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The Effect of Small Time-Delays on the Closed-Loop 
Stability of Boundary Control Systems* 

Hartmut Logemannt and Richard Rebarber:~ 

Abstract. It has been observed that for many stable feedback systems, the intro- 
duction of arbitrarily small time-delays into the loop causes instability. In this 
paper we present a systematic treatment of this phenomenon for a large class of 
boundary control systems which allows for in-span control. Our approach is 
based on a combination of input-output methods and modal analysis. We give 
a number of sufficient conditions for robustness/nonrobustness of closed-loop 
input-output stability with respect to delays. Our framework includes a large 
class of ill-posed systems, i.e., systems whose open-loop transfer function is 
unbounded on any right half-plane. We then analyze the relationship between 
the poles of the transfer function and the exponential modes of the underlying 
boundary-value problem to derive internal stability properties from external ones. 

Key words. Small time-delays, Stability, Robustness, Partial differential equa- 
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1. Introduction 

It is well known that for many stable feedback systems the introduction of small 
delays into the feedback loop can cause instability. While this phenomenon even 
occurs in finite-dimensional feedback systems, it becomes considerably more com- 
plicated in infinite dimensions due to the rich high-frequency behaviour exhibited 
by many distributed parameter systems. In the last decade various authors have 
presented specific partial differential equations (PDEs), or classes of related PDEs, 
which are exponentially stabilized by some feedback, but destabilized when arbi- 
trarily small delays are introduced into the feedback loop, see, for example, I-4]- 
I-7], [9], and [11]. More precisely, it was shown that there exists a sequence of 
delays e. > 0 with lim,.o~ ~, = 0 such that the feedback system with delay e, in the 
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loop has an unstable mode. By "mode" we mean a solution of the form e~~ where 
~0 @ 0 is a function of the space variable. A mode is called unstable if the exponent 
So satisfies Re s o > 0. We say that a system described by PDEs is modally stable if 
it has no unstable modes. While the above papers are based on PDE and related 
techniques, the problem of robustness/nonrobustness in the presence of small 
delays has also been investigated using frequency-domain approaches, see [1] and 
[15]. Closely related to these papers is the work by Georgiou and Smith [10]. 
However, their concept of w-stability is considerably stronger than robust stability 
with respect to small delays; it covers a large class of perturbations which represent 
high-frequency modelling uncertainties including small time-delays. 

In the frequency-domain a linear time-invariant system is described by a transfer 
function matrix tI. Applying negative unity feedback in the presence of a delay 5 >_ 0 
in the loop leads to the closed-loop transfer function G,(s) = H(s)(I + e-'SH(s)) -1. 
A transfer function is called spectrally stable if it is holomorphic in the closed right 
half-plane and it is called L2-stable if it is holomorphic and bounded in the open 
right half-plane. If Go is spectrally stable or LZ-stable, then either form of stability 
is called robust with respect to small delays if it is preserved for all sufficiently small 
delays, i.e., if there exists 5" > 0 such that G~ is stable for all 5 ~ (0, e*). In [15] 
conditions are given (in terms of the high-frequency behaviour of H) for robustness 
and nonrobustness of L2-stability if the open-loop transfer function H is in the 
class of regular transfer functions, defined in Section 3. This class contains all 
well-posed transfer functions which are relevant in the applications to PDEs and 
functional differential equations, 1 where well-posedness means that H is bounded 
on some right haft-plane. While the frequency-domain approach in [15] is quite 
general in the sense that it is not tied to specific classes of PDEs and boundary 
conditions or specific feedback laws, the results obtained are external in the sense 
that the conclusions are in terms of G~, and not in terms of the solutions of the 
PDE. 

The purpose of this paper is twofold. The results in [15] apply to regular transfer 
functions. However, examples in the PDE literature (in particular, see [5] and [-9]) 
seem to indicate that systems with open-loop transfer functions which are ill-posed 
(that is, not well-posed) are even more likely to be destabilized by delays than 
well-posed systems. Thus the first goal in this paper is to present destabilization 
results for systems with ill-posed open-loop transfer functions. We find that if the 
open-loop transfer function is ill-posed, then G~ is not well-posed, and hence not 
L2-stable, for all e > 0. Moreover, in Theorem 3.7 we identify a class of ill-posed 
transfer functions for which there exist delays 5, ~ 0 and complex numbers s, with 
Re s, ~ ~ such that G~. has a pole at s,. 

The second goal of this paper is to identify a large class of multivariable systems 
described by PDEs for which results about robustness/nonrobustness of spectral 
stability translate to results about robustness/nonrobustness of modal stability. 
The class we consider consists of linear PDEs of spatial dimension 1, where on 

For an application of the frequency-domain results in [15] to neutral functional differential equa- 
tions, see [16]. 
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different parts of the space interval different PDEs are satisfied. The coefficients 
may depend on the spatial variable. The boundary conditions are general enough 
to allow all natural coupling conditions and in-span control, including some dy- 
namic control. It is not assumed that the controlled, observed system has any 
useful (A, B, C, D) state-space representation, and in fact many systems in our 
class do not. Moreover, we do not even assume that the free dynamics are de- 
scribed by a strongly continuous semigroup. In order to relate modal stability of 
the PDE to the spectral stability of the transfer function, a relationship between the 
modes of a PDE and the poles of the associated transfer function is needed. A 
natural relationship, expected for systems which have a state-space representation, 
is that a pole So of the transfer function leads to a mode with exponent So of the 
corresponding free dynamics and we find this to be the case for our class of 
systems. Of course, as in finite dimensions, it is possible that a mode will not 
appear as a pole of the associated transfer function, since any possible effect of the 
mode on the output might be anihilated by the observation and control operators. 
However, the results in Section 2 will be used to show that for any system in our 
class the exponents of the unstable modes and the unstable poles of the transfer 
function coincide, provided the closed-loop system (without delay) is modally 
stable. This result will in turn be applied to prove that for a large class of systems 
robustness of spectral stability implies robustness of modal stability. 

The paper is organized as follows. Section 2 contains preliminaries about factori- 
zations of matrix-valued meromorphic functions, which are needed later in the 
paper. In Section 3 we prove a number of robustness and destabilization results for 
ill-posed systems in a frequency-domain setting. We emphasize that most of the 
results in Section 3 cover not only single-delay perturbations but also multidelay 
perturbations of the form diag(e - ~ ,  . . . .  e-~-"). In Section 4 we discuss robustness/ 
nonrobustness of modal stability for a class of systems described by PDEs with 
boundary and in-span control. Finally, in Section 5 we present three examples 
illustrating the results in the previous sections. 

2. Coprime and Bi-Coprime Factorizations of Matrix-Valued 
Meromorphic Functions 

Let ~ e ~. We use the notation C~ := {s e C IRe s > e}. Furthermore, we define 

ovg_ := {f: f~s ~ ClOy open, f~I ~ C ~  and f holomorphic}, 

~gg- := {f: ~ I  ~ C Ifll open, f~I ~ C~ and f meromorphic}. 

Let m, l ~ N and let H e d//_ ~ • ~. A number p E C~ is called a pole of H, if p is a pole 
of at least one entry of H. We say that H e ~/~ • is invertible if det H(s) ~ 0. 
The inverse H -1 is then in ~/~ • and is given by Cramer's rule, i.e., H -1 = 
(1/detH)adj(H), where adj(H) denotes the adjugate of H. Obviously, H is 
invertible if and only if det H(so) r 0 for some s o ~ C~. 

A matrix H e ~_m • is called unimodular if it is invertible and H -~ belongs to 
~ y  • m as well. Clearly, H is unimodular if and only if det H(s) r 0 for all s e Cg ~. 
Two matrices N ~ july • and D ~ ~vf~ • t are called right-coprime if there exist 
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X E o~/• and Y s AP_ l • such that XN + YD = I. Similarly, two matrices 
lq s ~_m • and 13 ~ ~_m • m are called left-coprime if there exist X ~ g/g_t • and 
~" ~ ~__" • such that I~X + 13Y = I. 

The following lemma can be found in [16]. 

Lemma 2.1. Suppose H e dg m_ • ~. Then the following statements hold: 

(i) H admits a right-coprime factorization (N, D) over g/g_, i.e., there exist right- 
coprime matrices N e ~ Y  • and D e ~_! • such that det D(s) ~ 0 and H = 
ND -1. The matrices N and D are unique up to multiplication from the right 
by a unimodular factor. A number p ~ C~o t is a pole of H if and only if 
det D(p) = 0. 

(ii) H admits a left-coprime factorization (D, N) over ~_ ,  i.e., there exist left- 
coprime matrices 13 ~ jg_m • and N e g/g_,n • such that det 13(s) ~ 0 and H = 
13-I~. The matrices 13 and bi are unique up to multiplication from the left 
by a unimodular factor. A number p ~ C~o l is a pole of I t  if and only if 
det 13(p) = 0. 

(iii) I f  (N, D) is a right-coprime factorization of H over ~_  and if (D, N) is a 
left-coprime factorization of H over ~_ ,  then the zeros of det D and det 13 in 
C~o z coincide (counting multiplicities). 

For  h e ~ _  and s e C~ we define 

J'0 if h(s) ~ O, 
zeros(h) 

multiplicity of s if h(s) = O. 

Let H e rig_ m • ~ and let (N, D) be a right-coprime factorization of H over g/t~ For  
s ~ C~ l we define 

poles(H) := zeros(det D). 

If p e C~ ~ is a pole of H, then we define its multiplicity to be polep(H). Lemma 2.1 
shows that we obtain the same concept if in the definition of poles(H) the matrix D 
is replaced by the "denominator" 13 of a left-coprime factorization of H. 

Suppose that H ~ dg~ • l, N ~ ~r ~ • n, D ~ ~ 2  • and lq ~ ~ 2  • l, where n ~ N. 
The triple (N, D, lq) is called bi-coprime if N and D are right-coprime and if lq and 
D are left-coprime. We say that the triple (N, D, lq) is a bi-coprime factorization of 
H over ~ _  if(N, D, lq) is bi-coprime, det D(s) ~ 0, and H = N D -q q .  Let So ~ C~ I. 
If 

rank(Nr(so), Dr(so)) = rank(lq(so), D(so)) = n, (2.1) 

then we say that (N, D, lq) satisfies the generalized Hautus conditions in So. 

Remark 2.2. It is not difficult to show that (N, D, N) satisfies the generalized 
Hautus conditions in s o ~ C~ ~ if and only if there exist an open neighbourhood U 
of s o and matrices X, Y, X, and Y whose entries are holomorphic on U and such 
that the Bezout identities X(s)N(s) + Y(s)D(s) = I and N(s)X(s) + D(s)~'(s) = I 
hold for all s ~ U. In fact, while it is trivial that the Hautus conditions are necessary 
for the solvability of the Bezout equations, sufficiency follows from the fact that the 
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elementary divisor theorem holds for holomorphic matrices, i.e., any holomorphic 
matrix is equivalent to its Smith form (see p. 139 of [18]). Moreover, the same 
argument applies globally, and thus (N, D, lq) is bi-coprime if and only if it satisfies 
the generalized Hautus conditions in s for all s �9 C~. 

Proposition 2.3. Let N �9 ~_m • D �9 ~_" • and N �9 ~,~n • suppose that 
det D(s) ~ 0 and set H = ND-11q. I f  (2.1) holds for some So e C~, then 

pole~o(H ) > 0 -~- zerO~o(det D) > 0. (2.2) 

In particular, if the triple (N, D, lq) is bi-coprime, then (2.2) holds for all So �9 C~o I. 

The above proposition follows from a considerably stronger result by Pandolfi 
[20] which says that, for any So �9 C~ t, 

pole~o(H ) = zerO~o(det D) r (2.1) holds. 

For sake of completeness we give a simple direct proof of Proposition 2.3 which 
does not rely on Pandolfi's result. 

Proof of Proposition 2.3. Clearly, if poleso(H ) > 0, then zeroso(det D) > 0. Con- 
versely assume that zerO~o(detD ) > 0. By Remark 2.2 there exist an open 
neighbourhood U of So and holomorphic matrices X, Y, X, and Y on U such that 

X(s)N(s) + Y(s)D(s) = 1 and N(s)f((s) + D(s)C~(s) = 1, Vs �9 U. (2.3) 

By the first equation, XND -1 + Y = D -1, and it follows that 

pole~o(ND -1) > 0. (2.4) 

Multiplying the second equation in (2.3) with N D  -1 from the left we obtain 
HX + N~ r = N D  -~. Combining this with (2.4) shows that pole~o(H ) > 0. �9 

Finally, we prove a simple lemma which will be needed in Section 4. 

Lemma 2.4. Let N e ~ Y  • n, D e ~_~ • ~, N �9 ~"_ • z, and F �9 ~tt~t_ • suppose that 
det D(s) ~ 0 and set H = N D-1N .  Then the following statements are true: 

(i) The matrix I + F H  is invertible if and only if D + IqFN is invertible. I f  this 
is the case, then 

I-I(: + FI-1) -~ = N(I) + RFN)-~R.  (2.5) 

(ii) Let So e C~o t. The triple (N,D,  lq) satisfies the generalized Hautus conditions in 
So if and only if(N, D + NFN,  lq) does. 

Statement (ii) implies that if det(D(so) + N(so)F(so)N(so)) ~ O, then 
(N, D, 1~) satisfies the generalized Hautus conditions in s o. In particular, if  
det(D(s) + ~I(s)F(s)N(s)) ~ 0 for all s �9 C~o ~, then (N, D, lq) is bi-coprime. 

Proof. (i) If I + F H  is invertible, then it is not difficult to show that 
D - a ( / -  lq(I + F H ) - I F N D  -1) is the inverse of D + lqFN. Conversely, if D + 
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lqFN is invertible, then I - FN(D + NFN) - i l q  is the inverse o f / +  FH. The proof  
of formula (2.5) is straightforward and is left to the reader. 

(ii) Let x s C". The claim follows from the following two equivalences 

D ( s o ) / x  = 0 *~ D(so) + N ( s o ) F ( s o ) N ( s o ) ]  x = O, 

xr(N(so), D(so)) = 0 <:> xr(N(so), D(so) + N(so)F(so)N(so)) = O. �9 

The above lemma is purely algebraic. If has, however, a control interpretation: 
If H is the transfer function of a linear system and if F is the transfer function of a 
feedback law, then (2.5) is the corresponding closed-loop transfer function. More- 
over, in many cases the stability of the feedback system is determined by the zeros 
of det(D + NFN). In Section 4 and 5 we combine Proposition 2.3 and Lemma 2.4 
to relate external and modal stability. 

3. Robustness and Nonrobustness with Respect to Small Delays in 
the Frequency-Domain 

Let a e N. The field of all meromorphic  function on C, is denoted by all,, while ~ 
denotes the algebra of all holomorphic functions on C,. H~  denotes the algebra of 
all bounded holomorphic functions defined on C,. We write H ~ for H~.  I f f  e ~ / ,  
and 9 e ~/gp, where a < fl, and if f (s) = 9(s) for all s e Cp, then we identify f and 9. 
Consequently, we have 

~ c J / / l p ,  ~ c ~ ,  H ~ c H ~  if a < f i .  

Let f2 c C. A function H: f~ --r C m x m is called a (C m • m-valued) transfer function 2 if 
there exists ~ e R such that C~ c f~ and H[c, e ~///~ • 

Let H be a transfer function and for ~' = (e 1 . . . . .  era) e [0, ~)m set 

E~(s) := diagi_<i<m(e-~J'). 

Consider the feedback system shown in Fig. 3.1, where u is the input function, y is 
the output function, and the block with transfer function E~(s) represents a delay 
by ej _> 0 in the the j th  feedback loop, j = 1 . . . . .  m. If d e t ( / +  E~(s)H(s)) ~ 0, then 
the function G~. defined by 

G~(s) := H(s)(I + Eg(s)H(s)) -1 (3.1) 

is a transfer function, the so-called closed-loop transfer function of the feedback 
system shown in Fig. 3.1. 

Definition 3.1. G~ is called L2-stable if Gr ~ (H~) m • G~" is called spectrally 
stable if G~ e ~ Y  • m. 

2 We assume that all transfer functions are square. If we want to apply feedback and the plant H is 
not square, we use a compensator K such that HK is square, and absorb K into H. 
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U 

-[ H 

I- 
Fig. 3.1. Feedback system with delay. 

Y 
Ii  

It is well known that L2-stability of Gr is equivalent to the existence of a 
constant K > 0 such that 

IlYIIL=(O, o~) ~ K IlullL=(O, ~), Vu �9 L2(0, ~3; cm), 

where u and y are related as in Fig. 3.1. Moreover, notice that G~ is spectrally 
stable if and only if G~ �9 jg_m • m and G~ has no poles in C~ t. 

It is easy to see that if G~o is LZ-stable for some eo E [0, ~)m then H �9 Jt~' • m. 
Similarly, if there exists ~'o �9 [0, m)" such that G~o is spectrally stable, then 
H �9 ~ p  • 

Definition 3.2. Let H be a transfer function. H is called well-posed i fH  �9 (H~) m • 
for some ~ �9 R. Moreover, H is called regular if it is well-posed and if the limit 
l imr  = D exists (where ~ �9 R). The matrix D is called the feedthrough 
matrix of H. If H is not well-posed, we say that it is ill-posed. 

Well-posed and regular transfer functions play an important role in the theory 
of abstract infinite-dimensional control systems, see [22] and [23]. 

Nonrobustness Results 

For  a transfer function H let r denote the set of its poles. We define 

~(H) := lim sup r(H(s)), (3.2) 

where r(H(s)) denotes the spectral radius of H(s). As usual, the spectrum of H(s) is 
denoted by a(H(s)). 

The following destabilization result for regular transfer functions was proved by 
Logemann and Townley [16]. We write G~ for G~ if the components of E satisfy 
e~-- e_> 0 f o r a l l i - -  1 . . . .  , m. 

Theorem 3.3. Let H be a transfer function and suppose that H is regular with 
feedthrough matrix D. Then the following statements hold true: 
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(i) I f  G O is L 2-stable, and if ~(H) > 1, then there exist sequences (~.) and (p.) with 

e. > 0, lim ~. = 0, p. ~ Co, lim lira p.[ = o% 
n--* oo n--~ oo 

and such that, for any n ~ N, p. is a pole of G. . 
(ii) I f  r(D) > 1, then there exists sequences (en) and (p.) with 

e. > 0, lim e,, = 0, p. e Co, lim Re p. = o% lim I Im p. I = oo, 
n --* rio t /- '* oo n - '*oo 

and such that, for any n ~ N, p. is a pole of G. . 

There are many PDE models of physical and technical systems which have 
transfer functions which are not well-posed. In the following we show that if H is 
not well-posed, then the robustness properties of Go with respect to small delays 
are extremely poor (as has been observed in [9] for a class of systems governed by 
skew-adjoint generators), in fact they are worse than in the regular case. First we 
show that if H is not well-posed, then G~ is not well-posed (and hence in particular 
is not L2-stable) for any ge  (0, ~)m. 

Proposition 3.4. Suppose that H is a transfer function. I f  H is well-posed, then 
G~ is well-posed for all ~ (0, oo)". Conversely, if G~o is well-posed for some 
-go ~ (0, co) m, then H is well-posed. 

Proofi If H is well-posed, then it is clear that for any ~ e (0, ~)m the transfer 
function G~ is also well-posed, since IIE~s)H(s)[I < 1 in C, for large enough ~. 
Conversely, assume that G~o is well-posed for some go E (0, ~ ) ' .  Then the transfer 
function (I - G~oEzo) -1 is well-posed, and so is H = (I - G~oE~o)-IG~o . �9 

The following corollary is a trivial consequence of Proposition 3.4. 

Corollary 3.5. Let H be a transfer function. I f  H is not well-posed, then G~q~ 
(H ~ ),. • m for all ~ ~ (0, oo) m. 

The corollary says in particular that if H is not well-posed and if Go is L'-stable, 
then any positive time-delay will destroy the L2-stability of the undelayed closed- 
loop system. Note that Corollary 3.5 does not ensure the existence of poles of G~ 
in the open right half-plane. The following simple example shows that there exist 
transfer functions which are not well-posed and which have the property that the 
delayed closed-loop transfer function is spectrally stable for all sufficiently small 
delays. 

Example 3.6. Consider the transfer function H(s) = 2e ~ which clearly is not well- 
posed. The delayed closed-loop transfer function 

H(s) 2e ~ 
G ~ ( s )  - 

1 + e-~H(s) 1 + 2e (1-8)~ 

is in W_ for any e e (0, 1). 
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The next theorem shows that  for a large class of ill-posed transfer functions 
arbitrari ly small delays lead to closed-loop poles with arbitrarily large real parts. 
In order  to state the theorem we introduce some more  notation.  Fo r  ~ ~ (0, n] 
define the open sector 5e(5) by 

Af(5) := {2e~Wl2 ~ (0, ~ ) ,  g, ~ ( - 5 ,  5)}, 

and for ~k o E [ - n ,  n) set 

5f(~h o, 5):= e~~ 

Theorem 3.7. Let H be a transfer function and assume the following: 

(1) There exist 0 ~ (0, zt/2) and ~ > 0 such that H(s) is holomorphic in Sf(O) n C~. 
(2) There exist numbers p > a, v > 0, ~b o ~ [ -  7z, n), 5 ~ (0, 0), and ~/e (0, re/2) such 

that 

lim r(H(s)) = m, (3.3) 

r(H(s)) < ]sl ~, Vs E 5e(6) n Cp, (3.4) 

a(H(s)) c C\6a(ffo, ~/), Vs ~ 6P(5) n Cp. (3.5) 

Then there exist sequences (e.) and (p.) with 

e, > 0, e, ~ 0, p. ~ Co, Im p, ~ ~ ,  

and such that, for any n e N, p, is a pole of G~ . 

Re Pn ~ oo 

Condi t ion (3.3) guarantees that  H is not  well-posed. If Go is L2-stable, then it 
follows from Lemma  6.3 in [16] that  

lim lia(s)ll = ~ =~ lim r(H(s)) = ~ .  

Therefore Theorem 3.7 remains true if r(H(s)) is replaced by IIH(s)ll, provided that  
Go is L2-stable. Condi t ion (3.5) says that  the spectrum of H(s) does not  spiral 
a round the origin as s moves in a sector of sufficiently small angle. 

Proof of Theorem 3.7. Let  H(s) be of size m x m and let s ~ 5g(0) n C~. Moreover ,  
let E be the largest nonnegat ive integer such that  det(2I - H(s)) can be written in 
the form 

det(2I - H(s)) = 2I(2 " - t  + h,,_t_l(s)2 "-e-1 + . . .  + ho(s)), 

where the hi are ho lomorphic  functions defined on 6e(0) n C~. By (3.3), f < m - 1, 
and by the maximali ty of ~ we have that  ho(s) ~ O. Clearly, E > 0 if and only if 
det H(s) - 0. Fo r  s e 5P(0) n C~ define 

h~(2) := 2 m-t + hm_f_l(s)2 "-~-1 + " "  + ho(s), ((h~) := {2 ~ CIh~(2) = 0}. 

Obviously,  for given So e 6e(0) n C~ we have 

0 e ((h~o) -~  ho(so) = 0. (3.6) 
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Moreover, 

((h~) c ~r(H(s)), Vs ~ 50(0) n C,. (3.7) 

Set q~o := { 2e`t~176 12 > 0} and let arg: C\q'o ~ (~o, ~ko + 2re) be a continuous branch 
of the argument on C\W o. Then, by (3.5), arg 2 is well defined for any 2 
a(H(s))\{0), where s ~ 5~ ~ Co. For all such s we define 

A~ := {arg 212 ~ a(H(s))\{0}}. 

In the following let f le  (0, tan 5). By (3.3) there exists R _> p such that A, r ~ for 
all s ~ 50(6) n CR, and 

sup A~ + 3n 
log r(H(s)) > 0, Vs e 50(6) ~ C R. (3.8) 

fl 

For a, b s C, let ra, b] denote the closed segment in the complex plane with 
endpoints a and b. We define # := inf~ ~(~)~ c,(inf A~ + 3re) > 0 and 

# 
a. := (3.9) 

2 2v log(x/1 + fl x,) 

where (x,) is a sequence in R with lim,_~ x, = oe. We choose the x, such that 
x, > max(a, R) and a. < fl for all n s N and 

ho(s ) r O, Vs ~ Ix,,, x,, + tflx,,], Vn ~ ~ .  (3.10) 

Note that by the choice of fl and x, 

x, + la,x. e I-x,, x ,  + l f lx ,]  c 50(6) ~ CR, Vn ~ N. 

Using (3.4) and (3.9) we obtain that, for all s ~ [x , ,  x ,  + t f lx ,] ,  

inf A~ + 3rr 
log r(H(s)) 

an 
< log Isl ~ # 

an 

_< v log(x/1 + fl2x,,) -- 2v log(x/1 + f l2x.)  

<0.  

Setting z; := (1 + t a , ) x ,  and z~' := (1 + l f l )x ,  we have that 

[z'., z;'] c Ix . ,  x.  + l/~x.] = 50(,~) n CR, 

and, moreover, 

Re z', 1 Re z~' 1 

Imz" a , '  Imz"  fl" 

Hence it follows from (3.11) and (3.8) that 

log r(H(z')) (inf Az, + 3~) Re z',, 
- " < 0 ,  ! 

I m  z n 

log r(H(z")) -- (sup A~;, + 37r) Re z,' > 0, 
r Im z, 

V n  ~ N ,  

(3.11) 

Vn ~ N. (3.13) 

Vn e N, (3.12) 
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An application of  Propos i t ion  5.2 in [16] shows that  there exists a ho lomorphic  
function 2, defined on an open set U, = [z'., z, '] such that  I,~.(z~')l = r(H(z~')) and 
2,(s) e ((hs) for all s e U,. 3 A combina t ion  of  (3.6) and (3.10) shows that  2,(s) r 0 for 
all s e U,, provided we choose U, small enough. It  then follows from (3,12) and 
(3.13) that  

(arg 2(z~) + 3n) Re z" 
logl2.(z',)] - < 0, Vn E N, (3.14) 

Im z'. 

(arg 2(z~') + 3z0 Re z" 
logLR,(z~')l - - -  > 0, Vn ~ N. (3.15) 

Im z~' 

We show that  there exist sequences (~,) in (0, ~ )  and (p.) in Co with ~, + 0 and 
r p, ~ [z',, z, ] and such that  

log 2.(p,) - ~,p. = - 3tTz, Vn E N, (3.16) 

where we choose the branch of  the logar i thm to be log z = loglz[ + t arg z, with 
z ~ C\q~o and loglz] ~ ~. Since, by (3.7), 2,(s) e o-(H(s)) for all s e U,, it is easy to 
see that  (3.16) is a sufficient condit ion for G, . ( s )  = H(s)(I  + e-~-~H(s)) -1 to have a 
pole at p,. 

Fo r  each n e N and each s e [z',, z~'] the ray 

R, ( s )  :=  {log )~.(s) - e s l e  e [0, ~ )}  

intersects the horizontal  line 

L :=  {s e C l Im s = -3r t} .  

Indeed, for e = 0 the corresponding point  of R. ( s )  is above L, while for large e > 0 
the corresponding point  is below L. 

Thus, for each n ~ N, we can define real-valued functions w.(s)  and e.(s) > 0 for 
s e [z'., z~'] such that  

log 2,(s) - e , (s )s  = w,(s)  - 3trc. (3.17) 

Taking real and imaginary parts in (3.17) it follows that, for all n e N and for all 
s e [z'., z"] ,  

arg 2.(s) + 3re 
e,(s)  - Im s ' (3.18) 

(arg 2,(s) + 3re) Re s 
= - (3.19) w,(s)  logl2,(s)l Im s 

Using (3.14) and (3.15) we see that, for all n e N, 

w.(z'.) < 0, w.(z;') > O. 

3 This is only true if U. c~ ~n = ~,  where ~H denotes the set of critical points of H as defined in [16]. 
However, since ~a is a discrete set, we can choose the x. such that [x., x. + tflx.] c~ ~n = Z~. Conse- 
quently, U, c~ ~a = ~ for sufficiently small sets U.. 
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Hence, since w, is cont inuous on [z~, z,'], there exists p, ~ [z ' ,  z~'] such that  
w,(p,) = 0 for all n e N. Setting e, := e,(p.) > 0 it follows from (3.17) that p, and e, 
satisfy (3.16). Finally, Re p. = x ,  --* 0% and, moreover ,  

"= pX, 
I m p ,  > ~ .x .  2v log(x/1 + fl~x.) + oe. (3.20) 

Combining (3.18) and (3.20) shows that e, ~ 0. �9 

The next result gives a sufficient condit ion for assumption (2) in Theorem 3.7 to 
be satisfied. 

Proposition 3.8. Let H be a transfer function and suppose that assumption (1) in 
Theorem 3.7 is satisfied. Moreover, assume that there exist a number ~ ~ ~ and a 
transfer .function H such that 

n(s)  = (a + bs)~g-I(s), u e C,, 

where a, b ~ C, b r O, and v > O. I f  there exists 6 > 0 such that 

lim I-7I(s) = D, D ~ C"  • 

with det D ~ 0, then H(s) satisfies assumption (2) in Theorem 3.7. 

The proof  of Proposi t ion 3.8 is s traightforward and is left to the reader. 
Finally, we give a simple instability result which applies to regular, well-posed 

as well as to ill-posed transfer functions. 

Proposition 3.9. Let H be a transfer function and assume that H ~ dg ~_ • ". I f  

lim inf ama~(H(zco)) < 1 and lim sup Crmi,(l-l(lco)) > 1, (3.21) 

where am~ ~ and am~ ~ denote the maximal 4 and the minimal singular value, respectively, 
then there exist sequences (e,) and (co,) in (0, oo) with 

lira e. = 0, lira co, = 0% 
n ~ o o  n--~oo 

and such that, for any n ~ N, tco, is a pole of G~ . 

We obtain a similar result if in (3.21) oe is replaced by - o c .  For  the proof  of 
Proposi t ion 3.9 we need the following lemma. 

Lemma 3.10. Suppose that H is a transfer function and suppose there exists 
>_ 0 such that G~ ~ dg ~_ • m. I f  So E C~ l is a pole of H, but not a pole of G~, then 

l im~so r(H(s)) = ~ .  

4 Recall that the maximal singular value of a matrix is equal to the operator norm induced by the 
Euclidean norm. 
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The above lemma is a slight generalization of Lemma 6.3 in [16] whose proof is 
extended easily to the present situation. 

Proof of Proposition 3.9. First notice that 

O-min(H(s)) ~ r(H(s)) <_ O'rnaxCH(S)) , Vs �9 C~, s r ~H. 

By assumption there exist sequences (o)~) and (o)") in (0, oo) with 

co, < o)~', lira o), = lira co,' = o% 

and such that 

(3.22) 

O-max(H(/o),) ) < 1, O'min(H(/o)")) > 1. (3.23) 

There are two cases: either the transfer function H is continuous on [to)', to)"] or it 
is not. In the latter case the segment [to)', to),'] contains poles of H. 

Case I. If H(s) is continuous on [to)~, to)~'], then so is r(H(s)). Therefore, it follows 
from (3.22) and (3.23) that there exists % �9 (o),, o)") such that r(H(t%)) = 1. This 
shows that there exist numbers ~, �9 [0, 2n) such that e 't~- �9 a(H(lo),)). Defining 
e, := (~, + n)/co., we obtain 

- 1 = e'~-e - '  . . . .  �9 tr(e-' . . . .  H(to),)), 

which in turn implies that G,. has a pole at to),. By construction, l i m . ~  o), = o% 
and therefore lim,~o e. = 0. 

Case 2. If H is not continuous on [m)~, to)~'], then there exists 05, e (o)', o)") such 
that t05. is a pole of H. Moreover, we may choose 05. such that H is continuous 
on [to)', t05.). If limo~_.,~ r(H(m~)) = o% then, by (3.22) and (3.23), there exists 
% e (o)',05.) such that r(H(to).)) = 1 and we can argue as in Case 1. If 
limo_~, r(H(to))) # oo or if this limit does not exist, then an application of Lemma 
3.10 shows that t05. is a pole of G~ for any e > 0. �9 

Robustness Results 

The following result complements Theorem 3.3. 

Theorem 3.11. Let H be a transfer function and suppose that Go is La-stable 
(spectrally stable). I f  T(H) < 1, then there exists e* > 0 such that G~ is L2-stable 
(spectrally stable) for all e e (0, e*). 

The part of the theorem which relates to L2-stability is proved in Theorem 6.1 of 
[16]. Robustness of spectral stability can be shown in a similar way and is therefore 
left to the reader. 

Theorem 3.11 deals with perturbations of the form e -~s. In a multivariable 
setting it is natural to consider the more general class of multidelay perturbations of 
the form E~. There are simple examples .which show that Theorem 3.11 does not 
remain true for multidelay perturbations, cf. Example 6.4 of [16]. A robustness 
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result for multidelay perturbations can be derived by using structured singular 
values (see, e.g., [19]). To this end set 

A := {diagl<j<m(Sj)[s j ~ C} ~ C ~ • 

The structured singular value #a(M) of M ~ C" • s with respect to A is defined by 

1 
#A(M) := min{ I[A[[ [A ~ A, det(I - MA) = 0}' 

unless no A ~ A makes I -  MA singular, in which case /~A(M):= 0. For  any 
M E C m • m we have that r(M) N I~A(M ) <_ [[MH, see [19]. 

Let H be a transfer function and suppose that G O is spectrally stable Theorem 3.12. 
(L2-stable). I f  

lim sup #A(H(s)) < 1, (3.24) 
tsl~oo,s E Co\~n 

then there exists e * >  0 such that the transfer function G~ is spectrally stable 
(L2-stable) for all ?' = (ex, . . . ,  era) s [0, oe)" satisfying [[?'][ < e*. 

Proof. In the following sections we do not use the L2-stability part of the theo- 
rem. Therefore we prove only the part which relates to spectral stability. So we 
assume that (3.24) holds and that Go is spectrally stable, i.e., Go e Jg2 • As 
already mentioned, the latter implies that H e ~/_'2 • m. We proceed in three steps. 

Step 1. By (3.24) there exist numbers R > 0 and p e (0, 1) such that 

r(H(s)) _</~A(H(s)) _< p, Vs e Eg\~3n, (3.25) 

where Eg := {s ~ Co[[St > R}. Since G O is spectrally stable, it follows from Lemma 
3.10 that H has no poles in E~. 

By Step 1, E~ n ~ a  = ~ ,  and hence we obtain from (3.25) using the Step 2. 
continuity of PA(') (cf. [19]) 

#A(H(s)) < p < 1, Vs e E~. (3.26) 

Clearly, IIE~(s)ll < 1 for all ?' ~ [0, oQ) m and all s e E~, and hence 

det(I + E~(s)H(s)) ~ 0, V-d s [0, or) m, Vs s E~. 

Combining this with the result of Step 1, we see that, for any ?" e [0, or) m, Gg has 
no poles in E~. 

Step 3. It remains to show that there exists e* > 0 such that, for all 5' ~ N~ with 
t[?'lL < e*, G~ has no poles in the set DR := {s ~ C~Z[[s[ < R}. To this end let (N, D) 
be a right-coprime factorization of H over ~ff_. Then G~ = N(D + E~N) -1, and it 
is easy to show that (N, D + E~N) is a right-coprime factorization of G~ over ~r 
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Since Go ~ Jr-" • m, it follows via Lemma 2.1 (i) that 

inf [det(D(s) + N(s))[ > 0. (3.27) 
s~DR 

By the compactness of DR it is clear that E~(s) converges uniformly to I on D R as 
IlelL ~ 0. Consequently, (3.27) yields that there exists e* > 0 such that, for all ~' e ~ 
with II~'ll < e*, 

inf ]det(D(s) + Ez(s)N(s))l > 0, 
seDR 

which in turn implies that for all ?' as above Gz has no poles in DR. [] 

It seems to be a difficult open problem whether the condition 

lira sup /~A(H(s)) > 1 
ls l  -~  o~,ss c & $  x 

implies a lack of robustness with respect to small multidelay perturbations. 

4. Robustness and Nonrobustness Results for PDEs with Boundary and 
In-Span Control 

In the following we introduce a class of multiple-input multiple-output controlled 
and observed PDEs which are linear in time and of spatial dimension 1, with 
coefficients which may depend upon the spatial variable. Our choice of class is 
motivated by our desire to include any such system that arises in the control 
literature, including dynamic control. We wish to include coupled systems, so we 
break up the space interval so that on different parts of the interval different PDEs 
are satisfied, and we allow natural in-span coupling conditions. The control is 
allowed to be applied, through general linear boundary operators, on the bound- 
ary or at the in-span coupling points. These boundary operators are sufficiently 
general to allow higher-order differential equations at the boundary and in-span 
points. The observation operators are even more general, since we allow distrib- 
uted observation as well. Distributed control requires a different analysis, which 
can be found in [141. 

The class of systems in this section includes all of the systems considered by 
Datko and collaborators [4 ] - [8 ]  which have spatial dimension 1. For  instance, we 
can use this approach to explain fully the modal destabilization results in [6] and 
[7]. On the other hand, the destabilization described in [8], Example 2 of [4], or 
Section 3 of [4] cannot be analyzed by the methods in this paper, since the control 
space in these systems is infinite dimensional. 

We suppose that the space variable x belongs to some closed interval [a, b]. 
Without loss of generality we assume that I-a, b] = [0, 1]. Let ,~ ~ IN, and {xt}~= t c 
(0, 1), where xl  < x2 < " "  < x~. These numbers determine a decomposition of 
(0, 1) into 2 + 1 open intervals {Ik}~=o. Let z ~ N. F o r j  = 0 . . . . .  z and k = 0 . . . .  ,2, 
let p~ be polynomials and let a~ be continuous functions on I~ ~. The class of PDEs 
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we consider is of the form 

~ a k k ~Jw 
j (x)pj (~)fftf(X, t) = O, X ~ I k, t > 0, (4.1) 

j=o 

where N denotes differentiation with respect to x. Set nk := maxo_<j_<z deg pf and let 
pk(X, S) be the coefficient of N"~ in the expression 

j=O 

where s is a complex variable. We introduce the following assumption: 

(A1) There exists an open set f2 ~ C~ z such that, for any k = 0 . . . .  ,2, 

pk(X, S) r O, Vx e I~ z, Vs ~ f]. 

This condition guarantees that when the Laplace transforms of the PDE in I k are 
taken, the resulting ordinary differential equation is not degenerate. 

To define boundary operators for the PDE (4.1), we note that, by (A1), the PDE 
has spatial order nk in lg, so we need 

2 
g t : ~  ~ g/k 

k=0 

boundary conditions. While the boundary for U~=olk is {x,}L1 ~ {0, 1}, for the 
purpose of defining boundary conditions each xj should be represented by x ;  and 
x i .  This allows coupling conditions (for example, ~w(0.5-,  t) = ~w(0.5 +, 0) and 
in-span control (see, for instance, I-2], [13], and [21]). Therefore, we consider 
the boundary set to be {x~-}L1 u {x;-}L1 u {0, 1}, which we rename as {z,}}'=D 
where p = 2(2 + 1). For  any piecewise continuous function f :  [0, 1] ~ C and for 
l = 1 . . . .  ,2  we define 

f(x-[) := lim f(x), f (x{)  := lim fix), 
x ~ x  I x N x  1 

so that f(zl) is a well-defined complex number for all l = 1 . . . . .  #. 
Let q[,j be polynomials for i = 1 . . . .  , n, j = 0, . . . ,  l, 1 = 1, . . . ,  #. We define 

boundary operators B i on solutions w(x, t) of (4.1) by 

. O j 
(Biw)(t) = ~ ~ q] j(~)~sTw(zl, t). (4.2) 

We need to impose bounds on the order of the spatial derivatives in (4.2). In 
particular, we do not wish to take spatial derivatives at the boundary of Ik which 
are of order larger than nk -- 1. To this end it is useful to introduce the function 
K: {1 . . . .  , #} --+ {0 . . . . .  2} given by 

I if z t = 0, 

2 if zt = 1, 

x(1):= lo if zt = xt+o, 
l o - 1 i f  z~ = x t o .  

(4.3) 
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We assume that, for any i = 1 , . . . ,  n , j  = 0 . . . . .  z, l = 1, . . . ,  #,  

deg q[,j ~ n~tl) - 1. (4.4) 

The boundary  operators  (4.2) are sufficiently general to allow higher-order  differ- 
ential equat ions at the boundary ,  as in the "hybr id  systems" in [12]. 

Let  m be a positive integer with m < n. We consider the following boundary  
conditions for the P D E  (4.1): 

(Biw)(t)  = u,(t), i = 1 , . . . ,  m, (4.5a) 

(Biw)(t)  = O, i = m + 1 . . . . .  n, (4.5b) 

where u(t) := [ul(t) . . . .  , u, ,( t)]  T ~ C m is the control  input. We need to impose a 
suitable independence condit ion on the boundary  operators.  This is done later in 
the section, when its relevance can be made  clear. 

The observat ion operators  for the system are more  general than the boundary  
operators  Bi, since we allow a distributed component .  Fo r  i = 1, . . . ,  m, j = 0 . . . .  , ~, 
l = 1, . . . ,  #, let r{,j be polynomials,  let f i ~ L2(0, 1; C), and define the observat ion 
operators  by 

(Ciw)(t) ~ ~ r~j(~)~w(zl, t)+ ~ J o  f f ( x ) ~ 3 w ( x ,  t ) d x .  (4.6)  
/=1 j=O ' Ot j=O 

We assume that, for any i = 1 , . . . ,  m, j = 0 . . . .  , z, 1 = 1, . . . ,  #, 

deg r~,j _< nk~l) -- 1. (4.7) 

The observat ion for the system given by the PDEs  (4.1) and the boundary  condi- 
tions (4.5) is y(t)  -- [yl( t )  . . . .  , ym(t)] T ~ C ' ,  where 

yi(t) = (Ciw)(t) ,  i = 1 , . . . ,  m. (4.8) 

We refer to the observed boundary  control  system given by (4.1), (4.5), and (4.8) as 
the open - loop  sys tem.  In the following it is denoted by (OBC). 

Application of output  feedback of the form u~(t) = v~(t) - y~(t - e~), i = 1, . . . ,  m, 
leads to 

( B w ) ( t )  + (Ciw)( t  - ei) = v~(t), i = 1 . . . .  , m, (4.9) 

where the e, > 0 are time-delays and v ( t ) =  [vl(t) . . . .  Vm(t)] T denotes the input of 
the feedback system. We set ~' := (81 . . . .  e,,) and refer to the system given by (4.1), 
(4.5b), (4.9), and (4.8) as the c losed- loop  s y s t e m  wi th  de lay  -g. In the following it is 
denoted by (CBC~). I f~  = 0, then we call (CBCo) the unde layed  c losed- loop  sys tem.  

If u(t) = 0 (resp. v(t) -= 0), then we refer to (OBC) (resp. (CBC~)) as the uncon tro l l ed  

open-loop system (resp. uncon tro l l ed  closed-loop system with delay ~). 

E x i s t e n c e  o f  E x p o n e n t i a l  So lu t ions  

Let s ~ C. We are looking for exponential  solutions of the form 

w(x ,  t) = e~tgo(x), where go ~ L2(0, 1; C), go ~ 0, (4.10) 
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of the uncontrol led open and closed-loop systems. A solution of the form (4.10) is 
called a mode of (OBC) (resp. (CBCr)). The complex number  s is called the exponent 
of the mode. We say that  a mode  is stable if Re s < 0, otherwise we say it is 
unstable. 

In the following we first derive a necessary and sufficient condit ion for the 
existence of modes for (OBC). To this end suppose that  (4.10) is a solution of the 
uncontrol led system (OBC). Since q~ in general depends on s, we write q~(x)= 
~0(x, s). N o w  w(x, t) solves the underlying P D E  (4.1), and hence it follows that  
q~(x, s) satisfies 

(~=o a~(x)sJP~ (~) ) q~(x, s ) = 0 ,  x ~ I k. (4.11) 

Using assumption (A1), we see that, for every s e f~ ~ C~ t and every k = 0, . . . ,  2, 
(4.11) is an ordinary differential equat ion of order  n k on I~ t. Let { e ] } ~  be a basis 
of C "~ and let {q~f(', s ) } ~  be solutions of(4.11) on If,' satisfying 

((p[(x,, s), ~O[(Xk, S), . . . ,  N"~-~(p~(X k, S)) = e~, j = 1 . . . .  , n k, s e f~, 

where Xo := O. Clearly, for any k = 0 . . . .  , 2  and any s e ~,  the functions Of( ' ,  s) are 
linearly independent,  and hence span the solution space of (4.11) on I~ z. In particu- 
lar, for every s e ~, ~o~(., s) e L2(If, l, C), and every solution of (4.11) in Ik can be 
written in the form 

nk 

2 s), Ik, 
j = l  

for some coefficients A~(s). For  k = 0 . . . . .  2 a n d j  = 1 . . . . .  nk, we define 

~ ( x ,  s) := {~ f (x ,  s) for x e If` ~, 
for x ~ [0, 1]\If` I. 

S n It is convenient  to rename these n vectors as {q~p(x, )}p=l. It is clear that any 
solution of (4.11) can be written as 

2 

~o(x, s) = Ap(s)q)p(x, s), x ~ ~ I k, (4.12a) 
p = l  k=O 

~o(zt, s) = ~ Ap(s)@p(zl, s), l = 1 . . . .  ,/~, (4.12b) 
p = l  

for some coefficients Ap(s). 

Lemma 4.1. The following statements hold true: 

(i) For any p = 1 . . . . . .  n and any 1 = 1 . . . . .  /~, the function 

f~ --, C, s ~* ~ie)  v(zl, s) 

is holomorphic, provided that i <_ n~t~) - 1, where • is given by (4.3). 
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(ii) For any p = 1 , . . . ,  n and any function f e Lz(O, 1; C), the function 

--* C, s w+ f f  f(X)Op(X, s) dx 

is holomorphic. 

Proof. There exists k e {0, 2} and Po e {1, nk} such that  Op = �9 k It is 
" ' ' '  " ' ' '  Po" 

convenient  to define x~ := 0 and x~+1 := i. 
In order  to prove statement (i), assume first that  zt E {x~-, Xk-+1} = blk. Then 

K(1) = k, and therefore i < n k - 1 by hypothesis. Consequently,  the claim follows 
from a well-known result on parameter-dependent  ordinary differential equations 
- - s e e  Theorem 8.4 in Chapter  1 of [3]. If z I r {x +, Xk+l} , then there exists 
x* ~ {xl . . . . .  xx} w {0, 1} such that, for all i e N and all s s f~, 

~iOp(Zl, s) = NiO~o(Z l, s) = lim ~iO~o(X, s) = 0, 
x--,x*,x r 

showing that  the claim is true in this case also. 
To  prove statement (ii), recall from Chapter  1, Theorem 8.4, of [3] that  O k is 

Po 

cont inuous in (x, s) for x e I~ z and s e f~ and holomorphic  in s for each fixed x e 1~ t. 
The  result then follows from a s tandard argument  using theorems of More ra  and 
Fubini. �9 

Making use of (4.12b), the boundary  conditions (Biw)(t) = 0, i = 1 , . . . ,  n, of the 
uncontrol led open-loop system can be expressed as follows: 

where 

Ap(s)(B~Op)(s) = O, i = 1 , . . . ,  n, (4.13) 
p = l  

(/~iOp)(s) = ~, ~, sJq;j(~)Op(zl, s). (4.14) 
1=1 j=O 

Let D(s) be the n x n matr ix 

D(s) := ((/3,Op)(S)), i, p : 1 . . . . .  n. (4.15) 

Notice that, by (4.4) and Lemma 4.1, D(s) is ho lomorphic  on f~. Setting A(s) := 
(Al(s), . . . ,  A,(s)) T, (4.13) can be written as D(s)A(s) = 0, and we see that  if the 
system (OBC) has a mode  with exponent  s o s fl, then 

det D(so) = 0. (4.16) 

It is easy to show that  the above argument  can be reversed, i.e., (4.16) guarantees 
that  (OBC) has a mode  with exponent  So. 

Summarizing our  discussion we obtain the following result. 

Proposition 4.2. Suppose that (A1) is satisfied and let So ~ ~. Then (OBC) has a 
mode with exponent So if and only if (4.16) is satisfied. 
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In order to prove a similar result for the closed-loop system (CBC~), suppose 
that (4.10) is a solution of the uncontrolled system (CBCz). Again we indicate the 
dependence of ~o on s explicitly by writing q~(x) = q~(x, s). Since the underlying 
PDE (see (4.1)) is the same as for the open-loop system (OBC), it follows that 
~0(x, s) is of the form (4.12). Consequently, the boundary conditions (4.5b) and the 
closed-loop boundary conditions (4.9) with vi = 0 lead to 

Ap(S)((nit~p)(S ) -.]- e-~'s(C,a~p)(s)) = O, i = 1 . . . . .  m, (4.17) 
p=l 

A,(s)(BICJ,)(s) = O, i = m + 1 . . . . .  n, (4.18) 
p=l 

where 

f/, (CiCbp)(S) := ~ ~ sJrl, j(~)rbp(z,, s) + ~ s j fj (x)CJp(x, s)dx. (4.19) 
l=1 j=O j=O 

Let N(s) be the m x n matrix 

N(s) := ((di~p)(S)), i = 1, . . . ,  m, p = 1, . . . ,  n, (4.20) 

and set 

l q ( s ) : - (  I,, • I (4.21) 
\O(n-m) x m/" 

It follows from (4.7) and Lemma 4.1 that N(s) is holomorphic on ~2. Equations 
(4.17) and (4.18) can be written in the more compact form 

(D(s) + N(s)Ei(s)N(s))A(s) = 0, (4.22) 

where E~.(s) = diag 1 _<i_<,, (e-~') �9 Setting 

D~.(s) := D(s) + N(s)E~(s)N(s), (4.23) 

we obtain the following closed-loop counterpart of Proposition 4.2. 

Proposition 4.3. Suppose that (A1) is satisfied and let So ~ ~. Then (CBC~) has a 
mode with exponent s o if  and only if det D~.(So) = 0. 

While by construction D and D~ depend on the choice of the basis for the 
solution space of (4.11) on I~ ~, it is a routine exercise to show that the zeros of det D 
and det D~ do not. Since the basis {Of(', s)}~l is not always easy to compute, we 
can use a different, more convenient, choice of basis in order to compute the zeros 
of det D and det Dz. 

Transfer Functions 

We shall need the following assumption: 

(A2) det D(s) ~ 0. 
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For a given So e t2, let E,o denote the vector space of all functions ~: (U~=o Ik) • 
A I-0, oo) ~ C of the form ~b(x, t) = e'~ where ~k: Uk=O Ik C solves the ordinary 

differential equation (4.11) for s = So. It is easy to see that assumption (A2) is 
equivalent to 

(A2') There exists So E f~ such that the restricted boundary operators B~J~ are 
linearly independent, i.e., if ~1 . . . . ,  ~n ~ C are such that ~7=1 ~B~$ = 0 fo~ all 
@ ~ 8~o, then ~i = 0 for all i = 1, . . . ,  n. 

Remark 4.4. We illustrate (A2) and (A2') in a simple situation. Suppose that there 
are no in-span points (i.e., Io = [0, 1]) and that n = no = 2. Let the boundary 
opera tors  B 1 and B2 be given by (Blw)(t) = w(0, t) and (B2w)(t)  = w~(a, t), where 
a e {0, 1). Then it is easy to show that (A2'), or equivalently (A2), is satisfied if and 
only if a r 0. Notice, however, that B~ and BE are linearly independent on the 
solution space of (4.1) even if a = 0. 

If (A2) is satisfied, then we can define 

H(s) := N(s)D -1 (s)ff4(s), (4.24) 

where D, N, and N are given by (4.15), (4.20), and (4.21), respectively. While N and 
D depend on the choice of the basis for the solution space of (4.11) on I~, ~, it is a 
routine exercise to prove that the product N(s)D-l(s) does not (the corresponding 
transformation matrices cancel). Consequently, H is independent of the choice of 
{~k)~L~, k = 0, . . . ,  ).. Since D, N, and N have all their entries in JCL, it follows from 
(A2) that H ~ Jg_~ • m. In particular, H is a transfer function in the sense of Section 
3. We say that H is the transfer function of (OBC). 

In order to show that H admits the usual dynamical interpretation, let the 
Laplace transform be denoted by the superscript . . . . .  and let u(') be a Laplace 
transformable input function. Moreover, let w(x, t; u) denote the solution of (OBC) 
with initial conditions given by 

~J 
~ w ( ' ,  O; u) = O, j = 0 . . . .  , z - 1. 

Then ~(x, s; u) satisfies the ordinary differential equation (4.11), and, consequently, 
the function if(x, s; u) is of the form (4.12). Hence, the boundary conditions (4.5) 
then imply 

Ap(s ) (B ,a~p) ( s )  = fti(s), i = 1 , . . . ,  m,  
p=l 

Ap(s)(Bif f~p)(s)  = O, 
p=l 

This is equivalent to 

i = m +  1, . . . ,n .  

D(s)A(s) = N(s)*i(s), 
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so, by assumption (A2) 

A(s) = D-l(s)N(s)a(s) (4.25) 

for all s �9 f~ such that det D(s) # 0. Since Pi(s) = ~ = l  Ap(s)(CiOp)(s), we can write 
p(s) = N(s)A(s). Therefore, by (4.25), we see that 

p(s) = N(s)D-1(s)N(s)a(s) = H(s)a(s). 

As in Section 3 we define 

G~ = H(I  + EIH) -I. (4.26) 

Using Lemma 2.40), Gi can be written in the form 

G~(s) = N(s)(D(s) + N(s)Ez(s)N(s))-lN(s) = N(s)DZ, l(s)N(s). (4.27) 

Of course, (4.27) only makes sense if detD~.(s)@ 0, or, equivalently, if 
det(I + E•(s)H(s)) ~ 0, see Lemma 2.40). We call ?' �9 I-0, oe)" an admissible delay 
for (OBC) if det D~.(s) ~ 0. If ?" is an admissible delay for (OBC), then G~ e de_ m • m, 
and we say that G~ is the transfer function of (CBCz). Going through the above 
steps with D replaced by D~, we see that the response y(.) of (CBCz) to the input 
function v(.) under zero initial conditions is given by p(s) = G,.(s)f(s). 

Modal Stability and Small Delays 

We say that (CBC~) is modally stable if (CBC~) has no unstable modes. This is the 
kind of internal stability which is considered in the literature on robust stabiliza- 
tion of PDEs, see I-4]-[9] and [12]. The following corollary shows that spectral 
stability combined with bi-coprimeness is equivalent to modal stability. 

Corollary 4.5. Suppose that (A1) and (A2) are satisfied and let ~ �9 ~0, 00)5 Then 
the following statements are equivalent: 

(i) (CBC~.) is modally stable. 
(ii) ?' is an admissible delay for (OBC), G~ given by (4.26) is spectrally stable, and 

the triple (N, D, 1~) is bi-coprime. 

The proof of Corollary 4.5 follows immediately from Proposition 2.3, Lemma 
2.4, Proposition 4.3, and (4.27). In the following we write (CBC~) for (CBC~) and D, 
for D~ if the components e i of ?' satisfy e~ = e for all i = 1, . . . ,  m. 

It follows from (4.27) and the analyticity of N, iKI, and D~ that if G~(s) has a pole 
in C~ t, then the closed-loop system (CBCz) has an unstable mode. Therefore, by an 
application of Theorem 3.3, Theorem 3.7, and Proposition 3.9, we immediately 
obtain conditions which guarantee the existence of unstable closed-loop modes. 
We give a precise formulation of these conditions in the following three corollaries. 

Corollary 4.6. Assume that (A1) and (A2) hold and suppose that H given by (4.24) 
satisfies one of  the following two conditions: 

(i) H is regular and the feedthrough matrix D of H satisfies r(D) > 1. 
(ii) H is not well-posed and satisfies conditions (1) and (2) in Theorem 3.7. 
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Then there exist sequences (en) and (sn) with 

en > 0, lim en = 0, s, r Co, lim IIm sn] = ~ ,  lim Re sn = ~ ,  
n ---~ oo n---~ oo n - - ~  

(4.28) 

and such that, for any n ~ ?~, det(D~.(s,)) = 0, i.e., for any n ~ ~ the closed-loop 
system ( C B C J  has a mode with exponent sn. 

Corollary 4.7. Assume that (A1) and (A2) hold and suppose that H given by (4.24) is 
regular. I f  G O given by (4.26) is in (H~) m • and if 7(tt) > 1 (where y(H) is given by 
(3.2)), then there exist sequences (~) and (sn) with 

e, > 0, lim e, = 0, sn ~ Co, lim IIm Sn] = c~, 
n ---~ go n - + o o  

and such that, for any n ~ ~, det(D~,(s,) ) = 0, i.e., for any n ~ ~ the closed-loop 
system ( C B C J  has a mode with exponent s,. 

Corollary 4.8. Assume that (A1) and (A2) hold and suppose that H given by (4.24) 
satisfies (3.21). Then there exist sequences (e,) and (~on) in (0, oo) with 

l ime  n = 0, lim co n = 0% 
n--~ GO n---~ go 

and such that, for any n ~ ~J, det(D,,(zcg~)) = 0, i.e., for any n e ~ the closed-loop 
system (CBC~,) has a mode with exponent to3 n. 

On the other hand, when there exists e* > 0 such that G~ is spectrally stable for 
all ~'~ [0, ~)m with II~'ll < e*, we cannot immediately conclude modal stability of 
(CBCr) for all such g. However, the following result shows that modal stability can 
be obtained by using Lemma 2.4 and Corollary 4.5. 

Corollary 4.9. Assume that (A1) and (A2) hold and suppose that (CBCo) is modally 
stable. I f  H given by (4.24) satisfies (3.24), then there exists ~* > 0 such that (CBC~.) 
is modally stable for all -~ ~ [0, ~)m satisfying Ii~ll < ~*. 

Proof. Since (CBCo) is modally stable, it follows from Proposition 4.3 that 

det(D(s) + N(s)N(s)) ~ 0, Vs ~ C~ t, (4.29) 

and it follows from (4.27) that Go is spectrally stable. It follows from (3.24) that 
1 + EIH, and hence, by Lemma 2.4, also D + I~IE~N, is invertible for all ~'E 
[0, ~)m. Thus all g~ [0, ~)m are admissible delays. Moreover, by Theorem 3.12 
there exists e* > 0 such that G~ is spectrally stable for all g ~ [0, ~)m with I1~'11 < 
e*. From Lemma 2.4 and (4.29) we obtain that (N, D, lq) is bi-coprime. An applica- 
tion of Corollary 4.5 shows that (CBC~) is modally stable for all ~ ~ [0, ~)m with 
I1~11 < ~* and all s ~ C~ I. �9 

Remark 4.10. In [17] the robustness of modal stability with respect to small 
delays is proved for a class of boundary controlled systems with arbitrary spatial 
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dimension; the class of systems dealt with in [17] requires an analytic semigroup, 
and is hence less general (in all regards except spatial dimension) than the systems 
considered here. 

5. Examples 

In this section we illustrate Theorem 3.7, Proposition 3.9, and the corresponding 
Corollaries 4.6(ii) and 4.8 with some simple examples. Theorem 3.3 and Corollaries 
4.6(i) and 4.7 are illustrated by the examples in 1-15]. 

Example 5.1. In the first example we consider an equation for two coupled 
vibrating strings, with two observation and two controls. This example is similar 
to Example 9.3 in [15], except instead of incorporating viscous damping into the 
model we use Kelvin-Voigt damping, and we draw very different conclusions. We 
assume that each string satisfies the damped wave equation 

wtt(x, t) - wxx(x, t) - awx~,(x, t) = 0, x ~ (0, 1) u (1, 2), t > 0, (5.1) 

where a > 0. As in [15] we consider the following boundary conditions: 

w(1-, t) -- w(1 +, t), w(2, t) = 0, (5.2) 

with boundary controls 

w~(1- ,  t) - w~(1 +, t) = ul(t) ,  wx(O, t) = us(t),  (5.3) 

and boundary observations 

yl( t )  = klwt(1,  t), y2(t) = -k2w,(O,  t), (5.4) 

where k~, k2 > 0. Since a > 0, it is easily checked that assumption (A1) is satisfied. 
Let u(t) := [ul(t), u2(t)] r and y(t) := [yl(t), y2(t)] r and set 

s 
r(s) . -  

x /~  + as 

where x ~  denotes the principle branch of the square root. Setting 

e 4 r ( s )  - -  1 e '(s) - -  e 3r(s) 

A(s) := 2(e4,(~) + 1)' B(s) . -  e4r(~) + 1 ' 

a routine calculation shows that assumption (A2) is satisfied and that the transfer 
function for (5.1)-(5.4) is given by 

I~(s) = ~/~ + asfi(s), 

where 

IT_i(s ) := ( k , A ( s )  k t B ( s  ) 
\ k z B ( s )  2k2A(s)J" 

Note that, for any b ~ (0, ~/2), Re r(s) --+ ~ as ]s] ~ ~ in 5~(6). This implies that 

lim A(s) - �89 lim B(s) = O, 
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s o  

lim ~(s) = (ko/2 0 ) .  
Isl~,se ~0) k2 

Consequently, H satisfies the conditions in Proposition 3.8, and hence conditions 
(1) and (2) in Theorem 3.7, provided that klk2 ~ O. Therefore, the conclusions of 
Corollary 4.6(ii) hold for this example. In particular, we find that there exist 
sequences (e,) and (s,) with e, ~ 0 and Re s, --+ oo as n -+ oo and such that the system 
(5.1)-(5.4) with feedback u(t) = - y ( t  - e,) has a mode with exponent s,. 

We can contrast this to the situation in [15], where the damping term aw~,(x, t) 
is replaced by the viscous damping term 2aw,(x, t) + a2w(x, t). In [15] it is found 
that for every a > 0 there are values of kl and k2 such that the input-output  
system is robust with respect to delays. In the viscous damping case all of the 
modes oscillate and decay with the same exponential rate, whilst in the Kelvin- 
Voigt case only finitely many modes oscillate and the rest have exponents which 
are negative real (pure exponential decay). So, even though, in this sense, Kelvin- 
Voigt damping is "stronger" than viscous damping, the present example shows 
that it also causes the system to be ill-posed, destroying robustness of the closed- 
loop system. 

Example 5.2. In this example we consider a one-dimensional beam equation with 
structural damping (also known as A 1/2 damping). This type of damping causes the 
underlying semigroup to be analytic. The partial differential equation for the 
displacement w(x, t) is 

wtt(x, t) + 2aw~,(x, t) + w~=~(x, t) = O, x �9 (0, 1), t > O, (5.5) 

with the damping parameter 
conditions: 

a �9 (0, 1). We consider the following boundary 

w(0, t) = 0, w(1, t) = 0, wx(O, t) = 0, (5.6) 

with boundary control 

and boundary observation 

w~(1, t) = u(t) (5.7) 

y(t) = cw~t(1, t) + dw,(1, t), (5.8) 

where we assume that c, d �9 ~ and c r 0. Trivially, assumption (A1) is satisfied. 
If there is no damping, i.e., a = 0, it is well known that this system is ill-posed in 

the sense that its transfer function is ill-posed. We will find that in spite of a positive 
damping term a �9 (0, 1), the system is still ill-posed, and in fact satisfies the condi- 
tions in Proposition 3.8. Let x/rs denote the principle branch of the square root, 
define 0 �9 (re/2, n) by e '~ = - a  + t x f l  - a 2, and set q : =  e '~ Computing the trans- 
fer function H of (5.5)-(5.8), we find that (A2) holds and we obtain 

H(s) = v/sI~(s), 
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where 

FI(s) = (ct/ + d/x~ss)e'~ + (c 7 + d/x~s)e~'/ig~(s) 
[t/2e',/~ + 72e~'/igl(s) + t/2e-n,/ig2(s ) + 72e-~',Aga(S)] 

( -c t /  + d/x/s)e-"~gz(s ) + ( - c 7  + d/x/s)e-~fig3(s) + 
[t/Ze'7~ + 8:e~',/;gds) + t/:e-",/;g:(s) + 7 : e - ~ g 3 ( s ) ] '  

and the functions g~, 92, and g3 are given by 

( t / -  7 ) e " ~  + ( t /+ 7)e -"d ;  - 2t/e -~'/i 
g l (S)  -'~ 

(- t]  + 7)e ~'fi + (t/ + 7)e -~'fi - 27e -"'/;' 

g2(s)  = t/ -t- 7 + 2~g~(S)  
t / - 7  ' 

2tl + (t/ - 7)g~(s) 
g ~ ( s )  = 

7 -  t/ 

We first note that ~/4 < 0/2 < ~/2, so in particular Re t / >  0. Since R e ( t / -  27) < 0, 

there exists 5 > 0 such that e - , ~ ,  e-q-~, and e (~-2q)'~ all go to zero as s goes to 
infinity in 5~(6). Setting 

~(s) := gl(s) + e ('-~)~, 

it is easy to see that 

lim e(s) = O, lim e(s)e(~-,),A = O. (5.9) 

Therefore 

lim ga(s)e -"'fi 
Isl~oo,s~ 5q~) 

= lim 

and, similarly, 

Thus, by (5.9) 

lim I7I (s) = 
Isl--,oo,s e ~e(~) 

(~ 277e_ ~ )  + 7 e _ ~  27 e _ ~  + ~(s) = O, 
- 7 t/ - 7 t~ 

f -  

l i m  g 3 ( s ) e  - ~ / s  = O. 
Isl~oo,se ~(~) 

lim 
(ct/ + d/x~ss)e '1~ - (c7 + d/x/s)(e"~ - s(s)e ~&) 

I s l ~ , s e  5cO) 

c 

t / + 7  

t/2e,~ - 72(e,,~ _ e(s)e~,~) 

Since Re t / ~  0 and c ~ 0, this limit is finite and nonzero. Consequently, H satisfies 
the conditions in Proposition 3.8, and hence conditions (1) and (2) in Theorem 3.7. 
Therefore, the conclusions of Corollary 4.6(ii) hold, so there exist sequences (e,) 
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and (s,) with e, l 0 and Re s, ~ oo as n ~ oe and such that the system (5.5)-(5.8) 
with feedback u(t)  = - y ( t  - e,)  has a mode with exponent s,. 

Example 5.3. In this example we illustrate Proposition 3.9 by considering ro- 
bustness with respect to delays for the coupled beam example from [21]. Let 
x i e (0, 1) and consider the following system: 

w . ( x ,  t) - Wx~xx(X, t) = O, x �9 (0, x l )  u ( x l ,  1), t > 0, (5.10) 

w(0, t) = wxx(0, t) = w(1, t) = wxx(1, t) = 0, (5.11) 

w ( x ~ ,  t) = w(x~(, t), w~(x-~, t) = w j x - ~ ,  t), w~x~(x~, t) = W~x(X~ ,  t), (5.12) 

Wx~(X; , t) - w ~ ( x ~  , 0 = u(O, y( t )  = kw~, (x l ,  t), (5.13) 

where k > 0. Clearly, (A1) is satisfied and it is shown in [21] that the feedback 
u(t)  = - y ( t )  renders the system exponentially stable. We show that this stability is 
not robust with respect to delays. 

Let s = lOJ 2, where we choose co �9 {re '~ [r > 0, 0 �9 [ -  re/2, 0] } for Re s > 0, and 
let 

sinh(coxl) - cosh(coxi) tanh co(xi - 1) 
h(x  i , co) - 

cos(coxl) tan co(xt - 1) - sin(coxi) 

Computing the transfer function for (5.10)-(5.13) we find that (A2) holds and we 
obtain 

co[cosh(coXl) + h ( x l ,  co) cos(coxl)] 
H(s) = 

( -  20 [sinh(coxi) - cosh(coxi) tanh co(x 1 - 1)]" 

From Section 4, we see that the poles of H(s) are contained in the set of expo- 
nents of the modes of (5.10)-(5.13) with u(t)  = 0. This set of exponents is the set of 
eigenvalues of the operator 

A : =  _ 9  4 , (5.14) 

where, as in Section 4, N denotes spatial differentiation. Here the state space is 

X = {(w~, w2) r �9 H2[0, 1] (~ LZ[O, 1] [wa(0 ) = wl(1 ) = 0}, 

and the domain of A is given by 

dom(A) = {(wi, we) r �9 H4[0, 1] (b H2[0, 1]lw~(0) = wl(1) 

-- @2w1(0) = ~Zwl(1) = we(0) = we(l) -- 0}. 

It is well known that A is skew-adjoint and has compact resolvent, hence the 
spectrum of A consists of purely imaginary eigenvalues. Moreover, there are infi- 
nitely many eigenvalues, with oo being the only accumulation point. As already 
mentioned, an application of the feedback law u(t)  = - y ( t )  to (5.10)-(5.13) results 
in a closed-loop system which is exponentially stable, and hence modally stable. A 
combination of Lemma 2.4 and Proposition 2.3 then shows that each eigenvalue of 
A is a pole of H, and hence H has infinitely many poles on the imaginary axis. 
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The zeros of H(s) are contained in the set of exponents of the modes of the zero 
dynamics of (5.10)-(5.13). The zero dynamics are given by the uncontrolled inverse 
system of (5.10)-(5.13), i.e., the system which is obtained by interchanging the roles 
of u and y. Clearly, the transfer function of the inverse system is given by 1/H. The 
exponents of the modes of the zero dynamics are identical to the eigenvalues of the 
operator A inv, where A i"v is given by the right-hand side of (5.14) with 

dom(A inv) = {(Wl, W2) T �9 Xlwl[to,~) �9 H4[0, xl), Wl[(xt,1] e H4(xi, 1], 

w 2 ~ H2[0, 1], ~2w1(0 ) = ~2w1(1 ) = w2(0) = w2(1) = 0, 

~w2(x l )  = 0, ~3wl (x~ )  = ~3wl (x~)} .  

It is shown in [21] that this operator is skew-adjoint and has compact resolvent, 
and so the spectrum of A inv consists of purely imaginary eigenvalues. Moreover, 
there are infinitely many eigenvalues, with ~ being the only accumulation point. 
Since the feedback y(.) = - u(') applied to the inverse system leads to an exponen- 
tially stable closed-loop system, we can argue as above to show that H has infi- 
nitely many zeros on the imaginary axis. 

Combining our findings, it follows that H satisfies (3.21). So there exist sequences 
(e,) and (o~,) in (0, ~ )  with lim,_~| e, = 0 and lim,_~ co, = o0 and such that the 
system (5.10)-(5.13) with the feedback u( t )  = - y ( t  - e , )  has a mode with exponent 
lo~ n.  
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