621 3.1461 1.7553 1.0049 1

Clearly, H is regular with feedthrough matrix

0 k2

It is not hard to show that for any values of a >_ 0, kl > 0, k2 >_ 0, a q-kl -q-k2 > 0
the closed-loop transfer function H(I+H)-1 is in H((:22). In the case when a 0
this follows also from the fact that the closed-loop semigroup is shown in Liu, Huang,
and Chen [22] to be exponentially stable.

There are some values of kl, k2, and a where no further computation needs to
be done in order to apply the results in the preceeding sections. If kl > 2 or k2 > 1,
the spectral radius of D is greater than 1, so Theorem 5.6 implies that there exists

Sn $ 0 such that G(s) H(s)(I + e-SH(s))- has poles Pn e CO such that
the real and imaginary parts of Pn go to infinity as n goes to infinity. Another
simple cse is when a 0 and k + k2 > 0. In this case G is stable and H has
poles at s i(1 + 2n)/4 for all integers n. Thus we obtain from Lemma 6.3 that

limsupll,eco r(H(s)) , and hence, by Theorem 1.1, G is not robustly
stable with respect to delays.

In the case where a > 0, 0 < k < 2, 0 < k < 1 we need to compute T. First
note that is the same for (s) "= ((s + a)/s)H(s) as it is for H(). To compute
the spectral radius of H(s), we need to compute the eigenvalues of n(s). These are
found to be

,(,, , a) + 1 4(+) 1 (,,, a)
4 1 + ca(+) 4(1 + e4(s+))

where

(1,, , a) ( ) +1(+) 4(+)( + 11 +4)
+16kk2e(+) + eS(+)(kl 2k2).

Since (kl, k2, s + i, a) (kl, k, s, a) and is in H(C22), we obtain, using
Remark 6.2, that

Z imu (()) su (()) su(()) su (()).
Isl,sCo sCo w 0<w<

Thus, computing 7 is a fairly straightfoward numerical problem. Using Mathematica,
we obtain Table 1, giving values of 7 for some values of kl, k2, and a. As we see
from the table, the possibility of robustness increases as a increases and decreases as
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kl and k2 increase. Note that the last column, with a 10, is almost the same as
that obtained by taking the limit of / as a - x, which is easily computed to be
max{k2, kl/2}. Thus, for large values of the viscous damping coefficient a, robustness
is determined in a simple way by k and k2.
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