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This paper deals with a certain class of infinite-dimensional minimum-phase
systems. We show that these systems can be stabilized by multivariable
PI-controllers with sufficiently high gains; it turns out that the Pl-controllers
under consideration achieve almost decoupling and almost perfect tracking at
high gain. Further, we prove several sufficient conditions for robust stability. Two
results on pole-zero cancellations and closed-loop stability, which are used
throughout the paper, may be of independent interest.

1. Introduction

THE PROBLEMS of finite-dimensional stabilization and finite-dimensional regulation
of infinite-dimensional systems by output feedback has received considerable
attention in recent years; see e.g. Schumacher (1981), Curtain & Salamon (1984),
Kamen et al. (1985), Balas (1986), Logemann (1986a) and Jacobson & Nett
(1987). Unfortunately, the controllers derived by the above authors may be of
high order in certain cases. Moreover, if approximation techniques are used (cf.
e.g. Kamen et al.,, 1985; Balas, 1986; Logemann, 1986a), the relationship
between the particular approximation method and the order of the stabilizing
controller is not yet understood. Intuitively, it is clear that restrictions on the
plant such as being minimum-phase or having stability should lead to simple
low-order controllers. Pojohlainen (1982) has shown that a large class of stable
infinite-dimensional plants can be stabilized and regulated by a low-gain
Pl-controller. In the present paper we shall study the ‘dual’ situation. More
precisely: we investigate the problem of high-gain control of certain infinite-
dimensional minimum-phase (possibly unstable) systems. As far as the authors
are aware, this problem has not been considered in the literature before.

The present investigation is based on frequency-domain methods in contrast to
the above papers (with the exception of Kamen et al. (1985), Logemann (1986a)
and Jacobson & Nett (1987)) where the analysis is done using state-space
methods. In particular, we use the framework of Callier & Desoer (1978, 1980a,
1980b) and a slight generalization of their set-up, which is sometimes more
suitable. Moreover the notion of a ‘multivariable first-order lag’ (cf. Owens, 1978;
Owens & Chotai, 1982; Owens et al., 1984) plays an important role in our
analysis.

We prove, in Section 4, that a large class of infinite-dimensional minimum-
phase systems can be stabilized by high-gain PI-controllers. Further, we show that
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196 HARTMUT LOGEMANN AND DAVID H. OWENS

the proposed Pl-controller achieves ‘almost’ decoupling and ‘almost’ perfect
tracking at high gain.

In Section 5, we apply our frequency-domain results to certain minimum-phase
retarded systems and Volterra integrodifferential systems. It turns out that the
proposed Pl-controller achieves internal stability if the gains are sufficiently large.
In Section 6, we investigate robustness properties of the Pl-controller under
consideration. We study perturbations in the parameters of the inverse transfer
matrix of the plant and perturbations that are induced by measurement
nonlinearities. In both cases, conditions are developed which guarantee stability
at high gain. It should be mentioned that some of the results in Sections 4-6
extend results of Owens & Chotai (1982) and Owens et al. (1984) to an
infinite-dimensional setting. Section 2 is devoted to preliminaries. In Section 3 we
present two results on multivariable pole-zero cancellations and closed-loop
stability which we need in Section 4 and Section 6. These results, which are
proved in Section 7 (=Appendix), may also be of independent interest.

2. Preliminaries
Let R, denote the closed positive half-axis. For 0 € R, we define
C,:={seC:Res>o}.

Let 2 cC be a region. The ring of holomorphic functions on £ is denoted by
H(£2). The symbol M(£2) denotes the quotient field of H(S2), i.e. the field of
meromorphic functions on £2. For f € M(£2) and a € Q we define

n

d’f
" (a) # 0}.

ord, f:=min {n?O:

Further, we denote the Hardy space of all bounded holomorphic functions in the
right half-plane by H” := {f € H(Co) : f is bounded}. Suppose f is a distribution
with support in the interval [0, ®) of the form

=5 1045 @.1)

where £ :=0, £>0Vi=1, §, denotes the Dirac distribution at ¢, f,eC, and f,
is a C-valued Lebesgue-measurable function. The set A consists of all distribu-
tions f of the form (2.1) such that

||f|h=§0|f,|+ f ()l de

is finite. It can be shown that A is a Banach algebra (Hille & Phillips 1957: p.
141). If f € A, then the Laplace transformation of f

f(s):= 2‘6 fe s+ J: fu()e™ dr

is well-defined for all s € C;. In particular, we have

171l = sup IF () < I1flla
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ROBUST HIGH-GAIN FEEDBACK CONTROL 197

and therefore f € H™. It is useful to introduce the following sets:
A_:={feA:3 e>0s.t. fe* €A},
A:={f:feA), A_:={f:feAl),
At::{feﬁ_ :3ps.t. inf |f(s)|>0}.
s€Co,ls|p

Let B=A_(A>)™! denote the quotient ring of A_ with respect to A%, i.e.
B={(n/d:neA_,del~)
(cf. Callier & Desoer, 1978, 1980a, 1980b). Moreover, we define
HZ:= {f eH”:3 0<0s.t. feH(C,) and fgg 1iQ)] <oo},

D_:={feH“_°:3p>OS.t. inf |f(s)|>0}, T:=H>(D_)"".

s6Co,ls1>p
The following inclusions hold: Ac H*, A_cH>, AcD_, and Bc T.

Remark 2.1 (i) Let f e D_. Then there exists o0 <0 such that f is holomorphic
and bounded on C,. Therefore f is uniformly continuous on every strip
{s : # =Res < B}, with 0 < o < f (Corduneanu, 1968: p. 72), and there exist real
numbers p >0 and y, with 0 <y <0, such that

inf |f(s)|>0.
3€Cy,b1>p
(ii) Let f € T. Then it follows from (i) that there exists a number ¢ <0 such
that f has at most finitely many poles in C,.

(iii) It is trivial to show that f e H™ is a unit iff inf,¢c, |f(s)| > 0. It is by no

means trivial that . .
f eAis a unit (in A) iff inf |f(s)] > 0.
5eCy

(cf. Hille & Phillips 1957: pp. 141). It follows from (i) that f € HZ (resp. A)isa
unit in HZ (resp. A_) iff inf,.c, |f(s)| > 0.
(iv) f € T (resp. f € B) is a unit in T (resp. B) iff there exists p >0 such that
inf |f(s)|>0.
s€Co.l51>p

It is an important property of T (resp. B) that every matrix in T™*" (resp. B™*")
admits right and left Bezout factorizations. This can be stated more precisely as
follows.

Lemma 2.2 For G € T™™" (resp. B™>") there exists a right Bezout factorization
over HZ (resp. A_), i.e. there exist N e HZ™"" (resp. A™*™ and D e H="*"
(resp. AZ*™) such that:

(i) detDeD_ (resp. A%); (i) G=ND7;

(iii) N and D are right Bezout-coprime, i.e. there exist matrices U e HZ"*™
(resp. AZ*™) and V e HZ"™"™ (resp. A2*™) such that

UN+VD=]
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198 HARTMUT LOGEMANN AND DAVID H. OWENS

Moreover it is possible to choose D rational. A similar statement is valid for left
Bezout factorizations.

Proof. See Callier & Desoer (1980b) if G € B™*”. In case G € T™*", the proof is
similar (cf. Logemann, 1986¢). O

Remark 2.3 (i) Two right Bezout factorizations over H” (resp. A_) are unique
up to a unimodular matrix over H” (resp. A_). Of course, the same is true for left
Bezout factorizations.

(ii) Let G € T™*" (resp. B"*") and let G =N,D;! and G = D;'N, be a right
and a left Bezout factorization (respectively) over H® (resp. A_). Then there
exists 0<0 such that det D, and det D, have the same zeros in C, (counting
multiplicities). Moreover, if n = m, then det N, and det N, have the same zeros in
C, (counting multiplicities).

Because of Remark 2.3 the following definitions make sense.
DEerFINITION 2.4 Let G € T™*" (resp. B™*") and let G = ND~! be a right Bezout
factorization over H” (resp. A_).

(i) A complex number s, € €, is called a pole of G if det D(s,) = 0. Moreover
we define p,(G):= ord,,det D (multiplicity of the pole s).

(ii) The matrix G is called HZ-stable (resp. A_-stable) if p,(G)=0 for all
seCy, ie. G e H=™™" (resp. A™™").

(iii) G is called minimum-phase if 1k N(s)=min {m, n}, for all s € C,.

3. Pole-zero cancellations and closed-loop stability
LEmMMA 3.1 Let Fe T™*" and G € T"™?. Then
P.(FG) <p,(F) +p,(G) for all s e C.
Proof. See Appendix.
We now define the concept of pole—zero cancellation.

DerFnNtmON 3.2 Let F e T™*", G € T"*”, and s, € €,. We say that FG contains a
pole—zero cancellation at s, if p,(FG)<p,(F)+p,(G). Otherwise (i.e.
Ps(FG) = p,(F) + p,,(G), by Lemma 3.1) we say that FG contains no pole-zero
cancellation at s,.

The following lemma gives a sufficient condition for the absence of pole-zero
cancellations in case of square plants.

THEOREM 3.3 Let F,G e T"™" (resp. B"*") and suppose that detF+0 and
det G #0. Moreover let F=NgDg' and G = NgDg' be right Bezout factoriza-
tions over H> (resp. A_). FG contains no pole-zero cancellation at sq € Cq if

|det NF(SO)I + |det DG(SO)I > 0, Idet NG(So)I + ldet DF(SO)l >0. (3. l)
Proof. See Appendix.
Remark 3.4 The condition in Theorem 3.3 is not necessary for the absence of
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ROBUST HIGH-GAIN FEEDBACK CONTROL 199

FiG. 1.

pole—zero cancellations, as the following example shows:

_ [ —-1) 0
F(s)‘G(s)’[ 0 (s—1)/(s+2)]'
Then

_[1/(s—1)? 0
F)G(s)= [ 0 (s-1)%(s+ 2)2]'
It follows from the right Bezout factorizations

F(s) = G(s) = [1/(s0+ 1) 0 ][(s -1)/(s +1) 0 ]‘1,

=-1D/s+1) 0 s+2)/@s+1)
C[U(s+1) 0 (s = 1)%/(s + 1)? 0 -1
Fe)G6) = [ 0 (s-1(s+ 1)2][ 0 (s +2)%(s + 1)2]

that p;(FG) = p1(F) + p1(G) =2, i.e. FG contains no pole—zero cancellation at 1.
Of course, the condition of Theorem 3.3 is not satisfied.

Consider the feedback system in Fig. 1. We call the feedback system stable if
every transfer function u;—y; that occurs around the loop is stable. More
precisely:

DerFiNTiON 3.4 Let G € T™*" (resp. B™*") and K € T**™ (resp. B**™) be such
that det (/ + GK) is a unit in T (resp. B). The feedback system in Fig. 1 is called
H=-stable (resp. A_-stable) if the matrix

(I+KG)'Kk -(I+ KG)“KG]
(I+GK)''GK (I+GK)'G

is in Hf(m+n)x(m+n) (r&sp A(_m+n)x(m+n)).

LemMa 3.5 Let G € T™" (resp. B™*") and K € T**™ (resp. B"*™) be such that
det (I + GK) is a unit in T (resp. B). Moreover let G = D'Ng and K = NxDx' be
a left Bezout factorization over HZ (resp. A_) and a right Bezout factorization

over H” (resp. A_), respectively. The feedback system in Fig. 1 is H>-stable
(resp. A_-stable) iff

iné det [Dg(s) Dx(s) + No(s)Nk(s)]| > 0.

H(G, K):=[
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200 HARTMUT LOGEMANN AND DAVID H. OWENS

Proof. The proof is by straightforward application of the theory of fractional
representation (cf. Vidyasagar et al. 1982). 0O

Remark 3.6 In case G € B™*" and K € B"*™, the content of Lemma 3.5 is well
known (Callier & Desoer, 1980b).

The following lemma gives another necessary and sufficient condition for
closed-loop stability.

Lemma 3.7 Let G € T™ " (resp. B™ ") and K € T"*™ (resp. B"*™) be such that
det (I + GK) is a unit in T (resp. B). The feedback system in Fig. 1 is H>-stable
(resp. A_-stable) iff

(i) (I + GK)'GK € H=™ ™ (resp. A™*™).

(i) GK contains no pole-zero cancellations in C,.

Remark 3.8 A similar result is proved in Anderson & Gevers (1981) for
finite-dimensional discrete systems. We present a simpler proof.

Proof. Let G=Dg!Ng and K =NxDg' be a left Bezout factqrization over H”
(resp. A_) and a right Bezout factorization over H® (resp.A_), respectively.
Moreover, let GK =D™'N be a left Bezout factorization over HZ (resp. A_).
Consider the matrix
(I+GK)™' -+ GK)“GK]
H(GK, I) = [
( ) (I+GK)''GK (I+GK)'GK
and realize that

det (DGDK + NGNK) = (det DG)(det DK) det (I + GK)

_ (det Dg)(det Dy)
B det D

It follows from (3.2) and Lemma 3.5 that the matrix H(G, K) is HZ-stable
(resp. A_-stable) iff GK contains no pole—zero cancellations in € and the matrix
H(GK, I)) is HZ-stable (resp. A_-stable). It follows from the identity

det (D + N). (3.2)

(I+GK)'=I-(I+GK)"'GK

that H(GK, I) is H>-stable (resp. A_-stable) iff (/+ GK) 'GK is H>-stable
(resp. A_-stable).

4. High-gain feedback control using first-order models
Let G € T**” (resp. B"*") have inverse of the form
G l(s)=sAo+ A, + H(s), @.1)

where Ag,A, € C**", det (A,) #0, and H € H2"*" (resp. A”*"). As an approxim-
ate model of G we choose a proper rational transfer matrix G, defined by

G;'(s) =5Ao+A,. 4.2)
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ROBUST HIGH-GAIN FEEDBACK CONTROL 201

Y

w
u y _l +
Kuo . +' Ga —> Y2

FiG. 2.

G, is a so-called multivariable first-order lag. (cf. Owens 1978, Owens & Chotai
1982, Owens et al., 1984). The controller for G, suggested by Owens & Chotai
(1982) has the form

Kiols)= Aoldia‘g (kj+¢; + kici/s) — Ay, 4.3)
<j<n

where
k:=[k1,...,k,,]T, k>0 (j=1,...,n), c:=[c1,...,c,,]Te|R’l.

This controller has the nice properties that (Owens & Chotai, 1982):

(a) it produces time constants in loop j of the order k; ' with reset times of the
order of ¢;’';

(b) the steady-state errors are zero in any loop j where ¢; #0;

(c) the resulting feedback scheme (cf. Fig. 2) is stable in the range k; >0 and
=0 (j=1,...,n);

(d) interaction effects in all loops become arbitrarily small as k— o (i.e.
min; k;— ) with the ¢, fixed.

Clearly K4 is an ‘ideal’ controller for the approximate model, with improving
theoretical response characteristics as the k; increase. We shall show that the
application of K to the original infinite-dimensional plant yields a stable
feedback system for all sufficiently large k;, and that the closed-loop response
characteristics of the two feedback schemes (see Fig. 2 and Fig. 3) become
arbitrarily close (in a well-defined sense) as k tends to . We need the following
lemma.

Lemma 4.1 (i) If GeT"" (resp. B"™*") is of the form (4.1), then G is
minimum-phase.

(i) The transfer matrix K., defined by (4.3) is minimum-phase if min;
k;>3(Ag'A,), where 5(M) denotes the largest singular value of M.

(T
+
Y | Koy Y :l——ﬂ G —> ¥

FIG. 3.

20z aunr 9z uo Jasn H1vd 40 ALISHIAINN Ad #160.29/56 L//p/oI01E/oWEWI/W0d dnodlwapese//:sdiy woly papeojumoq



202 HARTMUT LOGEMANN AND DAVID H. OWENS

Proof. (i) Define

1
+1

1
D(s):=1+m(Ao"Al—I), N(s):=s Aql, P(s):=A,—A,, (4.4

and note that 4
G,=D"'N, NP+D=] (4.5a,b)

Since G = (I + G4H)™'G,, it follows from (4.5a) that G = (D + NH)"'N. Then
(4.5b) yields N(P— H)+ D + NH = 1.

(ii) Define
s 1
fi(s) = s+1 (c;#0) and g;:= k_,c, (6;#0) =1,...,n),
1 (=0) 1 (=0)

D(s):= (diag f(5) A",

.k . .
N(s):= dljag ;—_*% + (dl/agf}(s))<d1/ag (k;+¢)— AJ‘AI).

Then Kes.o(s) = D™ (5)N(s), (4.6)

D(s)[Ao - A0<diag (kj+¢)— AJ‘A1> diag g,] + N(s) diagg, = L.
i i j

Hence (4.6) is a left Bezout factorization of K, ., Now, N(s) can be written in
the form

N(s)= (dijag h,(s))[ (dlag ’{;(( ))>A0 A ] 4.7

where

stk +¢) + kg
hi(s):= s+1 (6;#0),

k; (c;=0).

An easy computation shows that | f}(s)/h,(s)|<1/k, (seCO) and therefore we
obtain that det N(s) # 0, for all s € Cy, if min; k;>35(A45'A,). O

Tueorem 4.2 Let G € T"*" (resp. B**") be such that G™" is of the form (4.1).
Then the feedback system in Fig. 3 is HZ-stable (resp. A_-stable) if

min k; > max {5(A; 'A;), 8(As") |1H I},
i

where, for M e H*"™", we define ||M || := sup,.c, a(M(s)).
Proof. Define:
L=+ GKg ) 'GK k), Lagey:=U +GaKi ) 'GaKs oy
(4.8a,b)
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ROBUST HIGH-GAIN FEEDBACK CONTROL 203
An elementary computation shows that
Luo= [1 + (di]agf})Ag 'H ]-ILA,(k,c): 4.9
where fi(s):=s/(s + k)(s +¢) (j=1,...,n).
We claim that L e H2"™" (resp. AZ*") in the range k; > d(As") ||H||. with

¢;=0 (j=1,...,n). First note that L, € A™" for k;>0 and ¢,=0 (j=
1,...,n). Since (H”"™", ||*||l.) is a Banach algebra, it follows that

-1
[1 + (diagﬁ)AJ‘H] e H"">"
i

“ (dijag f})AJ 'H

(cf. Rudin 1974: p.38R). Because ||fll.<1/k; (j=1,...,n), equation (4.10)
will be satisfied if min, k; > 6(A;") ||H||-. So far, we have shown that

<1 (4.10)

Lyo € H=""
if min, k> 5(45") [|Hll. and ¢,=0 (j=1,..., n). This implies that

L€ HZ"*" (resp. A7*")
if min, k;>08(A5") ||H|l. and ¢;=0 (j=1,...,n), because we know that

L)€ T™™" (resp. B"*") for all values of k; and ¢;. Moreover, it follows from
Lemma 4.1 and Theorem 3.3 that GK4 ., contains no pole-zero cancellations in

o if
min k; > 6(A5'A4,).
i

Now we can use Lemma 3.7 in order to establish the theorem. O

In the following, we shall study the closed-loop response characteristics of the
feedback system in Fig. 3 as k tends to . In particular, we shall compare the
performance of the feedback schemes in Fig. 2 and Fig. 3 if k— . In order to do
this, we need some more notation.

We equip the space LY(R )" (:=[L?(R.)]") with the norm || f||, = max; ||fll,,
for f=[fi,...,f,]J € LY%(R,)" Let L, denote the Laplace—Planchere! transfor-
mation (cf. Hoffman 1962: p. 131; or Doetsch 1971: p. 419):

L :LX(R,) > (H)" . f> (Zn)'iff(t)e"‘ dt,

where H? is the usual Hardy space in the right half-plane (cf. Hoffman, 1962:
p. 121; or Doetsch, 1971: p. 419). For M e H”"*", we define

M LR, - LYR.) :f— L, (ML, f).
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204 HARTMUT LOGEMANN AND DAVID H. OWENS

Since L, is a bijective linear bounded operator (see Hoffman 1962: p. 131; or
Doetsch 1971: p.419) the same is true for L;'; also, M is a bounded
translation-invariant linear operator.

If M is a matrix in A”*", we define
M LYR,)">LI(R,) : f>Mxf

for 1<q <o, where M € A"™" is the inverse Laplace transform of M, and *
denotes convolution on R .. The bounded translation-invariant linear operator M
maps LY(R,)" into LY(R.)" (1 <g <) (cf. Vidyasagar 1978: p. 250). Finally let
& be a C-vector-space and let T: &"— & be a linear operator. Let (e;, . .., e,)
denote the canonical basis of C". We define

T, X>%:x~>(T(xe)), (j=1,...,n).
If M =[m;] e H*"*" then, for all f e LR.), we have

Myf = L7 (myL,f). (4.11)
If M =[m,] e A"*" then for all f e L7(R,) (with 1<g <w),
Myf =iy f. (4.12)

The following remark is useful in order to prove Theorem 4.4.
Remark 4.3 (i) Note that the closed-loop transfer matrix of the approximate
feedback system L, ) (see (4.8b)) is given by

. 1 . :
Ly gos)= (dliag m) (dllag [(k; +c))s + kic;] — sAq Al). (4.13)

(ii) It follows from (4.13) that the off-diagonal elements of the matrix L4 .,
tend to zero (in the sup norm) if k— = (‘almost decoupling’).
(iii) Moreover, it follows from (4.13) that

limsup ||L4, @, 0)ll <2. (4.14)

k—o
The next theorem shows that the closed-loop operators u;—y, of the real and
approximate feedback system (see Fig. 2 and Fig. 3) become arbitrarily close in

the L*induced norm if k— . Moreover, the controller K ., achieves almost
decoupling for sufficiently large k;.

THEOREM 4.4 Let G € T"*" be such that G™" is of the form (4.1). Then
(@) ll{ll ||£(n,c) - ['A.(k,c)”iZ =0, (ii) kh_{ll ”E(k,c)l/”iz =0 (i#)),

for fixed ¢ € R, where ||*||;, denotes the 1*-induced norm.
Proof. (i) It follows from (4.9) that

-1
L(k,c) - LA,(k,c) = {[1 + (dllag f;)AJlH:I - I}LA,(k,c);
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ROBUST HIGH-GAIN FEEDBACK CONTROL 205
where fi(s)=s/(s +k)(s +¢) (j=1,...,n). Now, because
o
it follows from Remark 4.3(iii) that
k'_ll{l; ”L(k,c) - LA.(k,c)"cn =0.

-0 if k>,

o

The inequality ||L, ) — E.«,(k,c)||izs'li L) = La,o)ll= (cf. Logemann, 1986c:
p. 68) yields the claim.

(i) Set [1{9)1= L) Then we can conclude from (4.9) and from Remark
4.3(ii) that ||[{*||.—0 (k— ) for all i and j such that i #j. Now the claim
follows from (4.11) and from the fact that ||[{*9||.=||Lu,cyllz (cf. Harris &
Valenca, 1983: p. 83; or Logemann, 1986¢c: p. 64). O

COROLLARY 4.5 Let the assumptions of Theorem 4.4 be satisfied. Then
kli_’ﬂl L.y = rll2=0,

forall re L*(R,)".

Proof. For the sake of brevity, we assume that k;=x and ¢;=vy (j=1,...,n).
Denote L, ey bY La,(x.y) Equip the space (H?)” with the norm

1l := max il for f = [/ A LT (9

Then the Laplace-Plancheral transform L, : LX(R,)"— (H?)" is an isometry (see
Hoffman, 1962: p. 131; or Doetsch, 1971: p. 419). By Theorem 4.4, it is sufficient
to show that, for all f € (H»)", we have

Lim ILa S =Sz =0 (4.15)

Now an easy calculation yields
(x +y)s + xy _ s
GG+K)s+y) (+x)(s+7y)
In order to establish (4.15), it is sufficient to show that
(iw)’

(iw + x)(iw + 7)

La,x,p(s)= AJ'A,.

lim

x—=o J_ o

f(iw) zdw =0 VfeH. (4.16)

Equation (4.16) is true by Lebesgue’s bounded convergence theorem. O

Corollary 4.5 says that the controller K ., achieves almost perfect tracking of
L?-signals for sufficiently large k; (j=1,...,n). Theorem 4.4 can be improved
in case G € B"*" and H e A",

Remark 4.6 (i) It follows from (4.13) that the inverse Laplace transform of

¥20z dunr 9z uo Josn H1vd 40 ALISYIAINN AQ 160.29/56 L/S/¥/o101E/OWEWI/WO0D"dNO"dlWapede//:sdiy Wwolj papeojumoq



206 HARTMUT LOGEMANN AND DAVID H. OWENS
L, Lk ©) is given by
k?
ot =g (e )
ki ki — ¢

[dlag (—L e-or 4 K -"f) ]Ao 4, (4.17)
¢~k 1~ G
ifk#¢ (j=1,...,n).
(i) Inspection of (4 17) yields that the off-diagonal elements of L4 (4 ., tend to
zero (in the A-norm) if k— oo,
(iii) Moreover, it follows from (4.17) that the A-norm of the diagonal elements
of L, . tends to 1 if k— . Therefore (by (ii))

}l_l;l; "LA,(k,c)”A"“' = 1, (418)
where ||*|| s~ is defined by

LA llamn := max > (| fylla,
l‘i‘nj_l
for [f;]1e€ A"*". Equipped with the norm ||*|[,-s, the space A™*" becomes a
Banach algebra.

THEOREM 4.7 Let G € B"" be such that G™' is of the form (4.1) with H € A»*",
Then, for 1 <q <o and c e R} fixed,

() bh_xg ILa,ey— Lagolliy =0, (id) E_{Tl N, eyilliq =0 (i #J).

Proof. (i) It follows from (4.9) that

Lioy=Lagey= [[51 + (dijagf;) * (/4611;’)]-1 - 51} * Lo ae)

where

g k-
o= tperptoe™ (=L...n),

and § is the Dirac dlsErlbutlon on R, with support at 0. Now it is easy to show
that ||(diag; };) * (Ag'H)||arx»— 0 if k— oo and therefore, by Remark 4.6(iii), we
have

lim "L(k,c) - LA,(k,c)"A""" =0. (4.19)
k—oo

Finally, note that
"I:(k,c) - ['A.(k.c)“iq = “L(k,c) = La,,c)lla==
for all 1< g <o (cf. Vidyasagar 1978: p. 250).

(ii) Set [If* f ®N:=Lu. and (18 :=L, 4. It follows from (4.19) that
limy o || T8 — ||I£.,, >||A| =0. Therefore (by Remark 4.6(ii)) lim,_., [|[{#9}|, =
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ROBUST HIGH-GAIN FEEDBACK CONTROL 207

0, if i #j. Now the claim follows from (4.12) and from the inequality
Ik oullia < WF2lla - (1< g <)
(cf. Vidasagar 1978, p. 250). O

5. Examples

In this section, we shall consider examples of infinite-dimensional systems
whose inverse transfer matrices are of the form (4.1).

5.1 Volterra Integrodifferential Systems
Consider the Volterra integrodifferential system

£(t) = [(Eod + E1) *x](¢) + [(Bod + By) % u](0), (5.1)
y(©) =[(Cod + Cy) xx](¢), '

where x(t) e R™”, u(t)eR”, y(t)eR", E,e R™™™, ByeR™*", and CyeR™™.
The entries of the matrices E,, B,, and C, are all functions in

L. ={feL'(R,) : 3e>0s.t. fe= e L\(R.,)}.

The sizes of E;, B, and C, are given by m X m, m X n, and n X m, respectively.
For the transfer matrix G of the system (5.1) we obtain the following expression

G(s) =[Co+ Ci(s)]lsI — Eo— E(s)]'[Bo + Bys)], (5.2)
where ~ denotes the Laplace transformation.
LEMMA 5.1 The transfer matrix (5.2) of the Volterra integrodifferential system is
in B<"
Proof. The entries of Ey+ El(s), B, + Bl(s), and C,+ C'l(s) are elements of A_.
It remains to show that {s] —~ Eo— E,(s)]* e B™™. Let AdjX(s) denote the
adjoint matrix of X(s) =sI — E,— E,(s); then, by Cramer’s rule, we have

Adj X(s) (dct X(s))‘l
E+D)™ \(s+1)"
det X(s) can be written in the form
det X(s) =s™ + €1 (s)s™ 1+ - - - + e(s),

where the e, belong to the subalgebra of A_ generated by the entries of
Eqo+ E(s). Therefore we have

X7I(s) = (5.3)

det X(s) c i
s+1)"

Finally we note that

AdjX(s) . ..
WE A_ .

It follows from (5.3) that X' B™™. 0O

20z dunr 9z uo Jasn H1vd 40 ALISHIAINN Ad +160.29/G6 L//p/o101E/oWeWI/wod dnodlwapese//:sdiy woly papeojumoq



208 HARTMUT LOGEMANN AND DAVID H. OWENS

We need the following assumptions on the Volterra integrodifferential system
(5.1).
(V1) The transfer matrix given by (5.2) is minimum-phase.
(V2) det(CyBy)+#0.
(V3) The entries of sBl(s) and sC,(s) belong to H=.

(V4) 1k [s - Eo— Ey(s), Bo+ Bi(s)] =1k [sl — Eo— Ei(s)

Co+ Cy(s) ]="' Vselo

Remark 5.2 (i) (V3) is satisfied if either (a) the entries of B, and C, are
elements of the space

Wi_:={feWlR,):Te>0s.t.fe* e Wi(R,)},

where Wi(R,) denotes the Sololev space of all functions f € L'(R ) such that the
distributional derivative of f is in L'(R.), or (b) the entries of B, and C, satisfy
the conditions of Satz 1, p. 477, or Satz 4, p. 480, in Doetsch (1971).

(ii) (V4) is the generalized Hautus condition (cf. Hautus, 1970), which is
necessary in order to establish internal stability.

THEOREM 5.3 (i) If (V1)-(V3) are satisfied, then the inverse of the transfer matrix
(5.2) is of the form (4.1) with H e HZ™*",

(ii) If (V1) and (V2) are satisfied, B,=0, and C,=0, then the inverse of the
transfer matrix (5.2) is of the form (4.1) with H € A"*".

Proof. (i) Define F(s):=(s +1)G(s) e T**", where G is given by (5.2). It is
sufficient to show that

F(s) — CoBy=0(s7") if|s|] > = in C,, for some a <0. 5.9
Indeed, if (5.4) is true, then it follows in particular that

lim F(S) = COBO
Isp>»,5eC,

Hence F~'e T"*" by (V2) (cf. Remark 2.1 (iv)). Further, it follows from (V1)
and Remark 2.1 (ii) that there exists B € (&, 0) such that F~'(s) has no poles in
Cp, which means that F~' € HZ"*". Therefore, using (5.4), we obtain

H(s):= (s + [F}(s) — (CoBo) '] e HZ™*".

Now note that G™!(s) = (s + 1)F~'(s) = (s + 1)(CoBy) ™' + H(s), which is (4.1).
It remains to show that (5.4) holds. Let & <0 be such that

E(s)=Ey+ E\(s)

and sB,(s) and sC\(s) are bounded and holomonghic on C, (this is possible by
(V3)). For all seC, such that |s|>sup,.c, 6(E(z)), the following equation
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ROBUST HIGH-GAIN FEEDBACK CONTROL 209

holds:
s[F(s) — CoBo] = s[Co+ Cy($)I[ — s E(s)]"[Bo + By(s))I +5™'I) — sCoBy
= Co(z s,—l_l E(s))Bo + Co(gogl; E’(s))sB,(s)

i=1

+ sCl(s)(im% E‘(s))B0 + sCl(s)(ioé E‘(s))Bl(s)

= =
|
+[Co+ CONZ 5 E6)) B+ Bi6)) (5.9)
Since the five terms on the r.h.s. of (5.5) are bounded in the region
{seCs:ls|>p},

for some p > sup,.c, 5(£(z)), then (5.5) proves (5.4).
(ii) It follows from Owens et al. (1984) that there exists a nonsingular
T € R™ ™ such that

T-‘Bo=[c‘(’)3"], CcT=[1, 0]
Define

Ell EIZ]__ -1 -1 .

[EZI E, =T 'E¢Td+ T7'E ()T,

where E,;, Ey,, E;, and E,, are matrices with entries in SR + L'(R.), of size
nXn,nX(m-n), (m—n)Xn, and (m —n) X (m — n), respectively. Setting

z(8):=T"'x(z),
we get
2O)=[(TT'EqTO+ T'E\T)»xz](¢) + T 'Bou(t),  y(t) = CoTz(t). (5.6)
Note that (5.6) can be written in the form

2y(t) = CoBou, (1), n() =z,1), 6.7
2(t) = (Ex* 25)(t) + (E2 % u5)(0), } (5.8)
$:(t) = —(CoBo) " '[(Er2 % 25)(t) + (E 1y % u2) (1)),

nm()=u(t) —y(),  wt)=y(0); (5.9

i.e. the system (5.6) is the feedback interconnection of the integrator (5.7) and
the Volterra integrodifferential system (5.8). Let H denote the transfer function
of (5.8). Then, by Lemma 5.1, H € B™". It follows from (5.6) — (5.9) that

G(s) = ColsI — Eq— E(s)] ™' Bo=5""CoBo[I + H(s)s "' CoBo] "
Therefore, G~'(s) = s(CoBy) ™' + H. Moreover, H € A"™*" by (V1). O

As a consequence of Theorem 5.3 we have the following.
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210 HARTMUT LOGEMANN AND DAVID H. OWENS

CoroLLARY 5.4  Suppose that the conditions (V1) — (V4) are satisfied and, for a
fixed c € RY, choose a realization (parametrized by k) of K,y that is stabilizable
and detectable in the range k;>0 (j=1,...,n). Under these conditions, the
feedback interconnection of the Volterra integrodifferential system (5.1) and the
Pl-controller K ., is uniformly asymptotically stable (in the sense of Miller
(1971, 1972)) for all sufficiently large k; (j=1, ..., n).

Proof. Combine Theorem 5.3(i)) and Theorem 4.2, using Coroll. 3.6 of
Logemann (1986b). O

5.2 Retarded Systems
Consider the retarded system

() = J; ' [dA(z) x(t — T)] + Bou(t) + fo h By(t)u(r — 1) dr, (5.10)

y(1) = Cox(r) + fo h Cy(r) x(t - 1) dr;

here, x(t) e R™, u(t)eR”, y(t)eR", BoeR™", CoeR™™, and h>0; A is a
function of bounded variation on the interval [0, k] with values in R™*™; and the
entries of the matrices B; and C, are all functions in L'(0, k).

For the transfer matrix G of the system (5.10) we obtain

G(s) =[Co+ C()isI = A(s)]'[Bo + Bi(s)], (5-11)

where
A@s)= f “erraA(m,  Bis)= f "B(xetdr,  Cy(s)= f " Cy(m)edr.
0 0 0

The entries of A, Bl, and Cl are entire functions. If we extend A, B,, and C; to

the complete positive real axis by defining A(t) = A(h), Bi(t) =0, and Cy(7) =0,

for T>h, then the function A is the Laplace-Stieltjes transform (Widder, 1972:

p. 27) of A and, of course, B, and C, are the Laplace transforms of B, and C,,

respectively.

We need the following assumptions on the retarded system (5.10).

(R1) The transfer matrix given by (5.11) is minimum-phase.

(R2) det(CyB,)#0.

(R3) The entries of sB,(s) and sC,(s) belong to H”.

(R4) The function A of bounded variation contains no singular part (see e.g.

Kolmogorov & Fomin (1975: p. 341)). i

(RS) 1k [sI - A(s), By + By(s)] =1k [ s1=Als)
’ ! Co+ Ci(s)

See Remark 5.2 for comments on the conditions (R3) and (RS).

]=m VseC,.

LeMMA 5.5 (i) The transfer matrix (5.11) of the retarded system is in T"™". -
(ii) Suppose that (R4) is satisfied. Then the transfer matrix (5.11) belongs to
ann.
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Proof. (i) The proof is very similar to that of Lemma 5.1.
(ii) See Logemann (1986a). O

THEOREM 5.6 (i) If (R1)—(R3) are satisfied then the inverse of the transfer matrix
(5.11) is of the form (4.1) with H e HZ™>".

(ii) If (R1), (R2), and (R4) are satisfied, and if B=0 and C,=0, then the
inverse of the transfer matrix (5.11) is of the form (4.1) with H e %",

Proof. The proof is similar to that of Theorem 5.3. O
As a consequence of Theorem 5.6 we have the following.

CoROLLARY 5.7 Suppose that the conditions (R1)-(R3) and (RS5) are satisfied.
For a fixed ceR%, choose a realization (parametrized by k) of K,y that is
stabilizable and detectable in the range k;>0 (j=1,...,n). Under these
conditions, the feedback interconnection of the retarded system (5.10) and the
Pl-controller K ., is exponentially stable (i.e. the strongly continuous solution
semigroup of the closed-loop system is exponentially stable) for all sufficiently large
ki (j=1,...,n).

Proof. Combine Theorems 5.6 (i) and 4.2, using Coroll. 3.4 of Logemann
(1986b). O

Remark 5.8 Using ideas of Hale (1974), the results of Subsection 5.2 can be
extended to certain functional-differential equations with infinite delays.

6. Robustness properties of the Pl-controller K, ., at high gain

6.1 Robustness with respect to perturbations in the parameters of Ao and A,

Consider a transfer matrix G € T"" (resp. B™") with inverse of the form (4.1).
Let Ag and A} be numerical estimates of A, and A, obtained from a complex
model or from open-loop step response data (if available). We assume that
det Ag # 0. This numerical information can be used to construct a PI-controller of
the form

where k:=[ky,..., k7, k;>0, and c:=[cy, ..., c,] € R%. Suppose that we
now apply the controller to the real system given by (4.1); we will use the
notation 0(X) and r(X) respectively for the spectrum and the spectral radius of a
matrix X.

THEOREM 6.1 Let G € T™" (resp. B™") be such that G~ is of the form (4.1).
Suppose that k;=x and ¢;=y (j=1,...,n), and denote Ky ) by K{, ). The
feedback scheme in Fig. 4 is HZ-stable (resp. A_-stable) for all sufficiently large k
if

(i) I1A3~(AS — Ap)ll <1, where ||*|| is any matrix norm on C**",
or (ii) r(43~'(As - Ay)) <1,
or (iii) 0(A5'Ag) = Co.
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w
U1 . YI l‘*
T Kics) 0 G > ¥

FiG. 4.

Proof. Since (i) = (ii) > (iii), it is sufficient to prove the claim in case that (iii) is
satisfied.
Define G} € C(s)"*" by G517 '(s) =sA$ + A}. Further, define

Li = +GAiKl ) 'GiKy),  Liy =+ GK{ ) 'GK ).

Of course, L} (.., is A_-stable for all x >0 and y =0. It is sufficient to show that
L{.,, is H>-stable (resp. A_-stable) for all sufficiently large x (cf. the proof of
Theorem 4.2). An elementary computation shows that

Ly = (Pe + Qee.y) 'L ey (6.2)
where
s
P.(s) 1=1+mA3_1(Ao—A3), (6.3)
R _ _
O p(8):= GIOGTT) {A57[A1 — AT + H(s)] — yAS (Ao — A7)
Note that

1 aiyfa = A k—1y= ,
1Qcenll- < 5(43 7641 = AD) + |HIl.] + L 6(45)3(40 ~ A3).

Let y e R, be fixed. If we show that inf, ¢, |det P.(s)| = € > 0 (independent of k),
then it follows that (P + Q)" is HZ-stable (resp.A_-stable) for all
sufficiently large k, and hence that L{, ,, is HZ-stable (resp. A_-stable) (by (4.2))
for all sufficiently large x. Now choose a fixed x> 0 and realize that

Ko (S .,
P, = (—A’ 1 +I).
o(9) s+ K¢ \Kg o Ao

Then condition (iii) gives inf;c, |[det P (s)| = £ > 0. Finally note that, for x >0
and A >0, we have

{s/(s+Kx):5eCy}={s/(s+1):5€Cy}
and therefore, by (4.3), inf, (¢, |det P.(s)| = €, independent of k.
Remark 6.2 In the general case, i.c. the k; and c; are different, the condition (iii)

is not sufficient for stability at high gain. We present a counterexample: Let

-1 =2
HBO, A]=A1.=0, A0=[ ) 2], A5=Iz.
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Of course 0(A§ ~'Ao) = 0(Ao) < Co. Further, choose the controller to be

K::[kl O]’ k=[k1, kZ]T)

0 k,
i.e. ¢;=c,=0in (6.1). Then an elementary calculation shows
_ 1 25+ k 2s ][k, 0 ]
L] 1 * __ 2
[1+ G)KE G o)Kx 252+ (2ky — ky)s + k1k, [ 2s k;—siL0 kT

So, if we choose k; = x and k, = k?, the closed-loop system will be unstable for
k=2,

In the following,
W(X):={x"Xx:xeC" x"'x =1}
denotes the numerical range of an n X n matrix X; see e.g. Halmos (1982: p. 112).

THEOREM 6.3 Let G € T™*" (resp. B"") and assume that G is of the form (4.1).
Then, for c € R" fixed, the following holds.

(i) The feedback scheme in Fig. S is H=-stable (resp. A_-stable) for all
sufficiently large k; (j=1,...,n) if |AJ"(As — Ag)ll <1, where ||*|| is any
submultiplicative norm on C"™" with the additional property that ||diag, a;|| <
max, la| for arbitrary a,, . .., a,€C.

(ii) Under the additional assumption that k;=vx with v;>0 fixed (j=
1,...,n), the feedback system in Fig. 5 is H”-stable (resp. A_-stable) for all
sufficiently large x if

(@) of (disg v, )43 40) =€ 0r (b) W(As o) < Co

Proof. (i) Define G} € C(s)"™" by G4~ '(s) =sA§ + A}. Further, define
LA ey:= (I + GiKG,) 'GAK (k) Li.o:=( + GK{o) 'GK{ o).

L% (x.¢) is A_-stable for all k; >0and =0 (j=1,...,n). Itissufficient to show
that L ., is HZ-stable (resp. A_-stable) for all sufficiently large k;, (j=1,...,n)
(cf. the proof of Theorem 4.2). An elementary computation shows that

.S - !
Li.o(s) = [1 + (dllag oy k)AS ((Ao— A + Q(,,,,.)(s)] L3 ko), (6.4)
)
w
4 — Koy ] > al G > Y2

FiG. 5.
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where

Qs := diag A37A - AT+ HE))

s
(s +k)(s+ c,))
a4 c;s )A"‘ _a
(d‘,ag G+ +c)/° (4o~ A5).
For fixed ¢ € R%, we have

Jim sup [|Qce.0(s)ll =0 (6.5)

The claim follows from (6.4) and (6.5) if we note that H*"*” equipped with the
norm sup, .c, [|M(s)|l (M € H”"*") is a Banach algebra (cf. the proof of Theorem
4.2).

(ii) The proof of part (a) is similar to that of Theorem 6.1 and is therefore
omitted. We shall prove part (b). Define

§
5+ vk

P(s):=1+ (dilag )AJ“(AO —AD). (6.6)

By (6.4) and (6.5) it is sufficient to show that
inéfo |det P.(s)| = &€>0, 6.7)

independent of x (cf. the proof of Theorem 6.1). It follows from (6.6) that

P.(s)= (diag : +svfx> (diag ZSE + AE_IAO).

Moreover, the following inclusions hold for all s € €C,\{0}:
o(diagl':f + A{;-IAO) c w(diagl’s/f + A5—1A0> c W(diag ZSE) + W(A2 A4 < Co.
i j i

(6.8)

The matrices P,(0) and P,(«) are nonsingular. Therefore it follows from (6.8)
that

inf |det Po(s)| = & >0. (6.9)

Finally note that

s s
di : = {di : .
{ ljags+v,x seCo} [dl/ags+v,/1 seCo} (x>0, A>0)

It follows now from (6.6) that &, in (6.9) is independent of k.

6.2 Robustness with respect to Certain Measurement Nonlinearities

We now study the effect of certain measurement nonlinearities on the feedback
schemes in Figs 1-2. We consider nonlinear functions ¢ : R” — R" satisfying the
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r - Kae) » G — >y
é
FIG. 6.
conditions
(N1) Ja>0VxeR™ xr—-¢Xx)-<aq,
(N2) >0 Vx,yeR™ [¢x)—¢(¥)-<B -yl

(I*| denotes the maximum-norm on R"); we give two examples:
(a) (Dead-zone) Define ¢ : R*"— R" by
xty, (<-v),
¢i(x) = 0 (-vsx=<vy),
xi—vi (>v),
where v,=0 (i=1, ..., n); then ¢ satisfies (N1) and (N2).
(b) Let v :R"—>R" be a bounded differentiable function such that the
differential (Dy)(x) is bounded. Then ¢:=idg~ + y satisfies (N1) and (N2).
Let B, denote the R-algebra of all transfer functions in B with ‘real

coefficients’, i.e. any Laurent expansion about a real point has real coefficients.
Note that

B.={feB:f(5)=f(E)VseCy}.
We shall consider transfer matrices G € B** of the form
G~ (s)=sAq+A,+H, (6.10)

where Ag, A, e R™*", det A,#0, and H e A"*" As usual, we define the rational
matrix function G, by

Gil(s)=sA,+ A, (6.11)

The time-domain equations of the feedback systems in Figs 6-7 are
Ve = L(k.c) *r—Luoy* (®°ye— ), (6.12)
Yax=Lawey*r— LA,(k,c) *(@°Yax—Yax) (6-13)

where L. and L, . are given by (4.8), and ~ denotes the inverse Laplace
transform.

Kaoy > Gy > Yax

FiG. 7.
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The following lemma shows that the feedback systems (6.12) and (6.13) are
well-posed. We denote by LL% the space of all measurable functions f : R, — R
such that f|; € L7(J) for all compact intervals I cR, (1<sq <®).

LemMMA 6.4 Let Ae(LLY)™" and fe(LL3)", and assume that ¢ :R"—>R"
satisfies condition (N2). Then the equation
y=f+Ax(¢°y-y)
has a unique solution in (LL3)".
Proof. Apply Theorem 2 in Desoer & Vidyasagar (1975: p. 48). O

THEOREM 6.5 Let G € B?™" be a transfer matrix of the form (6.10) and let the
transfer matrix G, be given by (6.11). Further, we assume that the function
¢ : R"— R" satisfies the conditions (N1) and (N2). Then

(i) The feedback system

y= GA *e, e= K(k,c) w (r - ¢ °y) (6. 14)
is L=-stable for all k;>0 and ¢;=0 (j=1,...,n).
(ii) The feedback system
y=G*e, e=k(k_c)*(r—¢°y) (6.15)

is L”-stable for all ceR%? and all k=[k,, ..., k,]" satisfying min, k;>
9(Ag™") I|H||-
Proof. (i) We have that L, €L'(R,)"™" for all ;>0 and ¢,=0 (j=

1, ..., n). Therefore it follows from Lemma 6.4 that (6.13) has a unique solution
in (LL3)" for all r € (LLZ)". Realize that

i¢ef —flle<a Vfe(LLI)"

The L™-stability of the feedback system (6.14) is now implied by (6.13).
(it) Define fi(s):=s/(s+k)(s+¢) (j=1,..., n). Itis clear that

1
€ Aan

[1 + (di}ag f,)Ag‘H]

for all k such that min; k;> 8(A;") ||| and for all ¢ € R%. It follows from (4.9)
that l:(,,,) eL'(R,)™" for all k such that min, k;>d(Ag") ||H||~ and for all
c € R%. We now conclude from (6.12) that the feedback system (6.15) is L*-stable
for all k such that min, k; > 6(Ag") [|H|| and for all ¢ € R% (cf. the proof of part

(@)-
Remark 6.6 Under the assumptions of Theorem 6.5, we have, for all k e R"}
satisfying min, k; > 3(A¢ ') ||H |}, and for all c e R and re L*(R,)":
196 = Ligey * Fllo < & (| Lx, lies (6.16)
{lye — LA,(k,c) *r||.< ”(L(k,c) - LA,(k,c)) *r|.+a ||[«(k.c)||i~=- (6.17)
(The inequalities (6.16) and (6.17) are easily derived from (6.12) and (6.13)).
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Moreover, it follows from Theorem 4.7 and Remark 4.6(iii) that

li?;_’sgp ”yk —_ L(k,c) * r||m sa (6.18)

VeceRT VreLl™(R,)" (6.19)

lim sup ||yx — LA,(k,c)* rlesa
k—>oo

The inequality (6.16) provides an upper bound on the peak transient error
induced by the nonlinearity in the infinite-dimensional feedback system in Fig. 6.
The inequality (6.17) gives an upper bound on the peak transient error owing to
the nonlinearity and to the modelling error G — G, if we replace the nonlinear
infinite-dimensional feedback system in Fig. 6 by the linear finite-dimensional
feedback system in Fig. 2. The inequalities (6.18) and (6.19) show that both
L™-errors are asymptotically bounded by a as k— . In particular, we see that
the peak transient effects will not be amplified by system dynamics if the k; are
sufficiently large.

Remark 6.7 It should be mentioned that the results in Subsection 6.2 are of
similar nature to the results for the discrete-time finite-dimensional case in
Boland & Owens (1980).
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7. Appendix

In this appendix we prove Lemma 3.1 and Theorem 3.3. In order to do this, we
recall some facts concerning the algebraic structure of the ring H(£2). The units of
the integral domain H(£2) are exactly those functions in H(£2) which have no zeros
in Q. It is well known that H(82) is a Bezout domain, i.e. every finitely generated
ideal in H($2) is principal (Narasimhan, 1985: p. 136). Thus, any finite set of
functions in H($2) has a greatest common divisor. Moreover it is known that H(£2)
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forms a so-called elementary divisor ring, i.e. every matrix of holomorphic
functions admits a Smith normal form (Narasimhan, 1985: p. 141). Therefore
every meromorphic matrix is unimodular-equivalent to its Smith—McMillan form.
More precisely, if M e M(£2)"*™, then there exist unimodular matrices U e
H(£2)™" and V € H(2)™*™ such that

UMV=[diag(£l/w”""€’/ ¥ Oxmon ]
0("")"’ O(n—r)x(m—r)

where r:=rk M < min {m, n} and

&,y € H(Q) } i=1,...,n), 51|5i+1

ged (g, 9i) =1 Vit | W
The holomorphic functions &; and 1, are unique up to units in H(£2). Therefore, it
makes sense to write g = £,(M) and y, = ¢,(M). We define (up to units in H(£2))
the pole function and the zero function of M to be

} (i=1,...,r=-1)

w(M) :=§ wiM),  e(M):=[] &),

i=1

respectively. In case r <min {m, n} we set &(M):=0 and y,(M):=1 (r+1=
i <min {m, n}).

Remark 7.1 (i) Let G € T™*". Then it is not difficult to show that
ord, p(G) =p.(G) Vsels.
(i) Let G € T™" and let G = ND ™! be a right Bezout factorization. Then
ord, e(G)=ord, detN VseCo.

Proof of Lemma 3.1. There exists o <0 such that ¢(F), ¥ (G), and y¢(FG) all
belong to H(C,). It is sufficient to show that

Y(FG) | v(F)w(G). (7.1)

Coppel (1974) has proved (7.1) for rational matrices. The generalization to
meromorphic matrices is straightforward and it is therefore omitted. O

Proof of Theorem 3.3. First note that the inequalities (3.1) can be written

[e(F)(so)l + [¥(G)(s0)| >0, 1e(G)(s0)l + |¥(F)(s0)| > 0. (7.2)
By Lemma 3.1, it is sufficient to show that
ord,, [y (F)y(G)] = ord,, ¥ (FG). (7.3)

We split the proof into three steps. The idea behind the first step is due to Coppel
(1974).

Step 1. Realize that ¢(G)=y¢(G™") and write F =(FG)G™'. Then it follows
from (7.1) that ¥(F) | ¥(FG)e(G), and hence (by (7.2))

ord,, ¥ (F) < ord,, Y (FG). (7.4)
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In exactly the same way, we can show
ord,, (G) < ord,, $(FG). (7.5)
Step 2. Note that e(F), y(F), &(G), ¢¥(G) e(FG), and y(FG) all belong to
H(C,) for some 0 <0. In Step 2, ‘=" means equality up to units in H(C,). Define
f:=ged[e(F), 9(F)],  g:=ged[e(G), ¥(G)].

The equation £(FG)/y(FG) = e(F)e(G)/y(F)y(G) yields
[e(F)/f]e(G)/g]
v ivGye Y
It follows from (7.2) that d := ged [e(F)e(G)/fg, w(F)y(G)/fg] has no zero in s,
i.e. ord,, d =0. Hence

ord,, [¥(F)y(G)/fg] < ord,, y(FG). (7.6)

Step 3. We show that (7.3) is true. We have to deal with three cases.
(i) ord,, f = ord,, g = 0: then

ord,, [y(F)y¥(G)] = ord,, [y (F)y(G)/fg] < ord,, y(FG), by (7.6).
(ii) ord,, f > 0: then it follows from (7.2) that ord,, ¥(G)=0, and hence, by
(7.4),

e(FG) =

ord,, [y(F)¢(G)] = ord,, y(F) < ord,, ¥(FG).

(iii) ord,, g > 0: using (7.5) we can show in exactly the same way as in (ii) that
(7.3) holds true.
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