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For a large class o f  infinite-dimensional systems, the small-gain condition 
and the circle criterion both ensure global exponential stability. The 
small-gain condition is sharp in the sense that there exist real destabilizing 
perturbations with gain equal to the critical value. 
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A b s t r a c t - - A n  internal version of the small-gain theorem is 
given for a class of  plants including t ime-delay and 
distributed systems. More precisely: it is shown that for a 
large class of infinite dimensional  state-space systems the 
small-gain condition in L 2 is sufficient for internal stability. 
Fur thermore  it is proved that there exist unstable feedback 
systems of loop gain equal to one.  The  internal version of the 
small-gain theorem is used in order  to establish that  the circle 
criterion is sufficient for global exponential stability. 

1. I N T R O D U C T I O N  

THE CIRCLE criterion is a well-known graphical 
stability test for feedback systems consisting of a 
linear time-invariant system in the forward-loop 
and a sector bounded, possibly time-varying, 
memoryless nonlinearity in the feedback-loop. 
One of its most appealing aspects is that it 
generalizes the sufficiency portion of the Nyquist 
criterion: the critical point is replaced by a 
critical disk whose size and location (in the 
complex plane) is determined by the slopes of 
the lines which form the boundaries of the 
sector. There is a vast literature on the 
subject--we only mention the original papers by 
Narendra and Goldwyn (1964), Sandberg (1964), 
Zames (1966) and Freedman et al. (1969); the 
books by Willems (1971), Narendra and Taylor 
(1973), Desoer and Vidyasagar (1975); Vid- 
yasagar (1978) and Mees (1981); and the 
collection of original contributions edited by 
MacFarlane (1979). Basically, there are two 
approaches to the circle criterion: 
• The input-output approach, resulting in a 

criterion checking input-output stability (see 
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e.g. Sandberg, 1964; Zames, 1966; Desoer and 
Vidyasagar, 1975; Vidyasagar, 1978); and 

• The state-space approach, giving a criterion 
for internal stability in the sense of Lyapunov 
(see e.g. Narendra and Goldwyn, 1964; 
Narendra and Taylor, 1973; Vidyasagar, 
1978). 
Those versions of the circle criterion which 

cover infinite-dimensional systems are formu- 
lated in input-output terms (cf. Sandberg, 1964; 
Zames, 1966; Freedman et al., 1969; Willems, 
1971; Desoer and Vidyasagar, 1975; Vidyasagar, 
1978; Mees, 1981). Up till now it has not been 
investigated if an infinite-dimensional feedback 
system satisfying the conditions of the circle 
criterion will be internally stable. It is the 
purpose of this paper to show that for a large 
class of infinite-dimensional systems the circle 
criterion will ensure global exponential stability. 
This will be done by combining frequency- 
domain methods for distributed parameter 
systems (see Callier and Desoer, 1978, 1980; 
Desoer and Wang, 1980; Logemann, 1986) and 
recent results in the state-space theory of 
infinite-dimensional systems (see Pritchard and 
Salamon, 1987; Curtain, 1988, 1989). We 
present a proof which does not use Lyapunov 
techniques and which seems to be new for 
finite-dimensional systems as well. It is based on 
an internal version of the small-gain theorem 
(see Section 3 of this paper), exponential 
weighting (see e.g. Desoer and Vidyasagar, 
1975) and recent results on the relationship 
between input-output stability and internal 
stability for infinite-dimensional systems (see 
Curtain, 1988). The circle criterion given in this 
paper applies to infinite-dimensional systems 
with unbounded control action, hence it covers 
retarded systems with point-delays in the input 
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or the output and distributed systems with 
boundary control. 

In Section 2 we introduce a fairly large class of 
infinite-dimensional state-space systems which 
allows for unbounded control and observation. 
Our set-up is closely related to the one 
considered in Salamon (1984), Pritchard and 
Salamon (1987) and Curtain (1988, 1989). We 
prove a number of technical results which will be 
needed in the sequel. In particular it is shown 
that the class of systems under consideration is 
closed with respect to perturbations induced by 
static output feedback. Section 3 is devoted to 
the well-known small-gain condition, which will 
play a key-role in the proof of the circle 
criterion. We show that a feedback system 
consisting of an exponentially stable infinite- 
dimensional system in the forward loop and a 
sector-bounded memoryless nonlinearity (locally 
Lipschitz continuous operator of finite gain) in 
the feedback loop is globally exponentially stable 
(globally asymptotically stable) if the product of 
the L2-gains is smaller than one. Moreover it is 
shown that there exist unstable feedback systems 
of loop-gain equal to one. More precisely: for a 
given exponentially stable infinite-dimensional 
real plant we construct a linear finite- 
dimensional real  compensator making the 
L2-1oop gain equal to one and causing 
destabilization. The compensator can be chosen 
to be constant if we allow for complex 
coefficients. This result bears a close re- 
semblance to recent work on stability radii of 
linear finite-dimensionals systems (cf. Hinrichsen 
and Pritchard, 1986, 1989, 1990). Finally, in 
Section 4, we show that for the class of 
infinite-dimensional systems under consideration 
the circle criterion is sufficient for global 
exponential stability. 

Notation 
Let X and Y be Banach spaces. Then we 

define 

Lq(O, t; S)  q times integrable functions 
from [0, t] to X 

LLq(O,~;X) q times locally integrable 
functions form [0, o~) to X 

27(X, Y) bounded linear operators 
from X to Y 

~ ( X )  bounded linear operators 
from X into itself. 

The truncation operator Jr,: LLq(O, oo;X)-"> 
Lq(O, ~; X) is defined by 

~f(~'), 0--<r--<t 
(~,f)(z') = (0, z > t .  

Let T be an operator; then 

D(T) domain of T 

a(T)  spectrum of T. 

Let M be a matrix; then 

O(M) largest singular value of M. 

For o~ E I~ let Ca denote the open right-half 
plane given by Re (s) > or. 
Let H~(Co~, C "×n) and Ha(Ca, C mxn) denote the 
usual Hardy spaces of functions defined on Ca 
with values in C mxn. For H eH~(Co, C TM) 
define 

Ilnll~ := sup o(n(s)) 
seCo 

]_ denotes the unilateral Laplace transform. 
Let f be a closed curve in C and a e C; then 

ind (f, a) winding number 
of f with respect to a. 

Algebras of transfer functions: 
For t • R let 6, denote the Dirac distributions 
with support {t}. The convolution algebra ~ _  
consists of all distributions f with support in 
[0, o~) of the form 

/ = ~ f/tS,, +f~ 
i--O 

where 0 = to < tl < • • •, f / •  C, fa is a measurable 
complex-valued function and in addition 

If/I e "  + If~(t)l e " d t  < 
i = 0  

for some e = e(f) > 0. Moreover we define 

~ - : =  { f e  ~¢- Ifi = 0 V i -  1}, 

~ _ : = { n _ f l f e ~ / _  } and °tV_:={n_flfe°W_ }. 

The algebra ~ (see Callier and Desoer, 1978, 
1980) consists of all transfer functions g of the 
form g = g t  +g2, where g l e  ~ -  and g2 is a 
strictly proper rational function (with complex 
coefficients) which has all its poles in C0- 

Finally, let ~¢_.~ and °W_~ denote the 
real-valued counterparts of ~¢_ and ~4r_, 
respectively. The function algebras ~/_~ and 
°t~V'_~ consist by definition of the Laplace 
transformed elements of ~/-.r and °W_.r 
respectively. 

2. S Y S T E M  D E S C R I P T I O N  

In a formal sense our basic model is 

$c(t) = Ax(t) + Bu(t), x(O)= xo (2.1a) 

y(t)= Cx(t), t>-O (2.1b) 

where u ~ LL2(0, ~; ~P), A is the infinitesimal 
generator of a strongly continuous semigroup 
S(t) on a real Hilbert space W, C e ~ (W,  ~P) 
and B c ~ ( ~ P ,  V), where V is a real Hilbert 
space satisfying V ~ W. We are interested in the 
mild solution of (2.1a), i.e. in the trajectory 
given by the variation-of-constants formula 

x(t) =S(t)Xo+ S ( t -  r ) B u ( r ) d r .  (2.2) 

In order to make the expression under the 
integral in (2.2) meaningful we assume that S(t) 
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extends to a strongly continuous semigroup on 
V. Let us introduce the following assumptions. 

Assumption 1. The map W---~ V, x ~ x is boun- 
ded and W is dense in V. 

Assumption 2. There exist ta > 0 and cr > 0 such 
that IICS(')XlIL~(O,,O <- oc Ilxllv for all x • W. 

Assumption 3. There exist t2 > 0 and fl > 0 such 
that 

t:S(t2 - dr W r)Bu(v) E 

and and 
t2 d r  w S( tz -  v)Bu(v) <--# IlulIL2(O.O 

for all u ~ L2(0, t2; RP). 

Assumption 4. There exists e > 0 such that 

f0 i0 CS(T)Bu dr = C S(T)Bu dr  (2.3) 

for all u • NP and t • [0, e]. 

Remark 1. (i) Suppose that assumptions 1 and 2 
are satisfied. Then the bounded linear operator 
~?w:W---~L2(O, tl;RP), x~-+CS(')x can be un- 
iquely extended to a bounded linear operator 
~7 v:V---~Lz(0,h;~p) .  For x • V  we define 
cs ( . ) x  :=  ~, , (x) .  

(ii) Assumption 3 implies that for every 
x0 • W and every, u e L2(0, t2; ff~P) formula (2.2) 
defines a continuous function x(.) on [0, t2] with 
values in W. Of course, we define the output by 

h . y(t) = CS(t)Xo + C S ( t -  r)Bu(v) d r  (2.4) 

for O<-t<-t2. 
(iii) If assumption 2 holds for one particular 

tl > 0, then it can be shown that it is satisfied for 
all tl > 0 ,  where tr will depend on tl. Moreover if 
S(t) is exponentially stable on V then we can 
choose a constant cr which does not depend on 
t l .  

(iv) The statement (iii) remains valid if we 
replace assumption 2 by assumption 3, ta by t2, a~ 
by fl and exponential stability on V by 
exponential stability on W. 

(v) Notice that the l.h.s, of (2.3) has to be 
interpreted via assumptions 1 and 2 (cf. 
statements (i) and (iii) of this remark) while the 
r.h.s, makes sense because of assumption 3 and 
statement (iv). 

(vi) Let Av denote the infinitesimal generator 
of S(t) on V. Suppose that assumptions 1-3 and 

Assumption 5. D(Av) c W with continuous 
dense injection, where D(Av) is endowed with 
the graph norm of Av 

are satisfied. Then it can be shown that 
assumption 4 holds (cf. Pritchard and Salamon, 
1987). 

(vii) For t -> 0 define 
~,: L2(0, t; ~)P---~ V, 

~'S(t - r)Bu(v) dr. u 

Assumption 3 means that there exists t2 > 0 such 
that 

Range (~t2) c W (2.5) 

and 
~t2 • *~(L2( 0, t2; R"), W). (2.6) 

If assumptions 1 and 5 are satisfied it can be 
shown as in Weiss (1989a) that (2.6) is implied 
by (2.5). 

(viii) It is easy to show that 

CS(v)Bu dr = C S(r)Bu dr 

for all T->t ->0  and u e ~ P  provided that 
assumptions 1-4 hold, 

The above set-up and various modifications of 
it have been introduced and investigated in 
Salamon (1984), Curtain and Salamon (1986), 
Pritchard and Salamon (1987), Bontsema and 
Curtain (1988) and Curtain (1988, 1989). 
Related work has been done by Weiss 
(1989a, b). We remark that assumptions 1-3 and 
5 are standard assumptions in the above 
references. Assumption 4 seems to be new. 
Remark l(vi) shows that it is not stronger than 
assumption 5. While assumption 4 is stable 
under perturbations induced by static output 
feedback (cf. Lemma 2(ii)) we were not able to 
show that this is true for assumption 5. 

If assumptions 1 and 2 are satisfied then it 
follows from Remark l(i) and (iii) that for all 
x • V the expression CS(.)x makes sense as an 
element in LL2(0, oo; Rp). This leads us to the 
following definition. 

Definition 1. Assume that assumptions 1 and 2 
are satisfied and let e I . . . . .  ep denote the 
canonical basis of ff~P. We can give a meaning to 
CS(.)B as an element in LL2(0, ~;R p×p) by 
defining CS(.)B := (CS(.)Bel . . . . .  CS(.)Bep). 
We call CS(.)B the impulse response matrix of 
the system (2.1). 

Remark 2. (i) Suppose that assumptions 1 and 2 
hold. Then it is not difficult to show that for all 
x e  V a n d  r_>0 

cs ( .  + Ox = c s ( . )S (Ox ,  

and hence 

cs ( .  + OB = CS(.)S(OB. 

(ii) There is another way of making sense of 
the expression CS(.)B provided that assumptions 
1 and 2 hold. It follows from assumption 1 that 
.LP(R p, W) is dense in ~(~P,  V) and the 
canonical injection =LP(R t', W)---~ ~(~P,  V), R 
R is bounded. From assumption 2 we obtain that 
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there exists a constant y > 0 such that for all 
R • Lf(~ e, W) 

IICS(')R IlL2(0,,,,~xp) --< 7 Iln II~(~,v). 
As in Remark 1(i) we conclude that the operator  
~ (~P ,  W)---~ L2(0, tl; Rv×P), R ~ CS(.)R can be 
uniquely extended to a linear bounded operator  
.~(~P, V)--~LZ(O,q;g~P×P). The image of B 
under this operator  is denoted by CS(.)B. It is 
easy to see that the definition of CS(.)B given 
here and the one given above coincide. 

Lemma 1. Let /~w and /Zv denote the exponen- 
tial growth constants of S(t) on W and V, pick 
# > max (/~w,/~v) and suppose that assumption 2 
holds. Then there exist a number y(s) > 0 for all 
s • C o such that 

IC(sl -A) - Ix I -< 7(s)Ilxllv (2.7) 
for all x • W and s • C,. 

Remark 3. Suppose that assumptions 1 and 2 
hold. Then it follows from Lemma 1 that the 
operator C ( s I - A ) - ~ :  W---~C p can be extended 
uniquely to a bounded linear operator  V---)C p 
for any s • C o. We denote this extension by 
C ( s I  - A) -1 as well. 

Proof of  Lemma 1. Recall the following 
elementary property of a function f • H2(Co, C p) 

2 ~1,~ 
If(s)l--- ~-R-ee(s)¢ Ilflln=VseCo (2.8) 

(see e.g. Koosis, 1980). Then using (2.8) and the 
fact that 

1 
V ~  ~: L~(O' oo; ~ ) ~  n~(Co, C~) 

is an isometry it follows from assumption 2 that 
(2.7) holds. 

Proposition 1. Let /~w and /~v denote the 
exponential growth constants of S(t) on W and V 
and let /~ and v be numbers satisfying 
/~ > max (/tw,/~v) and v > min (/~w,/~v). The 
following statements hold: 

(i) Suppose that assumptions 1-3 are satisfied. 
Then 

C S ( . ) B e - ~ •  L'(O, oo; ~p×p) (2.9) 

and moreover 

~(CS(.)B)(s) = C(sl - A ) - ' B  (2.10) 

for all s • C o. 
(ii) Let assumptions 1-4 be satisfied. Then we 

have 
C ( s I - A ) - I B  = C(s! -Av)-Xn (2.11) 

for all s • C o. 

Remark 4. Notice that the l.h.s, of (2.11) has to 
be interpreted in the sense of Remark 3 while 
the r.h.s, of (2.11) makes sense because of 
assumption 3, which ensures that ( s l -  
Av ) - IB  • .~q?(R p, W) for all s • C o. 

Proof of  Proposition 1. (i) (2.9) follows from 
Curtain (1988). In order  to show that (2.10) 
holds it is useful to define S,(t) := S(t)e -°t. It is 
trivial that So(t ) is an exponentially stable 
strongly continuous semigroup on W and V. 
Moreover it is clear that C and S,(t) satisfy 
assumption 2. Hence the expression CSu(.)B 
makes sense as an element in LL2(0, ~; ~P×P) 
and it is a routine exercise to show CSo(.)B = 
CS(.)Be -°. 

For a given u • EP pick a sequence x,  • W such 

that l i m x ~ = B u  (in V). It follows from 

assumption 2 (cf. Remark l(i) and (iii)) that 
CSu(.)x, converges in Lz(O,~;E p) and by 

definition CSu(.)Bu = lim CS,(.)xn. Now the 
n--.-~¢~ 

Laplace transform Q_: L2(0, ~; EP)---~ H2(Co, C p) 
is bounded and so 

C( (" + ~ )1 - A )- 'x .  ~ ~( CS~(. )Bu ) 

as n- - -~ .  Using (2.8) we obtain 

C(sI - A )- lx ,  ~ n_( CS(. )B )(s)u 

for all s • Cu as n---~ ~. On the other hand by 
definition (cf. Remark 3) 

C(sl - A )-lxn ~ C(sl - A )-I Bu 

for all s • C, as n ~ ~. Hence 

n_( CS  (" ) B  )(s  )u  = C ( s I  - m ) -  l n u  

for all s • C, ,  which is (2.10). 
(ii) Let s • C , ,  s 4 : 0  and let u • R  p be 

arbitrary. Using Remark 4, assumptions 1-4,  
Remark l(viii) and (2.10) we obtain 

1_ C(sI - Av ) - lBu  = C 1_ (sl - Av) - IBu  
S S 

1 
= - C(sl - A)- IBu 

S 

for all s • Cu, and hence (2.11). 

Remark 5. Suppose assumptions 1-3 hold. Then 
statement (ii) of Proposition 1 says that 
assumption 4 implies (2.11). It is possible to 
show that assumption 4 and (2.11) are actually 
equivalent. 
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Proposition 2. Let assumptions 1-4 be satisfied. 
Then 

tCS(t - dr r)nu(r)  

= C  S ( t - r ) B u ( r ) d r  (2.12) 

for all u e LL2(0, ~; ~P) and t -> 0. 

Remark 6. Assume that assumptions 1-4 hold. 
Since the r.h.s, of (2.12) is the output of the 
system (2.1) under zero initial conditions 
Proposition 2 shows that it was justified to call 
CS(.)B the impulse response matrix of the 
system (2.1). (cf. Definition 1). Moreover- -  
combining Proposition 2 and Proposition 1--it 
turns out that 

C(sI - A )-~B = C(sl - A v ) - I B  = L( CS(.)B )(s) 

is the transfer matrix of the system (2.1) in the 
usual sense of the word. 

Proof of  Proposition 2. Let T > 0 be given. It 
follows from assumption 3 that there exists ), > 0 
such that 

f0 d r  w S(t - r)Bu(r) <- ~' Ilulle~<o,t) (2.13) 

for all ueL2(0 ,  t ;~P)  and t e [ 0 ,  T]. Using 
(2.13) we obtain 

(fo T C~otS(t 12 \1/2 
- r )Bu( r )  d r  dr) 

-<~'X/TIICII IlulIL~<O,r) (2.14) 
for all u e L2(0, T; ~P). Define the operators 

~:  LL2(O, oo; ~.)-.-~ LL:(O, oo; ~p), 

C ( 'S(" - r)Bu(r) dr U 
~o 

and 
~3: LL2(0, oo; fl~p)---~ LL2(0, oo; Rp), 

~-~ fo CS(. - r)Bu(r) dr. U 

It is sufficient to show that . 7 " C t ~  t = .7"~t~ffr, t for all 
t-> 0. Indeed, since ~ and ~3 are causal, it then 
follows that ~ =  ~3 and since ~ u  and ~3u are 
continuous functions for all u ~ LLz(O, oo; ff~p) we 
obtain (2.12). It is clear that ~r,~:r, is a bounded 
linear operator from L2(0, t; ~P) into itself and it 
follows from (2.14) that the same is true for 
:rt~;rtt. Using assumption 4 it is a matter of 
routine to show that ff'l~t~.TtJtU = J'~t~.7~tU for all 
step-functions defined on [0, t]. Now the 
step-functions form a dense subset of 
L2(0, t; ~P) and hence ff~tO~.7"~t "~-- . 7 ~ t ~  t. 

We shall need the following perturbation 
results. 

Lemma 2. (i) Suppose that assumptions 1 and 3 
hold. Then for F e ~(W,  ~P) there exists a 

strongly continuous semigroup SF(t) on W which 
is the unique solution of 

Sr(t)x = S(t)x + S ( t -  r)BFSF(r)x dr  (2.15) 

for all x e W and t -> 0. 
(ii) Suppose that assumptions 1-4 are sat- 

isfied. Then for K E,~,(R p, ~P) there exists a 
strongly continuous semigroup SK(t) on W and V 
which is the unique solution of 

Sr( t )x=S(t)x+ S ( t -  r)BrCSK(r)x dr  (2.16) 

for all x • W and t >- 0. Furthermore Sx(t), B and 
C satisfy assumptions 2-4. 

Proof. The lemma is well known (see e.g. 
Curtain, 1988) with the exception of the fact that 
assumption 4 remains valid for the perturbed 
semigroup St(t). Let T > 0 and u e ~P be fixed, 
but arbitrary and let x, e W be a sequence such 
that Bu = lim xn (in V). Now Sx(t) and C satisfy 

assumption 2 and so we can define 

CSr(.)Bu := lim CSr(.)x,, 
n ~  

where the limit has to be understood in 
Lz(O, T; ~P). As a consequence there exists a 
subsequence x,j of x,  such that CSx(t)Bu = 
limCSK(t)x~j a.e. in [0, T] and CS(t)Bu= 
j ~  

!imCS(t)xnj a.e. in [0, T]. Using (2.16) we 

obtain 

CSK(t)Bu = }in~ { CS(t)x~, 

+ c s ( t  - O B K C S K ( O  

= CS(t)Bu + C 

f0 x S ( t -  r)BKCSx(r)Bu dr  (2.17) 

for almost all t e [0, T]. In the following we shall 
use the fact that if f ~ L l ( O , t ; W ) ,  then 
f ~ LI(0, t; V) and vf~of(r) dr = wf'of(r) dr, 
where v.f and w~ denote integration in V and 
W, respectively. Integrating (2.17) gives 

otCSK(A)Bu dA 

= CS(;OBu d;t 

 lo' + C S ( X -  r)BKCSK(r)Bu drd~. 
V. 

= C S(A)Bu dZ 
V. 

fofo + C S()~ - r)BKCSx(T)Bu dr d;~ 
W V 
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= C S(]OBu 
V 

+ , S(~ . -  OBKCSK(OBu dr d~. 
V. fo 

+ , S(;t - r)BKCSK(r)Xn dr d3. 
V.J ,o 

= C lira SK(;t)x, d;t 

(x)B = C  K ud• 
v 

for all t • [0, T], which proves the claim. 

Remark 7. (i) Suppose that assumptions 1-4 are 
satisfied. Then it is easy to see that (2.16) 
actually holds for all x • V. Let  x • V, choose a 

sequence Xn • W such that lim x,  = x and define 
n----~oe 

CSK(.)x := lira CSK(.)x,, where the limit has to 
n ~ o e  

be understood in L2(0, t; ~P). Then we have 

Sr(t)x = lim SK(t)x, = lim S(t)x,  + lim 
n ~  n - - ~  n ----~ oc 

x S ( t -  OBKCSr(Ox~ dr 

= S(t)x + S ( t -  OBKCSK(Ox dr. 

(ii) We were not able to show that assumption 
5 is stable under perturbations induced by static 
output feedback. 

We now define exponential stabilizability with 
respect to unbounded perturbations. 

Definition 2. Suppose that assumptions 1 and 3 
hold. We say that the pair (S(t), B) is 
unbounded exponentially stabilizable on W if 
there exists an operator  F • ~ ( W ,  N p) such that 
the perturbed semigroup SF(t) defined by (2.15) 
is exponentially stable on W. 

If B is bounded with respect to W, the above 
definition coincides with the usual notion of 
exponential stabilizability on W. Moreover  
under the extra assumption 5 it is equivalent to 
the existence of a feedback F • ~ ( V ,  N p) which 
stabilizes (S(t), B) on both spaces W and V (see 
Curtain, 1988). 

The following lemma follows from Curtain 
(1988). 

Lemma 3. Suppose that assumptions 1-4 are 
satisfied, that (S(t), B) is unbounded exponen- 
tially stabilizable on W and denote the transfer 
matrix of the system (2.1) by G, i.e. 
G(s) = O_(CS(.)B)(s). Then G can be decom- 
posed as G=G~+G~-,  where G r is a strictly 
proper rational matrix having all its poles in Co 

and Gi is stable in the sense that there exists a 
number e > 0 such that e"B_-~(G,-) • 
L~(O, oo; ~p ×p). 

Notice that Lemma 3 implies in particular that 
the entries of the transfer matrix G of (2.1) 
belong to the Cal l ier-Desoer  algebra (see 
CaUier and Desoer,  1978, 1980) provided that 
assumptions 1-4 hold and (S(t), B) is un- 
bounded exponentially stabilizable on W. 
Moreover we see that under these conditions G 
is strictly proper in the sense that lim G(s) = O. 

is i ---~o¢ 
S E ( ~  o 

Remark 8. For examples of systems satisfying 
assumptions 1-4 we refer the reader to Salamon 
(1984), Pritchard and Salamon (1987) and 
Curtain (1988, 1989). It is known that for a large 
class of neutral systems with delays in the input 
or the output assumptions 1-4 hold (cf. 
Salamon, 1984; Pritchard and Salamon, 1987). 
Furthermore,  it has been shown in Pritchard and 
Salamon (1985) that assumptions 1-4 are 
satisfied for retarded systems with delays both in 
the control and the observation. For parabolic, 
hyperbolic and spectral systems sufficient condi- 
tions for assumptions 1-4 to be satisfied were 
given in Pritchard and Salamon (1987) and 
Curtain (1988). They were applied to partial 
differential equation models of flexible structures 
in Bontsema et al. (1988). 

3. THE SMALL GAIN CONDITION AND INTERNAL 
STABILITY 

If we apply the nonlinear output-feedback law 
u(t) = cp(t, y(t))  to (2.1) we obtain 

Yc(t) = Ax( t )  + Bqg(t, Cx(t)), x(O) = Xo. 

(3.1) 

We are interested in mild solutions of (3.1), i.e. 
in trajectories satisfying 

f2 x(t) = S(t)Xo + S ( t -  r)Bw(I:, Cx(r))  dr. 

(3.2) 
The following lemma gives a sufficient condition 
for the existence of a unique solution of (3.2). 

Lemma 4. Suppose assumptions 1-4 hold. Let  
~ : ~ +  X ~P'-)~P be such that q0(t, y)  is 
continuous in t and locally Lipschitzian in y, 
uniformly in t on bounded intervals. For all 
x0 • W there exists a unique continuous solution 
in W of (3.2) which can be extended to the right 
as long as it remains bounded. 

Proof. The Volterra integral equation 

z(t) = CS(t)Xo + CS(t - r)Bqg(r, z ( r ) )  d r  

(3.3) 

admits for given x0 • W a unique continuous 
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solution which can be extended to the right as 
long as it remains bounded (see Miller, 1971). If 
this solution is denoted by y then it follows from 
Proposition 2 that 

y(t)  = CS(t)xo + C S ( t -  r)B~p(r, y ( r ) )  d r  

and hence (3.4) 

I/ x(t) := S(t)Xo + S ( t -  r)Bcp(r, y( r ) )  d r  

is a solution of (3.2) which is continuous in W. In 
order to show uniqueness, let x'(t)  be another 
solution of (3.2). Since Cx(t) and Cx'(t)  are both 
solutions of (3.4) and hence of (3.3), it follows 
that Cx(t) = Cx'(t) for all t where x(-) and x'(-)  
exist. Using (3.2) we obtain that x(-) and x ' ( . )  
coincide. The continuation property can be 
shown similarly. 

The following theorem gives a small-gain 
condition for the exponential stability of (3.2). 

Theorem 1. Suppose that the assumptions of 
Lemma 4 are satisfied and that (p is of finite gain, 
i.e. there exists y > 0  such that lip(t, y)[ <- y [YI 
for all t-> 0, y • ~P. Moreover  assume that S(t) 
is exponentially stable on W and 

7 IIGI[~< 1 (3.5) 

where G is the transfer matrix of (2.1). Under  
these conditions there exist numbers M =  
M(y)  > 0  and /J > 0  not depending on t or x0 
such that the solution x(t; Xo) of (3.2) is globally 
defined and satisfies 

Ilx(t; xo)llw <--Me-" Ilxollw 
for all t - 0, Xo e W. 

Proof. By assumption there exist ~ .>0  and 
L > 0 such that IIS(t)ll.~(w) <- Le  -xt for all t --- 0. 
It follows from Proposition l(i) that G •  
H~(C, ,  C p×p) for all r / > - J l  and hence G is 
uniformly continuous on any vertical strip in C_x 
(see Corduneanu, 1968, p. 72). Therefore,  by 
(3.5), there exists a number ~.* • (0, ,~) such that 

7 Ilaall~ < 1 (3.6) 
for all a s [ 0 ,  Z*], where Ga is defined by 
Ga(s) := G(s - a). Setting x(t) := x(t; Xo), 
H(t) := CS(t)B, Ha(t):= eatH(t) and (pa(t, z ) : =  
eatq)(t, e-atz), where a • [0, ~.*], and using 
Proposition 2 we obtain 

Cx(t) = CS(t)Xo + H(t  - r)cp(r, Cx(r))  dr. 

Multiplying both sides of this equation by e a t  , 

where a • [0, ).*], gives 

eatCx(t) = eatCS(t)Xo 

L + /-/~(t- r)qga(r, ea~Cx(r))d~. 

Let [0, T) be the maximal interval of existence 

of x(-). For all t • [0, T) we have 

II~,eaCx(.)ll2 <_ ~tte°fS(.)xoll2 

+ 7 Ilaall~ II~,ea'fx( ')lh • 
Hence, by (3.6) 

IIz~,eaCx(.)lh <- (1 - y IlGall~)-' 
× Ilfll Z(2(&-  a))  -1/2 Ilxollw. (3.7) 

Since x(.) solves (3.2) it follows from (3.7) (set 
a =0) ,  assumption 3 and Remark l(iv) that 
Ilx(t)llw is bounded on [0, T). As a consequence 
x(.) is globally defined (i.e. T = oo) by Lemma 4. 
Setting K := (1 - y [[aal[~)-' IICII L(2(~. - a)) -1/2 
we obtain 

I lea' fx( ' ) lh<-g Ilxollw. (3.8) 
Moreover, by assumption 3 and Remark l(iv) 
there exists /~ =/~(a) not depending on t such 
that 

fo r d r  w ea('-~)S(t - r)Bu(T) --</] IlullL2(O,O 

for all t-> 0. Now, by (3.2) 

ea'x(t) = eatS(t)Xo 

i + ea('-~)S(t - r )B%(~,  Cea~x(r)) dr. 

Hence 

[lea'x(t)llw <_ [lea'S(t)xollw 

+ # I1%(', Ceax('))J[L2(O.t) 

<-t  Ilxollw + #}' Ilea'fx(')llL2(O.t) 
--< ( t  + / ~ , g )  IIx011w 

for all t -> 0. 

Remark 9. Let to be non-negative and denote 
the solution of 

x(t) = S(t - to)Xo + S(t - r)Bqg(z, Cx(r))  d r  

(where t - to and x0 • W) by x(t; to, Xo). Suppose 
that the assumptions of Theorem 1 hold and that 
(3.5) is satisfied. Then it can he shown as in the 
proof of Theorem 1 that there exists M - - M ( y )  
and # > 0 not depending on t, to and Xo such that 

Ilx(t; to, Xo)[lw -< Me -"('-'°) Ilxoll,, Vt-> to 
i.e. we have global uniform exponential stability. 

We shall now turn our attention to a certain 
class of dynamical nonlinearities. Let us consider 
operators • from LL2(0, 0% Rp) into itself which 
satisfy the following conditions: 

(N1) (I) is causal, i.e. ; r ~  = ff~tlff~)ff'ct for all t -> 0. 
(N2) • is locally Lipschitz continuous, i.e. for 

all t ->0 there exists ~->0 such that 
I I : r t ( ~ u - ~ v ) l h < - / , l l : r , ( u - v ) l h  for all 
u, v • LL2(0, oo; ~p) (cf. Willems, 1971). 

(N3) • is unbiased, i.e. ~(0)  = 0. 

Remark 10. Let N¢ denote the operator induced 
by the function q~:g~P---*~P, i.e. (Nq~(u))(t)= 
cp(u(t)). Then in general N~ will not be locally 
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Lipschitz in the sense of (N2) unless (p satisfies a 
global Lipschitz condition. 

Lemma 5. Suppose that assumption 3 holds and 
that the operator (I): LL2(0, ~; NP)---) 
LL2(0, ~; W') satisfies the conditions (N1)-(N3).  
Then the equation 

Jo' x(t) = S(t)Xo + S ( t -  v)BdP(Cx(.))(v) dr 

(3.9) 

admits for all x o • W  a globally defined 
continuous solution x( ' ;x0) :  [0, ~)---~ W which 
will be called the mild solution of 

2(t) = Ax(t)  + BdP(Cx(.))(t), x(O) = Xo. 

Proof. Notice that the operator 
~3: LL2(0, ~; ~P)---~ LL2(0, ~; W), 

u(') ~ foS(" - r)Bu(v) dr 

is strongly causal (see Willems, 1971), locally 
Lipschitz continuous (this follows from assump- 
tion 3) and unbiased. Since ~3 is linear it is 
strongly causal uniformly with respect to past 
inputs (see Willems, 1971). Moreover  it is trivial 
that the map 

~ :  LL2(0, oo; W)---> LL2(O, 0% RP), 

z(.)  ~ ,I,(Cz (.)) 

satisfies the conditions (N1)-(N3).  Hence it 
follows from Corollary 4.1.2 on p. 99 in Willems 
(1971) that (3.9) admits a unique solution x in 
LLZ(O,~;W).  Since the r.h.s, of (3.9) is 
continuous in t we see that x(t) is continuous as 
well. 

Definition 3. For (3.9), the origin is called 
globally asymptotically stable if the following 
conditions are satisfied: 

(i) The origin is globally attractive, i.e. 
lim IIx(t; Xo)llw = 0 for all x0 • W. 
t--.~oo 

(ii) For all e > 0 there exists 6 > 0 such that 
IIx0llw _ (5 implies IIx(t;Xo)llw <- e for all 
t_>0. 

The following theorem shows that the small-gain 
condition (3.5) is sufficient for the origin of (3.9) 
to be globally asymptotically stable. 

Theorem 2. Assume that assumptions 1-4 hold, 
the semigroup S(t) is exponentially stable on W, 
(N1)-(N3) are satisfied and the operator ~ is of 
finite gain, i.e. there exists a constant 7 > 0 such 
that I I¢(u) lh  -< ~, Ilulh for all u • L2(0, ~; RP).  
Under these conditions the origin of (3.9) will be 
globally asymptotically stable if 

7 IIGII~ < 1, (3.10) 
where G denotes the transfer matrix of (2.1). 

Proof. Consider the equation 

y(t) = CS(t)xo + CS(t - v )B¢(y ( . ) ) ( r )  dr. 

(3.11) 

If x(t):=x(t;Xo) is the solution of (3.9) then it 
follows from Proposition 2 that Cx(t) is a 
solution of (3.11). Using Remark 6, (3.10), 
and the small-gain theorem we obtain Cx(.), 
Z('):  = ¢IP(Cx(')) • L2(0, oo; ~p). We prove global 
attraction first. It is convenient to set w(t):= 
fro S ( t -  v )Bz(r )dr .  By the exponential stability 
of S(t) on W, assumption 3 and Remark 1(iv), 
there exist positive constants L, ;~ and 7/ such 
that 

IIS(t)ll~(w) <- Le -x' (3.12) 
and 

lo tS ( t -  T)Bu(T) dv w <- r I IlUlIL2¢O,,> (3.13) 

for all t -> 0 and u • L2(0, t; NP). 
Equations (3.12) and (3.13) yield 

£ /2 dv w IIw(t)llw <- S(t - v)Bz(r))  

f f  d r  w + S ( t -  v)Bz(r))  
/2  

l t/2 ( t  Q B z ( r ) d v  w - -  ° 

+ r/IlzllL2(.2,,) 

- Le-(m)tr/IIz 11L2(0,//2) 

+ ~7 IIZlIL2¢,2.~) 

----- rl(L IIz 112e -<'2)' + IIz IIL~(,/2,~)). 
Since z is in L2(0, m; No) we have 

lim IlzllL~(,/2,~)= 0 and hence lim Hw(t)llw = 0. It 

follows that l imllx(t)llw=O. In order to 

complete the proof, notice that by (3.10) and 
(3.11) 

[[Cx(')]]2-<(1 - Y IIGII~)-IM ilxoilw, (3.14) 

where M : =  IICHL/V2~, and conclude using 
(3.9) and (3.12)-(3.14) that 

IIx(t)llw <- (L IICII + ~/),(1 - 7 IIGII~)- ') IIx011w 
for all t --- 0. 

Finite-dimensional results which are related to 
Theorems 1 and 2 can be found in Hinrichsen 
and Pritchard (1986, 1990). 

The above results show that destabilization 
can only occur if the gain of the perturbation 
induced by output feedback is greater or equal 
to 1/IIGII~. We will show that the small-gain 
condition is sharp in the sense that there exist 
destabilizing perturbations of gain equal to 
1/IIGII~. We shall make contact with the work of 
Hinrichsen and Pritchard on stability radii of 
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Fro. 1. Feedback system considered in Definition 4. 

finite-dimensional linear systems (for a survey, 
see Hinrichsen and Pritchard, 1989). 

The following concept of stability in the 
frequency domain is standard and will be used in 
the sequel. 

Definition 4. Let P and K be in ~P×P such that 
det (I + PK) ~ 0 (well-posedness condition). 
Denote the feedback system shown in Fig. 1 by 
5~[P, K] and set 

H = H(P, K) 
( P(I + KP)- '  - P K ( I  + PK)- ' ]  

:= \KP( I  + KP) -1 K(I  + PK) -1 / 

~[P,  K] is called input-output stable if 
H • ~2_p×2p. 

Remark 11. It is easy to show that 

in f Idet (I + PK)(s)I -- inf Idet (I + KP)(~)I > 0 
s~Co s e ~  

is a necessary condition for the input output 
stability of :~[P, K]. 

The following theorem shows that a stable 
plant P can be destabilized via output feedback 
with a compensator of norm 1/IIPII~. 

Theorem 3. Let P be in ~I~P×P and suppose " "  - - , r  

O(P(jto)) ~ Ilel[~. Then the following statements 
hold: 

(i) There exists a complex matrix K • C e×p 
such that O(K)=  1/IIPII~ and o~[p, K] is not 
input-output  stable. The matrix K can be chosen 
real if there exists 

too • ~ U {oo} satisfying P(jtoo) • ~P×P 

and 

(ii) There 
proper 
(H~(Co))p ×p 

?r(P(Jtoo)) = Ilell~. 

exists a real finite-dimensional 
compensator K • (R(s)) p×p tq 

such that IIKII~=I/IIPII~ and 
~[P,  K] is not input-output  stable. 

Proof• The proof is inspired by Vidyasagar's 
proof of the robustness criterion given in Doyle 
and Stein (1981); see Vidyasagar (1985), p. 273. 
Suppose the maximum of 6(P(jto)) occurs at 
tOo • E U {~}. Let or 1 . . . .  , am denote the 
nonzero singular values of P(JtOo), where 
o~ = IIPII=, and set Z = diag (ol . . . .  , ore). 
Select unitary (orthogonal, if P(jto0) is real) 
matrices U and V such that 

(i) If we define 

then trivially O(K)=I/IIPII~. Moreover, by 
assumption there exists tol E ~ (.3 {O0} such that 
O(P(jtol)) < IIPII~. It follows that det ( I +  
P( j to0K) :/= 0, and hence the feedback system 
~[P,  K] is well posed. By Remark 11 ~r[p, K] is 
not input-output  stable, since for e : =  
u - l ( 1 0 "  • • O) T it holds that (I + P(jtoo)K)e = O. 

(ii) Let v : =  (1./1 . . . . .  Up) T and u := 
(Ul . . . . .  Up) denote the first column of v and 
the first row of U, respectively. Express the 
components vi and ui in the form 

u i = Oie iq~i, u i = / i l e  j~/'i, i = 1 , . . . ,  p, 

where vi, ti~ • ~ and tpi, ~Pi • [0, :t). Define 

1 K(s) := - - -  
o" 1 

where 

- a , ) / ( s  + a 0 

- ap)/(s + ap)/ 

- b,) /(s  + bl) \ 

! 
bp)/(s + bp) /  

bi>-O are adjusted such 

0(s) := ( 
op(s 

/ 
til(S 

a(s) := ( 
\ ap(s 

and the constants ae, 
that 

( j too-a i]  ( j t oo -b i )  
arg ~ / =  q0i and arg \jtoo+b// = 1/)/. 

By construction we have that K••(s)P×PN 
H~(Co) p ×p, 00/ K(jto0) = - V  1 U 

and I IKI I~-  1/[[PI[~. It follows as in the proof of 
(i) that ~[P,  K] is well posed and unstable. 

Remark 12. If P is in MP×P there might fail to - - , r  

exist a Woe0~ t.J{~} such that O(P(jtoo))= 
IlPf[~. An inspection of the above proof sbows 
that in this case there exists a sequence 
Kn • CP×P(R(s) p×p f3 H~(C0) p×p) such that 
o(g.)"~l/llell~(llg.ll~"~l/llell~) as n--->o¢ and 
:T[P, K~] is not input-output stable for all n • N. 

Corollary 1. Suppose that assumptions 1-4 hold 
true and that S(t) is exponentially stable on W. 
Let G denote the transfer matrix of (2.1). The 
following statements hold true: 
(i) There exists a matrix K • C p×" satisfying 
O(K)=I/IIGI[~ such that the strongly con- 
tinuous semigroup SK(t) which is the unique 
solution of (2.16) is not exponentially stable on 

AUTO 27:4-G 
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W. Under the extra assumption that S(t) is 
exponentially stable on V it follows that SK(t) is 
not exponentially stable on V either. 

(ii) Under the additional assumption that C is 
surjective there exists a matrix K •  E(s)P×PN 
H~(Co) p×p of H~-norm equal to 1/IIGII~ and an 
initial value x0 • W such that the solution x(t; Xo) 
of 

x(t) = S(t)Xo + S(t - r)BYE(Cx(.))(v) dr,  

(3.15) 
is not in L~(0, ~; W) and hence not exponen- 
tially decaying in W. In (3.15) ~ denotes the 
convolution operator  on L2(0, oe; [~p) cor- 
responding to K. 

Remark 13. The result in statement (i) is similar 
to a result by Pritchard and Townley (1987) (and 
see also Pritchard and Townley, 1989). However  
their assumptions on the system are somewhat 
different from ours. A proof  for the finite- 
dimensional case has been given in Hinrichsen 
and Pritchard (1986). A result in finite 
dimensions which is related to statement (ii) can 
be found in Hinrichsen and Pritchard (1990). 

Proof of Corollary 1. (i) The claim follows from 
Theorem 3(i) and Curtain (1988). 

(ii) By assumption there exist w ~ , . . . ,  wp • 
D(A)  such that Cw~ . . . . .  Cwp form a basis of 
R e. As in the proof of Theorem 3(ii) we can 
show that there exists K • ~(s)  p×p fq H=(C0) p×p 
of H~-norm 1/IIGI[~ and a number tooe ~ such 
that 

det (1 - GK)(jw0) = 0. (3.16) 

Applying C to both sides of (3.15), using 
Proposition 2, setting x~:=( j tooI-A)w~ and 
taking Laplace transforms gives 

C~f(s; xi) = C(sI - A )-Jxi + G(s)K(s)C$(s; xi). 

(3.17) 

Let us assume that x(';Xo) • L~(0, oo; W) for all 
xo • W. This implies x(. ;  x,) e L~(0, oo; 1~') for all 
i = 1 . . . . .  p, where I~" denotes the complexifica- 
tion of W. Hence (3.17) makes sense for s = jto0 
and we obtain 

(I - G(jtoo)K (jtoo) )C~(jtoo; x~) = Cw~, 

i = 1  . . . . .  p. 

By (3.16) the vectors Cw~, i = 1 . . . . .  p do not 
span ~P which leads to a contradiction. For 
bounded control systems we can prove a result 
which is stronger than Corollary l(ii). 

Corollary 2. Assume that B e Sg(~ p, W),  i.e. 
(2.1) is a bounded control system with state 
space W. Moreover suppose that S(t) is 
exponentially stable. Then there exists a matrix 
K 6 ~ ( s )  p×p f~ H~(Co) p×p of H~-norm equal to 
1/]IGI[= such that the origin of (3.15) is not 
globally asymptotically stable. 

Proof. Choose K as in the proof of Corollary 
l(ii) and let (A, B, C, D) be a stabilizable and 
detectable realisation of K with n-dimensional 
space. Set 

A ~ : = (  A+B~CBC B(~), B c : = ( 0  B O) 

and 

It follows from (3.16) that 

C~(sI - Ac)-1Bc 

= ( G ( I  - KG) -1 GK(I  - G K ) - I ]  

\ K G ( I  - KG) -~ K(I  - GK) -1 / 

has a pole in jtoo, and hence Jtoo • or(At). Since 
(Ac, Bc) is exponentially stabilizable and 
(Ac, Co) is exponentially detectable it follows 
(see Curtain, 1988 or Nett and Jacobson, 1988) 
that jtoo is an eigenvalue of Ac. If So(t) denotes 
the strongly continuous semigroup on W • ~P 
generated by Ac then as in finite dimensions 
there exists (wo, zo) ~ W ~) ~P such that 

z(t)  / 

does not converge to zero as t--~ oo. This implies 
in particular that 

w(t)-~,O as t---->oo (3.18) 

because (/[ , /3,  C , / ) )  is exponentially stable. 
Moreover we have by construction 

w(t) = S(t)Wo + S(t - r)B~r(C(w(.))(r)  dr  

+f ( t ) ,  (3.19) 

where f ( t )  := f~o S(t - v)B(?e'i~zo dr  and 9~ 
denotes the convolution operator  on 
Lz(0, oo; ~p) corresponding to K. We claim that 
there exists xo • W such that the solution x(t, xo) 
of (3.15) does not converge to zero as t---> oo. Let 
us assume the contrary, i.e. l imx( t ;Xo)= 0 for 

l ~ O ¢  

all x0 ~ W. Denoting convolution by * and setting 
H(t) := 0_-~(K))(t) it follows in particular that 
the unique solution Y of 

Y = CS(.)B * H * Y - CS(.)B 

converges to zero as t--,oo. For R := Y * H  we 

have then trivially that lim R ( t ) =  0. Notice that 

R is the resolvent of the kernel CS(.)B * H, i.e. 
R is the unique solution of the Volterra integral 
equation 

R = CS(.)B * H * R - CS(.)B * H. 

This means in particular that the solution of 

y -- CS(.)wo + CS(.)B * H * y + Cf( .)  

is given by 

y = (6o - R) * (C(S(')Wo + f ( . ) ) )  



Circle criteria for infinite-dimensional systems 687 

(see Miller, 1971). The function 

if(t) = S(t)Wo + f (t) 

+ S ( t -  r ) B ~ ( y ( . ) ) ( r )  d r  

is a solution of (3.19) and hence, by uniqueness, 
w( t )=  i ( t )  for all t - 0 .  Finally realize that 
lim i ( t )  = 0 which contradicts (3.18). 
t---*0 

Remark 14. All the results in this section have 
been formulated for square plants. However, an 
inspection of the proofs shows that they carry 
over to the nonsquare case. 

4. THE CIRCLE CRITERION 
For the proof of the circle criterion we need 

the following loop shifting result. 

Lemma 6. Suppose that the assumptions of 
Lemma 4 are satisfied. For K • R p×p let St( t )  
denote the strongly continuous semigroup on W 
and V which is the unique solution of (2.16) and 
let q9 K denote the function given by CpK(t, y ) : =  
cp(t, y)  - Ky. If x( ' )  solves 

x(t) = Sr(t)Xo + SK(t -- r)Bq0r(z, Cx(r))  dr  

(4.1) 

then x(.) solves 

x(t) = S(t)Xo + S(¢ - r)Bq0(r, Cx(r))  d r  (4.2) 

as well. In (4.1) and (4.2) it is assumed that t - 0 
and Xo • W. 

Remark 15. Notice that Lemma 6 makes sense 
of the following (purely formal) equation 

Yc(t) = (A + BKC)x( t )  + BqoK(t, Cx(t)) 

= Ax( t )  + Bqg(t, Cx(t)). 

Proof of  Lemma 6. From (4.1), (2.16) and 
Remark 7(i) it follows 

fo' x(t)  = S(t)Xo + S ( t -  r)BKCSK(r)xo dr 

i + S(t - r)BqgK(r, Cx(r))  dr  

+ S(t - r - s)BKCSK(S) 

X BqOK(r , Cx(r) )  ds dr 

where 

= S(t)xo + S(t - r)BqJ(r, Cx(r))  dr  

+ X( t )  + Y(t)  + Z(t) ,  

X ( t ) : =  - S ( t -  r )BKCx(r )  dr, 

Y(t)  := S ( t -  r)BKCSK(r)xod~ 

and 

f0f0 Z(t)  := S(t - r - s)BKCSK(s) 

× B~K(r  , Cx(r) )  ds dr. 

It remains to show that X ( t ) +  Y ( t ) +  Z ( t ) =  O. 
Using (4.1), Lemma 2(ii), Remark 7(i) and 
Proposition 2 and defining all integrants to be 
zero for negative arguments we obtain 

X( t )  + Y(t)  = - S ( t -  r )BKCx(r )  dr  

+ S ( t -  r )BKCx(r )  dr  

- f o ' S ( t -  r )BKC fo~SK(r - s )  

x BqgK(S , Cx(s)) ds dr  

= - S(t - ~)BKCSK(Z - s) 

X Bq~K(S, Cx(s)) ds dr 

= - S(t - r)BKCSK(r - s) 

x BqgK(S , Cx(s)) dr  ds 

= - s ( t  - - Z ) B K C S K ( X )  

x Bqgr(s , Cx(s)) d)~ ds 

= - s ( t  - s - Z ) R K C S K ( X )  

X BqOK(S, Cx(s)) d;t ds 

= - z ( t ) .  

In order to formulate the circle criterion we have 
to make precise what we mean by multivariable 
Nyquist-diagrams. 

Definition 5. Let G be in ~P ×p and suppose that 
G has no poles on the j to-axis. Furthermore let 
t:[0, 1]---~C denote a parametrization of the 
jto-axis which has the property that t(t) moves 
downwards from jo0 to -joo. The Nyquist 
diagram N(G)  of G is formed by the path of the 
eigenvalues of G(t( t ) )  as t traverses the interval 
[0, 11. 

Remark 16. If lim G(s) exists (in C p×p) then it 
Isl----~oo 
sE~-,o 

can be shown that N ( G )  is a closed chain and 
ind (N(G),  - 1 / k ) = i n d  ( d e t ( I + k G ) o t ,  O) 
for all k • • ,  k : ~ 0  such that - ( l / k )  
U a(G(jto)) (see Desoer and Wang, 1980; 

tOER 

Logemann, 1986). 

Definition 6. A function f : ~ + x R p ~ •P is said 
to be in sec (a, b), where a, b • R, a - b, if 

( f( t ,  x)  - ax)r ( f ( t ,  x)  - bx) <- 0 

for all t -> 0 and x • R p. 
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FIG. 2. Feedback system refered to in Theorem 4 (circle 
criterion). 

If p = 1 then Definition 6 says that the graph 
of f lies in a sector between lines of slopes a and 
b. 

For the formulation of the circle criterion it is 
convenient to define D[a, b] (a, b ~ ~)  to be the 
closed disk in C whose diameter is the line 
segment joining the points a + j0 and b + j0. 

Theorem 4. (Circle criterion). Suppose that 

(a) Assumptions 1-4 are satisfied 
(b) The system (2.1) is unbounded exponentially 

stabilizable on W and exponentially detec- 
table on W 

(c) The transfer matrix G of (2.1) has no poles 
on the j o9-axis 

(d) The matrix G(jog) is normal for all to e R 
(e) The function V2:~+x~P--->~P is in 

sec(a, b), ~p(t, y) is continuous in t and 
locally Lipschitzian in y, uniformly in t on 
bounded intervals. 

Let n denote the number of poles of G in Co and 
assume either 

(i) if O<a<-b, t r ( G ( j o g ) ) A D [ - ( 1 / a ) , -  
( l /b)]  = 0 Vo9 e R and ind (N(G),  s) = - 
n Vs ~ D[ - ( l Ja ) ,  - ( l / b ) ]  

(ii) if 0 = a < b, o(G(jog)) c C_O/b) V(.o E ~ and 
n = O  

(iii) if a < O < b ,  o ( G ( j o g ) ) c D [ - ( 1 / a ) , -  
(l /b)]  Yo9 ~ ~ and n = O? 

(iv) if a < 0 = b, o(G(jog)) c C\(~-(1/a) Vo9 c 
and n = Ot 

(v) if a < b < O ,  o ( G ( j o g ) ) N D [ - ( 1 / a ) , -  
(l /b)]  = 0 Vo9 e ~ and ind (N(G),  s) = - 
n Vs ~ D[- (1 /a ) ,  - ( l / b ) ] .  

Then the solution x(t; Xo) of 

x ( t ) = S ( t ) X o -  S ( t -  r )B~( r ,  C x ( r ) ) d r  (4.3) 

(i.e. the state trajectory of the feedback system 
shown in Fig. 2) is globally defined and there 
exists constants M > 0 and ~ > 0 such that 

IIx(t;xo)llw <- Me-" '  IIx011w 
for all t -> 0 and x0 e W. 

Proof. (1) Assume that condition (i) is satisfied 
and set k : =  ½(a + b). By assumption (a) and 
Lemma 2 there exists a strongly continuous 

~- For M c C denote the interior and the closure of M by ~/ 
and M, respectively. 

semigroup Sk(t) which is the unique solution of 

Sk(t)x = S(t)x - k S(t - r)BCSk(r)x dr 

for all x e W and t -> 0. Furthermore Sk(t), B and 
C satisfy assumptions 2-4. Now realize that 
~[G,  kI] is input-output  stable by the multivari- 
able Nyquist criterion (see Desoer and Wang, 
1980; Logemann, 1986) and hence using 
assumption (b) and a result by Curtain (1988) it 
follows that Sk(t) is exponentially stable on W. 
Define 

~ 2 k ( t , x ) : = ~ 2 ( t , x ) - k x  and y : = ½ ( b - a ) .  

Since ~p e sec (a, b) by assumption (e), it is easy 
to show that 

[~Pk(/, Y) I -  ~' tYl Vt->0Vy ~ ~P. 

Let Xk(t; Xo)(Xo e W) denote the solution of 

x(t) = Sk(t)xo -- S~(t - r)BVdk(r , Cx(r))  dr. 

We obtain using Lemma 6 that Xk(';Xo) is the 
unique solution of (4.3) as well. Therefore, by 
Theorem 1, it is sufficient to show 

V [la-(CSk(')n)[[~ < 1. (4.4) 

Denote the eigenvalues of G(jog) by Xi(og), 
i =  1 , . . .  ,p .  Then it follows from normality 
[assumption (d)] that the eigenvalues r/i(og) 
(i = 1 . . . . .  p) of G(jog)(I + kG(jo9)) -1 are given 
by 

~i((/)) = /~i(0))(1 + k/~i(o.))) - l .  (4.5) 
Since G( jo9 ) ( l+kG( jw) )  -1 is normal for all 
09 e R there exists i,~ e { 1 . . . . .  p } such that 

O(G(jog)(1 + kG(jog)) -1) = r/io~(og). (4.6) 

Using 0 < a - < b  it is easy to show that for all 
s e C we have 

,s, [1  
Y l l + k s [  < l ¢ : ~ s ~ D  a'  . (4.7) 

Now o(G(jog)) N D[- (1 /a ) ,  - ( i / b ) ]  = •  and 
hence by (4.5)-(4.7) 

~, l la ( l  + kG)-~ll~ < l. (4.8) 

Finally it is obvious that D-(CSk(.)B)= G ( I +  
kG) -1 and therefore (4.4) is implied by (4.8). 
(2) The claim is proved in a similar way if we 
assume that conditions (ii) or (iii) are satisfied. 
Moreover if (iv) or (v) hold replace G by - G ,  ~p 
by - %  a by - b ,  b by - a  and apply (ii) or (i) as 
appropriate. 

Remark 17. If G has jog-axis poles then in 
Definition 5 and Theorem 4 the jo9-axis has to be 
replaced by an intended jog-axis. This modifica- 
tion is standard. 

The normality assumption in the above 
theorem is trivially satisfied for single-input 
single-output systems. It is clear that in the 
multivariable case the usefulness of Theorem 4 is 
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severely limited by the straight jacket of 
normality. The following remark gives sufficient 
conditions which ensure normality for transfer 
matrices of size 2 x 2. 

Remark 18. Let G be a transfer matrix of size 
2 x 2 which has no poles on the imaginary axis. 
If G is of the form 

G ( s ) = g ( s ) (  s + tr-tr s +-fl) 

o r  

G(s )  = (g l ( s )  g 2 ( s ) ]  

\g2(s)  g l (s ) ,  ]' 

where re, fl • ~ ,  g, gl and g2 are scalar transfer 
functions, then G(jto) is normal for all to • R. 

Example 1. (A finite-dimensional plant with 
output-delay) 

Let F • ~ ( s )  p×p be strictly proper and set 
G(s) := e-h~F(s), where h > 0. It can be shown 
(see e.g. Curtain and Salamon, 1986; Pritchard 
and Salamon, 1987) that G admits a state-space 
realization of the form (2.1) satisfying assump- 
tions 1-4. The spaces V and W are given by 

V = M2(-h, 0; [~m) := I~" x L2(-h, 0; ~m) 
and 

W = ((f (0) ,  f ) : f  • W~'2(-h, 0; ~m)}, 

where m is the McMillan degree of F and W l'2 
denotes the usual Sobolev space. The realization 
can be chosen to be exponentially stable on W 
and V if and only if F has no poles in (~0. Let us 
consider the specific example given by p = 2, 
h = 0.75 and (111) 

+ 1  s +  
F(s) = 1 1 " 

+ 2  s +  

Notice that G ( j t o ) =  e-°75i~'F(jto) is normal for 
all to • ~.  The eigenvalues ,a.l(to) and A2(to) of 
G(jto) are given by 

e-0.75ja, 
' ~ . l ( t o )  - 

(jto + 1)(jto + 2) 

and 
(2jto + 3)e -°'75i~ 

Z 2 ( t o )  = 
(jto + 1)(jto + 2)" 

We have # ( G ( j t o ) ) =  l~-2(jto)l for all to • ~ and 
hence IIG11~=~,2(0)=1-5. It follows from 
Theorem 1 (small-gain) that the feedback system 
consisting of G in the forward-loop and ~p in the 
feedback-loop is globally exponentially stable on 
W for all ~p • s e e ( - ) , ,  Y),t where ~, is any 

t We assume that ~p satisfies the regularity assumptions of 
Lemma 4. 

number in [0, 2). Of  course, this follows from the 
circle criterion part (iii) as well. We claim that 
the circle criterion tells us something more. 
Indeed a computation shows that 

min { Re(z) I As ,o~R (-j o(G(j to))}  = -0.66548 

and hence, by part (ii) of Theorem 4, the 
closed-loop system is globally exponentially 
stable on W for all ~p • sec (0, 1.5). We see that 
"positive" nonlinearities with gains up to 
1 .5>2  = 1/IIGII~ do not cause destabilization. 
Compared with the undelayed case the predic- 
tion is less "optimistic": an application of the 
circle criterion [part (ii)] to F shows that we have 
stability for all nonlinearities ~p • sec (0, 17.4). 

5. CONCLUSIONS 

In this paper we have presented a rigorous 
treatment of the small-gain condition and the 
circle criterion for a large class of infinite- 
dimensional systems which allows for unbounded 
control action. In particular, the following has 
been shown: 
• A feedback system consisting of an exponen- 

tially stable infinite dimensional plant in the 
forward-loop and a sector-bounded memory- 
less nonlinearity (locally Lipschitz continuous 
operator of finite-gain) in the feedback-loop is 
globally exponentially stable (globally asy- 
mptotically stable) if the product of the 
L2-gains is smaller than one. 

• There exist unstable feedback systems of 
loop-gain equal to one, i.e. for a given 
exponentially stable infinite-dimensional real 
plant there exists a finite-dimensional real 
compensator making the L2-1oop gain equal to 
one and causing destabilization. 

• The circle criterion ensures global exponential 
stability for the class of plants under 
consideration, provided that the transfer 
matrix is normal on the imaginary axis. 
Using ideas presented in Mees (1981) it might 

be possible to develop multivariable circle 
criteria for internal stability which do not require 
the normality assumption. This is a topic for 
future research. 
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