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A Note on Stability and Stabilizability of Neutral Systems 

Hartmut Logemann and Lucian0 Pandolfi 

Abstract- This note presents frequency-domain characterizations of 
exponential stability and stabilizability of neutral systems based on 
transfer-function matrices and the existence of ‘nice’ solutions of certain 
Bezout equations. It turns out that the existence of Hm-solutions is not 
snBcient for exponential stabilizability, hut that they have to satisfy 
an additional growth assumption as well. whist  the proofs of our 
results are based on an abstract idnite-dimensional representation of 
the neutral system, we emphasize that the results are expressed in terms 
of the original parameters of the neutral equation and do not require 
a reformulation of the system in an abstract state-space form. The 
sufficiency parts of the results hold even when the delay operator acting 
on the derivative contains a singular part. 

I. INTRODUCTION 
Stabilizability and the relationship between internal and external 

stability for infinite-dimensional systems have been investigated by 
many researchers in the last 20 years, see e.g., [151, [10]-[12], [91, 
[l] ,  [14], [8], [4] for stabilizability and [6], 121, [4], and [I31 for the 
relationship between internal and external stability. For an abstract 
infinite-dimensional semigroup system of the form 

j : = A x + B u ,  y = C x  ( 1 . 1 )  

defined on a Hilbert space with finite-dimensional input and output 
spaces it has been shown [4] that (1.1) is exponentially stable if and 
only if its transfer function belongs to H” (i.e., it is holomorphic 
and bounded in the open right-half plane) provided that the system is 
exponentially stabilizable and exponentially detectable. Moreover, it 
is proved in [4] that a well-known sufficient condition for exponential 
stabilizability (cf. [15]) is also necessary. In particular, it became clear 
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that exponential stabilization by bounded state-feedback with finite- 
dimensional range is only possible if there exists a constant E > 0 
such that the spectrum of A in the half-plane Re (s) > --E consists 
of at most finitely many eigenvalues with finite multiplicities. 

In this note, we shall investigate stability and stabilizability prop- 
erties of neutral systems of the form 

( < ( t )  - /’ d M ( T ) < ( t  -k T ) )  = I h d L ( T ) [ ( t  -k 7) -k B O W ( t )  
d t  - h  

-dt)  = Co<(t), (1.2) 

where h > 0 is the length of the delay, M and L are functions of 
bounded variation on [-h, 01 with values in ELnxn, M is right- 
continuous at 0, Bo E ELnxm and CO E E L p x n .  We give a 
characterization of exponential stability of (1.2) in terms of its transfer 
function and the solvability in Hw of certain Bezout equations 
and derive a necessary and sufficient condition for exponential 
stabilizability of (1.2) by bounded state-feedback. These results, 
presented in Section 111, are expressed in terms of the coefficients 
M ( . ) ,  L ( . ) ,  Bo, CO of (1.2) and are obtained by applying a number 
of abstract results proved in Section 11. More precisely, in Section 
I1 we show that internal and external stability of an abstract state- 
space system ( A ,  B ,  C) coincide provided that the conditions C l )  
and C2) hold: 

Condition C I ) :  The Bezout equation 

(SI - A ) X ( s )  + B U ( s )  = I (1.3) 

admits solutions in H”. 
Condition C2): There exist Hm solutions for the Bezout equation 

(1.4) 

We emphasize that this result is quite general in the sense that the 
input and output spaces are not assumed to be finite-dimensional. 
Moreover, we prove that if C ( s I  - A ) - ’ B  E Hw and if C l )  and 
C2) hold then ( S I  - A)-’  E H”, provided that A is closed and 
densely defined, even if A does not generate a CO - semigroup. 
Since it is well known that the condition ( S I  - A)-’ E H m  implies 
exponential stability if A generates a CO - semigroup on a Hilbert 
space (see e.g., [16]), our result contains the one in [4] as a special 
case. Furthermore, we give necessary and sufficient conditions for 
the stabilizability of an abstract pair (A, B) in terms of condition 
C l )  and the function ( S I  - A ) - ’ B .  

X ( s ) ( s I  - A )  + Y(s)C = I. 

Notation: 

. e+:= {s E C I R e ( s )  > O}. 
For Y a Banach space and cy E R let Hp(cy; Y) denote the 
usual Hardy space of functions on Re (s) > cy. If cy = 0 we 
write simply H p ( Y ) .  In this note p = CO or p = 2. 
2, Z,, 2, are (complex) Banach spaces, denoting the ‘state 
space’, the input space and the output space, respectively, and 
A : D ( A )  Z -+ Z is a linear closed densely defined operator. 
The spectrum and the resolvent set of A are denoted by u ( A )  
and p(A) ,  respectively. We shall write H, H,, and H ,  instead of 
2, Z,, and 2, if these spaces are assumed to be Hilbert spaces. 

11. EXTERNAL STABILITY, INTERNAL STABILITY, 
ANDSTABILIZABILITY OF ABSTRACT SYSTEMS 

In this section, we shall investigate the relationship between 
external and internal stability of an abstract triple ( A ,  B ,  C ) ,  where 
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A is not necessarily supposed to generate a CO - semigroup. Fur- 
thermore, we shall give a necessary and sufficient condition for 
stabilizability. By 'extemal stability' we mean that the 'transfer 
function' C ( s 1  - =1)-'B of the triple (-4. B .  C) belongs to H",  
while 'internal stability' means that the resolvent operator (.SI- --I)-' 
has this property. It is obvious that internal stability implies external 
stability. If A generates a CO-semigroup E ( t )  on a Hilbert space, 
exponential stability of E ( t )  is equivalent to internal stability (see 
[16]). In our abstract setting, the pair (A .  B )  is 'stabilizable' if there 
exists a bounded operator F such that (SI - -4 - BF)- '  belongs 
to H x .  If --I is a generator on a Hilbert space this implies that the 
semigroup generated by .4 + B F  is exponentially stable. Similarly, 
we say that the pair (C, -4) is 'detectable' if there exists a bounded 
operator H such that (SI - A - HC)-'  is in H " .  

Theorem 2.1: Suppose that p ( ; l )  n C+ # 0. B E L(Z,.  2 )  and 
C E L(2, Z,,). Then the following statements are equivalent 

1. The resolvent (SI - A - '  is in H " ( L ( 2 ) ) .  
2. The transfer function G ( s ) : =  C(s1 - A4)- 'B  is in 

H" (C(  Z, . Z, ) ) and conditions C 1) and C2) hold. 
ProojC 

1 .  a) 3 

2. b) 5 a): For s E p ( A )  n C+ we have 

b): Trivial, set S ( s )  = -$(s) = ( s I - . - I ) - ' ,  I - ( s )  = 
0 and E'(.s) 5 0. 

CS(x) + G ( s ) L - ( s )  = C ( s 1  - - A ) - '  (2.1) 

and 

By (2.1) C ( s 1 -  A - '  is bounded on ~ ( - 4 )  n C+ and hence it 
follows from (2.2) that ( S I  - .-l-' is bounded on p ( A )  n C+. 
It remains to show that p (  --I) n C+ = C+ or equivalently that 
cr(A)nC+ = 0. Let us assume the contrary, i.e., cr(.4)nC+ # 
a, Then there exist .qO E c(.4) n C+ and s,, E p ( = l )  n C+ 
such that lim,2-x s n  = SO. As a consequence the sequence 
~ ~ ( s , ~ I  - A- I1 (  is unbounded which leads to a contradiction. 
0 

Corollary 2.2: Suppose that '4 generates a CO-semigroup E ( t )  on 
H ,  B E L ( H , .  H )  and C E L( H .  H o ) .  Under these conditions the 
exponential stability of E (  t )  is equivalent to statement b) in Theorem 
2.1. 

The above corollary follows immediately from Theorem 2.1 since 
we mentioned already that the exponential stability of E ( t )  is 
equivalent to statement a) in Theorem 2.1 (see [16]). 

The next result shows how condition C1) is related to stabilizabil- 
ity. 

Proposition 2.3: i) Let B E L(Z,.  Z )  and suppose that there 
exists F E L(2. Z , )  such that ( S I  - A - D F ) - I  E H = ( L ( Z ) ) ,  
then C1) is satisfied. 

ii) There exist Banach spaces Z and Z,, an operator A :  D ( A )  C 
Z + Z generating a CO-semigroup and B E L(2,. Z )  such that 

C1) is satisfied on C-,,: = {.s E C l  Re ( s )  > - a }  for any 
0 E (0, 1) 
There does not exist an operator F E C( Z. Z ,  ) such that the 
CO-semigroup generated by .4 = BF is exponentially stable. 
Proof? i) Simply set S ( s j : =  ( S I  - .4 - 13F)-' and [-(.s):= 

ii) We consider the example presented in [7, p. 611. Let Z be the 
space of all complex-valued functions defined on R+ which vanish 
at x and are integrable with respect to P I  d.r ,  i.e., 

- F ( s I  - A - B F ) - ' .  

z = c,,(IR+. C )  n L' (R+.  C ;  e l  d ~ ) .  

Endowed with the norm 

llfll = Ilfll= + llfll~ = s u p { l f ( ~ ) l :  .r E B+} + 
Z becomes a Banach space. The translation semigroup 

I f (x ) l e "d r .  .I" 
(€(t)f)(.,.) = f ( . r  + t )  

is strongly continuous on Z .  Since II€(t)ll = 1 for all t 2 0 it follows 
that E ( t )  is not exponentially stable. For s E C-I and f E Z define 

3c 

.2(s)f = I E ( t ) f d t .  (2.3) 

It is routine to show that the integral in (2.3) exists in Z for all 
s E C-1 and that ( . t ( s ) f ) ( . r )  = s," c - " ' f ( t + x ) d t  for all f E Z 
and J' E lR+. Moreover, two simple calculations lead to 

Hence, 

for all s E C-I. (2.4) 

Let dl be the infinitesimal generator of E( t ) .  Since the integral in (2.3) 
exists for all f E Z and all s E C-1 it follows that p(A) 2 C-I 
and .I(.$) = (SI - -A)- '  for s E C-1. The estimate (2.4) shows that 
(sI-.4)-' is boundedin s on any half-plane e-,>, where CL E (0. 1). 
Hence, we see that for the pair (-4. 0)  condition C1) is satisfied on 
C-,, [for any n E (0. l)]. However, (-4. 0) is not exponentially 

U 
Remark 2.4: 
i) A similar result holds for the relationship between condition C2) 

and detectability. 
ii) It follows from Proposition 2.3 i) that if .4 generates a CO- 

semigroup, B E L(Z, .  2 )  and there exists F E L(2, Z , )  such that 
.4 + B F  generates an exponentially stable Co-semigroup, then C1) 
is satisfied. 

iii) In the light of Corollary 2.2 and statement ii) of this remark, it 
becomes clear that Theorem 19 in [4] is a special case of Theorem 
2.1. We emphasize that the proof of Theorem 2.1 is based on algebraic 
manipulations and does not make use of a spectrum decomposition 
of the operator A. 

Next we shall derive a sufficient condition for stabilizability which 
is based on Cl) .  

Theorem 2.5: Suppose that (r( .-I) n c+ consists of isolated eigen- 
values with finite multiplicity and D E L(Z,.  Z j .  Under these 
conditions there exists a feedback operator F E F(2, 2,) such that 
(SI - -4 - BF)- '  E H = ( C ( Z ) )  i f  

stabilizable, since E (  t )  is not exponentially stable. 

a) Condition C 1) holds. 
and 
b) 

Remark 2.6: By applying again Weiss' result in [16] we see that 
Theorem 2.5 is a sufficient condition for exponential stabilizability 
provided Z is a Hilbert space and -4 is the generator of a Co- 
semigroup on 2. 

Proof of Theorem 2.5: By condition C1) we have on C+ 

( S I  - d ) - l  = S ( S )  + (SI - A - l B r ( S ) .  (2.6) 

Combining (2.6) and (2.5) it follows that there exist constants p > 0 
and R > 0 such that 

I l ( s 1 -  a4)- ' l \  I R for all Is( 2 p..? E C+. (2.7) 
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Using the assumption on o(A)  n if+ we see that ( S I  - A)-' is 
holomorphic on if+ apart from at most finitely many points where 
(SI - A)-' has poles. An application of Theorem 6.17 in [5] shows 
that it is possible to decompose Z as a direct sum Z = 2, Z,, 
where dim& < 03. This decomposition reduces the operator A. 
Using obvious notation we write A = diag(A,, A,) and B = 
col ( B u ,  Bs). It is easily seen that condition a) implies that the 
finite-dimensional system (Au ,  B,) satisfies the rank condition rk 
(SI- A,, B,) = dim& for all s E E+. It follows from the Hautus 
test that (A,, B,) is exponentially stabilizable, so that there exists 
F = (F,, 0) such that o(A + BF) nE+ = 0 (cf. [15]). Since 

(SI - A - BF)-' = ( I  - (SI - A)- 'BF)- ' (sI  - A)-' 

we see that there exist constants p' > 0 and R' > 0 such that 

l l ( (sI-  A)BF)-'11 5 R' for alllsl 2 p ' , s  E C+ 

where we have used (2.7) and (2.5). Now ( S I  - A - BF)-l  is 
bounded on {s E E+[ ( S I  5 p' }  and we conclude that ( S I  - A - 
BF)-' E N - ( C ( Z ) ) .  Under more restrictive assumptions on the 
input operator B the converse of Theorem 2.5 holds as well. 0 

Theorem 2.7: Suppose that C+ n p ( A )  is unbounded and that 
B E C(Z,, 2) is the limit of a sequence of finite rank operators 
B, E C ( Z ,  2) in the uniform topology of C(Zz,  2). If there exists 
F E C(Z, 2%) such that ( S I  - A - BF)-' E H - ( C ( Z ) ) ,  then C1) 
and (2.5) hold. 

Proof: It follows from Proposition 2.3 i) that C1) is satisfied. 
In order to show that (2.5) holds we proceed in three steps. 

~ 

Step I :  We show that 

lim Il(sI-  A - BF)-'z(I = 0 for allz E Z. (2.8) 
1Ql-m 

S E C +  

First let z be in D ( A ) .  Pick z E C+ and let y E Z be such that 
z = ( z I  - A - BF)- ' y .  Setting /3: = (((SI - A - BF)- ' ( lw it 
follows from the first resolvent equation that 

1 
//(SI - A - BF)- 'zJJ I - (9 + ll(zI - A - ~ ~ ) - l l l ~ l l Y l l  

Iz - SI  

for all s E C+. 

Hence (2.8) is true for all I E D(A) .  Now, for z E Z choose a 
sequence zn E D ( A )  such that z = limn-- 2,. For given E > 0 
there exists Ai E IN and p > 0 satisfying 

I 
and 

11(s1 - A - B F ) - ' I ~  5 for all 2 p,  s E c+. 
Hence, we have for all Is1 2 p, s E C+ 

Il(5-I- A - BF)-'z11 
= (\(SI - A - B F ) - ' ( z  - z.~) + ( S I  - A - BF)-'z.vII 
5 ;?(lz - T N ( (  + (((SI- A - B F ) - ' x N ( (  

- 2  2 
< : + : = E .  

Step 2: Since the B ,  are operators of finite rank it follows from 
Step 1 that 

lim Il(sI - A - BF)-'B,IJ = 0. 
I s + - -  

S E C +  

Using the boundedness of (SI - A - €IF)-' on C+ and the fact that 
B ,  -+ B in the uniform topology of C(Z,, 2) it follows that 

lim  SI - A - B F ) - ' B I I  = 0. (2.9) 
S E C +  
1 s l - m  

Step 3: Realizing that for all s E C+ n p(A) of sufficiently large 
modulus 

(SI - A)- 'B  = ( I  + (SI - A - BF)- 'BF)- '  
. ( S I  - A - BF)- 'B  

and using (2.9) we obtain 

lim ll(s1- A)-lBII = 0, 
/ S I - -  
S€C+ 

which is (2.5). 0 
Remark 2.8: The assumption in Theorem 2.7 that B is the uniform 

limit of a sequence of finite rank operators is for example satisfied if 
one of the following conditions holds 

i) B E C( Z,, Z) is nuclear, i.e., of the form 

BU = C c u x f x ( u ) z x  
00 

for all U E z,, 
A=' 

where zx E 2, JIzx(( 5 1, fx E Zt*, llfxll 5 1 and (ax) is a 
summable sequence in C. 

ii) Z has a Schauder basis (that is in particular true if Z is a 
Hilbert space) and B is compact. 

111. EXTERNAL STABILITY, INTERNAL STABILITY, 
AND STABILIZABILITY OF NEUTRAL SYSTEMS 

In this section, we apply the abstract results of Section I1 to 
the neutral system given by (1.2). However, the resulting criteria 
for stability and stabilizability will be in terms of the original 
'parameters' M(. ) ,  L ( . ) ,  Bo and CO and not in terms of an abstract 
state-space description of the neutral system (1.2). We introduce some 
notations which will turn out to be useful: For y E C(-h, 0; e") 
we define 

M ( y ) :  = d M ( T ) y ( r )  and L(p): = Ih dL 9 ( 7). 
h 

Moreover, using the notation e s ( r )  = esr, we set for s E C 

& f ( s ) : =  M ( E , ) ,  ,?(s):= L ( r , )  and 

A(s): = s(I- I k ( s ) )  - ,?(s). 

It is natural to associate the following Bezout equations with the 
neutral system 

A(s)Z(s) + BoQ(s) = I (3.1) 

and 

%(s)A(s) + F(s)Co = I .  (3.2) 

We shall show that if we know solutions of (3.1) and (3.2) then it 
is possible to construct solutions of the 'abstract' Bezout equations 
(1.3) and (1.4), where now Z = M Z  = Cn x L2(-h ,  0; En) is a 
Hilbert space, 2, = Cm, 20 = C p ,  the operators B : Cm -+ M 2  
and C:  M 2  + C p  are given by B: = col(&, 0) and c: = (CO, 0) 
and the operator A is defined as follows: 

(3.4) 

It is well known (see e.g., [14]) that with this choice for the state- 
space and the operators, system (1.1) becomes an abstract state-space 
model for the neutral system (1.2). In particular A is the generator 
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of a C'o-semigroup on the Hilbert space -\I2. Moreover, the transfer 
functions C(sI - .4)- 'B and C ' ~ - l - ' ( s ) D o  coincide. 

The term 'stability' (exponential or external) as referred to (1.2) 
coincides with the same property for the corresponding abstract 
system. 

Theorem 3.1; The neutral system ( I  .2) is exponentially stable if 
the following two conditions are satisfied: 

1. The transfer function G( s ) :  = C O X '  (.\)Bo is in H" ( CJ""' 1. 
2. The Bezout equations (3.1) and (3.2) admit solutions E. 2 E 

H x ( C " x " ) ,  I1 E H " ( C " ' X " )  and r E Hr(C" '" )  which 
are O ( l / s )  as Is1 -+ x in C+. 

Conversely under the extra assumption that J I  contains no singular 
part, the conditions a) and b) are necessary for exponential stability. 

The reader should notice that in the above theorem the solutions 
of the Bezout equations (3.1) and (3.2) are required to converge to 
0 at least like l / s  as Is/ + x in C+. This condition is used in 
order to ensure that the solutions of the corresponding abstract Bezout 
equations are bounded (see formulas below). 

Proof qf Theorem 3.1: 
Suppose that a) and b) hold. Using Theorem 2.1 and Corollary 2.3 

it is sufficient to show that the abstract Bezout equations (1.3) and 
(1.4) admit solutions which are holomorphic and bounded on C+. 
We shall construct solutions of (1.3) and leave the solution of (1.4) 
to the reader. Let us write S(s) and I 7 ( s j  in the block form 

The meaning of the symbols -I-;),. Sg:, etc. is clear since S ( s )  E 
L(-U2) .  c7( .s )  E L(-\f2.  C"') for each s E C+ and .\I2 is the 
product space 

Equation ( I  .3) makes sense on the whole space -U2 only if the 
condition S(s)JI' C D(.4) is satisfied for all .L, E C+. This will be 
the case if and only if for all @ = col (;,i. 9)  E -\I2 

x L 2  ( -h .  0:  e" ). 

-I-; ji ( 9 0  1 = -1- i ( $0 1 ( 0 ) - I M ( -1- i ( 9 C l  1 ( ) 

s:qi$) = -Y,:'[;)(O) - .M[-YY(;i(.i). 
(3.5) 
(3.6) 

Moreover, the first column of (1.3) gives 

sS:,,(;o) - c(s:(;o,(.)) + BOr:(;O) = $I, 

s-1-:(;[))(8) - -(x:(;,l)((-))) = 0. 

(3.7) 
(1  

<I(-> 

It follows from the last equation that 

s: ( $ 0  j (  8) = c"'-)z: (j(] ) (  0 ) .  (3.8) 

For simplicity set ~ 7 ~ :  = S , ; ( ; o ) ( O ) .  Then, by ( 3 . S ) ,  (3.7), and (3.8), 
we obtain 

A ( . ~ ) L ' +  + BoC-:(;o) = Gn. (3.9) 

Equation (3.9) is satisfied by 

t's = - ( . \ ) G o .  C-i(; ,] j  = ! l ( s J ; o  

so that 

s: ( $ 0  ) ( (3) = P Z (  s );o 

and 

= ( I  - .YI(s)jE(s);n. 

It follows from the assumption that the operator-valued functions 
.Yb, and IT,: just derived are holomorphic and bounded on e+. 

In order to calculate the remaining blocks of -1- (s)  and 17(s) let 
.p E L 2 ( - h .  0: Cl) and apply (1.3) to @ = col(0.  9). Then we 
obtain 

.q-Yi:(;j - C(S,:'(;)(.j)+ BoC-:'(Gj = 0 (3.10) 

and 

where 1 / ~ ( ( 3 ) :  = -1-:'(~)((3). Consequently. 

. ( (-1 - T ) 
t / ? [ 8 j  = C ' @ I / ~ ( O ) -  [ f ,  ; ( r ) d T .  (3.11) 

Combining (3.6), (3.10), and (3.1 I )  gives 

A(.s)t)s(o)  + Bl)r:'($) = .s.M(;:) +a;;). (3.12) 

$( T )  d r .  A solution of (3.12) is given where 9; (8): = - ,[,@ 
by 

l / ,?(0)  = E(.?)(.s.U(;.:) + a;:)) 
[-:'(;I = o(.s) ( .v-M(g: )  + L ( ; Z ) )  

A-:(;)((+) = ?5(=)E(.%)(s.U($:j + a$:)) + *7B(O) 

-1-:,(G) = ( I -  ~ Y f ( . s ) ) - ( . s ) ( . s . U ( ; ~ )  + L(;:j) - ,W(;;j. 

so that 

and, from (3.6) 

The operator-valued functions -I-:, and C-L' just derived are 
holomorphic and bounded on C+ by the assumption on E ( s )  
and 12(  s ) .  Doing the same calculations backwards we see that 
(SI - . - I ) S ( . s ) ( ~ ~ )  + B ~ - ( . S ) ( ? )  = ('t) for all $0 E C" 
and (SI - .4 )Z( . s ) (+yl )  + B C - ( s ) ( + : ) )  = for all 

$(.)  E L 2 ( - h .  0: C"). Hence, T ( s j  and I - ( s )  are H"-solutions 
of the Bezout equation (1.3). 

Now conversely assume that the system (1.2) is internally stable. 
It is trivial that the transfer function G ( s )  is in H x ( C " X " ' ) ,  i.e., 
condition a) holds. In order to show that condition b) is satisfied 
assume that .\I contains no singular part. This means that -TI( s)  can 
be written in the form 

7 

= ~ . u J c ~ - ~ ~ - ~ ~  + Ii' J l x ( T ) ~ a ~ c i T  
. --I, , = I  

where 0 < 11, 5 I t  for j E W and 

f$I,ll + IIJI" ( T ) I l  d T  < x. 
,=I I ,  

It is convenient to define 
x 

-li)(.s): = I - X-\I , f - - I tJa 
,=I 

and 

AYI< ( 5 ) :  = 1 \I, ( T ) ? ' T  dr. 
I ,  

Since the system is internally stable we have that A-' ( s )  is holo- 
morphic on a half plane Re ( s  ) > (1 for some n < 0 and moreover 
- l o ' ( \ )  E H " ( C " X " )  (ct. [14, pp. 160-1621), Now realize that 

-l-l(.s) = - I - . l T ' ( . S )  J f , ( s )  + - L ( s )  - )I-' 1 - l  0 ( .s) .  t [  ( -  s 

Since i ( s )  is bounded on a+ and -<I, ( s )  tends to zero as Is1 + 

x in C+ by well-known results on Laplace transforms and by 
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the RiFmann-Lebesgue lemma, it follows that 1 )  A; ’ (s) (Ak (s) + 
(l/s)L(s))ll 5 (1/2) for all s E C+ of sufficiently large modu- 
lus. Hence, we obtain that A-’(s) E H m ( C n X n )  and m_oreover 
A-’(s) = O(l/s)  as I$ + CO in C+. Setting E(.) = E(.) = 
A-’(s), R(s) 0 we obtain solutions of the Bezout 
equations (3.1) and (3.2) which have the desired properties. 0 

Finally, we consider the stabilizability problem for neutral systems. 
Theorem 3.2: The neutral system (1.2) is exponentially stabiliz- 

a) The Bezout equation (3.1) admits solutions E E H f f i ( C n x n )  

b) l i m ~ s ~ + m A - ’ ( s ) B o  = 0. 

Conversely, under the extra assumption that M contains no sin- 
gular part, the conditions a) and b) are necessary for exponential 
stabilizability . 

We stress that Theorem 3.2 concerns stabilization with a feedback 
of the form 

0 and r(s) 

able by bounded feedback if the following two conditions hold: 

and R E Hffi(CmXn) which are O(l /s)  as Is1 + CO in C+. 

S€C+ 

I 

w ( t )  = [ F(T)E(t + T )  d r  + FoE(t) (3.13) 

where F E L 2 ( - h ,  0; lRmxn) and FO E EtmXn,  i.e., a feedback 
which is bounded on M 2 .  Stabilization of neutral systems by bounded 
state-feedback has been studied by several researchers, cf. e.g., [ 111, 
[14], and [l]. It has been proved [ l l ]  that if 

rk (A(s),  BO) = n for all s E E+ (3.14) 

then it is possible to construct a bounded feedback of the form (3.13) 
which arbitrarily relocates any finite number of poles. We mention 
that the statement in [ l l ]  on stabilizability is not correct, see [9]. 
It has been shown in [14] that (3.14) is necessary and sufficient 
for stabilizability provided that M contains no singular part and 
det(Ao(s)) # 0 for all s E E+. The result in [14] contains the 
one in [ l ]  as a special case. It is clear that (3.14) is equivalent to the 
existence of solutions Z(s)  and R(s) of (3.1) which are holomorphic 
on E+. 

Proof of Theorem 3.2: First suppose that conditions a) and b) 
hold. A straightforward calculation shows that 

I - M ( s )  (SI - A)-’  (:) = ( es ) A-’(s)Bo 

where the operator A is given by (3.3) and (3.4). By condition b) 
we see that 

(3.15) 

As in the proof of Theorem 3.1 it follows from condition a) that there 
exist functions X E H m ( L ( M 2 ) )  and U E Hm(,C(M2, Rm)) 
satisfying 

(SI - A ) X ( s )  + (:)U(.) = I for all s E C+, (3.16) 

i.e., condition C1) for the abstract version of system (1.2). Using 
Remark 2.5 it follows from (3.15) and (3.16) that the system (1.2) is 
exponentially stabilizable by bounded feedback. 

Conversely assume that M contains no singular part and suppose 
that there exist an exponentially stabilizing feedback of the form 
(3.13). Setting 

it follows that (A(s) - BoP(s))-’ is holomorphic on a half-plane 
Re (s) > o for some o < 0. Moreover, since the difference equation 

associated with (1.2) is invariant under bounded feedback we have 
that A,’(s) E Hm(Cnxn) (see [14, pp. 160-1623). Since 

(A(s) - BoP(s))-’ 
-1 

&fc(s) + ,L(s) 1 -  + ; B o ~ ( s ) ) ]  1 A,’(s), 

we pbtain that (A(s) - Bok(s))-’ E Hm(Cnxn) and (A(s) - 
BoF(s))-’ = O(I/S) as Is1 + CO in c+. Settipg E(s):= 
(A(s) - Bok(s))-’ and R(s): = -k(s)(A(s) - BoF(s))-’ we 
obtain solutions of the Bezout equation (3.1) which satisfy condition 
a). Finally, since 

A-’(s)Bo = ( I  + E(s)Bo~(s))-’E(s)Bo, 
we see that conditions b) holds as well. 0 

Remark 3.3: 
i) It is known (see [3], [14]) that if detAo(so) = 0 for some 

SO E (I: then system (1.2) has a vertical root chain with real parts 
tending to Re (SO) .  So, if SO E E+. the system is not exponentially 
stable and moreover not exponentially stabilizable by a feedback of 
the form (3.13) (see [14]). 

ii) The growth condition for the solutions of the Bezout equations 
(3.1) and (3.2) is used in order to absorb the unboundedness of the 
term sM(p:) (see the proof of Theorem 3.1). This is not needed if 
M 0, i.e., for retarded systems. Moreover, condition b) of Theorem 
3.2 is always satisfied in the retarded case. 

iii) An example given in [6] shows that boundedness of the transfer 
function and the existence of entire solutions of the Bezout equations 
(3.1) and (3.2) are not sufficient for exponential stability. 

(iv) Finally, we mention that the sufficient parts of Theorem 3.1 
and 3.2 hold even when M contains a singular part. 
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Linear-Quadratic Zero-Sum Differential 
Games for Generalized State Space Systems 

Hua Xu and Koichi Mizukami 

Abstract-In this note, we consider linear-quadratic zero-sum differ- 
ential games for generalized state space systems. It is well known that a 
unique linear feedback saddle-point solution can exist in the game of state 
space systems. However, for the generalized state space system, we show 
that the game admits uncountably many linear feedback saddle-point 
solutions. Sufficient conditions for the existence of linear feedback saddle- 
point solutions are found. A constructive method is given to find these 
linear feedback saddle-point solutions. A simple example is included to 
illustrate the nonuniqueness of the linear feedback saddle-point solutions. 

I. INTRODUCTION 
We consider the zero-sum linear quadratic differential game with 

valuefunctional 

( 1 )  

J = -zT ( t f  ) E T 4 f E r (  t f  ) + 2 { zTG).r.+u” RI U - v ~ R ~  1 ’ )  d t .  

subject to the linear time-invariant continuous generalized state space 
system 

‘s:J 1 
2 

E? = A s  + Bir + CI’ .  E.r(O-) = E m .  (2) 

where s ( f )  E R”, n ( t )  E R“ and ~ ( t )  E R‘. E is a square matrix 
of rank T 5 n.  The pencil ( S E  - A )  is assumed to be regular 
(i.e., J ( s E  - A ) \  $ 0). RI > 0, R2 > 0 and all other weighting 
matrices are nonnegative definite. The time interval [ t o .  t f ]  is fixed. 
The superscript denotes the transpose of the matrix. A minimizing 
player controls 71 and a maximizing player controls 11. The initial 
condition for the part of a ( t )  in the orthogonal complement of the 
kernel of E is known by both players. We also assume that each 
player has access to closed-loop no memory information on r.  The 
strategies of two players are denoted by and -)2, which belong to 
strategy spaces r l  and r2, respectively. In this note, the restriction 
that rI and r2 are composed of linear feedback strategies of the form 

;/l(.r, t )  = -Ii-,(f),r. 7 2 ( . r .  t )  = - -1<2(f) . r . .  (3) 

is made. 
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Dejnition 1: A linear feedback strategy pair( “(1. 7 2  ) E r;l x r; C 
rl x r2 is called an admissible strategy pair if the closed-loop system 
obtained has no impulsive solution. Correspondingly, ry x r; C 
rl x rz is called the admissible strategy space. 

Definition 2: An admissible linear feedback strategy 
pair(?;. 3;) E r; x r; constitutes a saddle-point equilibrium 
pair if 

(4) 

According to [SI, [9], there exist nonsingular matrices M and H 

J ( ? ; .  ; 2 )  5 J(?? .  7;) 5 .I(?,. 2 ; )  

for all (yl. 7 r )  E r: x r‘;. 

such that the system (2) can take the form 

[; ;] [-‘ 
2 2  

where 

and the value functional (1)  becomes 

where 

Without any loss of generality, we use ( 5 )  and (7) instead of (2) and 
( 1 )  in the following discussion. Suppose that the system output of ( 5 )  
is y = Cl121 + C22z2 .  where Q l l  = C,’Cl1, Q 1 2  = CTlC22 and 
Q 2 2  = C&C22. Then, a basic assumption is made. 

Assumption 1; The system ( 5 )  is impulse controllable and im- 
pulsereconstructible. 

To the end of this section, some well-known results are summarized 
which givea necessary and sufficient condition for the closed-loop 
system not to have impulsive solution as well as some verifiable 
conditions under which Assumption 1 holds. The reader is referred 
to [5] ,  [8] for details. 

Lemma 1: For the system ( S ) ,  there exist linear feedback strategy 
pair(?l, ?2)E r l  x T2 such that the closed-loop system has no 
impulsive solution if and only if it is impulse controllable. 

Lemma 2: The system ( 5 )  is impulse controllable if and only if 
the rows ofthe matrix [A22 B2 C,] are independent. 

Lemma 3: The system ( 5 )  is impulse reconstructible if and only 
if the rowsof the matrix [-A& Ci2] are independent. 

11. PRELIMINARY RESULTS 
The following lemma on the zero-sum dynamic game is useful 

implicitly intreating the problem of this note. 
Lemma 4 [ I ] :  If the zero-sum dynamic game admits a unique 

pure-feedbacksaddle-point solution (7;. $), and if ( U * ,  t i * )  is any 
open-loop saddle-point solution, then 

1. ;; = I / * ,  

2. 5; = i l * ,  

3. ( U * .  I , * )  is the unique open-loop saddle-point solution, 

0018-9286/94$04.00 0 1994 IEEE 

Authorized licensed use limited to: UNIVERSITY OF BATH. Downloaded on June 26,2024 at 15:54:59 UTC from IEEE Xplore.  Restrictions apply. 


