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Adaptive Exponential Stabilization for a Class
of Nonlinear Retarded Processes*

Hartmut Logemannt

Abstract. This paper considers the problem of adaptive exponential stabilization
for a class of single-input single-output nonlinear retarded processes. The class
includes certain linear retarded systems which are subject to sector-bounded actua-
tor and sensor nonlinearities. It is shown that there is a wide range of high-gain
adaptive compensators which achieve exponential stability for the class of pro-
cesses under consideration.

Key words. Global adaptive stabilization, Retarded systems, Time-delay systems,
Sensor and actuator nonlinearities.

1. Introduction

Robust (nonadaptive) high-gain control of retarded systems has been studied in
some detail by Logemann and Owens [LO1], [LO2]. In this paper a theory of
high-gain adaptive exponential stabilization for a class of single-input single-output
nonlinear retarded systems is developed. It is fairly obvious that any technical (or
biological) system will almost certainly involve time delays. These arise because a
certain amount of time is required to sense a signal and then respond to it. It is
therefore important to find adaptive control laws which apply to retarded systems.
The approach adopted here is not based on any parameter-identification algorithms
and can be regarded as being in the spirit of several previous studies. In papers
by Nussbaum [N], Willems and Byrnes [WB], Heymann et al. [HLM], and
Martensson [M1] linear finite-dimensional systems are considered. Owens et al.
[OPI] study linear finite-dimensional systems with certain nonlinear perturbations
in the state. The paper by Dahleh and Hopkins [DH] extends the main result of
Willems and Byrnes [WB] to a class of linear differential-delay systems, while
Kobayashi [K2] and Byrnes [B] show that it carries over to certain linear distri-
buted parameter systems. Logemann and Owens [LO3] develop an input-output
theory of high-gain adaptive stabilization of infinite-dimensional systems with
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linear retarded system
with a time-varying non-
linear perturbation

Process I

Fig. 1

actuator and sensor nonlinearities, which in particular includes the results of Dahleh

and Hopkins [DH], Kobayashi [K2], and Byrnes [B]. Apart from Owens et al.

[OPI], who consider the problem of exponential stabilization for the special case

when the sign of the high-frequency gain is known, none of the above references

investigates the possibility of stabilizing a system with an exponential rate of decay.
The process IT considered in this paper is shown in Fig. 1. We assume:

(1) The functions ¢ and § are memoryless unbiased time-varying nonlinearities
lying either in a positive or negative sector.

(2) The nonlinear retarded system (2.1) satisfies conditions paralleling those
imposed on the finite-dimensional system by Owens et al. [OPI] (see Section
2 for details).

We mention that the nonlinearities included in process I1 are more general than
the ones considered in [OPI] and by Logemann and Owens [LO3].

In Section 2 we consider the process I1 shown in Fig. 1 without actuator and sensor
nonlinearities and establish some preliminary results. Section 3 gives a general class
of adaptive compensators achieving exponential stability for the process IT provided
that (1) and (2) are satisfied. We emphasize that the adaptive control laws of Section
3 differ from the control laws introduced in the above references. For example, the
approach adopted here includes gain adaptation rules of the form

derivative of the gain = modulus of the process output.

Moreover, exponential weighting factors have to be employed, since we want to
achieve exponential stability. In order to deal with the actuator and sensor non-
linearities ¢ and y, the notion of scaling invariant switching functions (introduced
in [LO3]) proves useful. As in [OPI] and [LO3] we allow switching as a function
of both current and past gain and input data. This leads to a wide class of stabilizing
adaptive high-gain compensators with the convergence of the switching mechanism
being independent of the gain-adaptation rules. It is to be noted in particular that
the adaptive control laws of Section 3 give a solution to the problem of stabilizing
an unknown first-order system with a prescribed rate of exponential decay. This
problem was solved for the linear finite-dimensional case by Pqlderman [P1], [P2]
using adaptive pole-placement. The approach taken here is different in nature
from the one pursued in [P1] and [P2] and it applies to a much larger class of
systems.
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Section 4 concludes the paper. The proofs of some technical lemmas are relegated
to the appendices.

. Nomenclature

R;, := set of nonnegative real numbers.
C, = {se C|Re(s) > a} (x € R).
Let J < R be a finite or infinite interval, then
C(J, R") := vector space of R"valued continuous functions on J,
L?(J, R") := vector space of R"-valued p-integrable functions on J,
LLP(J, R*) := vector space of R"valued locally p-integrabie functions on J,
LE(J,R") := {f: J - R"| f exp(e*) € L?(J, R")} (x e R).
BV(J, R"*") .= vector space of R"*"valued functions of bounded variation on J.
Let fe LE(J, R"), then || fl,.. := (J;1/(¢) exp(at)|? dt)"/?, where ||, denotes the

Euclidean norm on R”".
Let f € LL?([a, o), R"), thenfort > a

flr), a<t<y,

()6 = {0 =

An operator T: Dy, < LL?([a,, ©), R™) > LL%([a,, ), R"){a, < a,) is called
causal if n, T = 7, Tw, for all t > a,.

S(5, A)(A = § > 0)denotes the set of all Borel functions f: R, x R — Rsuch that
f(t,0)=0 for all t € R, and f satisfies either Ax?> > xf(t, x) > 6x2 for all (¢, x) €
R, x Ror(—68)x? > xf(t,x) = (—A)x*forall (¢, x) e R, x R.

S:= | 86,A.
A>56>0

Given [ € § then either sign(x) = sign(f(¢, x)) for all (¢, x) € R, x R orsign(x) =
—sign(f{(t, x)) for all (¢, x) e R, x R. In the first case we write ¢(f) = +1 and in
the second o(f) = —1.

2. The Process Without Sensor and Actuator Nonlinearities

In the following we extend any function F € BV([0, r], R"*") to the whole real axis
by setting F(t) = F(0) for all t <0 and F(t) = F(r) for all t > r. Any measurable
function f:Q — R", Q = R will be extended to the whole real axis by defining
f(©)=0 for all t¢ Q. For F = (F;)e BV([0,r], R"*") and f=(/,,....f)", fi€
LLYR, R) (1 < i < n), we define
2 dFyj*f;
dFsf:=|"" ,

j;l dF,;* f;

where dF; denotes the measure on R induced by F; and dF;+f denotes the
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convolution of the measure dF;; and the function f;. If f is continuous on [ —r, o),
then of course

dF«f)(t)= J: dF(0)ft—1) forall t=0.
In this section we consider the process IT in Fig. 1 stripped of its actuator and sensor
nonlinearities. It is assumed to be given by
% =dAxx + P;x + b(P,x + u),
y=cTx, (2.1)
X|{-r,01 = Xo € C([—1, 0], R"),

where 4 € BV([0,r], R"*"), be R", c e R", and P; and P, are operators mapping
LLY([ —r, ), R") into LL'([—r, ), R") and LLY([ —r, o), R), respectively. We
assume that

c¢Th # 0, (2.2)
x(s) := det |:SI —c;i (5) _Ob] #0 forall seC_, (forsomea>0), (2.3)
P(0) =0, 24)

and
17 dPif — Pif Wa,e < villm(f = )10 (2:5)

forall f, f' € LLY([—r, o), R"), for all t > O (for some y, > 0),i = 1, 2.
In (2.3) the function 4 is given by A(s) = o exp(—st) dA(z). In the case when
7, = 7, = 0, (2.1) is a linear retarded system with transfer function

g(s) = c¢T(sI — A(s))"*b.

Remark 2.1.

(i) Lety, =17, = 0. If condition (2.3) is satisfied, then the system (2.1) is called
(— o)-minimum-phase.
(ii) It can be shown that (2.3) holds if and only if

g(s) # 0,

rank(sI — A(s), b) = n, _
and forall seC_,.

ank l:SI :TA (S)} =n,

(iii) It is a trivial consequence of condition (2.5) that the operator P; is causal,
i=12

It follows from (2.2) that there exists a nonsingular real matri»Q € R"*" such that

07 = [cgb], T = (1, 0).
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Setting 7(t) = Q! x(t) it follows from (2.1) that
1=dQAQ)*7 + (@7 (P, + bP,)Q)(®) + (' b)u,
y 2 (7O, @6
Mi-r.0 = 07 x,.
Partition the matrix Q™' A4(-)Q as follows
Aq(Y) Alz('):l
A2 (1) Aza(0) ’

where A;;(+), 4,2(*), A3,(*), and A,,(-) are matrices with entries in BV([0, ], R)
ofsizel x ,1x(n—1,(n—1)xl,and(n—1) x (n — 1), respectlvely Further-
more, write Q7'P,Q as (P,, P,)", where the opcrators B, and P, are mapping
LLY([—r, o), R") into LL}([—r, o), R) and LL*([ —r, c0), R*™!), respectively. If
we realize that 7 can be written in the form 7 = (y, nT)T, then it follows that (2.6)
can be expressed as

07A(")Q =[

= (cTb)u,, 2.7

fi=dAyxn +dd vu; + B (l::>, (2.82)
1 ~ (U, u,

2= ——gp|dAyy*n +dA; xuy + Py -0 ?),  (28b)
c'h n n

U, =u-—z, u, =y, (2.9

YI[—r o] = MNi» '7|(-r.o] =12, (2.10)

where (1,,1,)T =7l(-,.0) and in particular 1, = c¢Tx,, i.e, (2.6) is the feedback
interconnection of the integrator (2.7) and the retarded system (2.8) (see Fig. 2).

e e G e . e —— - e S G— e e G — —— — —— d—
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Lemma 2.2. Assume that (2.2)—(2.5) are satisfied and consider the initial value
problem

=dAy*n+ dA; *u, +F2(L;2>,

(Ivp)
u2|[—r,0] = N1 ’7|[—~r,0] =13,

when an input signal u,(t) = v(t), t > 0, is applied. Under these conditions:

(i) For ve LLY(R,, R) (IVP) has a unique absolutely continuous solution S(v) on
[ —r, 00) provided that v, is sufficiently small. The map v+ S(v) is causal.

(i) If v e LLX(R,, R) the solution S(v) of (IVP) is in L1 ([~ -, o), R"™Y) for suffi-
ciently small y,. The operator S satisfies

IS@ 1.« < K11, 12) + Llvlly 0 (2.11)

where K(n,, n,) and L are positive constants.

Proof. We prove (ii) first.
Step 1. Consider the linear homogeneous initial value problem
n=dA,,*n, (2.12a)

Nlg=r,01 = M2- (2.12b)

Let Y denote the fundamental solution of (2.12a),i.e., Y = d4,, * Yon R,, Y(0) = I,
and Y(t)=0 for te[—r,0) (see [H] or [K1]). The Laplace transform of Y
is given by A7l(s), where A(s):= sl — A,,(s) and A,, is defined by A,;,(s):=
{6 exp(—st) dA,5(z). It follows from (2.2) that the zeros of x (cf. (2.3)) and det(A)
coincide (see Appendix 1 for a proof) and hence (by (2.3)) det(A) has no zeros in
C_,. Since det(A) has at most finitely many zeros in every right half-plane there
exnsts B > a such that det(A) has no zeros in C_ Asa consequence A™! is holo-
morphic in C_; and if we realize that A™}(s) = O(s") as |s| = oo in C_; we obtain,
using a result of Mossaheb [M2] (see also [L]), Y € L}(R,, R*" 1 ""”).

Step 2. Denote the solution of (2.12) by #*. It is not difficult to show that (IVP) is
equivalent to

nt) = o) + j Y(t = ©)(dAgy +ug)(r) dr

+ j‘ Y(t —1) (ﬁz (“nz)) (tydr, >0, (2.13)
Q

Uzli=r.01 = 15 Ni-r.01 = N2-

Using standard arguments based on Banach’s contraction mapping theorem it
follows that, for u,l,.) =€ Li(Ry, R), (2.13) has a umque solution S(v) e
L[ -7, o0), R ) if v

1Y lh,.6/9) < 1, (2.14)
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where @ and g denote the largest and smallest singular value of the matrix Q,
respectively.

Step 3. Assume that (2.14) is satisfied. It is clear that the solution operator
S: LL(R,, R)—»Lj(l_’—r, o0), R*71) is causal. Moreover, it is straightforward to
show that (2.11) holds true for

K(ny,n2) = Ir*My,e + 7Yl (eXp(ar) \O/ (42:) + 7*) 7, ”w.aj[

ol
L= (Yl a7*

and

1 r
L=———————{ Y}t explar) V(4;,) +7*} ],
T— [Yl0" <|| s, ( p(ar) : (A21) +v ))
where y* := (6/g)y, and V(A,,) denotes the total variation of 4,, on [0, r].
In order to prove (i) we assume that (2.14) is satisfied. Define the operator T by

(T = Sm.f)) forall —r<t<rt.

It is clear that T maps LL'(R,, R) into LL!([—r, o), R""!). Realize that n,T =
.S for all t > 0 and hence n, T = (n,Sn,)x, = n,Trn_forall t > 0, i.e., T is causal.
Moreover, it follows from the causality of S that

nTf =nSnf=nSf forall >0 andforall felLl!R,,R)

which means that T extends S to LL!(R,, R). It is easy to verify that T is the unique
causal extension of S to LL!(R,, R). Finally, we claim that for Usli0.0) = VE
LLY(R,, R) the function Tv is the unique solution of (IVP). In order to see that Tv
solves (IVP), pick > 0 and notice that Sz, v is a solution of (IVP) with u, |0 ., given
by n,v. Since Tv = Sn.v on [ —r, 7] and v = m.v on [0, 7] and by the causality of the
operations occuring on the right-hand side of (IVP) we conclude that Tv is a solution
of (IVP) (with u,| o ., given by v) on the interval [ —r, 7). The number = > 0 was
arbitrary and hence Tv solves (IVP) on { —r, o). For the proof of uniqueness let f
be a solution of (IVP) with u,|;o,,,) = v. We want to show that f = Tv. Since f and
Tv are solutions of (2.13) an easy calculation yields

(1 = 0Y 11,26/ aPn(To — W1, <0 forall z=0.
It now follows from (2.14) that z,(Tv — f) =Oforallt > 0and hence Tv=f. R

2

An immediate consequence of the previous lemma is

Corollary 2.3. Consider the system (2.8) with ., o, =15, U3l oy =1, and
Uzlto,w) = U and assume that y, is sufficiently small (i.e., y, satisfies (2.14)). Then the
corresponding input—output operator H: v+ z is causal and maps LL*(R,, R) into
itself. Moreover, L} (R, R) is an invariant subspace of H and

”H(U)Hl,a < hi(ny,m2) + hy ”1’”1,m (2.15)

where hy(n,, n,) and h, are positive constants.
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3. A General Class of Adaptive Stabilizing Compensators

We study the behavior of the process I if the following control law is applied:

(1) = NE@O)k@)y @), (3.1a)
() = exp(an)k(@)|y'(0),  £(0) = &, (3.1b)
1e.,
u(t) = o[t, NE@)kOY(, y(1)], (3.2a)
&(t) = expa)k() (e, yO),  &(0) = &, (3.2b)

where k: R, — R is a strictly positive function (i.e., k() > ¢ > @ for all t e R, ) and
N is a so-called scaling invariant switching function.

Definition 3.1.
(i) A function N € LL®(R, R) is called a switching function if for some ae R
sup J N{A)ydi = +0 (3.3a)
x>a X — a4 J,
and
inf j N(A)dA = —c0. (3.3b)
x>a X — 4 Jg

(i) A switching function N is called a scaling invariant if for arbitrary positive 6,
and 6, the function

O,.N() if N() >0,
A=< 0 if N()=0,
0,N() if N()<O

is a switching function.

Remark 3.2.

(i) It is easily seen that if conditions (3.3) are satisfied for some a € R, they are
satisfied for alla e R.
(i) An example of a scaling invariant switching function is given by N(1) =
cos(3nd) exp(4?). For a proof, see [LO3].
(iii) It is not difficult to find switching functions which are not scaling invariant,

e.g., N(1) = Ny(A)4, with
1 n2 <|A <(n+ 12 neven,
No(d) = {—1 n?* <JAl < (n+ 1%, nodd.

(iv) The concept of a switching function has its origin in the papers by Nussbaum
[N7] and Willems and Byrnes [WB]. .

The following result shows that the control law (3.1) stabilizes the process shown
in Fig. 1.
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Theorem 3.3. Let ¢ and y be in S and assume that (2.2)—(2.5) are satisfied. Moreover,
assume that the feedback system given by (2.1) and (3.2) has a unique absolutely
continuous solution which can be continued uniquely to the right as long as it remains
bounded. Then for ol sufficiently small y, (i.e., all y, satisfying (2.14)) the following
is true:

() v,y € 2 LAR,, R) and x € (%, L2(R,, R").
(i1) lim,_ o, &(¢) exists and is finite.

In the case when o > 0 (i) implies that x, y, and y’ are tending exponentially to zero
asttendsto co. If o = Owe still havelim, _, , x(t) = O andlim,_,, y(t) = lim,_, y'(¢) =
0, provided that k is bounded.

Remark 3.4. Suppose that k is continuous, N is continuously differentiable, and
¢ and ¥ are continuous with continuous partial derivatives D, ¢ and D, . Then it
is straightforward to show that the feedback system given by (2.1) and (3.2) has a
unique absolutely continuous solution which can be continued uniquely to the right
as long as it remains bounded (see [LO3]).

For the proof of Theorem 3.3 we need the following two lemmas.

Lemma 3.5. Suppose that f: J - R(J < R is a closed interal) is absolutely continu-
ous. Then

d .
a-t-lf(t)l = sign(f(t))f(¢!) ae.onJ.

Lemma 3.6. Let ¢ € S(A,, 8,) and € S(Ay, 6,) such that a(p) = o(). Then the
inequalities .z

Sign(x)(p(t, A'p‘p(ts X)) < r+()'))'pl¢(t’ X)I
and

sign(x)o(t, ApY(t, x)) = T_(DAplY(t, x)|
hold for all (¢, p, %, x) € R: x R?, where

A,, A>0,
r,(4):=<0, A=0, (3.4a)
O A<0,
and
I_(A):=T.(=A). (3.4b)

The proofs of Lemmas 3.5 and 3.6 are given in Appendices 2 and 3, respectively.

Proof of Theorem 3.3. Instead of the system given by (2.1) and (3.2) we consider
the system given by (2.6) and (3.2). They are equivalent in the sense that (7, &) is a
solution of (2.6) and (3.2) if and only if (Q7, &) is a solution of (2.1) and (3.2).
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u' -u y y'

— - (2.1) > v >

Fig. 3

Moreover, we can assume without loss of generality that o(¢) = a() (this follows
from the equivalence of the diagrams in Figs. 1 and 3). Consider the equation

y=cTb(e[, (N o Oky(:, y)] — Hy) (3.5)

which follows from (2.7)~(2.10) and (3.2) (H is defined as in Corollary 2.3). We obtain,
from (3.5), !

d
(Ey eXp(oc-)) sign(y) = a exp(a-)|y| — c¢Tb exp(a-) sign(y)Hy

+cTbel-, (N o E)ky (-, y)] exp(e-) sign(y).  (3.6)
Furthermore, we have (by Corollary 2.3)

t

J explan)|(Hf) ()l dt < hy + h, f exp(at)| f(7)] dt

0 0
forall t>0 andforall feLL'(R,,R). (3.7)

Now let §,, A,, dy, and A, be positive numbers such that ¢ € S(3,, A,) and
Y € S(dy, Ay)- Integrating (3.6) from 0 to ¢t using (3.7) and (3.4) and applying Lemmas
3.5 and 3.6 yields

()] exp(at) — |y(0) < [cTblhy + (IcTblh, + a)j |y(z)l exp(ar) de
[

+ |cTh| J (Ty o N)(E@)N(E(@)k(@)Y (z, y(2)| exp(az) dr.
]
Using (3.2b) and the change of variables formula for Lebesgue integrals it follows
that
[y(e)l exp(at) — |y(0)| < |cTblh, + (IcTblh, + a)f |y(z)| exp(at) dt
1]

40
+ 1cTh] ) (T'y o NYAN(A) dA. (3.8)

By the properties of k and (3.2b)

1

[} borexpien <. [ explaniaon as
¢}

0o

s ;| etk e

1
= 50— &) (3.9)
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Setting K, := |{c7b|h; + |y(0)] and K, := (1/e6,)(Ic"blh, + a) and using (3.8) and
(3.9) we obtain

T &) R
V(O expar) <K, + (€0 éo)(xz s e L (T YAND) dz).
’ (3.10)

Equations (3.10) and (3.9) hold on each interval of the form [0, a) where the solution
(7, &) = (y, n, &) of the feedback system given by (2.6) and (3.2) exists. Since the
right-hand side of (3.10) has to be nonnegative, we can conclude, using the properties
of the function N, that £(t) and hence (by (3.10)) y(t) remain bounded. Moreover, it
follows from the decomposition (2.7)-(2.10) of the system (2.6) and Lemma 2.2 that
n(t) remains bounded as well. As a consequence the solution (7, €) exists on [0, o)
and we obtain that lim,. ., &(¢) exists and is finite, which is (ii). Furthermore, by
(3.10)and (3.9), y € LY(R,, R) n L?(R,, R) and since y’ = ¥(-, y(*)), where y € S, it
follows that y’ € L} (R,, R) n L?(R,, R). The decomposition (2.7)-(2.10) of the sys-
tem (2.6) and Lemma 2.2 show that 7 € L}(R.., R""!) and hence (by (2.8a) and (2.9))
i e LYR,, R"!). Therefore n e L?(R,, R"™') which completes the proof of (i).
Finally, it is easy to show that in the case when a = 0 we still have lim,_ . y(t) =
lim,., y'(t) =0 and lim,_, x(t) = 0, provided that k is bounded. The proof is
omitted for the sake of brevity. ]

It is natural to regard the gain k as the image of causal map Z operating on ¢
and (-, y()). Let us consider the following gain-adaptation rule:

k=2Z@EC)w(, y0))), (3.11)

where Z: D, —»LL‘(R+, R) is a causal map whose domain D, contains the set
C(R,, R) x U¢ES{¢(-,f(-))|fe LL*(R,, R)}. Moreover, we assume that Z satisfies:

(A1) Z[Dz N (L®R,, R) x (L'(R,, R)n L>(R,, R)))] = L®(R,, R).
(A2) There exists ¢ > 0 such that inf,5 o {(Z(f))(¢)} = efor all f € D,.
(A3) Z(f) is nondecreasing for all f € D,.

Consider the following example

Z: C(R,) x LL*(R,, R) » LL'(R,, R),
(3.12)

i S ko + J | L@IX( /@) 1) dr,
: 0
where k, > 0 and X is a polynomial in two variables with positive coefficients. It is

trivial that (A1)—(A3) are satisfied. The gain adaptation induced by (3.12) can be
written in the form of an ordinary differential equation

k() = 1Y (e, yEIX @), (e, yO))
k(0) = k,

The following theorem is a simple consequence of Theorem 3.3.

(3.13)

Theorem 3.7. Let ¢ and y be in S and assume that (2.2)-(2.5) and (A1)—(A3) are
satisfied. Moreover, assume that the feedback system given by (2.1), (3.2), and (3.11)
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has a unique absolutely continuous solution (x, &) which can be continued uniquely to
the right as long as it remains bounded. Then for all sufficiently small y, (i.e., all y,
satisfying (2.14)) the following hold: :

() 3,y € (V2 LER,., R) and x € (132, LER,, RY).
(ii) lim,., &(t) exists and is finite.
(i1i) lim,_  k(t) exists and is finite.

In the case when a > 0 (i) implies that x, y, and y’ are going exponentially to zero as
t — o0. If o = 0 we still have lim,_, , x(t) = 0 and lim, _, , y(t) = lim,_., y'(t) = O.

Remark 3.8. In the “first-order” case (i.e., n = 1) the above theorem holds for all
1 > 0, because P, can be written trivially as P, = b(b™'P,) (i.e,, P, can be absorbed
into P,). Moreover, it should be mentioned that every “first-order” system which
fulfills (2.2) satisfies (2.3) for all o« > 0.

Remark 3.9. Assume that a given system satisfies (2.2) and (2.3) for « = 0. Now it
follows from Step 1 of the proof of Lemma 2.2 that (2.3) is satisfied for « > 0,
provided that « is sufficiently small. As a consequence the conclusions of Theorem
3.7 are true for sufficiently small positive a.

4. Conclusions

A theory of adaptive exponential stabilization for certain nonlinear retarded pro-
cesses has been developed. The resulting adaptive control laws are of high-gain type.
In particular, the processes under consideration include a fairly large class of linear
retarded systems which are subject to sector-bounded actuator and sensor non-
linearities. It can be shown that the results of Sections 2 and 3 also hold true for
Volterra integrodifferential systems and for the classes of distributed parameter
systems studied by Byrnes [B] and Kobayashi [K2]. This paper considers single-
input single-output processes only. However, work is under way to extend the
theory to the multivariabie case. It should be mentioned that in contrast to most
of the references neither the control law of Section 3 nor the algorithm proposed
by Polderman [P1], [P2] is of the “standard form”

i=flz,y)

u' =g(z,y')
(where u’ and y’' denote the input and the output of the process, see Fig. 1)
investigated by Byrnes et al. [BHM]. This might lead to implementation problems.
However, we do not claim that the control law of Section 3 is a practical one, and
we emphasize that the controller proposed here is a more existential contribution.
It is an interesting open problem to determine if there exist adaptive control laws

of the above form achieving exponential stability under conditions which are similar
to those in Section 2.

L 4
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Appendix 1. Proof that the Zeros of y and det(A) Coincide

It follows from the properties of Q that

' sSl—Ayy()  —Ails)  —cTh
x(s) =det| —A, () sI—A,s) 0 | (A1)
I 0 0
Define
(1 0 —(sI — Ayy(s)
Ti(s):=}10 I Az41(9)
[0 0 1
and
1 0 0
T,(5):={0 1 0.
[0 —(cTh)'A,(s) 1

We obtain, from (A.1),

sl— A (s)  —Anals)  —cTb
ws) =det Ty(s)| —Ayls)  sI—Apls) 0 |Th(s)
I 0 0

—(cTh) det(sI — A,,(s))
—(cTh) det(A(s)). n

]

Appendix 2. Proof of Lemma 3.5

Let M  J denote the set of measure zero where f does not exist. Moreover, define
M*:= {te J\M|f(t) = 0, f() # 0},

it is a matter of routine to show
d .
Eflf(t)l = sign{f(1))/(¢) forall teJ\(MuM*)
It remains to prove that M* is of measure zero. But this follows easily from the fact

that |f| is not differentiable in any point of M* and that |f]| as an absolutely
continuous function is differentiable almost everywhere. ]

Appendix 3. Proof of Lemma 3.6

Without loss of generality we may assume that a(p) = o(¥) = + 1. Indeed, if the
claim is true in this case, then it is easy to show that the claim is true in the
case when o(¢) = o(¥) = — 1. Moreover, we restrict ourselves to the proof of the
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inequality
sign(x)o(t, Aoy (t, x)) < To(DAply(t, x)| (¢, p, 4 x) e RE x R?). (A2).

The proof of the second inequality in Lemma 3.6 is very similar and is therefore
omitted. In order to see why (A.2) holds realize that

olt, ApY(t, ) < A dpy(t,x) (&, p, A x) € RE x Ry x Ry), (A3)
o(t, ApY(t, X)) 2 A dpy(t,x) (8, p, A, x) € R x Ry x (—00,0]), (A4)
@(t, ApY(t, X)) < S,ApY(t, x)  ((t, p, 4, x) € R x (—0,0] x R,), (A.5)
and
o, Apy(t, X)) = 8,4p0(t, x) (&, p, 4 X) € RE X (—0,0] X (—00,0]). (A.6)
We obtain, from (A.3) and (A 4),
sign(x)o(t, oY (t, x)) < A dpl(t, x)| (¢, p, 4, x) € RY x [0, 0) x R), (A.7)
while (A.S) and (A.6) imply
sign(x)(t, Apy(t, x)) < ,AplY(t, x)| ((t, py A, x) € RZ x (—0,0] x R). (A.8)
Inequality (A.2) now follows from (A.7), (A.8), and (3.4a). n
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