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ABSTRACT 

In the last 15 years the problem of stabilizability and stabilization of descriptor 
systems have received considerable attention. In this paper it is shown that if a 
descriptor system E11 = AX + Bu exhibits impulsive behavior, then the stability of the 
closed-loop system is extremely sensitive to small delays. More precisely, if F is the 
feedback which leads to a stable and impulsive-free closed-loop system, then there 
exist numbers &j > 0 and sj E C with limj,, e, = 0 and limj, 2 Re ,sj = +m and 
such that the delayed closed-loop system obtained by applying the feedback u(t) = 
Fn(t - ,sj) has a pole at sj. Moreover, if the open-loop system does not have 
impulsive behavior, the same phenomenon occurs, provided that the spectral radius of 
the matrix lim ,,T, _ _ F(sE - A)-‘B is greater than 1. If this spectral radius is smaller 
than 1, it is shown that the closed-loop stability is robust with respect to small delays. 
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1. INTRODUCTION 

Stabilizability and pole-placement problems for linear descriptor systems 
given by 

Eli@) = Ax(t) + Bu(t) 

have received a great deal of attention in the last I5 years; see for example 
Bunse-Gerstner et al. [2, 31, Dai [4], Kautsky et al. [ll], Mehrmann [17], 
Shayman [2O], and Shayman and Zhou [2I], to mention just a few references. 
Stabilization (pole assignment) by feedback of the form u(t) = I+(t) requires 
not only the closed-loop system to be stable (to have prescribed poles), but 
also that it be robust, in the sense that closed-loop stability (the configuration 
of the closed-loop poles) is insensitive to perturbations in the plant and 
controller data. The problem of robust pole placement for descriptor systems 
has for example been addressed in [ll], where numerical procedures for 
generating robust feedback systems with prescribed poles are given. The 
perturbations considered in [ll] are of the form 

E -+ E + SE, A +-+A+ 6A, B-,B+SB, F + F + SF. 

In this paper we consider perturbations which are induced by “small” time 
delays in the feedback loop, symbolically 

u(t) = Fx(t) + u(t) = Fx(t - 6). 

It will be shown that if the descriptor system to be controlled exhibits 
impulsive behavior, then the stability of the feedback system is extremely 
sensitive to such perturbations. More precisely, if u(t) = Fx(t) is a feedback 
control which leads to an impulsive-free closed-loop system, then there exist 
numbers cj > 0 and sj E @ with limj jca cj = 0 and limj ,m Re sj = + m and 
such that the delayed closed-loop system obtained by applying the feedback 
u(t) = Fx(t - cj> has a pole at sj. Of course, if F is strongly stabilizing in 
the sense that it simultaneously stabilizes the system and eliminates its 
impulsive behavior, then the above result shows that arbitrarily small delays 
destabilize the feedback system. Moreover, if the system to be controlled 
does not have impulsive behavior, then the above conclusion remains true, 
provided that the spectral radius of the matrix lim ,s, j o: F(sE - A)-lB is 
greater than 1. If the spectral radius is smaller than 1, it is shown that 
closed-loop stability is robust with respect to small delays. 
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The phenomenon of destabilization of feedback systems by arbitraril\- 
small delays in the loop is not new and has been thoroughly stuclied in th& 
context of infinite-dimensional systems, but to the best of our knowledge has 

not been investigated for descriptor systems. It seems that the paper [I] b\- 
Rarlnan et al. from I973 is the first one devoted to this topic. More recentli,. 
researchers working in control of partial differential equations, rediscovered 
the destabilizing effect of srnall delays in various examples involving \&rating 
systems; see for example Datko [S, 61, Datko et al. [Y], and lhwl~ and 
M’heeler [8]. Whilst these papers are based on partial-differenti;1l-e(~11atiorI 
and related techniques, a frequency-domain point of \iew is taken in [ 11. The 
approach developed by Logemann and Rebarber [ 13, 141 and Logemanrl 
et al. [ 1.51 is similar in spirit to that in [I], but is not tied to the restrictions 
imposed in [I] such as the assumptions that the open-loop transfc?r function 
has at most finitely many poles in the closed right half plane or that the 
transfer flmction is bounded in some right half plane. Using results from [ 151, 
Logemann and Townley [16], h ave shown that small delavs in the feedback 
loop can also have a destabilizing effect on certain neutral functional differrlr- 
tial equations. 

The paper is organized as follows. In Section 2 we present sotne prelinri- 
naries on descriptor systerns which are needed later in the paper. Threc~ 
simple examples are discussed in Section 3 to motivate the investigations ~II 
the following sections. In Section 4 we state two destabilization results frown 
[ 131 and [ lFj]. One of them applies to systems described bv ill-posed (not 
necessarily rational) transfer function matrices. By “ill-posed” we mean that 
the transfer-function matrix is unbounded in any tight half plane of thr 
complex plane. We then show that the crucial assumption in this result is 
always satisfied for improper rational matrices. In Section 5 we apply the 
results of Section 4 to descriptor systems with and without impulsive beha\.- 
ior. The feedback x(t) = Fu(~) IS assumed to render the closed-loop system 
impulsive-free. An important subclass of such controls are the so-called 
stronglv stabilizing feedbacks which stabilize the system and simultaneousl\~ 
eliminate its impulsive behavior. The key idea here is to reformlllate the 
closed-loop system as a system which has been obtained by applying output 
feedback to a controlled and obsened descriptor system with transf&r func- 
tion matrix - F(sE - A)- ‘B. \Ve derive destabilization as well as robustness 
results. 

A result on the zeros of a certain quasipol.ynomial needed in Example :3.1 
is proved in the Appendix. 

NOTATION AND TERMINOLOGY. In the following let @, := {,I. E C 1 Re .r 
> cy) (where (Y E rW>, and let D, := {s E @ 1 1.~1 < p) (where p > 0). For a 
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set U c @, let UC’ denote the closure of U. The field of all meromorphic 
functions on @, is denoted by Ma, while H,” denotes the algebra of all 
bounded holomorphic functions defined on C,. If T is a matrix in Cnx ‘, 
then c+(T) and r(T) denote the spectrum and the spectral radius of T, ^ & 

respectively. Finally, a real-rational m X n matrix R(s) is called proper 
the limit 

exists. If R(m) = 0, then R(s) is called strictly proper. 

2. PRELIMINARIES ON DESCRIPTOR SYSTEMS 

Consider a controlled descriptor system of the form 

if 

Ei(t) = Ax(t) + Bu(t), (2.1) 

where E, A E Iwnx” and B E [wnx”. For the rest of the paper we shall 
assume that (2.1) is regular, i.e., 

det( SE - A) f 0. (AI) 

As is well known and as the following example shows, the system Ei = Ax 
may have impulsive behavior. 

EXAMPLE 2.1. Let us consider the following single-input systems 

(; i);(t) = (:, t+(t) + ($(t), t > 0. (2.2) 

If u(t) = 0, then we obtain for t > 0 

X2(t) = xi(t) and x2(t) = 0. 

Hence x,(t) = -x,(0 - )6(t), and we see that the system (2.2) shows 
impulsive behavior. 
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Since (2.1) is regular, there exists nonsingular matrices P, Q E Rnx” 
such that 

QEP=(L;' 1,). QAf'= (“0 112)- (2.3) 

where n, + n2 = n, N E [wn2’“2 and I E R”lXnl are in Jordan form and N 
is nilpotent; see Dai [4, p.71 or Gantmacher [9, p. 281. This classical result is 
due to Weierstrass, and therefore (2.3) is called the Weierstrass canonical 
form of the pencil SE - A. The index of the pencil, denoted by ind(E, A), is 
defined to be the nilpotency degree I, of N (i.e., W” = 0 and NV--’ f 0). If 
n2 = 0, then we set ind(E, A) = 0. Of course, ind(E, A) = 0 if and only if 
the matrix E is nonsingular. 

Premultiplying (2.1) by Q and setting z = P-’ x, we may represent (2.1) 
iiS 

(2.4a) 

Ni,(t) =+(t) + B2u(t), (2.4b) 

where 

The solution of (2.4) is given by 

z,(t) = eltz,(0) + /:~(‘-r)B1u( T) do 
0 

-Bz~(t) 

z?(t) = v- 1 
- c 6(i-1)(t) N’z,(O -) - 

i=l 

(2.51) 

if u= 1, 
v- 1 

c A”B,u(‘)(t) if v > 1, 
i = 0 

(2.5b) 

with superscript (i) indicating the ith distribution derivative. Whilst (2.5a) is 
the standard variation-of-parameters formula for ordinary differential equa- 
tions, (2.5b) can be obtained by taking the Laplace transform of (2.4b); see [4, 
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p. 171. It follows from (2.5) that the system (2.1) admits impulsive solutions if 
and only if ind(E, A) > 1. The following simple result gives necessary and 
sufficient frequency-domain conditions for the existence of impulsive behav- 
ior. 

PROPOSITION 2.2. Zf (Al) is satisfied, then the following statements are 
equivalent: 

(i) ind(E, A) > 1; 
(ii) the rational matrix (SE - A>-l is not pruper; 

(iii) the rational matrix (SE - A)- ‘E is not strictly proper. 

Proof. (i) - (ii): Suppose that v = ind(E, A) > 1, and consider the 
Weierstrass canonical form (2.3). Since 

s(sN - Z)_‘N - z = (SN - z>-’ (2.6) 

and since N is nilpotent with nilpotency degree ZJ, it follows that 

(sN - I)-lN”-’ = -NV-’ # 0. 

Therefore we may conclude that the 
strictly proper, which, by (2.6), implies , _ 

rational matrix (sN - Z>- ’ N is not 
that (sN - I)-’ is not proper. Thus, 

using (2.3), the rational matrix (SE - A)-’ is not proper. 
(ii) * (iii): Assume that (ii) holds. Let so E C be such that 

det(s,E - A) # 0. (2.7) 

Setting H(s) := [(s + s,)E - A]-‘(s,E - A), it follows from the identity 

s[(s + so)E - A]-‘E + [(s + so)E - A]-‘(s,E -A) = Z 

that 

[(s + so)E - A] -lE = ;[I - H(s)], (2.8) 

Using (2.7) and the hypothesis, we see that H(s) is not proper. Consequently 
the right-hand side of (2.8) IS not strictly proper and so (SE - A)-‘E is not 
strictly proper. 

(iii) * (i): Supp ose that (SE - A)-‘E is not strictly proper. Now 
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(sE - A)-‘A = s(sE - A))‘E - I, 

and so (SE - A)-‘A is not proper, implying that (sE - A)-’ is not proper 
either. Hence (sN - I>-’ is not proper by (2.3). This yields that N Z 0, 
which in turn gives ind(E, A) > 1. ??

If the system (2.1) is stable and impulsive-free [i.e., det(sE - A) f 0, for 
all s E @g’, and ind(E, A) < 11, we say that it is strongly stable. The system 
(2.1) is called strongly stabilizable if there exists a feedback matrix F E [w”’ ’ ‘I 
such that the closed-loop system 

Ei(t) = (A + BF)x(t) 

obtained from (2.1) by applying the feedback control u(t) = Z%(t) is stable 
and impulsive-free, i.e., det(sE - A - RF) # 0 for all s E a=:’ and ind( E, A 
+ BF) < 1. 

It is easy to see that the system in Example 2.1 is strongly stabilizable and 
moreover the feedback F = (fi, fz) is strongly stabilizing if and only if 

f,1<1 ??t&l > 0. Although we shall not use it, we state the following theorem 
which gives a necessary and sufficient algebraic condition for strong stabiliz- 
ability. For the proof of th’ is result, which is reminiscent of the IIautiis 
criterion for state-space systems, see Bunse-Cerstner et al. [2]. 

THEOREM 2.3. The system (2.1) is strongly stnhilkable if and ody tf 

rank( sE - A, B) = n for all ,s E @,‘,’ and rank( F1, AS. B) = II. 

where the columns of the real matrix S span ker E n ker B“ and xhew 
sTs = 1. 

:3. THREE SIMPLE EXAMPLES 

Consider the descriptor system (2.1). An application of the feedback 
control 

u(t) = Fx(t - &). where & > 0, 
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leads to the closed-loop system 

Ei(t) = 

HARTMUT LOGEMANN 

Ax(t) + BFx(t - &). (3.1) 

A solution x(e) of this equation is called a mode of (3.1) if 

r(t) = eS~5x0 for some sa E @, x() E uZ=” \ {o}. 

The number s0 is called the exponent of the mode. We say that a mode is 
stable if Re s0 < 0, and that it is unstable if Re s0 > 0. Setting 

A,(s) := SE - A - e-““BF, 

it is trivial to prove that (3.1) has a mode with exponent sa if and only if 
det A,(s,> = 0. 

EXAMPLE 3.1. Consider the controlled descriptor system (2.2) in Exam- 
ple 2.1. This system is not strongly stable, since it is not impulsive-free. 
However, the feedback u(t) = I%(t) with F = (IO) is strongly stabilizing. In 
particular we have 

det A,,(s) = det(sE - A - BF) = s + 1. 

A delayed feedback of the form u(t) = Fx(t - E) leads to the following 
closed-loop system: 

(; A);(t) = (:, :,)x(t) + (; ;),(t - s). (3.2) 

For det A, we obtain 

det A,(s) = emESs + 1. (3.3) 

The perturbation induced by the time delay affects the leading term s in 
det A,(s) in a drastic way, namely s I-, sePES. Even for small E, this 
perturbation is “large” for IsI + 0. Therefore one might expect the stability of 
the feedback system to be sensitive to small delays. Indeed, it can be shown 
that for any E > 0, the quasipolynomial (3.3) has (infinitely many) zeros in C, 
(see the Appendix). Th is means that for any E > 0 the delayed closed-loop 
system (3.2) has unstable modes. 
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E?C\MPLE 3.2. Consider the descriptor system 

(3.4) 

Using Proposition 2.2, it is easily checked that this system is impulsive-free. It 
is unstable, since it has a pole at I. It is also readily seen that the feedback 
F = ( - I, 2) is strongly stabilizing. Th e ( uasipolynomial 1 corresponding to the 
delayed closed-l oop system obtained by applying the feedback u(t) = F(t - 
F) is given by 

det A,(s) = .se-” - ;,Y + ;. 

This is the characteristic quasipolynomial of the neutral differential delay, 
equation 

i(t - &) - $(t) = -$x(t), 

and it follows from a standard result in the stability theory of neutral systems 
(see Salamon [18, p. 1601) th a t f or any E > 0, det A,(s) has (infinitely many) 
zeros in 63,. Again we see that for any 6 > 0 the delayed closed-loop system 
has unstable modes. 

Next we give an example of a feedback-controlled descriptor system for 
which closed-loop stability is robust with respect to small delays. 

EXAMPLE 3.3. Consider the descriptor system 

(-; j)i(l) = (-:, _:)+, + (_ijrr(L). (3.<5) 

Using Proposition 2.2, we find that this system is impulsive-free. It is 
unstable, since it has a pole at 4. It is also readily seen that the feedback 
IT = (1, - 1) is strongly stabilizing. 

The quasipolynomial corresponding to the delayed closed-loop sy-stem 
obtained by applying the feedback u(t) = F(t - E) is given by 

det A,(s) = 1 - 2s - 2~~~ 

= (1 - 2s)[l + H(s)e-““1, 

(3.6) 

(3.7) 
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H(s) = -F(sE -A)-?3 = &. 

Now lim ,$, --fm H(s) = 0 < 1, and hence it follows that there exists i, > 0 
such that 

1 + H(s)eeES # 0 for all s E C=” \ D” 0 P’ 
& > 0. 

Choosing p > m&k, $), we see from (3.7) that 

det A,(s) # 0 for all s E Ct\Di’, 8 > 0. (3.8) 

On the other hand, we obtain using (3.6) that there exists E* > 0 such that 

det AB( s) # 0 forall sE@G’nlDpC’, E E (0, &*). (3.9) 

Combining (3.8) and (3.9) shows that det A,(s) has no zeros in @G’ for all 
E E (0, E*). As a consequence closed-loop stability is robust with respect to 
small delays. 

For the robustness argument in Example 3.3 it was essential that 

lim IF(.sE - A)mlRI < 1. 
ISI’~ 

(3.10) 

Notice that in Example 3.2 we have 

F(sE - A)-‘B = &, 

so that (3.10) is not satisfied. 
In general, for a system of the form (2.1) and for any feedback matrix 

F E lRmXn, we define 

r, := ,$nmF(sE -A)p’B, (3.11) 
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provided the limit exists, i.e. provided the rational matrix F(sE - A)-‘B is 
proper. By Proposition 2.2, the latter will be the case if ind(E, A) < 1. 

The three examples indicate that sensitivity with respect to small delays is 
closely related to the high-frequency behavior of the rational matrices (SE - 
A)-’ and F(sE - A)-‘B. In Section 5 we will show that this is indeed the 
case. More precisely, we will prove the following results: 

(1) If (2.1) has impulsive behavior and if the feedback F removes the 
impulsive behavior, then there exist numbers .s, > 0 and sj E @ with E, + 0 
and Re s,~ + m as j + m and such that for any j E FV, the delayed closed-loop 
system (3.1) has a mode with exponent So; 

(2) if neither (2.1) nor the closed-loop system (3.1) has impulsive behav- 
ior and if r(T,) > 1, then there exist numbers .sj > 0 and ,sj E @ with 
E, + 0 and Re sj + m as j -+ 0~ and such that for any j E M, the delayed 
closed-loop system (3.1) has a mode with exponent sj; 

(3) if (2.1) does not have impulsive behavior, the feedback F is strongly 
stabilizing, and r(T,) < 1, then there exists E* > 0 such that for all E E 
(0, E”) the delayed feedback system is stable in the sense that every mode is 
stable. 

4. DESTABILIZATION BY SMALL DELAYS IN THE 
FREQUENCY DOMAIN 

Let 0 c @. A function H : 1R -+ @“““’ is called a (C”‘““‘-valued) trnn.s- 
Jhrf&tion (matrix) if there exists (Y E [w such that @, c R and H/c,, E 
ML? x “’ . 

Let H be a transfer function, and consider the feedback system shown in 
Figure 1, where u is the input function, y is the output function, and the 
block with transfer function e-” represents a delay of length E > 0. Delayed 
state feedback for descriptor systems is captured by the configuration shown 
in Figure 1 (see Section 5). 

If det[ I + e-““H(s)] $ 0, then the function G, defined by 

G,(s) := H(s)[I + epE”H(,s)]-’ (4.1) 

is a transfer function, the so-called closed-loop transfer function of the 
feedback system shown in Figure 1. 
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e --ES 

FIG. 4.1. Feedback system with delay. 

Y 

DEFINITION 4.1. Let H be a transfer function. H is called well posed if 
H E (Hz)“‘X’n for some (Y E [w. If H is not well posed, then it is called ill 
posed. H is called regular if it is well posed and the limit limg -t cu H( 5 ) = D 
exists (where 5 is real). The matrix D is called the feedthrough matrix. 

The terminology introduced in the above definition has its origin in the 
theory of abstract infinite-dimensional control systems. Roughly speaking, a 
well-posed transfer function can be realized by a “well-posed” state-space 
system and vice versa, see Salamon [I91 and Weiss [22]. In many cases the 
transfer function of a descriptor system is an improper rational matrix, and 
hence ill posed in the above sense. 

The following result can be found in [ 151. 

THEOREM 4.2. Let H he a regular transfer function with feedthrough 
matrix D. lf r(D) > 1, then there exist sequences (E,) and (,s]) with 

nrzd such that for any j E N. .si is a pole of G,,. 

The next result shows that for a large class of ill-posed transfer functions 
arbitrarily s~nall delays lead to closed-loop poles with arbitrarily large real 
parts. In order to state the theorem we introduce some more notation. For 
6 E (0, n ] define the open sector 9( 6 ) by 

Y(S) := {he”PlA E (0,X). cp E (-6, S)}, 
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and for rC, E [ - T, T) set 

P( JI, 8) := dtq 6). 

THEOREM 4.3. Let H be a transfer function, and assume that thcj 
following conditions hold: 

(i) There exist 8 E (0,7~/2) and (Y > 0 such that H(s) is holomorphic in 
9(e) n C,. 

(ii) There exist numbers p > (Y, p > 0, I/I E [ - 7rTT, 7~>, 6 E (0, 0), and 
77 E (0,7r/2) such that 

r(H(s)) < IsIF for all .F E Y( 8 ) I? Cp , 

(4.3) 

r(H(s)) c C \y(IcT, 7) for all .s E sU( 6 ) I? C,, . 

(4.4) 

Then there exist sequences (cl) and (s,) with 

and such that for arLy j E N, sj is a pole of G,,. 

The proof of Theorem 4.3 can be found in Logemann and Rebarber [13]. 
The condition (4.2) guarantees that H is ill posed, while (4.4) says that the 
spectrum of H(s) does not spiral around the origin as s moves in a sector of 
sufficiently small angle. 

In order to apply Th eorem 4.3 to descriptor systems we need thra 
following technical result. 

PROPOSITION 4.4. If H is a rational matrix of size m X m, then therv 
exist constants 6, p > 0, I/I E [ - rr, 7~), and 77 E (0, 7r/2> .such that the 
condition (4.4) is satisfied. 
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Proof. Define G(s) := s”H(l/s), where we choose v E N such that 
l%(O) := lim, ~ a H(s) = 0. We want to study the behavior of cr(&s)) as 

s + 0 in Y(S) for some small 6 > 0. Consider 

Q(w,s) := det[ZL;Z - H(s)] = u;“’ + 9r(s)u;In-’ + *** +9m(~), 

where the 9r(s), . . . , 9m(s) are real-rational functions. Write 9i(s) = 
nJs)/d&), h w ere n,(s) and di(s) are coprime real polynomials, and let 
p,(s) denote the lowest common multiple of d,(s), . . . , d,,(s). Introducing 
the polynomials p,(s) = p,(s)qi(s), we define 

P(w, s) := p,(s)Q(s,w) = p,(s)w” + p,(s)w”-’ + ... -tp,,(s): 

which is a real polynomial in the variables s and ZL;. Since H(s) is holomor- 
phic at 0, it follows that p,,(O) # 0. Hence there exists an open neighborhood 
U of 0 such that pO(s) # 0 for all s E U. +s a consequence, if s0 E U, then a 
complex number w0 is an eigenvalue of H(s,) if and only if wg is a root of 
P(w, so) = 0 and the multiplicities are the same. 

Case 1. Suppose that P(u;, s) is irreducible. It then follows from alge- 
braic function theory (see e.g. Hille [lo, p. 931 or Knopp [12, p. 1101) that 
there exists a multivalued ana& function w(s) satisfying P(w(s), s) E 0. 
Notice that w(O) = {0}, since o(H(O)) = o(O) = (0). Let wr(s), wz(s), . . . , 
w,(s) denote the branches of w(s). There exists a neighborhood V, c U of 0 
such that for all s E V, , wk( s) can be represented by a Puiseux series of the 
form 

wk(s) = C ykjsj/pk forsome pk E {I,2 ,..., m}. 
j=l 

For each k E {1,2, . . . , m} let I, be the smallest integer such that ykl, # 0. 
Then for any 6 E (0,7r/2) we have that 

lim 
Wk(S) 

4/Pk = 
1. 

s-0, se3S) Y&S 

Therefore we may write for all s E fi 8) of sufficiently small modulus 

wk(s) 
'k/Pke"("'gs+2"9k)lk/Pk for some qk E (0, 1,. . . , pk - 11. 
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Setting pI; := arg ykl, + 2rrqklk/pk, we see that for any 6 > 0 

provided .s E Y(S) and 1.~1 is sufficiently small. Consequently, for a suffi- 
ciently small 6,, > 0, there exist numbers I,!J E [ - T, ~1 and Q E (0, 7r/2) 
such that for all s ??9(6(,) of sufficiently small modulus, vv(s) C @ \ 

y( $, Q ), and hence 

Therefore, there exist numbers 6 E (0, 6,) and 7~ E (0, Q) such that for all 
s E Y( 8) of sufficiently small modulus 

Now recall that H(l/s) = (l/s”)&s), ’ d an so it follows that for all s E 9( 6 > 
of sufficiently large modulus 

Hence, by choosing p > 0 sufficiently large, we have 

a(%)) = C \p( ICI> 7) for all s ??9(6) n Cp, 

which is (4.4). 
Case 2. If P(w, s) is not irreducible, we can write 

P(W, s) = fiP(W, s), 
j=l 

where the polynomials P,(w, s>, . . . , P,(w, s) are irreducible. Then each of 
the equations P,(w, s) = 0 defines an algebraic function wi(s) whose branches 
satisfy a condition similar to (4.5). C onsequently, we can invoke the same 
argument as in case 1 to prove the claim. W 
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5. DESCRIPTOR SYSTEMS WITH DELAYED 
FEEDBACK CONTROL 

In addition to (Al), we need in this section an extra assumption on the 
controlled descriptor system (2.1) given by (E, A, B): 

There exists F E lRmX n such that ind( E, A + BF) < 1. (A2) 

Assumption (A2) means that there exists a feedback F which renders the 
closed-loop system impulsive-free. Clearly, (A2) is satisfied if there exists a 
strongly stabilizing F. 

In order to apply Theorem 4.3 to state-feedback-controlled descriptor 
systems we need the following lemma. 

LEMMA 5.1. Suppose that (Al > and (A2) are satisfied, and let F E Rmx n 
be such that ind(E, A + BF) Q 1. If ind(E, A) > 1, then the rational 
matrix F(sE - A)-‘B is improper. 

Proof. Set X(s) := (SE - A - BF)-‘. Then X(s) is a rational matrix, 
and since ind(E, A + BF) < 1, it follows from Proposition 2.2 that 

X(s) is proper. (5.1) 

NOW (SE - A)X(s) - BFX(s) = 1, and so 

X(s) - (SE - A)-‘BFX(s) = (SE -A)-‘, (5.2) 

By hypothesis, ind(E, A) > 1, and thus, using Proposition 2.2, we have that 
(SE - A>-l is improper. Combining (5.1) and (5.2), we see that 

(SE - A) -’ B is improper. (5.3) 

On the other hand, we obtain from X(sXsE - A) - X(s)BF = I that 

X(s)B - X(s)BF(sE - A)-‘B = (SE - A)-‘B. (5.4) 

Combining (5.0, (5.3), and (5.4), we see that F(sE - A)-‘B is improper. ??
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Consider the descriptor system (2.1). An application of the feedback 
control 

u(t) = u(t) + Fx(t - &), where E > 0, 

leads to the closed-loop system 

Ei(t) = Ax(t) + BFx(t - &) + Bu(t). (5.5) 

Here v(t) denotes the input into the feedback system. In order to apply the 
input-output results in Section 4, we introduce the controlled and observed 
descriptor system 

Ei(t) = Ax(t) + h(t), y(t) = -Fx(t). (5.6) 

By an application of the output-feedback law 

u(t) = u(t) - y(t - &) 

to the system (5.6) we obtain the same closed-loop system (5.5). Since the 
transfer function of (5.6) is given by 

H(s) = -F(sE - A)-$ (5.7) 

it follows that 

G,(s) = H(s)[Z + e -““H(s)]-’ = -F(sE -A - e-“‘RF)-‘B 

is the transfer function of the closed-loop system (5.5) with observation 
y(t) = -Z%(t). 

PROPOSITION 5.2. Suppose that (Al) and (A2) are satisfied, and let 
F E Rmx” be such that ind(E, A + BF) < 1. Zf ind(E, A) > 1. then 
lim /s/ --ta r(F(sE - A)-‘B) = 00. 

Proof. Defining H(s) by (5.7), it follows from Lemma 5.1 that 

lim IIH( s) 11 = x, 
IsI-+= 

(5.8) 
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where 1) * 11 denotes the operator norm induced by the Euclidean norm on 
Cm. By hypothesis, ind(E, A + RF) Q 1, and so (sE - A - BIT-’ is proper 
(by Proposition 2.2). Therefore, we obtain that the rational matrix 

G,(s) = H(s)[Z + H(s)]-’ = -F(sE -A - RF)-lZ3 is proper. (5.9) 

It follows from the identity H = G,(Z - Go)-’ via (5.8) and (5.9) that 
lim ,s, ~ r det[ Z - G,(s)] = 0. Setting D := lim,,, --tm G,(s), we obtain that 
det(Z - D> = 0, and thus 

1 E a(D). (5.10) 

Let ( sj) be a sequence of complex numbers such that limj -) ml sj I = m. For 
sufficiently large j, sj is not a pole of either H or G,. Thus - 1 e u(H(sj)), 
because otherwise .sj would be a pole of (I + H)-‘, and hence of G, = H(Z 
+ H)-l = Z - (I + H)-‘. Consequently, if cj E a(H(sj)), then hj := tj/(l 
+ tj) is a well-defined complex number and Aj E G,(sj). Moreover, any 
hj E a(G,(sj)) can be written as Aj = t,/(l + sj) where 6 E c+(H(sj)). It 
therefore follows from (5.10) that there exist numbers 5 E o(H(sj)) such 
that 

J 

bit 1 I(. - = 1. 
J 

But this implies that limj,,l cjI = ~0, and so limJ,, r(H(sj)) = 00. Since this 
is true for any sequence with limj ~ _,I sj) = w, it follows that lim ,s, ~ z r(H( s)) 
= co. ??

We are now in the position to state and prove the main result of this 
paper. Let I, be defined as in (3.11). 

THEOREM 5.3. Suppose that (Al) and (A21 are satisfied, and let 
F E R’“x” be such that ind(E, A + BF) < 1. Zf one of the conditions 

(i) ind(E, A) > 1, 
(ii) ind(E, A) < 1 and r(T,) > 1 

is satisfied, then there exist sequences (ej) and (s,) with 

Ej > 0, Ej + 0, sj E cQ, Im sj + w, Re sj + 00 
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and such that for any j E N, the delayed closed-loop system 

Ei(t) = Ax(t) + BFx(t - Ej) 

has a mode with exponent sj. 

Proof. Define H(s) by (5.7). First suppose that ind(E, A) > 1. Since 
H(s) is a rational matrix, there clearly exists a number /J > 0 such that 
r(H( s)) < IsI p for IsI sufficiently large. Combining this with Propositions 4.4 
and 5.2, it follows that H(s) satisfies the conditions (i) and (ii) in Theorem 
4.3. Hence there there exist sequences (E,) and (si) with 

and such that sj is a pole of 

G,,(s) = H(s)[l + e-“l”H(s)]p’ = -F(sE -A - ~~~J”BF)~‘B. 

(5.11) 

Hence sj is a pole of A<‘(s) = (SE - A - em”l”BF)-‘, and so det A,{.~,) = 
0. It follows that the closed-loop system Ei(t) = Ax(t) + BFx(t - ci) + 
Bu(t) has a mode with exponent sj. 

If ind( E, A) < 1 and r(rF) > 1, then it follows from Theorem 4.2 that 
there exist sequences (cl) and (sj) with the above properties and such that %si 
is a pole of G,,(s). Hence, by (5.1 l), det A,,(.~{) = 0, and the claim follows. 

??

If in the above theorem F is strongly stabilizing, then the result shows 
that closed-loop stability is not robust with respect to small delays. 

For the system in Example 2.1 we have ind(E, A) > 1. The feedback 
F’ = <f,, f2) sa is ies ind(E, A + 13F) < 1 if and only if f, # 0. Theorem 5.3 t’ f 
shows that for any such feedback there exist delays cj > 0 with limJ _ J F, = 0 
and complex numbers sj with lim j ~ co Re s, = * and such that the closed-loop 
system 

(i i)‘Ct) = (j, 1 :f2)‘Ct - ‘j) 
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has a mode with exponent si. Of course, this applies in particular to the 
strongly stabilizing feedbacks which are characterized by the condition fr<l 
+_&> > 0. 

We close this section with a simple robustness result. 

PROPOSITION 5.4. Suppose that (Al ) is satisfied and that (2.1) is strongly 
stabilizable. Let F E Rmx n be a strongly stabilizing feedback. Zf ind( E, A) 
< 1 and if r(rF) < 1, then there exists E* > 0 such that for all E E (0, e*) 

the delayed feedback system 

Ei(t) = Ax(t) + BFx(t - e,) 

is stable in the sense that every mode is stable. 

Proof. The characteristic quasipolynomial 

det A,(s) = det(sE - A - BFe-““) (5.12) 

of the delayed closed-loop system can be written as 

det A,(s) = det(sE -A) det[ Z - (SE - A)-lBFe-““]. 

=det(sE -A)det[Z- F(sE -A)-lBe-““]. 

Setting H(s) = -F(sE - A)-‘B, we obtain that 

det A,(s) = e-nEs det( sE - A) det[ eESZ + H(s)] . (5.13) 

Since limls,+_ H(s) = --I’, and, by assumption, r(rF) < 1, it follows that 
there exists pr > 0 such that 

det[e*‘Z + H(s)] f 0 for all s E C~‘\UF’ 
Pl’ 

& > 0. 

Let pz > 0 be such that detXsE - A) f 0 for all IsI > pz. Choosing p > 
max( pl, pz), we see from (5.13) that 

det A,(s) # 0 for all s E Ct \ DC’ 
P’ 

& > 0. (5.14) 
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On the other hand, we obtain from (5.12) and the fact that F is stabilizing 
that 

det A,(s) # 0 for all s E @G’ fl Di’ , E E (0, &*), (5.15) 

for some sufficiently small ,s * > 0. Combining (5.14) and (5.15) shows that 
det A,(s) has no zeros in ct for all E E (0, s*). As a consequence, every 
mode of the delayed closed-loop system is stable, provided that F E (0. s*). 

??

If E is invertible, then ind(E, A) = 0, any stabilizing feedback F is 
strongly stabilizing, and r(F,) = 0. Hence, by the above result, there exists 
E* > 0 such that for all E E (0, .s*> and the delayed feedback system is 
stable. Thus, Proposition 5.4 contains the (well-known) fact that the stability 
of a state-feedback-controlled state-space system is robust with respect to 
small delays. 

APPENDIX. ON THE ZEROS OF THE QUASIPOLYNOMIAL (3.3) 

Here we show that for any E > 0 the quasipolynomial ep6’.s + 1 has 
infinitely many zeros in a=,. To this end, set y ;’ := (2n + l)rr/& and 
y; := (2n + g)r/&, n E N, and define 

f( Y) := exp( &yz), g(y) := y -sin ,sy ’ 

where y E (y;, yi]. Then f(yi) = 1 and g( y,“) = yi. Hence there exists 
N = N(E) E N such that 

g( Yz"> >f( Yl) for all n > N. (A J) 

Setting i; := y; + l/j, we have for sufficiently large j that 

and 

(A .2) 
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Since f and g are continuous on ( y;, y;] it follows from (A.11 and (A.21 that 
there exists y,, E ( y;, yl) such that 

f(Yn) =s(Yn)* (A -3) 
Defining 

cos Eyn 
X” := Yn. sin &yn 

>O, z,:=x,+iy,, 

it is clear that z, E Co and zj z zj if i +j. We claim that Z, is a zero of 
e pest + 1. Indeed, by the definition off and x, we have that eEx- = f( y,), 
and therefore it follows from (A.31 that for all n > N 

x, + es’, cos eyn = 0, yn + es’, sin &yn = 0. 

Thus z, + eEZI = 0, yielding that 

e -nz, + 1 = 0. 
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