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This paper contains three results on stability and stabilizability of linear time-
invariant infinite-dimensional discrete-time systems. (1) Power stability is character-
ized in transfer-function terms using the concepts of stabilizability and detectability.
(2) Under the assumption that the input operator is compact, we present a necessary
and sufficient condition for stabilizability involving spectral properties of the system
operator and a projection of the infinite-dimensional system onto a certain finite-
dimensional subspace of the state space. (3) It is shown that, if the input and output
spaces are finite-dimensional, then stabilization by finite-dimensional dynamic output
feedback is possible if and only if the system is detectable and stabilizable.

1. Introduction

Although stability properties of linear time-invariant infinite-dimensional discrete-
time systems have received some attention in the literature in the last 20 years (e.g.
Fuhrmann 1973; Przyhiski 1980, 1988; Weiss 1989), the notions of stabilizability and
detectability have not been much investigated so far. This is very different from the
situation in the continuous-time case, where the concept of stabilizability has been
studied in some detail (see Pritchard & Zabczyk (1981) for a survey of the literature
published in the 70's), and where recently a well-known sufficient condition for
stabilizability (Triggiani 1975) was shown to be necessary as well, provided the input
space is finite-dimensional; see Nevedev & Sholokhovich (1986) and Jacobson &
Nett (1988). This result is closely related to recent work on stabilization of
infinite-dimensional continuous-time systems by finite-dimensional dynamic output
feedback; see e.g. Kamen et al. (1985), Logemann (1986a,b), and Jacobson & Nett
(1988), where it was shown for various classes of infinite-dimensional systems that
finite-dimensional stabilization is possible if and only if the plant is stabilizable and
detectable.

In this paper, we want to prove (among other things) the above-mentioned results
for discrete-time systems defined on arbitrary Banach spaces. The content of the
paper is as follows. In Section 2 we show that, if the system is stabilizable and
detectable, then power-stability is equivalent to input-output stability in the sense
that the transfer function of the system is holomorphic and bounded outside the
closed unit disc. We mention that this result does not require the input and output
spaces to be finite-dimensional. Moreover, under the assumption that the input
operator is compact, we present a necessary and sufficient condition for stabilizability
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256 HARTMUT LOGEMANN

involving spectral properties of the system operator and a projection of the
infinite-dimensional system onto a certain finite-dimensional subspace of the state
space. The results in Section 2 are used in Section 3 in order to prove that an
infinite-dimensional discrete-time plant with finitely many inputs and outputs can be
stabilized by finite-dimensional output feedback if and only if the plant is stabilizable
and detectable.

2. Power stability, input-output stability, stabilizability, and detectability

Let X, 11, and J b e Banach spaces, with A e %(X,X), B e %(11,X), C e ®(X, 90, and
D e &(Zl, 90, where SB(1̂  eW) is the Banach space of bounded linear operators from
V to W. We shall investigate discrete-time systems of the form

x(j + I) = Ax(J) + Bu(J))
0 = 0,1,...), x(0) = xo. (1)

y(J) = Cx(J) + Du(J)i
Denote the spectrum and the spectral radius of A by <3{A) and r(A), respectively. It
is well known that

r(^)= Urn M-ll1'-. (2)
n-* oo

The point spectrum of A is denoted by CTP(/1). As usual the resolvent set of A is
defined by p(A) = C\(7(v4). For a > 0 and Z a Banach space, set

D a =={zeC: |z |<a}, E..

H"(Z)•= { / : E , - » Z : / is holomorphic and bounded}.

It is well known that the mapping z i—> C(zl — A)~lB + D is a holomorphic
SCZi, 90-va 'ue<l function on p(A). In order to define precisely what we mean by the
transfer function of system (1), some preparations are required. A transfer element
at oo of system (1) is a pair (IE,, Ga), where G, is a holomorphic function from Ea to

, T) such that

for all z e p(A) n Ea. Let Tdenote the set of all transfer elements at oo of system (1).
Notice that T ^ 0 , since Ea <= p(^) for all sufficiently large a.

DEFINITION 1 Setting a0 •= inf{a > 0 : (Ea, Ga) e T}, we define the transfer function
G : E^ -» 8(W, 90 of system (1) by

G{z) = GI{z) ifz€Eaand(Ea ,Ga)eT,

where, in the case <x0 = 0, we set Eo •= C\{0}. D

It is clear that G is a well-defined ©(Zi, 90-valued holomorphic function on E^, and
that G is in H?CBCU, 90) for all a > T(A). If a0 = 0, then G can be continued
holomorphically into 0 if and only if G(z) = D for all z e Eo.
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STABILITY OF INFINITE-DIMENSIONAL DISCRETE-TIME SYSTEMS 257

DEFINITION 2 System (1) is called (i) power-stable if A is power-stable, i.e. there exist
H > 1 and y e (0,1) such that

||i4"|| < w" for all n e No,

and (ii) input-output stable if G e Hf (©(W, 90)- •

The following lemma gives two simple characterizations of power stability.

LEMMA 1 The statements below are equivalent:

(i) system (1) is power-stable;
(ii) r(>l)<l;
(iii) [z .-> (z/ - A) ~x] e H?(<B(X, JO).

Proof. It follows from (2) that (i) o (ii) and the implication (ii) => (iii) holds trivially
true. We show that (iii) => (ii). Indeed, if r(A) = a ̂  1, then there exists z0 e G(A)
with |zo| = a and we can choose a sequence z n e E , c p(A) such that lim,,.,^ zM = z0.
Since

r((zB/->t)-1)=l/dist(zB,a(A))

(Kato 1976: Problem 6.16 on p. 177), we see that the sequence \\{zj - A)~x\\ is
unbounded, which shows that

[z ^ (z / _ ^)-i] ̂  H-(»(X;JO) 2 Hr(»p; JO).

DEFINITION 3 (i) System (1) is called stabilizable if there exists F e S p ; 11) such
that /C + BF is power-stable, (ii) System (1) is called detectable if there exists
// e SCX, X) such that /i + EC is power-stable. D

The next theorem shows that the concepts of power-stability and input-output
stability are equivalent, provided that the system is stabilizable and detectable.

THEOREM 2 The following statements are equivalent:

(i) system (1) is power-stable;
(ii) system (1) is input-output stable, stabilizable, and detectable.

Proof. The implication (i) => (ii) is trivially true. In order to show that (ii) => (i), pick
Fe^BiX,Zl) and H eSCXJQ such that A + BF and A + HC are power stable.
Define

\ (3)

-FP(z), (4)

(zI-A-HCrl, (5)

-P{z)H. (6)

Then

(zl - >4)P(z) + BQ(z) = / and P(z)(z/ - A) + Q{z)C = / for all z e Ej.
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It follows, for z e E, n p(A), that

CP(z) + C(zl - AylBQ(z) = C(zl -A)~\ (7)

P(z) + Q(z)C(zI -Ay^izl-A)'1. (8)

By assumption, C(«I — A)~ lB is bounded on Et n p(/l), and so we obtain from (7)
via (3) and (4) that C(»/ - -4)"1 is bounded on Et n p(A); hence, using (8), (5), and
(6), we see that (•/ — A)'1 is bounded on Ex n p(/l). By Lemma 1, it is sufficient
to show that Et £ p(A). Assume the contrary, i.e. £l n O(A) + 0. Then there exist
z o e E 1 n a ( / l ) and zKeEl n p(A) such that hmn^xzm = z0, and therefore the
sequence \\(z,I - A)~l\\ is unbounded, which leads to a contradiction. D

COROLLARY 3 Suppose that system (1) is input-output stable. If (1) is stabilizable
and detectable, then the transfer function G of (1) is in Hf (»(W, 90) for some
16(0,1). D

The next result gives a characterization of stabilizability, provided that the input
operator B is compact. Hence it applies in particular to systems with finite-
dimensional input space 11.

THEOREM 4 Under the assumption that B is compact, system (1) is stabilizable if
and only if the state space X admits a decomposition X = X, © Xu which satisfies the
following conditions.

(i) dimXu < oo.
(ii) AX% £ X, and AXU s Xu.

(iii) There exists a e (0 , 1) such that G(A) n E£' consists of (at most) finitely many
eigenvalues with finite algebraic multiplicities, G(A \XU) = O(A) n E|', and
O(A \X,) = G(A) n D,.

(iv) The finite-dimensional system (A \XU, PB) is controllable, where P:X ^ X is
the projection onto Xu along X,.

Remarks, (i) The above theorem shows in particular that, if B is compact and system
(1) is stabilizable, then it can be stabilized by a state-feedback operator of finite rank.
In other words, system (1) can be stabilized (by state feedback) using finitely many
input channels only.

(ii) It is clear that, if the output operator C is compact, an analogous result holds
for detectability.

(iii) For infinite-dimensional continuous-time processes (defined by strongly
continuous semigroups) with finite-dimensional input space, analogous results have
been proved by Nemedov & Sholokhovich (1986) and Jacobson & Nett (1988) for
bounded control action, and by Curtain (1988) for unbounded control action. Under
the assumption that the state space is a Hilbert space and that the feedback operator
is compact, Rebarber (1990) presented a generalization which covers a certain class
of unbounded input operators of infinite rank.

Proof of Theorem 4. The sufficiency of the condition (i)—(iv) for stabilizability follows
from well-known finite-dimensional results. In order to prove necessity, we shall
proceed in two steps.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
ci/article/9/3/255/643966 by U

niversity of Bath user on 26 June 2024
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Step 1. We show first that there exists a < 1 such that O(A) n EJ1 consists of (at
most) finitely many eigenvalues with finite algebraic multiplicities. First notice that,
by assumption, there exists a stabilizing F e SB(PC, 11), i.e. r(A + BF) < 1 by Lemma
1. Let ae(r(/l + BF), 1) be fixed but arbitrary. Then p(A + BF) 2 Ê 1 and, for
z e EJ1, the equality

zl - A = [I + BF(zl -A- BF)-^(zI - A - BF)

holds. Hence, for z e Ec
a\ we have

z€G(A) o -le<J(BF(zI-A-BF)'1) o - 1 eap(BF(zI - A - BF)'1).

The second equivalence is true because the operator BF(zI — A — BF)'1 is compact
Now, for z e ££', suppose that - 1 e Op(BF(zI -A- BF)'1). Then there exists a
corresponding eigenvector x e X, with x / 0, such that

[/ + BF(zI - A - BF)~^x = 0

and hence {zl - A)(zl -A- BF)'^ = 0, which shows that z e <JP(A). It follows
that

G(A) n E? = ap(A) n E?.

Moreover, using the above equivalence, the compactness of B and Thm 1.9 on
p. 370 of Kato's book (Kato 1976) we may conclude that <JP(A) n EJ1 is finite. Let
X e <Jp(y4) n El1. Then, in order to show that the algebraic multiplicity of X is finite,
assume the contrary. It then follows from Thm 5.28 on p. 239 in Kato (1976) that X
belongs to the essential spectrum of A. This leads to a contradiction of the fact that
<j(A + BF) n E£' = 0 , since the essential spectrum of an operator is conserved under
compact perturbations (Kato 1976: Thm 5.35 on p. 244).

Step 2. Step 1 enables us in particular to apply Thm 6.17 on p. 178 in Kato's
book (Kato 1976). It follows that there exists a projection P.X^X such that
dim PX = n < oo, A and P commute, O(A \PX) = O(A) n EJ1 = OP(A) n E£', and
G(A \(I - P)X) = O(A) n D«. By setting^ .= PX andX, •= (/ - P)X, it is clear that
the conditions (i)-(iii) are satisfied. In order to show that (iv) is satisfied as well,
observe that, for all z e E£', we have

(zl - A)(zl - A - BF)~1 - BF(zI - A - BF)'1 = / .

It follows that

rk(zIXu - A \Xa, PB) = n forallzeE^'.

Since A \X0 has no spectrum in Da, we obtain that the above rank condition holds
for all z e C, which means, by the Hautus test, that the pair (A \XU, PB) is controllable.

•
Under the assumption that B is compact, Corollary 3 can be strengthened.

COROLLARY 5 Suppose that B is compact and that system (1) is input-output stable.
If (1) is stabilizable, then the transfer function G of (1) is in H£°(£(W, 90) for some
a e ( 0 , l ) . D
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2 6 0 HARTMUT LOGEMANN

3. Stabilization by finite-dimensional dynamic output feedback

In this section, it is assumed throughout that the input and output spaces 11 and y
are finite-dimensional. Let us turn our attention towards stabilizing system (1) by
finite-dimensional strictly proper compensators of the form

0" = 0, 1,...), U0) = £o- (9)

The following lemma will be useful for the proof of Theorem 7, the main result of
this section.

LEMMA 6 Let H e Hf (95(ti, 90) and suppose that lim|lHoo H(z) = H„ e S&(11, y).
Under these conditions, there exists a sequence of rational matrix functions
Rn e H "(»(£/, 90) such that

lim | | H - RJm = 0,

where [|Af ||„ denotes the sup-norm in H£°(93CZi,90), i.e. the supremum over zeE,
of the largest singular value of M(z).

Proof. It is well-known that the polynomials form a dense subset of the so-called
disc algebra, i.e. the set of all holomorphic functions on D t which are continuous
on Di' (Rudin 1974; p. 397). Of course, this result extends to matrix-valued functions
defined on B'1 and an application of the transformation z -» 1/z proves the claim. •

THEOREM 7 Suppose that dim'Zi < oo and dim9^< oo. Then the following state-
ments are equivalent:

(i) system (1) is stabilizable by a finite-dimensional (strictly proper) compensator
of the form (9);

(ii) system (1) is stabilizable and detectable.

Remarks, (i) Theorem 7 can be considered as a generalization of a well-known
finite-dimensional result by Hautus (1970). (ii) See Nett (1984), Kamen et al. (1985),
Logemann (1986a,b), and Jacobson & Nett (1988) for analogous continuous-time
results.

Proof of Theorem 7. Suppose first that (i) is true, i.e. there exists a finite-dimensional
compensator (F, K, L) which stabilizes system (1). Notice that the closed-loop system
operator Ac can be written as

f A -BL ~|
Ac = \ = diag(/4, F) + diag(B, K) D diag(C, - L),

\_KC F - KDL\

where D is defined by

L/ D\
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STABILITY OF INFINITE-DIMENSIONAL DISCRETE-TIME SYSTEMS 261

Since r(Ac) < 1, we see that (diag(/4, F), diag(B, K)) is stabilizable and (diag(X, F),
diag(C, — L)) is detectable. It follows from Theorem 4 that there exists a e (r(/Jc) , 1)
such that a(diag(/4, F)) n E£' consists of at most finitely many eigenvalues with finite
algebraic multiplicities. As a consequence, the same is true for a(diag(/l, 0)) n E,1 by
Thm 6.2 on p. 247 in Kato (1976). Hence <J(A) n E£' consists of at most finitely many
eigenvalues with finite algebraic multiplicities. Therefore there exists a projection
P: X -» X which satisfies the conditions (i)-(iii) in Theorem 4. In order to show that
system (1) is stabilizable, it is sufficient to prove that condition (iv) in Theorem 4
holds true as well. To this end, notice that, for all z e E£', we have

[z/ - diag(A, F)]{zl - Acy
l - diag(B, K) 5 diag(C, -L) (zl - AJ" 1 = /,

which implies that

rk(z/ - A \XU, PB) = dim Xa for all z e E<",

where Xu •= PX. Since A \XU has no spectrum in Da it follows that the above rank
condition is satisfied for all z e C. An application of the Hautus test shows that the
finite-dimensional system (A\XU, PB) is controllable. Using Theorem 4, we see that
system (1) is stabilizable. In the same way it can be shown that system (1) is detectable
(cf. Remark (i) on Theorem 4).

Conversely let us now assume that (ii) holds true. It then follows from Theorem
4 that there exists a e (0, 1) such that G(A) n E£' consists of at most finitely many
eigenvalues with finite algebraic multiplicities. Hence there exists /? e (a , 1) such that
on E,, the transfer-function matrix G(z) = C(zl — A)~lB + D of system (1) can be
decomposed as

G{z) = H(z) + R(z),

where H e Hjj°(23(l/, Y)) and R is a strictly proper rational matrix function with all
its poles in El1. Set

and pick a right-coprime rational factorization of R(z):

R = NM~\ detM(oo)#0

with

PN + QM = /,

where M, N, P, and Q are stable proper rational matrices. It is clear that N is strictly
proper. Set

P(z)>=z-lP(z), N{z)>=zN{z), M(z).= M(z), Q(z)>=Q{z);

then it follows that

G = (HM + N)M ~l, P(HM + N) + (Q - PH)M = I (10a,b)

Since M, N, P, and Q are stable proper rational matrices, there exists y e (0, 1)
such that they are bounded on E r Defining <5"=max{/?, y}, we obtain that
(HM + N)M ~l is a right-coprime factorization of G over HfJ^B(Zl, CD). Moreover,
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2 6 2 HARTMUT LOGEMANN

since lim^-.,,, H(z) = D exists, it follows from Lemma 6 that there exists a sequence
of proper rational matrices Hn converging to H in the H°° norm. Therefore, bringing
in (10b), we see that

Vn .= P(HM + N) + (Q- PHn)M

is a unimodular matrix in HJ°(93(1i, 11)) for all sufficiently large n. Hence, by
fractional representation theory (Vidyasagar et a\. 1982), the compensator

will stabilize G for all sufficiently large n, in the sense that

SnG)'1 -GSm(I SHyll

)-1 J
Notice that, by construction, SH is rational and that moreover Sn is strictly proper,
since P is strictly proper and Q(co) = M-1(oo) is nonsingular. Now let (Fn, KH, Ln)
be a stabilizable and detectable finite-dimensional realization of Sn and observe that
the triple

(\A ~BL* 1 \B °] \C °
VU.C Fm-K.DLj 10 Kj \_O L

is a stabilizable and detectable realization of the transfer-function matrix (11). An
application of Theorem 2 shows that the closed-loop system operator

A -BLn "I

,C FH-KnDLj

is power-stable for all sufficiently large n. •
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