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Finitely generated ideals in certain algebras of transfer functions
for infinite-dimensional systems*

HARTMUT LOGEMANN{

In this note we show that in certain algebras of stable transfer functions for infinite-
dimensional systems there exist finitely generated ideals that are not principal. As a
consequence there exist unstable transfer functions that have no coprime
factorizations

1. Introduction

The recently developed fractional representation theory of feedback-system design
(see e.g. Desoer et al. 1980, Vidyasagar et al. 1982) is based on the notion of coprime
lactorization of an unstable plant. Coprime factorizations have played a major role in
designing feedback controllers for unstable plants since the work of Youla er al. (1976).

For time-invariant finite-dimensional systems the existence of such factorizations
1s casily shown. In the (time-invariant) infinite-dimensional case there are plants that
do not admit a coprime factorization. This is probably a well-known fact to many
rescarchers working in the field of infinite-dimensional systems theory. The purpose of
the present note is to provide a unified proof of this fact, which includes all commonly
used algebras of transfer functions for infinite-dimensional systems. Our main result
shows that in every algebra under consideration there exists a finitely generated ideal
thatis not principal. As a consequence (cf. Vidyasagar et al. 1982, Corollary 2.2) there
are unstable transfer functions (i.e. elements of the quotient field of the particular
algebra) that do not have coprime factorizations.

2. Notation and preliminaries
For 2€ R define C, := {se C|Re (s) > a}. The C-algebra of all holomorphic and
bounded functions on C, is denoted by H”(x). Let A(x) denote the C-algebra of all

functions f that are holomorphic on C,, continuous on C, and for which lim f(s)
[s] = x
se(
exists. Furthermore let /(%) denote the well known C-algebra of transfer functions
studied by Callier and Desoer (1978, 1980 a, b).

The algebras H™ (x), A(x) and /() have been used by many authors working in
the field of frequency-domain methods for the control of distributed-parameter
systems. For the algebra H™(x) see Zames (1981), Harris and Valenca (1983),
Logemann (1984), Pandolfi and Olbrot (1986), Feintuch and Tannenbaum (1986), for
the algebra A(x) see Logemann (1984) and Kamen er al. (1985 a, b), and for the algebra
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7(x) see Callier and Desoer (1980 b), Chen and Desoer (1982), Postlethwaite and Foo
(1985) and Logemann (1986).

Since a ‘real-world system’ has a transfer function with real coefficients (i.e. any
power-series expansion about a real point has real coefficients) it is useful to consider
the R-algebras H;"(x), A,(x) and o (x), where HZ(x):={feH” (@)1f(s) =1(5)
VseC,} an‘d A, (%), /(x) are defined analogously. Note that the R-algebras H." (%),
A, (x) and o/ () are subrings, but not subalgebras, of the C-algebras H™(«), A(2) and
/() respectively. Moreover, define H (2):= (feH*(a)|d0o < a:fe H" (o)} )

It is now obvious what is meant by A _ (%), o _(a), H*_ (2), A, - (2) and ./, ().
Finally, define the convolution algebras

L,(@):= {f:R, >C|f(t)exp (—at) is integrable
L, (@):={f:R, > R|f(t)exp (—at) is integrable|

Let L,(x) (1‘11_,(1)) denote the algebra whose elements are the Laplace transforms of

the functions in L, (x) (L, ().
The following inclusions hold:

Ly(@)c A(x) = H* ()
Li(@)c d@)c H* (@)
) Li(o)c A_(2) = HZ ()

U Lie)= o _(0)= H®(a)

The inclusions L, (x) = A(x) and | ) L, () = A(x) follow from Doetsch (1976, p. 159).

g<a
The other inclusions are trivial.
In order to prove our main results we need the following.

Lemma (Mossaheb 1980)
Let g be a holomorphic function on C, and suppose that sg(s) is bounded as
|s| = o0, s€ C,. Then there exists ¥ o > « a function fe L, (o) such that

g(s)= J.rf(t)exp(—st)dtVseC,
0

(Of course, if g has real coefficients then fe L, ((0).)

3. Main result

Theorem
Let S be a subring of H(«). In S there exists a finitely generated ideal that is not

principal if there is a real number o < « such that §= L, (o).

Proof
It is sufficient to prove the assertion for = 0, because the map
H*(a)— H*(0)
h—h(-+a)
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and its restriction to § are isomorphisms of rings. Define
3
L=(l—a)+in,
> nxl

B.:=(1 nl-x\n*-:).'

Then the Blaschke products in the half-plane C,,

N=—ad|s—a

Bllx}:z-\l 1- 7-: S+a,
RO | - ™
B‘{.\).::.Ll l,_is;;&.
By(s):= It —Ails—#,
R -[\ll’“ﬁ-:.\"é‘f‘:
N e il ..
Bitk= U 7o svs,

are well defined (cf. Hoffman 1962, p. 132). Choose ye(o — 1, e)and d e (Jyl. o — 1)) and
define

1
L 3R - a1 9
Fis):= — (BB +9), i=1.2

Obviously, F e H*(y) and sF{s) is bounded as |s]— . seC_. i=1, 2. Moreover,
F;€S§, because F,eL, (1) Vt>7y (by the Lemma in §2) and therefore in particular
FieL, (o) i=1,2.

We claim that the ideal F,S + F,S is not principal. Assume the contrary, i.c. that
there exist functions d,f,,f3,¢,. g, €S such that

d=f,F, + f,F, ()
F,=dg,, F,=dg, )

The zeros of g; are exactly the zeros of Fy, i = 1, 2 (because F, and F, have no common
zeros). Therefore g, (e,) = 0 and g,(n,) =0, where ¢,:= x, — d and 1, : = Ba—d,n> 1.
Note that Re (g,), Re () =1—a—=30>0Vn> 1. It now follows from (1) and (2) that

figim)=1 Vn21 3)
On the other hand, we have
£181(8,)=0 Vn31 4)

Since lim (y, —¢,) =0, the equations (3) and (4) contradict the fact that a function in

H™(0) (ahd hence f, g,) is uniformly continuous on every vertical strip a € Re (s) < b,
0 <a < b (see Corduncanu 1968, p. 72). )

An immediate consequence of the Theorem is the following.

Corollary
In each of the algebras H™ (), H* (a), H* (), HZ_ (), A(x), A, (), A_(a), A, (),
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(), A (), A _(a), o/, _(2), L,(x) and L, ,(2) there exists a finitely generated ideal
that 1s not principal.

Remarks

(i) The idea behind the proof is due to Whittaker (1935). It is also used in the
paper of Vidyasagar et al. (1982).

(i) The fact that in the algebra .<7(0) there exists a finitely generated ideal that 1S
not principal was noted by Vidyasagar et al. (1982). However, they did not
provide a proof.

(iii) As far as the finitely generated ideals are concerned, the algebra #(€) of all
holomorphic functions in the region Q « C is quite different from the algebras
in the above Corollary. Indeed it is well known that every finitely generated
ideal in #(Q) 1s principal (cl. e.g. Narasimhan 1985, p. 136).

(iv) It is easy to show that the above Corollary is also true for the algebra of -
exponential stable transfer functions, which has recently been introduced by
Callier and Winkin (1984).

Note. After sending the final proofs of this paper to the publisher, it was pointed out to
the author that it has been proved by M. von Renteln in 1977 (Acta Sci. Math., 39, 139)
that there exist finitely generated ideals in H*(0) and A(0) that are not principal. The
author wishes to acknowledge priority.
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