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Abstract

This paper surveys some of the results on stabilization and regulation of infinite-
dimensional systems which have been obtained within the so-called fractional rep-
resentation approach to feedback system analysis and synthesis. The relationship
with state-space concepts is carefully discussed. The following topics are addressed:
Rings of transfer functions and coprime factorizations, Pritchard-Salamon systems,
External and internal closed-loop stability, Closed-loop stability and pole-zero can-
cellations, The Nyquist stability criterion, Closed-loop stability and the existence
of coprime factorizations, Parametrization of all stabilizing controllers for a given
plant, Existence of finite-dimensional stabilizing compensators, Strong stabilization
by finite-dimensional controllers, The internal model principle, PI-control of uncer-
tain infinite-dimensional systems.
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1 Introduction

Coprime polynomial factorizations of rational matrices have played a major role in feed-
back system analysis and synthesis for finite-dimensional plants since the work of Rosen-
brock, [Rose70]. In case that the transfer function matrix is irrational it is difficult to
identify a suitable class of holomorphic matrices containing the set of polynomial matrices
and leading to a concept of coprime matrix factorizations which mimics the polynomial
factorizations of the finite-dimensional theory. However, as early as 1972, it was rec-
ognized that in many situations it is possible to model an unstable infinite-dimensional
plant as the coprime “ratio” of two stable transfer matrices, see [DeCa72] and [Vidy72].
Spezialized to the lumped case this means that a rational matrix is factorized as a “ra-
tio” of two stable rational matrices. This simple idea gave rise to the so-called fractional
representation approach to feedback system analysis and synthesis, an elegant method-
ology which leads in a simple natural way to the resolution of many control problems,
see the key papers [DLMS80], {SaMu81], [ViSF82], and [FrVi83]. The starting point of
this approach is the observation that in a wide variety of applications the set of all sta-
ble linear single-input single-output systems forms a ring 8; that is, parallel and cascade
connections of stable linear systems are again stable linear systems. Moreover, in many
cases (e.g. convolution operators or transfer functions) the ring 8 is commutative and is
an integral domain (i.e. 8 has no divisors of zero). The set of all (stable and unstable)
single-input single-output systems is denoted by 7 and is defined to be the quotient field
Q(8) of 8 or the ring of fractions 8D~ of § with respect to a multiplicative subset D of
S with 1 € D and 0 ¢ D. Multivariable plants are treated by considering matrices over
T. A central idea is that of expressing an unstable plant G € JP*™ as a ratio ND~1 of
two stable transfer matrices IV and D in such a way that N and D are coprime.

The advantage of an abstract fractional representation approach to feedback systems
is that it embraces within a single framework, continuous-time as well as discrete-time
and finite-dimensional as well as infinite-dimensional systems. The main features of this
approach are:

o The stability of a feedback system can be characterized by simple algebraic criteria
in terms of coprime factors.

e The set of all stabilizing compensators for a given plant can be parametrized via a
linear-fractional transformation, provided the plant admits right and left coprime
factorizations.

¢ In case that § is a normed ring or more generally a topological ring, the set of all
unstable plants which admit a right-coprime and a left-coprime factorization can be
endowed with a natural topology, the so-called graph topology, which is fundamental
for robustness studies.

¢ The internal model principle for servomechanisms holds under some fairly weak
assumptions.

The research in this area of control theory culminated in Vidyasagar’s well known book
[Vidy85], which deals mainly with finite-dimensional systems, but also contains a chapter
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on distributed parameter systems indicating which of the finite-dimensional results extend
to an infinite-dimensional setting. One of the extra difficulties in the infinite-dimensional
case is that a given plant might not admit a right or left coprime factorization, which is
an essential requirement in fractional representation theory.

The fractional representation approach to feedback systems is a pure input-output
theory; state-space concepts are hardly mentioned in [Vidy85]. For the finite-dimensional
case this does not cause any problems because the relation between state-space and input-
output notions is well understood for many years. This is certainly not the case in the area
of infinite-dimensional systems theory and the wide gap between the frequency-domain
approach, as presented e.g. in [CaDe78], {CaDe80b], [DeWa80], and [Zame8l], and the
semigroup approach, as documented in [CuPr78], has not really been bridged in [Bank83].
However, a synthesis of state-space and frequency-domain methods for distributed param-
eter systems has been of considerable interest to many researchers in the field during the
last five years, and has lead to interesting and useful results on the relationship between
exponential stability and input-output stability, see {Curt89] for an overview. In par-
ticular, we mention the paper [JaNe88] by Jacobson and Nett who recognized the need
to link the so-called Callier-Desoer ring of transfer functions, [CaDeT8), to a semigroup
based state-space description. A crucial assumption in their paper is that the input and
output operators are bounded, which is too restrictive for many applications. A more
appropriate class of systems, which contains the class considered in [JaNe88], is the so-
called Pritchard-Salamon class introduced in {PrSa87]. These are systems which evolve
in an infinite-dimensional Hilbert space and which allow for a certain unboundedness in
the control and observation operators. Whilst the Pritchard-Salamon class does include
many examples of partial differential systems with boundary control and observation and
of neutral systems with delayed control and sensing action, it is by no means the largest
class of infinite-dimensional systems which has been treated in the literature. However, it
has just the right properties for feedback system analysis and synthesis in both time and
frequency domain.

It is the purpose of this paper to survey a number of results on stabilization and
regulation of infinite-dimensional systems by output feedback which have been obtained
within the fractional representation approach and to relate them to the Pritchard-Salamon
class of state-space systems. The paper is organized as follows:

Section 2 collects a number of facts and results on various rings of irrational transfer
functions which have been used in the literature, amongst them the Callier-Desoer ring. In
particular, the important concepts of right and left coprime factorizations for irrational
transfer function matrices are introduced. Moreover, we define the Pritchard-Salamon
class of state-space systems, collect some of their properties, and relate it to the frequency-
domain set-up presented in the first subsection of Section 2. In the third subsection we
mention a few examples of different types of systems which occcur frequently in the appli-
cations, some of which fit into the frequency-domain and/or the state-space frameworks
presented in the first two subsections of Section 2 and some of which do not. Section 3 is
devoted to the stability of feedback systems. We introduce the concept of external closed-
loop stability and show that it is equivalent to internal closed-loop stability under suitable
stabilizability and detectability assumptions. Several characterrizations are given for ex-
ternal closed-loop stability, one of them in terms of a particular transfer function matrix



106

and unstable pole-zero cancellations. Moreover, it is shown how the Nyquist stability
criterion fits into the set-up of fractional representation theory and it is indicated that in
many cases closed-loop stability implies the existence of coprime factorizations. The last
subsection of Section 3 is devoted to a discussion of the so-called Youla-Bongiorno-Jabr
parametrization of all stabilizing controllers of a given plant. Practical feedback control of
infinite-dimensional systems must be accomplished with a finite (small) number of actua-
tors and sensors and a control algorithm which can be implemented by an one-line digital
computer. Therefore the controller should be finite-dimensional. Section 4 deals with
the important problem of finite-dimensional stabilization of infinite-dimensional plants.
In particular, it is shown that for a large class of transfer functions the existence of a
strictly proper rational stabilizing compensator is equivalent to the fact that the entries
of the transfer matrix of the plant belong to the Callier-Desoer ring. The servoproblem
in infinite dimensions is the topic of Section 5, where the internal model principle and
some of its applications to high and low gain PI-control of uncertain infinite-dimensional
systems are dicussed. Finally, some conclusions are drawn in Section 6.

We mention that this paper does not address the topics of robustness analysis of closed-
loop stability, robust controller synthesis!, and H*-control, since these will be treated in
the contributions of R. F. Curtain, M. C. Smith, and A. Tannenbaum.

Notation

— The superscript " stands for Laplace transfomation.

— 1 := imaginary unit.

— L(X,Y) := bounded linear operators from X to Y, where X and Y are normed spaces.
— C,:= {s € C:Re(s) > a}, where a € R.

— K(s) := rational functions over K = R, C.

— K, (s) := proper rational functions over K =R, C.

~ H*{C,) := bounded holomorphic functions on C,.

~ H*® := H®(Co). Endowed with the norm |[[f{le := sup,ec, |f(3)| the space H* be-
comes a Banach algebra.

~ H® := g0 H2(Ca)-

~A:={f=ful')+ 22 fib : fa € L*(0,00;C), (fi)ien € £'}, where to = 0, ¢; > 0 for
i = 1,2,3,...,, and &, denotes the Dirac distribution with support in {¢;}. A is a
convolution algebra, and endowed with the norm || flla := f3~ |fa(T)|d7 + X2 I fil
it becomes a Banach algebra.

~A_:={feA: f(-)exp(-€) € A for some ¢ = &(f) > 0}.

1An exeption is the subsection on robust Pl-controller design in Section 5.
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- A={f:feA)
-A={f:feA)
~ C(C¢) := complex-valued continuous functions on C§.

-~ BV(a,b;R™*") := functions of bounded variation on [a,b] with values in R**".

2 Rings of transfer functions, coprime factorizations,
and Pritchard-Salamon systems

In the following we introduce various rings of transfer functions and define the important
concept of right and left coprime factorizations for irrational transfer function matrices.
Moreover, we link the frequency-domain set-up to a class of state-space systems, the
so-called Pritchard-Salamon class, which will be used throughout this paper.

Rings of transfer functions and coprime factorizations

It is convenient to use the abstract algebraic notion of a ring of fractions, see e.g. [Lang65]
or [Vidy85). Let 8 be an integral domain. The ring § should be interpreted as the ring
of all “stable” transfer functions. Let D C § be a multiplicative subset with 1 € D and
0 ¢ D. Here multiplicative means that if a,b € D then ab € D. Sometimes we shall make
the extra assumption that D is saturated, i.e. if a,b € 8§ and ab € D then it follows that
a and b are in D. The elements of D are the denominators of the “unstable” transfer
functions. The ring of fractions T := 8D~! of § with respect to D is the set of all transfer
functions of interest. The ring T is the smallest ring which contains 8 as a subring, and
in which every element of D is invertible. If D = 8§\ {0} then T = §(8 \ {0})~! =: Q(8)
is a field, the quotient field of 8.

Example 1 We give some examples which illustrate the above abstract concepts.

(i) Rational functions: If 8; := C(s) N H* and D, := 8; \ {0}, then T; := Q(8;) = C(s).
(ii) Proper rational functions: Set 8; := C(s) N H*® and D; := {f € 83 : f(o0) # 0}.
Then ‘Iz = 529;1 = C,,(s)

(iii) Callier-Desoer ring (see [CaDe78], [CaDe80a], (CaDe80b]):  If 85 := A_ and Dy :=
A® = {f € 83 : fis bounded away from 0 at coin Co}?, then
Ts:=83D7' = A_(A®) ! = A_D;' = A_ + Ry,

where R,p, denotes the ring of all strictly proper totally unstable rational functions, i.e.
Ropu 1= {f € C(s) : f(o0) = 0and f(s) # oofor alls € C\ C¢}. The ring T3 will also be
denoted by ‘B, which is the usual notation in the literature.

?Recall that if f is a bounded holomorphic function on C, for some a < 0, then f is uniformly
continuous on any vertical strip a < Re(s) < b, where & < a < b (see [Cord68], p.72). Hence if f is
bounded away from 0 at oo in Cy then f is also bounded away from 0 at oo in €y for some § € (a,0).
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(iv) A (slight) generalization of the Callier-Desoer set-up (see [Loge86a], [LoOwS87]):
For 84 := H® and Dy := {f € 84 : f is bounded away from 0 at coin Co}

we obtain
‘.T.; = 8494_1 = HTD:I = H:OD;I = HS.O +:Rapu

(v) Quotient field of A: Set S5 := A and Ds := 85 \ {0}, then T5 := 8;D5" = Q(A).

(vi) Transfer functions of bounded type: The elements of the quotient field of H* are
called functions of bounded type. If we set 8¢ := H*® and Dg := 8\ {0}, then the transfer
functions of bounded type are given by Ts := 86Dz = Q(H*).

Note that the subsets D; are saturated (i = 1,...,6) and that 73 C T5 C Jg and T C
T3 C T4 C Ts. The rings 7; and T, contain only finite-dimensional systems. While T3
and T4 cover infinite-dimensional systems with finite-dimensional unstable part, the rings
75 and T contain also plants which have infinitely many unstable poles.

Many more rings of irrational transfer functions have been introduced in the literature,
e.g. the ring of transfer functions of exponential order which is a subring of T3 = B (see
[CaWi86]) and the ring of pseudo-rational transfer functions (see [Yama88], [YaHa88],
[Yama91], and [YaHa92]). For sake of simplicity we shall concentrate in this paper on
the rings T;, ¢ = 3,4,5,6. It is not possible to say which one of these rings is the most
suitable for control theory. This depends on the particular problem under consideration.
Thus some comments in this direction are in order:

o If the plant under consideration has infinitely many unstable poles (this is for ex-
ample the case for systems described by the wave equation, see Example 6 (v) and
(vi) below), then T5 and T are the only possible candidates for a treatment of the
system in the frequency-domain.

o If the problem is to show L?-stability of a feedback system, then T3 and J5 are good
candidates, since the input-output operator of a system with transfer function in A
is LP-stable for 1 < p < o0. Of course, one would prefer to work with T3 unless the
the number of unstable poles of the plant is infinite. If p = 2 then the rings T4 and
T’ are appropriate as well, since L?-stability is equivalent with the transfer function
belonging to H*®. Sometimes it is easier to verify that a transfer function belongs
to T4 or Tg, rather than to show that it is in T3 or Ts.

¢ Under suitable stabilizability and detectability assumptions, most infinite-dimen-
sional state-space systems will be exponentially stable if and only if the transfer
function is in H* (see for example Theorem 4). So, in order to establish internal
stability via a frequency-domain analysis, the rings T4 and T are good choices.

o For regulation problems it is advantageous to use the rings 73 and J5. As in the
finite-dimensional case, the stability requirements of the servoproblem imply asymp-
totic tracking and asymptotic disturbance rejection if the transfer function matrices
of the plant and the compensator have all their entries in T3 or T, see Section 5.
This is not true for the rings T4 and Js.
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It is also possible to introduce “real” versions T, of the rings J; (¢ = 1,...,6) consisting
of all f in T; which have real “coefficients”. More precisely, by T;» we denote the subring
of T; which consists of all f € T; with the property that f(s) = f(3) for all s € Co
(this means that coefficients of the Laurent expansion of f at a real point are real). For
example: Ty, = R(s), Tar = R,(s), and Ter = Q(H>"), where H®" := {f € H* : f(s) =
f(3) for all s € Cp}. Real world systems usually have real coefficients. However, after
partial fraction expansion or coordinate transformations, complex coeflicients may creep
in. Hence we consider J; rather than T;,. All results in this paper remain true if J; is
replaced by T;,3.

The above set-up models unstable systems as fractions of stable systems. In order to
avoid cancellations the concept of right and left coprime factorizations of transfer function
matrices is useful. It is convenient to introduce this notion within the abstract algebraic
setting, which was introduced at the beginning of this section.

Definition 2 Suppose G € T7*™, A pair (N, D) € §?*™ x §™*™ is called a right-coprime
factorization (r.c.f.} of G (over S with respect to D) if det D € D, G = ND™!, and N
and D are rxght—copnme, i.e. there exist matrices X € §™*? and Y € §™*™ such that
XN+YD=1I,. Apair (D,N) € 8% x §*™ is called a left-coprime factorization (l.c.f)
of G (over § with respect to D) if det D €D, G= D'N,and N and_ D are left-coprime,
i.e. there exist matrices X € 8™*? and ¥ € 87*7 such that NX + DY = I,.

A r.cf. of G is unique up to multiplication from the right by a a unimodular factor, i.e.
if (N;, Dy) and (N2, D) are right-coprime factorizations of G, then there exists a matrix
U such that U is invertible in §™*™ and N; = NyU and D; = D;U. Moreover, if D is
saturated and G € JP*™ admits a r.c.f. over 8 with respect to D then any r.c.f. of G over
$ with respect to 8\ {0} is a r.c.f. over $ with respect to D. Similar statements hold for
left-coprime factorizations.

It is well-known that any transfer function matrix with entries in 73, ¢ = 1,...,4, (see
Example 1) admits right-coprime and left-coprime factorizations, see e.g. [CaDe80b),
[Vidy85}, and [Loge86a]. This is not true (even in the single-input single-output case)
for the rings J5 and Jg. We remark that the positive result for i = 3,4 follows easily
from the result for i = 2 via the additive decomposition of a function in J; (i = 3,4} into
a “stable” infinite-dimensional and an “unstable” finite-dimensional part, see (iii) and
(iv) in Example 1. The negative result for i = 5,6 follows from combining the fact that
8s = A and Sg = H* are not Bezout rings* (cf. [Rent77], [ViSF82], and [Loge87a.]) with
the result that every matrix in Q(8)?*™ has a r.c.f. if and only if 8 is a Bezout ring (see
[Vidy85), corollary 8.1.8).

Pritchard-Salamon systems

Pritchard-Salamon systems are abstract infinite-dimensional control systems which evolve
in an infinite-dimensional Hilbert space and which allow for a certain unboundedness in

3This is an important remark, since in sections 3 to 5 we are of course interested in “real” compensators
if the plant is “real”.
4An integral domain is called a Bezout ring if every finitely generated ideal is principal.
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the control and observation operators. They were introduced in [Sala84)], [PrSa85], and
[PrSa87] and were further investigated in several publications, see [Curt89] and [CLTZ92]
and the references therein (cf. also (Weis89a] and {Weis89b] for related work). Whilst
the Pritchard-Salamon class does include many examples of partial differential systems
with boundary control and observation and of neutral systems with delayed control and
sensing action, it is by no means the largest class of infinite-dimensional systems which
has been treated in the Literature. However, it has just the right properties for control
synthesis in both time and frequency domain.

Let W and V be complex Hilbert spaces satisfying W — V', i.e. W C V and the
canonical injection W — V, ¢ — z is bounded and has dense range. Let S(Z) be a
Co-semigroup on W and V' (i.e. S(t) is a Co-semigroup on V which restricts to a Co-
semigroup on W). The infinitesimal generators of S(t) on W and V will be denoted by
A" and AY, respectively. Moreover, let ww and wy be the exponential growth constants
of S(t) on W and V. In general ww # wy, even if dom({AY) C W 5, see [CLTZ92] for,
counterexamples. It is well known that the growth constants do coincide if W = dom(AY)
and (z,z)w = (z,z)v + (AVz, AVz)v.

We shall now introduce the concepts of admissible input and output operators for S(t),
which are fundamental for the following development. For this paper it is sufficient to

concentrate on finite-dimensional input and output spaces, although most of the results

of this section will extend to the case of infinite-dimensional input and output spaces, see
[Sala84], [PrSa87], [Weis89a], [Weis89b], [Weis90a), and [CLTZ92].

Definition 3 (i) An operator B € L(C™, V) is called admissible input operator for S(t)
if there exist ¢; > 0 and a > 0 such that for all u € L%(0,t;;C?) it holds that

/0 ' S(ty — 7)Bu(r)dr € W and || /0 ' S(t - 7)Bu(r) drllw < allullmen (1)

(ii) An operator C € L(W,C?) is called admissible output operator for S(t) if there exist
t; > 0 and 8 > 0 such that

ICS()zll2ou) < Bllzllv forallz e W. (2)

Remark 4 (i) If (1) holds for one particular ¢y, then it can be shown that it holds for all
t; > 0, where a will depend on t,. Moreover, if S(t) is exponentially stable on W, then
we can choose a independent of ¢, and (1) holds for 0 < ¢; < 0.

(i1) Statement (i) remains valid if we replace (1) by (2), t; by ¢, @ by § and exponential
stability on W by exponential stability on V.

(iii) If B € L(C™,V) is an admissible input operator for S(¢) then the controllability
operator at time ¢t > 0

t
€ LX0,6,C™) - V,u / S(t — 7)Bu(r)dr
0

SSuppose that dom(AY) is endowed with the graph norm of the operator AY. Then an application of
the closed graph theorem shows that dom(AY) — W if dom(4Y) C W.
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has the properties that ran(€;) C W and €, € L(L?*(0,¢;C™), W).

(iv) Suppose that C € L(W,CP) is an admissible output operator for S(t). Then the
bounded linear operator O} : W — L*(0,¢; C?), z — CS(-)z, the observability operator
on W at time t, can be extended uniquely to a bounded linear operator O} : V —
L?*(0,t;C), the observability operator on V at time t. Moreover, we define the operator
O : V = L} .(0,00;C?) by (PO z)(r) = (DY z)(r) for all 7 € [0,t], where P, is the
usual truncation operator at time t.

(v) If B € L(C™,V) is an admissible input operator for S(t) and Re(s) > max(ww,wy)
then (sI — AV)"'B € L(C™, W), see [Weis90a] and [Curt88].

(vi) If C € L(W,C?) is an admissible output operator for $(t) and Re(s) > max(ww,wv)
then ther exists a constant M = M(s) > 0 such that ||C(s] ~ A%) 'z||o < M|jz||v for
all z € W, see [CLTZ92]. Hence the operator C(sI — A¥)~! € L(W,C?) can be uniquely
extended to an operator D(s) € L(V,CP).

The control system

z(t) = S(t)zo + /‘ S(t — 7)Bu(r)dr, wherezo € V, ¢ > 0 (3a)
y(t) = Cz(t) + Du(t) (3b)

is called a Pritchard-Salamon system if B € L(C™,V) is an admissible input operator for
S(t), C € L(W, ) is an admissible output operator for §(t), and D € L(C™,CP). Notice
that for every zo € W the output y(t) given by (3b) is a continuous function on [0, c0)
with values in C?. If 2o € V we can make sense of y(-) as a function in L? (0,00; C?) by
applying Remark 4(iv).

Assumption (PS): For the rest of the paper we shall assume that the system given by
(3) is a Pritchard-Salamon system.

Let ey, ..., em be the canonical basis of C™®. We define the impulse response R() of (3)
by setting R(-)e; = DY Be; + &De;, i = 1,..,m. It follows from Remark 4(iv) that
R(") € (L%,(0,00;CP*™) + §CP*™). In order to formulate the next result, it is useful to
define

Q:={u€ L}, (0,00;C™) : u(-) exp(—7-) € L*(0, 00;C™) for some 7 € R}

Furthermore, if u € ©2, we set y(u) := inf{y € R : u(-)exp{~7-) € L*(0, 00; C™)}.

THEOREM 1. Constder the Pritchard-Salamon system (3), suppose that u € Q, and let A
and 11 be numbers which satisfy A > max(ww,wv,v(u)) and 7 > max(ww,wy). Then the
following statements hold true

(i) y(-) exp(—A-) € L*(0, 00; C*) N L?*(0, 00; C?) and j(s) = [C(sI — AY)~ B+ D}i(s) for
all s € C,.

(i) R(-)exp(—1-) € (L*(0, 00; CP*™) + §,CP*™) and R(s) = O(s)B + D for all s € C,.
(iii) R(s) = O(s)B+D = C(sI — AY)"'B+ D for all s € C,.
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For the proof of the above theorem see [CLTZ92]. Statement (i) means that the transfer
function matrix G(s) of (3) is given by G(s) = C(sI — AY)™' B + D, while statement (ii)
says that the Laplace transform of the impulse response R(-) equals O(s)B + D, which is
also a “transfer function candidate” for the system (3). The third statement shows that
the “two transfer functions” coincide and hence that it is justified to call R(-) the impulse
response of system (3). Statement (iii) is the difficult part of Theorem 1. It is easy to
prove if dom(AY) C W.

Next we present a result on perturbations of (3) induced by admissible state-feedback
and admissible output-injection. For the proof see [CLTZ92].

THEOREM 2. (i) Let F € L(W,C™) be an admissible output operator for S(t). Then
there exists a unique Co-semigroup Spr(t) on W and V satisfying

Spr(t)z = S(t)z + /‘ S(t —7)BFSpp(r)zdr forallz e W. (4)
0

Moreover, B is an admissible input operator for Spr(t) and C and F are admissible output
operators for Spr(t).

(i1) Let H € L(C?, V) be an admissible input operator for S(t). Then there ezists a unique
Co-semigroup Suc(t) on W and V satisfying

Suc(t)z = S(t)z + /t Suc(t— 7)HCS(v)zdr forallz e W. (5)
0

Moreover, B and H_are admissible input operators for S'Hc(t) and C is an admissible
output operator for Syc(t).

(iii) If BF = HC then Spr(t) = Sucl(t).

(iv) If dom(AY) C W then the infinitesimal generators Afp and AYc of Spr(t) and
SHo(t) on V are given by Apr = AV + BF and Afc = AV + HC, respectively, where
dom(AY ) = dom(AY) and dom(A};c) = dom(AY).

The above result shows that the Pritchard-Salamon class is invariant under state-feedback
and output-injection, provided the state-feedback and output-injection operators are ad-
missible output operators and admissible input operators for S(t), respectively. In par-
ticular Theorem 2 applies to perturbations of (3) induced by static output feedback, i.e.
perturbations of the form BKC, where K € C™*?,

We are now in the position to define the concepts of admissible stabilizability and
admissible detectability.

Definition 5 (i) System (3) is called admissibly stabilizable if there exists an admissible
output operator F' € L(W,C™) for S(t) such that the semigroup Spr(t) given by (4) is
exponentially stable on W and V.

SAlthough statement (iii) seems to be a trivial fact, the reader should notice that C(sI — AY)~1B
makes sense because B is an admissible input operator (see Remark 4(v)), while the operator £(s) can
only be defined since C is an admissible output operator (see Remark 4(vi)).
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(ii) System (3) is called admissibly detectable if there exists an admissible input operator
H € L(C?,V) such that the semigroup Syc(t) given by (5) is exponentially stable on W
and V.

PROPOSITION 3. If (3) is admissibly stabilizable or admissibly detectable, then

C(sI - AY) !B+ D € T = Br*m,

Proposition 3 shows that the state-space concept of a Pritchard-Salamon system fits nicely
together with the frequency-domain set-up of Callier and Desoer described in Example
1(iit). Since the interplay of state-space and frequency-domain concepts is a central theme
of this volume, we give a proof the above result.

Proof of Proposition 3: Suppose that (3) is admissibly stabilizable and let F €
L(W,C™) be an admissible output operator for S(t) sta.blhzmg 3) on W and V. The
exponentla.l growth constants of Sgr(t) will be denoted by wfi” and w§F. Moreover, let
A¥: and A} denote the infinitesimal generators of Spr(t) on W and V, respectively.

For Re(.s) > max{ww,wv,wh ,wEF) we obtain from (4) via Laplace transformation that

(sI = Afp) 'z = (sI — A) 'z + (s — AY)'BF(sI — Afp) 'z forallz € W. (6)

By Theorem 2 the triple (Sgr(t), B, F) is a Pritchard-Salamon system. Hence it follows
from Remark 4(vi) that F(sI — A%r)~! admits an extension Or(s) € L(V,C™). Using
Remark 4(v) shows that (sI — AEF)"B € L(C™,W). Moreover, by Theorem 1(iii), we
have that Op(s)B = F(sI — A4)"'B. As a consequence, we may conclude from (6),
that for all Re(s) > max(ww,wy,wd’, wgF)

C(sI ~ App)™'B = C(sI — AY)'B[I + F(sI — Abp)'B]. (7)

Set T(s) := I+ F(sI— A%)~'B and note that T € A_™*™ and det T € A®, by Theorem
1. Furthermore, by Theorem 2, the triple (Spr(t), B,C) is a Pritchard-Salamon system,
and hence using again Theorem 1 we obtain that C(sI — A}z)"'B € A_P*™, The claim
follows now from (7). The proof is similar if we assume that (3) is admissibly detectable.n

Proposition 3 shows that the transfer matrix of an admissibly stabilizable and admissibly
detectable Pritchard-Salamon system belongs to Brxm, However, not every element in
BPxm i5 the transfer function matrix of a Pritchard-Salamon system, see Example 6(iv)
below. It is a difficult open problem to give a characterization of the Pritchard-Salamon
class in input-output terms.

The following important result shows the equivalence of input-output and exponential
stability for Pritchard-Salamon systems.

THEOREM 4. Suppose that system (3) is admissibly stabilizable and admissibly detectable.
Then the following statements are equivalent:

(i) System (8) is ezponentially stable on W and V.
(i) C(sI ~ A)'B+ D € (Hy™™.
(i) C(sI — AV) 1B + D € A_P*m,
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For a proof of the above theorem see [CLTZ92]. Equivalence results similar to Theorem
4 have been proved by a number of authors for various classes of infinite-dimensional
systems, see [Loge86c], [Loge87b], [BoCu88], [Curt88], [JaNe88], [YaHa88], [Yama9l],
[Rebadl], and [YaHa92]. It seems that the result in [Reba9l] is the most general one of
its kind.

It follows from Proposition 3 that the transfer function matrix of a Pritchard-Salamon
system has right and left-coprime factorizations, provided the system is admissibly stabi-
lizable or detectable. The next result shows that under certain conditions the factors of
a coprime factorization of the transfer matrix of system (3) can be expressed in terms of
state-space data. It is proved in [NeJB84] for the case of finite-dimensional systems and
was extended to the Pritchard-Salamon class in [Curt90].

PROPOSITION 5. Suppose that system (3} is admissibly stabilizable and admissibly de-
tectable and denote the transfer matriz of (3) by G. Moreover, let F € L(W,C™) be an
admissible output_operator and let H € L(C?,V) be an admissible input operator such
that Spr(t) and Syc(t) given by (4) and (5) are ezponentially stable on W and V, let
A% and Ao be as in Theorem 2(iv}, and set Byp := B+ HD and Cpr := C+ DF.
Then the eight matrices

N(s) =D + Cpr(sI — Agp)™*B,  N(s)=D+C(sI - Al5) 'Bup
D(s) = I+ F(sI — A}p)"'B, D(s) =I+C(sI — A%o)'H
X(s) = ~F(sI — Ajc)™'H, X(s) = —F(sI - A%p)'H

Y(s) =1~ F(sI — A};c)™'Bup, Y(s) = I - Cpp(sl — A%p)*H

form a so-called doubly coprime factorization of G, i.e. G(s) = N(s)D~(s) = D=1(s)N(s)
and
Y(s) -X(s) D(s)y X(s)\ _ (10
(i 260 ) (30 #3)-( 1)

As in the finite-dimensional case stabilizing feedback operators and stabilizing output
injections can be found by solving algebraic operator Riccati equations, see [PrSa87].

Examples

In this subsection we mention a few examples of different types of systems which occur
frequently in the applications, some of which fit into the frequency-domain set-up and/or
the state-space set-up presented in the previous two subsections and some of which do
not. It is intended as an illustrative rather than a comprehensive list.

Example 6 (i) Retarded systems: All retarded systems (with delays in the input and
output variables) can be reformulated as Pritchard-Salamon systems (see e.g. [Sala84]
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and [PrSa85)) and the entries of their transfer matrices belong to the Callier-Desoer ring
B (see e.g. [Loge86b]). As a specific example consider
1(t) = z2(t)
i‘z(t) = a:tg(t - h) + Iru(t - hu)
y(t) = ema(t - hy),
where @,b,¢ € R and A, hy, by 2 0. The transfer function G(s) is given by
che~(huthy)s
Gls) = s(s —ae~hs)’
which is clearly an element in B.
(1) A neutral system (see {Loge87b]): Consider the neutral system
#1(t) = —z1(t) + u(t)
ig(t) - ig(t - h) = zl(t) - aa:z(t)

y(t) = =(1),
where a,h > 0. The transfer function of this system is given by
1

%) = GrDea - e

It is clear that G is in T5 = Q(A) and in [Loge87b] it is shown that G belongs to H*.
However, the system has an infinite root chain s, in the open left half-plane such that
Re(sn) — 0 as n — oo. Since the generalized Hautus conditions are satisfied in the
whole complex plane it follows that s, is a pole of G for all n. As a consequence we
bave that G € B and G ¢ 7. The above system admits an abstract semigoup description
with bounded control and observation operators and hence is clearly a Pritchard-Salamon
system. We mention that a large class of neutral systems with delays in the input and the
output variables can be described within the Pritchard-Salamon set-up, see e.g. [Sala84).

(iii) Heat equation with Neumann boundary control and distributed observation: Consider
the following partial differential equation for (z,t) € (0,1) x (0, 00)

8z 9z dz 9z
—a—z(z,t) = —a-;z'(:c,t) ; ;9—5(0,8) =10, ’a—a;(l,t) = u(t) forallt>0

zote
y(t) = 2%_/ z(z,t)dz, where zo € (0,1) and € > 0.

0—&

This system is in the Pritchard-Salamon class (see [PrSa87]) and its transfer function is

given by
_ 1 sinh[/s(zo + ¢)] — sinh[V/5(z0 — £)] _ 4
Gs) = 2 : ssinh(4/3) €3

(iv) Heat equation with Dirichlet boundary control and point observation: Consider the
partial differential equation
8z 9%z
b—t—(z,t) = ﬁ(z,t); 2(0,t) =0, z(1,t) =u(t) forall t > 0
y(t) = z(zo,), 70 € (0,1)
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for (z,t) € (0,1) % (0,00). It cannot be described as a Pritchard-Salamon system. Iis
transfer function is inh(V3 20)
sinh(y/szo) _ -
G(s) = smh(v3) €A

and hence belongs to the Callier-Desoer ring.

(v) Wave equation with Dirichlet boundary control and distributed observation: Consider
for (z,t) € (0,1) x (0, 00)

0%z 9%z
W(z,t) = w(m,t), 2(0,t) = u(?), 2(1,t) =0 forall ¢t > 0

To+e
y(t) = —212/ z(z,t)dz, where zo € (0,1) and € > 0.
zo—€

This system can be reformulated as a Pritchard-Salamon system, see [PrSa87)]. Its transfer
function is

i{cosh[s(zo + €)] — coshs(zg —~ €)]
€S 1—e?

G(s) =

+ 5 o} € Ty = Q(A).
Since G has infinitely many poles on the imaginary axis it is not an element in T3 = B or
R

{vi) Wave equation with Neumann boundary control and point observation in the velocity:
For (z,t) € (0,1) x (0,00) consider

9%z 9%z . 0z
W(z,t) = é—ﬁ(z,t), z(0,t) =0, b:'(l’t) =u(t)forallt >0
Oz
y(t) = 'a—t(l’t)

This system is not in the Pritchard-Salamon class. Its transfer function is

6—23

1— .
G(s) = 1—:}_—?_—2; € Js=Q(A).

Since G has infinitely many poles on the imaginary axis it does not belong to T3 = B or
Ts.

For further examples of systems belonging to the Callier-Desoer and/or Pritchard-Salamon
class see e.g. [PrSa87], [BoCS88], [Curt88], [Curt89], [Bont89), and [LeKo89).

3 Closed-loop stability

This section is devoted to the stability of feedback systems. Among the many forms
of performance specifications used in the design of control systems, the most important
requirement is that the system is stable: First and foremost any feedback control scheme
has to ensure closed-loop stability.
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External closed-loop stability

Let 8 be an integral domain, let D C 8 be a multiplicative subset with 1 € D and 0 ¢ D
and set T = 8D71. Let G € T*™ and K € T™*” and consider the feedback system in
Figure 1, which will be denoted by §(G, K). We shall call the feedback system stable if
every transfer function u; — y; that occurs around the loop is stable. More precisely:

Definition 7 Let G € 97*™ and K € ™*?, where T = §D~!. The feedback system
F(G, K) is called S-stable if det(] + GK) # 0 and the closed-loop transfer function matrix

K(I+GK)" —KG(I+KG)™ ) ®)

e(G, K) = ( GK(I+GK)"'  G(I+KG)*

is in §(m+r)x(m+p)

)

Uz
Uy ey n + €2 Y2
> K (O G >

+ +

Figure 1: Closed-loop system

The above notion of external closed-loop stability was introduced in a finite-dimensional
polynomial setting in [DeCh75}, which also contains several examples showing that any
three of the block entries of €£(G, K) could be stable (in the sense that their entries are in
§) while the fourth is unstable. It is not difficult to show that we arrive at same concept of
external closed-loop stability if we use the transfer matrix from (u;,ug) to (e, e;) instead
of £&(G, K). When G and K admit coprime factorizations, then $-stability of F(G, K)
can be characterized as follows (see [ViSF82]).

THEOREM 6. Suppose that G € TP*™, K € T™*?, and let (Ng, Dg) and (ﬁx,NK) be a
r.c.f. and alc.f. of G and K, respectively. Then the feedback system F(G, K) is 8-stable
if and only if the matriz Ny Ng + Dy Dg is unimodular in 8™*™. A similar statement
holds if G admits a l.c.f. and K admits a r.c.f.

As a corollary we obtain for the rings T;, ¢ = 1,...,6, presented in Example 1:

COROLLARY 7. Suppose G € TP*™ end K € T™*?, i = 1,...,6, and let (Ng, Dg) and
(Dk,Nk) be a r.c.f. and a l.c.f. of G and K, respectively. The feedback system F(G, K)
is 8;-stable if and only if

inf{| det{Nx(s)Ng(s) + Dx(s)Da(s)]| : s € Co} > 0 (9)
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For the case of T = T3, 75 Theorem 6 (and hence Corollary 7) was first proved in [CaDe76b]
and {Vidy78].

External closed-loop stability and pole-zero cancellations

Although it is well-known (at least for the single-input single-output case) that pole-zero
cancellations in the right-half plane lead to unstable closed-loop systems, only few rigorous
results in this direction can be found in the literature, one of which will be described in
the following. We restrict our attention to the rings J;, i = 2,3,4, although the results
of this subsection remain true for the rings 7y, 75, and T, provided some suitable extra
assumptions are made.

Suppose G € TP*™, i = 2,3,4, let z € C and let (N,D) be a r.cf. of G. The
complex number z is called a pole of G if det D(z) = 0 and we set 7,(G) := min{n >
0 : d*/ds"(det D(s))ls=s # 0}. The number =.(G) is called the multiplicity of the pole
z. If K € 377 then it can be shown that 7,{(GK) < m,(G) + 7,(K) (see [Loge86al,
[LoOw8T]).

Definition 8 Suppose G € T»*™ K € T/*? and z € C¢, i = 2,3,4. We say that
GK contains a pole-zero cancellation at z if 7,(GK) < 7,(G) + x,(K). Otherwise (i.e.
7:(GK) = 7,(G) + 7.(K)) we say that GK contains no pole-zero cancellation at z.

In case that G and K are square, the following sufficient condition for the absence of pole-
zero cancellations which resembles the single-input single-output case is given in [Loge86a]
and [LoOw87].

PROPOSITION 8. Let G € T™*™ and K € T,™*™, i = 2,3,4, suppose that (Ng, D¢) and
(Nk,Dg) are right-coprime factorizations of G and K, and let z € C&. Under these
conditions GK contains no pole-zero cancellation at z if

| det Ng(z)| + | det Dk (2)] > 0 and |det Nx(z)| + |det Dg(2)] >0. (10)

The condition (10) is not necessary for the absence of pole-zero cancellations, see [Loge86a)
or {LoOw87] for a counterexample. The next result gives a necessary and sufficient condi-
tion for §;-stability in terms of the transfer function matrix GK(I+GK)™! and pole-zero
cancellations of GK in Cg.

THEOREM 9. Let G € TP*™ and K € T™*?, i = 2,3,4, and suppose that det(I +GK) #
0. Then the feedback system §(G, K) is 8;-stable if and only if GK(I + GK)™! € §;7*»
and GK does not contain any pole-zero cancellations in CS.

The above theorem is proved in [Loge86a) and [LoOw87]. See also [AnGe81] for a similar
result in a finite-dimensional discrete-time setting.
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The Nyquist criterion

The famous Nyquist stability criterion is one of the basic tools in the frequency-domain
approach to feedback control. It gives a necessary and sufficient condition for closed-loop
stability, requiring for its application only open-loop data which can be deduced from
frequency-response measurements. It is worthwhile mentioning that Nyquist’s original
paper [Nyqu32] on the stability of feedback amplifiers is not restricted to rational transfer
functions, but includes a certain class of infinite-dimensional systems as well. In the
last 30 years there has been a considerable interest in a rigorous treatment of Nyquist-
type stability criteria for infinite-dimensional plants, see e.g. [Deso65], [Herz68], [DaviT2},
and [CaDeT76a] for single-input single-output systems and [DeWa80], [VaHa80], [Moss80],
[ChDe82], and[Loge86a) for multivariable systems.

In the following, if ¢ € C and ¢ is a closed curve in the complex plane not passing
through a, let v(y,a) denote the winding number of ¢ around a. Moreover, let x be a
parametrization of the wuw-axis such that x(¢) moves downwards from 100 to —2c0, and
for G € T2*™ (i = 2,3,4) let @(G) denote the number of poles of G in Cg (counting
multiplicities).

LEMMA 10. Suppose that G € TP*™, K € T{™*P (i = 2,3,4), (Ng,Dg) is a r.c.f. of G,
and (Dk, Nk) is a Le.f. of K. If det Dg(w) # 0 and det Dx(w) # 0 for allw € R and
limy,|_ o0, seca G(8) K (s) = (GK)(o0) exists, then

inf{| det[Ni(s)No(s) + Dk (s) Da(s)]] : s € Co} > 0
if and only if the following two conditions are satisfied:

det{(] + GK)(w)] # 0 for all w € RU {oo} (11)
v(det[(I + GK) 0 x},0) = —[@(G) + w(K)]. (12)

A proof of the above result can be found for example in [DeWa80], [ChDe82], and
[LogeB86a]. It is clear that we have to restrict our attention to the rings T;, ¢ = 2,3,4,
since the encirclement condition (12) makes no sense if G and/or K have a pole at oo or
if they have infinitely many poles in Co. Combining Lemma 10 and Corollary 7 gives:

COROLLARY 11. Under the conditions of Lemma 10 we have that €£(G, K) € g{m+p)x(m+r)
if and only if the conditions (11) and (12) hold.

Corollary 11 is a graphical stability criterion which generalizes the classical scalar Nyquist
criterion for finite-dimensional systems to a class of multivariable infinite-dimensional
systems. However, if K is is of the form K (s) = kKo(s), where k is a real gain parameter
and Kp € J;™*? is fixed, Corollary 11 has the disadvantage that for each value of & a
diagram has to be plotted in order to check closed-loop stability, while the scalar Nyquist
criterion allows one to examine closed-loop stability for a continuum of gain parameter
values by inspecting a single frequency response plot. This drawback can be overcome
by introducing the notion of the eigencontour of a square transfer matrix G € T;™*™
(i = 2,3,4) with respect to a curve ¢ : [0,1] — Cg', denoted by €[G, y}, which is formed
by the path of the eigenvalues of G(p(t)) as ¢ traverses the interval [0,1].
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THEOREM 12. Under the conditions of Lemma (10) the closed-loop is stable in the sense
that €L(G, K) € S P*(™P) it and only if —1 ¢ image(¢[GK, x]) and v([GK, x], 1) =
—[@(G) + w(K)].

Idea of the proof: It can be shown (either by making use of some elementary algebraic
function theory or by making use of the approach in [DeWa80]) that {GK, x] is a closed
chain and

v(elGK, x}, —1) = v(det[(] + GK) 0 x},0),
see [DeWa80] and {Loge86a] for details. Once the above equality is established the result
follows from Corollary 11. a

The above theorem is an extension of the multivariable Nyquist criterion for finite-
dimensional systems given in [PoMa79] (see also [Smit81]). In Lemma 10, Corollary
11, and Theorem 12 it is assumed that G and K have no poles on the wv-axis. The
results remain true without making that assumption if we replace x by a curve x* having
indentations into the left-half plane whenever G or K have poles on the ww-axis.

Equivalence of external and internal closed-loop stability

We consider the closed-loop configuration of two Pritchard-Salamon systems

z,(t) = Sp(t)zpo + /0 Sp(t — 1) Bpep(r)dr, ep=1us+y. (13a)

¥p(t) = Cpzy(t) (13b)
and

z(t) = Se(t)zeo +/; Sc(t — T)Bee(r)dr, e.=ui—y, (14a)

Ye(t) = Cezo(t) + Deec(t) (14b)

with state spaces W, < V, and W, — V, (cf. Figure 1, where now plant and compensator
are given by (13) and (14), respectively, and y; = y., y2 = yp, &1 = €., and e; = ¢,).
Moreover, we assume that (13) and (14) have finite-dimensional input and output spaces.
Define W, :=W. @ W,, V.:= V. ®V,, and

=% 59 ) 5= (T 5 ) 0= (% 6 ) =(7 2.)

It is clear that (S,(t), B, C.) is a Prichard-Salamon system. Hence there exists a unique
Co-semigroup Sy(t) on V. and W, (i.e. Su(t) is a Co-semigroup on V. which restricts to
a Cg-semigroup on W.) satisfying

¢
Sat(t)zeo = Se(t)ze0 +/ Se(t — 1)B. K C.Su(t)zpdr for allzo € W,,
0
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see Theorem 2. Setting 24(0) := (zc0, Zp0)7 5 et 1= (11, u2)7, ¥r 1= (Yo, ¥p)” and

_( B. 0 _{ C. =D, _(D. o
po=( 55, 5, ) 0= (5 767 )= (T 0),

the closed-loop system given by (13) and (14) can be written as

za(t) = Sa(t)za(0) + '/ot Sa(t — 7)Baua(r)dr (15a)
ya(t) = Caza(t) + Daualt). (15b)

Since B, is an admissible input operator for S.(t} and C is an admissible output operator
for S.(t), an application of Theorem 2 shows that (15) is again a Pritchard-Salamon
system. Hence we have proved that the Pritchard-Salamon class is closed under the
operation of feedback interconnection. If we denote the transfer function matrices of (13)
and (14) by G and K, respectively, then the transfer function matrix of (15) is given by
€£(G, K). Moreover, it follows from results in [CLTZ92] that the closed-loop system (15)
is admissibly stabilizable and detectable if the same is true for the plant (13} and the
compensator (14). Using Theorem 4 we arrive at the following result.

THEOREM 13. Suppose that the plant (18) and the compensator (14) are both admissibly
stabilizable and detectable. Then the following statements are equivalent:

(i) The closed-loop system (15) is ezponentially stable on V, and W..
(i) The entries of €£(G, K) are in H>.
(iii) The entries of €£(G, K) are in A_.

Results similar to Theorem 13 have been proved by a number of authors for various
classes of infinite-dimensional systems, see [Loge86a), [Loge86c], [Curt88], [JaNe88), and
[YaHa92]. The above result seems to be the most general one of its kind.

Closed-loop stability and the existence of coprime factorizations

The following question was posed in [ViSF82). Suppose that § is an integral domain
and denote its quotient field by Q(8). Let G € Q(8)**™ and suppose that K € Q(8)™*?
stabilizes G in the sense that €£(G, K) € §(m+P)x(m+#)_ [5 it true that G has right and
left coprime factorizations? In general the answer is no, as was shown in {Anan85], where
a counterexample is given for the case of § = Z[/=5]. However, there are interesting
cases were the above question has a positive answer. The following result can be found

in [Vidy85].

PROPOSITION 14. Let G € Q(8)P*™ and K € Q(8)™**. If K has a r.c.f. (lLc.f) and
€L(G, K) € 8tmtn)x(m+p) then G admits a l.c.f. (r.c.f.).

Applied to infinite-dimensional systems the above result gives a necesary condition for
the existence of finite-dimensional stabilizing compensators, see Section 4. For the case
of 8§ = H* the following theorem is proved in [Inou88] and [Smit89)].
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THEOREM 15. Let G € Q(H™)P™ and suppose there ezists K € Q(H®)™*? such that
€L(G, K) € (H®)m+p)x(m+2)  Then G has right and left coprime factorizations.

It is well-known that H* is not a Bezout ring (see Section 2). Hermite rings’ are the
next best thing to Bezout rings, at least as far as feedback stabilization and synthesis is
concerned. We claim that Theorem 15 implies in particular that H* is a Hermite ring.
Let G € Q(H*)P*™ and note that by theorem 8.1.66 in [Vidy85] it is sufficient to show
that the existence of a r.c.f. for G implies the existence of a l.c.f. for G. But if G admits
a r.c.f, then by Theorem 6 there exists a stabilizing compensator K € Q(H®)™*?, which
in turn implies via Theorem 15 that G has a L.c.f. as well. To the best of the author’s
knowledge it is not known whether A is a Hermite ring. It seems to be difficult to exploit
the fact that H* is a Hermite ring in order to show that this is also true for A.

Parametrization of all stabilizing compensators

Let 8§ be an integral domain, suppose that D is a multiplicative saturated subset of § with
1€ D and 0 ¢ D, and set T = 8D, For G € TP*™ define the set G(G) T T™*? of all
stabilizing compensators for G by

S(G) := {K € T™": det(I + GK) # 0and €£(G, K) € §m+Px(m+p)}

The following fundamental result gives a complete parametrization of the set &(G) for a
given plant G.

THEOREM 16. Suppose G € TP*™ has a r.c.f. (N,D) and a l.c.f. D N) Let X, X €
§™XP Y € §™*™ and Y € $P*P be such that XN+YD = I,, and NX+DY I,. Then

&(G) = {(Y = SN)™ (X + 5D): S € $™**and det(Y — SN) € D}
={(X +DS)(Y —NS)™*: S € $™*P and det(¥ — NS) € D}

Theorem 16 characterizes the set of all compensators that stabilize a given plant in terms of
the “free” parameter S®. The correspondence between the parameter and the compensator
is injective in the following sense: Suppose G is a given transfer function matrix, choose a
particular r.c.f. (¥, D) of G, a particular Lcf. (D, N) of G and select partxcular matrices
X,Y,X and ¥ with entries in § such that XN +YD = [ and NX + DY = I, then for
ea.ch K € 6(G) there exists a unique matrix S; over § such that det(Y — S;N ) € D and

= Y-SV Y (X+85.D ) as well as a unique matrix S; over § such that det(Y —NSy) €
ﬂ) and K = (X + DS;)(Y — NS;)~'. By substituting the parametrization into the
expression for €L£(G, K) we obtain a parametrization of all stable closed-loop transfer
function matrices achievable by feedback. For example, the first equation in Theorem 16
gives . .

_{ D(X+SD) DY-SN)-1I
LG, k) = ( N(X+SD)  N(Y-SN) )

?An integral domain § is called a Hermite ring if any unimodular row (a; - - a,) € S1*" (i.e. any row
such that a;, ..., @, generate S) can be complemented to a unimodular matrix A € $"*",

8The parameter S is not entlrely free, because of the constraints det(Y —SN) € D and det(Y -NS)e
D. In case that T =T}, i = 1,..., 6, these constraints will be satisfied if G(s) — 0 as |s] — oo in C,.
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Note that this parametrization is affine-linear in the parameter S. The only assumption
in Theorem 16 is that the plant has a r.c.f. and a L.c.f. So, it covers all systems which
belong to T#*™, i = 1,...,4. In order to apply Theorem 16 to a plant in Ts?*™ or TgP*™
we have to assume that G has a r.c.f. and a l.c.f. However, this is not a serious limitation,
because it follows from Corollary 17 in Section 4, that if G does not have a r.c.f. (l.c.f.),
then it cannot be stabilized by any controller that has a L.c.f. (r.c.f.). In particular, it
cannot be stabilized by a lumped compensator.

Theorem 16 is the basis for any systematic feedback control synthesis procedure, be-
cause first and foremost a feedback system must be stable. The parametrization of all
stabilizing compensators given by the above theorem sets the stage for the choice of a
compensator which apart from stabilizing the plant achieves a number of prespecified de-
sign constraints: strong stabilization (i.e. stabilization by a stable compensator), tracking
of prescribed reference trajectories, rejection of a given class of disturbance signals, ro-
bustness etc. Finally, if any remaining design latitude exists after these goals have been
met it may be used to optimize some measure of performance, e.g. sensitivity, stability
robustness or energy consumption. In H*-control the above parametrization has been
used for the reformulation of various H*-control problems as a model-matching problem,
see e.g. [Fran87]. In general it is a difficult problem to express design constraints and/or
performance specifications in terms of the parameter S and a lot of more work needs to
be done in this direction.

Theorem 16 was first proved by Youla, Bongiorno, and Jabr in a finite-dimensional
polynomial setting (see [YoBJ76) for the single-input single-output case and [YoJB76] for
the multivariable case). The above general version of the result is due to [DLMS80}. See
also [Vidy85] for a detailed treatment of the above parametrization (which is sometimes
called the Youla-Bongiorno-Jabr parametrization) and its applications to control system
synthesis. A tutorial introduction into these issues for the class of finite-dimensional
single-input single-output systems is given in [SMCKI82] and [SMCKI83]. Theorem 16
deals with unity-gain feedback systems. Extensions to more general closed-loop configu-
rations may be found e.g. in [Vidy85] and [Nett86].

4 Finite-dimensional stabilization

Practical feedback control of infinite-dimensional systems must be accomplished with a
finite (small) number of actuators and sensors and a control algorithm which can be
implemented by an one-line digital computer. Therefore the controller should be finite-
dimensional, and this has motivated much of the work on stabilization of distributed
parameter systems by finite-dimensional output feedback.

Existence of finite-dimensional stabilizing controllers

Since any rational transfer function matrix admits right and left-coprime factorizations, we
obtain the following necessary condition for the existence of a stabilizing finite-dimensional
compensator from Proposition 14. For the case of T = T it follows also from Theorem
15.
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COROLLARY 17. Suppose that G € TP*™, i = 5,6S and there ezists a proper rational
compensator K € T™*P such that €£(G, K) € 8{™**("+?)  Then G admits a r.c.f. and
alcf.

For the following it is useful to introduce the ring H2® consisting of all those functions in
H* which admit a continuous extension to C§' U {oo}, more precisely

H®:={feC(CHNH™®: lim f(s) exists in C}.

ls}—c0, s€Cg!
It is clear that H? is a closed subring of H*. Let A denote the so-called disc algebra, i.e.
the algebra of all holomorphic functions on the open unit disc D which admit a continuous
extension to D?'. Defining the canonical bijection ¢ : C§ U{oo} — D, s = (s —1)/(s+1),
where ¢(00) = 1, it is clear that the map 9 : H® — A, defined by (Jf)(2) = f(¢1(2)), is
an isometric isomorphism of rings. Hence, the following proposition is an easy consequence
of the fact that the polynomials form a dense subset of the disc algebra (see [Rudi74], p.
397).

PROPOSITION 18. The closure of the ring of proper stable rational transfer functions with
respect to the norm || - ||oo is given by H®, i.e. (C(s) N H®) = H=.

Applying the matrix-valued corona theorem (see theorem 14.10 in [Fuhr81]) and observing
that this result is also true for H yields:

LEMMA 19. If N € (HZ®)P*™ and D € (HX)"*? are right-coprime over H®, then they
are right-coprime over H®. An analogous statement holds for left-coprime factorizations.

As a corollary we obtain from Proposition 18, Lemma 19 and Theorem 6 the following

sufficient condition for the existence of finite-dimensional stabilizing compensators for
plants in Q(H)Px™,

COROLLARY 20. Suppose that G € Q(H®)P*™ admits a r.c.f. (N,D) € (HZ®)P*™ x

(HZ)™*™. Then there exists a proper rational compensator K such that €L(G,K) €
(H)m+p)x(mtp)

The following example shows that the condition in the above corollary (which implies in
particular that G is the limit of a sequence of lumped plants with respect to the graph
topology®) is not necessary for the existence of a finite-dimensional stabilizing controller.

Example 9 Consider the transfer function G{s) = (1 — e7%)/(1 + ¢~%*) of Example
6(vi). For any k > 0 the compensator K(s) = k stabilizes G, with €£(G, K) not only in
(H>)**?, but also in A2*?. However, it is clear that G does not satisfy the assumption
in Corollary 20.

9Suppose that G, Gn € Te?*™ = Q(H®)P*™ n g N, have right-coprime factorizations. The plants
G, converge to G in the graph topology as n — oo if there exist a r.cf. (N,D) of G and a sequence
(Nn, Dp) of r.e.f.’s of G, such that N, — N and D, — D in the H®-norm, see [ViSF82] and [Vidy85)
for details.
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The next result shows that any plant G € J;P*™, i = 3,4, can be stabilized by finite-
dimensional compensators.

THEOREM 21. IfG € T?*™, i = 3,4, then there exisls a strictly proper rational compen-
sator K € T,™*P such that QZ.C(G K)e 8(m+p Jx(m+p)

Proof: Let (N, D) be a r.cf. of [1/(s + 1)]G(s) and choose matrices X and Y with
entries in §; such that X N.4+ Y D = I. Without loss of generality we may assume that D
is rational (see Example 1) and that D(o0) = I. It is clear that N(s) — 0 as |s| — oo in

Cg. Setting
Ne(s) = (s + )N(s), Da(s) := D(s), Xa(s) := ;Tl'_—iX(s), Yo(s) i= Y(s),

we see that G = NgDg' and XgNg+YsDg = I,i.e. (Ng,Dg) is ar.ci. of G. Next note
that limy,|_.co, secgt X (s) = 0 and limy_o, secg Yc,-(.s) I. By Proposition 18 there exists
a sequence of proper stable rational matrices N, and D such that limp—eo Na = Xo
and limp_oo D = Yg in the H®-norm. Moreover, without loss of generality, we may
assume that N,(c0) = 0 and D,(co) = I. Realizing that the matrix N,Ng + D.Dg
will be unimodular over §; for all suffciently large n, it follows from Theorem 6 that the
compensator K, := D' N, stabilizes G for all sufficiently large n. The claim now follows,
since by construction the K, are strictly proper rational matrices. o

As an immediate consequence of the previous theorem, Proposition 3, and Theorem 13
we obtain:

COROLLARY 22. Suppose that the Pritchard-Salamon (3) is admissibly stabilizable and
admissibly detectable, then there ezists a strictly proper finite-dimensional compensator
(Ac, Be, C.) with state-space C* such that the closed-loop system given by (15) is ezponen-
tially stable on W@ C* and Vo C*

Theorem 21 (and its proof) is due to [Nett84], see also [NeJB83] and [Loge84]. It was
reproved in [CuGl86] in a slightly different way. Corollary 22 was proved in [JaNe88] for
systems with bounded control and observation, and in [KaKT85], [KaKT86] and [Loge86b]
for certain classes of retarded and neutral systems (with delays in the internal, control and
observation variables)!?. Although the above theorem and its corollary are not particularly
deep results, they seem to be the most general ones on the ezistence of finite-dimensional
stabilizing controllers. In particular, Corollary 22 extends the existence results of the
state-space approaches presented in [Schu83a], [Bala84], [Bala86], and {Ito90], which all
assume the input and output operators to be bounded. State-space based treatments
of the finite-dimensional stabilization problem for systems with unbounded conrol and
observation can be found in e.g. in [Curt84] and [CuSa86]. Although the results in these
two papers have a large overlap with Corollary 22, they are neither completely contained
in it nor do they contain Corollary 22.

191, this case the stabilizability and detectability assumptions are satisfied if and only if the generalized
Hautus conditions hold in the closed right-half plane, see [Sala84], [PrSa85], and [PrSa87).
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The proof of Theorem 21 indicates how to compute a finite-dimensional compensator
for a given plant G in T;P*™, i = 3,4:
Step 1: Compute a r.cf. or a Lcf. of G and solve the corresponding Bezout equa-
tion. If the plant is a Pritchard-Salamon system this can be accomplished by solving two
operator Riccati equations, and then applying Proposition 5. In case that the plant is
a retarded system with commensurate delays an alternative (constructive) procedure is
given in [KaKT86].
Step 2 Approximate the solutions of the Bezout equation by rational matrices. The most
straightforward procedure is to convert the problem into one which consists of the poly-
nomial approximation of m(m + p) functions f; belonging to the disc algebra. Polynomial
approximations with respect to the H*°-norm are given by the Cesiro means of f; (see
{Hoff62), pp. 16), which require for its calculation the computation of the Fourier coeffi-
cients of f;j(e*). This method has the disadvantage that no error bounds are available.
More sophisticated rational approximation schemes can be found in the literature, see e.g.
[GICP88], [GuLK89], [Maki90], [GILP90], and [GILP91].
Step 3: Apply any suitable robustness test (see e.g. {ChDe82], [Nett84], and [CuGl86]) in
order to ensure that the finite-dimensional compensator obtained in Step 2 is stabilizing.
This requires the computation of an H*-norm.

Let G be an irrational transfer function matrix. Theorem 21 says in particular that
the condition G € BP*™ is sufficient for the existence of a stabilizing strictly proper
finite-dimensional controlier. We are going to show that that for a large class of transfer
matrices this condition is also necessary. In order to define this class, let A,, denote
the convolution ring of all distributions f with support contained in [0,00) such that
fexp(—n-) € A for some p = pu(f) € R. Clearly, all f in Aq, are Laplace transformable
and we set Ay, = {f: f € Ax}. Note that B is contained in Ae. A transfer matrix
G € An™*™ is called strictly proper if there exists ¢ € R such that G( 8) = 0as |s| — o0
in Cq, i.e. G(s) “rolls off” in some half-plane. This does not imply that G will necessarily

“roll off” in Co. In particular G may not be bandlimited in the sense that G(w) — 0

as Jw| — o0o. Strictly proper transfer matrices G € .A PX™ correspond to systems which

do not instantaneously respond to applied inputs, a behaviour which is exhibited by all
physical devices. The following proposition is a special case of a result in [HeJN91].

PROPOSITION 23. Suppose that G € AP*™ and K € A,™®. [fEL(G, K) € AlmtrIx(m+s)
and GK (or KG) is strictly proper, then G € BP*™,

Roughly speaking, the Callier-Desoer ring B is restricted to systems with at most finitely
many unstable poles. While this is a limitation from a theoretical point of view, the above
result indicates that from a practical synthesis point of view it is not such a restriction.

Example 10 Consider once again the transfer function G(s) = (1= e®)/(1 + &%) of
Example 6(vi) and Example 9. Since G is in Am, but not in B, it folIows from Proposition
23 that G is not stabilizable by a strictly proper compensator in Ao,
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Combining Theorem 21 and Proposition 23 yields

COROLLARY 24. Suppose that G € A PX™ . There ezists a 1 strictly proper rational matriz
K such that €£(G, K) € A(mﬂ)x(mﬂ) if and only if G € BP*™.

The main assumption in Theorem 21 is that the plant has at most finitely many un-
stable poles. Example 9 shows that this condition is not necessary for the existence of
finite-dimensional stabilizing compensators (note that G has infinitely many poles on the
imaginary axis). For plants in Q(A)"*™ a general solution to this problem is given by the
following result from [ViAn89).

THEOREM 25. Suppose that G € Q(jl)”""‘ has right and left coprime factorizations, select
a r.c.f. (N,D), and let N and D denote the inverse Laplace transforms of N and D,
respectively. Then G can be stabilized by a proper finite-dimensional controller if and only
if there ezisits a matriz M € C™*(m+?) sych that

is @ unimodular matriz in A™*™, Here [],, denotes the purely atomic part.

If the plant G is assumed to be in TP*™ = BP*m  then Theorem 21 is contained in
Theorem 25 as a special case.

An important problem is the parametrization of all finite-dimensional stabilizing com-
pensators of a given plant G. Suppose that G is in BP*™ and limyj e, sy G(s) = 0.

Choose a r.c.f. (N, D) and al.c.f. (D, N) of G. Then, clearly, N(s) — 0 and N(s) —+ 0 as
[s|] = oo in Co, and without loss of generality we may assume that D and D are rational
matrices satisfying D(co) = I and D(oo) = I,. Moreover, select matrices X and Y
with entries in A_ such that NX + DY = I, and X(s) — 0 as |s| = oo in Co. Finally,
introduce the linear-fractional map T : A_ N H® — &(G), S — (X + DS)(Y — NS)~™.
Denoting the set of all proper finite-dimensional stabilizing compensators of G by &4(G)
and using the Youla-Bongiorno-Jabr parametrization (see Theorem 16) it is not difficult
to show that &;(G) is densely contained in ran(X) (with respect to the graph topology),
see [Nett84]. So far, a complete solution of the parametrization problem has not been
found.

Strong stabilization

This subsection deals with the problem of strong (finite-dimensional) stabilization, i.e.
the problem of when it is possible to stabilize an infinite-dimensional plant with a stable
(finite-dimensional) compensator. An investigation of stabilizability by stable compen-
sators is important, since it plays an essential role in many synthesis problems, such as
simultaneous stabilization of two (or a finite number) of plants, two-stage compensation,
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and reliable stabilization, see [Vidy85] for a detailed discussion of the finite-dimensional
case.

In the following we restrict our attention to plants in ﬁ,’x”‘, where ﬁ,”"”‘ denotes the
subring of all functions f € B satisfying f(s) = f(3) for all s € Co (cf. Section 2 for
remarks on the “real” versions J;, of the rings J;, ¢ = 1,...,6). The “real” version A_ ,
of A_ is defined in an analogous way. Note that a transfer matrix G € A_Pxm g strictly
proper if and only if G(-) exp(e-) € L!(0, 00; C°*™) for some & > 0, where G denotes the
the inverse Laplace transform of G.

Let G be a plant in B,7*™ and choose a r.c.f. (N, D) of G. Without loss of generality
we may assume that D is rational. In order to stabilize G with a strictly proper stable
(real) compensator one has to show, that there exists K € A_ ™ with K(s) — 0 as
|s] = oo in C§ such that det(K(s)N(s) + D(s)) # 0 for all s € CJ (this follows from
Corollary 7 and the fact that det D(s) is bounded away from 0 at oo in Cp). There is an
obvious condition that must be satisfied for this to be possible. It is customary to call a
point z € C a blocking zero of G if G(2) = 0, or equivalently, N(z) = 0, i.e. all entries of N
vanish at z. In addition, the point at infinity should be considered as a blocking zero too,
since K(o0o) = 0, and hence (K N)(oo) = 0 for all strictly proper K € A_ ,™*?. Clearly, at
each blocking zero z, det(J{(z)N(z)+D(z)) = det D(z). Since both det(K(s)N(s)+D(s))
and det D(s) are real on the real axis, and det(K(s)N(s) + D(s)) is not allowed to have
any zeros in C§, we conclude that necessarily det D(s) must have the same sign at each
blocking zero of G that belongs to the interval [0,00] (in particular, this set of blocking
zeros includes the point at infinity). Another way to say this is that the sum of the
MacMillan degrees of the real poles of G between consecutive real blocking zeros of G
must be even. This condition is usually referred to as the parity interlacing condition.
The following theorem shows that the parity interlacing condition is also sufficient for the
existence of a stabilizing strictly proper rational compensator.

THEOREM 26. For a plant G € B,P*™ there ezists a strictly proper stable compensator
K € A_,™*® such that €L(G,K) € jl(_":f PX40) if and only if G satisfies the parity
interlacing condition. Moreover, whenever the parity interlacing condition holds then
there exists a strictly proper stable rational controller which stabilizes G.

For lumped plants the above result was first proved in [YoBL74), see [Vidy85] for a detailed
treatment. The infinite-dimensional version was proved in [Staf85) for single-input single-
output plants. It was extended to the multivariable case in [Staf92]. The results in [Staf85]
and [Staf92] cover a class of transfer functions which is larger than B, in the sense that
the inverse Laplace transform of the numerator of a transfer function is merely supposed
to be a bounded measure on [0,00). Note that the hypothesis in Theorem 26 does not
exclude the possibility that the plant has infinitely many real blocking zeros in [0, 00). If
there are infinitely many blocking zeros in [0, 00) then they cluster at oo, provided that
G(s) # 0. Since G has at most finitely many poles in [0, 00) it follows that only finitely
many blocking zeros bave to be taken into account in order to check the parity interlacing
condition.
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5 Regulation by output feedback

One of the most important applications of feedback is to achieve servoaction, that is
to obtain a closed-loop system that tracks a prespecified class of refererence signals and
rejects a given class of external disturbances with zero asymptotic error. In this section
we will survey some of the results on infinite-dimensional servomechanisms which can be
found in the literature.

V2
p—l
Uz
n Uy €1 51 € Y2
— s K ot G -
+ +

Figure 2: The servo problem

The internal model principle

Consider Figure 2, where as before G € T:*™ and K € T;™*P, i = 1,....6, while 7 and
p belong to D;, i.e. 7 and p are in §; such that 7~! and p~! belong to T;. The output
y2 is required to “track” any reference signal u, generated through ! by v, € 8!. More
precisely, e; should be in 87 whenever v, is in 87 and v; = 0. Similarly, any plant input
disturbance u; generated through p~! by a v; in 87 is to be “rejected” at the output y,.
Specifically, y2 should be in 8! whenever v, is in 8 and v; = 0. Setting

R(G,7,p) :={K €6(G) : ™I + GK)™' € §7*? and p~'G(I + KG)™* € §*™}

we say that a compensator K € T;™*? is a solution of the (7, p)-servoproblem for G
if K € R(G,1,p). U K € R(G,7,1) (K € R(G,1,p)) we say that K solves the 7-
tracking problem (p-disturbance rejection problem ) for G. Furthermore, if K € R(G, r,p)
and there exists a neighbourhood Ng of G with respect to the graph topology such
that K € R(G',7,p) for all G' € Ng then K is called a robust solution of the (7, p)-
servoproblem for G. Let the set of all such controllers be denoted by R,,(G, 7, p). The
elements of R(G, T, p) (Reo(G, 1, p)) are also called (robust) (7, p)-regulators for G.

We remark that asymptotic tracking and disturbance rejection are not necessarily im-
plied by the above requirements. This is due to the fact that the inverse Laplace transform
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of an element in 8; does not necessarily approach zero asymptotically in time. Nothing is
lost, however, if we make the following assumptions:

Assumption (S1): G € TP*™ = Boxm
Assumption (S2): The entries of v; and v, are strictly proper stable rational functions.

If (S1) and (S2) are satisfied then it is clear that any K € R(G, 7, p) will achieve asymptotic
tracking and disturbance rejection for the reference and disturbance signals given by 1
and p~'v;, respectively!!. Moreover, note that all command inputs and disturbance signals
occuring in practice can be generated under the constraint (S2). For example, suppose
that the plant has two inputs and two outputs and that the closed-loop system is required
to track the command input (8(t),sin(t)) asymptotically in time (here 6(-) denotes the
Heaviside function). Setting

s(s?+1) _ s°+1
T(s) ( +1)3 ’ (3) ( +1)3> 1( ) ( +1)
we see that 7 € D3 = A%, v} and v? are strictly proper rational functions, and vi7~! and

v37~1 coincide with the Laplace transforms of #{-) and sin(-), respectively.

We are now in the position to formulate the so-called internal model principle.

THEOREM 27. Let G € BP*™, K ¢ Brxe (wherem 2 p), T, p € A=, and suppose that
(Nk,Dk) is a r.c.f. of K and that p is a least common multiple of T and p in A% 12,
Under these conditions K is in R,,(G, 7, p) if and only if K € &(G) and ™' Dg € A_P*>,

The internal model principle says (roughly speaking) that a controller which achieves
robust servoaction necessarily contains a duplicate of the dynamics of the reference and
disturbance signals. The assumption in Theorem 27 that m > p is not restrictive, since it
can be shown that robust tracking is only possible if the number of plant inputs is greater
or equal to the number of plant outputs. Using the internal model principle it is not
difficult to prove that the robust servoproblem is equivalent to a stabilization problem:

THEOREM 28. Let G € Br*m (where m 2 p), 7, p € A®, let (Dg,Ng) be a Le.f. of G
and let p denote a least common multiple of T and p in A%®. There exists a robust solution

of the (7, p)-servoproblem for G if and only if ul, and Ng are left-coprime. If this is the
case, then R,,(G,1,p) = p~16(u"1G).

It follows from Theorem 28 that the Youla-Bongiorno-Jabr parametrization of all stabi-
lizing controllers of a given plant (see Theorem 16) induces a parametrization of the set
R.o(G, T, p). Moreover, by Theorem 21, if the robust (7, p)-servoproblem admits a solu-
tion at all, then it can be solved by a finite-dimensional compensator. Theorem 27 and
Theorem 28 can be found in [Nett84]. For the finite-dimensional case similar results are

!!Recall that if k is a convolution kernel in A and u € L%(0,00) then & * u € L*(0,00). Under the
extra assumption that u converges to 0 asymptotically or exponentially, the same is true for k » u.

12Note that there exists such a least common multiple, because r and p belong to jl‘f and hence have
at most finitely many zeros in C, for some o < 0.
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given in {FrVi83] and in section 7.5 of [Vidy85] (an inspection of the proofs shows that
they carry over to infinite-dimensional systems with transfer functions in ﬁ"m). In the
above results it is assumed that the reference and disturbance signals are generated by
7-! and p~!, where 7 and p are in A%®. Extensions to multivariable reference and dis-
turbance signal generators can be derived as in the finite-dimensional case, see [Vidy85).
The servoproblem has been investigated for various classes of distributed parameter sys-
tems, see [Fran77], [DeWa79], [CaDe80b}, [SaMu81], [FeCa82], and [YaHa88]. All these
papers are written from an input-output point of view and come to conclusions which are
closely related to the above results. References which investigate tracking and disturbance
rejection problems with state-space methods include [Koba83], [Schu83b], [Curt83], and
[UkIwg0].

Trivially, the internal model principle remains sufficient for the solvability of the servo-

problem without robustness. However, as the following example shows, it is not necessary
in the nonrobust case.

Example 11 (see [Fran77]) Set G(s) = 1/s, K(s) =1, 7(s) = s/(s + 1), and p(s) = 1.
Trivially, (Nx(s), Dk(s)) = (1,1) is coprime factorization of K. An easy computation
shows that K € (G, 1,p). But u~ 1Dy = r~1Dg ¢.;L, and hence, by Theorem 27, K ¢
R.o(G, 7, p). Indeed, let £, > 0 be a such that lim,— €, = 0, and set Go(s) = 1/(s —¢,).
Then G, converges to G in the graph topology as n — oo, but

s+l _s—é ¢.2Lfora.lln€N,

T () + Gu($)K () = — =y

which shows that K is not a robust (7, p)-regulator for G.

PI-control of uncertain infinite-dimensional systems

In the following we apply the internal model principle to robust low-gain and high-gain
control problems. First we consider the low-gain situation, where a low-gain PI-controller
is applied to an uncertain stable plant in order to achieve asymptotic tracking of step
commands and asymptotic rejection of step-disturbances. The following result is proved
in {LoOw89].

THEOREM 29. Let G € .A_’”‘"‘, suppose that rankG(0) = p, and choose a matriz Kp €
C™*? such that F(G, Kp) is stable.’® Then there ezists a matriz K1 € C™*P satisfying
spec(( + G(0)Kp)'G(0)K ) C Co.

For each such K| there ezists a number k* > 0 such that for all 0 < k < k* the controller
1
Kk(s) = ;k[(] + Kp (16)

achieves closed-loop stability in the sense that €L(G, Ki) € A™PX™) fn all k €
[0,%%).

13Note that by the small-gain theorem (see e.g. [DeVi75]) the closed-loop system §(G, Kp) is stable
for any Kp € C™*P satisfying || Kp|| < 1/|}Gl|oo-
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Note that exact knowledge of G is not required. For pure integral control (i.e. Kp = 0)
it is sufficient to know G(0). This information can be deduced from plant step data.

If proportional action is required then some extra information is needed {e.g. an upper
bound on [[Gllce)-

Setting Tstep(S) = pstep(8) = s/(s+1) we obtain by combining Theorem 29 and Theorem
27:

COROLLARY 30. Under the conditions of Theorem 29 the controller K given by (16) is
in Reo(G, Totep, Potep) for all k € (0,k*).

If in Figure 2 the signals v; and v, are given by vi(s) = (ri,...,m)T(1/s +1), i € C
(i=1,...,p), and v3(s) = (di, ..., dm)7(1/s+1),d; € C (i = 1,...m), we see that the closed-
loop system F(G, K}) asymptatically tracks step commands of the form (ry,...,75)T0(¢)
while it asymptotically rejects step-disturbances of the form (dj, ..., dm)T8(t).

In a finite-dimensional state-space setting results similar to Theorem 29 and Corollary
30 can be found in [Davi76] (see also [Mora85] and [Lunz89], chapter 10). They were
extended to various classes of infinite-dimensional systems in [Pohj82], [PoLa83], [Pohj85],
[KoPo85), [JuKo87], and [LoBO88]. Corollary 30 seems to be the most general result
of its kind. The above references (apart from [Davi76]) deal with step commands and
step disturbances. It is shown in [HaPo81] that asymptotic tracking and asymptotic
disturbance rejection of a more general class of reference and disturbance signals can be
achieved if the controller (16) is replaced by a proportional-plus-multiintegral controller.

We now turn our attention to a high-gain control problem. It is “dual” to the low-gain
case in the sense that the plant is assumed to be minimum-phase, while it is allowed
to be unstable. A high-gain Pl-controller is applied in order to achieve stabilization,
asymptotic tracking of step commands and asymptotic rejection of step disturbances. Let
G be a square transfer matrix of size m x m which is meromorphic on C, for some a < 0.
In the following we make the assumption

Assumption (HG): There exist I' € C**™, detI' # 0, and H € (H®)™*™ such that

G™Y(s) = sT + H(s) an
Of course, (17) is equivalent to
1 1l
G(s)=(I+ ;I‘ H(s)) ;I‘ ,

i.e. G can be written as the feedback interconnection of an integrator in the forward loop
and a stable infinite-dimensional system in the feedback loop.

Remark 12 (i) It is not difficult to show that any meromorphic transfer matrix satisfying
the assumption (HG) is in Bm™*™,

(ii) A characterization of the condition (HG) in terms of the zeros of G and the behaviour
of sG(s) as |s| — oo in C, (for some suitable a < 0) is given in [LoZw92].
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Consider the Pl-controller
. k;
Ci(s) := FdlagISism(-; + ki +1), (18)

where I' € C™*™, det T # 0, k = (k1 ..., k)T, and k; > 0 for all i = 1,...,m. The above
controller (18) was investigated in [OwCh82] when applied to finite-dimensional systems,
see also [Lunz89], section 6.4. The infinite-dimensional case is studied in [LoOw87] and
[LoZw92]. The following result can be found in [LoOw87].

THEOREM 31. Suppose that G € Bmxm satisfies (.HG),. Then €£(G,Cy) € AZmx2m for
all sufficiently large k;, i = 1,...,m, provided that ||T-*(T - T)|| < 1.

Notice that Ci does not depend on H. The condition involving [ is trivially satisfied if

I’ =I'. However, I' might not be known exactly to the designer.

By combining Theorem 31 and Theorem 27 we obtain

COROLLARY 32. Under the conditions of Theorem 31 the controller Cy given by (18) isin
Rro(G, Tatep, Patep) for all sufficiently large k; (i = 1,...,m) provided that |I-'(T-T)|| < 1.

As a consequence the closed-loop system F(G, Ci) achieves asymptotic tracking of step
commands and asymptotic rejection of step disturbances if the gains k; are sufficiently
high.

Example 13 Consider the retarded system

i(t) = /_ dA(r)s(t+7) + Bu() (19)
y(t) = Cz(t), (19b)

where A € BV(=h,0;R™**), B € R™™ and C € R™*", Setting A(s) := ffh dA(7) exp(st)
the transfer matrix G(s) of (19) is given by G(s) = C(sI — A(s))™'B. If det(CB) # 0
and

det(sl—CA(s) g);éo for all s € C¢,

then G satisfies assumption (HG) with T’ = (CB)™!, see {LoZw92]. Hence Theorem 31
and Corollary 32 can be applied to the retarded system (19). An analogous result holds
true for a class of Volterra integrodifferential systems, see {LoZw92].

Conditions in state-space terms for (HG) to be satisfied are given in {LoZw92].
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6 Conclusions

In this paper we have surveyed a number of frequency-domain results on stabilization and
regulation of infinite-dimensional systems, which have been obtained within the fractional
representation approach to feedback system analysis and synthesis, and we have shown
how they are linked to the Pritchard-Salamon class of state-space systems. It is clear that
the fractional representation approach to infinite-dimensional feedback system analysis
and synthesis and its links to state-space descriptions of distributed parameter systems
is an area of research in which a lot more work needs to be done. Amongst the topics
requiring further investigation are:

¢ Computational issues: Reliable and efficient algorithms for the computation of co-
prime factorizations and the solutions of Bezout equations are required in order
to increase the applicability of the theory. Rational approximation schemes for
bounded holomorphic functions need further investigation from a computational
point of view.

e Synthesis of state-space and frequency-domain methods: In Section 2 we have pre-
sented a number of results relating state-space and frequency-domain properties of
Pritchard-Salamon systems. As already mentioned, there are many interesting and
important systems described by partial differential equations which do not belong
to the Pritchard-Salamon class. It is a challenging problem to achieve a synthesis of
state-space and frequency-domain methods for a set-up which is more general than
the one of Pritchard and Salamon. First steps in this direction have been taken
for example in [Weis90b] and [Reba9l)], where the class of the so-called regular
state-space systems is investigated.

o Infinitely many unstable poles: The system in Example 6(vi) has infinitely many
poles on the imaginary axis. As already mentioned, it can be stabilized by propor-
tional output feedback of the type u = —ky for all £ > 0. However, it is known
from [DaLP86] that the resulting closed-loop system can be destabilized by arbitrary
small delays in the feedback loop. Given a plant with infinitely many unstable poles,
it is an interesting problem, if it is possible to construct (finite-dimensional proper)
stabilizing compensators which have the property that the closed-loop system is
robust with respect to small time-delays.

o Infinite-dimensional compensators: In this paper we have considered almost exclu-
sively finite-dimensional compensators. Due to the progress of the VLSI technology,
and, to a lesser extent, computer technology in general, a future exclusive emphasis
on finite-dimensional stabilization and regulation seems unnatural.

o Time-varying and/or nonlinear infinite-dimensional plants: A challenging problem
is the generalization of fractional representation theory to time-varying and/or non-
linear infinite-dimensional systems. Although a frequency-domain point of view
is for time-varying and/or nonlinear systems no longer appropriate, it is in many
cases possible to model the system as a “ratio” of two bounded causal operators
on a Hilbert space. First steps in this direction have been taken for example in
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{FeSa82] (chapters 8 and 9), [DeKa88], [Verm88], and [Fein92]. Notice that now the
ring 8 of “stable” systems is in general not commutative anymore. Moreover, in the
nonlinear case $ fails to be right-distributive, and hence § is no longer a ring.
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