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Abstract

This paper presents a frequency-domain based input-output theory of multivariable
low-gain PI-control of infinite-dimensional stable systems. It is kRown that under very mild
assumptions a large class of infinite-dimensional systems can be stabilized and regulated by
multivariable PI-controllers with sufficiently low gain. The controller design can be
accomplished using plant step data only. No other knowledge of the plant is required. The
application of the input-output results to distributed parameter systems and neutral
systems is discussed.

1. Introduction

The problem of finite-dimensional control of infinite-dimensional systems by
output feedback has received a considerable amount of attention in recent years;
see for example (Schumacher, 1983; Nett, 1984; Kamen et al., 1985; Logemann,
1986a,c; Balas, 1986; Curtain and Salamon, 1986; Jacobson and Nett, 1987).
Unfortunately the orders of the controllers derived by the above authors may be
quite high in certain cases. Moreover, if approximation techniques are used (cf.
(Nett, 1984; Kamen et al., 1985; Logemann, 1986a,c; Balas, 1986)) the
relationship between the particular approximation method and the order of the
stabilizing controller is not yet understood. Intuitively it is clear that restrictions
on the plant such as stability or minimum-phase should lead to simple low-order
controllers.

In this paper the problem of low-gain Pl-control of a certain class of
infinite-dimensional stable systems is investigated. We do not assume that the
plant is exactly known. However, in a similar manner to Owens and Chotai
(1986) it is supposed that the designer has access to reliable plant step data. In
finite dimensions a similar problem was considered by Davison (1976). He proved
that under very mild assumptions a lumped stable plant can be stabilized and
regulated by a multivariable Pl-controller of the form (1/s)kK,+ K, for all
values of the parameter k in some interval 0 <k <k*. Davison’s result was
generalized to certain distributed parameter systems by Pohjolainen (1982, 1985)
and Logemann and Owens (1987¢) and to a class of time-delay systems by Koivo
and Pohjolainen (1985) and Jussila and Koivo (1986).
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The present investigation is based on input-output and frequency-domain
methods in contrast to the above papers by Davison (1976), Jussila and Koivo
(1986), Koivo and Pohjolainen (1985) and Pohjolainen (1982, 1985), where the
analysis is done using state-space methods. We develop a systemaic input—output
theory of low-gain control of infinite-dimensional systems, which includes all
plants, whose impulse response matrices have their entries in

A_:={fed|Fe>0: f(-)e" € A}.

Here o/ denotes the algebra of distributions having support in [0, %) and being
the sum of a string of delayed impulses and a measurable function, with the
additional property that the weights of the impulses form an absolutely summable
sequence and the function is absolutely integrable (cf. Section 2). Although
input—output descriptions are used throughout the paper, non-zero initial
conditions are taken into account by introducing so-called ‘initial-condition
operators’ (cf. Section 3). Using the frequency-domain framework provided by
Callier and Desoer (1978, 1980) our results show that multivariable PI-controllers
are capable of controlling a large class of infinite-dimensional systems to produce
robust stability of the closed loop and tracking of step set-point changes. In
particular the new methodology and results apply to a wider class of systems than
those covered by Davison (1976), Jussila and Koivo (1986), Koivo and Poh-
jolainen (1985), Logemann and Owens (1987c) and Pohjolainen (1982, 1985).

The organization of the paper is as follows. Section 2 is devoted to
preliminaries including the required notation, the definition of the class of
systems to be considered and the proof of a preliminary lemma on final values.
Section 3 provides the proof of a Davison-type result (cf. (Davison, 1976)) which
applies to the class of infinite-dimensional systems under consideration. Section 4
is devoted to the application of the results of Section 3 to distributed parameter
systems and neutral systems. It turns out that the PI-controller derived in Section
3 achieves internal stability in each case.

2. Preliminaries
Let R, denote the interval [0, ). The set C, (« € R) is defined by
C,:={s €eC|Re(s) > a}.
Suppose that f is a distribution with support in R, of the form
f=2fbd,+f 2.1)
=0

where #,:=0, t,>0 for all i =1, 9§, denotes the Dirac distribution at ¢, f, € C and
f, is a C-valued Lebesgue-measurable function. The set .« consists of all
distributions f of the form (2.1) such that

1= 3 11+ [ 1£o1

=0
is finite. It can be shown that the convolution algebra &/ forms a Banach algebra
(cf. (Hille and Phillips, 1957, p. 141)). If f € &, then the Laplace transform of £,

fis):=D, fie™ +J f.(e " dt,

=0
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is holomorphic on C, and continuous on Co. In particular we have
£ 1l:= sup £ () < 11l
It is useful to define the following subalgebras of #:
A_:={fed|I>0: f(-)e" e A},

\94‘1:={f=2ﬁé,‘+f,,e‘94_|3N>(): f,=0Vi>N},

=0
LL(R,):={f eL'(R,)|3e>0: f(-)e* e L'(R,)}
Obviously the following inclusions hold: :

LLR)cA cA_c A.
Moreover, we define

A={f|fes).

It is now clear what is meant by &/_, #°, etc.

2.1 Remark From a mathematical point of view the algebra « is studied, for
example, by Hille and Phillips (1957, p. 141). As far as the authors are aware it

was introduced into systems theory by Desoer and Wu (1968) (cf. also the book
by Willems (1971)).

2.2 Remarks (i) Let
f=2fd,+f,ed.
1=0
Then
lim f(s)=0

|§|—=

seCy

if and only if ¥/ f6, =0 (cf. (Callier and Desoer, 1978)).
(ii) f e sf_ is a unit of the algebra o/_ if and only if

inf [f(s)] >0

seCy

(cf. (Callier and Desoer, 1980)).

(i) The final value theorem holds for transfer functions in &/_. More
precisely, let

1, -t=>0

B(t):={0, t<0’

denote the unit step function and assume that f € «/_. Then there exist M >0 and
€ >0 such that

[(f *#r0)(t) — F(O)r| < Me™ " |r|

for all t=0 and all r € R; cf. (Callier and Winkin, 1986).
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2.3 Lemma Assume that f € d  and u e L*(R,). &
(1) If there exist M >0, £ >0 and u, € R such that |u(t) — u.| < Me for all
t =0, then there exist N >0 and & > 0 such that

[(f *u)(t) — f(O)u.| = Ne ™
(i) If lim, .. u(t):=u, exists then lim,_.. (f *u)(t) = f(O)u..

Proof (i) For this, cf. (Callier and Winkin, 1986).
(i1) Define v(t):=u(t) — u... Then, if we write f = X0 fi0, + fa,

(f *u)(t) = (f *u..0)(1) + f'f,,(r —t)u(r)dr + Zﬁv(t —8).

By Remark 2.2(iii), lim,... (f *u..0)(t) = f(0)u.. Therefore it remains to show
that

lim ’ﬁ,(t—r)v(t) dt=0 (2.2)

—»x
and

lim Y fu(t—1)=0. (2.3)

Lmtay L T

We show that (2.2) holds. Equation (2.3) can be established by analogous
arguments. For given & >0 there exists a number 7 > () such that

lv(t)|<e forallt=T,
2t
f lfu(t)|dt<e forallt=T.

Hence

< (f‘ +£) £ = ] (D)) de

<(|lvll=+ |Ifull)e for all t=2T.

Uﬂlfa(t - 1)v(r)dr

In order to deal with unstable systems we shall be working with the algebra
PB:=B(0) of transfer functions introduced by Callier and Desoer (1978, 1980).
An intuitive way of defining 4 is to use (Callier and Desoer, 1978, Theorem 3:3).
Then ¢ € % if and only if g =_f +7,where f € &/ and 7 is a strictly proper rational
function whose poles are in C,,.
2.4 Definition Let G and K be two transfer matricgs of dimension m x q and
g X m, respectively. We assume that the entries of G and K are elements in .
The feedback system in Fig. 1 is called i/o-stable if the matrix
o o I1+KG)'R -(+RG)'RG
[1((;, K):=< ( ,,‘,.l)l‘,\ ( 2{)~IA l)
(I+GK)"'GK  (I+GK)'G
is in gMrOXn+) If the feedback configuration in Fig. 1 is i/o-stable we shall
also say that K stabilizes G.
2.5 Remarks (i) If the feedback system in Fig. 1is i/o-stable then if follows in
particular that (/ + GK) ' e 4™ ™ and (I + KG) ' € s§9%9,
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Fig. 1

(i) Let Ged™ and suppose that K e B9 Under these conditions the
feedback system in Fig. 1 is i/o-stable if and only if (/ + KG) 'K € A7

3. Pl-controllers for infinite-dimensional systems

We shall first consider pure proportional controllers. The following simple result
is easily obtained from Remarks 2.2(ii) and 2.5(ii).

3.1 Lemma Let G € 4™ and K, € C"". Then Kp stabilizes G if

0(Kp)<—— ;
(Kr) sup 5(G (iw))

weR

where (- ) denotes the largest singular value of its argument.

In the sequel we denote the spectrum of a matrix M € C"*" by o(M). The next
result gives a condition under which stabilizing integral controllers exist for stable
plants.

3.2 Theorem Let G € ™" and assume that tk (G(0))=m. Then there exists
K, € C”™ such that

a(G(0)K,) = C,. (3.1)

For each K,eC”"”i satisfying (3.1) there exists k* >0 such that the controller
(1/5)kK; stabilizes G for all 0 < k <k*.

Proof Note that G(0)G(0)7 is non-singular (rk (G(0)) = m!). If we set
K;:=G0)(G0)G(0))™!

then (3.1) is satisfied. Now consider an arbitrary matrix K, € C7*™ satisfying the
condition (3.1). Define

F(s):=G()K,,  Cu(s):=(1/s)kl,.
We have to show that there exists positive k* such that C stabilizes F for all
0=k <k*. Note that
" k % o
C e — (——Im)
)= T\

1s a right-coprime factorization and it follows from fractional representation
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theory (cf. for example (Vidyasagar er al. 1982)) and Remark 2.2(ii) that G
stabilizes F if and only if the function

k .
fi(s):=det (si—l L, + oy F(s))

is bounded away from zero in C,; that is, inf,., [fo(s)] > 0. Let us rewrite f, as
follows: '

B (s f 1)m o (%’"' +ﬁ(5))- (3.3)

We prove the claim by contraposition; that is, we suppose that there exists a
sequence (k,),o, k, € (0, =), such that

limk,=0 and inf |f,(s)]=0.

1> seCqy

Since fi(*)=1 for all i=0 there exists a complex number s, € C, such that
fi(s:) = 0. If follows from (3.2) that

|s;| < max (k,) sup a(F(s)).
=0 seCy
So there exists a convergent subsequence (z;),.., of (s,),-o. We conclude from
(3.2) that lim_,.. z; = 0. Finally it follows from (3.3) that —z;/k; € 0(F(z,)), which
means that o(F(0)) & C,.

The existence of stabilizing PI-controllers can now be established.

3.3 Theorem Let G e A7 and choose a matrix Kpe C?™ that stabilizes G.
Moreover, suppose that 1k (G(0))=m. Then there are matrices K, e C9*™
satisfying

a((I + G(0)K,) 'G(0)K, = C,. (3.4)

For each such K, there exists k* >0 such that
. 1
K (s) :=;kK, + K,

stabilizes G for all 0< k < k*.

Proof It follows from the assumptions that rk (/ + G(0)K,) 'G(0)) = m. By
Theorem 3.2 there exist matrices K, € C?*™ that satisfy (3.4). Moreover, for each
such matrix K, there exists k* >0 such that the feedback system in Fig. 2 is
i/o-stable for all 0 <k < k*. Application of the loop-transformation theorem (cf.
(Desoer and Vidyasagar, 1975, p. 51)) shows that the feedback system in Fig. 3 is
i/o-stable for all 0 <k < k* as well.

In the sequel we shall study the tracking properties of the feedback system in
Fig. 4. We assume that the impulse response of the plant is in /™" and that the
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1 $l + .
> > kK; FpO—— G >
oA 5 +
A’/-
Fig. 2

+
1 L P
O] ;kK,'*’K,. 7 G

Fig. 3

d, de(L5(R,))"

[ +

N PI- 3 G b Y
- controller s )

Fig. 4
disturbance d is a function in the space (Lj(R,)™, where
L’,‘(R+):={f e L*(R.) [ lim f(r) exists}.

Notice that Fig. 5 (where G e &™™? and d,€ RY) is a special case of Fig. 4
obtained by setting

d(1) = (G *(do0))(1).
Indeed it is obvious that G * (d,60) € (Ly(R ,))".

1

-d,, d, e RY

s
_l_r +
s PI- +

P G >
+ controller
Fig. §
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In order to allow for non-zero initial conditions in the plant the following
definition 1s useful

3.4 Definition A stable linear system with ¢ inputs and m outputs is a triple
(G, X, F), where G € s#™*9, X denotes a vector space (the state space) and F IS a
linear operator mapping X into (L{(R .))". The operator F is called the initial
condition operator of the system (G, X, F). Let u: R, — R? be a function such
that

u ljo,ry€ (L0, T))? forall T>0

(that is, u is locally integrable) and suppose that x,€ X. The output y of the
system (G, X, F) corresponding to input u and the initial state x, is defined by
y=G*u+ Fx,.

The following result shows that under certain conditions stabilization implies
tracking.

3.5 Theorem Let (G, X, F) be a stable linear system with q inputs and m outputs
and let K;, Kp € C7™_ It is assumed that tk (K,;) = m. We apply the Pl-controller

(1) =v(), 2(0)=zneR”',} (.5)
w(t) = K;z(t) + Kpu(t)
to the system (G, X, F). The resulting feedback system (cf. Fig. 6) given by
Y= (G om0 + (Frol®) + (). G
v(t) =r6(t) — y(1)

tracks the reference signal rO(t), that is, lim,_..y(t)=r(reR"™), for arbitrary
i{zitial conditions (x,, zo)eXle'" and arbitrary disturbances d € (L5(R,))™ if
K(s):=(1/s)K; + Kp stabilizes G.

Proof We obtain from equations (3.5) and (3.6)
i 1 A 1 .
56)= 66K 20) + RO = 56))) + 5o5) + o),
where y,(t):= (Fx,)(t). Hence

A 5 A i : " " "
$(s)=(I + G(s)K(s))"G(s)K,(; z(,) +(I+ G(s)K(s))"(;(s)K(s)G /)

+ (I + G(s)K(5)) 'Gols) + d(s)). (3.7)
d(r)
ré(r)  v(r) PI- w(r) Y *l v(r)
+ controller (G. X, F) -

Fig. 6
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Moreover, it is clear that

K(s)= ( LK, +;S‘KP)( —S—_Im)

s+1 s+1 s+

is a right-coprime factorization, indeed we have

1
(KTK)KI( - Kot = Kp) + (U = (KTK) KTKR () = e

s+1
By assumption, K stabilizes G and therefore it follows from fractional repre-
sentation theory (cf., for example, (Vidyasagar et al., 1982)) that

inf >0.

seCy

dcl( l,..+G(‘)( K+ +1KP))

We obtain in particular that det(G(O)K,)—() Furthermore, it follows from
Stdblhty that the transfer matrices T := (I + GK) 'GK,, T,:=(I + GK)'GK and
=(I+ GK) ! have all their entries in A_. Now using the fact that G(0)K, is
on-smgular it is easy to show that 7;(0) =0, 75(0) =1 and T5(0) = 0. Hence it
follows from Remark 2.2(iii), Lemma 2.3 and equation (3.7) that lim,_... y(¢t) = r.

3.6 Corollary Let (G, X, F) be a stable linear system with q inputs and m outputs.
The following statements are equivalent.
(1) The rank of the matrix G(0) is equal to m.
(i) There exist matrices K;, Kp € C*"" and a number k* >0 such that
(a) for all k €0, k™) the controller Ki(s) = (1/s)kK, + Kp stabilizes G,
(b) for all k € (0, k*) the closed-loop system given by

z(t) =v(1), z(0)=z,eR™, (3.8)
w(t) = kK,z(t) + Kpu(t), (3.9)
y(0) = (G *w)(1) + (Fxo)(1) +d(1), (3.10)
v(O)=r0()—y(t), reR™ (3.11)

tracks constant reference signals (that is, hm,,.y(t)=r) in the

presence of arbitrary initial conditions (x,, z,) € X X R™ and arbitrary
disturbances d € (Ly(R .))™.

Proof (i)=> (ii) This follows from Lemma 3.1 and Theorems 3.3 and 3.5.
(i) > (i) Let ko€ (0, k*) be fixed. By assumption it follows in particular that
(1 +(:Kk ) (;Kk e d™ ™ and (I + K‘,,(J) 'K,. € 47 Moreover, we have

L, = Ilm {((1+ G(5)Ki (5)) 'G(s)Ki (5)}

=G0y lim {({ + K, ()G (5)) 'Ky (5)}).

Hence it follows that rk (G(0)) =m

3.7 Remark If a plant G € #™"“ does not satisfy the above rank condition, that
rk((:(()))(m then it may be still possible to stabilize G by a Pl-controller. A
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trivial example is given by

i ,—hs
A s+1 A 1 /0 0O
G(s)= , (h >0), Kk(s)—;k(“ 1)-
§+2

Indeed a simple calculation shows that K, stabilizes G for all 0 < k < . Of course
(by Corollary 3.6) the closed-loop system does not track arbitrary constant
reference signals.

The following corollary follows immediately from Theorems 3.3 and 3.5.

3.8 Corollary Suppose, for a plant G € {9, the rank condition tk (G(0)) =m
is satisfied. If (Kp, K;) € R7™ X R“™ is a pair of matrices such that Kp stabilizes
G and K, satisfies the condition

a((I+ G(0)K,) 'G(0)K,) = C,,

then there exists k* >0 such that the controller Kk(s) = (1/s)kK, + Kp stabilizes G
for all 0<k <k*. Moreover, suppose that K, is applied to the linear 5y9tem
(G, X, F), where F is an initial-condition operator defined on the ‘state-space’ X.
Then for all k € (0, k*) the closed-loop system defined by (3.8) to (3.11) tracks the
reference signals in the presence of arbitrary initial conditions (x,, z,) € X X R™
and arbitrary disturbances d € (L5(R .))™.

It is obvious from Corollary 3.8 that no exact knowledge of the system
(G, X, F) is required in order to control it using a Pl-controller of the form
Ki(s)=(1/s)kK, + Kp. For pure integral control the knowledge of G(0) is
sufficient. It follows from Remark 2.2(iii) that G(0) can be deduced from plant
step response data. If proportional action is required then it is necessary to know
an upper bound on sup,,.r 3(G(iw)) (cf. Lemma 3. 1). If we restrict ourselves to
the case when g e «#4°” % then an upper bound on SUP,,en 0((‘(1(:))) can be
deduced from step response data as well. More precisely let h, denote the
response from zero initial conditions of the ith output of the system (G, X, F) to
a unit step in the jth input. Then it follows from Lemma 3.9 that

sup a(G(iw))=Vm max (hm\/(h,,))
=i=m \r—»x (
welR 1 g
where \/§ (- ) denotes the total variation of its argument on the interval [0, ¢].

3.9 Lemma Suppose that g= Y[ 480, +8.,€ A’ and let h denote the step
response of g, that is, h:=g* 0. Then we have

tim \/ (1) = l1glla = 3 led + [ lgu(0)l dr

i=0
As a consequence

18(s)1l- = sup |g(s)| < lim \/ (h). (3.12)

Equality holds in (3.12) if h is monotonic and g;=0, i =0, ... ,n

The proof of this lemma can be found in the Appendix.
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4. Examples

4.1 Semigroup systems

It has been shown by the authors (cf. (Logemann and Owens, 1987c)) that the
results of Section 3 apply to a class of semigroup systems with unbounded control
and observation operators introduced by Curtain and Pritchard (1978). In
particular it is proved by Logemann and Owens (1987c¢) that the PI-controller of
Section 3 achieves internal (that is, exponential) stability and tracking of step
set-point changes in the presence of step disturbances in the state equations.
Recent work by Curtain (1987) shows that this extends to a more general class of

infinite-dimensional systems introduced by Salamon (cf. (Salamon, 1984; Curtain,
1987)).

4.2 Neutral systems

The results mentioned in subsection 4.1 do not cover neutral systems with
general delays in the state-and-control variables. However, it will be shown that
neutral systems fit into the framework developed in the previous sections and that
the application of the Pl-controller of Section 3 will result in internal stability of
the closed-loop system. Consider the neutral system

d r r 3
d_tJ; dD(1)x(t — r)—fo dA(r)x(t—r)+J; dB(t)u(t— 1) +d,,

xl[—r,(l] = ¢ € (C[—f. 0]))nr ? (4 1)

y(1) =£ dC(t)x(t — 1),
‘ y

n

where x(r) e B", u(r) e R? and y(r) e B™. The disturbance d,, is assumed to be a
constant vector in B". The functions A, B, C and D are of bounded variation on
the interval [—r, O] with values in R™*", R™*9, R™*" and R™*", respectively.
Moreover, we have to assume that

D=6l -E, 4.2)

where E is a function of bounded variation on [0, r] which is continuous at zero
(cf. (Henry, 1974) or (Kappel, 1984)).

In order to introduce the transfer matrix G of the system (4.1) (with zero-initial
condition) we define:

t r

fi(s):=f e ‘TdA(T), B(s):=f e *"dB(1),

0 0

v r

C(s):=f e **dC(x), 15(5):=f e **dD (7).

0 0

The entries of A, B, C and D are entire functions. If we extend A, B,Cand D to
B. by defining A(r) = A(r), B(t)=B(r), C(t)=C(r) and D(t)= D(r) for t >r,
then the functions A, B, C and D are the Laplace—Stieltjes transforms (cf.
(Widder, 1972)) of A, B, C and D, respectively. We obtain the following
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expression for the transfer matrix G of (4.1):

G(s)= C(s)(sD(s) — A(s)) ' B(s). (4.3)

We shall need the following assumptions. ' _

(N1) The functions of bounded variation A, B, C and D contain no smgl”‘ff P‘f'”
(see, for example, (Natanson, 1955, p. 263) or (Kolmogorov and Fomin,
1975, p. 341)).

(N2) The neutral system (4.1) is exponentially stable; that is, the strongly
continuous solution semigroup on (C([—r, 0]))" of the homogeneous part of
(4.1) is exponentially stable.

4.1 Remark Suppose that the function D contains no singular part. Then the

condition (N2) is satisfied if and only if there exists a number a <0 such that

det (sD(s) — A(s))#0 forallseC,
(cf. (Henry, 1974)).

The following lemma enables us to apply the results of Section 3 to a neutral
system (4.1) satisfying (N1) and (N2).
4.2 Lemma Suppose that (N1) and (N2) are satisfied. Then the inverse Laplace
transform G of the transfer matrix G given by (4.3) is an element in (LL(F ,))""".

Proof By (4.2) and (N1) we can express D(s) as
ﬁ(s)=1—i E,e_"‘—er,(r)e_"(lr, (4.4)
j=0 0
where 0 <r,=r for all j =0 and
SIEI+ [ IE @ de <o
Define
Ao(s):=1—- i) Eie™ ", (4.5)
=
It follows from (N2) via Remark 4.1 and (Salamon, 1984, p. 160) that there
exists a << 0 such that
det (Ag(s))#0 forall seC,. (4.6)

Inspection of (4.5) yields
ir}f [det (Ay(s))| >0 (4.7)
S€lp

for all large enough f>0. Now observe that det(Ay(s)) is a holomorphic
almost-periodic function (cf., for example (Corduneanu, 1968) or (Levin, 1964))
in every vertical strip of the complex plane. Hence by (4.6) and a result of Levin
(1964, p. 268)

inf  |det (Ay(s))| > 0. (4.8)

0=Re(s)=f
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Therefore we have

inf |det (Aq(s))| >0
sely
(by (4.7) and (4.8)) and it follows from Logemann ~(1987) that G € .'{?""".
Moreover we conclude from (N2) via Remark 4.1 that G has no poles in €, for
some y < (0. As a consequence we obtain that G € 4%, Finally it is not difficult
to show that
lim G(s)=0
Isf—=>=

seCqy

which (by Remark 2.2 (i)) implies that G e (L' (R ,))"".
We shall apply the Pl-controller

z(t)=v(1), z(())=z(.eR"',} (4.9)

w(t) = kK,z(t) + Kpv(t) i
to the neutral system (4.1); that is,

v(t)=ro(t) — y(2), reR™

u(t) =w(r). } (4.10)

4.3 Theorem Suppose that‘the' neutral system (4.1) satisfies (N1) and (N2) and
that rk (G (0)) = m, where G is defined by (4.3). Choose matrices Kp € R?*™ and
K, € RY™ such that Kp stabilizes G and K, satisfies the condition

o((I + GO)Kp")G(0)K)) = Cy.

Then there exists a number k* >0 such that for all 0 <k <k* the neutral system
defined by (4.1), (4.9) and (4.10) is exponentially stable and tracks constant ref -
erence signals in the presence of arbitrary initial values (¢, z,) € (C([—r, 0]))" x R™
and arbitrary disturbances d, € R".

Proof The exponential stability of the closed-loop system follows from the fact
that the controller Ki(s)=(1/s)K,+ Kp stabilizes G for all 0<k <k* (cf.
Corollary 3.8), and from (Logemann, 1986b, Corollary 3.2). Moreover, set

X:=(C[-r,0]))" and (F¢)(t):=L’dC(r)(S(IW)(—r)

for ¢ € X, where S(r) is the strongly continuous solution semigroup of the
homogeneous part of (4.1). Using the exponential stability of S(¢) it is easy to
show that F¢ € (L5(R,))™. Finally define

(0= [ dC(@(Y+d,0)t 1), @11)

where Y(r) is the fundamental solution of the homogeneous part of (4.1) (cf.
(Kappel, 1984)). If we realize that Y(r) e (L'(R,))"*" (by (N1) and (N2) via
Remark 4.1 and by (Kappel, 1984, p. 18)) then if follows from (4.11) that
de(L5(R,))". Now apply Corollary 3.8 to the system (G, X, F) and to
disturbances of the form (4.11).
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4.4 Remarks (i) The theoretical results of the papers by Koivo and Poh-
jolainen (1985) and Jussila and Koivo (1986) are contained in Theorem 4.3 as a
special case.

(i) Using ideas of Hale (1974) we can derive a result similar to Theorem 4.3
for certain retarded systems with infinite delays. Moreover, it has been shown by
the authors (1987b) that the input-output results of Section 3 apply to Volterra
integrodifferential systems and Volterra integral systems.

5. Conclusions

By considering infinite-dimensional systems having their impulse responses in
™ % it is possible to systematically design Pl-controllers for the plant on the
basis of open-loop step-response data. It has been shown that the resulting
closed-loop system is stable, tracks step set-point changes and rejects disturbances
belonging to (Lg(R,))™. Furthermore, it has been proved that the Pl-controller
of Section 3 achieves internal stability if it is applied to neutral systems. It should
be mentioned that all the results in Sections 3 and 4 remain true if we consider
instead of step set-point changes reference signals in (Lg(R.))? (for example,
ramps). The theory developed enables the generalization of recent results in
low-gain control by Owens and Chotai (1986) to cover the infinite-dimensional
case. Finally we note that there appears to be a form of ‘duality’ between the
above ‘low-gain theory’ of stable systems and ‘high-gain theory’ of minimum-
phase systems as illustrated in the finite-dimensional case, for example, by Owens
and Chotai (1982) and in the infinite-dimensional case by Logemann and Owens
(1987a).
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Appendix

In order to prove Lemma 3.9 the following lemma is useful.

A1 Lemma Let f:[a, b]— C be a function of bounded variation and let c € .
Define

fla),  t=a,

f()+c, a<t<b.

F(t) :={
If lim, o f (1) = (a) then
V(B =V (1) + el

The proof is straightforward and is therefore omitted.

Proof of Lemma 3.9 Note that

M0 =3 g+ [ s dr
<x 0

and choose t >t,, 1 =i=n. Then

\:’/(h)= El,\l'/(h)+\:/(h)

and it follows from Lemma A.1 and (Natanson, 1955, p. 259) that

I n

V=3 (lei+ [ eoldr)+lel+ [ lemidr=3 g+ [ lg.o) dr

0 i=1
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Hence

im N/ ()= 3 1gi + f l2.()] d = l1gl.«

= 0 i=0

and it is now trivial that
~ . g
g1l < lim \/ ().
1—» 0

Let us assume that g;=0 (i =0, ..., n) and that A is monotonic. This implies that
h is absolutely continuous on [0, ¢] for all >0 and

f(:lh(r)l di= “:ﬁ(r) dr

for all £ > 0.

Therefore

—tim [ [i(z)| dr=1im \/ (h)
0

t—>x Jg >0

181l = 18(0)] = lim |A(2)| = lim U h(t) dt
g t—= 1Jo

and by (3.12) it follows that ||g]|.. = lim,_... \/§ (h).




