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This paper deals with a certain class of infinite-dimensional minimum-phase
systems. We show that these systems can be stabilized by multivariable
Pi-controllers with sufficiently high gains; it turns out that the Pi-controllers
under consideration achieve almost decoupling and almost perfect tracking at
high gain. Further, we prove several sufficient conditions for robust stability. Two
results on pole-zero cancellations and closed-loop stability, which are used
throughout the paper, may be of independent interest.

1. Introduction

THE PROBLEMS of finite-dimensional stabilization and finite-dimensional regulation
of infinite-dimensional systems by output feedback has received considerable
attention in recent years; see e.g. Schumacher (1981), Curtain & Salamon (1984),
Kamen et al. (1985), Balas (1986), Logemann (1986a) and Jacobson & Nett
(1987). Unfortunately, the controllers derived by the above authors may be of
high order in certain cases. Moreover, if approximation techniques are used (cf.
e.g. Kamen et al., 1985; Balas, 1986; Logemann, 1986a), the relationship
between the particular approximation method and the order of the stabilizing
controller is not yet understood. Intuitively, it is clear that restrictions on the
plant such as being minimum-phase or having stability should lead to simple
low-order controllers. Pojohlainen (1982) has shown that a large class of stable
infinite-dimensional plants can be stabilized and regulated by a low-gain
Pi-controller. In the present paper we shall study the 'dual' situation. More
precisely: we investigate the problem of high-gain control of certain infinite-
dimensional minimum-phase (possibly unstable) systems. As far as the authors
are aware, this problem has not been considered in the literature before.

The present investigation is based on frequency-domain methods in contrast to
the above papers (with the exception of Kamen et al. (1985), Logemann (1986a)
and Jacobson & Nett (1987)) where the analysis is done using state-space
methods. In particular, we use the framework of Callier & Desoer (1978, 1980a,
1980b) and a slight generalization of their set-up, which is sometimes more
suitable. Moreover the notion of a 'multivariable first-order lag' (cf. Owens, 1978;
Owens & Chotai, 1982; Owens et al., 1984) plays an important role in our
analysis.

We prove, in Section 4, that a large class of infinite-dimensional minimum-
phase systems can be stabilized by high-gain Pi-controllers. Further, we show that
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196 HARTMUT LOGEMANN AND DAVID H. OWENS

the proposed Pi-controller achieves 'almost' decoupling and 'almost' perfect
tracking at high gain.

In Section 5, we apply our frequency-domain results to certain minimum-phase
retarded systems and Volterra integrodifferential systems. It turns out that the
proposed Pi-controller achieves internal stability if the gains are sufficiently large.
In Section 6, we investigate robustness properties of the Pi-controller under
consideration. We study perturbations in the parameters of the inverse transfer
matrix of the plant and perturbations that are induced by measurement
nonlinearities. In both cases, conditions are developed which guarantee stability
at high gain. It should be mentioned that some of the results in Sections 4—6
extend results of Owens & Chotai (1982) and Owens et al. (1984) to an
infinite-dimensional setting. Section 2 is devoted to preliminaries. In Section 3 we
present two results on multivariable pole-zero cancellations and closed-loop
stability which we need in Section 4 and Section 6. These results, which are
proved in Section 7 (=Appendix), may also be of independent interest.

2. Preliminaries

Let R+ denote the closed positive half-axis. For a e R, we define

Ca:={seC:Res>o}.

Let flcCbea region. The ring of holomorphic functions on Q is denoted by
H(fl). The symbol M(fl) denotes the quotient field of H(fl), i.e. the field of
meromorphic functions on Q. For / e M(£2) and a e Q we define

orda/:= min In =* 0: -p;(a)

Further, we denote the Hardy space of all bounded holomorphic functions in the
right half-plane by H°° := {/ e H(Co):/ is bounded}. Suppose / is a distribution
with support in the interval [0, °°) of the form

+fn, (2-1)
/-o

where t0 := 0, tt > 0 V i ss \t 6r denotes the Dirac distribution at th ft e C, and / ,
is a C-valued Lebesgue-measurable function. The set A consists of all distribu-
tions/of the form (2.1) such that

ll/IU=il//l+fl/.(Old/
i-0 Jo

is finite. It can be shown that A is a Banach algebra (Hille & Phillips 1957: p.
141). If/ e A, then the Laplace transformation of/

is well-defined for all s e Co- In particular, we have

II/IU =

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
ci/article/4/3/195/670914 by U

N
IVER

SITY O
F BATH

 user on 26 June 2024



ROBUST HIGH-GAIN FEEDBACK CONTROL 197

and therefore / e H™. It is useful to introduce the following sets:

A_:={/eA:3 £>0s . t . /e"eA},
A : = { / : / e A}, A_ : = { / : / e A_},

A- :=f /eA_:3ps . t . inf | / ( J ) | > O | .

Let B = A_(A")~1 denote the quotient ring of A_ with respect to A", i.e.

(cf. Callier & Desoer, 1978, 1980a, 1980b). Moreover, we define

I T ! : = { / e i r ° : 3 a < 0 s . t . / e H ( C o ) and sup |/(s)|

D _ : = f / e f f ! : 3 p > 0 s . t . i n f | / ( ] ^ )

The following inclusions hold: A c= H", A_ c i n , A" cD_, and ficl.

Remark 2.1 (i) Let / e D_. Then there exists CT<0 such that / is holomorphic
and bounded on Ca. Therefore / is uniformly continuous on every strip
{s : a *£ Re s «/3}, with o<a<P (Corduneanu, 1968: p. 72), and there exist real
numbers p > 0 and y, with a < y < 0, such that

inf |/(*

(ii) Let / e T. Then it follows from (i) that there exists a number o<0 such
that/has at most finitely many poles in Co.

(Hi) It is trivial to show that / e H™ is a unit iff inf,sCo \f(s)\ >0. It is by no
means trivial that

/ e A is a unit (in A) iff inf | / ( J ) | > 0.
seCf,

(cf. Hille & Phillips 1957: pp. 141). It follows from (i) that/ e HI (resp. A_) is a
unit in Wl (resp. A_) iff infieCo |/(s)| > 0.

(iv) / e T (resp./ e B) is a unit in T (resp. B) iff there exists p > 0 such that

inf |/(*

It is an important property of T (resp. B) that every matrix in Tmxn (resp. BmX")
admits right and left Bezout factorizations. This can be stated more precisely as
follows.

LEMMA 2.2 For G e Tmx" (resp. Bmx") there exists a right Bezout factorization
over HI (resp. A.), i.e. there exist N eHlmXn (resp. A?*") and D eHZnXn

(resp. A"*") such that:

(i) det O e D . (resp. A"); (ii) G = ND~X;

(iii) N and D are right Bezout-coprime, i.e. there exist matrices U e H""xm

(resp. Alxm) and V eHlnxm (resp. A^"1) such that

I.
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198 HARTMUT LOGEMANN AND DAVID H. OWENS

Moreover it is possible to choose D rational. A similar statement is valid for left
Bezout factorizations.

Proof. See Callier & Desoer (1980b) if G e 6mXn. In case G e T"Xn, the proof is
similar (cf. Logemann, 1986c). •

Remark 2.3 (i) Two right Bezout factorizations over HI (resp. A_) are unique
up to a unimodular matrix over HZ (resp. A_). Of course, the same is true for left
Bezout factorizations.

(ii) Let G e Tmx" (resp. Bmxn) and let G=NrD7l and G = D7lNe be a right
and a left Bezout factorization (respectively) over HZ (resp. A_). Then there
exists o<0 such that detDr and detD, have the same zeros in CCT (counting
multiplicities). Moreover, if n = m, then det Nr and det Ne have the same zeros in
Ca (counting multiplicities).

Because of Remark 2.3 the following definitions make sense.

DEFINITION 2.4 Let G e TmXn (resp. $mXn) and let G = ND'1 be a right Bezout
factorization over HZ (resp. A_).

(i) A complex number s0 e Co is called a pole of G if det D(s0) = 0. Moreover
we define p,0(G) := ordJo det D (multiplicity of the pole s0).

(ii) The matrix G is called Hl-stable (resp. k.-stable) if p,(G) = 0 for all
s e Co, i.e. G e i n m x ' 1 (resp. A^Xn).

(Hi) G is called minimum-phase if rk N(s) = min {m, n}, for all s e Co-

3. Pole-zero cancellations and dosed-loop stability

LEMMA 3.1 Let F e TmX/I and G e Tnxp. Then

p,(FG)=£p,(F) + p,(G) for all 5 e Co.

Proof. See Appendix.

We now define the concept of pole-zero cancellation.

DEFINITION 3.2 Let F e TnXn, G e TnXp, and s0 e Co- We say that FG contains a
pole-zero cancellation at s0 if pJo(FG) < pJo(F) + pJo(G). Otherwise (i.e.
p,0(FG) = p,0(F) + pJo(G), by Lemma 3.1) we say that FG contains no pole-zero
cancellation at s0.

The following lemma gives a sufficient condition for the absence of pole-zero
cancellations in case of square plants.

THEOREM 3.3 Let F,GeTnxn (resp.tnXn) and suppose that de tF^O and
detG^O. Moreover let F = NFDpl and G = NcDcl be right Bezout factoriza-
tions over IC (resp. A_). FG contains no pole-zero cancellation at s0eCo if

|detJv>(*o)| + |detDc(50)|>0, |det Nc(s0)\ + |det DF(s0)\ > 0. (3.1)

Proof. See Appendix.

Remark 3.4 The condition in Theorem 3.3 is not necessary for the absence of
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ROBUST HIGH-GAIN FEEDBACK CONTROL 199

Flo. 1.

•+Y2

pole-zero cancellations, as the following example shows:

Then

It follows from the right Bezout factorizations

<(s + 1) 0
0 (*-!)/(* + !)_ 0

1)2

0
0

(s-l)2/(s
s-l)2/(s

0

0
(s + 2)/(s

0
(s + 2)2/(s + l)

that pi(FG) = Pi(F) + pi(G) = 2, i.e. FG contains no pole-zero cancellation at 1.
Of course, the condition of Theorem 3.3 is not satisfied.

Consider the feedback system in Fig. 1. We call the feedback system stable if
every transfer function u^y, that occurs around the loop is stable. More
precisely:

DEFINITION 3.4 Let G e TmX" (resp. BmX/1) and K e T"Xm (resp. B"Xm) be such
that det (/ + GK) is a unit in T (resp. B). The feedback system in Fig. 1 is called
HZ-stable (resp. A^-stable) if the matrix

H(G,K):=[
GK)-lGK

KG)-lKG~\
G J

is in |f*<m+'I)x(m+") (resp j^(m+ '")x(m+ ' 'h

LEMMA 3.5 Let G e TmXn (resp. Bmx/I) and K € T"Xm (resp. B"Xm) be such that
det (/ + GK) is a unit in T (resp. B). Moreover letG = D^Nc and K = A^D*1 be
a left Bezout factorization over Wl (resp. A_) and a right Bezout factorization
over HZ (resp. A_), respectively. The feedback system in Fig. 1 is Hl-stable
(resp. K--stable) iff

inf |det [Dc(s)DK(s) + Nc(s)NK(s)]\ > 0.
C
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2 0 0 HARTMUT LOGEMANN AND DAVID H. OWENS

Proof. The proof is by straightforward application of the theory of fractional
representation (cf. Vidyasagar et al. 1982). •

Remark 3.6 In case G e BmXn and K e B"xm, the content of Lemma 3.5 is well
known (Callier & Desoer, 1980b).

The following lemma gives another necessary and sufficient condition for
closed-loop stability.

Lemma 3.7 Let G e TmXn (resp. fimX") and K e T"Xm (resp. BnXm) be such that
det (/ + GK) is a unit in T (resp. 6). The feedback system in Fig. 1 is Wl-stable
(resp. k^-stable) iff

(i) (/ + GK)-XGK e H!!mxm (resp. A?Xm).
(ii) GK contains no pole-zero cancellations in Co-

Remark 3.8 A similar result is proved in Anderson & Gevers (1981) for
finite-dimensional discrete systems. We present a simpler proof.

Proof. Let G = Dc1Nc and K = NKDj:
1 be a left Bezout factorization over H!!

(resp. A_) and a right Bezout factorization over H!l (resp. A_), respectively.
Moreover, let GK = D~lN be a left Bezout factorization over Wl (resp. A_).
Consider the matrix

' } 1(.(/ + GKy^GK (I + GK)~XGK

and realize that

det (DCDK + NGNK) = (det Dc)(det DK) det (/ + GK)

(det DG)(det DK)
det D

(3.2)

It follows from (3.2) and Lemma 3.5 that the matrix H(G, K) is K-stable
(resp. A_-stable) iff GK contains no pole-zero cancellations in Co and the matrix
H(GK, I) is HI-stable (resp. A_-stable). It follows from the identity

(/ + GK)-1 = / - ( / + GK)~XGK

that U(GK, I) is Hl-stable (resp. A_-stable) iff (I + GK^GK is in-stable
(resp. A_-stable).

4. High-gain feedback control using first-order models

Let G e Tnx" (resp. Bnx") have inverse of the form

G-\s) = sA0 + Al + H(s), (4.1)

where A0)Ai e C x " , det (Ao) #0 , and H e Wl"*" (resp. A"x"). As an approxim-
ate model of G we choose a proper rational transfer matrix GA defined by

G?(s) = sA0 + A1. (4.2)
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ROBUST HIGH-GAIN FEEDBACK CONTROL 201

-+Q -KJ

FIG. 2.

GA is a so-called multivariable first-order lag. (cf. Owens 1978, Owens & Chotai
1982, Owens et al., 1984). The controller for GA suggested by Owens & Chotai
(1982) has the form

(4.3)K(k,c)(s) = Aodiag
l«/«fl

+ c, +

where

k:=[ku...,kn]
T, kj>0

- Au

c:=[Cl,...,cn]T

This controller has the nice properties that (Owens & Chotai, 1982):
(a) it produces time constants in loop j of the order kj1 with reset times of the

order of cjl;
(b) the steady-state errors are zero in any loop / where cj # 0;
(c) the resulting feedback scheme (cf. Fig. 2) is stable in the range kj > 0 and

q ^ O 0 = 1, ... , n ) ;
(d) interaction effects in all loops become arbitrarily small as k—*°° (i.e.

minj fc;-» °°) with the cy fixed.
Clearly K(ke) is an 'ideal' controller for the approximate model, with improving

theoretical response characteristics as the ks increase. We shall show that the
application of K(kc) to the original infinite-dimensional plant yields a stable
feedback system for all sufficiently large ks, and that the closed-loop response
characteristics of the two feedback schemes (see Fig. 2 and Fig. 3) become
arbitrarily close (in a well-defined sense) as k tends to «>. We need the following
lemma.

LEMMA 4.1 (i) / / GeT"*" (resp. %"Xn) is of the form (4.1), then G is
minimum-phase.

(ii) The transfer matrix K(ke) defined by (4.3) is minimum-phase if
kj > a(AoXA^), where o(M) denotes the largest singular value of M.

FIG. 3.
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2 0 2 HARTMUT LOGEMANN AND DAVID H. OWENS

Proof, (i) Define

v ' s + 1

and note that

5 + 1
: = AO-AU (4.4)

Since G = (/ + GAHylGA, it follows from (4.5a) that G = (D +
(4.5b) yields /V(P -H) + D

(ii) Define

(4.5a,b)

~W. Then

f,(s):=' s + l and

:= d i a g ^ . + (diag/y(j))(diag (*y + c,) - ^ " U , ) .

Then
(4-6)

y + Cj) - A^A^j diaggy

Hence (4.6) is a left Bezout factorization of K(key Now, N(s) can be written in
the form

(4.7)

where

An easy computation shows that \fj(s)fhj(s)\^l/kj (seC^), and therefore we
obtain that det N(s) ¥= 0, for all s e Co, if miny k, > d(Ao U,). D

THEOREM 4.2 Let G e T"Xn (resp. 6"x") be such that G"1 is of the form (4.1).
Then the feedback system in Fig. 3 is Ul-stable (resp. h--stable) if

min kj > max

>v/icrc, /or Af 6H""X", we define ||Af | | . := supjeCod(M(5)).

Proof. Define:

(4.8a,b)
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ROBUST HIGH-GAIN FEEDBACK CONTROL 203

An elementary computation shows that

ft] Vot.e), (4.9)

where f,(s) : = s/(s + kj)(s + cj) (y = 1, . . . , n).
We claim that Like)eHl"*" (resp. A"x") in the range kj>a(Ao1) ||//||« with

Cj3= 0 (J = l,. .. ,n). First note that LAi(kiC)eA"x" for kt>0 and cy>0 (y =
1 , . . . . n). Since (H°onxn, ||»||,) is a Banach algebra, it follows that

- i

if

II / \ II
Ml <1 (4.10)

(cf. Rudin 1974: p. 388). Because IU5IU« I/A) (; = 1, . . . , n), equation (4.10)

will be satisfied if miny kj > O(AQ X) \\H\\n. So far, we have shown that

(*,c) & **

if miny kt > O^AQ1) \\H\\*, and c, 5= 0 (/ = 1,. . . , n). This implies that

L( t,c)eIT!' lx '1 (resp. A^")

if miny kj >O{AQX)\\H\\W and cy>0 (; = 1, . . . , n ) , because we know that
L(t>c) e T"x" (resp. BnXn) for all values of kt and Cj. Moreover, it follows from
Lemma 4.1 and Theorem 3.3 that GK(kc) contains no pole-zero cancellations in
Coif

min kj > b(Ao XAX).

Now we can use Lemma 3.7 in order to establish the theorem. •

In the following, we shall study the closed-loop response characteristics of the
feedback system in Fig. 3 as it tends to °°. In particular, we shall compare the
performance of the feedback schemes in Fig. 2 and Fig. 3 if k~* °°. In order to do
this, we need some more notation.

We equip the space L«(R+)" (:= [L*(K+)]n) with the norm | | / | | , = max, \\f,\\q,
for f = [fi, • • • , /n]TeL'(R+)" . Let ln denote the Laplace-Plancherel transfor-
mation (cf. Hoffman 1962: p. 131; or Doetsch 1971: p. 419):

U : L2(R+)"-> (H2)" :/-»(2ji)"i f / W e " " dt,

where H2 is the usual Hardy space in the right half-plane (cf. Hoffman, 1962:
p. 121; or Doetsch, 1971: p. 419). For M e H°°nXn, we define

M : L2(R+r^L2(R+)n :f~L
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2 0 4 HARTMUT LOGEMANN AND DAVID H. OWENS

Since Ln is a bijective linear bounded operator (see Hoffman 1962: p. 131; or
Doetsch 1971: p. 419) the same is true for L^1; also, M is a bounded
translation-invariant linear operator.

If At is a matrix in A"*", we define

M : L«(R+)"-»-L»(K+)" : / - * M * /

for lss<7=eoo, where MeAnX" is the inverse Laplace transform of M, and •
denotes convolution on K+. The bounded translation-invariant linear operator /vf
maps L*(R+y into L«(R+)" (1 =£g =£«>) (cf. Vidyasagar 1978: p. 250). Finally let
3? be a C-vector-space and let T: Sf -> X" be a linear operator. Let (eu ... , en)
denote the canonical basis of C . We define

Tlf: X - + S e : x - » ( T(xe,)), (i,j = 1, . . . , « ) .

If Af = [m,y] e H"nx; i then, for all / e L2(R+), we have

/vf// = Lr1(m/yL1/). (4.11)

If M = [nty] e A1"*" then for all / e L*(R+) (with 1 *£ q =e »),

Hy/ = ^y*/ - (4-12)

The following remark is useful in order to prove Theorem 4.4.

Remark 4.3 (i) Note that the closed-loop transfer matrix of the approximate
feedback system LA>(t c) (see (4.8b)) is given by

W«>(*) = (difg(7T^7T^
(ii) It follows from (4.13) that the off-diagonal elements of the matrix LA(kiC)

tend to zero (in the sup norm) if k—*•<*> ('almost decoupling'),
(iii) Moreover, it follows from (4.13) that

k—•o

(4.14)

The next theorem shows that the closed-loop operators ult-*y2 of the real and
approximate feedback system (see Fig. 2 and Fig. 3) become arbitrarily close in
the L2-induced norm if &—»<». Moreover, the controller K(kiC) achieves almost
decoupling for sufficiently large kt.

THEOREM 4.4 Let G e TnXn be such that G"1 is of the form (4.1). Then

(i) lim||£(*,e)-L^,(Jk>r)||Q = 0, (ii) li

for fixed c e R " , where \\*\\a denotes the \?-induced norm.

Proof, (i) It follows from (4.9) that

-(*,«)- W e ) = {[/ + (diag f)jAolH^ - l]LAiik,e),
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ROBUST HIGH-GAIN FEEDBACK CONTROL 205

where fj(s) = s/(s + kj)(s + cj) (J = 1 , . . . , n). Now, because

J

it follows from Remark 4.3(iii) that

The inequality ||L (*,c)- LAXk,e)\\a^nl ||L(t>e) - L ^ ^ H . , (cf. Logemann, 1986c:
p. 68) yields the claim.

(ii) Set [/ffc)] = L(4,c). Then we can conclude from (4.9) and from Remark
4.3(ii) that ||/J*>e)|U-»O (k-**>) for all i and ; such that i#y. Now the claim
follows from (4.11) and from the fact that ||/jf>e)||.= | |£ (*.,W | |B (cf. Harris &
Valenca, 1983: p. 83; or Logemann, 1986c: p. 64). D

COROLLARY 4.5 Let the assumptions of Theorem 4.4 be satisfied. Then

Urn | |L ( t i e )r-r | |2 = 0,
k-x*>

foraUreL2(U+y.

Proof. For the sake of brevity, we assume that kt = K and Cj = y (j = 1, .. . , n).
Denote LAi(kiC) by LA(Ky). Equip the space (H2)" with the norm

ll/ll^-max \\f,\\# for/ = \fu . . . ,/n]Te(H2r.
i

Then the Laplace-Plancheral transform U,: L2(R+)"-»(H2)" is an isometry (see
Hoffman, 1962: p. 131; or Doetsch, 1971: p. 419). By Theorem 4.4, it is sufficient
to show that, for a l l / e (H2)", we have

lim||Lylp(lf.y)/-/||H2 = 0. (4.15)
K—»oo

Now an easy calculation yields

In order to establish (4.15), it is sufficient to show that

lim f w\—/ -vj = O V / e t f . (4.16)

Equation (4.16) is true by Lebesgue's bounded convergence theorem. D

Corollary 4.5 says that the controller K(kiC) achieves almost perfect tracking of
L2-signals for sufficiently large kt (j = 1, . . . , n). Theorem 4.4 can be improved
in case G e 6/lX" and H e A"x".

Remark 4.6 (i) It follows from (4.13) that the inverse Laplace transform of
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2 0 6 HARTMUT LOGEMANN AND DAVID H. OWENS

LA.(k.c) is given by

- [diag f -^e -^ -^ -e^ku , (4.17)

if kj # q (/ = 1, . . . , n).
(ii) Inspection of (4.17) yields that the off-diagonal elements of LAi(kx) tend to

zero (in the A-norm) if k—*•<*>.
(iii) Moreover, it follows from (4.17) that the A-norm of the diagonal elements

of £A,(H,C) tends to 1 if ft-»o°. Therefore (by (ii))

lira | |^, ( 4 ,C ) | |A«. = 1, (4.18)

where ||*||A"X« is defined by

for [///]e A"*". Equipped with the norm ||»||A.x., the space AnXn becomes a
Banach algebra.

THEOREM 4.7 Let G e 6"x'1 be such that G"1 is of the form (4.1) with H e A .̂Xn.
Then, for 1 s£ <? =£ °o and c e R+ fixed,

(i) lim||L (4,e)-L /,, (4,c) | |w = 0, (ii) li
k—»°° k—»°o

Proof, (i) It follows from (4.9) that

A*.c) - U(*,o = {[5/ + (diag/y) *(Ao'H)] X -6/} *LAXk ,e )

where

and 5 is the Dirac distribution on R+ with support at 0. Now it is easy to show
that ||(diag//>)*04o1#)llA"*"-*0 if Jt-»°° and therefore, by Remark 4.6(iii), we
have

lim \\LlkiC) - ^ , ( * . C ) | | A — = 0. (4.19)
*«»

Finally, note that

for all 1« q =e 00 (cf. Vidyasagar 1978: p. 250).

(ii) Set [R*'e)] :=£(*,) and [%>c)]: = ^ (* c). It foUows from (4.19) that
l i n w | | | / J / C 1 | A - ||%>°*IU| = 0. Therefore (by Remark 4.6(ii)) l i m t _ ||^*-«)||A =
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ROBUST HIGH-GAIN FEEDBACK CONTROL 207

0, if i # / . Now the claim follows from (4.12) and from the inequality

(cf. Vidasagar 1978, p. 250). •

5. Examples

In this section, we shall consider examples of infinite-dimensional systems
whose inverse transfer matrices are of the form (4.1).

5.1 Volterra Integrodifferential Systems
Consider the Volterra integrodifferential system

x(r) = [(£06 + £ 0 *x](t) + [(Bb6 + flx) • «](0,
C1)*x](t), (- }

where x(t) e Rm, u(f) e R", y(t) e R", Eo e Rmxm, Bo e UmXn, and Co e R"xm.
The entries of the matrices Ex, Bx, and Cx are all functions in

Ll = {/eL1(R+) : 3e >Os.t . /e e ' e LX(IR+)}.

The sizes of £ l t fl^ and Cx are given by m x m, m x n, and n x m, respectively.
For the transfer matrix G of the system (5.1) we obtain the following expression

G(s) = [Co + C^s^sl-Eo- GiisT^Bo + his)], (5.2)

where denotes the Laplace transformation.

LEMMA 5.1 The transfer matrix (5.2) of the Volterra integrodifferential system is
in 6nx".

Proof. The entries of Eo + Ex(s), BQ + &i(s), and Co + C^s) are elements of A_.
It remains to show that [si - Eo- E^s)]'1 e$m*m. Let AdjX(s) denote the
adjoint matrix of X(s) = sl- Eo- E^s); then, by Cramer's rule, we have

(s)~ (5>3)

det X(s) can be written in the form

d e t X(s) = s m + e m ^ ( s ) s m - 1 + ••• + eo(s),

where the et belong to the subalgebra of A_ generated by the entries of
Eo + Ei(s). Therefore we have

dctXjs) .

( 5 + i r
Fmally we note that

It follows from (5.3) that X~l e fimxm. D
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2 0 8 HARTMUT LOGEMANN AND DAVID H. OWENS

We need the following assumptions on the Volterra integrodifferential system
(5.1).
(VI) The transfer matrix given by (5.2) is minimum-phase.
(V2) det(Coflo)*0.
(V3) The entries of s£i(s) and s£i(s) belong to H!!.

(V4) rk[5/-£o-£1(5))̂  + AM] = r f

Remark 5.2 (i) (V3) is satisfied if either (a) the entries of Bx and Cx are
elements of the space

W}_ := {/ e W}(R+): 3 e > 0 s . t . /e" e W}(R+)},

where W}(R+) denotes the Sololev space of all functions/ e L!(R+) such that the
distributional derivative of / i s in LX(R+), or (b) the entries of Bx and C\ satisfy
the conditions of Satz 1, p. 477, or Satz 4, p. 480, in Doetsch (1971).

(ii) (V4) is the generalized Hautus condition (cf. Hautus, 1970), which is
necessary in order to establish internal stability.

THEOREM 5.3 (i) / / (V1)-(V3) are satisfied, then the inverse of the transfer matrix
(5.2) is of the form (4.1) with H eH°lnXn.

(ii) / / (VI) and (V2) are satisfied, Bt s 0, and d = 0, then the inverse of the
transfer matrix (5.2) is of the form (4.1) with H e A"x".

Proof, (i) Define F(s):=(s+ l)G(s)eTnXn, where G is given by (5.2). It is
sufficient to show that

F(s) - CoSo = Ois'1) if |s|->°° in Ca, for some a <0. (5.4)

Indeed, if (5.4) is true, then it follows in particular that

lim F(s) = Coflo.
C

Hence F^eT"*" by (V2) (cf. Remark 2.1 (iv)). Further, it follows from (VI)
and Remark 2.1 (ii) that there exists fi e (a, 0) such that F~\s) has no poles in
Q,, which means that F" 1 e H!""". Therefore, using (5.4), we obtain

H(s) := (s + l)[F~\s) - (Coflo)"1] e HI"*".

Now note that G~\s) = (s + l)F~\s) = (s + ^(CQBO)"1 + H(s), which is (4.1).
It remains to show that (5.4) holds. Let a<0 be such that

£(s) = E0 + E-^s)

and s&i(s) and sCi(s) are bounded and holomorphic on Ca (this is possible by
(V3)). For all seCa such that \s\>supieCma(E(z)), the following equation
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ROBUST HIGH-GAIN FEEDBACK CONTROL 209

holds:

s[F(s) - C0B0] = s[C0 + &

0 ( i i 2(s))sB\(s)

[Co + e,(5)](i i£*(5))[^ + 6r(s)]. (5.5)

Since the five terms on the r.h.s. of (5.5) are bounded in the region

{seCa:\s\>p},

for some p>sup z e C n o(£(z)), then (5.5) proves (5.4).
(ii) It follows from Owens et al. (1984) that there exists a nonsingular

T e Rmxm such that

Define

where £ n , £12, E21, and £22 are matrices with entries in 6R + L1(R+), of size
nXn, n x (m — n), (m — n) x n, and (m — H) x (m — n), respectively. Setting

zM-r-'xW,
we get

z(0 = [(r~1£or6 + r~1£1r)*z](r) + r~xfloH(f), ^(0 = corz(^). (5.6)

Note that (5.6) can be written in the form

Z2(t) = (£22 *z2)(0 + (£21 • u2)(t),
>2(0 = "(CoA))^^^*^)^) + (Eu*u2)(t)],

ux(t) = u(i)-y2(t), u2(t) = yx(t); (5.9)

i.e. the system (5.6) is the feedback interconnection of the integrator (5.7) and
the Vol terra integrodifferential system (5.8). Let H denote the transfer function
of (5.8). Then, by Lemma 5.1, He H"*". It follows from (5.6) - (5.9) that

]J

G(s) = Co[sl -EQ- E^s)]-1^ = s-'CoBJil + / / ( j^CoflJ- 1

Therefore, G~l(s) = ^(Cofio)"1 + H. Moreover, H e A"*" by (VI). •

As a consequence of Theorem 5.3 we have the following.
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2 1 0 HARTMUT LOGEMANN AND DAVID H. OWENS

COROLLARY 5.4 Suppose that the conditions (VI) - (V4) are satisfied and, for a
fixed c eR" , choose a realization (parametrized by k) of K(kiC) that is stabilizable
and detectable in the range kj>0 (j = 1 , . . . , n). Under these conditions, the
feedback interconnection of the Volterra integrodifferential system (5.1) and the
Pl-controller K(kc) is uniformly asymptotically stable (in the sense of Miller
(1971, 1972)) for all sufficiently large k, (J = l,..., n).

Proof. Combine Theorem 5.3(i) and Theorem 4.2, using Coroll. 3.6 of
Logemann (1986b). •

5.2 Retarded Systems
Consider the retarded system

fx(t) = f [CL4(T) X(/ - T)] + Bou(t) + \ B,(x)u(t -x)dx,
Jo Jo (5.10)

l
o

C1(x)x(t-x)dx;

here, x(t)eUm, u(t)eUn, y(t)eW, J50eR'nX") C06R"Xm, and h > 0; A is a
function of bounded variation on the interval [0, h] with values in Rmxm; and the
entries of the matrices Bx and Cx are all functions in L'(0, h).

For the transfer matrix G of the system (5.10) we obtain

G(s) = [Co + d(s)][sl - A(s)]~ J[5o + £(*)], (5.11)
where

A(s)= f e""cL4(T), £,(*)= f Bx(x)e-"&T, C,(s)=\ Cx(x)er" dx.
Jo Jo Jo

The entries of A, 6i, and C\ are entire functions. If we extend A, Bit and Cx to
the complete positive real axis by defining A(T) = A(h), Bx(x) = 0, and Ci(r) = 0,
for r > h, then the function A is the Laplace-Stieltjes transform (Widder, 1972:
p. 27) of A and, of course, Bx and Cx are the Laplace transforms of Bx and Cu

respectively.
We need the following assumptions on the retarded system (5.10).

(Rl) The transfer matrix given by (5.11) is minimum-phase.
(R2) det(Coflb)*O.
(R3) The entries of s&^s) and sC^s) belong to HI.
(R4) The function A of bounded variation contains no singular part (see e.g.
Kolmogorov & Fomin (1975: p. 341)).

(R5) r k [ 5 / - ^ ) , 5 0 + ^(5)] = r

See Remark 5.2 for comments on the conditions (R3) and (R5).

LEMMA 5.5 (i) The transfer matrix (5.11) of the retarded system is in I"*". "
(ii) Suppose that (R4) is satisfied. Then the transfer matrix (5.11) belongs to
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ROBUST HIGH-GAIN FEEDBACK CONTROL 211

Proof, (i) The proof is very similar to that of Lemma 5.1.
(ii) See Logemann (1986a). •

THEOREM 5.6 (i) / / (R1)-(R3) are satisfied then the inverse of the transfer matrix
(5.11) is of the form (4.1) with H e HI"*".

(ii) / / (Rl), (R2), and (R4) are satisfied, and if B^O and Cx = 0, then the
inverse of the transfer matrix (5.11) is of the form (4.1) with H e A"x".

Proof. The proof is similar to that of Theorem 5.3. •

As a consequence of Theorem 5.6 we have the following.

COROLLARY 5.7 Suppose that the conditions (R1)-(R3) and (R5) are satisfied.
For a fixed ce R+, choose a realization {parametrized by k) of K^ke) that is
stabilizable and detectable in the range kt>0 (/ = 1, . . . , n). Under these
conditions, the feedback interconnection of the retarded system (5.10) and the
Pl-controller K^kiC) is exponentially stable (i.e. the strongly continuous solution
semigroup of the closed-hop system is exponentially stable) for all sufficiently large
kj ( ; = 1 , . . . , n).

Proof. Combine Theorems 5.6 (i) and 4.2, using Coroll. 3.4 of Logemann
(1986b). •

Remark 5.8 Using ideas of Hale (1974), the results of Subsection 5.2 can be
extended to certain functional-differential equations with infinite delays.

6. Robustness properties of the PI-controDer Kikc) at high gain

6.1 Robustness with respect to perturbations in the parameters of Ao and Al

Consider a transfer matrix G e T"x" (resp. fi"*") with inverse of the form (4.1).
Let AQ and A* be numerical estimates of Ao and A± obtained from a complex
model or from open-loop step response data (if available). We assume that
det Ao # 0. This numerical information can be used to construct a Pi-controller of
the form

*(Vc)(s) = AS diag (k, + cj + kjcj/s) - At, (6.1)

where k:=[ku ..., kn]
T, kj>0, and c:=[cu . .. , c .feR". Suppose that we

now apply the controller to the real system given by (4.1); we will use the
notation O(X) and r(X) respectively for the spectrum and the spectral radius of a
matrix X.

THEOREM 6.1 Let G e T"Xn (resp. fi"*") be such that G~l is of the form (4.1).
Suppose that kt = K and ct = y (j = 1, . . . , n), and denote K*kx) by K*Kr). The
feedback scheme in Fig. 4 is Wl-stable (resp. k--stable) for all sufficiently large K
if

(i) \\At~\A^ - Ao)\\ < 1, where ||«|| is any matrix norm on C x " ,
or (ii) z(A*0-\A*0-A0))<\,
or(iii) O^o-'A,) c Q,.
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212 HARTMUT LOGEMANN AND DAVID H. OWENS

- *o *J)

FIG. 4.

Proof. Since (i) =£> (ii) =£> (iii), it is sufficient to prove the claim in case that (iii) is
satisfied.

Define GX e C(s)nX" by GX~\s) = sA£ +Af. Further, define

^ I : = ( / + G K * ) G\K* ^ V ={1

Of course, LX,(K,Y) is A_-stable for all K > 0 and y >0. It is sufficient to show that
L*K_r) is H!!-stable (resp. A_-stable) for all sufficiently large K (cf. the proof of
Theorem 4.2). An elementary computation shows that

where

(6.3)

Note that

i - A*

Let y e K + be fixed. If we show that infJ€Co |det PK(s)\ = £ > 0 (independent of JC),
then it follows that (PK + G(ir,,,))"* is H!!-stable (resp. A_-stable) for all
sufficiently large K, and hence that L*K<y) is K-stable (resp. A_-stable) (by (4.2))
for all sufficiently large JC. Now choose a fixed JC0 > 0 and realize that

Then condition (iii) gives infjaCo |det PKo(s)\ = e > 0. Finally note that, for K > 0
and A > 0, we have

{s/(s + K) : s e Co} = {s/(s + A): s e Co}

and therefore, by (4.3), inf,sCo |det PK(s)\ = e, independent of K.

Remark 6.2 In the general case, i.e. the kj and Cj are different, the condition (iii)
is not sufficient for stability at high gain. We present a counterexample: Let

• -1 -21
2 2.

I, =>4f = 0, A) = ; ] •
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ROBUST HIGH-GAIN FEEDBACK CONTROL 2 1 3

Of course a(AS^AQ) = O(A0) <= Q,. Further, choose the controller to be

]' t'[k''1"7-
i.e. Ci = c2 = 0 in (6.1). Then an elementary calculation shows

»].
So, if we choose Â  = JC and k2 = JC2, the closed-loop system will be unstable for

In the following,

W(Z):= {xHXx :xeC,xHx = 1}

denotes the numerical range of an n x n matrix A'; see e.g. Halmos (1982: p. 112).

THEOREM 6.3 Let G e T"x" ( r«p. fi"Xn) and assume that G'1 is of the form (4.1).
77i«/i, for c e R" ^ced, tfw: following holds.

(i) 77i« feedback scheme in Fig. 5 u IH-sta&/e (resp. k--stable) for all
sufficiently large k, (j = l,...,n) if \\AS~\AS -Ao)\\ < 1, w/i«re | | ' | | « a/iy
submultiplicative norm on C x " M»zf/i ^ie additional property that ||diagy ay|| «s
maxy \aj\ for arbitrary au . . . , an e C.

(ii) Under the additional assumption that ks = vyjc with vy > 0 fixed (; =
1, . . . , « ) , 1/tc feedback system in Fig. 5 is Hl-stoWe (resp. A--stable) for all
sufficiently large K if

(a) o((diag v , ) i 4 j - ^ o ) ^ Co or (b) W ( A 0 - U 0 ) c Q,.

Proo/. (i) Define G*A e C(s)nxn by G^" 1 ^) = sA% +Al Further, define

)~

^,( t .e) is A_-stable for all ks > 0 and cy 3= 0 (/ = 1 , . . . , AJ). It is sufficient to show
that L(Vc) is H!!-stable (resp. A_-stable) for all sufficiently large kj 0 = 1 , . . . , n)
(cf. the proof of Theorem 4.2). An elementary computation shows that

- AS) (6.4)

FIG. 5.
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2 1 4 HARTMUT LOGEMANN AND DAVID H. OWENS

where

For fixed c e R", we have

lim sup||G(fce)(j)||=0. (6.5)
* -« •> »eCo

The claim follows from (6.4) and (6.5) if we note that H""IX" equipped with the
norm sup,eCo \\M(s)\\ (M e tCnXn) is a Banach algebra (cf. the proof of Theorem
4.2).

(ii) The proof of part (a) is similar to that of Theorem 6.1 and is therefore
omitted. We shall prove part (b). Define

^JAr'iAo-AS). (6.6)

By (6.4) and (6.5) it is sufficient to show that

inf |detPJC(s)| =
xeCo

independent of K (cf. the proof of Theorem 6.1). It follows from (6.6) that

inf |detPJC(s)| = £>0 , (6.7)
xeCo

Moreover, the following inclusions hold for all s e 0 ( 0 } :

) S'Uo) c Co-g Z o ) f g ^ 0 ) ( g

(6.8)

The matrices PK(0) and Pr(°°) are nonsingular. Therefore it follows from (6.8)
that

inf |detFr(s)| = e r > 0 . (6.9)
*eCo

Finally note that

It follows now from (6.6) that £r in (6.9) is independent of K.

6.2 Robustness with respect to Certain Measurement Nonlinearities
We now study the effect of certain measurement nonlinearities on the feedback

schemes in Figs 1-2. We consider nonlinear functions <j>: R"-»R'1 satisfying the
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r G

FIG. 6.

conditions

(Nl)

(N2)

: \x-

3/3>0

(|»|oo denotes the maximum-norm on Rn); we give two examples:
(a) (Dead-zone) Define ^ : HT-frR" by

(xi<-Yt),

fo > Yd,
where y, > 0 (i = 1 , . . . , n); then ^ satisfies (Nl) and (N2).

(b) Let %I>:M"-*M" be a bounded differentiate function such that the
differential (Di/»)(x) is bounded. Then 0:= idR- + tp satisfies (Nl) and (N2).

Let 6r denote the R-algebra of all transfer functions in fi with 'real
coefficients', i.e. any Laurent expansion about a real point has real coefficients.
Note that

We shall consider transfer matrices G e B?x" of the form

where A0,AieWx"
matrix function GA by

H, (6.10)

. and Hekl^". As usual, we define the rational

(6.11)

The time-domain equations of the feedback systems in Figs 6-7 are

yk = £(*.o * r ~ £(*.«> * (* ° J* ~ Jfc)» (6-12)
yx,* = ^.(*.c) • r - £yt>(*,c) * (£ "A1/*,* - J/».*). (6-13)

where L(A>C) and LA(kX) are given by (4.8), and denotes the inverse Laplace
transform.

*

GA

FIG. 7.
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2 1 6 HARTMUT LOGEMANN AND DAVID H. OWENS

The following lemma shows that the feedback systems (6.12) and (6.13) are
well-posed. We denote by LL1 the space of all measurable functions / : R + -+R
such that/ | ,GL*(/) for all compact intervals / c R + (1 s= q =e<»).

LEMMA 6.4 Let A e (LLi)"^ and f e(LL")B, and assume that
satisfies condition (N2). Then the equation

has a unique solution in (LL+)".

Proof. Apply Theorem 2 in Desoer & Vidyasagar (1975: p. 48). •

THEOREM 6.5 Let G e B?xn be a transfer matrix of the form (6.10) and let the
transfer matrix GA be given by (6.11). Further, we assume that the function
<t> : R"-»R" satisfies the conditions (Nl) and (N2). Then

(i) The feedback system

y = GA*e, e = £(jk>e) * ( r -0»^ ) (6.14)

is L°°-stable for all kj>0 and c,^0 (y = l, . . . ,n).
(ii) The feedback system

y = G + e, e = Z(k,c)*(r-4>°y) (6.15)

is If-stable for all c e R + and all k = [kl, . . . , kn]
T satisfying miny)k />

o(Ao1) | |// | | . .

Proof, (i) We have that Z /, i f te )eL1(ll+)" )1" for all kt>Q and cy>0 (/ =
1, . . . , n). Therefore it follows from Lemma 6.4 that (6.13) has a unique solution
in (LL:)" for all r e (LLX)n. Realize that

The L°°-stability of the feedback system (6.14) is now implied by (6.13).
(ii) Define f,{s) : = s/(s + k,)(s + cj) (/ = 1, . . . , n). It is clear that

eAnx"

for all k such that min, kj > O^AQ1) ||if |L and for all c e U"+. It follows from (4.9)
that L(kie)eLl(R+)"Xn for all * such that minlkJ>d(Ao1)\\H\\a, and for all
c e R". We now conclude from (6.12) that the feedback system (6.15) is Unstable
for all k such that miny k} > O(AQ1) ||/f | | . and for all c e R+ (cf. the proof of part
(0).
Remark 6.6 Under the assumptions of Theorem 6.5, we have, for all ft e R +
satisfying miny kj > O(AQ1) ||H||», and for all c e R"+ and r e L"(R+)":

hk - A*.e) * 'II- « oc ||£(Jl.e)|U, (6.16)
llj* - ^.(*,o • r | | . « ||(Z(ik.c) - ^, (*,e)) * r | | . + or ||L(t,c)||H». (6.17)

(The inequalities (6.16) and (6.17) are easily derived from (6.12) and (6.13)).
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ROBUST HIGH-GAIN FEEDBACK CONTROL 217

Moreover, it follows from Theorem 4.7 and Remark 4.6(iii) that

lira sup \\yk - L(k,c) • r | | . =£ a 1 (6 l g )
V c e R : VreL"(R + r - ^ 19)

lim sup \\yk - LAi(k,c) • r||» « <*

The inequality (6.16) provides an upper bound on the peak transient error
induced by the nonlinearity in the infinite-dimensional feedback system in Fig. 6.
The inequality (6.17) gives an upper bound on the peak transient error owing to
the nonlinearity and to the modelling error G - GA if we replace the nonlinear
infinite-dimensional feedback system in Fig. 6 by the linear finite-dimensional
feedback system in Fig. 2. The inequalities (6.18) and (6.19) show that both
L°°-errors are asymptotically bounded by a as k-+°°. In particular, we see that
the peak transient effects will not be amplified by system dynamics if the kt are
sufficiently large.

Remark 6.7 It should be mentioned that the results in Subsection 6.2 are of
similar nature to the results for the discrete-time finite-dimensional case in
Boland & Owens (1980).
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7. Appendix

In this appendix we prove Lemma 3.1 and Theorem 3.3. In order to do this, we
recall some facts concerning the algebraic structure of the ring H(£2). The units of
the integral domain H(i2) are exactly those functions in H(Q) which have no zeros
in Q. It is well known that H(£?) is a Bezout domain, i.e. every finitely generated
ideal in H(£2) is principal (Narasimhan, 1985: p. 136). Thus, any finite set of
functions in H(£?) has a greatest common divisor. Moreover it is known that
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forms a so-called elementary divisor ring, i.e. every matrix of holomorphic
functions admits a Smith normal form (Narasimhan, 1985: p. 141). Therefore
every meromorphic matrix is unimodular-equivalent to its Smith-McMillan form.
More precisely, if M e M(fl)nXm, then there exist unimodular matrices U e
H(fl)nxn and V e H(fl)mXm such that

where r:=rkM=£min {m, n) and

''/ , , A (i = l , . . . , r ) , i+! f (' = 1, • • • , r - l ) .
gcd(£,, V»,) = U rpl+i\tp,)

The holomorphic functions et and V/ are unique up to units in H(£2). Therefore, it
makes sense to write et = £,(M) and V>, = i/>/(M). We define (up to units in
the pole function and the zero function of M to be

respectively. In case r<min{m,n} we set £,(M):=0 and
in {m, n}).

Remark 7.1 (i) Let G e TmX". Then it is not difficult to show that

ord, i//(G) = p,(G) V^eCo.

(ii) Let G e TnX" and let G = ND~l be a right Bezout factorization. Then

ord, e(G) = ord, det N V s e Co-

Proof of Lemma 3.1. There exists a < 0 such that t/;(F), ^(G), and t/;(FG) all
belong to H(Ca). It is sufficient to show that

il>(FG)\il>(F)1>{G). (7.1)

Coppel (1974) has proved (7.1) for rational matrices. The generalization to
meromorphic matrices is straightforward and it is therefore omitted. •

Proof of Theorem 3.3. First note that the inequalities (3.1) can be written

\e(F)(so)\ + \xp(G)(so)\>0, \e(G)(so)\ + \Q{F)(so)\>0. (7.2)

By Lemma 3.1, it is sufficient to show that

ord,0 [V(F)V(G)] ^ ord,0 V(FG). (7.3)

We split the proof into three steps. The idea behind the first step is due to Coppel
(1974).

Step 1. Realize that e(G) = V(G~1) and write F = (FG)G~l. Then it follows
from (7.1) that rp(F) \ ip(FG)e(G), and hence (by (7.2))

(7.4)
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In exactly the same way, we can show

0 (7.5)

Step 2. Note that e{F), y>(F), e(G), rp(G) E(FG), and ip(FG) all belong to
H(Ca) for some a < 0. In Step 2, '= ' means equality up to units in H(Ca). Define

/:=gcd[e(F), V(F)], g: = gcd[£(G),

The equation e(FG)lrp{FG) = e(F)e(G)/y(F)ip(G) yields

[e(F)/f][e(G)/g]

It follows from (7.2) that d: = gcd [e(F)e(G)lfg, HF)H>(G)/fg] has no zero in j 0 ,
i.e. ord,0 d = 0. Hence

ord/0 [V(F)V(G)/fg] « ord,0 ^(i'G). (7.6)

3. We show that (7.3) is true. We have to deal with three cases,
(i) ordJo/ = ord,0£ = 0: then

ord,, [V(F)V(G)] = ordJ0 [V{F)V{G)/fg] ^ ordJo y(FG), by (7.6).
(ii) ord 5 o />0: then it follows from (7.2) that ordJo rf>(G) = 0, and hence, by

(7-4),

ord,0 [V(F) V(G)] = ordJ0 V(F) ^ ord,

(iii) ordJo g > 0: using (7.5) we can show in exactly the same way as in (ii) that
(7.3) holds true.
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