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In this paper we consider a large class of partial
differential equations (PDEs) in one space dimen-
sion with distributed control and with a time-delay
in the feedback loop. We analyse the relationship
between the poles of the closed-loop transfer func-
tion and the exponential modes of the underlying
retarded PDE in order to derive internal stability
properties from external ones. Our approach is
based on a combination of input-output methods
and modal analysis. We give a number of sufficient
conditions for robustness/non-robustness of closed-
loop modal stability with respect to delays. The
theory is illustrated by two examples.
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1. Introduction

The literature on robustness and lack of robustness
of distributed parameter systems with respect to
small delays in the feedback loop can be roughly
divided into two types. Those papers dealing with
individual partial differential equations (PDEs) focus
on the existence, or lack of existence, of exponen-
tially growing modes (see for instance Datko [3],
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Datko et al. [4] and Desch and Wheeler [6]. Those
papers considering input—output systems in the fre-
quency domain deal with input-output stability (see
for instance Barman et al. [1] and Logemann et al.
[11].

In Logemann and Rebarber [10] we examined the
relationship between the external concept of spectral
stability and the internal concept of modal stability
for a large class of boundary control systems in
one space dimension (allowing for in-span control).
Spectral stability simply means that the transfer
function of the system has no poles in the closed
right-half plane, whilst model stability means that
any exponential solutions (modes) of the form
e"¢(x) must satisfy Re s<<0. It was shown in
[10] that the frequency-domain results in [10,11] on
robustness/non-robustness of spectral stability trans-
late to results on robustness/non-robustness of modal
stability. This paper addresses similar questions, but
instead of boundary control systems we consider
here systems with distributed control action, where
it is more complicated to unravel the relationship
between modes and poles. One reason that distrib-
uted control is of interest is that for certain problems
the control action is more accurately modelled by a
function with ‘small’ support than by a d-function
formulation. The underlying class of PDEs for the
control systems under consideration consists of lin-
ear PDEs of spatial dimension 1, where on different
parts of the space interval different partial differen-
tial equations are satisfied. The coefficients may
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depend on the spatial variable. The boundary con-
ditions are general enough to allow all natural coup-
ling conditions.

In order to relate modal stability of the PDE
to the spectral stability of the transfer function, a
relationship between the modes of a PDE and the
poles of the associated transfer function is needed.
As in the case of the boundary control systems
considered previously in [10], we show in this paper
that a pole s, of the transfer function leads to a
mode with exponent s, of the corresponding free
dynamics. However, this does not follow in a
straightforward way from [10], but requires a differ-
ent analysis. Of course, as in finite dimensions, it
is possible that a mode will not appear as a pole
of the associated transfer function, since any possible
effect of the mode on the output might be annihil-
ated by the observation and control operators. How-
ever, it will be shown that for any system in our
class the exponents of the unstable modes coincide
with the unstable poles of the transfer function,
provided the closed-loop system (without delay) is
modally stable. This result will in turn be applied
to prove that for a large class of systems
robustness/non-robustness of  spectral  stability
implies robustness/non-robustness of modal stability.
In Moyer and Rebarber [12] the relationship between
robustness of spectral stability and robustness of
modal stability was studied for a special class of
parabolic systems in more than one space variable.

The paper is organised as follows. In Section 2
we introduce the class of systems under consider-
ation. In Section 3 we show, for the open-loop as
well as for the closed-loop system with delay, that
the exponents of exponential modes can be charac-
terised as the zeros of certain holomorphic functions.
The relationship between the exponents of the
system modes and the transfer function poles is
analysed in Section 4. In Section 5 we briefly
describe the input—output robustness/non-robustness
results that we need from [11], and in Corollaries
53 and 54 we give the related results for
robustness/non-robustness of modal stability for the
class of systems described in Section 2. Finally, in
Section 6 we present two examples illustrating the
results in the previous sections.

1.1. Notation and Terminology
For any @« € R, let C, := {s € C|Re s> a}.
We define

H ={f: Q,— C|Q,open, O, D C§ and
f holomorphic}
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The field of all meromorphic functions on C, is
denoted by M,, while H, denotes the algebra of all
bounded holomorphic functions defined on C,. We
write H” for H5. If f € M, and g € Mg, where
a < B, and if fis) = g(s) for all s € Cg, then we
shall identify f and g.

Let ) C C. A function H : ) — C is called a
transfer function if C, C () for some « € R and
H|c, € M, A transfer function H is called well-
posed if H e H for some a € R. Moreover, a
transfer function H is called regular if it is well-
posed and if the limit lim,_... H(§) = D exists
(where ¢ € R). The number D is called the
Sfeedthrough of H. If H is not well-posed, we say
that it is ill-posed.

2. PDEs with Distributed Control and
Delay in the Feedback Loop

In the following we introduce a class of controlled
and observed linear partial differential equations in
one space dimension with coefficients which may
depend upon the spatial variable. On different parts
of the space interval different PDEs are satisfied.
They are coupled via the boundary conditions at the
in-span points. The control action is assumed to
be distributed.

We suppose that the space variable x belongs to
some closed interval [a,b]. Without loss of generality
we assume that [a,b] = [0,1]. Let A e N, and
{xr, C (0,1), where x, <x, < ... <ux, These
numbers determine a decomposition of (0,1) into
A+1 open intervals {[}i, Let + € N. For
j=0,...,vand k=0,..., A, let pf be polynomials,
let af be continuous functions on I{, and let bf e
L?> (0,1;C). Let D, denote differentiation with
respect to x, and consider the controlled PDE

. dw - du
2 @piD) -5 () = 2 bix) 5 (1),
j=0 Jj=0
X € Ika > 0
2.1
Set n, = max,<=, deg p; and let p,(x,s) be the

coefficient of D’* in the expression

L

>, ad{0)s’pi(D,)

J=0

where s is a complex variable. We introduce the
following assumption:
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(A1) There exists an open set {3 D Cg such that
for any k=0,..., A
pi(x,8) # 0 forallx e I, s € O O

This condition guarantees that when the Laplace
transform of the PDE in [, is taken, the resulting
ordinary differential equation is not degenerate.

To define boundary operators for the PDE (2.1),
we note that, by (A1), the PDE has spatial order n,
in I, so we need

A
n :=2 g

k=0

boundary conditions. While the boundary for
Ui Ik is {x}x, U {0,1}, for the purpose of defining
boundary conditions each x; should be represented
by x; and x;. This allows coupling conditions (for
example D w(0.57,f) = Dw(0.5%,1)) and in-span con-
trol. Therefore, we consider the boundary set to be
{x7h, Ufxrts, U{0,1}, which we rename as {z}#,,
where u = 2(A+ 1). For any piecewise continuous
function f: [0,1]— C and for [=1, ..., A we define

foq) = lim ), o) = lim fo)
x/x; O\
so that fz;) is a well-defined complex number for
all I=1,..., w.
Let ¢}, be polynomials for i=1,...,n,j=0,...,
t, [=1,..., nu. We define boundary operators B; on
solutions w(x,f) of (2.1) by

W(Z[,t) (22)

(Bw)(1) = E E qi; (D)

=1 j=0

We need to impose bounds on the order of the
spatial derivatives in (2.2). In particular, we do not
wish to take spatial derivatives at the boundary of
I, which are of an order larger than n,—1. To this
end it is useful to introduce the function k: {I,...,

ut — {0,..., A} given by
A ifz,=1
"(41) =Vl ifz=ax

ly—1 if z,=x,

We assume that for any i=1,...,
I=1,..., n

deg qi, = ny— 1

n,j=0,...,

The boundary operators (2.2) are sufficiently general
to allow higher-order differential equations at the
boundary, as in the ‘hybrid systems’ in Littman and
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Markus [9]. We consider the following boundary
conditions for the PDE (2.1):

Bw)(1) =0 (2.3)

i=1,...,n

The observation operator for the system will be
quite general, since we will allow for distributed
and point observation. For j=0,...,., [=1,...,u,
let r;,; be polynomials, let f; € L*0,1; C), and define
the observation operator by

(Cw)(1) = 2 2 r (D)

=1 j=0

+ 2 f f(x) w(x 1) dx
Jj=0

W(«'IJ)

where we assume that
deg r; = n ) — 1

The observation y(¢) is then given by
y(0) = (Cw)(1)

We refer to the observed distributed control system
given by (2.1), (2.3) and (2.4) as the open-loop
system. In the following it will be denoted by
(OLS).

Application of output feedback of the form u(z)
= v(t) — y(t—¢) leads to

(2.4)

>, dix)pf (D) f<x ) —E bi(x) %m
J=0 J=0
S
— > bix) o (Ow-e), xel.1>0 (25)
j=0
where €= 0 is a time-delay and v(f) denotes the
input of the feedback system. We refer to the system
given by (2.5), (2.3) and (2.4) as the closed-loop
system with delay €. In the following it will be
denoted by (CLS,). If £€=0, then we will call
(CLS,) the undelayed closed-loop system. If u(t) = 0
(resp. v(r) = 0), then we refer to (OLS) (resp.
(CLS,)) as the uncontrolled open-loop system (resp.
uncontrolled closed-loop system with delay ¢).

3. Existence of Exponential Modes

We will be looking for exponential solutions of
the form
w(x,t) = e P(x), where s € C, }

¢ e LX0,1);C), ¢ # 0 (3.1)

for the uncontrolled open-loop and closed-loop sys-
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tems. Such a solution will be called a mode of
(OLS) (resp. (CLS,)). The complex number s is
called the exponent of the mode.

Suppose that (3.1) is a solution of the uncontrolled
system (OLS). Since ¢ will in general depend on
s, we write ¢(x) = d(x,s). Clearly, ¢(x,s) satisfies

(2 q,‘?(x)s’p,"(Dx)> dxs)=0, xel
=0

(3.2)
Using assumption (A1), we see that for every s e
Q D C¢ and every k=0, ..., A, (3.2) is an ordinary
differential equation of order n, on I{. Let {e}
be a basis of C and let {¢}(-,5)}% be solutions of
(3.2) on I satisfying

(d)}‘(xk,S), D, ¢{(x.8), . . ., DZk“(bf(xk,s)) = ek,
j=1,...,n55 € Q

where x, := 0. Clearly, for any k=0,..., A and
any s e (), the functions qb}'(-,s) are linearly in-
dependent, and hence span the solution space of
(3.2) on I. In particular, for every s € Q, ¢5(-.s)
e L? (I{,C), and every solution of (3.2) in I, can
be written in the form

"y

> AN Pi(xs), x el
=
for some coefficients Aj(s). For k=0,..., A and
j=1,..., n, let us define
“(x,s) forx e [
Dh(xs) = {qs"( ) ¢
' 0 forx e [0,1]\ [

It will be convenient to rename these n vectors as
{®,(x,9)}. It is clear that any solution of (3.2) can
be written as

bxs) =S ASD,xs), x e UL,
k=0

p=1

B(z5) = 2, A)Py(zis), L= 1,...

p=1
for some coefficients A,(s).
Setting

BD,)(s) = >, >, 5qi,; (DID,(z5)

=1 j=0

(3.3)
we introduce the n X n matrix

A(s) = ((é,.cb,,)(s)), ip=1,....,n (3.4
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By Lemma 4.1 in [10], A(s) is holomorphic on ().
Thus the following result can be obtained in the
same way as proposition 4.2 in [10].

Proposition 3.1. Suppose that (A1) is satisfied and
let s, € ). Then (OLS) has a mode with exponent
so if and only if det A(sy) = 0.

In order to prove a similar result for the closed-
loop system (CLS,), suppose that

w(x,t) = e*d(x), where
¢ e L¥0,1;C), dp#0

is a solution of the uncontrolled system (CLS,).
Again we will indicate the dependence of ¢ on s
explicitly by writing ¢(x) = d(x,s). We then obtain
from (2.5) with v(r) = 0

(3 dwmpion) s

J=0

= —e=b*(x,5)(Cd)(s), (3.5)

x el

where

L

b*(x,s) = >, bXx)s'

J=0

and (C¢)(s) is defined by

(CP)(s) = >, >, (D) d(z,8)

=1 j=0
3 1

+ > J F0)P(x,5)dx
j=0 0

(3.6)

For each s € (), let W(.,s) be the unique function
satisfying

(Z Gf(x)S’Pf(Dx)) W(xs) =bkxs), xel,

J=0

DW(x,s) =0,  j=0,...,m—1

3.7
Invoking (3.7) and " using the fact that
2 A (5)P,(,s) is the general solution of the homo-

geneous equation (3.2), the solution ¢(x,s) of (3.5)
can be written in the form

b(x.5) = D, AP, (x.5) + a(s)P(x.5)
p=1
where a(s) = —e‘s"‘(é'qb)(s) and the A, (s) € C are
suitable coefficients. The boundary conditions (2.3)
become

(3.8)
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D AL)BD,)s) + als)(BY)(s) =0,

= (3.9)
i=1,...,n
where (B;¥)(s) is defined as in (3.3) with &,
replaced by W. Plugging (3.8) into (3.5), noting that
®, satisfies (3.2) and using (3.7), we obtain

n

bk(x,s)(EAp(s)(é@,,)(s)m(s)((C‘\Ir)(s)+em>):0, xelseQ

p=1

(3.10)

where (é‘@,,) (s) and (CW¥) (s) are defined as in
(3.6) with ¢ replaced by ®, and VW, respectively. Let

c:= (CA'QDAI, e C(DA”)T,
bi=—(BWV,. ..  BW)T

and

A(s)

—b(s)
e7(s) ) (3.11)

(CY)(s) + e

where A is given by (3.4). We are now in the
position to prove the following result.

A.(s) = (

Proposition 3.2. Suppose that (Al) is satisfied and
let s, € ). Then (CLS,) has a mode with exponent
sy if and only if detA.(sy) = O.

Proof. Suppose that (CLS.) has a mode with
exponent s,. Then using the above notation,
€' d(x,s,) is a solution of (CLS,), where ¢(-,s,) # 0.

Case 1. Assume that there exists k, € {0,..., A}
and & e I, such that b*(&, s,) # 0. Then,
by (3.10)

> A(s0) (CD,) (so) + also) ((éﬂf)<so) + e) =0
p=1

(3.12)

Setting A(s) := (A\(s), . . . , A,(s))7 and A(s) := (AT(s),
a(s))?, then a combination of (3.9) and (3.12) yields
that A.(so)A(so) = 0. Since ¢(-,5,) % 0, it follows
from (3.8) that A(s,) # O and hence that detA.(s,)
= 0.

Case 2. Now assume that b*(x,so) = O for all x e
I, and for all k e {0, ..., A}. Then ¥(x,s,) = O for
all x € [0,1] and hence b(s,) = 0. Moreover, by (3.9)

i=1,...,n

> A(50)BD,)(s0) = 0,

p=1
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Since W(-,s0) = 0 and ¢(-,s9) = 0, (3.8) yields that

A(sg) = (A(S), ..., A(so)T # 0. So, combining
(3.13) with (3.4), we see that detA(sy) = 0. Now
_[A(so) O
Al = (cf(so> e)

and thus detA.(sy) = €0 detA(sy) = 0.

Conversely, suppose that detA.(sy) = O for some
so € (). Then there exists A(sy) = (A7(so), a(sy)”
e C™', A(sy) # 0, such that A.(so)A(s) = O.
Writing A(sg) = (A,(s0), - - -» A,(s0))" and defining
d(x,50) by (3.8), we obtain

—e~=o(C)(so)
= —e=o[e7(50)A(50) + a(so)(CW)(s0)]
= —e~%o[—e*oa(sy)]
= a(so) (3.14)

where we used the fact that A/ (sg)A(sy) = O
implies that

cT(SO)A(so) + a(sy) ((C‘I’)(so) + e&‘o) =0

Now

(E af(x)%pf(Dx)) d(x,50) = alse)b"(x,50),

J=0
X € Ik

and so, using (3.14) it follows that ¢(x,s,) satisfies
(3.5) for s=s, Finally, since A.(so)A(so)=0, it is
clear that (3.9) is satisfied for s=s, Thus the
function w(x,t) := e*'¢(x,s,) is a solution of (CLS,),
and hence (CLS,) has a mode with exponent s,. O

4. Transfer Function Poles and
Exponential Modes

We shall need the following assumption:
(A2) detA(s) # 0 o

For a given s, € (), let ‘€, denote the vector space
of all functions . (U}, 1) X [0,0) — C of the form
P(x,f) = eo'Jix), where g U,y I, — C solves the
ordinary differential equation (3.2) for s=s,. It is
easy to see that assumption (A2) is equivalent to
(A2"). There exists s, € () such that the restricted
boundary operators Bili‘éso are linearly independent,

ie if a, ..., a, € C are such that E aBp =0

i=1

for all ¢ € €,, than ;=0 for all i=1,..., n.

50°
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If (A2) is satisfied, then the function
H(s) := c¢’(s)A'(s)b(s) + (CP)(s) 4.1)

is well-defined. While the functions ¢(s) and A(s)
depend on the choice of the basis {¢}}/ of the
solution space of (3.2) on [{, it is easy to prove
that the product of ¢’(s)A~'(s) does not. If (A1) is
satisfied, then it follows as in the proof of Lemma
4.1 in [10] that C¥ e H and that ¢ and b have
all their entries in H . Moreover, we know that the
entries of A are in H_. As a consequence, H is a
transfer function in the sense of Section 1 (see
Section 1.1), and we say that H is the transfer
function of (OLS). Setting

A Onxl J . b
D . <len l )’ N o (1),

N := (¢",CWV)

4.2)

we can write

H(s) = N(s)D'(s)N(s) (4.3)

In order to show that H admits the usual dynamical
interpretation, let u(-) be a sufficiently smooth
Laplace transformable input function with zero
initial conditions, i.e. (du/df)(0)=0 for all j=0,

., t— 1. Denoting the corresponding solution of
(OLS) with zero initial conditions by w(x,t;u), we
see that w(x,s;u) satisfies the ordinary differential
equation

(E aj(x)spj(D, )) P(x.s) = b(x,9)i(s),  x € I

J=0

and hence W(x,s;u) can be written in the form

D ASP,(x,5) + ()P (x,5)

wx,s;u) = 4.4)
p=1
The boundary conditions (2.3) then lead to
2 ABD)(5) + A)BW)s) =0, i=1,...,n
p=1
This is equivalent to
A(s)A(s) = b(s)i(s) 4.5)

Where A(s) = (A\(s), ..., A(s))". Using (4.4), the
Laplace transform of the observation (2.4) can be
expressed as follows:

J(s) = (5)A(s) + (CW)(s)i(s)

Therefore, using (4.5) and the fact that detA(s) 3="
0 by (A2), we obtain
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9(s) = (€"A7'(s)b(s) + (C¥)(s))ii(s) = H(s)i(s)

Using (4.3) and Lemma 2.4 in [10], the transfer
function Gg(s) of (CLS,) is given by

G(s)=H(s)(1 +e™H(s))™
=N(s)(D(s) + > N(s)N(s)~'N(s)

In contrast to the results for boundary control sys-
tems given in [10], it is not true that A (s) = D(s)
+ ¢ =N(s)N(s). However, we can show the follow-
ing.

Theorem 4.1. Suppose that (Al) holds. Then the
zeros of the functions detA.(s) and det(D(s) + ™=
N(s)N(s)) in € coincide (counting multiplicities).

(4.6)

Proof. Using (4.2) we obtain that
D(s) + ¢ **N(s)N(s)
(A(s) + e =b(s)c(s) e“‘(C‘I’)(s)b(s))
e~=e’(s) 1 + e =(CP)(s)) (4.7)

For any matrices M,, M,, M;, M,, where M, is
square and M, is square and invertible,

Ml M2
4.8
det (M3 M4> (4.8)
= det M4det(M1 - MZMZI M3)

see, for example, Gantmacher [7], p.46. Setting
h.(s) :—-1+e’”‘(C‘I’)(s) we dlstmgmsh between
two cases.

Case 1. If h(s) # 0, then an application of (4.7)
and (4.8) yields, after simplication

—ES 1

det (D(s) + e =N(s)N(s)) = - 1( )
det (ho(s)A(s) + e **b(s)c’(s)) (4.9)

Combining (3.11) and (4.8) we obtain
detA (s) = ((CF)(s)+e=) det (A(s)+(—CA,TI}—)(1s)—_‘_—e&Y b(s)cT(s))
= e*h.(s) det(A(s)+h ©) b(s)cT(s)> (4.10)

Comparing (4.9) and (4.10) shows that
det A.(s) = e det (D(s) + e‘c"'N(s)N(s)> 4.11)

Case 2. If h.(s) = 0, then it follows that

(CY)(s) = —e (4.12)

Let €, > 0 be such that lim,_.. €,=¢€ and ¢, # €
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for all n € N. Clearly, by (4.12), he (s) # 0 for
all n € N, and thus, by Case 1

det A, (5) = e det (D(s) + e“*N(s)N(s))

Letting n— o« we obtain by continuity that (4.11)
holds true. |

S. Modal Stability and Small Delays:
Robustness Issues

Let H be a transfer function and consider the feed-
back system shown in Fig. 1, where u is the input
function, y is the output function and the block with
transfer function e represents a delay of length
e=0.

If 1+ e =H(s)=#* 0, then the function G, defined
by

His)

GO =14 eoHe)

is a transfer function, the so-called closed-loop trans-
fer function of the feedback system shown in Fig. 1.
We say that G, is L*-stable if G, € H*. If G, €
H , then G, is called spectrally stable.

For a transfer function H, let py denote the set
of its poles. We define

y(H) := lim sup [H(s)|

[s]—=%.s e Co\wy
The following destabilisation result for regular trans-
fer functions was proved by Logemann et al. [11].

Theorem 5.1. Let H be a transfer function and
suppose that H is regular with feedthrough D. Then
the following statements hold true:

(i) If Gy is L*stable and if y(H) > 1, then there
exist sequences (g,) and (p,) with

€, >0, lim €,=0,p, € Cy, lim |Im p,| =

n—oe n—oe

and such that for any n € N, p, is a pole
of Ge,.

—ES

Fig. 1. Feedback system with delay.
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(i) If |[D] > 1, then there exist sequences (g,)
and (p,) with

€, = 09 lim €, = 0’ Pn € (I:O’

N—x

lim Re p, =,

n—x

lim |Im p,| = o
n—x

and such that for any n € N, p, is a pole
of G,

There are many partial differential equation models
of physical and technical systems which have
transfer functions which are not well-posed and
hence, in particular, are not regular. In [10], a result
similar to part (ii) of Theorem 5.1 has been proved
for a large class of ill-posed transfer functions, and
applications to boundary control systems were given
in the same paper. Roughly speaking, since distri-
buted control is bounded in a state-space sense,
systems with distributed control have regular transfer
functions, unless the observation is highly
unbounded in a way that is not typically seen in
the literature on control of PDEs. For that reason,
and since the two examples given in Section 6 have
regular transfer functions, we have restricted our
attention in Theorem 5.1 to the regular case.

The following robustness result complements The-
orem 5.1.

Theorem 5.2. Let H be a transfer function and
suppose that G, is L?-stable (spectrally stable). If
y(H) < 1, then there exists €* > 0 such that G, is
L*-stable (spectrally stable) for all ¢ e (0, &*).

The part of the theorem which relates to L*-stability
is proved in [11], Theorem 6.1. Robustness of spec-
tral stability can be shown in a similar way and is
therefore left to the reader.

In the following we shall apply the above results
to the system (CLS,). We call a mode w(x,t) =
e p(x) of (CLS,) stable if Re s <0, otherwise the
mode is called unstable. We say that the system
(CLS),) is modally stable if all the modes of (CLS,)
are stable. This is the kind of internal stability which
is considered in most of the literature on robust
stabilisation of PDEs [3-6,8].

Combining Proposition 3.2, Theorem 4.1, The-
orem 5.1 and Eq. (4.6), we obtain the following
corollary.

Corollary 5.3. Assume that (A1) and (A2) hold and
suppose that H given by (4.1) (or equivalently,
by (4.3)) is regular. Then the following statements
hold true:
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(i) If Gy is L*stable and if y(H) > 1, then
there exist sequences (g,) and (s,) with

g, >0, lim g,=0,s, € C,,

n—x

lim [Im s,| =
and such that for any n € N, det A (s,) =0,
i.e. for any n € N the closed-loop system
(CLS,,) has a mode with exponent s,.

(i) If |D|>1, then there exist sequences (g,)
and (s,) with

e, >0, lim £,=0,s, € C,,

n—x

lim Re s, =0, lim [Ims,| =

and such that for any n e N, det A, (s,) =
0, i.e. for any n € N the closed-loop system
(CLS,,) has a mode with exponent s,,.

Turning now to robustness of modal stability, we
note that if there exists €* >0 such that G, is
spectrally stable for all € e [0,e*), we cannot
immediately conclude modal stability of (CLS,) for
all such £. However, the following result shows that
modal stability can be obtained by using Theorem
5.2 and results from [10].

Corollary 5.4. Assume that (A1) and (A2) hold and
suppose that (CLS,) is modally stable. If H(s) given
by (4.1) (or equivalently, by (4.3)) satisfies y(H)
< 1, then there exists €* > 0 such that (CLS,) is
modally stable for all € € (0,e*).

Proof. Since (CLS,) is modally stable, it follows
from Theorem 4.1 that

det(D(s) + N(s)N(s)) # 0 foralls e C§  (5.1)

Thus Gy is spectrally stable by (4.6). An application
of Theorem 5.2 shows that there exists £*>0
such that

G, is spectrally stable for all € e (0,e*)
5.2)

Moreover, using (5.1), we obtain from Lemma 2.4
in [10] that the triple (N, D, N) is bi-coprime (in
the sense of [10]). Setting D.(s) = D(s) + &=
N(s)N(s), it follows from the same result that the
triple (N, D,, N) is bi-coprime. Combining (5.2)
with proposition 2.3 in [10] shows that det D.(s) #
0 for all s € C¢ and hence, by Theorem 4.1,
(CLS,) is modally stable for all ¢ e (0,e*). O
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6. Examples

In this section we illustrate our results by two simple
examples. The first is an example of robustness of
modal stability, while the second is an example of
lack of robustness of modal stability. In both cases
we specialise to distributed control action approxi-
mating point or boundary control.

Example 1

In this example we study the heat equation in a rod
made of two different materials, with homogeneous
Neumann boundary conditions, localised distributed
control input, and ‘co-located’ output. We show that
an application of unity output feedback yields a
modally stable closed-loop system which remains
stable in the presence of small delay in the feed-
back loop.

Let X, ., represent the characteristic function for
the interval [x;,x,]. Consider the system given by

w(x, 1) =a,w(x.1) + b(xX)u(t), a,>0,xe (0,§),1>0
(6.1)

wi(x, ) =aw (x,1) + b(x)ut), a,>0,xe (§£1),t>0
(6.2)

w(0,0=w(1.0=0, w(&.0)=w(&"1),

a lwx( g_’t):aZW.\'( §+9t)
(6.3)

where ¢ € (0,1) and

1

b:SX["I,XZJ’ Osx1<X2SI, 5=x2—x1

(6.4)

The last condition in (6.3) arises because the flux
coming into x = £ should be equal to the flux leaving
x=§& If x; is close to x,, then the corresponding
distributed control is an approximation of boundary
or in-span point control, and is perhaps more accur-
ate than the more typical 8-function formulation for
such control. We introduce the observation

¥(t) = _/g J b(x)w(x,t)dx, k>0 (6.5)

0
It is easy to show that the above system satisfies
the assumptions (Al) and (A2).

We shall show that the feedback u(f)=—y(f) is
exponentially stabilising, so, in particular, the corre-
sponding closed-loop system is modally stable.
Using the results in Section 5 we shall then prove
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that modal stability is robust with respect to small
delays in the loop. To this end, it will be easiest
to analyse (6.1)—(6.5) in a state-space setting. Let
X=1%0,1) and let ||| denote the usual L?-norm.
Define

(x) f 0,
(AD)) = {alz'\,\(x) or x € (0,6
arz,(x) forx € (1)
with
dom (A) ={z | < |<0.§> € H2(O,§),z(§,,, e H(&),
Zx(o) = Z,x‘( 1) = O» Z(§~) = (Z§+)5 alz.\'(g_) = aZZ.\'(§+)}
It is easy to check that A is self-adjoint,
(Azz) =0 (6.6)

for all z € dom(A), and that ‘A has compact
resolvent. It follows in particular that “A generates
a Cy-semigroup. It is also clear that O is an eigen-
value of A with normalised eigenvector e(x) = 1.
Let B:R— X be given by Bu=b(-)u and let
2(#) = w(-,t). The system (6.1)—(6.5) is equivalent to
the following abstract system with state space X:

2() = Az(t) + Bu(r) (6.7)
y(t) = kB*z(1) (6.8)

The transfer function can be written as
H(s) = kB*(slI - A)~'B

Since b € X, B is a bounded operator into X, and
hence it is easy to verify that H(s) is analytic in
Cg' \ {0} and regular, and that

yH) =0
If u(t) = —y(r), (6.7) becomes
1) = (A—-kBB*)(t)

(6.9)

We show that the Cjy-semigroup generated by
A - kBB* is exponentially stable. To this end, note
that A — kBB* is self-adjoint and
(A -kBB*)z,2) ={(Azz)—k|B*z
for all z € dom (A) (6.10)

Set X, = {aela € R} and X,=X}. If z € X,, then
z=ae for some a € R, and thus
0(2 1 2
kB*2* =k ( f b(x) dx)
8 0

2

o?
= kgf (2 = xl)2

= ’/nl”Z |2’ for Z € Xu

(6.11)

341

where m, =k&2 (x,—x,)>. Moreover, for some
m, >0
(Azz) = -mydf,  forz € X, N dom(A) (6.12)

Combining (6.6), (6.10), (6.11) and (6.12), we see
that, for some m; > 0

(A-kBB*)z.2) = -myz
for all z € dom(A)

.

from which we may conclude that the C,-semigroup
generated by A-—kBB* is exponentially stable.
Therefore, the closed-loop system is modally stable
when there is no delay in the feedback loop. Com-
bining Corollary 5.4 and (6.9) shows that there
exists €* >0 such that for all € e (0,e*) the
feedback u(f) = —y(t —¢) produces a modally stable
closed-loop system.

Example 2

In this example we describe systems with distributed
and co-located control and observation for which
negative unity output feedback leads to an input—
output stable closed-loop system, but arbitrarily
small delays result in exponentially growing modes.
Let A be the generator of a strongly continuous
semigroup on a real or complex Hilbert space X,
with inner product (-,-), and suppose that A is
dissipative, i.e.

Re (Ax.x) = 0, for all x € dom(A) (6.13)

Let b € X, and consider the control system on X
described by

21y = Az + bu(r),  y(t) = k(z(1),b)
where k > 0. The transfer function of (6.14) is
H(s) = k{(s] — A)"'b,b)

Since b e X, H(s) is
feedthrough O.

(6.14)

clearly regular with

Lemma 6.1. The transfer function H(s) is holo-
morphic in C,

Re H(s) = 0, forall s € C, (6.15)
and
H H~ 6.16)
1+H S (®.

Proof. Note first that, by (6.13), C, is contained in
the resolvent set of A. It follows that H is holo-
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morphic in C,. For s € C,, set y(s) = (si- A)'b
e dom(A). Then
Re H(s) = Re (b,ii(s)) = Re ((s] — A)Y(s),i(s))
= (Re s){(s),¥(s)) — Re (AY(s),Y(s))
=0

using (6.13) and the fact that Re s > 0.
To prove (6.16), observe that, by (6.15), we have

[1 +H(s)|=1+Re H(s)>1, forall s e C,

and hence
H =1 ! H~ O
1+H  1+H°C

Lemma 6.1 means that the feedback u(f)=—y(¢)
stabilises (6.14) in an L*input-output sense. If
(6.14) is the abstract formulation of a system in the
form (OLS) (see Section 2) satisfying (A1) and
(A2) and if

yH) > 1 (6.17)

then Corollary 5.3 applies, so there exist arbitrarily
small delays € such that the feedback u(t) =—y(t — €)
leads to a closed-loop system with exponentially
growing modes.

For instance, suppose that the following two con-
ditions hold:

(Cl) A has an orthonormal basis of eigenvectors
{®;} with associated eigenvalues {A;}, where
Re A; = 0 and lim,_.. |A|=00;

(C2) b = %B;P;, where infinitely many of the B;s
are non-zero.

Then

B

H(s) = >, 1)
and it is easy to see that (6.13) and (6.17) hold.
Related conditions for lack of time-delay robustness
are given in Datko and You [5]. Of course, con-
ditions (C1) and (C2) above are far from necessary
for (6.13) and (6.17) to hold, but they are often
easily checkable, as in the following specific
example.

Consider a Euler-Bernoulli beam with hinged
boundary conditions on the left end and sliding
boundary conditions on the right end, and co-
located observation.

forRe s >0

WilX0) + W X:0) = (1/0) X,y OU(D), x € (0,1), =0
(6.18)
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Ww(0.6) = w(0.0) = w.(1,) = w..(1,) = 0 (6.19)
(t)*ijzw(xt)dx k>0
=g o (6.20)

where 0 =< x;, < x, = 1 and 6 = x, — x,. This system
is of the form (OLS) satisfying (Al) and (A2).

If x, =1 and x, is close to 1, then b is an
approximation to the delta function at 1, so this
system may be thought of as an approximation of
the boundary control system

w, (0 + wo(6) =0, x e (0,1),t=0 (6.21)
w(0,) = w (0,1) = w(1,1) = 0, w..(1,1) = u(t) (6.22)
y(t) = kw(l,t), k>0 (6.23)
It is well-known that (6.21)—(6.23) is exponentially
stabilised by u(f) = —y(f) (see Chen et al. [2]) and
that this stabilisation is not robust with respect to
delays (as was first shown for a similar system in
Datko [3]). The system (6.18)—(6.20) is not exponen-
tially stabilised by u(f) = —y(¢), since both the input
and observation operators are bounded (see, for
instance, Russell [13]). However, we will show that
u(t) = —y(¢) L*-stabilises (6.18)—(6.20), and that arbi-
trarily small delays in the feedback loop lead to
exponentially growing modes.

To put (6.18)—(6.20) in an appropriate state space
setting, define the operator A, on L*(0,1) by

Az = Diz,
dom(A,) ={z € H*0,1) |
2(0) = D,,z(0) = D,z(1) = D,z(1) = 0}

The operator A, is self-adjoint on L2(0,1) and posi-
tive semi-definite, i.e.

(Apz,2) = 0,
Let

X = dom(A?) @ L*0,1)
with inner product

([z1,22)"[viva]") = (AY? 24, AY? V1>L2<0,1)

+{22V2)120.1)

for all z € dom(A,)

Define

0 1
A= (—ﬂo 0)
with domain
dom(A) = dom(A,) ® dom(A}?)

It is well-known that A is the generator of a C,-
semigroup on X. Let n; = —(@/2) + mj and ¢ (x) =
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V2sin(n;x). Then {n}}2, are the eigenvalues of A,
{¢,}21 are the associated eigenvectors, and {d}%, is
an orthonormal basis for L*(0,1). It is easy to check
that if

b, = —
A2 | i
then ®,; is an eigenvector of A with associated
eigenvalue A, = Zin7, and that {®,}7, is an
orthonormal basis for X. Hence A satisfies condition
(C1) above.
Let
0
b:=11 e X
SX[XI,.XZ]

Then system (6.18)—(6.20) is equivalent to

() = Az(t) + bu(t),  y(t) = k(z(1),b)
(6.24)

where z() = [w(.0), w(,)]". We then see from
Lemma 6.1 that the feedback u(r) = —y(¢) stabilises
(6.183)—-(6.20) in the L*input-output sense, i.e.
H/(1+H) € H”, where H(s) denotes the transfer
function of (6.18)—(6.20) (which, of course, is also
the transfer function of (6.24)). We can write

b= Z (B + B, P_)

J=1

(6.25)

where
Bsy =<b, s = % J ’ b,(x)dx

+i
= (cos(mpxz) — cos(nyx,) (6.26)
Ty
If x, is not a rational multiple of x,, it is very easy
to show that cos(mux,) —cos(nx,) # 0 for any j.
More generally, we have the following lemma.

Lemma 6.2. There are no three consecutive integer
values of j such that cos (nx,) — cos(nx,) = 0 for
all three.

This lemma, combined with (6.25) and (6.26), shows
that b satisfies condition (C2), so that y(H) = oo,
and hence, by Corollary 5.3, there exist arbitrarily
small € > 0, such that the feedback u(f) = —y(r —¢)

343

applied to system (6.18)—(6.20) results in exponen-
tially growing modes.

Proof of Lemma 6.2. Suppose cos(myx;) — cos(nx,)
= 0 for three consecutive integers j, j+ 1 and j+ 2.
Then there exist integers, ko, k; and k, and choices
of + or — such that

(—(7/2) + w)x, = £(—(7/2) + m)x, + 277k (6.27)

(—(72) + w(j+ 1)xy =H(—(7/2) + 7(j + 1))x, + 27k,
(6.28)

(—(72) + 7(j + 2))x, =2(—(7/2) + 7(j + 2))x, + 277k,
(6.29)

At least two of these equations have the same choice
of + or —.

Case 1. (6.27) and (6.28) have the same choice
of sign.

In this case subtract (6.27) from (6.28) and divide
by 7 to obtain

Xy = +_x1 + 2(kl —ko)

Since 0 = x; < x, = 1 and (k; — k) is an integer,
this is impossible.

Case 2. (6.28) and (6.29) have the same choice
of sign.
This case proceeds exactly like Case 1.

Case 3. (6.27) and (6.29) have the same choice
of sign.

In this case subtract (6.27) from (6.29) and divide
by 27 to obtain

X, = 1x; + (ky — ko).

Hence x, * x; must be an integer. Since 0 = x,
< x, = 1, it follows that x, + x; = 1. If x, —x; =1,
then x,=1 and x, =0, which contradicts (6.27),
since 1/2 + j # 2ko. If x, + x; = 1, then plugging
x,=1-x, into (6.27) also easily leads to a contra-
diction.

Therefore, all three cases lead to a contradiction,
so there do not exist three consecutive integers j for
which cos(mx;) — cos(nx,) = 0, proving the lemma.

0O
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