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INPUT-OUTPUT THEORY OF HIGH-GAIN ADAPTIVE
STABILIZATION OF INFINITE-DIMENSIONAL SYSTEMS
WITH NON-LINEARITIES
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SUMMARY

This paper develops an input—output theory of high-gain adaptive stabilization of certain infinite-
dimensional processes with actuator and sensor non-linearities. It is shown that there is a wide range of
gain adaption rules achieving stability for the class of processes under consideration if proportional output
feedback is used. The abstract input—output results are applied to retarded systems and Volterra
integrodifferential systems. The paper shows that the scope of applicability of universal adaptive
stabilization ideas extends far bevond finite-dimensional linear systems.
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NOMENCLATURE
=, = set of non-negative real numbers.
C, = open right-half complex plane.

Let J C ® be an interval, then C(J, R") = vector space of ®"-valued continuous functions on
J

C(J)= C(J,R).

L"(J) = vector space of real-valued p-integrable functions on J.

LLY(J):= vector space of real-valued locally p-integrable functions on J.

Eue LRRy ) LES = LET(R.), LL% = BLT(R).

BV(J, R"*") = vector space of ®"*"-valued functions of bounded variation on J.
H™ = algebra of bounded holomorphic functions on C.

ide=the map R—=> R, x - x.

Let fe€ LLY, then forall >0

_(f(n 0<Tr<t
(P:f)(T)-—{O o
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If feC([0,)), then forall 0 €/ <«

Jir) 07!

(PSf)(7) = { 0 7>t

S. (a, B)(B = a > 0) denotes the set of all Borel functions d )
f: R, x R — R such that f(t,0)=0 v/€R, and Bx: 2 xf(t, x) 2 ax” ¥(t, x) €K+ XK.

S_(a, B)(B = « > 0) denotes the set of all Borel functions ) o
f: R, x R — R such that f(1,0)=0 vr€ R, and (—a)x® 2 xf(t, x) 2 (-B)x" v, x)€Rs XK.

S((x.d) = S. (lt,d) Uus. ((Y.)3).
S= U S(«, B).
)

Bza>(
Given f€ S, there exist numbers 8 2 a >0 such that f€ S(«, ), 4 . ,
sign(f)= +1if f€S, (a, B) and sign(f) = — 1 if f€S- (a, §) (notice that sign(f) = sign(f(t, X))
V(t, x)€ R, x(0,)).

For f€S and x: R, — R the symbol f(., x(.)) denotes the function £ — f(1, x(£)).

1. INTRODUCTION

The initial steps taken in the area of ‘high-gain’ adaptive stabilization included the result by
Willems and Byrnes' that linear, single-input/single-output, minimum-phase systems with
finite-dimensional state-space realizations (A, B, C) are stabilized by the proportional output
feedback law

u(t)y = —sign(CBYk(t)y(1)

where the gain k(¢) is obtained from the differential equation
k() = (r)’?

These basic results appeared to depend upon the assumption of linearity, finite-dimensionality,
the specific form of the control law and the gain evolution as a quadratic in ‘real’ output. In
particular, a state-space representation seemed to be necessary and exact implementation of
u(1) based upon exact measurements of y(7) appeared to be essential. For practical applications
and robustness studies an input—output theory would have advantages and could enable the
removal of the finite-dimensionality assumption. Also, the inclusion of imperfect measurement
and actuation in the form of non-linear sensor and actuator characteristics would be of great
benefit. These ideas and their implications are addressed in this paper. The analysis is
necessarily technical but, in essence, the results of previous studies (see the references below)
carry over to these more complex situations with little change other than the need for a new
‘scaling-invariance’ property in the controller gain characterization. However, the proofs of the
results in the linear finite-dimensional case do not carry over to the non-linear infinite-
dimensional situation and therefore the generalizations are far from being trivial.

Robust (non-adaptive) high-gain control of infinite-dimensional systems has previously been
studied in some detail by the authors.” In the present paper we shall develop an input—output
approach to adaptive high-gain stabilization of certain single-input/single-output non-linear
infinite-dimensional processes. The class of processes I to be considered is shown in Figure 1.
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Figure 1

We suppose that ¢ and ¢ are memoryless actuator and sensor non-linearities and that g is
the transfer function of a linear time-invariant (not necessarily finite-dimensional) system.
Moreover, we assume the following:

1. The functions ¢ and y are unbiased time-varying non-linearities lying either in a positive
or negative sector (i.e. ¢ and y are elements of S as defined in the list of notation).

2. The transfer function g is minimum-phase (i.e. g has no zeros in the closed right-half
plane) and there exists a real number a # 0 such that

sg(s)—a=0("") as|s| = o in C,

The above equation generalizes the ‘relative-degree one’ condition for finite-dimensional
systems when « is just CB in a state-space realization (A, B, C) (see Section 2).

Our adaptive stabilization results do not require parameter identification algorithms and can
hence be regarded as being in the same spirit as the papers by Nussbaum,® Willems and
Byrnes,! Dahleh and Hopkins,* Martensson,® Owens ef al.® and Kobayashi.” The above
references have in common that they are based on state-space methods. The articles by
Nussbaum® and Willems and Byrnes' and the thesis by Martensson® deal with linear finite-
dimensional systems, while Owens et al. ® consider finite-dimensional systems with certain non-
linearities in the state. Dahleh and Hopkins* extend the main result of Willems and Byrnes'
to a class of linear differential-delay systems. Generalizations to linear distributed parameter
systems described by holomorphic semigroups are given by Kobayashi.” The theory developed
in the present paper contains the results of Dahleh and Hopkins* and Kobayashi” but includes
a considerably larger class of systems, feedback laws and gain adaption rules. In particular, our
results apply to retarded systems and Volterra integrodifferential systems. It is emphasized that
the new theory can deal with systems subject to unbiased time-varying sensor and actuator non-
linearities lying either in a positive or negative sector — an important problem which
has not been considered in the above references. Although input—output descriptions are used
throughout the paper, non-zero initial conditions are taken into account by using ‘initial-
condition terms’ (see Section 2).

In Section 2 we establish a number of preliminary results and define precisely the problem
to be considered. Section 3 investigates the stabilization problem in the case that the sign of
the process IT defined by

sign(IT) = sign(o )sign(a)sign(¥)

is known. We prove a lemma describing the dynamics of the process IT subject to the control
law

u(t) = —sign(INo 1, k()Y (t, y(1))]
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under the assumption that the time-varying gain k(¢) is non-decreasing and lim, .k () = .
The analysis of ‘gain divergence’ is then used to prove that for a large class of causal gain
adaption rules y— k the above control law stabilizes the process IT in the sense that
yeLANLY, lim-~wy(t)=0 and lim, ..k (¢) exists and is finite. In Section 4 we consider the
adaptive stabilization problem in the absence of information on sign(I1T). In this case it is useful
to employ so-called ‘switching functions’, a concept which has its origin in the papers by
Nussbaum* and Willems and Byrnes.' In particular, it will turn out that the notion of a scaling-
invariant switching function introduced in Section 4 plays an essential role in the problem of
dealing with the non-linearities ¢ and ¢. A switching function is a locally (essentially) bounded
function (taking on both positive and negative values) which enables the controller to ‘learn’
the sign of the process; in other words, it provides the controller gain with the ‘right’ sign. A
scaling-invariant switching function has this property despite the presence of arbitrary unbiased
time-varying actuator and sensor non-linearities lying either in a positive or negative sector. A
precise definition of these concepts is given in Section 4. As Owens er al.® did, we allow
switching as a function of both current and past gain and input data. This leads to a wide class
of stabilizing adaptive high-gain controllers with convergence of the switching mechanism being
independent of the gain adaption rules for generating k(r). More precisely, we investigate the
dynamics of the process IT under the control law

u(t) = ¢ t, NEEKOY, y(t)]
E(0) = k(O y(1)? £0)=%€R

where k(¢) is a strictly positive time-varying gain and N is a scaling-invariant switching
function. It turns out that the above controller stabilizes the process IT in the sense that
ve L% N LT and lim,.£(¢) exists and is finite. Moreover, if & is bounded, it follows that
lim; .~y (2) = 0. In view of this result it is natural to consider the gain k as the image of a causal
map operating on £(.) and (., ¥(.)). A large class of gain adaption rules is given, ensuring
closed-loop stability in the sense that y€ L2 N L%, lim~y(¢) = 0, the limits lim, -.£(f) and
lim, ..k (r) exist and are finite. These gain adaption laws include k(l)—x}:(t. y(r)) and
therefore fully generalize previous work. Section 5 is devoted to the application of the
input—output results of Sections 3 and 4 to retarded systems and Volterra integrodifferential
systems. It is shown that for these two classes of systems the adaptive control laws of the
previous sections achieve ‘internal’ stability. The proofs of some of the results in Sections 2—4
are given in Appendices [-I11.

2. PRELIMINARIES

In the following sections a certain functional differential equation will play an important role.
It is therefore useful to give a precise statement of existence and uniqueness of solutions.
Consider the initial-value problem

X)) = (Tx)() + L, x@) + B(0) 12« (la)
xl[O“,]Z‘UGC([O,Q]"Q”) QZO (lb)

where:

(i) T:(LL>:)"— (LL>)". We assume that T(0) =0 and that there exists x > 0 such that
| P(Tx = Tx")|| < x || P(x=X")|| ¥X, X" € (LL%)", vt >0, i.e. T is unbiased, causal
and of finite incremental gain.



HIGH-GAIN ADAPTIVE STABILIZATION 197

(i) 2 R, xR"—> R"js a continuous and locally Lipschitzian function.
(i) f>is a function in (LL%)".

Of course, if @=0in (1b), then C([0,«], R")=[R". In order to define what we mean by
a solution of (1) on [0, 3) (a < B < ), we have to give a meaning to Tx if x€ C([0,8), ")
(remember that T operates on functions which are defined on =, and are elements in (LL% ™).
We set (Tx)(1) = (TP,x)(¢) for 0 < 1 < 7 < 3. Since T is causal, this definition does not depend

on the choice of 7.

2.1. Definition
A solution of (1) on [0,3) is a function x € C([0,3),R") (« < 3 < o) such that:

(i) x is absolutely continuous on [«,3) and satisfies (1a) a.e. on [a,3).
(i) (1b) 1s satisfied by x.

2.2. Theorem

The initial-value problem (1) has a unique solution x on [0,3) where « < g < o, If § <
and 38 cannot be increased, then there exists a sequence « < ; <t < -+ — 3 such that
lim; ~w | X(4) | = .

Although we hardly believe the above theorem to be unknown, we were unable to find it in
the literature (e.g. the ‘classical’ paper by Driver® and the book by Hale”). We provide a proof
in Appendix I.

Let us consider the linear part of the non-linear process I1 shown in Figure 1. It is not
assumed that the transfer function g is rational. Suppose that g is meromorphic on €, and that

g ' s)=a"'s+h(s) (2)

where @€ F\[{0} and he H™. Of course (2) is equivalent to
\ —-1I
g(s) = (l 2 /z(s)) o Q)
s s

i.e. g is the feedback interconnection of the integrator afs and the transfer function / (see
Figure 2).

2.3. Remark

(i) Suppose that g is meromorphic in some open set containing C.. Then (2) hnlds iff g has
no zeros in £, and sg(s) — a=O(s ") if |s| = o in C..

(i1) If gis the transfer function of a finite-dimensional system £: X = Ax + bu, y = ¢ '\, then
(2) is satisfied if £ is minimum-phase and c¢'b #0.

In the following we shall assign an operator /H: L % = L’ to the H*-function h. The operator
H is given by H= L™ 'M,L, where L denotes the Laplace transform and M, denotes the
multiplication by 4 on the Hardy space H? (of the right-half plane). The operator / is linear,
bounded and shift-invariant (in the sense of Vidyasagar'”?). As a consequence # is causal '” and
therefore has a unique causal extension to LL% . This extension will also be denoted by H. It
should be mentioned that the converse is also true; i.e. given a linear bounded shift-invariant
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Figure 2

operator F: L% — L% there exists a function & € H* such that H= L' M,L (see Harris and
Valenca'' or Logemann'?).
The function g can be thought of as being the transfer function of

J=a@-(Hy+w)  y(0)=y )

where we L2 is due to a non-zero initial condition in the system with the transfer function A.
The initial-value problem (4) is of the form (1) and therefore has a unique solution for each
uelLL'.

The problem is to find an adaptive control law u'(1)= F(y'(7),0 < 7 < 1) (i.e. u(t) =
olt, F(Y(r, ¥(7)),0 < 7 < t)]) which ‘stabilizes’ the process IT shown in Figure 1 ¥y, € F and
vweé L% under the assumptions that @ # 0, H: L2 — L2 is a linear bounded shift-invariant
operator and ¢,y €S. By C‘stability’ we mean that y,y' €L NLT and
lim, o y(7) =lim, .y’ (f) = 0. In Section 2 we study this problem under the assumption that
sign(IT) is known. This assumption is dropped in Section 4.

3. A GENERAL CLASS OF ADAPTIVE CONTROLLERS IF SIGN(II) IS KNOWN

The following result will be useful in the sequel. The proof is left to the reader.

3.1. Proposition

(i) Suppose that #€ S and that f: R, — R is measurable. Then (., f(.))e LY iff fe 19
(@=1,2,...,o).
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(i1) Suppose that 6,€ S(6,,A,)(i = 1,2) and sign(f;)sign(f>) = + 1. Then
|0:(t, r02(t, x)) | < |r|A1A2| x| VIER, Vr,x€R
X0,(t, —rfx(t, X)) < —rd; 62x* vt reR, Vvxek
and

X0,(4, roa2(t, X)) = r by d3x* Vi, reR, VxeR

Let us apply proportional output feedback multiplied by —sign(IT) to the process shown in
Figure 1, i.c.
u(t)=o¢t, —sign(IDk ()Y (L, y(1)] %)

where &: [0,3) — ® is a time-varying gain (0 < 8 < «).

3.2. Lemma (unbounded gain lemma)

Suppose that ¢ and ¢ are in S and that the gain function & in (5) is non-decreasing and
unbounded. Furthermore, we assume that the feedback system given by (4) and (5) has a unique
absolutely continuous solution which can be continued uniquely to the right as long as it
remains bounded. Under these conditions it follows that

%Y =90, y())€L0,8)N L=(0,8)

3.3. Remark

The closed-loop system (4) and (5) is of the form (1). Suppose that &, ¢ and ¢ are continuous
and that ¢ and ¥ have continuous partial derivatives D>¢ and D,y. Then it follows from
Theorem 2.2 that there exists a unique solution of (4) and (5) which can be continued uniquely
to the right as long as it remains bounded.

Proof of Lemma 3.2

Step 1. We show first that the closed-loop system given by (4) and (5) does not have an escape
time smaller than 3, i.e. that the solution exists on the entire interval [0, 3). We shall need the
estimate

I\ SOV HS () dr <|1H||§ ) dr VfeLL: vi>0 6)
v o JO

which follows from the causality and boundedness of A and Holder's inequality. It will be
useful to consider the two different cases sign(¢)sign(y) = + 1 and sign(¢ )sign(y) = — 1.
(a) sign(é)sign(y) = + 1. Using (4) and (5), we obtain
oy))=alyolt, —sign(IDA Y, y(0))] — y()(Hy) () — y(£)w(r)) (7

Let 0 < 4 < 3 be any number such that y exists on [0, y). Moreover, let 6., Ay, 6, and Ay be
positive numbers such that ¢ € S(5s, As) and ¥ € S(6y, Ay). Setting k™ == max(| k(0) |, | k() ])
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and integrating (7) from 0 to ¢, it follows by Proposition 3.1(ii) and (6) that

a vl 172
Y € yi+2| al k*AsAy+||H|D ‘ yi(r) dr+ | u';,‘;(\ _\:(T)(IT) ]
v o Jo

It is now sufficient to show that y(1r) is bounded on [0, ). In this case the solution
have an escape time smaller than 8 and hence it exists on [0, 3).
We shall consider two cases:

(1)

al
| Y dr<1 vogr<y

v o

It follows immediately from (8) that y(¢) is bounded on [0,7).
(i)

30 < fo < v: \ yi(r) dr > |
<0

Setting

» [y
M=2la|(k*As Ay + || H|| + || wlj2) N=yj+ M\ y*(r)dr
v

we obtain from (8)

nl
YOS N+M \ yi(r)dr Vi€ [to,y)
U Y
and, moreover, by Gronwall’s inequality

Y1) < Nexp(M(y - to)) VL€ [to,7)

Hence y is bounded on [#,v). Since y is continuous on [0, 0], it follows that y
on [0, ).

vO <1<y

!
(8)

y(f) cannot

is bounded

(b) sign(éjsign(y) = — 1. Realize that the diagrams in Figures 1 and 3 are equivalent. It then
follows from (a) that the closed-loop system given by (4) and (5) does not have a finite escape

time.

Step 2. It remains to show that y€ L>(0,3) N L=(0,3). It then follows from Proposition

Figure 3
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(3.1)(i) that y' is in L*(0,8)NL*(0,8) as well. Let us first consider the case when « > 0 and
sign(o )sign(y) = + 1

(a) a > 0, sign(éd)sign(y) = + 1. Choose t;€ [0, 3) such that

/\[1: /\”ll))’ = ]*' H

0g O

Integrating (7) from #¢ to r and using Proposition 3.1(ii) and (6) gives

I}
»

p2(1) + 2a(ds duko— || H|) \ yi(r) d7 - 2a| H‘)(\ yi(r) dr) SL<oo (€[loB)
where
L= y2(to) + 2a|| H \ yi(r) dr
JO

As a consequence y€ L*(fo,8)N L*(to,8) and hence by continuity of y we have
ye€L*0,8)N L™(0,8).

(b) a < 0, sign(é)sign(y) = + 1. The proof of the lemma in this case is very similar to the one
in case (a). The details are therefore omitted.

(c) a= 0, sign(¢)sign(y)= —1. Using the fact that the diagrams in Figures 1 and 3 are
equivalent, it follows from (a) and (b) that the claim is true in this particular case.
Consider the following gain adaption rule:
k=Z[y(.,y()I (9)
where

Z:Dy'D Us (WG, ()| feLLT)— LLY

Is a causal map satisfying

(AD) ZID.OLLNOLI)CE LS
(A2) Z(f)e L% = fe L’
(A3) (Z(f)(0) > —o and Z(/f) is non-decreasing Vv /€ D..

3.4. Remark

(i) The space LLY is an example of a function space containing Uyes (Y (., ()| fe LLT).
(1) It is necessary to give a meaning to Z[y(., f(.))] if f€C([0,53)) (0 < 3 < ) (Z operates
on functions which are defined on =,). We set

ZIW(C, SN0 =Z[Y(,(PNHDI) vIi<T<B
Since Z is causal, this definition does not depend on the choice of 7.
An example satisfying the assumptions (Al)—(A3) is given by

k=92, »(.) k(0) = ko (10)
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Z: L1tk Sko+ | fir)dr (1
0

v

The following theorem shows that the controller given by (5) and (9) stabilizes the system (4).

3.5. Theorem

Let ¢ and y be in S and suppose that (Al)—(A3) are satisfied. Furthermore, we assumc that
the closed-loop system (4), (5) and (9) has a unique absolutely continuous soluuon. y \?hI.Ch can
be continued uniquely to the right as long as it remains bounded. Under this condition it follows
that:

(1) lim;~. k(1) exists and is finite.
(i) y,y =v¢(,y(DeLINLS.
(i) lim/~w y(1) = lim-~w y'(t)=0.

3.6. Remark

Consider the special case that Z is given by (11) and realize that the closed-loop system (4),
(5) and (10) is of the form (1). Suppose that ¢ and y are continuous with continuous partial
derivatives D»¢ and Dyy. Then it follows from Theorem 2.2 that there exists a unique solution
(v, k) of (4), (5) and (10) which can be continued uniquely to the right as long as y remains
bounded.

Proof of Theorem 3.5

Step 1. Choose 0 < 3 < o such that the closed-loop system has unique absolutely continuous
solution on [0, 3). We claim that k(¢) given by (9) is bounded on [0, 3). Assume the contrary,
i.c. kis unbounded on [0, 3). Since we know by (A3) that & is non-decreasing and k(0) > — o,
we obtain that lim,~ 3 k(1) = + o and hence by Lemma 3.2 y¢€ L*(0,8) N L=(0, B). Define the
function y€ L3 N L% by setting #(t) = y(t) for £ € [0,8) and y(1) = 0 for 1 > 3. It follows from
(A1) that Z[¢(.,7(.))] € L% and, using the causality of Z, we obtain k€ L*(0,3), which is
a contradiction.

Step 2. We claim that the solution y of the closed loop exists on [0, ). Let 0 < 3 < « be
any number such that the solution y exists on [0, 3). It is sufficient to show that y is bounded
on [0,3). In this case y cannot have a finite escape time. Step 1 implies that & is bounded on
[0, 3). Therefore we can show, using exactly the same arguments as in step 1 of the proof of
Lemma 3.2, that y is bounded on [0, 3), which proves the claim.

Step 3. It follows from steps 1 and 2 that k€ L% and by (A3) we obtain (i). Moreover, by
(A2) we have y€ L. Using (i) and Proposition 3.1(i), we obtain that y€ L% . Asa consequcnc'c
we have lim; .oy(f) = 0 and hence lim,;..y'(1) = 0, which proves (iii). Since y is continuous,
it follows that y € L=, Therefore y € L% N L% and by Proposition 3.1G) y' € L2 N L%, which
shows that (i1) holds true.
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3.7. Remark
Suppose that ¢(1, x) = x V({, x) € R, x R and apply an L>-input signal v to the closed-loop
system (4), (5) and (9), 1.e. (5) becomes
u=v-signIhky(., y(.))

An inspection of the proof of Theorem 3.5 shows that the conclusions of Theorem 3.5 remain
true in this case. In particular we have that the closed-loop operators v~ y and v~ y’ are
L *-stable.

4. ADAPTIVE HIGH-GAIN STABILIZATION WITH GAIN SWITCHING

An underlying requirement of the previous section is that the sign of the process IT shown in
Figure 1 is known. If this knowledge is not available, then the control problem becomes more
complex. It will turn out that it is useful to introduce the concept of a switching function which
has its origin in the paper by Nussbaum.?

4.1. Definition

A function N€ LL~ is called:
(1) a switching function if for some xp € R

sup \ NO\) dh = + oo (12a)
X > X0 X— X0 Jxo

and
inf - \ N\ dh= —w (12b)
x>x0 X— X0 Jux

(i) a Nussbaum gain if the function id= N is a switching function.

A switching function N is called scaling-invariant if the function (' o N)N is a switching
function for all «, 3 > 0, where the function I's is given by

a A>0
ro)={0 x=0
B A<O

A Nussbaum gain Nis called scaling-invariant if (I'*o N)Nis a Nussbaum gain for all «, 3 > 0.

It is easily seen that if conditions (12) are satisfied for some xp € ¥, then they are satished
for all xo € . Moreover, it is clear that a Nussbaum gain N is scaling-invariant iff the switching

function id=N is.
We given an example of a scaling-invariant switching function and a scaling-invariant

Nussbaum gain.

4.2. Example
Consider the function N(X\) = cos(} w)\)exp()\z). In the paper by Nussbaum® it is shown that
for all xoe R .
sup N\) d\= +

X>Xxp v Xy
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and
. 1
inf \ NA) dh= —o0
x>xs vYxs
Using the same ideas it is possible to show that N is a scaling-invariant switching function and
a scaling-invariant Nussbaum gain. For completeness a proof is provided in Appendix II.
It is easy to find Nussbaum gains which are not scaling-invariant. The Nussbaum gain

(1 n*< |\ < mn+1)?> neven
<
=

N\ = y ,
( l~l n* AN <@+ 1) nodd

has been considered by Willems and Byrnes.' It can be shown that (I':© N)N is not a
Nussbaum gain if « # 8(a, 8 > 0). However, it is not difficult to show that there exist bounded
scaling-invariant Nussbaum gains. An example is given by

1 0N <N
N(N) = I M<|N <M+ neven
=1 M<IN < Msr nodd

where Ayop=(\s)7 and N\o > 1.
Let us consider the same process as in Sections 2 and 3 (see Figure 1). We shall study the
behaviour of the process IT if the following control law is applied:
u()=olt, NEOK @)Y, y(1))] (13a)
£ = k(DG (1, y () EO0)= ko€ R (13b)

where N is a scaling-invariant switching function and k: R, — R is a strictly positive function,
i.e. k(1) 2 £ > 0vIeR,.

4.3. Lemma

Let ¢ and ¢ be in S and suppose that the feedback system given by (4) and (13) has a unique
absolutely continuous solution which can be continued uniquely to the right as long as it
remains bounded. Under these conditions the following is true:

i) y,y' eLinLs3.
(1) lim; .. £(¢) exists and is finite.

Moreover, if k 1s bounded, we have:

(iii) limy—o p(f) =lim;—x y'(t) =0.

4.4. Remark

Suppose that & 1s continuous, N is continuously differentiable and ¢ and ¢ are continuous
with continuous partial derivatives D¢ and D;y. Then it follows from Theorem 2.2 that the
feedback system given by (4) and (13) has a unique solution which can be continued uniquely
to the right as long as it remains bounded.

For the proof of Lemma 4.3 we need the following.
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4.5. Proposition

Let 6€S(5s, As) and Y€ S(dy, Ay) and suppose that sign(¢)sign(y)= +1. Then the
inequalities

xo (1, Mg (1, X)) £ TN (AL, x))2
and

xo (6, Ay (8, x)) = T VN (Y, x))°

hold w(z,r, \, x) € % x ®?, where

Aoféy N>0
I'MN)=4¢ 0 AN=0 (14a)
dofAy N<O
and
I''N)=T(=)\) (14b)

See Appendix III for a proof of Proposition 4.5.

Proof of Lemma 4.3

[t follows from the equivalence of the diagrams in Figures 1 and 3 that we can assume
without loss of generality that sign(¢ )sign(y) = + 1. Furthermore, let 6., A, 6, and A, be
positive numbers such that ¢ € S(6s, As) and Y € S(6y, Ay). Consider the equation

yy=—a(yHy + yw) + ayo[.,(No£)ky (., y(.))] (15)

Integrating (15) from 0 to ¢, using (6) and (14) and applying Proposition 4.5 yields

pl t 172
1020 - y3) < | af [||H|| \0 yi(r)dr+ | w112( go yi(r) dr) ]

o !
| CoMEEINEDR@OP @y drif a>0
+|al )
al
- | @ ONEENEEREW @ ) dr ifa<o (16
0

Using (13b) and the change of variables formula for Lebesgue integrable functions (see e.g.
Reference 13, p.195), it follows that

at a 172
102 - y3) < | al [IIHH \ yi@)ydr+||w ‘z(\ yi(r) df) }
g JO v

pE(1)

\ ToN)YMNMNN) AN ifa>0
J &y

+[(l| AECT)

-\ (C'oNYMNN) AN ifa<0 (17)
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Now realize that by (13b) and the properties of k

yi(r)dr < : \ k(r)y*(r) dr
€ Jo

J 0

<

I .
o) \0 k(r)y°(r, y(1)) dr

M| —

1 1

= - — - IX
. AL (£(t) — o) (18)
Setting

) L B3
AIZ:IGEE(“S‘;?”HH K:=al|w|:

and using (17) and (18), we obtain

11
€0y

5 2 K
g ealy . B
2 YD) <3 yo+ (50 - &) |+\(£(1)—Eo)

pEC1)
\ (ToN)NNON) dN  if a>0
1 &

() - & AE(D) _
—\ C'o NN dx  ifa<0 (19
v

+|al

Equations (18) and (19) hold on each interval of the form [0, &) where the solution (y(¢), £(¢))
of the feedback system given by (4) and (13) exists. Since the RHS of (19) has to be non-
negative, it follows from the properties of the function N that £(¢) and hence (by (19)) y(1)
remain bounded. As a consequence the solution (y(7), £(1)) exists on [0, o) and it follows that
lim, . £ (¢) exists and is finite, which is (ii). Moreover, by (18) and (19) y€ L3 N L% and hence
by Proposition 3.1(1) y' € L3 N L%, which is (). Finally, if k£ is bounded, it follows from (4)
and (13) via (i) and (i) that y€ L%. Therefore we have lim, .«y(t) =0 and, since V€S, we
obtain that lim,~=y’(¢) =0, which proves (iii)

4.6. Remark

(1) Suppose that we replace (13b) by £= k(Y (., y(.)))*” where p > 2is an integer. Then the
conclusions of Lemma 4.3 remain true if the operator H in (4) is a linear bounded shift-
invariant operator from L*7 into Z*” and from L% into L% and if the function win (4) is in 127,

(i) In the linear case, i.e. ¢(t, x) = y(t, x) = x for all (¢, x) € R, x R, Lemma 4.3 remains
true for all (i.e. not necessarily scaling-invariant) switching functions N. It should be regarded
as a generalization of the result of Willems and Byrnes, ' which is just the special case given by:

(a) g is a rational transfer function.

(b) o, x)=yY(t, x)=x V(,x)€ER;: X R.

() k(t)y=1(@=0).

(d) N= Nyid= where Ny 1s a Nussbaum gain.

It is natural to regard the gain & as the image of a causal map Z operating on £and ¢ (., y(.)).
Let us consider the following gain adaption rule:

k=2Z(&v(., () (20)
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where Z: D.— LL" is a causal map whose domain D. contains the set
C(R+) X Upes(¥(., f(.))| fe LLT).
Moreover, we assume that Z satisfies:

(A ZIDNELT X (LS NLAN c LS.
(AS) Z(f) 1s non-decreasing for all fe D..
(A6) There exists € > 0 such that inf, > o[ Z(f))(1)} =2 € Vf€D..

Consider the following example:
Z: OB LI~ ILEL

. 1)
i ) reio 50 BOP( LD, | L)) dr

where ko > 0 and P is a polynomial in two variables with positive coefficients. It is trivial that
(A4)—(A6) are satisfied. The gain adaption induced by (21) can be written in the form of an
ordinary differential equation

K(t) =2, ()P E@) |, |, y(0)]) k(0) = ko (22)

The following theorem is a simple consequence of Lemma 4.3.

4.7. Theorem

Let ¢ and ¢ be in S and suppose that (A4)—(A6) are satisfied. Moreover, assume that the
feedback system given by (4), (13) and (20) has a unique absolutely continuous solution (v, £)
which can be continued uniquely to the right as long as it remains bounded. Under these
conditions the following is true:

(i) y,y'eLiNL%.

(1) lim, .« &(r) exists and 1s finite.
(i) im,~= k(¢) exists and is finite.
(iv) lim~o y(t) =lim;~x y'(t) = 0.

4.8. Remark

(i) Consider the special case that Z is given by (21). Suppose that N is continuously
differentiable and that ¢ and y are continuous and have continuous partial derivatives D> and
D>y. Then it follows from Theorem 2.2 that there exists a unique solution (v, & k) of the
feedback system given by (4), (13) and (22) which can be continued to the right as long as (y, £)
remains bounded.

(ii.) Under the condition of Remark 4.6(i) the above theorem remains true if we replace (13b)
by £=k(J(., ¥(.))?” where p > 2 is an integer.

(1) Suppose that ¢(7, x) = x ¥(f, x) € R, x R and apply an L’ -input signal v to the closed-
loop system given by (4), (13) and (20), i.e. (13a) becomes

u(t) =v(r) + NEOK @Y, y(1)

It is easy to show that the conclusions of Theorem 4.7 remain true in this case. In particular
it follows that the closed-loop operators v~ y and v~ y’ are L*-stable.
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s. APPLICATIONS TO RETARDED SYSTEMS AND VOLTERRA
INTEGRODIFFERENTIAL SYSTEMS

In this section we show that retarded systems and Volterra integrodifferential systems fit into
the abstract framework developed in Sections 2—4.

S.1. Retarded systems

In the following we extend any function F € BV([a,3],®""") to the whole real axis by
setting F(/) = F(a) ¥ < aand F (1) = F(8) vI > 3. Any measurable function f: @ > R", Q@ C k
will be extended to the whole real axis by defining f(1)=0 vigQ. For
F=(F,)€BV([0,r],R"*") and f = (fi, ..., fu)", fi€ LL'(1 i< n), we define

Z dFi~f,
1
dFst= | °
ZI dF,~/
-

where d F; denotes the measure on ® induced by £, and dFj f; denotes the convolution of the
measure dF,, and the function f;. If fis continuous on [ —r, ), then of course

(dF*f)(1) = fﬂ AF((t—1) vI>0

Consider the single-input/single-output retarded system

X = dA#*x + bu

y=c'x (23)
X|(-r.0)=%0€C([-r,0],R")
where A € BV([0,r],R"™"). We assume that
¢'b#0 (24)

and :
det [sl = r]\(S) ~b
¢ 0

where Aﬂ(s):: {5 exp(—s7) dA(7). The transfer function g(s) of (23) is given by g(s)
¢ (sI—A@s) 'b.

];to vseC. (25)

5.2. Remark

As in the finite-dimensional case, we shall call (25) the minimum-phase condition. It can be
shown that (25) holds iff vse C.

g(s)#0
rk (s1 — ,f\(s).b) =n

r/\-{"' —‘.:\(s)] .

C

and
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It is easy to show' that there exists a non-singular real transformation Q € ®"*” such that

o
Q ‘b—[‘ObJ ¢'Q = (1,0)

Partition the matrix Q 'A(.)Q as follows:

An(.) Al:(-)]
22(.)

TA()HQ =
Q 'A()Q [AM(.) o

where Aji(.), Aiz2(.), A2 (.) and Ay(.) are matrices with entries in BV([0, ], ®) of size 1 x 1,
Ix(n—1),(n—1)x land (n - 1) x (n - 1) respectively. Setting 7(1) = Q 'x(¢), it follows from
(23) that
7=d(Q 'AQ)*n+(Q 'bu
y=("Q)y (26)
nl r.0] = Q_lxn
If we realize that g can be written as 7 = (v, 9)", then it follows that (26) can be expressed as

y=(c"b)u, (27a)

r} = dAzz*n + dA3|*llz ‘27b)

Z= —ﬁ(dAu*‘r] +dA | *uy) (27¢)
Uy=u-—zx U=y (27d)
Yli-ro)=m nli-ro=mn (27¢)

where (91, 92) = 9| ,.0y and in particular 7, = ¢"xo. Let n(n2, 71, v) denote the solution of the
retarded functional differential equation (27b) corresponding to the initial conditions
N|1-r01=n2, u2|(-r0j=m and the input u;|(0,=)=ve LL". The corresponding output
2(m2, 11, v) given by (27¢) can be written in the form

22y, v)=Hv+w
where

Hy= - # (dA]:*‘r)(o,O. U) g dA”*l')

and
1
= = [dA12%(92,0,0) + 9(0,79,,0)) + dA;#9]

Now define Az (s) = [§ exp(—s7) dAx2(7) and realize that by (25) we have det(sl — As»(s)) #
0vs €T ,. (This can be shown on the basis of the same reasoning as in the finite-dimensional
case.) Hence it follows that the retarded system given by (27b) and (27¢) is exponentially
stable,” and as a consequence the mapping v~ Huv is linear and bounded from L2 into L2
and the function wis in £2."S Moreover, it is clear that the operator H is shift-invariant.
Finally, notice that the system (27) can be written as

y()y=c"bu@)— (Hy)()-w() =0
¥(0) = ¢"x0(0)




210 H. LOGEMANN AND D. H. OWENS

T'he above equation is of the form (4), which shows that the abstract theory developed in the
previous sections applies if the linear part of the process I1 (see Figure 1) is given by the retarded
system (23) satisfying (24) and (25). In particular, we mention that the adaptive control laws
of Sections 3 and 4 achieve ‘stability’ of the ‘internal’ variable x(¢) of (23). We formulate a
precise result for the case that sign(IT) is not known.

5.3. Corollary

Suppose that the retarded system (23) satisfies (24) and (25) and assume that the conditions
of Theorem 4.7 hold. Then, for all initial conditions xo € C([ —r, 0], R") and & € [, the closed-
loop system given by (23), (13) and (20) has the following properties:

(1) lim, .. £(¢) exists and is finite.
(1) lim, .« k(1) exists and is finite.
i) », ' eLinls

(iv) lim/~w y(t)=lim/~o y'(t) =0.
) xe (LA NILTY.

(vi) lim; . x(1) = 0.

Proof. The statements (i)—(iv) follow from Theorem 4.7. Since y€ L% N L% and by
the exponential stability of the retarded system given by (27b) and (27¢), we obtain
n€(L3)"'N(L3)" " and hence g€ (L%3)"N (L%)", which implies (v). Finally, it is easy to
see that x € (L2)" as well and therefore lim, .. x(#) = 0, which is (vi).

5.4. Volterra integrodifferential systems
Consider the single-input/single-output Volterra integrodifferential system

X = (Agb + Aj)*x + bu
y=c'x (28)
x(0)=xp€R"

where Ag€e R"*", A, € (LY)"*", & denotes the Dirac distribution (with support in 0) and =*
denotes convolution. We assume that

c¢'b#0 (29)
and

dct[SI—A”cfA'(s) ‘E];eo vseC. (30)

where ~ now denotes the Laplace transform. As in Section 5.1, let Q € ®”*" be a non-singular
transformation such that

0
Set A(.)= A¢d+ A;(.) and partition the matrix Q 'A(.)Q as follows:
An(.) Al:(-)J

T
Q“bz[c b] ¢'Q =(1,0)

I =
Q7A(Q [Azl(.) Axn(.)
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5 . - 1 $
where A, 1(.), Ai2(.), A21(.) and Az (.) are matrices with entries In SR+ L5 of size 1 X1,
1 x(n—-1),(n-1)x1and (n—-1)x(n— 1) respectively. If we realize that (1,0) Q 'x =y, then
after a co-ordinate transformation x — Q 'x = (_v,r;)i the system (28) can be written in the

form

y=c"bu, (31a)
N = Ay + Ay i (31b)
7= —‘—xl—h (Asn + Ay*u) (31¢)
uy=u-2 U=y (31d)
(»(0),7(0)" =Q 'xo (3le)
Let R denote the resolvent of the homogeneous part of (31b), i.e. R is the unique solution of
R = A»n*R R(0) =1
The solution of (31b) is then given by'®
(1) = R()n(0) + (R*Az*u2) (1)
and the corresponding output z can be written in the form
z=Hu+w
where
Hu, = — c,lg (Ap*R#=A + Ay )*us (32)
and i
w(t)= — b (A12#R)7(0) (33)

Now it follows from (30) that det(sl — Az:(s)) # 0 vs€ C., which is equivalent to R being
integrable.'” As a consequence the operator A defined in (32) is linear and bounded from L3
into L2 and it is trivial that H is shift-invariant. Moreover, since the matrix R is integrable,
we obtain that the entries of R are square-integrable. % Therefore the function w defined in (33)
isin L2 It follows that (31) can be written in the form (4). This shows that the abstract results
of the previous sections apply if the linear part of the process IT (see Fig. 1) is given by the
Volterra integrodifferential system (28) satisfying (29) and (30). As for retarded systems (see
Corollary 5.3), it is easy to show that the adaptive control laws of Sections 3 and 4 achieve
‘stability” of the ‘internal’ variable x(¢) of (28), i.c. we have for the closed-loop system that
x€(L3)"N(L%)" and lim; ~x (1) = 0.

6. CONCLUSIONS

An input—output theory of high-gain adaptive stabilization of infinite-dimensional processes
with actuator and sensor non-linearities has been developed. In the absence of information on
the sign of the process the concept of a scaling-invariant switching function turned out to be
useful. This notion may also be of independent interest. It was shown that retarded systems
and Volterra integrodifferential systems fit into the abstract theory of Sections 2-4 and that
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the adaptive controllers of Sections 3 and 4 achieve ‘internal’ stability if they are applied to these
particular systems. It is not difficult to show that the same is true for the class of distributed
systems considered by Kobayashi.” The results of the present paper are restricted to single-
input/single-output systems. However, if the sign of the process is known, it is fairly obvious
how the results extend to the multivariable case.
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APPENDIX I: PROOF OF THEOREM 2.2
Step 1. Existence and uniqueness on a ‘small’ interval
There exist positive numbers L, r and é such that
| fi(6,x) = fi(t,x")| S L|x=x"|

forall 1€ J:= [a,c+ 8] and for all x,x’ € [neR” | 7 —xo(a) | € r}. Moreover, let p > 0 be a
number satisfying

IRLRYE

and pick € > 0 such that

e<é e<p e< /(L +x)
eglt =
3 rlneajxlfl(l, Xo(a)) | + Lr (34)
< T
3 e, (a+ p)max(| Xo(a) | + r, || Xo [[=)
Define the operator B by
Bx)(1)=xo(t) V0K <«
7 al al
(Bx)(r) = ‘ (Tx)(7) dr + \ fi(r,x(7)) dr + \ f2(7) d7+ Xo(a) VI >«
[t is clear that x is a solution of (1) on [0, « + €) iff x is a solution of
X(1)=(Bx)(r) t€[0,a+¢) (35)

Using Banach’s fixed point theorem, we shall show that (35) has a unique solution. Let us
introduce the following closed subset of C([0, « + €], R"):

C*= [xeC([0,a+€),R")|x()=xXo(t) YO I<a
[x(t) —Xo(x)| €7 Va<tI<a+e)
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In order to apply the fixed point theorem, we shall need the estimate

Aoy + € 172

M@ = @x )@ [dr < Jepe( | (3 =x'(7) ldr) (36)

x + @
0

x,x' €C([0,ax +€],R"))

which follows from the properties of T (causality, finite incremental gain) and Holder’s
inequality.

We claim that B(C®) ¢ C* and that B | ¢* is a contraction, i.e. the conditions of Banach’s
fixed point theorem are satisfied for the (metric) space C” and the operator B | ¢*. Using (36)
and (34), we obtain for xe C* and 1€ [a, o + €]

pot

{ 172
| (BX) (1) — xo(a) | < (c)u(\ |x(7)|? d7> +rf3+e(Lr+ max|f(r,Xo(cx))])
JO

N
reJ
<r+ (@) (a+ e)ymax(|| Xo |lw, | Xo(a) | +7)
<ir+ (@) (a+ p)max(|| Xo ||, | Xo(ct) | +7)
<

r

which shows that B(C®) € C*. It remains to show that B | ¢* is a contraction. Let x and x’ be
in C”, then it follows from (34) and (36) that
max | (Bx)(r) = (Bx')(7)| = max |(Bx(7)—(Bx")(7)
7€ [0,x + £) 7€ |a,a + €]

pat € 172 vee +

sxm(\ |x(r)—x'(r)|2d7> +L\ ‘.lx(r)—x'(r)‘dr
JO

Yoo

<e(c+ L) max |x(r)—x'(7)]
7€ [0, + €]

By (34) we have £(x + L) < 1, which shows that B|¢* is a contraction.

Step 2. Extended uniqueness

Let x; be a solution of (1) on [0,7:) (/=1,2). We claim that on [0,7) x; = x>, where
~ = min(y1, v2). Let us assume the contrary, i.e. there exists 7 € («, v) for which x;(£) # x>().
Defining

it follows that * > a (by step 1) and x;(+¥) = x2(¢*) (by the continuity of x; and x;). Now
realize that the initial-value problem

X() = (Tx)() + L, x@) + (1) 121

x| o0 =x1] (00

%

is solved by x, and xz. This implies (by step 1) that there is an & > 0 such that x; (/) = x2(1) on
[0,7* + ¢), which contradicts the definition of ¢".

Step 3. Continuation of solutions

Let x be a solution of (1) on [0,3), 8 < . It is sufficient to show that x can be continued
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to the right (beyond 8) if x is bounded on [0, 3). Define

s §X(0) 0 <
x(l).—{o (>

and set x(B8):= (Bx')(3). Since x(7)=(Bx)(t)=(Bx')(r) on [0,5), it I"ollows‘ that
lim, - sx(f) = (Bx')(3) and we see that the above definition of x(8) makes x into a continuous
function on [0,3]. Step 1 shows that the initial-value problem

z()=(Tz)() + 1 (t,z(t)) + f2(t) t 2P
z(t)=x(1) 0<r<B

has a unique solution x* on [0, 8 + ¢) for some £ > 0. Finally, realize that (by the causality of
T) x* is a solution of (1) on [0,8 + ¢), i.c. x" is a continuation of x.

APPENDIX II: PROOF THAT X\ = cos(} #A\)exp(A?) IS A SCALING-INVARIANT
SWITCHING FUNCTION

For N(\) = cos(} #\)exp(A\?) and fixed but arbitrary «, 8 > 0 define

X

I(x)= So (I'S0 NY(N)N(N) dh

We claim

supl I(x)=+ o© (37)
x>0 X
if L )= — (38)
x>0 X

Proof of (37)

N(\) is positive on (4n — 1,4n + 1) vne N. It is sufficient to show that

- Idn+1)— +0 asn—x
n+1
Set v := max(a, ) and realize that
andn+l
I@n+1)=1@n- 1)+« N(N) dA
Jan-1

| I(4n - 1) | < y(dn — Dexp[(4n — 1)*]

pdn+l

\

Jan—1

vAn+ 172
NV dA > \ N(\) dX > cos(x/d)exp[ (4n — 1)?)
J4n-1/2
Hence
I(4n + 1) > (af2)exp[ (4n - })*] = y(4n — Dexp[ (4n - 1)?]
=exp[ (4n— 1)*] [(a/2)exp(4n — ) — v(4n - 1))
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and as a consequence

lwl(4n+l)—-' +00 asn— + o
4n + |

Proof of (38)
N(X) is negative on the interval (4n+ 1,4n + 3) vn € N. Since

pdn+}

Idn+3H=I1@n+1+8 \ NN da
Jan+l
| I(4n + 1) | < y(dn + Dexp[ (4n + 1)?]
adn+3 vAdn+5/2
NV dX € \ N(\) d\ < cos(} )exp[ (4n +1)?)
JAan+ 1 Jan+3/2

it follows that
[(4n + 3) € yv(@n + Dexp[ (4n + 1)?] — (B[ 2)exp[ (4n + D2
=exp[(dn+ 1?1 [y(@dn + 1) = (B[, 2)exp(4n + 3))
I'herefore

1
—— J(4n+3)— —© asn—owo
4n +3 ( )

We have proved that N is a scaling-invariant switching function. An inspection of the above
proof shows that N is a scaling-invariant Nussbaum gain as well.

APPENDIX III: PROOF OF PROPOSITION 4.5

Without loss of generality we may assume that sign(¢) = sign(y) = + 1. Indeed, if the claim
is true in this case, then it follows easily that the claim is true in the case that
sign(¢ ) = sign(y) = — 1. Moreover, we restrict ourselves to the proof of the inequality

xo (1, Mg (1, X)) S TOON @, X)) (1,1, N, X) € RE x RY) (39)

The proof of the second inequality in Proposition 4.5 is very similar and is therefore omitted.
In order to see why (39) holds, realize that

X (1, N (1, X)) € Ay (t, X)X (4,7, N, x) € R3 X Ry X R) (40)
X& (1, (1, X)) < SN (8, X)X (1,1, N, X) € RS X (—0,0] X R) (41)
Using the inequalities
0< x< (1/8)¥(t, x) vV, x)€ERL X R,
02 x> (1/8)¥(t,x) V(t,x)€ER, X (—0,0]
it follows from (40) that

xo(t, \ry(t, X)) < (Ao/é;))\r\!x“’(t, x) ((t,r,\, x)€R%E X R4 XR) (42)
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The inequalities

1A v, x

( )20 v(,x)eER, XR,
(1A (t, x) <

X2
Y < V(t, X)€ER, X (—,0]

0
0

together with (41) imply

xo (1, Mg (t, X)) € BofAINY(t, X) (8,1, N, X) € RE X (—00,0] X R) (43)

Combining (42) and (43) gives (39).

REFERENCES

. Willems, J. C. and C. 1. Byrnes, ‘Global adaptive stabilization in the absence of information on the sign of the

high frequency gain®, Proc INRIA Conf. on Analysis and Optimization of Systems: Lectures Notes in Conirol and
Information Sciences No. 62, Springer-Verlag, New York, pp. 49-57.

. Logemann, H. and D. H. Owens, ‘Robust high-gain feedback control of infinite-dimensional minimum-phase

systems’, IMA J. Math. Control Info., 4, 195-220 (1987).

. Nussbaum, R. D., ‘Some remarks on a conjecture in parameter adaptive control’, Syst. Control Lett., 3, 243-246

(1983).

. Dahleh, M. and W. E. Hopkins, ‘Adaptive stabilization of single-input single-output delay systems’, /EEE Trans.

Automatic Control, AC-31, 577579 (1986).
Martensson, B., *‘Adaptive stabilization’, Doctoral Thesis, Department of Automatic Control, Lund Institute of
Technology, 1986.

. Owens, D. H., D. Pratzel-Wolters and A. lichmann, ‘Positive-real structure and high-gain adaptive stabilization’

IMA J. Math. Control Info., 4, 167181 (1987).

. Kobayashi, T., ‘Global adaptive stabilization of infinite-dimensional systems’, Syst. Control Lett., 9, 215-223

(1987).

. Driver, R. D., ‘Existence and stability of solutions of a delay-differential system’, Arch. Rar. Mech. Anal., 10,

401426 (1962).

. Hale, J. K., Theory of Functional Differential Equations, Sringer-Verlag, New York, 1977.
. Vidyasagar, M., ‘A note on time-invariance and causality', IEEE Trans. Automatic Control, AC-28, 929-931

(1983).

. Harris, C. J. and J. M. E. Valenca, The Stability of Input—Quiput Dynamical Systems, Academic Press, London,

1983

. Logemann, H., ‘Funktionentheoretische Methoden in der Regelungstheorie unendlichdimensionaler Systeme’,

Doctoral Thesis, Institut fur Dynamische Systeme der Universitat Bremen, 1986.

. McShane, E. J. and T. A. Botts, Real Analysis, D. Van Nostrand Company, Princeton, New Jersey, 1959.
. Owens, D. H., A. Chotai and A. Arbiri, ‘Parameterization and approximation methods in feedback theory with

applications in high-gain, fast-sampling, and cheap-optimal control’, IMA J. Math Control Info., 1, 147-171
(1984).

. Logemann, H., ‘On the transfer matrix of a necutral system: characterizations of exponential stability in input-

output terms’, Syst. Control Lett., 9, 393—400 (1987).

. Grossman, S. . and R. K. Miller, ‘Perturbation theory for Volterra integrodifferential systems’, J. Differential
g Y /

Equations, 8, 457-474 (1970).

. Grossman, S. I. and R. K. Miller, ‘Nonlinear Volterra integrodifferential systems with L'-kernels’, J. Differential

Equations, 13, 551-566 (1973).

. Miller, R. K., ‘Asymptotic stability properties of linear Volterra integrodifferential equations’, J. Differential

Equations, 10, 485-506 (1971).




