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Abstract

We consider continuous-time hysteresis operators, defined to be causal and rate independent op-
erators mapping input signals R — R to output signals : Ry — R. We show how a hysteresis
operator defined on the set of continuous piecewise monotone functions can be naturally extended
to piecewise continuous piecewise monotone functions. We prove that the extension is also a hys-
teresis operator and that a number of important properties of the original operator are inherited by
the extension. Moreover, we define the concept of a discrete-time hysteresis operator and we show
that discretizing continuous-time hysteresis operators using standard sampling and hold operations
leads to discrete-time hysteresis operators. We apply the concepts and results described above in the
context of sampled-data feedback control of linear systems with input hysteresis.
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1. Introduction

Generally speaking, hysteresis is a special type of memory-based relation between a
scalar input signak(-) and a scalar output signa{-) that cannot be expressed in terms of
a single-valued function but takes the form of “hysteresis” loops. The memory effects ex-
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hibited by hysteresis phenomena are rate independentin contrast to rate dependent memory
which is typically fading and hence scale dependent. The concept of a hysteresis operator
has been introduced in Brokate [3], Brokate and Sprekels [4], and Visintin [9], to be an
operator which is both causal and rate independent. For continuous piecewise monotone
input signalsu this means that at timee R, the valuev(¢) of the output signab is
dependent only on the local extremawofestricted to the time intervaD, ¢]. Hysteresis
operators encompass nonlinearities important in applications such as relay (or passive),
backlash (or play) and elastic-plastic hysteresis. This type of behaviour arises in mechan-
ical plays, thermostats, elastoplasticity, ferromagnetism, and in smart material structures
such as piezoelectric elements and magnetostrictive transducers (see Banks et al. [2] for
hysteresis phenomena in smart materials). There exists a substantial literature on math-
ematical modelling and mathematical theory of hysteresis phenomena, see, for example,
Brokate [3], Brokate and Sprekels [4], KrasnoseT'skid PokrovsKi[5], Macki et al. [8],

and Visintin [9].

Hysteresis operators are defined on sets of piecewise monotone functions and usually
these functions are assumed to be continuous. Whilst the domains of some of the hysteresis
operators considered in [4] contain certain discontinuous functions, the framework in [4]
excludes many functions which change their monotonicity behaviour at a point of discon-
tinuity (see Remark 3.5). For certain applications such as sampled-data control for systems
with hysteresis effects (see Section 5), it is desirable to extend hysteresis operators defined
on the set of continuous piecewise monotone functions to the whole set of (hormalized)
piecewise continuous piecewise monotone functions. We show in this paper that this can
be done in a natural way in great generality and that the extension is again a hysteresis
operator inheriting a number of important properties of the original operator. Furthermore,
we introduce a concept of discrete-time hysteresis and show that discretizing continuous-
time hysteresis operators using standard sampling and hold operations yields discrete-time
hysteresis operators.

In Section 2 of the paper we first introduce continuous-time hysteresis operators defined
on a general domain and then restrict our attention to hysteresis operators on domains of
continuous piecewise monotone functions. In contrast to most of the literature (see [4,9]),
where hysteresis operators act on function spaces with a finite time horizon, we consider
hysteresis operators acting on functions defined on the infinite time inf{@\al). This
is motivated by our interest in asymptotic properties of feedback control systems with
hysteresis nonlinearities, see [6,7]. We show that for every hysteresis operator there ex-
ists a representing rate independent functional and derive a number of properties enjoyed
by hysteresis operators. In Section 3 we consider hysteresis operators defined on the set
of continuous piecewise monotone functions, extend the representing functional of such
a hysteresis operator to a domain of piecewise continuous piecewise monotone functions
and then use the extended functional to define an extension of the hysteresis operator. We
show that the extension itself is a hysteresis operator and that other important properties
of the original operator are inherited by the extension. In Section 4 we introduce the con-
cept of a discrete-time hysteresis operator and give a discrete-time analogue of some of
the continuous-time hysteresis results of Section 2. We show that the discretization of a
continuous-time hysteresis operator obtained by standard sampling and hold operations is
a discrete-time hysteresis operator. In Section 5 we apply some of the concepts and results



H. Logemann, A.D. Mawby / J. Math. Anal. Appl. 282 (2003) 107-127 109

developed in Sections 3 and 4 in the context of sampled-data feedback control of linear
systems with input hysteresis.
Notation and terminologywWe define

Zy:={x€Z|x >0}, Ry:={xeR|x>0}.

For setsM and N we denote the set of all functions: M — N by F(M, N). We say
that a functionf € F(R4, R) is piecewise monotoniéthere exists a sequence=Hr <

t <tz <---such that lim_, . t; = co and f is monotone on each of the open intervals
(t;, ti+1). We say that a functionf € F(R4, R) is piecewise continuous there exists a
sequence 819 <11 <tz < ---such that lim, » #; = oo, f is continuous on each of the
intervals(z;, #;+1), and the right and left limits of exist and are finite at each The space
of all piecewise continuous functionse F (R, R) is denoted by PR, R). As usual,
for f € PC(R,4, R), we define

f(t+)=|irlT) f(x) (fort>0) and f(—) =IirT72 f(r) (fort>0).

LetT =Ry, Z4;afunctionf € F(T, R) is calledultimately constanif there existsl" € T
such thatf is constant ofi7’, co) N T.

Remark 1.1. Note that our concept of piecewise monotonicity is less restrictive than that
in [4], where a piecewise monotone function is required to be monotone on the closed
intervals[z;, t;+1]. Whilst the two definitions coincide for continuous functions, the defin-
ition in [4] seems to be somewhat unnatural in the context of discontinuous functions. For
example, the functiong andg defined orR . and given by

f(t)—{t if t €[0, 1), t if £ €[0, 1],
17 ifre(l, 00) 3—1 ifre(l,o00),
respectively, are piecewise monotone in our sense, but not in the sense of [4].

and g@¥) = {

2. Continuous-time hysteresis operators

In this section we present basic background material on hysteresis operators which is
needed for the subsequent developments in Sections 3 and 4. Our treatment of hysteresis
operators is strongly influenced by Chapter 2 in book [4] by Brokate and Sprekels. Most
of the results in this section can be found in a somewhat different and less general form in
Chapter 2 of [4].

We call a functionf : Ry — Ry atime transformatiorif f is continuous, nondecreas-
ing and satisfieg (0) = 0 and lim_,», f (f) = 0o, in other wordsf : Ry — R, is a time
transformation if and only iff is continuous, nondecreasing and surjective. We denote the
set of all time transformationg: Ry — Ry by 7. For eachr € R, we define a projection
operatorQ. : F(R.,R) - F(R4+,R) by
u(@) forO<r<r,

(Qru)(1) = {u(t) fort > .

In the following letF c F(R+, R), F # . We introduce the following two assumptions
onF:



110 H. Logemann, A.D. Mawby / J. Math. Anal. Appl. 282 (2003) 107-127

(F1) uofeFforallue Fandallf € T;
(F2) Q;,(F)c FforallteR,.

We call an operato® : F — F(R4,R) causalif for all u,v € F and allt € Ry with
u(t) = v() for all r € [0, 7] it follows that (@ (u))(¢) = (@ (v))(¢) for all r € [0, T]. An
operatord : F — F (R4, R) is calledrate independerif F satisfies (F1) and

(@wo N)®)=(PW)(f(1)), YueF, VfeT, VieRy.
A functionalg : 7 — R is calledrate independerif F satisfies (F1) and
pwo f=¢wm), YueF VfeT.
Definition 2.1. Let F ¢ F(R4+,R), F # . An operatord : F — F(R4,R) is called a
hysteresis operatdf F satisfies (F1) and is causal and rate independent.
For F Cc F(Ry,R), F # @, let FU¢ denote the set of all ultimately constant F, i.e.,
FYC = {u € F|uis ultimately constant

Clearly, if F satisfies (F2), thefFU° = . Moreover, if F satisfies (F1), then so dogg'.

Theorem 2.2. Let F C F(R4+, R), F # ¥, and assume thgF1l)and(F2)hold. If @ : F —
F (R4, R) is a hysteresis operator, then the following statements:hold

1) Q2 =0Q, forall t e Ry;
(2) the functional
0. F®S R, u— lim (@(u))(t), (2.1)
—00
is rate independent and satisfies
(CD(u))(t):go(Qtu), YueF, Vt e Ry. (2.2)
Conversely, ifp : FY¢ — R is a rate independent functional, then F — F(R,, R) given
by (2.2) is a hysteresis operator and satisfies
lim (®w) () = o), YueF"C (2.3)
t—0o0

For a hysteresis operatdr: ¥ — F (R4, R), we call the rate independent functional
¢ FY° — R defined by (2.1) theepresenting functionaif @.

Remark 2.3. There exist causal operatabssatisfying the commutativity proper9. & =

@ Q. for all T € Ry, but which are not hysteresis operators. For example, consider the
(linear) operatow : C(R4, R) — C(R4, R) given by

t
(@) (1) = (14 a@®)u(r) — /(da/ds)(s)u(s) ds,
0
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wherea : Ry — R is continuously differentiable. Clearlg is causal and a routine calcu-
lation shows thap @ = @ Q. for all t € R,. However, unlessg is constant® is not, in
general, rate independent, and hence not a hysteresis operator.

Proof of Theorem 2.2. Assume thatd : 7 — F (R, R) is a hysteresis operator. To prove
statement (1), let € F andt € R. Trivially, since® is causal,

((D(Q,u))(t) = (¢(u))(t), vt € [0, 7]. (2.4)
Lets > t and define a time transformatighe 7 by
t forO<r <,
fO=3r fort <t <s,
t+1v—s fort>s.
Then, using the causality and rate independenceg,afe have for € [z, 5],

(2(Qw)(1) = (Puo H)®) = (L) (f(1) = (W) (D). (2.5)

Sinces > t was arbitrary, (2.5) holds for all > z. Together with (2.4) this yields state-
ment (1). To prove statement (2), we first note that the limit in (2.1) exists since for
ultimately constani:, @ (u) is ultimately constant by statement (1). Using the rate in-
dependence af, we see that foralk ¢ F'°and all f € 7,

o f)= lim (o f))1) = lim (&w)(f®) = lim (2w)®) =),

showing thailp is rate independent. Using statement (1), we obtain fox &lF and all
t e R+,

(@) (1) = (2(Quw)) (1) = S'Lmoo(q)(Qzu))(S) =¢(Qu),

which is (2.2).

Conversely, assume that 7Y¢ — R is rate independent and defibe F — F(R,, R)
by (2.2), i.e.,(®(u))(t) = ¢(Qu). Then, trivially, @ is causal. Moreover, for all € F,
feT,andr e Ry,

(@wo )@ =¢(Qiwo ) =¢((Qrmu) o f)=(Qruu) = (Pw)(f 1),
thus® is rate independent. Finally, lete F'¢; then

timoo(qj(u))(t) = lim ¢(Quu) = p(),

whichis (2.3). O

Let S” denote the set of all right-continuous step functian® ; — R, that is there
exists a sequencefr < 11 < f2 < - -- such that lim, o ; = oo andu is constant on each
of the intervaldz;, #;+1). Fort > 0 defineS, C S" to be the set of all right-continuous step
functionsu : Ry — R of step length, i.e.,u is constant on each interviak, (i +1)t). We
note that whilstS” satisfies (F1) and (F2)5, satisfies (F2), but not (F1). The following
corollary is an immediate consequence of Theorem 2.2(1).
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Corollary 2.4. Let F ¢ F(R4+,R), F # ¢ and assume thafF1) and (F2) hold. Let
@ . F — F(R4, R) be a hysteresis operator. Then

QFYCF, eFNSHCS,  @(FnS))cS].

For anyu € F(R+, R) and anyr € R, we define
M(u,1) := {7 € (1, 00) | u is monotone oz, 7)}.

If u is piecewise monotone, thé(u, 1) # ¢ for all t € Ry, and thestandard monotonic-
ity partition 1o < 11 < 2 < --- of u is defined recursively by setting = 0 andt; ;1 =
SupM (u, t;) for all i € Z such thatM (u, ;) is bounded. Ifu is piecewise monotone
and ultimately constant, then the standard monotonicity partitiom isf finite. The set
of all piecewise monotone € C(R, R) is denoted byCpm(R, R). It can be shown
that the sum of two continuous piecewise monotone functions is not necessarily piece-
wise monotone, implying thafpm(R+, R) is not a linear space. We defiggr (R, R)

to be the set of all ultimately constante Cpm(R4, R). We note thatCpm(R, R) and
Com(R+, R) both satisfy (F1) and (F2). Lef"“(Z+, R) denote the space of ultimately
constantu: Z; — R. We define theestriction operatorR: Cpt, (R4, R) — FU“(Z4, R)
by

u(ty) forke[0,m]NZ4,

(RG) (k) = { lim,ou(t) forkeZi\[0,m],

where O=1p < 11 < - -- < 1, iS the standard monotonicity partition of
The following lemma will be an important tool in the next section.

Lemma2.b. Letu,v e CH%(RJF, R). ThenR(u) = R(v) if and only if there exisl, g € 7
suchthatto f =vog.

The above lemma can be found in Brokate and Sprekels [4] (see [4, Lemma 2.2.4]).
As an immediate consequence of Lemma 2.5 and Theorem 2.2(2), we obtain the following
corollary.

Corollary 2.6. Let @ : Com(R1, R) — F(R4,R) be a hysteresis operator and letv €
Cpm(R4, R) andr e R.. Then

R(Qu) =R(Qiv) = (2w)®)=(2W)().

The above corollary says that the outp@t(n))(7) at timer € R, of a hysteresis opera-
tor @ corresponding to a continuous piecewise monotone imjgidletermined completely
by the local extrema af restricted to the time intervg0, z].

2 Only a sketch of the proof is given in [4]. A complete proof can be found in the appendix of an extended ver-
sion of the present paper contained in Mathematics Preprint 00/14 (University of Bath, 2000), which is available
at http://www.maths.bath.ac.uk/mathematics/preprints.html.
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3. Extending hysteresis operatorsdefined on Cpm (R4, R) to piecewise
continuous functions

Let NPQR4,R) c PCR,,R) denote the space of allormalized piecewise contin-
uousfunctionsu : R, — R, that isu is piecewise continuous and is right-continuous or
left-continuous at each poimte Ry. In particular, ifu € NPCR4, R), thenu is right-
continuous at = 0. The set of all piecewise monotone functione NPC(R, R) is de-
noted by NP@m(R ., R), whilst NPC}’,ﬁq(RJr, R) denotes the set of all ultimately constant
u € NPGm(R4, R). We note that NPgm(R, R) and NP(;En(RJr, R) both satisfy (F1)
and (F2). Fou € NPC%?n(RJr, R), we defineu(co) 1= lim;_ o0 u (7).

Lemma 3.1. Letu e NPCR4, R), f € 7, andt > 0. Define

o { maxf (1) if u(t—) =u@),
Cmin ey ifue—) #u@).
Then(uo f)(t+) =u(@+) and @ o f)(t—) = u(t—).

Proof. Sincef is continuous, nondecreasing and surjective, for alR,., f~1({r}) is a
compact interval and therefoteis well defined. We consider two cases.

Casel. Suppose that(r—) = u(¢). Then, f(t + h) >t for all » > 0 and so(u o
) (t+) = u(f(r)+) = u(+). Moreover, if f ~1({r}) is a singleton, we hav¢(r — h) < ¢
forall 4 e (0, t]and so(u o f)(t—) =u(f(r)—) =u(—). If f~1({r}) is not a singleton,
we havef (t — h) =t for all sufficiently smallz > 0 and sau o f)(t—) = u(t) = u(t—).

Case 2. Suppose thati(t—) # u(t). Then, sinceu € NPC(R, R), it follows that
u(t+) = u(t). Adopting an argument similar to that in Case 1 yields the claim.

Letu € NPC;,?n(RJr, R) and let 0= <11 < --- < t,, be the standard monotonicity
partition ofu. We define the map : NPGL (R4, R) — FU“(Z+, R) by
p @) = (u(to), u(ta—), u(t+), u(ta—), u(iz+), ...,
u(tm_)v u(tm+)v M(OO), M(OO), . )

Let r > 0. We define therolongation operatorP; : F(Z,R) — Cpm(R4, R) by letting
P.u be the piecewise affine-linear function satisfyif® «)(it) = u(i) and having con-
stant slope orntiz, (i + 1)) for all i € Z.. Moreover, we introduce the operator

R:NPGLMR . R) > FU“Zy.R), ur> R((Prop)(w)).
Clearly, for anyr > 0,
RoP,oR=R, (3.2)

and using (3.1) it is easy to show thRb P; o R = R.

For illustration, consider the functian shown in Fig. 1. Clearlyy € NPC%En(R+,R)
with standard monotonicity partition8 79 < 11 < 2 < t3 < t4. The sequences(z) and
R(u) are given by

o) = (uo, uz, ue, Ua, Ua, Us, U3, U7, U2, U1, U1, U1, ...)
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Fig. 1. Example of a function in NR{&,(R+, R).

and

R(u) = (uo, u7, u4, us, uz, uz, u1, u,ui, ...).
Lemma 3.2. R is an extension oR, the definition ofR does not depend upon the choice
of r > 0and

R(o f)=R), YueNPCL([R; R), VfeT. (3.2)

Proof. Letu € Cgrcn(RJr, R), then, sincei(t+) = u(z—) forall r > 0,

R(u)=R((Pr 0 p)(w)) = R(u),

showing thatR is an extension ofR. Let 71,72 > 0 andu € NPC;%(RJF,R). Clearly,
R((Pr; o p)(u)) = R((Pr, o p)(u)), from which it follows that the definition oR does
not depend upon the choice of- 0.

Finally, letu ¢ NPC%%(R+, R), feT,andletO=1 <t < --- < t, be the standard
monotonicity partition of:. Definerg:=0and fori =1, ..., m,

Tﬂ_{qu‘%mn if u(ti—) =u(),
Cming A (n) i ulio) #u@).
Then 0= 19 < 11 < --- < 1, IS the standard monotonicity partition afo f and by

Lemma3.1(uo f)(ri+) =u(ti+) fori =0,1,...,m. Hencep(u) = p(uo f), and there-
fore, R(u) = R(u o f), showing that (3.2) holds. O

For any rate independept Cpr (R, R) — R we define

@:NPCLR . R) > R, > ¢((Pr o R)(W)), (3.3)

wherer > 0. We show that the definition gf does not depend on To this end, lety, =2
> 0 andu € NPGJ{(R+, R). Then, clearly there exist € 7 such that(Py, o R)(u) =
(P, 0 R)(u) o f and therefore, by the rate independence of

¢((Pey o R)(w)) = @((Pry 0 R)(w)).
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Lemma3.3. Lety: Cpr (R4, R) — R be rate independent and defi@eoy (3.3). Then

(1) ¢ is an extension af, i.e.,
pw)=¢W), Vue C;&(R+, R);
(2) foranyt > 0,
) =@((Prop)w)), Vue NPC%%(RJF, R);
(3) foru,v e NPGL (R4, R),
Rw=Rw) = ¢u)=¢®);
(4) ¢ is rate independent, i.e.,
oo f)=¢(u), Vue NPC%%(R.,_, R), VfeT.
Proof. Let t > 0 andu € Cgrcn(RJr,R). Clearly, R(u) = R((P; o R)(u)), and so using

Lemma 2.5, there exist, g € 7 such thatt o f = (P; o R)(u) o g. Thus the rate indepen-
dence ofp in combination with Lemma 3.2 gives

) =¢((Pro R)w) =((Pr o R)w) 0 g) =p(uo f) =),

which is statement (1). To prove statement (2), det NPC%%(RJF,R). By definition
R(u) = R((P; o p)(u)) and therefore,

(Pr o R)() = Pr (R((P; 0 p)(W))).
Thus, invoking (3.1),
R((Pr o R)()) = R(P: (R((Pr 0 p)W)))) = R((Pr 0 p)(w)),
and so using the rate independence @nd Lemma 2.5,
¢u) = ¢((Pr o )W) = ¢((Pr 0 p)(W)).
For statement (3), let, v € NPCJ5, (R, R). Suppose thak (u) = R(v); then by the defin-

ition of R, R((P; o p) (1)) = R((Pr 0 p)(v)). SiNCe(Pr 0 p)(u), (Pr o p)(v) € ComnR+, R),
it follows from an application of Lemma 2.5, the rate independenge ahd statement (2)
that

¢u) = ¢((Pr 0 p)(w)) = ¢((Pr 0 p)(v)) = G(v).
Statement (4) follows immediately from (3.2) and statement (8).

Let @ :Com(R4+, R) = F(R4, R) be a hysteresis operator and define
@ :NPGm(R4,R) — F(R4,R)
by setting
(@) (t) =¢(Qu), VteRy, (3.4)

whereg is the representing functional df and¢ is the extension of to Nchfn(R+, R)
given by (3.3).
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Theorem 3.4. Let @ : Com(R 4, R) — F(R4, R) be a hysteresis operator and define the
operator® : NPGym(R -, R) — F (R, R) by (3.4). Then

(1) @ is an extension ob;
(2) @ is a hysteresis operator with representing functiopal
(3) foru,ve NPGm(R 4, R) andr e R,

R(Qu)=R(Qv) = (2w)t)=(®®)1);
(4) $(S") C S andd(S) C 8.

Proof. Statement (1) is clear singeis an extension ap and thusp is an extension o.

By Lemma 3.3(4)¢ is rate independent. Therefore, by Theorem Z:2is a hysteresis
operator with representing function@ showing that statement (2) holds. Statement (3)
follows from the definition of® and Lemma 3.3(3). Sincs. ¢ S" € NPGm(R 4, R),
statement (4) follows from statement (2) combined with Corollary 2.

Remark 3.5. We mention that whilst the domains of the hysteresis operators defined in [4]

include certain discontinuous functions, they do not contain the sep, NG, R). This

is due to the more restrictive concept of piecewise monotonicity adopted in [4] (see Re-
mark 1.1), excluding many functions which change their monotonicity behaviour at a point
of discontinuity (two examples of such functions are given in Remark 1.1).

In the following we define continuous, piecewise monotone “approximationgio,
us, ... of a given functioru € NPC%En(RJr, R) such thatd (1) “approximates’® (1) as
k— oco.Let0O< 11 < 12 < - -- < 1, denote the points of discontinuity afand setrg := 0.
For eachk € Z., define

1 .
=15 lglgn(ti —7i_1). (3.5)

For eachk € Z., define an operatar, : NPGL(R+, R) — Cph (R4, R) by setting

(1) if t € [tj — &k, ;) andu is right-continuous at;, then

Mty — ek T — e /2 u(t) — &), u(T;—)1(0),
teltj —ex, t; —e/2],

Mz —ex/2, Ty u(Tj—), u(r))]),
teltj —ex/2, 7)),

(Crw) () =

(2) if t € (7}, Tj + &] andu is left-continuous at;, then

AMrj, Tj + ek /25 u(z), u(r;H10),
te(tj,tj+ex/2,

Mrj+er/2,tj +ersu(rj+), u(rty + e)l@),
telrj+ex/2,tj +exl,

(3) (Cx(w))(t) = u(r) otherwise,

(Crw)(1) =
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t

Fig. 2. Example of a function € NPG,(R+, R) and its approximatiorCy (u).

where, in (1) and (2)A[t1, t2; a1, az] (with 11, 12, a1, a2 € R, 11 # t2) denotes the affine-
linear function defined o and satisfying\[?1, 72; a1, a2](t;) = a;, i = 1, 2. See Fig. 2 for
an illustration of the operatary.

Lemma 3.6. Letu € NPGr, (R, R). Then

(1) for anyt € R, there existg > 0 such that
R(Qiu) = R(Q:Ck(w)), Yk >1;
(2) foranyr, > 11 > 0, if u is continuous offz1, #2], there exist$ > 0 such that
R(Q:u) = R(Q:Cr(w)), Vteltr, 2], Yk >1.
Proof. Letu e NPC%%(R+, R),let0O< 11 < 72 < - - - < T, denote the points of discontinu-
ity of u and let 0=19 < 1 < --- < 1, be the standard monotonicity partitionof Define

e by (3.5).
To prove statement (1), lete R, and choosé > 0 such that

g <min{lt — ;| |1<i<m, 1< j<n, t; #1;}
and
g<min{lt —7;||11<j <n, 1 #£7;}.

ThenR(Q;u) = R(Q;Cx(u)) forall k > 1.
To prove statement (2), let > 11 > 0 be such thak is continuous onr1, t2]. Hence,
there existg; > 0 such that

CreW 10 = Uy, Yk 211, (3.6)
Moreover, by statement (1), there exigts- 0 such that

R(Quu) = R(QnCk(w)), Vk>1lo. (3.7)
Hence, by (3.6) and (3.7), statement (2) holdgfet max(/1,12). O



118 H. Logemann, A.D. Mawby / J. Math. Anal. Appl. 282 (2003) 107-127
Foru e NPGm(R 4, R), > 0, ande > 0, we define

n
Je(u, 1) = Ul(r,» —ente) and deni= min (G -7)/2
1=
where O< 11 < 12 < - - - < 1, denote the points of discontinuity @f,u.

Proposition 3.7. Let @ : Cpm(R4, R) — F (R, R) be a hysteresis operator. Then, for an
arbitrary u e NPGm(R4, R), the following statements hald

(1) for all r € Ry, there existg > 0 such that
(D)) (1) = (D(Cr(Qw))) (1), Vk=1;

(2) iffor t3 > t2 > r1 > 0, u is continuous otfr1, £2], then there exists> 0 such that
(D)) (s) = (D(Ck(Qr)))(s), Vs €ltr,t2], Vk >1;

(3) forallt e Ry and alle € (0, d(u, 1)), there existg > 0 such that

(D) (s) = (@ (Ck(Qu)))(s), Vs €[0,0)\ Je(u, 1), Yk >1.

Proof. Let® :Com(R4, R) = F(R4, R) be ahysteresis operator amd NPGom(R 4, R).
Statement (1) follows from Theorem 3.4 and Lemma 3.6(1), and statement (2) follows
from Theorem 3.4 and Lemma 3.6(2). For statement (3}, R, ¢ € (0,d(u, t)), and
let0< 11 < 12 < -+ < 1, denote the points of discontinuity @, u. Clearlyu is contin-

uous on[t; + ¢, ti+1 — €] for 1 <i < n — 1. Therefore by statement (2) and the causality
of @, there exist$; > 0 such that for Ki <n —1,

(B W) (s) = (@(Cr(Qu)))(s), Vs €t +&, tip1—el, Yk =1;.

To conclude the proof, we distinguish between two cages: ¢ < ¢ andz, + ¢ > ¢.
If 7, + ¢ < t, thenu is continuous onit, + ¢, t] and therefore again by statement (2),
there existg,, > 0 such that

(@) (s) = (D (Cr(Qeu)))(s), Vs €[ty +e,t], Yk =1,

If t, +¢& >1t,then sef, :=0.
In both cases define= max ;<. /; and statement (3) then follows O

The operatord defined by (3.4), extending a given hysteresis operatCpm(R4, R)
— F(R4,R) to NPGm(R 4, R), is not unique. There are other hysteretic extensiors® of
to NPGm(R, R) as the following example shows.

Example 3.8. Define Ze: NPGm(R4, R) = F(R, R) by
0 if t =0,
(Ze@)®) = { Y ocecs @@ —u(—)) ift>0.
Clearly, Z¢ is a causal extension of the trivial operator
Z:Com(Ry,R) - F(R4,R), ur0.
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We show thatZ is rate independent. Lete NPGm(R,R), f €7, >0, and let O<
L <--- <ty < f(2) be the points at whickQ ¢ u is not left-continuous. Define, for
i=1...,m, 5 :=minf1{s}). Then O< 11 < --- < 1, <t are the points at which
Q;(u o f)is not left-continuous. By Lemma 3.y o f)(t;—) =u(;—) fori=1,...,m,
and thus

(Ze@))(f (1) = Z (@) —u@=)) =) (u) —uti-))
-1

O<t<f(1) i
= Z((u o /)(Ti) — (uo f)(ri—))
i=1

= Z (o @) = o f)(x—)) = (Ze(u o )) (),

O<t<t

showing thatZe is rate independent. Therefarg is a hysteresis operator, b # Z=0.
It follows that if @ : Com(R4+, R) — F(R4, R) is a hysteresis operator, th@n+ Ze, as
well as®, are hysteresis operators which ext@hdo NPGmR, R).

The following corollary says that, given a hysteresis operd@amn Cpm(R4, R), @ is
the unique operator extendidg to NPGm(R4, R) and satisfying statement (3) of Theo-
rem 3.4.

Corollary 3.9. Let @ : Cpm(R, R) — F(R4, R) be a hysteresis operator. Suppose that
e is an extension ob to NPGm(R 4, R). Iffor all u, v e NPGm(R, R) and allr e Ry,

R(Qu)=R(Qiv) = (Pe))(t) = (Pe(v)) (1), (3.8)

then®e = @.

Proof. Let @ :Cpm(R+,R) — F(R,,R) be a hysteresis operator, Iét be an exten-
sion of @ to NPGm(R4, R) satisfying (3.8), lety € NPGm(Ry,R) andt € R;. By
Lemma 3.6(1), for all sufficiently large, we have

R(Quu) = R(Q:Ci(Quu)).
Hence, by (3.8), for all sufficiently large
(@e()) (1) = (Pe(Cr(Q:1))) (1) = (@ (Cr(Qeu)) ) (2).
It follows from Proposition 3.7(1), tha@e(u))(t) = (@W)(t). O

Corollary 3.10. Let @ : Com(R4, R) — F(R4, R) be a hysteresis operator. Assume that
@ (Cpm(R4+,R)) C C(R4, R). Then
@ (NPGom(R+, R)) € NPC(R4, R),

and foru e NPGm(R, R), right-continuity ofu atz € R (respectively, left-continuity at
¢ > 0) implies right-continuity ofp (1) atr € R, (respectively, left-continuity at> 0).
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Proof. Let @ : Cpm(R+, R) — F(R4, R) be a hysteresis operator and assume that the in-
clusion® (Cpm(R4, R)) € C(R4, R) holds. Letu e NPGm(R4, R). We proceed in four
steps.

Stepl. Let us suppose thatis right-continuous at € R ; then there exists > ¢ such
thatu is continuous otz t]. So by Proposition 3.7(2), there exist 0 such that

(B W)(s) = (@(Cr(Qe)))(s), Vs elr,tl, Vk =1,

Since by assumptio® (Cpm(R4, R)) C C(R4, R), @ (Cr(Q-u)) is a continuous function
and so® () is right-continuous at.

Step2. Similarly, if u is left-continuous at > 0, then it is easy to show that(x) is
left-continuous at.

Step 3. Assume thatx is left-continuous atr > 0. We show that the right limit
Iimw(qs(u))(s) exists and is finite. To this end, defime=u on R \ {t} andw(t) =
limy |, u(s). Thusw is right-continuous at. Now R(Q,u) = R(Q.w) forall t e R, \ {t}
and therefore by Theorem 3.4(&(u) = & (w) onR \ {t}. Thus

lim (& @) (s) = lim (& (w)) (5) = (S (w)) ().

since® (w) is right-continuous at by Step 1.
Step4. Similarly, if u is right-continuous at > 0, then it is easy to show that the left
limit lim 4, (@ (1)) (s) exists and is finite. O

We end this section by considering the extension of the backlash (or play) operator.

Example3.11. Let h € R, and¢ € R. Defining the functiorb;, : R2 — R by
bh(v,w)=max{v—h,min{v+h,w}}, (3.9)
we introduce the backlash (or play) operafar: : Cpm(R4, R) — C(R4, R) by setting

bp(u(0), &) forr =0,
(Bhe () (@) = .

b (u(t), (Bpe)(t)) fory <t <tiya, i € Zy,
where O=1y <11 <t < --- is such that lim_ ~ t;, = oo andu is monotone on each
interval (;, t;+-1). We remark that plays the role of an “initial state.” It is not difficult to
show that the definition is independent of the choice of the partitionsee [6]. It is well
known thatB ¢ is a hysteresis operator; see, for example, [4]. The backlash op8jator
is illustrated in Fig. 3.
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v

Fig. 3. Backlash hysteresis.

By Theorem 3.4, the extensiaﬁ‘),,g of By, ¢ to NPGm(R4, R) given by (3.4) is a hys-
teresis operator. By Corollary 3.1I§h,g(NPCpm(R+, R)) € NPC(R4, R). A lengthy, but
straightforward argumefshows that3, ; can be written recursively as

by (u(0), &) fors =0,
bu(u(t), (Bp.g (1)) (0)) forO<t <n,
(Bpe)(1) = 3 by(u(ti), Bue@)(t—)) fort=rn, i eZy\ {0}, (3.10)

bi(u(t), by (u(ti+), Bhg () (t;-)))
forty; <t <tiy1, i €Z4\ {0},

where O=1 <11 <t < --- is such that lim_ ~ t;, = oo andu is monotone on each
interval (t;, ti11).

4. Discrete-time hysteresisoperators

We call a functionf : Z, — Z a (discrete-timgtime transformatiorif f is surjective
and nondecreasing. We denote the set of all discrete-time transformgtidhs — Z
by 7¢. For eactk € Z, , we define a (discrete-time) projection opera@jr: F(Zy,R) —
F(Z+, R) by

um) fornel0,kl1NZ4,

d —
(Qku)(n) = { u(k)y formeZy\|[0,k].

3 This argument is spelt out in detail in the appendix of an extended version of the present paper contained
in Mathematics Preprint 00/14 (University of Bath, 2000), which is available at http://www.maths.bath.ac.uk/
mathematics/preprints.html.
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We call an operato® : F(Z+,R) — F(Z4,R) causalif for all u,v € F(Z+,R) and all
k € Z4 with u(n) = v(n) for all n € [0, k] N Z,. it follows that (@ (1)) (n) = (P (v))(n) for
alln €[0,k]NZ,. An operatord : F(Z,,R) — F(Z4,R) is calledrate independerit

(@wo f))n) = (@) (f(), YueF(ZyR),VfeT? Vnely.

Definition 4.1. An operatord : F(Z.,R) — F(Z4,R) is called a discrete-timg hystere-
sis operatorif @ is causal and rate independent.

Recall thatFU°(Z., R) denotes the set of all ultimately constart F(Z,, R). A func-
tionalg: FU“(Z,R) — R is calledrate independerif

oo f)=¢), YuecF'Z, R),VfeT

The proof of the following theorem is analogous to the proof of Theorem 2.2 and is there-
fore omitted.

Theorem 4.2.If @ : F(Z+,R) — F(Z+,R) is a hysteresis operator, then
(1) 0¢o =wQf forall keZ;
(2) The functional
9:F'Z,,R)— R, urs lim (cb(u))(n), 4.1)
n—oo
is rate independent and satisfies
(@) (n) = ¢(Qu), YueF(Zi,R), Vnel,. (4.2)
Conversely, ifp: FY¢(Z, R) — R is a rate independent functional, thén: F(Z,, R) —

F(Z4,R) given by(4.2) is a hysteresis operator and satisfies
lim (@) (n) = @), Yue F'“(Zy,R).
n—o0

For a hysteresis operatdr: F(Z+,R) — F(Z4,R), we call the rate independent func-
tionalg: FU“(Z,R) — R defined by (4.1) theepresenting functionaif @.
Lett > 0. Ther-hold operatorH; : F(Z4,R) — S. is defined by

(Hru)(nt +1t) =u(n), VneZs, Vtel0,1), (4.3)
and ther-samplingoperatorS; : F(R4+,R) — F(Z+,R) by
(S;u)(n) =u(nt), VnelZ,. (4.4)

The above hold and sampling operations are standard in the context of sampled-data control
where continuous-time systems are controlled by discrete-time controllers via hold and
sampling mechanisms.
Let @ : Cpm(R+, R) — F(R4, R) be a continuous-time hysteresis operator and define
&4 F(Z,,R)— F(Z,+,R) by
o? =S, dH,, (4.5)

whered is the extension o® to NPGm(R, R) defined by (3.4). The definition @b’ is
independent of the choice ofdue to the rate independencedf
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Proposition 4.3. Let @ : Cpm(R4, R) — F(R,,R) be a continuous-time hysteresis op-
erator. Then®?: F(Z,,R) — F(Z,,R) defined by(4.5) is a discrete-time hysteresis
operator.

Proof. It is clear that®“ is causal. It remains to show thé@‘ is rate independent. Let
u€F(Zy,R)andf e T¢; then f€:=tP.(f) € T and(H,u) o f¢ = H.(uo f). Hence,
using the rate independence®f

(@4 o f))(n) = (D(He (o f)))n) = (((Hru) o f€))(n7)

= (D (Hw))(f(n1)) = (D (H)) (f (m)7) = (29 ) (f (),
showing thatp? is rate independent.0o
LetT=Z+,R4+ andF C F(T,R), F # ¢; then thenumerical value seNVS ¥ of an

operatow : F — F(T,R) is defined by

NVSY = {(¥w)@) |ueF,teT}.

The following proposition shows that for a continuous-time hysteresis opepatiafined

on Cpm(R4, R), the numerical value sets @ and @4 coincide. This result is impor-

tant in the context of sampled-data low-gain control of systems subject to input hysteresis
(see [7]), but is also of some interest in its own right.

Proposition 4.4. Let @ : Cpm(R4, R) — F(R,, R) be a continuous-time hysteresis oper-
ator and define the operat@? : F(Z,,R) — F(Z,,R) by (4.5). Then

(@) (n) = (¢ (Pru))(nt), Vue F(Zy,R), VneZy, (4.6)
andNVS @4 =NVS .
Proof. Letu € F(Z4,R) andn € Z,.. We note thaR (0 Hru) = R(Qn: Pru) and so by
Theorem 3.4(1) and Theorem 3.4(3),

(@4 W) (n) = (@ (H.w)) (n7) = (D (Prut)) (n).

To prove that NVRb¢ = NVS @, note first, that by (4.6), NV®¢ c NVS®. To show the
reverse inclusion, let e NVS®. Then there exist € Cpm(R4, R) andt € Ry such that
a=(®(v))(1). Setw := Q,v € Cp4(Ry, R). Clearly

Orrw=w, Yk>t/t.
Moreover,(P; o R)(w) € Cgrcn(RJr, R) and so there existg > 0 such that

Okz ((Pr o R)(w)) = (Pr o R)(w), Vk > ko.
Fork > max(ko, t/t) =: k1 we then have

(Pr 0 R)(Qrrw) = (Pr o R)(w) = Oz ((Pr 0 R)(w)). (4.7)
Let ¢ be the representing functional &f, then fork > k1,
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a=(®w)®) =(Pw))kt) =¢(Qrrw) = §(Qkrw)
= (P((Pr o R)(Qkr w))’ (4.8)

where we have used Theorem 2.2(1) and Theorem 2.2(2) and the fagtisreat extension
of ¢. Combining Theorem 2.2(2) and (4.6)—(4.8), we obtain for/apyk1,

a=¢(Qkc(Pr o R)(w)) = (@((Pr o R)(w)))(kT)
= (@9(Rw))(k) eNVS@?. O
We finally look at the discretization of the backlash operator.
Example 4.5. Let h € R and¢ € R. We define the discrete-time backlash operﬁig’qg:
F(Zs,R) — F(Z4,R) by setting
BZ,E = Sr[;’h,ng.
Using (4.6), we see that for alle F(Z, R), B,f’s(u) can be expressed recursively as
bn(u(0), §) forn =0,
d —
(B w)m = { ba(u(n), (B ;) — 1) forneZ \ (0}

whereb;, :R? — R is given by (3.9).

5. Applicationsto sampled-data control of linear systemswith input hysteresis

Lett > 0. A generalized -hold operatorH; : F(Z,, R) — NPGm(R+, R) is an oper-
ator of the form

(Hyu)(nt + 1) = h(Du(n), Vne€Zy, Vi €l0,1),

where the so-called hold functidgn [0, t] — R is normalized piecewise continuous and
piecewise monotone. Trivially, it(r) = 1, thenH, = H,, where H, is ther-hold oper-
ator given by (4.3). Ageneralizedt-samplingoperatorS’T :C(R4,R) > F(Z4+,R) is an
operator of the form

u(0) [° dw (), n=0,
J2 unt +0)dw(n), neZi\ (0},

where the weighting functiow : [—t, 0] — R is of bounded variation. lfv(¢) = 0 for all
1 € [-7,0) andw(0) = 1, thenS; = S;, wheres; is the sampling operator given by (4.4).
For an overview on generalized hold and generalized sampling techniques we refer the
reader to [1].

Consider the system shown in Fig. 4, whebeis a hysteresis operator defined on
Com(R4, R) andX is a linear state-space system of the form

(Scu)(n) = :

¥ =Ax+bv, x(0)=&eR", y=clx,
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S S >

Fig. 4. Linear system with input hysteresis.

U Y
S, r H. > & > T

Fig. 5. Sampled-data feedback system.

whereA € R"*" andb, c € R". In Fig. 4,v = @ (u), and hence the system shown in Fig. 4
is mathematically described by

¥ =Ax+b®u), x(0)=¢eR", y=clx. (5.1)

Letr e C(R,R) and letl": F(Z+,R) — F(Z4+,R) be a causal discrete-time operator.
A (generalized) sampled-data feedback control is a control law of the form

u=(H,TS)(r —y). (5.2)

The number > 0 is called the sampling period and the causal discrete-time opétasor
usually called the (discrete-time) controller. The functtanodels an external input signal
(which in some applications is also called the reference signal). Of course, the feedback-
control law (5.2) produces in general a discontinuous comtrelNPGym(R 4+, R). Con-
sequently, the feedback interconnection of (5.1) and (5.2) only makes sense if we replace
the hysteresis operatdr (which is definedCpm(R+, R)) by its “canonical” extensiomp
(which is defined on NPgq(R1, R) and is given by (3.4)). We see that the need for ex-
tensions of standard hysteresis operators to sets of piecewise continuous functions arises
naturally in the context of sampled-data control in the presence of input hysteresis.

The sampled-data feedback system given by (5.1) and (5.2) is shown in Fig. 5 and is
mathematically described by

$=Ax+b(@H, TS)(r —c'x), x(0)=¢& eR". (5.3)

Consider the integral form of (5.3), namely
t
x(t) =eME + / ACIP[(BH IS (r — Tx)](s)ds, & eR™. (5.4)
0
In the following we assume that

& (NPGm(R+,R)) C Lip (R4, R), (5.5)

which is not restrictive in so far as we believe that hysteresis operators not satisfying (5.5)
are of limited (or even no) physical relevance ¢{Cpm(R+, R)) C C(Ry,R), then it
follows from Corollary 3.10 thatﬁ(NPCpm(R+, R)) € NPCR4, R), implying that (5.5)
holds. Using (5.5) it is not difficult to show that, for evegye R”, (5.4) admits a unique
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absolutely continuous solution : R — R which satisfies (5.3) almost everywhérEor
the rest of this section we assume tat= H, andS; = S;. We want to relate (5.4) to
a discrete-time problem. To this end defif@ rd e F(Z,,R) by xg(n) := x¢(nt) and
rd(n) := r(nt), respectively. It follows from (5.4) that
(n+1)t
fm+D=e""x{m) + / MV [( @ H ) (f)](s) ds, (5.6)
nt

wheref € F(Z4,R) is defined by
f)=(S:r = ")) =r(n) — " x{ ().

Since(H, I')(f) € S, it follows from Theorem 3.4(4) thawp H, I")(f) € S’ and so,
[((@H.I)(H)]() =[(@HI)()](nT), Vse[nt,(n+D1), VneZy.  (5.7)

Moreover, obviouslyH: S;v = v forall v € S7, and so it follows from Theorem 3.4(4) that
@ H, = H,®?, where the discrete-time hysteresis operdifiis given by (4.5). Combin-
ing this with (5.7) yields

[(@H.)(H]s) =[(@/T)(H](m), Vs € [nt,(n+D7), Vn€Zy. (5.8)

Inserting this into (5.6), we obtain

(n+1)t
x{(n+ 1) =e"xf(n)+ ( / eAllnFDT=s) ds>b[(q>dr)( N,

nt

= eAfxg(n) + (/ e ds)b[(¢d1") (r* - CTX?)](”%
0
= A%{ () + (@) (r! — " x{) | (n),

where A4 := A" and b := (f; e ds)b. This shows that xg(n) = x¢(n7) is the
solution of the discrete-time initial-value problem

2+ 1) =A%m) + b [(@ D) — ")), 2(0)=¢&.

We see that the discrete-time hysteresis operatbintroduced in Section 4 (see (4.5))
arises naturally in the context of sampled-data control of continuous-time systems with
input hysteresis.

Finally, the intersampling behaviour af (that is the behaviour of¢ |z, (n+1)r)) €an
be bounded in terms od’g andr?. To show this, we use (5.4) (witﬁ, = H;)and (5.8) to
obtain

4 If we assume tha® (Cpm(R+, R)) € C(R+,R) and if we denote the points of discontinuity of the hold-
functions by 1; € (0,7) (i =1,2,...,m), then it follows from Corollary 3.10 that; is continuously differen-
tiable on the interval§nt, nt +11), (nt +1t1,nt +12), ..., (nt +ty_1,nT + ), (0T + tyy, (n + D7) (Where
n € Z+) and thusy¢ satisfies the differential equation in (5.3) on these intervals.
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13
xe(nt +1) =eMxf(n) + / e ds |b[( @) (r! = T xf) ] ).
0
Vte€[0,7), VneZ;.
Consequently, we may conclude that there exist constaris> 0 (not depending omn
or n) such that
[xer + 0] <afxf o]+ Bl[@ D) =T xf) )

For applications of the results in Sections 3 and 4 to sampled-data low-gain integral control
of infinite-dimensional linear systems in the presence of input hysteresis we refer the reader
to [7].

, Vtel0,7), VneZ,.
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