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Abstract

We consider continuous-time hysteresis operators, defined to be causal and rate indepen
erators mapping input signalsu :R+ →R to output signalsv :R+ → R. We show how a hysteres
operator defined on the set of continuous piecewise monotone functions can be naturally e
to piecewise continuous piecewise monotone functions. We prove that the extension is also
teresis operator and that a number of important properties of the original operator are inher
the extension. Moreover, we define the concept of a discrete-time hysteresis operator and w
that discretizing continuous-time hysteresis operators using standard sampling and hold op
leads to discrete-time hysteresis operators. We apply the concepts and results described abo
context of sampled-data feedback control of linear systems with input hysteresis.
 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Generally speaking, hysteresis is a special type of memory-based relation betw
scalar input signalu(·) and a scalar output signalv(·) that cannot be expressed in terms
a single-valued function but takes the form of “hysteresis” loops. The memory effec
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hibited by hysteresis phenomena are rate independent in contrast to rate dependent
which is typically fading and hence scale dependent. The concept of a hysteresis o
has been introduced in Brokate [3], Brokate and Sprekels [4], and Visintin [9], to b
operator which is both causal and rate independent. For continuous piecewise mo
input signalsu this means that at timet ∈ R+, the valuev(t) of the output signalv is
dependent only on the local extrema ofu restricted to the time interval[0, t]. Hysteresis
operators encompass nonlinearities important in applications such as relay (or pa
backlash (or play) and elastic-plastic hysteresis. This type of behaviour arises in m
ical plays, thermostats, elastoplasticity, ferromagnetism, and in smart material stru
such as piezoelectric elements and magnetostrictive transducers (see Banks et al
hysteresis phenomena in smart materials). There exists a substantial literature on
ematical modelling and mathematical theory of hysteresis phenomena, see, for ex
Brokate [3], Brokate and Sprekels [4], Krasnosel’skiı̆ and Pokrovskiı̆ [5], Macki et al. [8],
and Visintin [9].

Hysteresis operators are defined on sets of piecewise monotone functions and
these functions are assumed to be continuous. Whilst the domains of some of the hy
operators considered in [4] contain certain discontinuous functions, the framework
excludes many functions which change their monotonicity behaviour at a point of di
tinuity (see Remark 3.5). For certain applications such as sampled-data control for s
with hysteresis effects (see Section 5), it is desirable to extend hysteresis operators
on the set of continuous piecewise monotone functions to the whole set of (norma
piecewise continuous piecewise monotone functions. We show in this paper that th
be done in a natural way in great generality and that the extension is again a hys
operator inheriting a number of important properties of the original operator. Further
we introduce a concept of discrete-time hysteresis and show that discretizing conti
time hysteresis operators using standard sampling and hold operations yields discre
hysteresis operators.

In Section 2 of the paper we first introduce continuous-time hysteresis operators d
on a general domain and then restrict our attention to hysteresis operators on dom
continuous piecewise monotone functions. In contrast to most of the literature (see
where hysteresis operators act on function spaces with a finite time horizon, we co
hysteresis operators acting on functions defined on the infinite time interval[0,∞). This
is motivated by our interest in asymptotic properties of feedback control systems
hysteresis nonlinearities, see [6,7]. We show that for every hysteresis operator th
ists a representing rate independent functional and derive a number of properties e
by hysteresis operators. In Section 3 we consider hysteresis operators defined on
of continuous piecewise monotone functions, extend the representing functional o
a hysteresis operator to a domain of piecewise continuous piecewise monotone fu
and then use the extended functional to define an extension of the hysteresis opera
show that the extension itself is a hysteresis operator and that other important pro
of the original operator are inherited by the extension. In Section 4 we introduce the
cept of a discrete-time hysteresis operator and give a discrete-time analogue of s
the continuous-time hysteresis results of Section 2. We show that the discretizatio
continuous-time hysteresis operator obtained by standard sampling and hold opera
a discrete-time hysteresis operator. In Section 5 we apply some of the concepts and
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developed in Sections 3 and 4 in the context of sampled-data feedback control of
systems with input hysteresis.

Notation and terminology. We define

Z+ := {x ∈ Z | x � 0}, R+ := {x ∈R | x � 0}.
For setsM andN we denote the set of all functionsf :M → N by F(M,N). We say
that a functionf ∈ F(R+,R) is piecewise monotoneif there exists a sequence 0= t0 <

t1 < t2 < · · · such that limi→∞ ti =∞ andf is monotone on each of the open interv
(ti, ti+1). We say that a functionf ∈ F(R+,R) is piecewise continuousif there exists a
sequence 0= t0 < t1 < t2 < · · · such that limi→∞ ti =∞, f is continuous on each of th
intervals(ti, ti+1), and the right and left limits off exist and are finite at eachti . The space
of all piecewise continuous functionsf ∈ F(R+,R) is denoted by PC(R+,R). As usual,
for f ∈ PC(R+,R), we define

f (t+)= lim
τ↓t f (τ ) (for t � 0) and f (t−)= lim

τ↑t f (τ ) (for t > 0).

Let T=R+,Z+; a functionf ∈ F(T,R) is calledultimately constantif there existsT ∈ T

such thatf is constant on[T ,∞)∩T.

Remark 1.1. Note that our concept of piecewise monotonicity is less restrictive than
in [4], where a piecewise monotone function is required to be monotone on the c
intervals[ti , ti+1]. Whilst the two definitions coincide for continuous functions, the de
ition in [4] seems to be somewhat unnatural in the context of discontinuous function
example, the functionsf andg defined onR+ and given by

f (t)=
{
t if t ∈ [0,1),
1− t if t ∈ [1,∞)

and g(t)=
{
t if t ∈ [0,1],
3− t if t ∈ (1,∞),

respectively, are piecewise monotone in our sense, but not in the sense of [4].

2. Continuous-time hysteresis operators

In this section we present basic background material on hysteresis operators w
needed for the subsequent developments in Sections 3 and 4. Our treatment of hy
operators is strongly influenced by Chapter 2 in book [4] by Brokate and Sprekels.
of the results in this section can be found in a somewhat different and less general f
Chapter 2 of [4].

We call a functionf :R+→R+ a time transformationif f is continuous, nondecrea
ing and satisfiesf (0)= 0 and limt→∞ f (t)=∞, in other wordsf :R+ → R+ is a time
transformation if and only iff is continuous, nondecreasing and surjective. We denot
set of all time transformationsf :R+→R+ byT . For eachτ ∈R+, we define a projection
operatorQτ :F(R+,R)→ F(R+,R) by

(Qτ u)(t)=
{
u(t) for 0 � t � τ ,

u(τ) for t > τ .

In the following letF ⊂ F(R+,R), F �= ∅. We introduce the following two assumptio
onF :
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(F1) u ◦ f ∈F for all u ∈F and allf ∈ T ;
(F2) Qt (F)⊂F for all t ∈R+.

We call an operatorΦ :F → F(R+,R) causal if for all u,v ∈ F and all τ ∈ R+ with
u(t) = v(t) for all t ∈ [0, τ ] it follows that (Φ(u))(t) = (Φ(v))(t) for all t ∈ [0, τ ]. An
operatorΦ :F→ F(R+,R) is calledrate independentif F satisfies (F1) and(

Φ(u ◦ f ))(t)= (Φ(u)
)(
f (t)

)
, ∀u ∈F , ∀f ∈ T , ∀t ∈R+.

A functionalϕ :F→R is calledrate independentif F satisfies (F1) and

ϕ(u ◦ f )= ϕ(u), ∀u ∈F , ∀f ∈ T .

Definition 2.1. Let F ⊂ F(R+,R), F �= ∅. An operatorΦ :F → F(R+,R) is called a
hysteresis operatorif F satisfies (F1) andΦ is causal and rate independent.

ForF ⊂ F(R+,R), F �= ∅, letFuc denote the set of all ultimately constantu ∈F , i.e.,

Fuc= {u ∈F | u is ultimately constant}.
Clearly, ifF satisfies (F2), thenFuc �= ∅. Moreover, ifF satisfies (F1), then so doesFuc.

Theorem 2.2. LetF ⊂ F(R+,R), F �= ∅, and assume that(F1)and(F2)hold. IfΦ :F→
F(R+,R) is a hysteresis operator, then the following statements hold:

(1) QτΦ =ΦQτ for all τ ∈R+;
(2) the functional

ϕ :Fuc→R, u �→ lim
t→∞

(
Φ(u)

)
(t), (2.1)

is rate independent and satisfies(
Φ(u)

)
(t)= ϕ(Qtu), ∀u ∈F , ∀t ∈R+. (2.2)

Conversely, ifϕ :Fuc→R is a rate independent functional, thenΦ :F→ F(R+,R) given
by (2.2) is a hysteresis operator and satisfies

lim
t→∞

(
Φ(u)

)
(t)= ϕ(u), ∀u ∈Fuc. (2.3)

For a hysteresis operatorΦ :F → F(R+,R), we call the rate independent function
ϕ :Fuc→R defined by (2.1) therepresenting functionalof Φ.

Remark 2.3. There exist causal operatorsΦ satisfying the commutativity propertyQτΦ =
ΦQτ for all τ ∈ R+, but which are not hysteresis operators. For example, conside
(linear) operatorΦ :C(R+,R)→ C(R+,R) given by

(
Φ(u)

)
(t)= (1+ a(t)

)
u(t)−

t∫
(da/ds)(s)u(s) ds,
0
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wherea :R+→R is continuously differentiable. Clearly,Φ is causal and a routine calc
lation shows thatQτΦ =ΦQτ for all τ ∈R+. However, unlessa is constant,Φ is not, in
general, rate independent, and hence not a hysteresis operator.

Proof of Theorem 2.2. Assume thatΦ :F→ F(R+,R) is a hysteresis operator. To pro
statement (1), letu ∈F andτ ∈R+. Trivially, sinceΦ is causal,(

Φ(Qτu)
)
(t)= (Φ(u)

)
(t), ∀t ∈ [0, τ ]. (2.4)

Let s > τ and define a time transformationf ∈ T by

f (t)=


t for 0 � t � τ ,

τ for τ < t � s,

t + τ − s for t > s.

Then, using the causality and rate independence ofΦ, we have fort ∈ [τ, s],(
Φ(Qτu)

)
(t)= (Φ(u ◦ f ))(t)= (Φ(u)

)(
f (t)

)= (Φ(u)
)
(τ ). (2.5)

Sinces > τ was arbitrary, (2.5) holds for allt � τ . Together with (2.4) this yields state
ment (1). To prove statement (2), we first note that the limit in (2.1) exists sinc
ultimately constantu, Φ(u) is ultimately constant by statement (1). Using the rate
dependence ofΦ, we see that for allu ∈Fuc and allf ∈ T ,

ϕ(u ◦ f )= lim
t→∞

(
Φ(u ◦ f ))(t)= lim

t→∞
(
Φ(u)

)(
f (t)

)= lim
t→∞

(
Φ(u)

)
(t)= ϕ(u),

showing thatϕ is rate independent. Using statement (1), we obtain for allu ∈ F and all
t ∈R+,(

Φ(u)
)
(t)= (Φ(Qtu)

)
(t)= lim

s→∞
(
Φ(Qtu)

)
(s)= ϕ(Qtu),

which is (2.2).
Conversely, assume thatϕ :Fuc→R is rate independent and defineΦ :F→ F(R+,R)

by (2.2), i.e.,(Φ(u))(t) = ϕ(Qtu). Then, trivially,Φ is causal. Moreover, for allu ∈ F ,
f ∈ T , andt ∈R+,(

Φ(u ◦ f ))(t)= ϕ
(
Qt(u ◦ f )

)= ϕ
(
(Qf (t)u) ◦ f

)= ϕ(Qf (t)u)=
(
Φ(u)

)(
f (t)

)
,

thusΦ is rate independent. Finally, letu ∈Fuc; then

lim
t→∞

(
Φ(u)

)
(t)= lim

t→∞ϕ(Qtu)= ϕ(u),

which is (2.3). ✷
Let Sr denote the set of all right-continuous step functionsu :R+ → R, that is there

exists a sequence 0= t0 < t1 < t2 < · · · such that limi→∞ ti =∞ andu is constant on eac
of the intervals[ti , ti+1). Forτ > 0 defineSr

τ ⊂ Sr to be the set of all right-continuous ste
functionsu :R+→R of step lengthτ , i.e.,u is constant on each interval[iτ, (i+1)τ ). We
note that whilstSr satisfies (F1) and (F2),Sr

τ satisfies (F2), but not (F1). The followin
corollary is an immediate consequence of Theorem 2.2(1).
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Corollary 2.4. Let F ⊂ F(R+,R), F �= ∅ and assume that(F1) and (F2) hold. Let
Φ :F→ F(R+,R) be a hysteresis operator. Then

Φ(Fuc)⊂Fuc, Φ(F ∩ Sr )⊂ Sr , Φ
(
F ∩ Sr

τ

)⊂ Sr
τ .

For anyu ∈ F(R+,R) and anyt ∈R+, we define

M(u, t) := {τ ∈ (t,∞) | u is monotone on(t, τ )
}
.

If u is piecewise monotone, thenM(u, t) �= ∅ for all t ∈R+, and thestandard monotonic
ity partition t0 < t1 < t2 < · · · of u is defined recursively by settingt0 = 0 and ti+1 =
supM(u, ti) for all i ∈ Z+ such thatM(u, ti) is bounded. Ifu is piecewise monoton
and ultimately constant, then the standard monotonicity partition ofu is finite. The set
of all piecewise monotoneu ∈ C(R+,R) is denoted byCpm(R+,R). It can be shown
that the sum of two continuous piecewise monotone functions is not necessarily
wise monotone, implying thatCpm(R+,R) is not a linear space. We defineCuc

pm(R+,R)
to be the set of all ultimately constantu ∈ Cpm(R+,R). We note thatCpm(R+,R) and
Cuc

pm(R+,R) both satisfy (F1) and (F2). LetF uc(Z+,R) denote the space of ultimate
constantu :Z+ → R. We define therestriction operatorR :Cuc

pm(R+,R)→ F uc(Z+,R)
by

(
R(u)

)
(k)=

{
u(tk) for k ∈ [0,m] ∩Z+,

limt→∞ u(t) for k ∈ Z+ \ [0,m],
where 0= t0 < t1 < · · ·< tm is the standard monotonicity partition ofu.

The following lemma will be an important tool in the next section.

Lemma 2.5. Letu,v ∈ Cuc
pm(R+,R). ThenR(u)= R(v) if and only if there existf,g ∈ T

such thatu ◦ f = v ◦ g.

The above lemma can be found in Brokate and Sprekels [4] (see [4, Lemma 2.2

As an immediate consequence of Lemma 2.5 and Theorem 2.2(2), we obtain the fol
corollary.

Corollary 2.6. Let Φ :Cpm(R+,R)→ F(R+,R) be a hysteresis operator and letu,v ∈
Cpm(R+,R) andt ∈R+. Then

R(Qtu)=R(Qtv) ⇒ (
Φ(u)

)
(t)= (Φ(v)

)
(t).

The above corollary says that the output(Φ(u))(t) at timet ∈R+ of a hysteresis opera
torΦ corresponding to a continuous piecewise monotone inputu is determined completel
by the local extrema ofu restricted to the time interval[0, t].

2 Only a sketch of the proof is given in [4]. A complete proof can be found in the appendix of an extende
sion of the present paper contained in Mathematics Preprint 00/14 (University of Bath, 2000), which is av
at http://www.maths.bath.ac.uk/mathematics/preprints.html.
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3. Extending hysteresis operators defined on Cpm(R+,R) to piecewise
continuous functions

Let NPC(R+,R) ⊂ PC(R+,R) denote the space of allnormalized piecewise contin
uousfunctionsu :R+ → R, that isu is piecewise continuous and is right-continuous
left-continuous at each pointt ∈ R+. In particular, ifu ∈ NPC(R+,R), thenu is right-
continuous att = 0. The set of all piecewise monotone functionsu ∈ NPC(R+,R) is de-
noted by NPCpm(R+,R), whilst NPCuc

pm(R+,R) denotes the set of all ultimately consta
u ∈ NPCpm(R+,R). We note that NPCpm(R+,R) and NPCuc

pm(R+,R) both satisfy (F1)
and (F2). Foru ∈NPCuc

pm(R+,R), we defineu(∞) := limτ→∞ u(τ).

Lemma 3.1. Letu ∈NPC(R+,R), f ∈ T , andt > 0. Define

τ =
{

maxf−1({t}) if u(t−)= u(t),

minf−1({t}) if u(t−) �= u(t).

Then(u ◦ f )(τ+)= u(t+) and(u ◦ f )(τ−)= u(t−).

Proof. Sincef is continuous, nondecreasing and surjective, for allt ∈ R+, f−1({t}) is a
compact interval and thereforeτ is well defined. We consider two cases.

Case1. Suppose thatu(t−) = u(t). Then,f (τ + h) > t for all h > 0 and so(u ◦
f )(τ+)= u(f (τ)+)= u(t+). Moreover, iff−1({t}) is a singleton, we havef (τ −h) < t

for all h ∈ (0, τ ] and so(u ◦ f )(τ−)= u(f (τ)−)= u(t−). If f−1({t}) is not a singleton
we havef (τ − h)= t for all sufficiently smallh > 0 and so(u ◦ f )(τ−)= u(t)= u(t−).

Case2. Suppose thatu(t−) �= u(t). Then, sinceu ∈ NPC(R+,R), it follows that
u(t+)= u(t). Adopting an argument similar to that in Case 1 yields the claim.✷

Let u ∈ NPCuc
pm(R+,R) and let 0= t0 < t1 < · · · < tm be the standard monotonici

partition ofu. We define the mapρ : NPCuc
pm(R+,R)→ F uc(Z+,R) by

ρ(u)= (u(t0), u(t1−), u(t1+), u(t2−), u(t2+), . . . ,
u(tm−), u(tm+), u(∞), u(∞), . . .

)
.

Let τ > 0. We define theprolongation operatorPτ :F(Z+,R)→ Cpm(R+,R) by letting
Pτu be the piecewise affine-linear function satisfying(Pτu)(iτ ) = u(i) and having con-
stant slope on(iτ, (i + 1)τ ) for all i ∈ Z+. Moreover, we introduce the operator

R̃ : NPCuc
pm(R+,R)→ F uc(Z+,R), u �→R

(
(Pτ ◦ ρ)(u)

)
.

Clearly, for anyτ > 0,

R ◦Pτ ◦R =R, (3.1)

and using (3.1) it is easy to show thatR ◦ Pτ ◦ R̃ = R̃.
For illustration, consider the functionu shown in Fig. 1. Clearly,u ∈ NPCuc

pm(R+,R)
with standard monotonicity partition 0= t0 < t1 < t2 < t3 < t4. The sequencesρ(u) and
R̃(u) are given by

ρ(u)= (u0, u7, u6, u4, u4, u5, u3, u7, u2, u1, u1, u1, . . .)
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Fig. 1. Example of a function in NPCuc
pm(R+,R).

and

R̃(u)= (u0, u7, u4, u5, u3, u7, u1, u1, u1, . . .).

Lemma 3.2. R̃ is an extension ofR, the definition ofR̃ does not depend upon the choi
of τ > 0 and

R̃(u ◦ f )= R̃(u), ∀u ∈NPCuc
pm(R+,R), ∀f ∈ T . (3.2)

Proof. Let u ∈ Cuc
pm(R+,R), then, sinceu(t+)= u(t−) for all t > 0,

R̃(u)=R
(
(Pτ ◦ ρ)(u)

)=R(u),

showing thatR̃ is an extension ofR. Let τ1, τ2 > 0 andu ∈ NPCuc
pm(R+,R). Clearly,

R((Pτ1 ◦ ρ)(u)) = R((Pτ2 ◦ ρ)(u)), from which it follows that the definition ofR̃ does
not depend upon the choice ofτ > 0.

Finally, let u ∈ NPCuc
pm(R+,R), f ∈ T , and let 0= t0 < t1 < · · ·< tm be the standard

monotonicity partition ofu. Defineτ0 := 0 and fori = 1, . . . ,m,

τi :=
{

maxf−1({ti}) if u(ti−)= u(ti ),

minf−1({ti}) if u(ti−) �= u(ti ).

Then 0= τ0 < τ1 < · · · < τm is the standard monotonicity partition ofu ◦ f and by
Lemma 3.1,(u◦f )(τi±)= u(ti±) for i = 0,1, . . . ,m. Hence,ρ(u)= ρ(u◦f ), and there-
fore,R̃(u)= R̃(u ◦ f ), showing that (3.2) holds.✷

For any rate independentϕ : Cuc
pm(R+,R)→R we define

ϕ̃ : NPCuc
pm(R+,R)→R, u �→ ϕ

(
(Pτ ◦ R̃)(u)

)
, (3.3)

whereτ > 0. We show that the definition of̃ϕ does not depend onτ . To this end, letτ1, τ2
> 0 andu ∈ NPCuc

pm(R+,R). Then, clearly there existsf ∈ T such that(Pτ1 ◦ R̃)(u) =
(Pτ2 ◦ R̃)(u) ◦ f and therefore, by the rate independence ofϕ,

ϕ
(
(Pτ1 ◦ R̃)(u)

)= ϕ
(
(Pτ2 ◦ R̃)(u)

)
.
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Lemma 3.3. Letϕ :Cuc
pm(R+,R)→R be rate independent and defineϕ̃ by (3.3). Then

(1) ϕ̃ is an extension ofϕ, i.e.,

ϕ̃(u)= ϕ(u), ∀u ∈ Cuc
pm(R+,R);

(2) for anyτ > 0,

ϕ̃(u)= ϕ
(
(Pτ ◦ ρ)(u)

)
, ∀u ∈NPCuc

pm(R+,R);
(3) for u,v ∈NPCuc

pm(R+,R),

R̃(u)= R̃(v) ⇒ ϕ̃(u)= ϕ̃(v);
(4) ϕ̃ is rate independent, i.e.,

ϕ̃(u ◦ f )= ϕ̃(u), ∀u ∈NPCuc
pm(R+,R), ∀f ∈ T .

Proof. Let τ > 0 andu ∈ Cuc
pm(R+,R). Clearly,R(u) = R((Pτ ◦ R)(u)), and so using

Lemma 2.5, there existf,g ∈ T such thatu ◦ f = (Pτ ◦R)(u) ◦ g. Thus the rate indepen
dence ofϕ in combination with Lemma 3.2 gives

ϕ̃(u)= ϕ
(
(Pτ ◦ R̃)(u)

)= ϕ
(
(Pτ ◦R)(u) ◦ g

)= ϕ(u ◦ f )= ϕ(u),

which is statement (1). To prove statement (2), letu ∈ NPCuc
pm(R+,R). By definition

R̃(u)=R((Pτ ◦ ρ)(u)) and therefore,

(Pτ ◦ R̃)(u)= Pτ
(
R
(
(Pτ ◦ ρ)(u)

))
.

Thus, invoking (3.1),

R
(
(Pτ ◦ R̃)(u)

)=R
(
Pτ
(
R
(
(Pτ ◦ ρ)(u)

)))=R
(
(Pτ ◦ ρ)(u)

)
,

and so using the rate independence ofϕ and Lemma 2.5,

ϕ̃(u)= ϕ
(
(Pτ ◦ R̃)(u)

)= ϕ
(
(Pτ ◦ ρ)(u)

)
.

For statement (3), letu,v ∈NPCuc
pm(R+,R). Suppose that̃R(u)= R̃(v); then by the defin-

ition of R̃,R((Pτ ◦ρ)(u))=R((Pτ ◦ρ)(v)). Since(Pτ ◦ρ)(u), (Pτ ◦ρ)(v) ∈ Cuc
pm(R+,R),

it follows from an application of Lemma 2.5, the rate independence ofϕ, and statement (2
that

ϕ̃(u)= ϕ
(
(Pτ ◦ ρ)(u)

)= ϕ
(
(Pτ ◦ ρ)(v)

)= ϕ̃(v).

Statement (4) follows immediately from (3.2) and statement (3).✷
LetΦ :Cpm(R+,R)→ F(R+,R) be a hysteresis operator and define

Φ̃ : NPCpm(R+,R)→ F(R+,R)
by setting(

Φ̃(u)
)
(t)= ϕ̃(Qtu), ∀t ∈R+, (3.4)

whereϕ is the representing functional ofΦ andϕ̃ is the extension ofϕ to NPCuc
pm(R+,R)

given by (3.3).



116 H. Logemann, A.D. Mawby / J. Math. Anal. Appl. 282 (2003) 107–127

he

(3)

in [4]

e Re-
point
Theorem 3.4. Let Φ :Cpm(R+,R)→ F(R+,R) be a hysteresis operator and define t
operatorΦ̃ : NPCpm(R+,R)→ F(R+,R) by (3.4). Then

(1) Φ̃ is an extension ofΦ;
(2) Φ̃ is a hysteresis operator with representing functionalϕ̃;
(3) for u,v ∈NPCpm(R+,R) andt ∈R+,

R̃(Qtu)= R̃(Qtv) ⇒ (
Φ̃(u)

)
(t)= (Φ̃(v)

)
(t);

(4) Φ̃(Sr )⊂ Sr andΦ̃(Sr
τ )⊂ Sr

τ .

Proof. Statement (1) is clear sincẽϕ is an extension ofϕ and thusΦ̃ is an extension ofΦ.
By Lemma 3.3(4),ϕ̃ is rate independent. Therefore, by Theorem 2.2,Φ̃ is a hysteresis
operator with representing functionalϕ̃, showing that statement (2) holds. Statement
follows from the definition ofΦ̃ and Lemma 3.3(3). SinceSr

τ ⊂ Sr ⊂ NPCpm(R+,R),
statement (4) follows from statement (2) combined with Corollary 2.4.✷
Remark 3.5. We mention that whilst the domains of the hysteresis operators defined
include certain discontinuous functions, they do not contain the set NPCpm(R+,R). This
is due to the more restrictive concept of piecewise monotonicity adopted in [4] (se
mark 1.1), excluding many functions which change their monotonicity behaviour at a
of discontinuity (two examples of such functions are given in Remark 1.1).

In the following we define continuous, piecewise monotone “approximations”u1, u2,

u3, . . . of a given functionu ∈ NPCuc
pm(R+,R) such thatΦ(uk) “approximates”Φ̃(u) as

k→∞. Let 0< τ1 < τ2 < · · ·< τn denote the points of discontinuity ofu and setτ0 := 0.
For eachk ∈ Z+, define

εk := 1

k + 2
min

1�i�n
(τi − τi−1). (3.5)

For eachk ∈ Z+, define an operatorCk : NPCuc
pm(R+,R)→ Cuc

pm(R+,R) by setting

(1) if t ∈ [τj − εk, τj ) andu is right-continuous atτj , then

(
Ck(u)

)
(t)=




λ[τj − εk, τj − εk/2;u(τj − εk), u(τj−)](t),
t ∈ [τj − εk, τj − εk/2],

λ[τj − εk/2, τj ;u(τj−), u(τj )](t),
t ∈ [τj − εk/2, τj ),

(2) if t ∈ (τj , τj + εk] andu is left-continuous atτj , then

(
Ck(u)

)
(t)=




λ[τj , τj + εk/2;u(τj ), u(τj+)](t),
t ∈ (τj , τj + εk/2],

λ[τj + εk/2, τj + εk;u(τj+), u(τj + εk)](t),
t ∈ [τj + εk/2, τj + εk],

(3) (Ck(u))(t)= u(t) otherwise,
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Fig. 2. Example of a functionu ∈NPCuc
pm(R+,R) and its approximationCk(u).

where, in (1) and (2),λ[t1, t2;a1, a2] (with t1, t2, a1, a2 ∈ R, t1 �= t2) denotes the affine
linear function defined onR and satisfyingλ[t1, t2;a1, a2](ti)= ai , i = 1,2. See Fig. 2 for
an illustration of the operatorCk .

Lemma 3.6. Letu ∈NPCuc
pm(R+,R). Then

(1) for anyt ∈R+, there existsl > 0 such that

R̃(Qtu)=R
(
QtCk(u)

)
, ∀k � l;

(2) for anyt2 > t1 � 0, if u is continuous on[t1, t2], there existsl > 0 such that

R̃(Qtu)=R
(
QtCk(u)

)
, ∀t ∈ [t1, t2], ∀k � l.

Proof. Letu ∈NPCuc
pm(R+,R), let 0< τ1 < τ2 < · · ·< τn denote the points of discontinu

ity of u and let 0= t0 < t1 < · · ·< tm be the standard monotonicity partition ofu. Define
εk by (3.5).

To prove statement (1), lett ∈R+ and choosel > 0 such that

εl < min
{|ti − τj | | 1 � i �m, 1 � j � n, ti �= τj

}
and

εl < min
{|t − τj | | 1 � j � n, t �= τj

}
.

ThenR̃(Qtu)=R(QtCk(u)) for all k � l.
To prove statement (2), lett2 > t1 � 0 be such thatu is continuous on[t1, t2]. Hence,

there existsl1 > 0 such that

Ck(u)|[t1,t2] = u|[t1,t2], ∀k � l1. (3.6)

Moreover, by statement (1), there existsl2 > 0 such that

R̃(Qt1u)=R
(
Qt1Ck(u)

)
, ∀k � l2. (3.7)

Hence, by (3.6) and (3.7), statement (2) holds forl :=max(l1, l2). ✷
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Foru ∈NPCpm(R+,R), t > 0, andε > 0, we define

Jε(u, t) :=
n⋃

i=1

(τi − ε, τi + ε) and d(u, t) := min
1�i�n−1

(τi+1− τi)/2,

where 0< τ1 < τ2 < · · ·< τn denote the points of discontinuity ofQtu.

Proposition 3.7. LetΦ :Cpm(R+,R)→ F(R+,R) be a hysteresis operator. Then, for
arbitrary u ∈NPCpm(R+,R), the following statements hold:

(1) for all t ∈R+, there existsl > 0 such that(
Φ̃(u)

)
(t)= (Φ(Ck(Qtu)

))
(t), ∀k � l;

(2) if for t3 � t2 > t1 � 0, u is continuous on[t1, t2], then there existsl > 0 such that(
Φ̃(u)

)
(s)= (Φ(Ck(Qt3u)

))
(s), ∀s ∈ [t1, t2], ∀k � l;

(3) for all t ∈R+ and all ε ∈ (0, d(u, t)), there existsl > 0 such that(
Φ̃(u)

)
(s)= (Φ(Ck(Qtu)

))
(s), ∀s ∈ [0, t) \ Jε(u, t), ∀k � l.

Proof. LetΦ :Cpm(R+,R)→ F(R+,R) be a hysteresis operator andu ∈NPCpm(R+,R).
Statement (1) follows from Theorem 3.4 and Lemma 3.6(1), and statement (2) fo
from Theorem 3.4 and Lemma 3.6(2). For statement (3), lett ∈ R+, ε ∈ (0, d(u, t)), and
let 0< τ1 < τ2 < · · ·< τn denote the points of discontinuity ofQtu. Clearlyu is contin-
uous on[τi + ε, τi+1− ε] for 1 � i � n− 1. Therefore by statement (2) and the causa
of Φ, there existsli > 0 such that for 1� i � n− 1,(

Φ̃(u)
)
(s)= (Φ(Ck(Qtu)

))
(s), ∀s ∈ [τi + ε, τi+1− ε], ∀k � li .

To conclude the proof, we distinguish between two cases:τn + ε < t andτn + ε � t .
If τn + ε < t , thenu is continuous on[τn + ε, t] and therefore again by statement (

there existsln > 0 such that(
Φ̃(u)

)
(s)= (Φ(Ck(Qtu)

))
(s), ∀s ∈ [τn + ε, t], ∀k � ln.

If τn + ε � t , then setln := 0.
In both cases definel :=max1�i�n li and statement (3) then follows.✷
The operatorΦ̃ defined by (3.4), extending a given hysteresis operatorΦ :Cpm(R+,R)

→ F(R+,R) to NPCpm(R+,R), is not unique. There are other hysteretic extensions oΦ

to NPCpm(R+,R) as the following example shows.

Example 3.8. DefineZe: NPCpm(R+,R)→ F(R+,R) by

(
Ze(u)

)
(t)=

{0 if t = 0,∑
0<τ�t (u(τ )− u(τ−)) if t > 0.

Clearly,Ze is a causal extension of the trivial operator

Z :Cpm(R+,R)→ F(R+,R), u �→ 0.
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We show thatZe is rate independent. Letu ∈ NPCpm(R+,R), f ∈ T , t > 0, and let 0<
t1 < · · · < tm � f (t) be the points at whichQf(t)u is not left-continuous. Define, fo
i = 1, . . . ,m, τi := minf−1({ti}). Then 0< τ1 < · · · < τm � t are the points at which
Qt(u ◦ f ) is not left-continuous. By Lemma 3.1,(u ◦ f )(τi−)= u(ti−) for i = 1, . . . ,m,
and thus

(
Ze(u)

)(
f (t)

)= ∑
0<τ�f (t)

(
u(τ)− u(τ−))= m∑

i=1

(
u(ti)− u(ti−)

)

=
m∑
i=1

(
(u ◦ f )(τi)− (u ◦ f )(τi−)

)
=

∑
0<τ�t

(
(u ◦ f )(τ )− (u ◦ f )(τ−))= (Ze(u ◦ f )

)
(t),

showing thatZe is rate independent. ThereforeZe is a hysteresis operator, butZe �= Z̃ = 0.
It follows that if Φ :Cpm(R+,R)→ F(R+,R) is a hysteresis operator, theñΦ + Ze, as
well asΦ̃, are hysteresis operators which extendΦ to NPCpm(R+,R).

The following corollary says that, given a hysteresis operatorΦ onCpm(R+,R), Φ̃ is
the unique operator extendingΦ to NPCpm(R+,R) and satisfying statement (3) of The
rem 3.4.

Corollary 3.9. Let Φ :Cpm(R+,R)→ F(R+,R) be a hysteresis operator. Suppose t
Φe is an extension ofΦ to NPCpm(R+,R). If for all u,v ∈NPCpm(R+,R) and all t ∈R+,

R̃(Qtu)= R̃(Qtv) ⇒ (
Φe(u)

)
(t)= (Φe(v)

)
(t), (3.8)

thenΦe= Φ̃.

Proof. Let Φ :Cpm(R+,R)→ F(R+,R) be a hysteresis operator, letΦe be an exten-
sion of Φ to NPCpm(R+,R) satisfying (3.8), letu ∈ NPCpm(R+,R) and t ∈ R+. By
Lemma 3.6(1), for all sufficiently largek, we have

R̃(Qtu)= R̃
(
QtCk(Qtu)

)
.

Hence, by (3.8), for all sufficiently largek,(
Φe(u)

)
(t)= (Φe

(
Ck(Qtu)

))
(t)= (Φ(Ck(Qtu)

))
(t).

It follows from Proposition 3.7(1), that(Φe(u))(t)= (Φ̃(u))(t). ✷
Corollary 3.10. Let Φ :Cpm(R+,R)→ F(R+,R) be a hysteresis operator. Assume t
Φ(Cpm(R+,R))⊂ C(R+,R). Then

Φ̃
(
NPCpm(R+,R)

)⊂NPC(R+,R),

and foru ∈NPCpm(R+,R), right-continuity ofu at t ∈R+ (respectively, left-continuity a
t > 0) implies right-continuity ofΦ̃(u) at t ∈R+ (respectively, left-continuity att > 0).
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Proof. Let Φ :Cpm(R+,R)→ F(R+,R) be a hysteresis operator and assume that th
clusionΦ(Cpm(R+,R))⊂ C(R+,R) holds. Letu ∈ NPCpm(R+,R). We proceed in fou
steps.

Step1. Let us suppose thatu is right-continuous att ∈R+; then there existsτ > t such
thatu is continuous on[t, τ ]. So by Proposition 3.7(2), there existl > 0 such that

(
Φ̃(u)

)
(s)= (Φ(Ck(Qτu)

))
(s), ∀s ∈ [t, τ ], ∀k � l.

Since by assumptionΦ(Cpm(R+,R))⊂ C(R+,R), Φ(Ck(Qτu)) is a continuous function
and soΦ̃(u) is right-continuous att .

Step2. Similarly, if u is left-continuous att > 0, then it is easy to show that̃Φ(u) is
left-continuous att .

Step 3. Assume thatu is left-continuous att > 0. We show that the right limi
lims↓t (Φ̃(u))(s) exists and is finite. To this end, definew = u on R+ \ {t} andw(t) =
lims↓t u(s). Thusw is right-continuous att . Now R̃(Qτu)= R̃(Qτw) for all τ ∈R+ \ {t}
and therefore by Theorem 3.4(3),Φ̃(u)= Φ̃(w) onR+ \ {t}. Thus

lim
s↓t
(
Φ̃(u)

)
(s)= lim

s↓t
(
Φ̃(w)

)
(s)= (Φ̃(w)

)
(t),

sinceΦ̃(w) is right-continuous att by Step 1.
Step4. Similarly, if u is right-continuous att > 0, then it is easy to show that the le

limit lim s↑t (Φ̃(u))(s) exists and is finite. ✷

We end this section by considering the extension of the backlash (or play) operat

Example 3.11. Let h ∈R+ andξ ∈R. Defining the functionbh :R2→R by

bh(v,w)=max
{
v − h,min{v + h,w}}, (3.9)

we introduce the backlash (or play) operatorBh,ξ :Cpm(R+,R)→C(R+,R) by setting

(
Bh,ξ (u)

)
(t)=

{
bh(u(0), ξ) for t = 0,

bh(u(t), (Bh,ξ (u))(ti)) for ti < t � ti+1, i ∈ Z+,

where 0= t0 < t1 < t2 < · · · is such that limn→∞ tn = ∞ and u is monotone on eac
interval(ti , ti+1). We remark thatξ plays the role of an “initial state.” It is not difficult t
show that the definition is independent of the choice of the partition(ti); see [6]. It is well
known thatBh,ξ is a hysteresis operator; see, for example, [4]. The backlash operatoBh,ξ

is illustrated in Fig. 3.
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Fig. 3. Backlash hysteresis.

By Theorem 3.4, the extensioñBh,ξ of Bh,ξ to NPCpm(R+,R) given by (3.4) is a hys
teresis operator. By Corollary 3.10,B̃h,ξ (NPCpm(R+,R))⊂ NPC(R+,R). A lengthy, but
straightforward argument3 shows thatB̃h,ξ can be written recursively as

(
B̃h,ξ (u)

)
(t)=




bh(u(0), ξ) for t = 0,

bh(u(t), (B̃h,ξ (u))(0)) for 0< t < t1,

bh(u(ti ), (B̃h,ξ (u))(ti−)) for t = ti , i ∈ Z+ \ {0},
bh(u(t), bh(u(ti+), (B̃h,ξ (u))(ti−)))

for ti < t < ti+1, i ∈ Z+ \ {0},

(3.10)

where 0= t0 < t1 < t2 < · · · is such that limn→∞ tn = ∞ and u is monotone on eac
interval(ti, ti+1).

4. Discrete-time hysteresis operators

We call a functionf :Z+ → Z+ a (discrete-time) time transformationif f is surjective
and nondecreasing. We denote the set of all discrete-time transformationsf :Z+ → Z+
by T d . For eachk ∈ Z+, we define a (discrete-time) projection operatorQd

k :F(Z+,R)→
F(Z+,R) by

(
Qd

ku
)
(n)=

{
u(n) for n ∈ [0, k] ∩Z+,

u(k) for m ∈ Z+ \ [0, k].

3 This argument is spelt out in detail in the appendix of an extended version of the present paper co
in Mathematics Preprint 00/14 (University of Bath, 2000), which is available at http://www.maths.bath.
mathematics/preprints.html.
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We call an operatorΦ :F(Z+,R)→ F(Z+,R) causalif for all u,v ∈ F(Z+,R) and all
k ∈ Z+ with u(n)= v(n) for all n ∈ [0, k] ∩Z+ it follows that(Φ(u))(n)= (Φ(v))(n) for
all n ∈ [0, k] ∩Z+. An operatorΦ :F(Z+,R)→ F(Z+,R) is calledrate independentif(

Φ(u ◦ f ))(n)= (Φ(u)
)(
f (n)

)
, ∀u ∈ F(Z+,R), ∀f ∈ T d , ∀n ∈ Z+.

Definition 4.1. An operatorΦ :F(Z+,R)→ F(Z+,R) is called a (discrete-time) hystere-
sis operatorif Φ is causal and rate independent.

Recall thatF uc(Z+,R) denotes the set of all ultimately constantu ∈ F(Z+,R). A func-
tionalϕ :F uc(Z+,R)→R is calledrate independentif

ϕ(u ◦ f )= ϕ(u), ∀u ∈ F uc(Z+,R), ∀f ∈ T d .

The proof of the following theorem is analogous to the proof of Theorem 2.2 and is t
fore omitted.

Theorem 4.2. If Φ :F(Z+,R)→ F(Z+,R) is a hysteresis operator, then

(1) Qd
kΦ =ΦQd

k for all k ∈ Z+;
(2) The functional

ϕ :F uc(Z+,R)→R, u �→ lim
n→∞

(
Φ(u)

)
(n), (4.1)

is rate independent and satisfies(
Φ(u)

)
(n)= ϕ

(
Qd

nu
)
, ∀u ∈ F(Z+,R), ∀n ∈ Z+. (4.2)

Conversely, ifϕ :F uc(Z+,R)→R is a rate independent functional, thenΦ :F(Z+,R)→
F(Z+,R) given by(4.2) is a hysteresis operator and satisfies

lim
n→∞

(
Φ(u)

)
(n)= ϕ(u), ∀u ∈ F uc(Z+,R).

For a hysteresis operatorΦ :F(Z+,R)→ F(Z+,R), we call the rate independent fun
tionalϕ :F uc(Z+,R)→R defined by (4.1) therepresenting functionalof Φ.

Let τ > 0. Theτ -hold operatorHτ :F(Z+,R)→ Sr
τ is defined by

(Hτu)(nτ + t)= u(n), ∀n ∈ Z+, ∀t ∈ [0, τ ), (4.3)

and theτ -samplingoperatorSτ :F(R+,R)→ F(Z+,R) by

(Sτ u)(n)= u(nτ), ∀n ∈ Z+. (4.4)

The above hold and sampling operations are standard in the context of sampled-data
where continuous-time systems are controlled by discrete-time controllers via ho
sampling mechanisms.

Let Φ :Cpm(R+,R)→ F(R+,R) be a continuous-time hysteresis operator and de
Φd :F(Z+,R)→ F(Z+,R) by

Φd := Sτ Φ̃Hτ , (4.5)

whereΦ̃ is the extension ofΦ to NPCpm(R+,R) defined by (3.4). The definition ofΦd is
independent of the choice ofτ due to the rate independence ofΦ̃.
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Proposition 4.3. Let Φ :Cpm(R+,R)→ F(R+,R) be a continuous-time hysteresis o
erator. ThenΦd :F(Z+,R)→ F(Z+,R) defined by(4.5) is a discrete-time hysteres
operator.

Proof. It is clear thatΦd is causal. It remains to show thatΦd is rate independent. Le
u ∈ F(Z+,R) andf ∈ T d ; thenf c := τPτ (f ) ∈ T and(Hτu) ◦ f c =Hτ(u ◦ f ). Hence,
using the rate independence ofΦ̃,(

Φd(u ◦ f ))(n)= (Φ̃(Hτ (u ◦ f )
))
(nτ)= (Φ̃((Hτu) ◦ f c

))
(nτ)

= (Φ̃(Hτu)
)(
f c(nτ)

)= (Φ̃(Hτu)
)(
f (n)τ

)= (Φd(u)
)(
f (n)

)
,

showing thatΦd is rate independent.✷
Let T= Z+,R+ andF ⊂ F(T,R), F �= ∅; then thenumerical value setNVSΨ of an

operatorΨ :F→ F(T,R) is defined by

NVSΨ := {(Ψ (u)
)
(t) | u ∈F , t ∈ T

}
.

The following proposition shows that for a continuous-time hysteresis operatorΦ defined
on Cpm(R+,R), the numerical value sets ofΦ andΦd coincide. This result is impor
tant in the context of sampled-data low-gain control of systems subject to input hys
(see [7]), but is also of some interest in its own right.

Proposition 4.4. LetΦ :Cpm(R+,R)→ F(R+,R) be a continuous-time hysteresis op
ator and define the operatorΦd :F(Z+,R)→ F(Z+,R) by (4.5). Then(

Φd(u)
)
(n)= (Φ(Pτu)

)
(nτ), ∀u ∈ F(Z+,R), ∀n ∈ Z+, (4.6)

andNVSΦd =NVSΦ.

Proof. Let u ∈ F(Z+,R) andn ∈ Z+. We note thatR̃(QnτHτu)=R(Qnτ Pτu) and so by
Theorem 3.4(1) and Theorem 3.4(3),(

Φd(u)
)
(n)= (Φ̃(Hτu)

)
(nτ)= (Φ(Pτu)

)
(nτ).

To prove that NVSΦd =NVSΦ, note first, that by (4.6), NVSΦd ⊂NVSΦ. To show the
reverse inclusion, leta ∈ NVSΦ. Then there existv ∈ Cpm(R+,R) andt ∈ R+ such that
a = (Φ(v))(t). Setw :=Qtv ∈ Cuc

pm(R+,R). Clearly

Qkτw =w, ∀k � t/τ.

Moreover,(Pτ ◦R)(w) ∈ Cuc
pm(R+,R) and so there existsk0 > 0 such that

Qkτ

(
(Pτ ◦R)(w)

)= (Pτ ◦R)(w), ∀k � k0.

For k � max(k0, t/τ )=: k1 we then have

(Pτ ◦R)(Qkτw)= (Pτ ◦R)(w)=Qkτ

(
(Pτ ◦R)(w)

)
. (4.7)

Let ϕ be the representing functional ofΦ, then fork � k1,
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a = (Φ(w)
)
(t)= (Φ(w)

)
(kτ )= ϕ(Qkτw)= ϕ̃(Qkτw)

= ϕ
(
(Pτ ◦R)(Qkτw)

)
, (4.8)

where we have used Theorem 2.2(1) and Theorem 2.2(2) and the fact thatϕ̃ is an extension
of ϕ. Combining Theorem 2.2(2) and (4.6)–(4.8), we obtain for anyk � k1,

a = ϕ
(
Qkτ (Pτ ◦R)(w)

)= (Φ((Pτ ◦R)(w)))(kτ )
= (Φd(Rw)

)
(k) ∈NVSΦd. ✷

We finally look at the discretization of the backlash operator.

Example 4.5. Let h ∈ R+ andξ ∈R. We define the discrete-time backlash operatorBd
h,ξ :

F(Z+,R)→ F(Z+,R) by setting

Bd
h,ξ := Sτ B̃h,ξHτ .

Using (4.6), we see that for allu ∈ F(Z+,R), Bd
h,ξ (u) can be expressed recursively as

(
Bd
h,ξ (u)

)
(n)=

{
bh(u(0), ξ) for n= 0,

bh(u(n), (Bd
h,ξ (u))(n− 1)) for n ∈ Z+ \ {0},

wherebh :R2→R is given by (3.9).

5. Applications to sampled-data control of linear systems with input hysteresis

Let τ > 0. A generalizedτ -hold operatorĤτ :F(Z+,R)→NPCpm(R+,R) is an oper-
ator of the form

(Ĥτ u)(nτ + t)= h(t)u(n), ∀n ∈ Z+, ∀t ∈ [0, τ ),
where the so-called hold functionh : [0, τ ] → R is normalized piecewise continuous a
piecewise monotone. Trivially, ifh(t) ≡ 1, thenĤτ = Hτ , whereHτ is theτ -hold oper-
ator given by (4.3). Ageneralizedτ -samplingoperatorŜτ :C(R+,R)→ F(Z+,R) is an
operator of the form

(Ŝτ u)(n)=
{
u(0)

∫ 0
−τ dw(t), n= 0,∫ 0

−τ u(nτ + t) dw(t), n ∈ Z+ \ {0},
where the weighting functionw : [−τ,0]→ R is of bounded variation. Ifw(t) = 0 for all
t ∈ [−τ,0) andw(0)= 1, thenŜτ = Sτ , whereSτ is the sampling operator given by (4.4
For an overview on generalized hold and generalized sampling techniques we re
reader to [1].

Consider the system shown in Fig. 4, whereΦ is a hysteresis operator defined
Cpm(R+,R) andΣ is a linear state-space system of the form

ẋ =Ax + bv, x(0)= ξ ∈R
n, y = cT x,
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Fig. 4. Linear system with input hysteresis.

Fig. 5. Sampled-data feedback system.

whereA ∈R
n×n andb, c ∈R

n. In Fig. 4,v =Φ(u), and hence the system shown in Fig
is mathematically described by

ẋ =Ax + bΦ(u), x(0)= ξ ∈R
n, y = cT x. (5.1)

Let r ∈ C(R+,R) and letΓ :F(Z+,R)→ F(Z+,R) be a causal discrete-time operat
A (generalized) sampled-data feedback control is a control law of the form

u= (ĤτΓ Ŝτ )(r − y). (5.2)

The numberτ > 0 is called the sampling period and the causal discrete-time operatoΓ is
usually called the (discrete-time) controller. The functionr models an external input sign
(which in some applications is also called the reference signal). Of course, the fee
control law (5.2) produces in general a discontinuous controlu ∈ NPCpm(R+,R). Con-
sequently, the feedback interconnection of (5.1) and (5.2) only makes sense if we r
the hysteresis operatorΦ (which is definedCpm(R+,R)) by its “canonical” extensioñΦ
(which is defined on NPCpm(R+,R) and is given by (3.4)). We see that the need for
tensions of standard hysteresis operators to sets of piecewise continuous function
naturally in the context of sampled-data control in the presence of input hysteresis.

The sampled-data feedback system given by (5.1) and (5.2) is shown in Fig. 5
mathematically described by

ẋ =Ax + b(Φ̃ĤτΓ Ŝτ )(r − cT x), x(0)= ξ ∈R
n. (5.3)

Consider the integral form of (5.3), namely

x(t)= eAtξ +
t∫

0

eA(t−s)b
[
(Φ̃ĤτΓ Ŝτ )(r − cT x)

]
(s) ds, ξ ∈R

n. (5.4)

In the following we assume that

Φ̃
(
NPCpm(R+,R)

)⊂ L1
loc(R+,R), (5.5)

which is not restrictive in so far as we believe that hysteresis operators not satisfyin
are of limited (or even no) physical relevance. IfΦ(Cpm(R+,R)) ⊂ C(R+,R), then it
follows from Corollary 3.10 thatΦ̃(NPCpm(R+,R))⊂ NPC(R+,R), implying that (5.5)
holds. Using (5.5) it is not difficult to show that, for everyξ ∈ R

n, (5.4) admits a uniqu



126 H. Logemann, A.D. Mawby / J. Math. Anal. Appl. 282 (2003) 107–127

at
-

))
s with

ld-
absolutely continuous solutionxξ :R+→R which satisfies (5.3) almost everywhere.4 For
the rest of this section we assume thatĤτ =Hτ and Ŝτ = Sτ . We want to relate (5.4) to
a discrete-time problem. To this end definexdξ , r

d ∈ F(Z+,R) by xdξ (n) := xξ (nτ) and

rd(n) := r(nτ), respectively. It follows from (5.4) that

xdξ (n+ 1)= eAτ xdξ (n)+
(n+1)τ∫
nτ

eA((n+1)τ−s)b
[
(Φ̃HτΓ )(f )

]
(s) ds, (5.6)

wheref ∈ F(Z+,R) is defined by

f (n)= (Sτ (r − cT x)
)
(n)= rd (n)− cT xdξ (n).

Since(HτΓ )(f ) ∈ Sr
τ , it follows from Theorem 3.4(4) that(Φ̃HτΓ )(f ) ∈ Sr

τ , and so,[
(Φ̃HτΓ )(f )

]
(s)= [(Φ̃HτΓ )(f )

]
(nτ), ∀s ∈ [nτ, (n+ 1)τ

)
, ∀n ∈ Z+. (5.7)

Moreover, obviously,HτSτ v = v for all v ∈ Sr
τ , and so it follows from Theorem 3.4(4) th

Φ̃Hτ =HτΦ
d , where the discrete-time hysteresis operatorΦd is given by (4.5). Combin

ing this with (5.7) yields[
(Φ̃HτΓ )(f )

]
(s)= [(ΦdΓ )(f )

]
(n), ∀s ∈ [nτ, (n+ 1)τ

)
, ∀n ∈ Z+. (5.8)

Inserting this into (5.6), we obtain

xdξ (n+ 1)= eAτxdξ (n)+
( (n+1)τ∫

nτ

eA((n+1)τ−s) ds
)
b
[
(ΦdΓ )(f )

]
(n),

= eAτxdξ (n)+
( τ∫

0

eAs ds

)
b
[
(ΦdΓ )

(
rd − cT xdξ

)]
(n),

=Adxdξ (n)+ bd
[
(ΦdΓ )

(
rd − cT xdξ

)]
(n),

whereAd := eAτ and bd := (
∫ τ

0 eAs ds)b. This shows thatn �→ xdξ (n) = xξ (nτ) is the
solution of the discrete-time initial-value problem

z(n+ 1)=Adz(n)+ bd
[
(ΦdΓ )(rd − cT z)

]
(n), z(0)= ξ.

We see that the discrete-time hysteresis operatorΦd introduced in Section 4 (see (4.5
arises naturally in the context of sampled-data control of continuous-time system
input hysteresis.

Finally, the intersampling behaviour ofxξ (that is the behaviour ofxξ |(nτ,(n+1)τ )) can
be bounded in terms ofxdξ andrd . To show this, we use (5.4) (witĥHτ =Hτ ) and (5.8) to
obtain

4 If we assume thatΦ(Cpm(R+,R)) ⊂ C(R+,R) and if we denote the points of discontinuity of the ho
function h by ti ∈ (0, τ ) (i = 1,2, . . . ,m), then it follows from Corollary 3.10 thatxξ is continuously differen-
tiable on the intervals(nτ,nτ + t1), (nτ + t1, nτ + t2), . . . , (nτ + tm−1, nτ + tm), (nτ + tm, (n+ 1)τ ) (where
n ∈ Z+) and thus,xξ satisfies the differential equation in (5.3) on these intervals.
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xξ (nτ + t)= eAtxdξ (n)+
( t∫

0

eAs ds

)
b
[
(ΦdΓ )

(
rd − cT xdξ

)]
(n),

∀t ∈ [0, τ ), ∀n ∈ Z+.

Consequently, we may conclude that there exist constantsα,β � 0 (not depending ont
or n) such that∥∥xξ (nτ + t)

∥∥� α
∥∥xdξ (n)∥∥+ β

∣∣[(ΦdΓ )
(
rd − cT xdξ

)]
(n)
∣∣, ∀t ∈ [0, τ ), ∀n ∈ Z+.

For applications of the results in Sections 3 and 4 to sampled-data low-gain integral c
of infinite-dimensional linear systems in the presence of input hysteresis we refer the
to [7].
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