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Abstract: This paper investigates the stability of linear autonomous multivariable neutral systems from an input-output viewpoint. 
Several frequency-domain and input-output characterizations for exponential stability of neutral systems are given. We provide two 
examples which illustrate that the behaviour of neutral systems may be quite different from that of retarded systems. Moreover we 
give necessary and sufficient conditions for the transfer functions of a neutral system to belong to certain algebras of meromorphic 
functions introduced in this paper. 
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Introduction 

Most of the work on neutral systems is based on the state space approach to linear systems (cf. e.g. 
Salamon [22]). This paper  studies neutral systems using frequency-domain and inpu t -ou tpu t  ideas. In 
particular we shall study the relationship between exponential (or internal) stability, inpu t -ou tpu t  (or 
external) stability and analyticity of the transfer matrix in the closed right-half plane. 

It is well known that for exponential stability of a neutral system it is not sufficient to have all the roots 
of the characteristic equation in the open left half plane. We provide two examples which illustrate how 
this fact is reflected in the behaviour of the system in the frequency domain, We show that there exist 
neutral systems being internally and externally unstable, but having transfer functions which are holomor- 
phic in the closed right half plane. Moreover we demonstrate that it is possible for an exponentially 
unstable canonical neutral system to have a transfer function which is bounded and holomorphic in the 
closed righ half plane. Neither phenomenon occurs in the theory of retarded sytems. Apar t  f rom these 
examples we provide a result on the transfer matrix of a general neutral system. More precisely: we give a 
necessary and sufficient condition for the entries of the transfer matrix of a neutral system to belong to 
one of the two algebras of transfer functions introduced in Section 1 of this paper. 

Finally we prove several characterizations of exponential stability in input=output  and frequency-do- 
main terms. The latter result is based on Chapter 3 of Harris and Valenca [10]. 

This paper is organized as follows. Section 1 is devoted to notation and preliminaries. In Section 2 we 
introduce the class of neutral systems we shall deal with. In  Section 3 we study the transfer function 'of a 
neutral system. Section 4 contains several necessary and sufficient inpu t -ou tpu t  conditions for exponential 
stability. 
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1. Notation and preliminaries 

Let BV([a, b], R TM) denote the space of functions of bounded variation on [a, b] with values in R kxt. 
For 1 < p  < oo set LP(R/) := LP([O, oo), R l) and for a ~ R define L~(R l) := { f :  [0, oo) ---, R/I f ( . ) e  °" 
L; (" t t )  }. We equip Lff(R>)with the norm I!fllglo=llf(.)e°'ll ". It is trivial that L ~ ( , t ) =  LP(" l) and that 
Lo,(R ) c  Lo.(R ) if a 1 _ a z. The space X ( R ) : =  Uo> 0 L~(R t) can be made into a sequential conver- 
gence space (cf. [10], 3.6.1-3.6.3 and Dudley [8]) by the following rule of convergence: a sequence 
fi ~ XP(Rt) converges to f ~  XP(R t) as i ~ oo if there exists a 0 > 0 such that f ~  Lff(R/), f,. ~ Lff(R I) 
Vi ~ N and l i m ~  Ilf-fillp.oo=O. Furthermore let Aa(Lff(Rk), LP(RI)) denote the space of linear 
bounded operators mapping LP(R k) into L~(R t) and let .o~P(XP(Rk)', XP(Rt)) represent the space of 
linear sequantially continuous operators defined on XP(R k) with values in XP(R t) (a linear operator 
T: XP(R k) ~ X~(~/) is called sequentially continuous iff Tf~ converges to zero whenever f/ converges to 
zero). For cr ~ ~ set C O := (s ~ C IRe(s) > t~}. H ~  denotes the algebra of all C-valued functions which are 
holomorphic and bounded on Co. Moreover we define the algebra H~  := tOo < 0 H~.  

We shall need the following lemma on bounded holomorphic functions which can be found in 
Corduneanu [4], pp. 72. 

1.1. Lemma. Let a < b < c < d be given and suppose that f is a bounded holomorphic function on a < Re(s) < d. 
Then f is uniformly continuous on the closed strip b <_ Re(s) _< c. 

In order to deal with unstable systems it is useful to introduce the algebra ~q" of meromorphic functions 
which is defined by 

~ : = { d  I n ' d ~ H ~ - A 3 R > O :  S~coinf [ d ( s ) l > 0  }. 

Isl~R 

1.2. Remark. (i) 9" contains the algebra ~(0)  of transfer functions introduced by Callier and Desoer [2,3]. 
(ii) Suppose that f ~ ' .  It follows from Lemma 1.1 that there exists o < 0 such that f has at most 

finitely many poles in C o. Consequently f can be represented as f = h + r, where h ~ H ~  and r is a strictly 
proper rational function. 

(iii) A function f E ~" is a unit in ~a- iff there exists R > 0 such that inf s ~ Co: Is12 R I f ( s ) ]  > 0. Callier 
and Desoer proved an analogous result for the algebra ~(0)  in [2,3]. Their proof extends to the more 
general case (cf. Logemann [17]). 

2. System description 

Consider the neutral system 

I t- , .o]  = ], n " ) ,  
r 

y ( t )  = f0 dC( ' r )x ( t - ' r ) ,  

r 

dA(~ ' ) x ( t - ' r )  + fo d B ( T ) u ( t - ' r ) ,  (2.1a) 

(2.1b) 

(2.1c) 

where x(t) ~ R", u ( t )~  R q and y(t) ~ g~m. 
The functions A, B, C and D are elements in the spaces BV([0, r], R"x " ) ,  BV([0, r], R"xq), BV([0, r], 

R " × ' )  and BV([0, r], R"x"),  respectively. Moreover we suppose that 

D = S I - E ,  (2.1d) 
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where 0 is the unit step and E ~ BV([0, r], R "x ' )  is assumed to be continuous at 0 (el. Hale and Meyer 
[91, Henry [12] and Kappel [131). 

2.1 Remark. (i) In the following we extend any function F ~  BV([a, b], R kxt) to the whole real axis by 
setting F(t)  = F(a)  Vt < a and F(t)  = F(b) Vt > b. Any measurable function f :  ~2 ~ R k, I~ c R, will be 
extended to the whole real axis by defining f ( t )  = 0 Vt ~ ~2. 

(ii) At the first glance an expression of the form f~ dF(~)h ( t  - "r), where F =  (fq)  ~ BV([0, r], Rkxt), 
is only well defined for t > 0 if h(t)  ~ R t is continuous for t > - r .  However, the following equation holds: 

f o ~ d F ( , r ) h ( t - r )  = 

/ 

E (df/j * hj ) ( t )  

I 

E ( d ~ j * h j ) ( t )  
j = l  

=: d F *  h, (2.2) 

where df,.j denotes the measure on R induced by f,.j and d fq  * hj denotes the convolution of the measure 
df~j and the function hi. The expression d fq  * h i makes sense if hj is a locally integrable function on R. 
Moreover the mapping h ~ d F *  h is a linear bounded operator from Lff~(R t) into Lff2(R k) for all 
o 1 > o 2 >__ 0, 1 < p < oo (cf. Dieudorm6 [6], pp. 282 and 285). 

(iii) It follows via (ii) from [9] that for every XoE C([ - r ,  0], R")  and every u~L]~( [0 ,  m), R q) 
(1 < p < oo) there is a unique solution of (2.1a) and (2.1b) which is continuous on [ - r ,  co). 

2.2. Definition. (i) The system (2.1) is called exponentially stable if the strongly continuous solution 
semigroup on C([ - r ,  0], R") of the homogenous part of (2.1a) is exponentially stable. 

(ii) The system (2.1) is called LP-stable (XP-stable) if under zero initial conditions (i.e. x0 -- 0 in (2.1b)) 
the i/o-operator u ~ y  associated with (2.1) is an element of . ~ ( L P ( R q ) ,  L p ( R m ) )  (.~(XP(~q), 
XP(R"))), 1 < p  _< oo. 

In order to introduce the transfer matrix of the system (2.1) we^def ine , t ( s )"~  f~e-S'dA(~ ") and it is 
obvious what is meant by B(s), C(s) and /3(s). The entries of A, B, C and D are entire functions. 
Moreover they are bounded on every right half plane. We obtain the following expression for the transfer 
matrix G of the system (2.1) 

C = C a - 'B (2.3) 

where A is given by 

A ( x )  , -~sb(s)  -- ,~(s) .  (2.4) 

The system (2.1) is called canonical in fd c C if 

r k ( a ( s ) ,  B(s ) )  = n V s ~ ~ (2.5a) 

and 

rK[d(s ) =n V s ~ .  

We shall need the following assumption on the system (2.1) 

(2.5b) 

(NS) The function D contains no singular part (see e.g. Natanson [20]). 
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2.3. Remark. (i) Condition (2.5) is a generalization of the so-called Hautus conditions in the finite-dimen- 
sional case (cf. Hautus [11]) and has been used by many researchers working on the control of functional 
differential equations (cf. e.g. [22] or Pandolfi [21]). 

(ii) If (NS) is satisfied then the exponential growth of the strongly continuous semigroup on C([ - r, 0], 
R")  corresponding to the homogenous part of (2.1a) is determined by the spectrum of its generator (cf. 
[12]). In particular it follows that the system (2.1) is exponentially stable iff there exists a < 0 such that 
det(A(s)) ~ 0 Ys ~ Co. 

(iii) Suppose that (NS) is satisfied. Then it is clear that E (cf. eq. (2.1d)) contains no singular part and 
it follows that we can express D ( s )  in the following way: 

o o  y 

D( s )  = I -  E E1 e - ~ ' S - f o E o ~ ( ~ )  e-S'd~',  (2.6) 
j=0 

where 0 < i) _< r Vj >_ 0 and 
o o  

r 

IIEjll + [ IIEoo(~)[I d-r< oo. 
j=0 ~ 0  

We define 
o o  

A0(s)  ,= I -  E e-' ,  s (2.7) 
j=0 

3. On the transfer matrix of the neutral system (2.1) 

Consider the neutral system 

~c( t ) -- ]c( t -- r )  = - - a x (  t ) + b x (  t - r )  + u (  t ) ,  (3.1a) 

y ( t )  = x ( t ) ,  (3.1b) 

where X(t), u( t)  and  y (  t ) ~ •, r > 0 and  a, b ~ R.  The transfer function g of (3.1) is given by 

1 
g ( s )  = s(1 - e - rs )  + a - be  - ' s  " (3.2) 

The following result holds true: 

3.1. Proposition. For all values o f  the parameters  a and  b satisfying a > I b I the transfer funct ion g is 
holomorphic in C o. However  the sys tem (3.1) is not exponential ly  stable, nor is it L P-stable or XP-stable for  
p = l ,  2, oo. 

For the proof the following general lemma is required. 

3.2. Lemma. Suppose that (NS) holds and  let ct < fl be given. Then the fol lowing s tatements  are equivalent: 
(i) There exists some s o ~ C such that ct < Re(s0) < fl and  det(A0(xo) ) = 0. 

(ii) There exists some e > 0 and  a sequence s k ~ C such that IIm(Sk) I ~ oO as k --> oo, t~ + e < Re(Sk) < 
fl -- c, and det(A(Sk) ) = 0 Vk ~ N. 

Proof. Cf. [22], p. 160. 

Proof of Proposition 3.1. Define 8o(X ) := 1 - e - ' s  and 8(s) := 1 / g ( s ) .  It is obvious that g is holomorphic 
in C O since 

I s + a l > l ( s + b )  e-'Sl VseC- 0' i.e. 8 ( s )~0  Vs~C-o. 
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If we realize that 80(0 ) = 0, then by Lemma 3.2 there exists a sequence sk ~ C such that R e ( s , ) <  0, 
R e ( s k ) ~ 0  and IIm(sk)l--* oO as k ~  m and 8 ( s k ) = 0  Vk~IN.  It follows from Remark 2.3 (i_i) that 
system (3.1) is not exponentially stable. 

In order to prove that the system (3.1) is not LP-stable or XP-stable for p = 1, 2, oo, it is sufficient of 
show that g ~ Hff (this follows from [10], Ch. 3). Define 

e o k : = ~ v 2 k 2 + r ( a - b ) - v k  and oak:=l(2"~k+q~k), k~IN. 

We claim 

1 
lim 8(joak)= 2 i m  g(joak-------3- = 0 .  (3.3) 

k - ' * ~  

Note that 

8(joak) = a - b cos(roak) + oak Sin(roak) +J(oak( 1 -- Cos(roak)) + b sin(roak) ) (3.4) 

] = 
:~2(t) - . ~ 2 ( t - r )  

y( t )=(O 1)[ x l ( t ) ]  
Lx2(t) ' 

[11  39a, 
(3.9b) 

and 

We have to show 

lim (a - b COS(r~ok) -- oa k sin(roak)) = 0 (3.6) 

and 

lim (oak(1 -- COS(roak)) + b sin(,'oak)) = 0. (3.7) 
k.--~ oo 

We shall prove that (3.6) holds true. The verification of (3.7) is left to the reader. We have 

a - b  COS(t'oak)--oa k s in(roak)=a-b-1(21rk  +epk)epk--b ~ ( - -1) /  ,=l (2i)! (q~k)2i 

-1)' (3.8) - 1 ( 2 1 r k + ~ k )  ~ ( ~ i + l ) !  
i = 1  

It follows from the definition of the ~k that a -  b -  r-l(2~rk + ~ ) ~ k  = 0 Vk E IN. Moreover we obtain 
from (3.5) that the two remaining terms on the right-hand side of (3.8) tend to zero as k ---) oo. 

3.3. Remark. Proposition 3.1 shows that analyticity of the transfer function of a neutral system in C 0 does 
not imply internal or external stability. In particular, Proposition 3.1 provides an example for a transfer 
function that is holomorphic in C 0 but whose associated i /o-operator  is not L%stable. See Desoer [5] and 
Baker and Vakharia [1] for another example. 

Let us consider the following example of a neutral system. It will provide another interesting 
phenomenon arising in the theory of neutral systems which does not occur in the theory of retarded 
systems. 
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where xl( t ), x2(t ), u( t) and y( t) ~ R, r > 0 and a ~ R. The transfer function of the system (3.9) is given 
by 

h ( s ) = .  1 1 (3.10) 
s + l  s(1 - e - ~ )  + a " 

Moreover it should by noticed that the system (3.9) is canonical in C. Nevertheless we have the following 
result: 

3.4. Proposition. The transfer function h given by (3.10) is in H~ ° (i.e. the system (3.9) is L2-stable (cf. [10], 
p. 83)) for all a > O. However, the system (3.9) is not exponentially stable. 

Proof. It can be shown in exactly the same way as in the proof of Proposition 3.1 that the system is not 
exponentially stable. It remains to show that h ~ H~ ° Va > 0. It is easy to verify that h is holomorphic in 
C 0. The boundedness of h is a consequence of the following lemma, which is proved in Logemann [18]. 

3.5. Lemma. Let c > 0 be given, l f a  > 0 then inf~Eco: Isl ~, Is(s(1 - e -~ )  + a) [ > 0. 

The following result holds for the transfer matrix G of the general neutral system (2.1). 

3.6. Theorem. (i) The entries of the transfer matrix given by (2.3) are of the form n / d ,  where n, d ~ H ~  and 
o ~ R is arbitrary. 

(ii) Suppose that (NS) holds. I f  inf,~c0 Idet(A0(s)) I > 0 then G Eo~q -rn×q. 
(iii) Assume that (NS) is satisfied and that A,  B and C contain no singular part. I f  inf~ e Co I det( A 0(s)) I 

> 0 then G ~ ~(0)  mxq. 

Proof. (i) Notice that 

( _1 ad(A(s))  _1 1)" det(A(s))  /~(s) 
G(s)  = C(s )  ( s -  o + 1)" ( s -  o + 

and that C ~ H ~  "×",  /~ ~ H ~  "×q, (s - o + 1) -"  ad(A(s)) ~ H ~  "×" and (s - o + 1) -n det(A(s)) ~ H~.  
(i.i) It is possible to write G in the following form: 

(5 c ( s ) = d ( s ) ±  ad(F(s)) det(F(s)) b-l(s)N(s) (3.11) 
S,'l ~ 

where F(s)  '.= sI - / ) - l ( s ) A ( s ) .  It is sufficient to show that there exists R > 0 such that 

inf Idet(b(s))l >0. (3.12) 
S E C  o 
Isl~R 

Indeed it follows then via Remark 1.2(iii) that C(s)s  -~ ad(F(s)) ~ o ~- 'xn  
we have that 

and /~-lj~ ~ - , × q .  Moreover 

de t (F(s ) )  = s n + , / l (s )s  ~-1 + y2(s)s  " - z  + . . .  + y~(s) ,  

where the "/i belong to the subalgebra of 3-  generated by the entries of /~-1~. Hence we obtain from 
Remark 1.2(iii) that (s - "  det(F(s))) -1 ~ 3  "'×~. 

It remains to show that (3.12) is true. Because (NS) is satisfied we can write (cf. (2.6) and (2.7)) 

D ( s )  = A0(s ) -- f0~Eoo(~r) e-~" d~ -. (3.13) 

Since infsEco [det(A0(s)) I > 0 (by assumption) and liml,  I -.oo.s~co f0 ~ Eoo(~) e -S 'd l  " = 0 (cf. Doetsch [7], 
p. 159) it follows from (3.13) that there exists R > 0 such that inf,~c0:l,i >R Idet(D(s)) [ > 0. 

(iii) The proof of part (iii) is omitted for brevity but follows in a similar way as that of part (ii). 
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3.7. Remark. (i) Theorem 3.6(ii) shows in particular that the entries of the transfer matrix of a retarded 
system are functions in 3". 

(ii) I t follows in Theorem 3.6(ii) that every neutral system satis fying (NS) and inf, e c o I det(A 0 (s)) I > 0 
can be stabilized by a finite-dimensional compensator. This can be proved in the same way as in 
Logemann [15] and [17] where the stronger condition inf, eCo Idet(D(s))l > 0  was supposed to be 
satisfied. 

Under certain conditions the inverse of Theorem 3.6(ii) and (iii) is valid. More precisely, we have: 

3.8. Proposition. Suppose that the condition (NS) is satisfied and that the system (2.1) is canonical in C o for  

some a < O. I f  G ~ 3  ' ' '×q then infseCo Idet(A0(s)) I > 0. 

Proof. Since the system is canonical in Co it follows from [2111 Sec. 5 and 6, or Logemann [16] that the 
zeros of det(A) in Co and the poles of G in Co coincide. Hence, by Remark 1.2(ii), det(A) has at most 
finitely many zeros in C~ for some a < a < 0 and we obtain from Lemma 3.2 that 

det(Ao(s))  :# 0 V s ~ C~. (3.14) 

Moreover it can be seen from (2.7) that 

inf [det(A0(s)) [ > 0 V s ~ C #  (3.15) 
s~C g 

for large enough 13 > 0. 
Now realize that det(A0) is an almost periodic function (cf. [4]) and therefore by (3.14) and a result of 

Levin [14], p. 268, 

inf Idet(ao(S))  I > 0. (3.16) 
0 < R e ( s ) < f l  

The claim follows from (3.15) and (3.16). 

4. Characterization of exponential stability in i/o-terms 

The following theorem provides several necessary and sufficient i/o-conditions for exponential stability of 
the neutral system (2.1) 

4.1. Theorem. Suppose that (NS) is statisfied. Then the following statements are equivalent: 
(i) The system (2.1) is exponentially stable. 

(ii) The transfer matr ix  G is in H~_ ' ' x q  and (2.1) is canonical in C o for  some a < O. 
Off) The system (2.1) is XLs tab le  and it is canonical in C°  for  some a < O. 
(iv) The system (2.1) is X2-stable and it is canonical in C o for  some a < O. 
(v) The system (2.1) is X°°-stable and it is canonical in C o for  some a < O. 

(vi) The system (2.1) is XP-stable V 1 < p < oo and it is canonical in Ca fo r  some a < O. 

Proof. (i) ~ (ii): By Remark 2.3(ii) there exists a < 0 such that det(B(s)) ~ 0 Vs ~ C o. It follows in 
particular that the system is canonical in C°. Moreover we obtain from Lemma 3.2 that det(A0(s))~ 0 
V s ~ C o. Therefore we can conclude in exactly the same way as in the proof of Proposition 3.8 that 
infsec0 [det(A0(s)) ] > 0. Hence there exists a constant R > 0 such that (cf. Proof of Theorem 3.6(ii)) 

inf [de t (D(s) ) l  > 0 
s a c  0 
Is l>R 
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and Remark  1.2(iii) yields t h a t / ~ - 1  ~o~-,,×,,. I t  is clear that  A -1 is ho lomorphic  in Co and it follows f rom 
the identity 

-1 a d ( s I -  D - l ( s ) A ( s ) )  b _ l ( s )  (4.1) 
A - I ( s )  = ( s D ( s )  - A ( s ) )  = d e t ( s I -  D - 1 ( s ) 2 ( s ) )  

that  the function A -1 is bounded  in C ,  for some o < a < 0. This implies that G = C A - t B  ~ H _  ~' '×q. 
(i) =* (vi): Inspection of  (4.1) yields that A - l ( s )  = O ( 1 / s )  as I s I ~ to in C ~. If  we choose a < /3  < 0 

then we obtain f rom a result of  Mossaheb [19] (cf. also [17], p. 16) that there exists a matrix-valued 
function K ~ L I _ # ( R  " × ' )  such that ZS- l ( s ) - -  f~ ° K ( t ) e  -st  d t  V s ~ C o .  Consider  the system (2.1) and 
suppose that x o =- 0 and u ~ LP(Rq) .  The solution of  (2.1a) is then given by  x - K * ( d B  * u) (el. [13], p. 
22). It  follows f rom Remark  2.1(ii) that  the i / o -ope ra to r  T :  u , - * d C * ( K , ( d B * u ) )  of (2.1) is in 
,.o~(Lff~(Rq), Zff2(Rm)) for all numbers  o 1 > 0, 0 < 02 < - / 3  satisfying o 1 > 02, I < p  < oo. Hence T ~  
.5P(XP, X p) (1 < p <  oo) by  [10], 3.6.2. 

(ii) ~ (i): Since the system (2.1) is canonical  on  Co for some o < 0 the poles of  G in C O and the zeros of  
det(A) in Co coincide (cf. [21], Sec. 5 and 6, or  [16]). Hence  there exists o < a < 0 such that det (A(s))  4 :0  
Vs ~ C ~. The exponential  stability of  the system (2.1) follows now f rom Remark  2.3(ii). 

The implications (iii) =~ (ii), (iv) ~ (ii) and (v) ~ (ii) hold by [10], 3.6.4 and 3.6.5. 

4.2. Theorem. Suppose that (NS) is satisfied and that i n f ~ c  o Idet(A0(s))  I > 0. Then Theorem 4.1 remains 
true i f  we replace H ~_ by H~ °, C O by Co and X p by L p ( p  = 1,2 . . . . .  oo). 

The p roof  is similar to that of  Theorem 4.1 and is omit ted for brevity. 
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