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Adaptive Exponential Stabilization for a Class 
of Nonlinear Retarded Processes* 

Hartmut  Logemannt  

Abstract. This paper considers the problem of adaptive exponential stabilization 
for a class of single-input single-output nonlinear retarded processes. The class 
includes certain linear retarded systems which are subject to sector-bounded actua- 
tor and sensor nonlinearities. It is shown that there is a wide range of high-gain 
adaptive compensators which achieve exponential stability for the class of pro- 
cesses under consideration. 

Key words. Global adaptive stabilization, Retarded systems, Time-delay systems, 
Sensor and actuator nonlinearities. 

1. Introduction 

Robust (nonadaptive) high-gain control of retarded systems has been studied in 
some detail by Logemann and Owens [LOI ' I ,  [LO2].  In this paper a theory of 
high-gain adaptive exponential stabilization for a class of single-input single-output 
nonlinear retarded systems is developed. It  is fairly obvious that any technical (or 
biological) system will almost certainly involve time delays. These arise because a 
certain amount  of time is required to sense a signal and then respond to it. It is 
therefore important  to find adaptive control laws which apply to retarded systems. 
The approach adopted here is not based on any parameter-identification algorithms 
and can be regarded as being in the spirit of several previous studies. In papers 
by Nussbaum [NI,  Willems and Byrnes [WB], Heymann et al. FHLM], and 
Mhrtensson [M1] linear finite-dimensional systems are considered. Owens et al. 

[OPI ]  study linear finite-dimensional systems with certain nonlinear perturbations 
in the state. The paper by Dahleh and Hopkins [ D H I  extends the main result of 
Willems and Byrrtes [WB] to a class of linear differential-delay systems, while 
Kobayashi  [K2] and Byrnes I-BI show that it carries over to certain linear distri- 
buted parameter  systems. Logemann and Owens I-LO3] develop an input -ou tpu t  
theory of high-gain adaptive stabilization of infinite-dimensional systems with 
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actuator and sensor nonlinearities, which in particular includes the results of Dahleh 
and Hopkins EDH], Kobayashi [K2], and Byrnes [B]. Apart from Owens et al. 
[OPI], who consider the problem of exponential stabilization for the special case 
when the sign of the high-frequency gain is known, none of the above references 
investigates the possibility of stabilizing a system with an exponential rate of decay. 

The process H considered in this paper is shown in Fig. 1. We assume: 

(1) The functions ~0 and ~0 are memoryless unbiased time-varying nonlinearities 
lying either in a positive or negative sector. 

(2) The nonlinear retarded system (2.1) satisfies conditions paralleling those 
imposed on the finite-dimensional system by Owens et al. [OPI] (see Section 
2 for details). 

We mention that the nonlinearities included in process I'I are more general than 
the ones considered in [OPI] and by Logemann and Owens [LO3]. 

In Section 2 we consider the process H shown in Fig. 1 without actuator and sensor 
nonlinearities and establish some preliminary results. Section 3 gives a general class 
of adaptive compensators achieving exponential stability for the process FI provided 
that (1) and (2) are satisfied. We emphasize that the adaptive control laws of Section 
3 differ from the control laws introduced in the above references. For example, the 
approach adopted here includes gain adaptation rules of the form 

derivative of the gain --- modulus of the process output. 

Moreover, exponential weighting factors have to be employed, since we want to 
achieve exponential stability. In order to deal with the actuator and sensor non- 
linearities ~0 and ~b, the notion of scaling invariant switching functions (introduced 
in [LO3]) proves useful, As in [OPI] and [LO3] we allow switching as a function 
of both current and past gain and input data. This leads to a wide class of stabilizing 
adaptive high-gain compensators with the convergence of the switching mechanism 
being independent of the gain-adaptation rules. It is to be noted in particular that 
the adaptive control laws of Section 3 give a solution to the problem of stabilizing 
an unknown first-order system with a prescribed rate of exponential decay. This 
problem was solved for the linear finite-dimensional ease by PoJderman [P1], [P2] 
using adaptive pole-placement. The approach taken here is different in nature 
from the one pursued in [P1] and [P2] and it applies to a much larger class of 
systems. 
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Section 4 concludes the paper. The proofs of  some technical lemmas are relegated 
to the appendices. 

Nomenclature 

R+ := set of nonnegative real numbers. 

C~ :=  {s ~ ClRe(s) > a} (a ~ R). 

Let J c R be a finite or  infinite interval, then 

C(J, R") :=  vector space of R"-valued cont inuous  functions on J,  

LP(J, R") := vector space of  R"-valued p-integrable functions on J, 

LLP(J, R") := vector space of R"-valued locally p-integrable functions on J, 

L~(J, R ~) :=  { f :  J ---* R" l f  exp(ct.) ~ LP(J, R")} (a ~ 1~). 

BV(J, R "• :=  vector space of  R "x"-valued functions of  bounded  variat ion on J. 

Let f ~  L~(J, R"), then Ilfllp.~ := (~llf(t)exp(ctt)l[ dr) I/p, where I'l~ denotes the 
Euclidean norm on R ~. 

Let f ~ LLP([a, ~), R"), then for t > a 

~'f(z), a < z _< t, 
(n,f)(z) = [0,  T > t. 

An opera tor  T: Dr  ~ LLP([al ,  co), R") ~ LLq([a2, ~ ) ,  R")(a2 < al)  is called 
causal if n iT  = zt Try, for all t > al .  

S(5, A) (A > 5 > 0) denotes the set ofall  Borel functions f :  R+ x R ~ R such that 
f(t, 0) = 0 for all t z R+ and f satisfies either Ax 2 > xf(t, x) > 5x 2 for all (4 x) e 
R+ x R or  ( - 5 ) x  2 > xf(t, x) > ( - A ) x  2 for all (4 x) e R+ x R. 

s:= U 
A ~ > O  

Given f s S then either sign(x) = s ign ( f  (t, x)) for all (t, x) ~ I~+ x $ or  sign(x) = 
- s i g n ( f  (t, x)) for all (t, x) ~ R+ x R. In  the first case we write t r(f)  = + 1 and in 
the second a(f) = - I. 

2. The Process Without Sensor and Actuator Nonlinearities 

In the following We extend any function F ~ BV([0, r'l, R "• ") to the whole real axis 
by setting F(t) = F(0) for all t < 0 and F(t) = F(r) for all t > r. Any measurable 
function f :  f~ ~ R n, f) c • will be extended to the whole real axis by defining 
f(t) = 0 for all t ~ f L  For  F = (FIj)~BV([O,r], R n• and f =  (fl . . . . .  fn)r, f i e  
LLI(~, ~) (1 < i _< n), we define 

dF* f := L J=l dF.j* f jJ 

where dF o denotes the measure on R induced by F o and dFii*f denotes the 
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convolut ion of the measure dFi~ and the function f~. I f f  is continuous on I - - r ,  oo), 
then of course 

(dF,f)(t)=fs for all t>_0.  

In this section we consider the process YI in Fig. 1 stripped of its actuator  and sensor 
nonlinearities. It is assumed to be given by 

~c = dA * x + Plx  + b(P2x + u), 

y = cZx, (2.1) 

xlt-,.ol = Xo ~ C ( [ - r ,  0], R"), 

where A ~ BV([0, r], R"• b r R", c ~ R", and ,~ and P2 are operators mapping  
L L I ( [ - r ,  oo), R") into LLt (E- r ,  oo), R") and L L I ( E - r ,  oo), R), respectively. We 
assume that  

crb # O, (2.2) 

Z(s) := det [ sl - "~(s) O b]  c r  :/: 0 for all s ~ ~2_, (for some ~ > 0), (2.3) 

P,(0) = 0, (2.4) 

and 

tl=,(Pif - Pif')ll ~,~ < yi Ilrq(f - f ') l l  x,~ (2.5) 

for all f ,  f '  ~ L L I ( [ - r ,  ~) ,  R"), for all t > 0 (for some 7i > 0), i = 1, 2. 
In (2.3) the function X is given by A(s )=  S[exp(--sz)dA(z).  In the case when 

71 = Y2 = 0, (2.1) is a linear retarded system with transfer function 

o(s)  = c T ( s t  - ~ ( s ) ) - I b .  

Remark 2.1. 

(i) Let 71 = Y2 = 0. If condition (2.3) is satisfied, then the system (2.1) is called 
( - cO-minimum-phase. 

(ii) It can be shown that  (2.3) holds if and only if 

o(s) # 0,} 
r a n k ( s / -  X(s), b) = n, 

and for all s e C_,,. ran [Sly's']. 
(iii) It is a trivial consequence of condit ion (2.5) that  the operator  Pi is causal, 

i =  1,2. 

It follows from (2.2) that  there exists a nonsingular  real matrix~Q ~ R ~ • such that  

Q-~b=IC~b ] ,  c rQ= (1 ,  O). 
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Setting if(t) = Q-Ix(t) it follows from (2.1) that 

"~ = d(Q-IAQ)*'~ + (Q-'(P, + bP2)Q)(-~) + (Q-'b)u, 

y ~- (crQ)~, (2.6) 

ff][-,,Ol = Q-l xo. 

Parti t ion the matrix Q-1A(.)Q as follows 

Q - i A ( ' ) Q = [  Axx(') A '2 ( ' ) ]  

LA~,(') A,~(.)J' 
where Al1('), A12('), A21('), and A22(" ) are matrices with entries in BV([0, r], R) 
of size 1 x 1, 1 x (n - 1), (n - 1) x 1, and (n - 1) x (n - 1), respectively. Further- 
more, write Q-1P1Q as (PI,P2) r, where the operators P1 and P2 are mapping 
L L I ( [ - r ,  oo), R") into L L I ( [ - r ,  oo), R) and L L I ( [ - r ,  oo), R"-I), respectively. If 
we realize that  ~ can be written in the form ~ = (y, r/r) r, then it follows that (2.6) 
can be expressed as 

~, = (crb)ul, (2.7) 

O = dA22*rl + dA21*u2 + P2(%2), (2.8a) 

z -  c~ b dA12*rl+dAl l*u2+P1 rl 

ul = u - z, u2 = y, (2.9) 

Yl[-,.Ol = ~h, r/[l_,,o] : /72 , (2.10) 

where (rh,~/2) r = ffl[-,.Ol and in particular t h = crxo, i.e., (2.6) is the feedback 
intcrconnection of the integrator (2.7) and the retarded system (2.8) (see Fig. 2). 

(2 .6)  
! 
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L e m m a  2.2. 
problem 

u2lt-,.o] = r/l, r/lt-,.o] = rt2, 

when an input sional u2(t ) = v(t), t _> 0, is applied. Under these conditions: 

Assume that (2.2)-(2.5) are satisfied and consider the initial value 

(IVP) 

(i) For v ~ LLi(R+, R) (IVP) has a unique absolutely continuous solution S(v) on 
[ -  r, oo) provided that ~1 is sufficiently small. The map v ~ S(v) is causal. 

(ii) I f  v e L~(R+, R) the solution S(v) of  (IVP) is in L ~ ( [ - r ,  oo), R "-1) for suffi- 
ciently small 7x. The operator S satisfies 

IlS(v)llx.~ -< K(r/a, r/2) + LIIvlla,,, (2.11) 

where K(qa, r/2) and L are positive constants. 

Proof. We prove (ii) first. 

Step 1. Consider the linear homogeneous initial value problem 

fl = dA22 * q, (2.12a) 

Y]l[--r, 0] = q2" (2.12b) 

Let Y denote the fundamental solution of(2.12a), i.e., 1 ? --- dA2z * Y on R+, Y(O) = I, 
and Y(t)= 0 for t E I - r ,  0) (see [HI or [K1]). The Laplace transform of Y 
is given by A-X(s), where A(s):= s l -  g2z(S) and • 2  is defined by A22(s):= 
~[ exp ( - sz )  dA22(z). It follows from (2.2) that the zeros of X (cf. (2.3)) and det(A) 
coincide (see Appendix 1 for a proof) and hence (by (2.3)) det(A) has no zeros in 
C_~. Since det(A) has at most finitely many zeros in every right half-plane there 
exists fl > ~ such that det(A) has no zeros in C_p. As a consequence A -x is holo- 
morphic in C_p and if we realize that A-l(s) = O(s -a) as ts[ --* ~ in C_p we obtain, 
using a result of Mossaheb [M2] (see also I-L]), Y s L~ (R+, R ~"-x) • (,-x)). 

Step 2. Denote the solution of (2.12) by r/*. It is not difficult to show that (IYP) is 
equivalent to 

rl(t) = rl*(t) + f l  Y(t - z)(dA2x * Ua)(Z ) dT 

+ f : Y ( t - z ) ( f ~ z ( u q 2 ) ) ( v ) d v ,  t>_O, (2.13, 

uelt-,.o3 = r/l, qlt-,.ol = ?/2" 

Using standard arguments based on Banach's contraction mapping theorem it 
X follows that, for u21to,~)= v ~ L , ( R + ,  R), (2.13) has a unique solution S(v)~ 

L ~ ( [ - r ,  oo), R "-x) if * 

r ,  II YII x.:(~/__a) < 1, (2.14) 
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where ~ and g denote the largest and smallest singular value of the matrix Q, 
respectively. 

Step 3. Assume that (2.14) is satisfied. It is clear that the solution operator 
S: L~(R+, R ) ~ L ~ ( [ - r ,  oo), R "-1) is causal. Moreover, it is straightforward to 
show that (2.11) holds true for 

l [ l l~l*l lL~+rllYII l . , (exp(~r)V(A21)+Y*)l lrhl l~.~] 
K(r/x, q2 )=  1 --IIYIIL~y* o 

and 

( ( , )) 1 IIYIIL~ exp(ctr) V (A21) + 7" 
L = 1 - tlYIIL~7* o ' 

where 7* := (e/__a)),~ and V~(A2t) denotes the total variation of A21 on [0, r]. 
In order to prove (i) we assume that (2.14) is satisfied. Define the operator  T by 

(Tf)(t) = (Sn, f ) ( t )  for all - r  < t < z. 

It is clear that T maps LLt (R§  R) into L L I ( [ - r ,  oo), R"-~). Realize that n~T = 
n, Sn, for all z > 0 and hence n ,T  = (r~,Sn,)rc~ = n, Tn, for all z > 0, i.e., T is causal. 
Moreover, it follows from the causality of S that 

zc~Tf=rc~Src~f=~,Sf forall  z > 0  a n d f o r a l l  f ~ L ~ ( R + , R )  

which means that T extends S to LLa(R+, R). It  is easy to verify that Tis  the unique 
causal extension of S to LLI(R+, R). Finally, we claim that for u21to,~ ) = v 
LL ~ (R+, R) the function Tv is the unique solution of (IVP). In order to see that Tv 
solves (IVP), pick r > 0 and notice that Src, v is a solution of(IVP) with u21to.~o) given 
by n,v. Since Tv = Sn, v on [ - r ,  ~] and v = n,v on [0, ~] and by the causality of the  
operations occuring on the right-hand side of(IVP) we conclude that Tv is a solution 
of (IVP) (with u21Eo,~ ) given by v) on the interval I - r ,  z). The number  ~ > 0 was 
arbitrary and hence Tv solves (IVP) on I - r ,  ~) .  For  the proof  of uniqueness let f 
be a solution of(IVP) with u2lto,| = v. We want to show that f = Tv. Since f and 
Tv are solutions of (2.13) an easy calculation yields 

(1 -TxHYI IL , (~ /g ) ) I I~ , (Tv - f ) I I t . ,<O foraU T > 0 .  

It now follows from (2.14) that n~(Tv - f )  = 0 for all z > 0 and hence Tv = f. �9 

? 

An immediate consequence of the previous lemma is 

Corollary 2.3. Consider the system (2.8) with t/[t_,.ol = q2, u2 i [ - r ,O]  = ~1 and 
u2[Eo.~ ~ = v and assume that 7x is sufficiently small (i.e., 7z satisfies (2.14)). Then the 
corresponding input-output operator H: v~-~ z is causal and maps LLI(R+,  R) into 
itself. Moreover, L~ (•+, •) is an invariant subspace of H and 

[IH(v)lll.~ - hdrlx, rl2) + h2 Ilvlll,~, (2.15) 

where hl 911, r/2) and h2 are positive constants. 
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3. A General Class of Adaptive Stabilizing Compensators 

We study the behavior  of the process H if the following control  law is applied: 

u'(t) = N(~(t ) )k( t )y ' ( t ) ,  (3.1a) 

~(t) = exp(oa)k(t) ly '( t) l ,  ~(0) = Go, (3.1b) 

i.e., 

u(t) = ~o[t, N(~( t ) )k( t )O(t ,  y(t))], (3.2a) 

~(t) = exp(o~t)k(t)[~b(t, y(t))l, ~(0) = Go, (3.2b) 

where k: R+ --* ~ is a strictly positive function (i.e., k(t) > ~ > 0 for all t e R+) and 
N is a so-called scaling invariant switching function. 

Definition 3.1. 

(i) A function N e LL '~  ff~) is called a switching funct ion  if for some a e 

sup - -  N(2) d2 --- +oo (3.3a) 
x > a  X - -  a 

and 

(ii) 

1 
inf l N(2) d2 = - o o .  (3.3b) 
x>a x - a Jo 

A switching function N is called a scaling invariant if for arbi t rary  positive 0~ 
and 02 the function 

IO01N(2) if N(2)  > 0 ,  
2~--~ if N(2) = 0, 

[.02N(2) if N(2) < 0 

is a switching function. 

Remark 3.2. 

(i) It is easily seen that if condit ions (3.3) are satisfied for some a e 1~, they are 
satisfied for all a 6 ~. 

(ii) An example  of a scaling invariant switching function is given by N(2) = 
cos(�89 exp(22). For  a proof, see [LO3-1. 

(iii) It is not  difficult to find switching functions which are not  scaling invariant ,  
e.g., N(2) = N0(2)2, with 

fl n2_<12l < ( n +  I) 2, neven ,  
N~ = ~ 1 n 2 < 121 < (n + 1) z, n odd. 

(iv) The  concept  of a switching function has its origin in the papers  by Nussbaum 
[hi]  and Willems and Byrnes [WB].  # 

The following result shows that  the control  law (3.1) stabilizes the process shown 
in Fig. 1. 
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Theorem 3.3. Let q~ and ~b be in S and assume that (2.2)-(2.5) are satisfied. Moreover, 
assume that the feedback system given by (2.1) and (3.2) has a unique absolutely 
continuous solution which can be continued uniquely to the right as long as it remains 
bounded. Then for a~l sufficiently small Yt (i.e., all Yl satisfying (2.14)) the following 
is true: 

(i) y, y'  ~ ~p~fx L~(R+, R) and x ~ ~ = 1  L~(R+, R"). 
(ii) lim,~oo ~(t) exists and is finite. 

In the case when a > 0 (i) implies that x, y, and y' are tending exponentially to zero 
as t tends to ~ .  I f  a = 0 we still have limt_, ~ x( t) = 0 and lim,,~ o y(t) = limt_, ~ y'(t) = 
O, provided that k is bounded. 

Remark 3.4. Suppose that k is continuous, N is continuously differentiable, and 
~o and r are continuous with continuous partial derivatives D2~p and D2r Then it 
is straightforward to show that the feedback system given by (2.1) and (3.2) has a 
unique absolutely continuous solution which can be continued uniquely to the right 
as long as it remains bounded (see [LO3]). 

For the proof of Theorem 3.3 we need the following two lemmas. 

Lemma 3.5. 
ous. Then 

Suppose that f :  J ~ •(J c R is a closed interal) is absolutely continu- 

d l f ( t ) l  = a.e. on sign(f( t)) f( t)  J. 

Lemma 3.6. 
inequalities 

and 

Let  q9 ~ S(A~,, 6~) and ~k E S(Ao, 6r such that tr(cp) = a(~k). Then the 
/ 

sign(x)~o(t, 2pC(t, x)) < F+(2)2plr x)l 

signix)q~(t, 2pC(t, x)) > F_(R)2pl@(t, x)l 

hold for all (t, p, 2, x) ~ R 2 x R 2, where 

[ A~, 2 > 0, 
�9 r ' + ( 2 )  : =  . ~ 0 ,  2 = 0 ,  

L 6~,, 2 < 0 ,  

and 

(3.4a) 

F_(2) := I"+(-2). (3.4b) 

The proofs of Lemmas 3.5 and 3.6 are given in Appendices 2 and 3, respectively. 

Proof of Theorem 3.3. Instead of the system given by (2.1) and (3.2) we consider 
the system given by (2.6) and (3.2). They are equivalent in the sense that (7, r is a 
solution of (2.6) and (3.2) if and only if (Q~, ~) is a solution of (2.1) and (3.2). 
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u f 
(2 .1 ' )  

Fig. 3 

Y y,  

I 
f 

Moreover, we can assume without loss of generality that a(cp) = a(~b) (this follows 
from the equivalence of the diagrams in Figs. 1 and 3). Consider the equation 

= crb(cp[ ., (N o ~)k~b(., y)] - By) (3.5) 

which follows from (2.7)-(2.10) and (3.2) (H is defined as in Corollary 2.3). We obtain, 
from (3.5), 

) ~ y  exp(~-) sign(y) = ~ exp(~')lYl - crb exp(~-) sign(y)Hy 

+ crbcp[ ", (N o ~)k~k(., y)] exp(a.) sign(y). (3.6) 

Furthermore, we have (by Corollary 2.3) 

~i exp(~z)l(Hf)(T)l dz < h I + h 2 fs exp(=r)lf(T)l dz 

for all t > 0 and for all f eLLI (R+,  R). (3.7) 

Now let 6~, A~, 6~, and A~ be positive numbers such that q~ e S(6~,, A~,) and 
e S(6~,, Ar Integrating (3.6) from 0 to t using (3.7) and (3.4) and applying Lemmas 

3.5 and 3.6 yields 

ly(t)l exp(Tt) - ly(0)l < ]crb}hl + (Icrblh2 + ~) J i  ly(r)l exp(~r) dr 

+ IcTbl f l  (F+ o N_)(~(r))N(~(r))k(r)l~(z, y(z))[ exp(ar) dr. 

Using (3.2b) and the change of variables formula for Lebesgue integrals it follows 
that 

P t  

ly(t)l exp(~t) - ly(0)l < Icrblhl + (Icrblh2 + ~) jo  ly(r)l exp(~) dr 

f l(O + Icrbl (F_+ o N)(;t)N(2) d,L (3.8) 

By the properties of k and (3.2b) 

fl ly(r)[ exp(~) dr _< - exp(~z)k(r)ly(~)l dr 

< ~ exp(~r)k(r)l~O(~, y(T~)I dr 

1 
-- --~(~(0 - Go). (3.9) 
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Setting K 1 := Dcrblhl + ly(0)l and K 2 := (1/e6g,)(Icrblh2 + ~) and using (3.8) and 
(3.9) we obtain 

( 'crbl ~"z' (F_+ o N) (2)N(2) d,~)" ly(t)l exp(ctt) <~K 1 + (~(t) - Go) K2 +_ ~(-0~-~o j~o 

(3.10) 
Equations (3.10) and (3.9) hold on each interval of the form [0, a) where the solution 
(~, ~) = (y, t/, ~) of the feedback system given by (2.6) and (3.2) exists. Since the 
right-hand side of(3.10) has to be nonnegative, we can conclude, using the properties 
of the function N, that ~(t) and hence (by (3.10)) y(t) remain bounded. Moreover, it 
follows from the decomposition (2.7)-(2.10) of the system (2.6) and Lemma 2.2 that 
r/(t) remains bounded as well. As a consequence the solution (~, 3) exists on [0, ~ )  
and we obtain that lim,.~o ~(t) exists and is finite, which is (ii). Furthermore, by 
(3.10) and (3.9), y e L~(R§ R) r~ L~(R§ R) and since y'  = ~b(-, y(-)), where ~b ~ S, it 

1 L~(R+, R). The decomposition (2.7)-(2.10) of the sys- follows that y' e L, (R§ R) c~ 
tem (2.6) and Lemma 2.2 show that r/~ L~(R+, I~ "-~) and hence (by (2.8a) and (2.9)) 

~ L~(R+, ~,-a). Therefore r/~ L~(I~+, ~"-~) which completes the proof of (i). 
Finally, it is easy to show that in the case when ct = 0 we still have lim~,~ y(t) = 
lim,~| y'( t)= 0 and lim, ooo x( t )= 0, provided that k is bounded. The proof is 
omitted for the sake of brevity. �9 

It is natural to regard the gain k as the image of causal map Z operating on 
and ~,(., y(.)). Let us consider the following gain-adaptation rule: 

k = Z(~(-), ~k(., y(-))), (3.11) 

where Z: D z -+ LLI(ff~+, •) is a causal map whose domain D z contains the set 
C(R+, R) x Uq,~s {~b(-, f ( . ) ) l f~  LL~(R+, R)}. Moreover, we assume that Z satisfies: 

(A1) Z[Dz n (L~~ II~) x (LI(R+, ~) n L~176 R)))] c L~176 R). 
(A2) There exists e > 0 such that inft_>o {(Z(f))(t)} > e for all f e  D z. 
(A3) Z ( f )  is nondecreasing for all f e D z. 

Consider the following example 

Z: C(R+) x LL~176 R) ~ LL~(~+, R), 
(3.12) ?., 

"(f~'f2)~k~ + Jo Ifz(v)rX(If~(x)l, If2(T)l) dr, 

where k o > 0 and X is a polynomial in two variables with positive coefficients. It is 
trivial that (A1)-(A3) are satisfied. The gain adaptation induced by (3.12) can be 
written in the form of an ordinary differential equation 

/~(t) = I~'(t, y(t))lX(l~(t)l, I~(t, y(t))l), 
(3.13) 

k(0) = ko. 
The following theorem is a simple consequence of Theorem 3.3. 

Theorem 3.7. Let ~o and ~b be in S and assume that (2.2)-(2.5) and (A1)-(A3) are 
satisfied. Moreover, assume that the feedback system 9iven by (2.1), (3.2), and (3.11) 
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has a unique absolutely continuous solution (x, ~) which can be continued uniquely to 
the right as long as it remains bounded. Then for  all sufficiently small 71 (i.e., all 71 
satisfying (2.14)) the following hold: 

(i) y, y' ~ (-]pC~ x L~(R+, R) and x ~ (~pe~ 1 L~(R+, •"). 
(ii) lim,.~o ~(t) exists and is finite. 

(iii) lim,_~ k(t) exists and is finite. 

In the case when ct > 0 (i) implies that x, y, and y' are 9oing exponentially to zero as 
t ~ oo. I f  ~ = 0 we still have l im, .~ x(t) = 0 and limf_.~o y(t) = l i m , ~  y'(t) = O. 

Remark 3.8. In the "first-order" case (i.e., n = 1) the above theorem holds f o r  all 
)'1 > 0, because P1 can be written trivially as P1 = b(b-tPx) (i.e., Pt can be absorbed 
into P2)- Moreover, it should be mentioned that every "first-order" system which 
fulfills (2.2) satisfies (2.3) for all ct > 0. 

Remark 3.9. Assume that a given system satisfies (2.2) and (2.3) for ct = 0. Now it 
follows from Step 1 of the proof of Lemma 2.2 that (2.3) is satisfied for ct > 0, 
provided that ct is sufficiently small. As a consequence the conclusions of Theorem 
3.7 are true for sufficiently small positive ct. 

4. Conclusions 

A theory of adaptive exponential stabilization for certain nonlinear retarded pro- 
cesses has been developed. The resulting adaptive control laws are of high-gain type. 
In particular, the processes under consideration include a fairly large class of linear 
retarded systems which are subject to sector-bounded actuator and sensor non- 
linearities. It can be shown that the results of Sections 2 and 3 also hold true for 
Volterra integrodifferential systems and for the classes of distributed parameter 
systems studied by Byrnes IB] and Kobayashi [K2]. This paper considers single- 
input single-output processes only. However, work is under way to extend the 
theory to the multivariable case. It should be mentioned that in contrast to most 
of the references neither the control law of Section 3 nor the algorithm proposed 
by Polderman [PI-], [P2] is of the "standard form" 

= f(z ,  y'), 

u' = g(z, y') 

(where u' and y' denote the input and the output of the process, see Fig. 1) 
investigated by Byrnes et al. [BHM]. This might lead to implementation problems. 
However, we do not claim that the control law of Section 3 is a practical one, and 
we emphasize that the controller proposed here is a more existential contribution. 
It is an interesting open problem to determine if there exist adaptive control laws 
of the above form achieving exponential stability under conditions which are similar 
to those in Section 2. 

Acknowledgment. The author would like to thank D. H. Owens for several 
discussions. 
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Appendix 1. Proof that the Zeros o f z  and det(A) Coincide 

It  follows f rom the propert ies  of  Q that  

X(s) = det - .421(s)  s l  - ~22(s) 

I 0 

Define 

and 

We obtain,  f rom (A.1), 

! o -(sl - A~,(s))] 
T, (s) := I ,4"2, (s) 

0 I 

o 

T~(s) := I . 
- ( c r b ) - l , 4 1 2 ( s  ) 

= - (c rb)  det (sI - ,422 (s)) 

= - ( c r b )  det(A(s)). 

- A~ 2 (s) 

sl - A~2(s) 
0 

- c ~ b ~  

(A.1) 

Appendix 2. Proof of Lemma 3.5 

Let M c J denote  the set of  measure  zero where f does not  exist. Moreover ,  define 

M* := {t a J \ M [ f ( t )  = O , f ( t )  :/: 0}, 

it is a mat te r  of  routine to show 

d 
dt  If(t)[ = s i g n ( f ( t ) ) f ( t )  for all t ~ J \ ( M  w M * ) .  

It remains to prove  that  M* is of  measure  zero. But this follows easily f rom the fact 
that  I fl  is not  differentiable in any point  of  M* and that  If l  as an absolutely 
cont inuous functioia is differentiable a lmost  everywhere.  �9 

Appendix 3. Proof of Lemma 3.6 

Without  loss of  generali ty we may  assume that  a(~p) = a0P) = + 1. Indeed, if the 
claim is true in this case, then it is easy to show tha t  the claim is true in the 
case when a(tp) = a(~,) = - 1 .  Moreover ,  we restrict ourselves to the p roof  of the 
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inequality 

sign(x)~p(t, kp~b(t, x)) < F§ x)l ((t, 19, k, x) ~ R 2 x R2). (A.2) 

The proof of the Second inequality in Lemma 3.6 is very similar and is therefore 
omitted. In order to see why (A.2) holds realize that 

and 

q~(t, itplk(t, x)) <_ A~,itp~(t, x) 

tp(t, it19~,(t, x)) >_ A~itp~k(t, x) 

qg(t, 2p~b(t, x)) <_ b~kp~b(t, x) 

((t, 19, it, x) e R 2 x R+ x R+), (A.3) 

((t, 19, it, x) e •2 x R+ x (--o0, 0]), (A.4) 

((t, 19, it, x) ~ R~ x ( - o o ,  0] x R.),  (A.5) 

((t, p, it, x) ~ R~ x ( -oo ,  o] ~ ( - ~ ,  o]). q~(t, 2p~(t,  x)) >_ 6,2p•(t, x) (A.6) 

We obtain,  from (A.3) and  (A.4), 

sign(x)q~(t, 2pd/(t, x)) < A,kpl~b(t, x)[ (A.7) 

while (A.5) and (A.6) imply 

sign(x)q~(t, Apex(t, x)) < tS, kpl~,(t, x)l ((t, p, it, x) e R 2 x ( -oo ,  0] x R). (A.8) 

Inequality (A.2) now follows from (A.7), (A.8), and (3.4a). [] 

((t, p, k, x) e ~2+ x [0, oo) x R), 
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