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Adaptive Stabilization of Infinite-Dimensional
Systems

Hartmut Logemann and Bengt Martensson

Abstract—In [1], it was shown that in order to stabilize an
unknown linear, time invariant, finite dimensional system, it is
sufficient to know the order of amy stabilizing controller. The
main result of the present paper is to generalize this result to a
large class of infinite-dimensional systems. For high-gain stabi-
lizable infinite-dimensional systems, an algorithm is presented
which takes this additional a priori knowledge into account.
Simulation results are presented.

I. INTRODUCTION

URING the eighties, some success was made in

establishing theoretical foundations for adaptive
control: New controllers were proposed, solving adaptive
control problems for larger classes of plants than was
previously thought possible. For a recent general overview
of adaptive control, see [2]. In particular, the advent of
controllers with a low number (typically one) of adjustabie
parameters, capable of controlling a class containing plants
with arbitrary (but finite) McMillan degree was an impor-
tant step, in particular in comparison with traditional
approaches, where it had been demonstrated that under
some circumstances, an arbitrarily small violation of the
assumptions on the high-frequency behavior could make
traditional model reference systems—mathematically
proven to be globally stable under the stated assumptions
—unstable, [3].

From the positive results, e.g., [4] and [1], one would
guess that under some reasonable extra conditions, these
results on stabilization of systems with arbitrarily
high—but finite—McMillan degree would carry over to
infinite dimensional systems. The present contribution,
together with some contributions quoted below, show that
this intuition is correct. The main result, Theorem 8,
generalizes the result by Mértensson [1]—namely, that in
order to stabilize a linear, time invariant, finite dimen-
sional plant, it is sufficient to know the order of any
stabilizing controller—to a large class of infinite-dimen-
sional systems. Therefore, the present contribution can
also be interpreted as a sort of robustness results; showing
that certain finite dimensional adaptive controllers are in
fact robust against small, infinite dimensional perturba-
tions. This is an important point, since it is often claimed
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that “real-world systems,” in particular technical or bio-
logical, always contain delays.

Some attempts have been made to generalize “tradi-
tional” adaptive algorithms to classes of infinite dimen-
sional systems: References [5], [6], and [7] deal with model
reference adaptive control for semigroup systems on
Hilbert spaces. In [8], Ferndndez et al. show that some
standard adaptive schemes designed for first-order sys-
tems remain (locally) stable in the presence of “small”
input delays. Ortega et al. [9] presents a globally stable
adaptive controller for scalar plants with one exactly
known delay in the input. In [10], a 2.D-system approach is
taken: a class of delay-differential systems, with the delays
consisting of a finite number of point delays, all having a
rational relationship, is considered. By utilizing algebraic
methods, a standard model reference adaptive controller
is proposed.

In adaptive stabilization of finite-dimensional linear
systems, a high-gain approach has had some success. To
our knowledge, the first contribution in this tradition was
[4], later followed by approaches based on a generaliza-
tion of Tychonov’s theorem [11] to time-varying systems,
first proved by Byrnes and Mértensson [12] (with incorrect
proof), [13]. Kobayashi [14] generalizes this to a class of
infinite dimensional systems described by semigroups on a
Hilbert space. The paper considers adaptive stabilization
of multivariable systems of a somewhat limited structure:
It is assumed that the eigenvalues of the instantancous
gain all reside either in the (open) left or in the (open)
right-half plane. Furthermore, the system is assumed
to satisfy fairly restrictive smoothness assumptions.
Kobayashi’s results have been considerably improved by
Logemann and Zwart in [15], which considers systems
described by strongly continuous semigroups on Banach
spaces. Dahleh and Hopkins have presented similar algo-
rithms [16), [17], stabilizing single-input, single-output de-
lay systems. Byrnes [18] considers systems with bounded
infinitesimal generator, thereby excluding “all” interesting
examples. Further, the paper contains two gaps in that
global existence of the nonlinear, infinite-dimensional
cquation are not established, and it only follows that the
state goes to zero in the weak topology. Logemann and
Owens [19] use an input—output approach, allowing for
certain cone-bounded, memoryless nonlinearities in the
inputs and outputs, and present results for retarded sys-
tems and Volterra integro-differential systems. A modifi-
cation of that scheme is presented in [20], presenting an
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algorithm stabilizing a class of nonlinear retarded pro-
cesses with a prescribed rate of exponential decay @. For
classes of finite-dimensional systems, similar a-stabilizing
algorithms are given in [21], [22], and [23]. It should be
noted that in all these references, exponential stabiliza-
tion is achieved at the price of unbounded adaptation gain
(as t > ), Even in the finite-dimensional case it is still an
open problem how to achieve—without external excita-
tion—adaptive stabilization with prescribed decay rate,
with all involved quantities bounded.

There also have been approaches to “universal adaptive
stabilization” which are not based on high-gain concepts.
In [1], MAartensson proved that in order to adaptively
stabilize an unknown linear, finite dimensional, time-
invariant system, knowledge of the order of any asymptot-
ically stabilizing controller is sufficient. The algorithm was
based on a dense “search” through controller space. Simi-
lar algorithms for finite-dimensional systems have later
been presented e.g., by Miller and Davison [24], [25],
Martensson [13], and by Fu and Barmish [26]. An attempt
to generalize the result to a class of infinite-dimensional
systems consisting of a set of delay systems was made by
Dahleh [27]. Unfortunately, this paper has many short-
comings: Most importantly, the author formulates a theo-
rem for a set of systems satisfying a certain condition
(continuous initial observability). He does not elaborate
on whether this is a restrictive condition or not. In Section
111, we show that this assumption is not satisfied in almost
all interesting cases. Furthermore, the proof of the main
theorem fails to establish both the global existence of
solutions and that the state goes to zero in a suitable
sense.

In Section II, we introduce the set of infinite-dimen-
sional systems we shall be dealing with, the so-called
Pritchard—-Salamon class of systems with unbounded con-
trol and observation. As an example on how more con-
crete systems fit into the abstract framework, retarded
systems with output delays are presented in some detail.
In Section ITI, we analyze a set of infinite-dimensional
systems with respect to the property of continuous initial
observability. From this point on, we shall restrict our
attention to the subset of the Pritchard-Salamon class
which consists of the exponentially stabilizable and expo-
nentially detectable systems. Section IV presents back-
ground results on stabilization of this subclass by finite-
dimensional linear, time-invariant controllers. Although
we do not claim that any result in the section is genuinely
new, we were not able to find them suitably formulated
for our purposes anywhere else. Section V introduces
switching function adaptive controllers, which will be our
vehicle for the positive results to follow. The machinery
differs from the finite-dimensional case in e.g., [13] not
only by being more technical, but also in that some
problems are genuinely approached differently. There-
fore, we believe that this is also of interest for adaptive
stabilization of finite-dimensional systems. We prove that
the knowledge of the order of any stabilizing compensator
is sufficient a priori information for adaptive stabilization
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of the set of systems under consideration. Section VI
presents an adaptive algorithm which stabilizes a class of
high-gain stabilizable systems. The algorithm is based on a
combination of results on high-gain stabilization of infi-
nite-dimensional systems with the switching function con-
troller machinery developed in Section V. In Section VII,
some examples and simulations are given, illustrating the
ideas in Sections V and VI, In the last section, some
conclusions are drawn. Finally, a lemma of a more techni-
cal nature is proved in the appendix.

II. INFINITE DIMENSIONAL STATE-SPACE SYSTEMS
WITH UNBOUNDED CONTROL AND OBSERVATION

In this section, we introduce a set of infinite dimen-
sional state-space systems in an abstract setting, which
will be referred to as the Pritchard—Salamon class. The
presentation will be very brief. For a fuller presentation
with proofs and motivation, the reader is referred to the
references given.

In a formal sense, our basic model is

x(1) = Ax(t) + Bu(t),
y(1) = Cx(t)

where u € LY(0, oc; R™), A is the infinitesimal generator
of a Cy-semigroup S(¢) on a real Hilbert-space W, C
LW,R?), and B € L(R™, V) where V is a real Hilbert-
space satisfying V' > W. We are interested in the mild
solution of (la), i.e., in the trajectory given by the varia-
tion-of-constants formula

x(0) = x, (1a)

(1b)

x(1) = $(1)xo + ['S(t = 7)Bu(r) dr. (2)
0

In order to make the expression under the integral in (2)
meaningful, we assume that A4 also generates a Cy-semi-
group on V, which we will also denote by S(r). We
introduce the following assumptions:

Al) The inclusion map W — V is bounded and W is
dense in V.

A2) There exist a,; >0 such that |CS(xll, ., <
allx]ly for all x € W.
A3) There exist
7)Bu(r)dr € W and

B,t; > 0 such that [l25(r, —

“[’zsu2 — 7)Bu(7) dr
0

< Bllullz,0,1,:5m)
w

for all u € L,(0,¢,;R™).
Ad4) There exists € > 0 such that
[cs(r)Budr = C ['S(r)Budr 3)
0 0
forall u € R™ and ¢ € [0, €].
Note that in (3), the left-hand side is to be interpreted
via A2) [cf. Remark 1, i) and iii)], while the right-hand side
makes sense because of A3) and Remark 1, iv) below.

If V=W, we will call (1) a system with bounded control
and observation.
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Remark 1:

i) Suppose that Al) and A2) are satisfied. Then the
bounded linear operator @y:W — L(0,t;R”), x—
CS(-)x can be uniquely extended to a bounded linear
operator @,:V — L,(0,t,; R?). For every x € VV we de-
fine CSC)x = @) x.

ii) Assumption A3) implies that for every x, € W and
every u € L,(0,1,; R™), (2) defines a continuous function
x(-) on [0, ¢,] with values in W. Of course, we define the
output by

Y1) = CS()xy + C['S(t = 7)Bu(z)dr (4
0

for r € [0,1,].

iii) If A2) holds for one particular ¢, > 0, then it can be
shown that it is satisfied for all ¢, > 0, where o will
depend on ¢,. If S(¢) is exponentially stable on V' then we
can choose a independent of ¢,.

iv) If A3) holds for one particular ¢, > 0, then it can be
shown that it is satisfied for all ¢, > 0, where B will
depend on ¢,. If S(¢) is exponentially stable on W then 8
can be chosen independently of ¢,.

v) Let A, denote the infinitesimal generator of S(¢) on
V. Assume that A1)-A3) holds, together with

(A5) D(A,)c W with continuous dense injection,
where D(A,,) is endowed with the graph norm of A4,.

Then it can be shown that A4) holds (cf. [28]).

vi) For ¢ > 0 define C,: L,(0,;R™) -V, u —~ [;S(t
— 7)Bu(7) dr. Assumption A3) means that there exists a
t, > 0 such that

Im€, cw (5)

G,Z < 53(1‘2(07t2;Rp)7W)' (6)

If A1) and A5) are satisfied, it has been shown in [29] that
(6) is implied by (5).

vii) It is easy to show that ['CS(s)Budr =
C[TS(r)Budr for all T>t>0 and u € R™ provided
that A1)—A4) hold. |

The above setup and various modifications thereof have
been introduced and investigated in [28], and [30]-[34].
Related work has been done in [29] and [35].

For examples of systems satisfying A1)-A4), we refer
the reader to [30], [28], [32], [33]. It is known that for a
large class of neutral systems with delays in the input or
the output A1)-A4) hold (cf. [30], [28]). Furthermore, it
has been shown in [36] that A1)-A4) are satisfied for
retarded systems with delays both in the control and the
observation. For parabolic, hyperbolic, and spectral sys-
tems sufficient conditions for A1)-A4) were given in [28]
and [32]. They were applied to partial differential equa-
tion models of flexible structures in [37].

The next result shows that we obtain a well posed
closed-loop system if state feedback or output injection is
applied to the plant (1) (see [30], [32], [34)).

Lemma 1:

i) Suppose Al) and A3) are satisfied. Then for F €
LW, R™) there exists a C,-semigroup S (¢) on W which

and
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is the unique solution of
Sp(t)x = S(t)x + f’S(z — 1)BFSp(t)xdr (7)
0

forall x € Wand ¢t > 0.

i) If A1) and A2) hold then for H € ¥(R”, W) there
exists a C,-semigroup S,(t) on W and V' which is the
unique solution of

S,()x = ]’S(z — T)HCS, (7)xdr (8)
0
for all x € Wand ¢ > 0. Further, S,(¢) and C satisfy A2).
Under the extra assumption that A3) and A4) hold S (¢),
B, and C satisfy A3) and A4).

Remark 2: Suppose A1)-A4) hold. Since C and Sy(1)
satisfy A2) the expression CS,(-)x makes sense as a
function in L9°(0,%;R”) for all x € VV [see Remark 1, i)
and iii)]. It follows that (8) holds for all x € V. n

We will next show how retarded systems fit into the
abstract framework:

Example 3: Consider the system with delays in the
output

#(1) = Ax, + Bu(t)
y(1) = Cx, 9

where x(¢) € R", u(z) € R™, y(+) € R” and x, denotes
the function segment given by x(7) =x(t + 1) for 7 €
[—#4,0], where A is the length of the delay. Further,
Be R 4 e E,R") and C € L(E,R?), where C
denotes €(—#4,0; R™). From elementary functional analy-
sis, it follows that 4 and C can be represented as

Agozfijhda(r)(,o(f), qu=[j]hdy(7)(p(7),

pEF

for some functions « € BV(—h,0;R"*") and vy €
BV(—h,0;R?*"). In the sequel, let W, , denote the
Sobolev space W, ,(—h,0; R") (cf. [38]). Define

W= {(¢(0), ¢): ¢ € W, ,}
Vi=M, = R" X Ly(—h,0;R")
x(1) = (x(t),x,) = (x()’xl) eEM,.

It is clear that W and V satisfy Al). In the following we
shall identify W with W, ,. We define the operators
&, B, €, corresponding to 4, B, and C in (1), according
to

D) ={peMy¢' €W ,,¢" =0 (0)} =W
Ao = (A¢', ¢")
and @ € L(R", M,), Bu = (Bu,0), while & € L(W,R")

is given by

o= [ dy(n)e' ().
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It follows from e.g., [30] that A2) and A3) are satisfied.
Moreover, A4) holds by Remark 1, v).

In particular, note that we are faced with two difficul-
ties here, which to some extent motivates the technical
framework in Section II:

» The operator & is unbounded in the sense that
& € LR, V) but & & LUR™, W).

 The operator @ € (W, R”) cannot (in general) be
extended to an operator in L(V, R”). |

Example 4: Retarded systems with delays in the input
can also be modeled within the Pritchard—Salamon class.
This is technically more delicate than the output delay
case and we refer the reader to [30] and [31]. Moreover,
retarded systems with delays in the control and observa-
tion variables fit into the Pritchard—Salamon class as well,
see [36]. n

Example 5: Single-input, single-output linear systems
with time delay in the input plays an important role in
control engineering. In transfer function form they are
given as

g(s) =g\(s)e ™"

where g(s) is a rational function and 4 > 0 is the time
delay. Alternatively, the system may be given as

x(t) = Ax(t) + bu(t — h)

y(t) = ex(t)
or

x(t) = Ax(t) + bu(t)
y(t) = cx(t = h)

where g,(s) = c(sl — A)~'b. Industrial examples include
time delays due to conveyor belts, flows in tubes, and
computational delays in digital control systems. The sam-
pled implementation of a continuous-time control law is
often modeled as a time delay equal to half the sampling
period ([39]). In many cases the time delay is unpre-
dictable (e.g., computational delays in digital computers),
changing, or operation point dependent (flows in tubes:
the time delay being inversely proportional to the flow).
Therefore, considering the problem of control of uncer-
tain systems with uncertain time delays is highly industri-
ally relevant. ]

III. CONTINUOUSLY INITIALLY OBSERVABLE SYSTEMS

In [27], Dahleh deals with the adaptive stabilization of a
class of delay systems which are “continuously initially
observable.” Unfortunately, he does not elaborate upon
the restrictivity of the assumption. This will be done in the
following.

It would be possible to carry out the analysis for a
slightly larger class than the Pritchard—Salamon class
introduced in Section II. To save space and notations, we
shall not do so.

Definition: Let u =0 and T > 0, and assume that A1)
and A2) are satisfied. Let X be a normed space satisfying
X C V (set theoretically). We call (1) initially observable on
X on the interval [0, T] if the output map x, — CS(-)x, (as
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a mapping from X to L,(0,T;R?)) is one-to-one. We say
that (1) is continuously initially observable on X on the
interval [0, T] if there is a constant y (in general depend-
ing on T) such that |lx,llx < ylICS¢)xgll 0. 7.0 for all
X, € X. If there exists a T > 0 such that (1) is (continu-
ously) initially observable on X on [0, T, we will say that
() is (continuously) initially observable on X.

By Remark 1, i) the definition makes sense also in the
case X ¢ W. Initial observability on X on [0, 7] is the
property that the mapping from state to output is left
invertible, while continuous initial observability on X on
[0, 7] says that it is continuously left invertible.

To get some intuition, we will first consider the possibly
simplest nontrivial delay system.

Example 6: Consider the delay system on R

(1) =0
y(t) =x(t = 1)
x(0) = ¢, x(7) = o!(7), T€[-1,0]
o=(¢" ¢") € My)(—1,0).

By Example 3, (10) can be reformulated as a system of
the form (1), where W = {(¢(0), ¢): ¢ € W, ,(—-1,0)} and
V' = M,(—1,0). The output of (10) is given by

(10)

Iy —
(1) = gD“(t 1), te[0,1)

©, 1> 1. an
It is clear that for any subspace X € M,(—1,0)and T > 1
(10) is initially observable on X on [0, 7). On W(V) the
system is initially observable on [0, 7] if and only if T > 1
(T > 1). Using (11) it is not difficult to show that (10) is
continuously initially observable on V' = M,(—1,0) on the
interval [0, 7] if and only if T > 1. However, as we will
show next, there is no T such that the system is continuously
initially observable on W on [0, T).

Let 4 be a real-valued function and R be a function
satisfying supp ¢ € [—1,0] and [*,¢%(r)d7 = 1, and de-
fine ¢ € W, , by 4;(r) = ¢(ir) for r € [—1,0]. Further,
let ¢; be a sequence of initial conditions in W defined by
@ = (4(0), ¢,) = (0, ¢;). Denote the output of (10) with
initial condition ¢ = ¢, by y,. Clearly, for 7 > 1 it holds
that [lyll.,0.71=1/i > 0 as i - . The corresponding
initial conditions ¢, go to 0 only in coarse topologies such
as the M, topology, not in finer topologies as the W
topology. |

An immediate observation is that a systems with delay
h in the output operator cannot be initially observable on
intervals of length less than /. More importantly, even for
T > h, the next proposition shows that the assumption of
continuous initial observability prohibits most delay sys-
tems.

We now return the focus to general systems of the form
(1). The above example has demonstrated an initially
observable system which is not continuously initially ob-
servable on the space W, where the observation operator
is defined and bounded. This is not a coincidence.
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Proposition 2: Let T > 0. Then the system (1) is contin-
uously initially observable on W on [0, T] if and only if it
is initially observable on W on [0, T] and dim W < <.

The proposition follows via duality arguments from a
result in [40] on exact controllability. However, a direct
proof can also be constructed along the following lines,
which, basically, is a dual version of Proposition 3.2 in
[40]: Assume that the system is initially observable on
[0, T'], otherwise there is nothing to prove. To say that the
system is continuously initially observable is to say that
the output operator has a bounded left inverse. Next,
show that the state-to-output operator, called @, in
Remark 1 i), can be approximated (in the strong operator
topology) by a sequence of finite rank operators, i.e., it is
compact. For this, use the semigroup property and that
lim, o, ICS(7) — Cll = 0, where the latter follows from
the fact that $*(¢) is a strongly continuous semigroup on
W*. A compact, one-to-one, operator has a bounded
inverse if and only if the underlying space is finite dimen-
sional.

In particular, it follows from the proposition that sys-
tems with bounded control and observation opera-
tors—such as retarded systems with no input- or output
delays—are not continuously initially observable on V' =
w.

Remark 7: Proposition 2 shows that (except for the case
dim W < =) the system (1) is not continuously initially
observable on W. If A1) and A2) are satisfied, by Remark
1, 1), the input of (1) can be defined as an element in
L'7¢(0,=; R”) (not necessarily pointwise—compare Exam-
ple 6!) for all initial conditions x, € V. It is an interesting
problem to find necessary and/or sufficient conditions for
continuous initial observability of (1) on V. One such
characterization (in terms of duality) follows from [41,
theorem 3.2]: (1) is continuously initially observable on V/
on the interval [0,¢,] if and only if Im @}, > V* [with @},
as in Remark 1, 1)]', i.e., the controlled system ($*(¢), C*)
in the state space W* is approximately controllable (on
[0,¢,]D and the range of its controllability map contains
| 2 ]

IV. FINITE-DIMENSIONAL STABILIZATION

We now define exponential stabilizability and de-
tectability on W.

Definition: i) Suppose that A1) and A3) hold. We say
that the system (1) is unbounded exponentially stabilizable
on W if there exists an operator F € £(W,R™) such that
the perturbed semigroup Si(¢) defined by (7) is exponen-
tially stable on W.

ii) Suppose that A1) and A2) are satisfied. The system
(1) is called exponentially detectable on W if there exists an
operator H € ¥(R”, W) such that the perturbed semi-
group S, (¢) defined by (8) is exponentially stable on W.

We shall now turn our attention towards finite-dimen-
sional dynamic output feedback of (1). Introduce the

! Note that the map V* - W* ¢ ¢ly is bounded, one-to-one, and
has dense range.
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finite-dimensional compensator of order / > 0

z=Fz+ Gy ze R
u = Hz + Ky.
For [ = 0 (12) should be understood as u = Ky.
We will consider dynamic feedback as static feedback

applied to an augmented plant, by conceptually adding
the dynamics of (12) to the plant. Define

e (8 ) 5 (3 0 e (S 9)

(12)

S = (SO0, w-wer over.
(13)

It is clear that W,V, S(), B,C will satisty Al), A2), A3),
and/or A4) if and only if W,V, S(-), B, C do. Moreover, it
is easily seen that unbounded exponential stabilizability
on W and exponential detectability on W are preserved
under augmentation. If A1) and A3) are satisfied by (1) it
follows from Lemma 1, i) that there exists a unique
C,y-semigroup S, () on W solving

S,(t)x = S(r)x + fo’§(z — 7)BKCS, (t)xdr (14)

for all x € W, and all ¢ > 0.

Definition: Suppose A1) and A3) hold. We say that (12)
exponentially stabilizes (1) on W if the C,-semigroup S,,(1)
on W given by (14) is exponentially stable.

Remark 8: Suppose that A1) and A3) are satisfied and
(1) is exponentially stabilizable on W by a compensator of
order /. Then it is easy to show that for all I’ > [ there
exists a compensator of order /' which stabilizes (1) expo-
nentially on W. a

In the following let Z denote the set of all systems of
the form (1) which satisfy A1)~A4) and which are un-
bounded exponentially stabilizable and exponentially de-
tectable on W. The set of all systems in & which can be
exponentially stabilized on W by some compensator of
order ! will be denoted by &,.

Proposition 3: Any system in & can be exponentially
stabilized on W by some finite-dimensional compensator,
ie.,

(Y]
(

=yUe.

=1

Proof: Tt follows from [32] and [34] that any system in

< has a well-defined transfer matrix whose entries belong
to the so-called Callier—Desoer class (cf. [42], [43]). As a
consequence, any system in & can be stabilized in the
input—output sense by a rational compensator (cf.
[44]-[46]). An application of the result in [32] on the
equivalence of input-output stability and exponential sta-
bility for infinite-dimensional systems proves the claim. O

Related results on finite-dimensional stabilization of
infinite-dimensional systems can be found in [47]-[49],
[31], and [50].
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Just as in the finite dimensional case, it suffices to
consider stabilization by controllers with e.g., rational
coefficients:

Lemma 4: Let § be a dense subset of the set of all
controliers of the form (12). Then any plant in S, can be
stabilized by a controller in §.

“Dense” should of course be interpreted with respect to
the topology induced by identifying the controller (12)
with a point in R"*" X R"*™ x RP*" x RP*m,

Proof: By of the construction above, it is enough to
show the lemma for static feedback, ie., / = 0. Let G
denote the transfer function matrix of (1) and suppose
that K € R™*? exponentially stabilizes (1) on W. We
shall show that K + A has the same property for all
sufficiently small A € R™*”, It is known (see [32] and
[34]) that the entries of G belong to the Callier-Desoer
class. It follows from the equivalence of exponential sta-
bility and input-output stability for systems in S ([32])
that it is sufficient to show that it is sufficient to show that

(I +G(K+A))'GeHpxm

for all sufficiently small A € R™*? (15)

where H, denotes the functions which are analytic and

bounded on the open right-half plane. Since (7 +
GK)™'G € HP*" and

(I+G(K+A8))"'G=(I+(I+GK) 'Ga)”'
(I+GK)'G
we may consider (/ + G(K + A))"'G as the feedback
interconnection of two stable subsystems: the system rep-
resented by the transfer function (/ + GK) 'G, and the

system represented by A. Thus (15) follows from the small
gain theorem, [51]. O

V. STABILIZATION BY SWITCHING CONTROL

We next introduce some concepts and definitions for
adaptive stabilization. The type of switching function con-
trollers we will consider first appeared in [13]. It was the
main tool of [27]. Similar approaches can be found in [24]
and [26]. It should be noted that the concept of adaptive
stabilization by switching was introduced in the papers by
Byrnes and Willems [4] and [52].

Let & = {K}},. be a countable set of controllers of
the form (12). By u = Ky we mean the operator relation-
ship between u and y, for some initial condition z(0),
which is to be considered as a part of the operator K.
Further, let {r},_ be a sequence of real numbers, in-
creasing towards infinity. We call a function o:R - N a
switching function with switching points {r,) if for all a € R
it holds that ¢ ([a, <)) = N and its discontinuity points are
{r;}. We also require o to be right continuous.

The switching function controller associated with §
and o is now defined to be

u =K,y
k=Nyl®+lul®,  k(0) = k,.

The structure is illustrated in Fig. 1.

(16)

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 37, NO. 12, DECEMBER 1992

Switching

Mechanism j

Piant

Fig. 1. Switching function controller.

In this paper, we will only consider the switching point
sequence given by

i=1,2,,

_ .2
T =T

)

Ty =«

for some a > 1.

Remark 9: The way (16) is written (compare Fig. 1) it
says that all controllers K; are processing the plant output
for all ¢ > 0. Thus, unless all but a finite number of X,
are memoryless, (16) is an infinite-dimensional controller.
If all K; have a realization on a common state space, say
R’, with a common initial condition z(0), this difficulty
can be avoided by considering static feedback applied to
an augmented plant, as in (13). We will write this con-
troller

a = Ka(k)i
k=157 + lal®, k() =k, (18)

with notation as in (13). [
Consider the augmented system (1), i.e.,

#1) = S()F + [S(t = 7)Ba(r) dr, %, €W
0

(1) = Ci(1) (19)
where $(¢), B, C, and W are defined as in (13). For
T € R, U{) we shall call a function (&, k):[0,T) — W x
R a solution of the closed-loop equations (19) and (18) on
[0,7) if £:[0,T) > W is continuous, k:[0,T) — R is ab-
solutely continuous, and (X, k) satisfies (19) and (18) for
almost all ¢ € [0, T).

Definition: By saying that (18) stabilizes (19) we shall
mean that for all initial conditions £(0) € W and k(0) € R
it holds that (||X()ll;7, k(2)) = (0, k) (where k, < =) as
t > », For &' a subset of & we say that (18) stabilizes
" if it stabilizes every member in &'. If &' € & is such
that there exists a controller of the type (18) stabilizing it,
we say that &' can be adaptively stabilized.

~
=3
Z
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In [13], a general theorem on adaptive stabilization of
finite-dimensional linear systems by switching function
controllers was proved. It was extended to a class of
nonlinear systems in [53]. Here we shall prove a general-
ization which covers the class & of infinite-dimensional
systems.

In order not to burden the paper with generality we will
not take advantage of, we will not attempt to formulate
the theorem in the greatest possible generality. However,
some comments will be given in a remark.

Theorem 5: Let &' € Z. Assume that & = {K},. isa
set of controllers of the type (12) (with a bound on the
I’s), with the property that for any system in &’ there is a
controller K (depending on the system) in $ exponen-
tially stabilizing it on W. Then the controller (18) [with 7,
according to (17)] will stabilize any system in &'.

Without loss of generality, we may assume that &' C
Z«, for some I*.

We would like to stress the “modular” character of the
theorem. By the “selection” of §& it is possible to take
advantage of available a priori knowledge.

At the end of this section, the theorem will be used to
show that, just as in the finite dimensional case [1], the
order of a stabilizing controller is sufficient a priori infor-
mation for adaptive stabilization. In the next section, the
theorem will be used to construct an adaptive controller
for a class of high-gain stabilizable systems.

In previous work on adaptive stabilization by searching
dense sets of controllers, a crucial step was an estimate of
llx]l in terms of the L,-norm of y and u; see {1], [13], [24],
and [25]. This estimate expresses the fact that the initial
state of a finite-dimensional observable system can be
continuously reconstructed from the observation. As
Proposition 2 showed, generalization to infinite-dimen-
sional systems is not entirely straightforward. Somewhat
surprisingly, exponential detectability, instead of observ-
ability, turns out to be a fruitful approach.

Proposition 6: Suppose Al)-A4) are satisfied and (1) is
exponentially detectable on W. Then we have the follow-
ing:

i) For all x, € W there exist constants ¢, = ¢,(x,) and
¢, (not depending on x,), such that for all r > 0 and
u € L5°(0,; R™) it holds that

Ol < ey + [ [Iyl dr + [luo)F ar . @0)

i. Let x, € W. If u € L,(0,2;R™) produces an output
y € L,(0,0;R”) then

(21)

Ilirrillx(t)\\y = Ianl\\x(t)!lw =0.

For the proof we need the following technical result,
which is proven in the appendix. The lemma makes sense
of the (purely formal) equation

X=Ax + Bu= (A + HC)x — HCx + Bu.

Lemma 7: Suppose Al)-A4) hold. For H € {(R”, W),
let S;,(-) be as in Lemma 1, ii). Then, for all x, € W and
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u € L'y¢(0,; R™) the integral equation

w(t) = S, (0)x, + [0'5,,(: — 7)Bu(r) dr

—f’sH(r — DYHCw(7) dr (22)
Q0
has a unique solution x € €(0,2; W) which is given by
t
x(t) = S(t)x, + fS(z — 7)Bu(7) dr,
0

i.e., the mild solution of (1a).

Proof of Proposition 6: By the definition of exponen-
tial detectability, there exists an operator H € L(R”, W)
such that the C,-semigroup S,(¢) defined by (8) is expo-
nentially stable on W, i.e., there exist A, A > 0 such that

ISy (Ollew) < Ae™™

for all ¢ > 0. It follows from Lemma 7 that for x, € W
the mild solution of (1a) satisfies

x(t) = Sp(0)x, — fo’sﬁ(r —~ T)Hy(r) dr

+f’s,,(r — r)Bu(r)dr. (23)
0

By Lemma 1, ii), the exponential stability of S,(-) on W
and Remark 1, iv) there exists a constant y > 0 (not
depending on ¢ or u) such that

< YHMHLZ(O,” (24)

w

Hfo’sﬂ(t — ©)Bu(r)dr

for all ¢+ > 0 and u € L¢°(0,%; R”). From (23) we get

2

1/
(1)l < Allxolly + y(f(;llu(f)\lz dT)

1/2
t t
CAlH e'zwf) ( ly(r ||2d7)
I n( fo fo y(7)
With T' = max(y, Al HII( [7e™ 2" d7)V/?) it follows that

(j;||y(7)||2 dr)l/z

. 17212
+ fllu(T)Ilsz) < 2A%Ix, Il
0

1/2

lx()F < 2A2x,ll3 + 212

+ 4F2(f0’||y(7)\|2 dr + /U’uu(f)nz dr).

With ¢, = 2A%||x,|liy and ¢, = 412, this is the first state-
ment.

By assumption Al), it is enough to show the second
equality of statement ii). For this, note that
lim 1S, () xollw = 0, and, moreover,

t—x

1im||f’s,,(r — 7)Hy(7) drllw = 0
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since S,(t) is exponentially stable on W and Hy €
L0, ; W) Setting

2(t) = [O’SH(z — 7)Bu(r) dr

it follows from (23) that it only remains to show that
lim, . [|z()llw = 0. (This does not follow immediately
from u € L,, since Bu(-) may take on values outside of
W) To this end, let € > 0 be given. Since u € L,(0,)
there is a T such that

j:nu(T)nszg 2—2
For t > T we have
2(1) = fUTSH(t = T)Bu(r)dr+ ['S,(1 - 7)Bu(r) dr
T
= Su(t = 1) ['8,(T ~ )Bu(r) ar
0

+ ['8,(t = ) Bu(r) dr.
T
Therefore, by (24)

€
lz()llw < Ae_)‘("T)YHuHLZ(o,x) + 5

Clearly, llz(!)lly < € for large . Smce € > 0 was arbitrary,
it follows that lim, . llz()ll, = a

Remark 10: By replacing Lemma 3.1 in [13] and the
lemma in [1] by Proposition 6, the results on stabilization
of observable plants immediately become valid for expo-
nentially detectable plants, with no other changes in the
proofs. Precisely, this applies to the theorem in [1], and to
Theorem 3.18, Theorem 4.1, and Theorem 5.1in[13]. =

Proof of Theorem 5: Using routing arguments, it can
be shown that the closed-loop equations (19) and (18)
locally admits a unique solution. Further, if it exists and is
bounded (in W X R) on an interval [0, T), it can also be
continued beyond T.

We claim that it is enough to prove that k(¢) is bounded,
or equivalently, that o (k(¢)) only switches a finite number
of times when ¢ — %, where [0, ¢*) is the maximal interval
of existence of the solution to the closed-loop equations
(19) and (18). Under this assumption, it follows from
Proposition 6, i) (with x replaced by % etc.,) that ||#()|li7
is bounded on [0, ¢"). Therefore, by the above, the global
existence of the solution is established. Moreover, if
stays bounded, it converges, since it is monotonically
increasing. However, this is exactly the statement that
J € L, (0,0,R”* ) and & € L,(0,; R"*'). It follows from
Proposition 6, ii) that lim, .. [[#(:)ll = 0, which proves
the claim.

Next, assume that o (k(-)) switches an infinite number
of times. We consider a fixed system in &', Let K, denote
a controller which exponentially stabilizes on W By the
assumption, there is an infinite sequence {z} and a subse-
quence {r, } c {7}, such that k(z) = T and U(TJ) =

[EEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 37, NO. 12, DECEMBER 1992

for all i. (“A ‘good’ controller K, exists, and will be used
infinitely often.”) Define #; = — min{t: k(1) = 7,1} (which
exists under the assumptlon of k(t) being unbounded)
(“The ‘good’ controller will always be disconnected after a
finite time.”) But this is to say

LRI + a0 de = [PI501 + 1K, 5(1)|* dr
| (25)

2T T T

Since 16 by assumption is exponentially stabilizing on W,
there ex1sts a constant ¢ [not depending on ¢; or x(¢))]
such that
e - -
JUUFON + lla(o))? de < cli(e)lF.  (26)
t
By Proposition 6, i), for some c,, ¢, we have (¢, Wi <

¢y + c((k(t;) = k,) for all j. Noting that k(z)) = 7, and
combining these estimates, we arrive at the 1nequahty

ko). (27)

But, with {r;} chosen as in (17), it is easy to see that for
any ¢, ¢, and ¢, (27) will be violated for all sufficiently
large j. m|

Remark 11: We list a number of simple generalizations
of Theorem 5. They all follow from an inspection of the
above proof. The details are omitted.

i) The parameter updating law & = [|5]|* + ||i]|* can be
replaced by a continuous, causal, functional ®(F(-), i(-))
satisfying  ®(3(-), a(-)Xr)) < <D(y() a(- ))(tz) for ¢, <t,,
and ®(5(-), @(-)Xt,) > c[él(lly(t)ll + la@)l*) dt for some
¢ > 0. It is enough that the last condition holds in a
“weak” sense, for example for large ¢,.

ii) If §¢ is bounded (as a subset of R +DX(7+D)  the
parameter updating law k(t) = ||5(¢)|I* can be used (by
the previous remark).

iii) The set of switching points given by (17) is of course
not magic. Required is a sequence violating (27) for large
indexes. If (27) is to be violated for any ¢, ¢, and c,, we
need a sequence growing faster than exponential. With
some a priori knowledge about &', i.e., some knowledge
about c, ¢, and ¢, a less violently growing sequence may
be possible. For &’ such that the possible c, ¢, and ¢, lie
in a bounded set (if &' is compact in some sense), an
exponentially growing switching sequence is possible.

iv) Let a > 0 be given. Under the additional assump-
tion that 8 for any system in &' contains a controller
stabilizing it with exponential decay rate «, the controller

u(t) = o(k(r))y(t)
k() = e (IF(O1* + ()l

will stabilize any system in &' with decay rate «. Com-
pare [23], [22], and [20]. [ |

Finally, we generalize the result by Martensson [1] to
the class & of infinite-dimensional systems. In order to
emphasize the existence proof character of the controller,
we formulate the result both in a nonconstructive and in a
constructive theorem. Of course, the latter will be proved.

T = T S eyt ey -
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Theorem 8 (Nonconstructive Version): ©, can be adap-
tively stabilized. That is, sufficient a priori information for
adaptive stabilization of the infinite dimensional system
(1) is the order of a stabilizing controller.

Theorem 8 (Constructive Version): Let = {K;},_n be
an enumeration of all /th order controllers of the type
(12) with rational coefficients. Assume that system (1) is in
2,, ie., exponentially stabilizable on W by some con-
troller (12) of order /. Under these assumptions, the
controller (18) will stabilize (19) in the sense that for all
#0) € W and k(0) € R it holds that (|£()llw, k() >
(0, k,) (where k, < =) as t — .

Proof: By Lemma 4 a system in &, is exponentially
stabilizable on W by a controller in $§t. The theorem now
follows from Theorem 5. a

Remark 12: Let a > 0 be given and let &, , denote
the subset of systems in &, for which there exists F €
L(W,R™) and H € XL(R?, W) such that the semigroups
Sr(¢) and S, (¢) defined by (7) and (8) have a decay rate of
at least « on W. Then there exists a countable set §t
which for any system in £, , contains a controller stabi-
lizing it with decay rate «. Hence, the control law in
Remark 11, iv) will stabilize any system in &, , with
decay rate «. |

VI. HIGH-GAIN STABILIZATION

In this section, we turn our attention to a class of
infinite-dimensional systems which are stabilizable by
high-gain output feedback. We will only consider square
systems, i.e., with p = m. By $ we will denote the set of
all systems of the form (1) in & satisfying

(HG) The inverse of the transfer function matrix G of
the system (1) satisfies

G '(s) =sD + H(s) (28)

where

D € GL(m) and H e H!*™,

We remark that (HG) makes sense since it is known (see
[32], [34]) that each system in & has a well-defined
transfer function matrix whose entries belong to the Cal-
lier-Desoer class ([42], [43]). Moreover, D and H are
uniquely determined by G.

We next introduce two subclasses 8 and M of S
show that they are contained in §.

By 28 we will denote the subset of & with bounded
control and observation (i.e., V = W) satisfying the follow-
ing additional properties:

e The system (1) is exponentially minimum-phase, i.e.,
there exists a y > 0 such that the kernel of the operator

(sI—A B)

and

C 0

is trivial for all complex s with Res > —v.

e det CB # (.
« (At least) one of the following properties is satisfied:
D Im B € D(A) and Im C* € D(A4*),
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2) Im B © D(A42),

3) Im C* c D(A*?),

4) S(¢) is analytic and Im B C D(A),
5) S(¢) is analytic and Im C* < D(A4%).

It has been proven in [54] that B C ©. Further, D is
given by (CB) ™'

Retarded systems (in general) do not satisfy any of the
smoothness conditions 1)-5). However, a direct analysis of
the transfer function matrix of a minimum-phase retarded
system with invertible instantaneous gain will show that
(HG) holds. We turn our attention to a set of retarded
systems of the form

() = ffhdA(T)x(t +7) + Bu(r)

y() = Cx(t) + fir(T)x(t +7)dr

x(0) =x" x(r)=x'(7), 7€[-h,0)

(%, x"y € M, = R" X L,(—h,0;R") (29)

where A € BV(—h,0;R"*"), B € R"*™, C € R™*", and
' e AC(—h,0;R™*"). By R we will denote the set of all
systems of the form (29) having the properties

sl —A(s) B

. det R
C+TI(s) O

#0 forallseC, (30)

where A(s) = [, dA(r)e*, I'(s) = [°,T(r)e* dr, and
C, denotes the open right-half plane

. det CB # 0. (31)

Proposition 9: The set N is contained in $. Further,
D=(CB)™".
Proof- Let the operators & and & be as in Example
3, and define the output operator & by

%: M, > R"
0 1 0 0 1
(¢%¢") = Ce* + [ T(1)¢!(7) dr.

Since ' € Ly,(—h,0; R"*™) it follows that & €
AM,,R™) and hence (29) can be represented as the
infinite-dimensional system

X =X + Bu

y=¢x (32)

with state space M,(—h,0; R"). The assumptions A1)—A4)
are trivially satisfied by (32) because & € #(R", M,) and
% € AM,,R™). Moreover, it follows from (30) that

tk(sI — A(s) B)=n forallseC,

and
sl — A(s)
c + 1)

=n forall s € C,
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which implies that (32) is exponentially stabilizable and
exponentially detectable (cf. e.g., [30]).

We have shown that )% © &, and it remains to verify
that the transfer matrix of (29)

G(s) = (C + [(s))(s + A(s)) ' B

satisfies assumption (HG), with D = (CB)~". This will be
done in several steps.

Steps 1: Denote the ring of entire functions and the
field of meromorphic functions on C by # and .#, respec-
tively. Realize that G €.#™>™ 1t is well known that .# is
the quotient field of # and further that % is a Bezout ring
(i.e., every finitely generated ideal is principal), see e.g.,
[55]. Therefore, it follows ([56]) that G admits a right-
coprime factorization over %7, i.e., there exist P,Q, X, Y e
Z™M*™ satistying G = PQ ' and XP + YQ = I. Now

sl —A(s) B
c+I(s) o0

_ det (sl — A(s))
~ detQ(s)

and since det Q divides det (s — A(s)) in the ring # (cf.
[46)]) it follows from (30) that

det det P(s)

det P(s) #0  foralls eC, . (33)

Step 2: Setting F(s) = (s + DG(s) we claim that it is
sufficient to show that
F(s) —CB=0(s"") as [s|>= in C,. (34)
If (34) is true we have in particular

lim F(s) = CB.
"
Combining (31), (33), and (35) shows that F~'(s) is con-
tinuous on C, and belongs to H,"*™. Therefore, by (34)

(35)

K(s) = (s + )(F~'(s) - (CB) ") e H"* ™

It follows that G~ '(s) = (s + DF~1(s) = (s + 1XCB)~!
+ K(s), which is (28).

Step 3: It remains to show that (34) holds. Realize that
by the assumptions on 4 and I' the functions A(s), ['(s),
and sI'(s) are bounded on C_+ Hence, we obtain from

s(F(s) = CB) = s(C + I'(s))(I - s~ YA(s)) "

“B(I+s7'I) — sCB

i sTUD4i(s) )B

i=1

=C

+ sf‘(s)( i s"AA"(s))B
i=0

+(C+ f(s))( i s"Af(s))B
i=0

that s(F(s) — CB) is bounded on the set {s € C,: |s| >
o}, for ¢ some large constant. O
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The next result shows that all systems in § can be
exponentially stabilized by static high-gain output feed-
back. In the finite-dimensional case, it is well known, e.g.,
from multivariable root-locus (e.g., [57]), that if spec CB
c C., all such systems will be stabilized by the feedback
u = —ky for all sufficiently large k. Under the additional
technical assumptions introduced above, this also holds in
infinite dimensions:

Proposition 10: Suppose that (1) belongs to §, and that
spec D C C,. Then there exists a k, > 0 such that the
control law u = —ky will stabilize (1) for all k > k.

Proof: For positive integers g, r, for H, (H,) a q X
r(r X q) matrix of functions from C to C, we write
§(H\, H,) == (I + H H,)"'H,, the “transfer function” of
the “plant” H, “controlled” by u = —H,y +v. By a
general result on the equivalence of input-output stability
and exponentially stability for infinite-dimensional sys-
tems (cf. [58] or [32]) it is sufficient to show that G, =
(G, kI) € H"™ for all sufficiently large k. From (28)
and a short computation (or, possibly easier, a block
diagram argument) we have]

1
Gu(s) = %(ﬁ(sol,u),ﬂ(s)).

Since, by definition, H € H™*" it will follow from the
small gain theorem that G, € H™*™ if we can show that
IF(1/s)D~", kDl jy»xn can be made arbitrarily small by
selecting k large enough.

By an elementary computation, §((1/s)D!, kI) = (sl
+kD™")"'D"". Therefore, since spec D~ = (spec D)
c C,, it holds that F(1/s)D" ' kI) € H"*™ for all
k >0, and furthermore, |F((1/s)D™Y, kI)||ymxn — 0 as
k — o, a

We note the following simple corollary.

Corollary 11: Suppose that (1) belongs to ©, and that,
for some Q € R™*™, spec DQ C C,. Then there exists a
ky > 0 such that the control law u = —kQy will stabilize
(1) for all k > k.

Proof: The condition spec DQ € C,% 0 means in
particular that Q is nonsingular. A system in & given by
the triple (A4, B,C) clearly belongs to © if and only if
(A,B,Q7'C) € 9. An application of Proposition 10 to
be latter system proves the corollary. a

In the light of this corollary, the problem of finding a
(constant coefficient) controller for a system in § reduces
to the problem of finding Q € GL(m) such that spec DQ
€ C,, and to find k large enough. We will than invoke
the switching function machinery developed in Section V
to switch among these to arrive at an adaptive controller
stabilizing any member of 9.

The following terminology was originally suggested by
C. L. Byrnes: For m = 1 we call a set @ ¢ GL(m) unmix-
ing if it holds that for any 4 € GL(m) there isa Q € &
such that spec AQ = spec 04 c C,.

An extensive treatment of the unmixing problem can be
found in [59] or [13, section VI-B]. The following proposi-
tion collects some relevant facts therein.
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Proposition 12: 1) For all m > 1 there exist finite unmix-
ing sets.

i) It is enough to unmix SO(m). More precisely: If
@ < SO(m) is such that for any 4 € SO(m) there is a
Q € @ such that spec AQ = spec Q4 c C, then @ U J@
(where J = diag(l,...,1, — 1) € O(n)) is unmixing. iii) A
necessary, but not sufficient, condition for a set @ C
GL(m) to be unmixing is that there is no proper subspace
of R™ which is invariant for all & € & (For & a group:
The natural representation of € on R” is irreducible.)

For the proof, as well as more comments, the reader is
referred to [59] or [13].

For m =1, clearly {1, —1} is an unmixing set. For
m =2 it is easy to show ([59] or [13]) that the three
element set consisting of the identity and the rotations
+2/3 unmixes SO(2). It can be shown that O(3, Z) (the
orthogonal matrices with integer elements) is unmixing
for GL(3). However, it is not true that O(m, Z) is unmix-
ing for GL(m) for large m ([59] or [13]). Exactly for what
m the statement holds is unknown. In [13], it was made
plausible that the subgroup of index 2 in O(3,Z) consist-
ing of the matrices of the group of rotations of the unit
cube in 3-space, is unmixing. Recently, [60] showed that
this statement is true, except for a finite number of
matrices. A 16 element solution for SO(3) is also given
there.

For any m a finite unmixing set is explicitly given in [59]
and [13]. The construction can be described as follows:
The Euler angles on SO(m) can be considered as a
mapping from a finite interval I < R (where M =
dim SO(m) = m(m — 1)/2) to SO(m). This mapping is
onto, and almost one-to-one (one-to-one except for some
of the edges). Putting a sufficiently fine lattice on I, the
image of the lattice points under the Euler angle mapping
will be an unmixing set.

We now tie the pieces together in an adaptive algo-
rithm, capable of stabilizing any system in . The result
should be compared with e.g., the results in [14], which
only considers multivariable systems having an instanta-
neous gain with unmixed spectrum, i.e., either spec D'
cC, or spec D' c C_. Here a “mixed” spectrum is
allowed, with eigenvalues in both half planes. Moreover,
the set $ is much larger than the class of systems consid-
ered in [14].

Theorem 13: Assume that (1) describes a system in $.
Let @ be a finite or countable unmixing set for GL(m),
and let & = {K,J"_, be an enumeration of {kQ: k € N,
Q € @}. Under these assumptions, the controller (16) will
stabilize (1) in the sense that for all x(0) € W and k(0) €
R it holds that (||x()llw, k() — (0, k) (where k, < =)
as t — o,

By Proposition 12, the theorem is not void, since such
sets & do exist. The proof is similar to the proof of
Theorem 8.

Proof: Apply Theorem 5 and Corollary 11. O

VII. EXAMPLES AND SIMULATIONS
Example 13: Many industrial processes can be de-
scribed as a first-order linear system with time delay in
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the input. One example would be the concentration of a
substance in a tank with ideal mixing and a transport
delay in the inlet tube. Let the plant be given as

y(t) =ay(t) + bu(t — h).

An elementary computation using the Nyquist criterion
(or applying Theorem 13.8 in [61]) shows that (36) is
stabilizable by static feedback if and only if 5 # 0 and
ha < 1. Assume that (36) is known to satisfy this assump-
tion. More precisely: let S’ be the set of all systems of
the form (36) for which ha < 1 and b # 0. Let {K,} be an
enumeration of @ and let o be a switching function. It
follows from Theorem 5 that the controller

(36)

u= K{y(k)y

k=y?+u? (37)
will stabilize all plants in &'

A pseudocode implementation of the involved functions
will now be presented: First, we compute the “index” (k)
of k with respect to the switching sequence (r;}, defined
as the smallest i > 1 such that (k) < 7,_,. This is a
well-defined function from the reals to the integers, and is
implemented as follows:

(k)
begin
TC Ty
fori < 1tox
ifk<rt
return
else
Te 72
end

(The return statement has the same meaning as in the C
programming language. The code computes how many
times 7, has to be squared in order for k < 7.) Secondly,
a map e:N — Q is implemented in the following pseu-
docode:

e(t)
begin
Je1
for i < 1tox>
ford <« 1toi
forn « —itoi
if t.=x
return n/d
else
jej+1
end

Note that e has the property that for all a € N, e({n =
a}) = Q. Therefore e-:R — @ has the properties re-
quired of K, As K, we thus take e(u(k)).

Figs. 2 and 3 show the outcome of the simulation of the
closed-loop system (36) and (37) for two different values
of the parameter b. The other parameters were: a = 0.1,
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Fig. 2. The systems (36) and (37) with b = 1. The upper plot shows y,
u, and K, while the lower one shows k.

80
60 B
40 Bl
20+

) 2 4 6 8 10 12 14 6 18 20
Fig. 3. The systems (36) and (37) with b = — 1. The upper plot shows

v, u, and K, while the lower one shows k.

h =1, 7y = 1.1. The initial conditions were given by x(0)
= land u(s) = 0, s < 0. It should be pointed out that for
some parameter values and some initial conditions, the
performance was very bad—a fact that at least to some
extent has to be considered as a price for using an
algorithm utilizing only an absolute minimum of a priori
knowledge. ]

Remark 14:

i) The above code can be speeded up considerably.
Since our emphasis is on ideas, not on efficient implemen-
tations—and since we do not claim that the algorithm in
its present form is very practical anyhow—we have re-
frained to do so.

ii) Note that it is straightforward to modify the above
given pseudocode to generate a mapping onto Q" instead
of Q. =
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To the best of our knowledge, there is no algorithm
available in the literature which is capable of stabilizing
the class of systems considered in Example 13. Note that
it cannot be treated within the approaches given in [9],
[10], [16], [17], [19], and [20], because in [9] and [10] it is
assumed that /4 is known exactly, while [16], [17], [19], and
[20] deal with a high-gain situation requiring the plant to
be of “generalized” relative degree one (in [16], [19] and
[20]) or two (in [17]), which is clearly not satisfied for
systems with input delays. Finally, in [8], local asymptotic
stability of a standard adaptive scheme is ensured only if
the parameters a and / satisty conditions which are more
restrictive than those in Example 13, e.g., an upper bound
on a is known and 3ha < 1.

Example 15: Consider the plant given by

X(t) = Agx(t) + A, x(t — h) + Bu(r)

y(r) = Cx(1) (38)
where
-1 2 3 an 4y 4y
Ay = 2 2 =34, A;=|4xn ap a3,
1 3 2 a3 4y dsg
0 0
Bz( L) oe-(0 0 0)
-2 1

Except for the delay term A, x(¢+ — h), this is the same as
[13, example 3.12]. A simple computation shows that

c

By inspection, it is seen that (30) is satisfied if |a,,| < 1.
Moreover, spec CB = {1 + 2i} ¢ C,. Therefore, by
Proposition 9, the system is in $. (With a similar analysis,
we may also allow several delay terms of the form A,x(z
— h). For simplicity, we shall not do so.)

For the case that it is known that spec(CB) c C,, in
Theorem 13 we may replace {kQ: k € N, Q € @)} by {kI:
k € N} and the theorem will still hold, applied to the
smaller class. Let ¢ be as in the previous example, and
define e(1) by the algorithm

e(e)
begin

_ . -sh
det(SI Ay —Aye B) =5(s+1—-a,e"
0

i1
for i < 1tox
forn < 1toi
ifv=7
return n
else
jej+1
end
For all q, it holds that e({x > a}) = N. Therefore, the
controller (16), with K, = e(u(k)), will stabilize system
(38) provided |a,,| < 1.
In Fig. 4, we show the outcome of a simulation. The
initial conditions were x(0) =1, x(s) =0, s <0, i =
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0 1 2 3 4 5 6 7 8 9 10

Fig. 4. Simulation of the system in Example 15. The upper plot shows
¥, u, and K, while the lower one shows k.

1,2,3. Parameters were 7, =11, h =1, A4, =
diag(0,1,1). [ |

VIII. CONCLUSIONS

We have shown that the subclass of the
Pritchard—Salamon class consisting of the systems which
are exponentially stabilizable and detectable has the
“order-is-enough” property (namely, that sufficient a pri-
ori information for adaptive stabilization is the knowledge
of any stabilizing, fixed coefficient controller). For a class
of high-gain stabilizable systems, a generalization of infi-
nite-dimensional scalar relative-degree-one systems, an
algorithm was presented which takes advantage of this a
priori knowledge. It should be remarked that in both
cases, the controllers look exactly as in the finite dimen-
sional case. Therefore, the results of the present paper
can be interpreted as robustness results: they show that
the adaptive switching algorithms introduced in [13] are
robust against certain infinite-dimensional perturbations
of the plant.

The question almost asks itself: To what classes of
(nonlinear) systems can the results of this paper, in partic-
ular Theorem 8, be generalized? What reasonable set of
(nonlinear) systems have the order-is-enough property?
This property should not be taken for granted: In [62] a
class of systems was presented, which does not have the
order-is-enough property. Explicitly, it was shown that it is
not possible to adaptively stabilize all systems of the form
¥ =f(x)+u, x(0)=x,>0 where x R and f is any
smooth function with f(0) = 0.

For the finite-dimensional case, it should be noted that
a weak converse of the result in [1] was proved in [63]
namely that the existence of an adaptively stabilizing
controller for a finite-dimensional linear time-invariant
plant implies the existence of a linear time-invariant con-
troller, with at most the same dynamic order, placing the
poles of the closed-loop system in the closed left-half
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plane. Under certain conditions, the result generalizes to
the adaptive stabilization of infinite-dimensional systems
controlled by finite-dimensional controllers. Details will
be presented in a future paper. A completely satisfying
characterization of necessary and sufficient conditions for
adaptive stabilization of linear, time invariant, finite-di-
mensional systems is still missing.

In this paper, we have exclusively considered stabiliza-
tion by finite-dimensional controllers. We would like to
remark that due to the progress of the VLSI technology,
and, to a lesser extent, computer technology in general, a
future exclusive emphasis on finite-dimensional stabiliza-
tion seems unnatural.

APPENDIX
PROOF OF LEMMA 7

Using Remark 1, i) and iii) the following definition
makes sense.

Definition: Assume that Al) and A2) are satisfied and
let e;,...,e, denote the canonical basis of R”. We can
give a meaning to CS(:)B as an element in L0, >;
R7*™) by defining CS(-)B = (CS(:)Be,,...,CS(-)Be,,).
The proof of the next result can be found in [34].

Lemma 14: Let A1)-A4) be satisfied. Then

['es(e = 7)Bu(r) dr = C['S(t = 7)Bu(7) dr
0 0

for all u € L§¢(0,; R™) and ¢ > 0.

Proof of Lemma 7:

Step 1: It is well known from a semigroup theory that
forall x e W

f’S(z — T)HCS, (7)xdr = [’SH(t — YHCS(7)xdr.
0 0
(39

For x € V pick a sequence x, € W such that x =
lim, . x,. By Remark 1, 1), iii), and Lemma 1, ii) the
following definitions make sense:

CS(-)x == lim CS(")x,
and
CSy()x = lim CS,(")x,

where the limits have to be understood in L,(0, £; R™). Tt
follows that (39) holds for all x € V.
Step 2: We show that
x(t) = S(1)x, + ['S(t = 7)Bu(r)dr  (40)
0

is a solution of (22). Plugging in x into the right-hand side
of (22) gives

RHS = S,,(1)x, + f’sH(t — 7)Bu(r) dr
0

_f’sH(z - T)HC(S(T)XO + fTS(T* s)Bu(s) ds | dr.
¢ 0
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Using (8) and Remark 2 we obtain

RHS = S(1)x, + [[S(t = 1) HCS (), dr
(
+j"5(t ~ 7)Bu(r) dr
0
+/;)'[()’—TS(t — 7 —S)HCS,(s)Bu(t) dsdr
_/’Sy(l‘ — 7)HCS(7)x, dr
0

_['s,,(t - T)HC(/TS(T— s)Bu(s) ds | dr.
0 0

Hence, by (39)
RHS =x(1) + X(t) — Y(1)
where

X(1) = fO’/o'_’S(r — 7= SYHCS,,(s)Bu(7) dsdr

Y(1) = [O’s,,(rf T)Hc(jOTS(T—s)Bu(s)ds dr.

It remains to show that X(¢) = Y(¢). Defining all inte-
grands to be zero for negative arguments, using Lemma
14, interchanging the order of integration, and using Step
1 we obtain

Y(1) = j(‘)‘j(')’SH(t — 1)HCS(7 — s)Bu(s) dr ds
= fotfr—ssH(t —s—0)HCS(o)Bu(s)do ds
= fotfo'*ssH(t —s —0)HCS(o)Bu(s)do ds

- fotfox_fs(t —s — o)HCS, (0)Bu(s) do ds

= X(1).

Step 3: We show that x given by (40) is the unique
solution of (22). Suppose ¥ € €(0,; W) is another solu-
tion of (22). Then both Cx and C¥ solve the equation

¥(1) = CSy(1)xg + €[S, (1 = 7) Bu(r) dr
0

~ [/CSy(t = ) Hy(r) dr (41)
0

which is obtained by applying C to both sides of (22). The
above equation is a linear Volterra integral equation in
finite dimensions. In particular, this means that (41) pos-
sesses a unique, continuous solution. It follows that Cx =
Cx, which implies, via (22), that x = . O
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