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Abstract: This paper investigates the stability of linear autonomous multivariable neutral systems from an input—output viewpoint.
Several frequency-domain and input-output characterizations for exponential stability of neutral systems are given. We provide two
examples which illustrate that the behaviour of neutral systems may be quite different from that of retarded systems. Moreover we
give necessary and sufficient conditions for the transfer functions of a neutral system to belong to certain algebras of meromorphic
functions introduced in this paper.
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Introduction

Most of the work on neutral systems is based on the state space approach to linear systems (cf. e.g.
Salamon [22]). This paper studies neutral systems using frequency-domain and input-output ideas. In
particular we shall study the relationship between exponential (or internal) stability, input—output (or
external) stability and analyticity of the transfer matrix in the closed right-half plane.

It is well known that for exponential stability of a neutral system it is not sufficient to have all the roots
of the characteristic equation in the open left half plane. We provide two examples which illustrate how
this fact is reflected in the behaviour of the system in the frequency domain. We show that there exist
neutral systems being internally and externally unstable, but having transfer functions which are holomor-
phic in the closed right half plane. Moreover we demonstrate that it is possible for an exponentially
unstable canonical neutral system to have a transfer function which is bounded and holomorphic in the
closed righ half plane. Neither phenomenon occurs in the theory of retarded sytems. Apart from these
examples we provide a result on the transfer matrix of a general neutral system. More precisely: we give a
necessary and sufficient condition for the entries of the transfer matrix of a neutral system to belong to
one of the two algebras of transfer functions introduced in Section 1 of this paper.

Finally we prove several characterizations of exponential stability in input—output and frequency-do-
main terms. The latter result is based on Chapter 3 of Harris and Valenca [10]. ’

This paper is organized as follows. Section 1 is devoted to notation and preliminaries. In Section 2 we
introduce the class of neutral systems we shall deal with. In Section 3 we study the transfer function of a
neutral system. Section 4 contains several necessary and sufficient input—output conditions for exponential
stability.
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1. Notation and preliminaries

Let BV([a, b], R**!) denote the space of functions of bounded variation on [a, ] with values in R*>/,
For 1<p<oo set LP(R')=L"([0, ), R') and for 0 €R define L/(R')= {f:[0, o) > R’ |f( Je® €
LP(R' )} We equlp LZ(R) with the norm || f||, . ||f( )e%’||,- 1t is trivial that L{(R')=L”(R') and that
L”(R )C L”(IR ) if 0, = 0,. The space X?(R'):= U, ., L?(R') can be made into a sequential conver-
gence space “(cf. [10], 3.6.1-3.6.3 and Dudley [8]) by the following rule of convergence a sequence
f, € XP(R') converges to f€ X?(R') as i — oo if there exists oo>0 such that fe LP(R'), f e LP(R")
VieN and lim;_ ||f—fll,.,, = 0. Furthermore let $(L”(IR ), L (IR )) denote the space of linear
bounded operators mapping L/ (IR ‘) into L2 (R ) and let .S?(X”(R ) X ”(IR ) represent the space of
linear sequantlally contmuous operators deflned on X?(R*) with values in X”(R’) (a linear operator
T: XP(R*) —» X?(R') is called sequentially continuous iff Tf;, converges to zero whenever f; converges to
zero). For o € R set C := {s € C |Re(s) > 0 }. H® denotes the algebra of all C-valued functions which are
holomorphic and bounded on C,. Moreover we define the algebra H®:= U, _, H>.

We shall need the following lemma on bounded holomorphic functions which can be found in
Corduneanu {4}, pp. 72.

1.1. Lemma. Let a < b < ¢ < d be given and suppose that f is a bounded holomorphic function on a < Re(s) <d.
Then f is uniformly continuous on the closed strip b < Re(s) <c.

In order to deal with unstable systems it is useful to introduce the algebra 9 of meromorphic functions
which is defined by

%={ﬁ|n, de H°A3IR>0: inf |d(s)|>0}.
d sEC,

Is|zR

1.2. Remark. (i) J contains the algebra Q?(O) of transfer functions introduced by Callier and Desoer [2,3].
(ii) Suppose that f€.7. It follows from Lemma 1.1 that there exists ¢ <0 such that f has at most
finitely many poles in C,. Consequently f can be represented as f= h + r, where h € H® and r is a strictly
proper rational function.
(iii) A function f€J is a unit in 7 iff there exists R > 0 such that inf;c¢ |51 =& | f(5)] > 0. Callier
and Desoer proved an analogous result for the algebra Z(0) in [2,3]. Their proof extends to the more
general case (cf. Logemann [17]).

2. System description

Consider the neutral system

-c;l—t/rdD('r)x(t—'r)=frdA('r)x(t—'r)+/:dB('r)u(t—fr), (2.12)
X|(-r.q=%€C([-r,],R"), (2.1b)
y(t)=f0 dC(r)x(t-1), (2.1¢)

where x(t) €R", u(t) € R? and y(1)€ER™.
The functions 4, B, C and D are elements in the spaces BV([0, r], R"*"™), BV([0, r], R"x" ), BV([0, r],
R™*"y and BV(0, r], R"x") respectively. Moreover we suppose that

D=6I-E, (2.1d)
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where @ is the unit step and E € BV([0, r], R"*") is assumed to be continuous at 0 (cf. Hale and Meyer
[9), Henry [12] and Kappel [13]).

2.1 Remark. (i) In the following we extend any function F €& BV([a, b], R**') to the whole real axis by
setting F(t)= F(a) Vt<a and F(t)= F(b) Vt > b. Any measurable function f: 2 - R*, 2 C R, will be
extended to the whole real axis by defimng f(y=0vere

(ii) At the first glance an expression of the form fj d F(r)h(t — 1), where F=(f,;) € BV([0, r], R**),
is only well defined for ¢ > 0 if #(¢) € R’ is continuous for ¢ > —r. However, the following equation holds:

- )
El(dfu*hj)(t)
j;rdF('r)h(t—'r)= : — dF*h, (2.2)

2 (dfi;* hy)(2)

where df;; denotes the measure on R induced by f;; and df;; * h; denotes the convolution of the measure
df;; and the function h;. The expression df;; * h; makes sense 1f h; is a locally mtegrable function on R.
Moreover the mapping h—>dF*h is a hnear bounded operator from L”([R ) into L?, (IR" ) for all
6, 20,20, 1<p < oo (cf. Dieudonné [6], pp. 282 and 285).

(iii) It follows via (ii) from [9] that for every x,€ C([—r, 0], R") and every u€ L} ([0, c0), RY)
(1 < p < ) there is a unique solution of (2.1a) and (2.1b) which is continuous on [—r, o).

2.2. Definition. (i) The system (2.1) is called exponentially stable if the strongly continuous solution
semigroup on C([—r, 0], R") of the homogenous part of (2.1a) is exponentially stable.

(ii) The system (2.1) is called L?-stable (XP-stable) if under zero initial conditions (i.e. x; =0 in (2.1b))
the i/o-operator u~— y associated with (2.1) is an element of Z(LP(R?), LP(R™)) (FL(X?P(RY),
XP(R™)),1<p<oo.

In order to introduce the transfer matrix of the system (2.1) we define A(s) = JoeT"dA(7) and it is
obvious what is meant by B(s), C(s) and D(s) The entries of A, B, € and D are entire functions.
Moreover they are bounded on every right half plane. We obtain the following expression for the transfer
matrix G of the system (2.1)

G=CA'B (2.3)
where A is given by
A(x)=sD(s) - A(s). (24
The system (2.1) is called canonical in 2 C C if

tk(A(s), B(s))=n Vse@ (2.5a)
and

A(s) | \

rk[é(s)]—n Vse. (2.5b)

We shall need the following assumption on the system (2.1)

(NS) The function D contains no singular part (see e.g. Natanson [20]).
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2.3. Remark. (i) Condition (2.5) is a generalization of the so-called Hautus conditions in the finite-dimen-
sional case (cf. Hautus [11]) and has been used by many researchers working on the control of functional
differential equations (cf. e.g. [22] or Pandolfi [21]).

(ii) If (NS) is satisfied then the exponential growth of the strongly continuous semigroup on C([—r, 0],
R™) corresponding to the homogenous part of (2.1a) is determined by the spectrum of its generator (cf.
[12]). In particular it follows that the system (2.1) is exponentially stable iff there exists ¢ < 0 such that
det(A(s))#0VseC,.

(iii) Suppose that (NS) is satisfied. Then it is clear that E (cf. eq. (2.1d)) contains no singular part and
it follows that we can express D(s) in the following way:

D(s)y=1- L E e — f E (r)e™*"dr, (2.6)
j=0 0
where 0 <r;<r Vj2>0 and
© r
TAUE+ [ I1Ea(7)ll dr < co.
j=0 0
We define

Ag(s)=1— ¥ E; e 2.7)
j=0

3. On the transfer matrix of the neutral system (2.1)

Consider the neutral system

x(t)—x(t—=r)=—ax(t) + bx(t—r) +u(2), (3.1a)
y(1) =x(1), (3.1b)
where x(1), u(t) and y(t) €R, r>0 and a, b € R. The transfer function g of (3.1) is given by
1
g(S)— s(l_e—r.v)+a__be-—rs‘ (32)

The following result holds true:

3.1. Proposition. For all values of the parameters a and b satisfying a> |b| the transfer function g is
holomorphic in C,. However the system (3.1) is not exponentially stable, nor is it LP-stable or X?-stable for
=12, .

For the proof the following general lemma is required.

3.2. Lemma. Suppose that (NS) holds and let a < B be given. Then the following statements are equivalent:
(i) There exists some sy € C such that a < Re(sy) < B and det(Ay(x4)) =0.
(ii) There exists some € >0 and a sequence s, € C such that |Im(s,)| = co as k = o0, a + e <Re(s,) <
B—¢, and det(A(s,))=0VkeN.

Proof. Cf. [22], p. 160.

Proof of Proposition 3.1. Define §y(x)=1—e™" and 8(s) =1/g(s). It is obvious that g is holomorphic
in C, since

|s+a|>|(s+b)e™™| VseC,, ie. 8(s)#0 VseC,.
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If we realize that §,(0) =0, then by Lemma 3.2 there exists a sequence s, € C such that Re(s,) <0,
Re(s,)—~0 and |Im(s,)| = o0 as k— oo and 8(s,)=0 VkeN. It follows from Remark 2.3 (ii) that
system (3.1) is not exponentially stable.

In order to prove that the system (3.1) is not L”-stable or X?-stable for p =1, 2, o0, it is sufficient of
show that g & H® (this follows from [10], Ch. 3). Define

We claim
lim 6(jw hm 33
k> 00 (.] k) g(]w;\) ( )
Note that
8(jw) =a— b cos(rey) + oy sin(rw) +j(w, (1 — cos(rw,)) + b sin(rwy)) (3.4)
and ‘
¢k=o(%) (as k — o). (3.5)
We have to show
klim (a—b cos(rw,) — w, sin(rw,)) =0 (3.6)
— 0
and
klim (@ (1 — cos(rw,)) + b sin(rw, )) =0. (3.7)
— 0
We shall prove that (3.6) holds true. The verification of (3.7) is left to the reader. We have
. 1 [N
a—b cos(rw,) — w, sin(rw,)=a—b— 7(21rk+ Oy ) — b Z @ A (¢,)"
oo
1 i
- Fenkre) T LD e, (38)

(2i+ 1)

It follows from the definition of the ¢, that a — b — r~'(2mk + ¢, )¢, =0 Vk € N. Moreover we obtain
from (3.5) that the two remaining terms on the right-hand side of (3.8) tend to zero as k — 0.

3.3. Remark. Proposition 3.1 shows that analyticity of the transfer function of a neutral system in C, does
not imply internal or external stability. In particular, Proposition 3.1 provides an example for a transfer
function that is holomorphic in €, but whose associated i/0-operator is not L®-stable. See Desoer [5] and
Baker and Vakharia [1] for another example.

Let us consider the following example of a neutral system. It will provide another interesting
phenomenon arising in the theory of neutral systems which does not occur in the theory of retarded
systems.

Ko |1 x (1)
Lzz(t)—iz(t—r)}—{l —a:H:xz(t):| [o]“(‘) (3.92)

y(t)=(0 1)["‘(’)] (3.9)

x (1) |
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where x,(2), x,(¢), u(¢) and y(¢t) €R, r>0 and a € R. The transfer function of the system (3.9) is given
by

1 1
s+1s(1—e™)+a

h{s)=

(3.10)

Moreover it should by noticed that the system (3.9) is canonical in €. Nevertheless we have the following
result:

3.4. Proposition. The transfer function h given by (3.10) is in HY (i.e. the system (3.9) is L2-stable (cf. [10],
p. 83)) for all a> 0. However, the system (3.9) is not exponentially stable.

Proof. It can be shown in exactly the same way as in the proof of Proposition 3.1 that the system is not
exponentially stable. It remains to show that € Hg® Va > 0. It is easy to verify that & is holomorphic in
C,- The boundedness of & is a consequence of the following lemma, which is proved in Logemann [18].

3.5. Lemma. Let ¢ >0 be given. If a>0 then inf,cg,. |52 |S(s(1 —e"™)+a)|>0.
The following result holds for the transfer matrix G of the general neutral system (2.1).

3.6. Theorem. (i) The entries of the transfer matrix given by (2.3) are of the form n/d, wheren, d€ H?® and
o €R is arbitrary.

(ii) Suppose that (NS) holds. If inf;c ¢, |det(Ao(s))| > O then Gegm*e,

(iii) Assume that (NS) is satisfied and that A, B and C contain no singular part. If inf ¢  |det(44(s))|
> 0 then G € #(0)"*1.

Proof. (i) Notice that

G(s) = Cls)— ad(A(s))( det(A(s))| B(s)

1
(s—o+1) (s—o+1)"

and that € H®™" Be H®"™9, (s— o+ 1)™" ad(A(s)) € H®"™" and (s — o + 1) 7" det(4(s)) € H>.
(ii) It is possible to write G in the following form:

-1
G(s) = é(s):—" ad(F(s))(% det(F(s))) D 1(s)B(s), (3.11)
where F(s):=sI — ﬁ‘l(s)ff(s). It is sufficient to show that there exists R > 0 such that
inf |det(D(s))]>0. (3.12)
sECy
(s]2R

Indeed it follows then via Remark 1.2(iii) that C(s)s™" ad(F(s)) €T ™" and D~'B €I "> Moreover
we have that
det(F(s)) =s"+n(s)s" 1 +v(s)s" 2+ -+ +y,(s),

where the v; belong to the subalgebra of J generated by the entries of D~'4. Hence we obtain from
Remark 1.2(iii) that (s~ det(F(s)))~* € 7 "*".
It remains to show that (3.12) is true. Because (NS) is satisfied we can write (cf. (2.6) and (2.7))

D(s) =ay(s) - j’Ew(T) e dr. (3.13)

Since 1nf$,5cn |det(Ao(s))| > 0 (by assumption) and lim ;| g sec, Jo Ew(T) €™ d7 =0 (cf. Doetsch [7],
p- 159) it follows from (3.13) that there exists R > 0 such that lﬂfsec,, Is]=R |det(D(s))| > 0.
(iii) The proof of part (iii) is omitted for brevity but follows in a similar way as that of part (ii).
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3.7. Remark. (i) Theorem 3.6(ii) shows in particular that the entries of the transfer matrix of a retarded
system are functions in J.

(ii) It follows in Theorem 3.6(ii) that every neutral system satisfying (NS) and inf; ¢ ¢, |det(44(s)) | >0
can be stabilized by a finite-dimensional compensator. This can be proved in the same way as in
Logemann [15] and [17] where the stronger condition inf e¢, |det(ﬁ(s))| >0 was supposed to be
satisfied.

Under certain conditions the inverse of Theorem 3.6(ii) and (iii) is valid. More precisely, we have:

3.8. Proposition. Suppose that the condition (NS) is satisfied and that the system (2.1) is canonical in C, for
some 0 <0. If GET ™™ then inf ¢, |det(do(s))| > 0.

Proof. Since the system is canonical in C, it follows from [21]; Sec. 5 and 6, or Logemann [16] that the
zeros of det(A) in €, and the poles of G in €, coincide. Hence, by Remark 1.2(ii), det(A) has at most
finitely many zeros in C, for some ¢ < @ < 0 and we obtain from Lemma 3.2 that

det(4,(s))#0 VseC,. (3.14)
Moreover it can be seen from (2.7) that

’mg ldet(44(s)) | >0 VseCyp (3.15)
sE 8

for large enough 8 > 0.
Now realize that det(4,) is an almost periodic function (cf. [4]) and therefore by (3.14) and a result of
Levin [14], p. 268,

inf  |det(A > 0. 3.16
Oskg(ls)sﬁl et{Ao(s)) | (3.16)

The claim follows from (3.15) and (3.16).

4. Characterization of exponential stability in i / o-terms

The following theorem provides several necessary and sufficient i/o-conditions for exponential stability of
the neutral system (2.1)

4.1. Theorem. Suppose that (NS) is statisfied. Then the following statements are equivalent:
(i) The system (2.1) is exponentially stable.
(i) The transfer matrix G is in H*"*? and (2.1) is canonical in C, for some o <0.
(iii) The system (2.1) is X'-stable and it is canonical in C, for some o < 0.
(iv) The system (2.1) is X%-stable and it is canonical in C, for some ¢ <O0.
(v) The system (2.1) is X*®-stable and it is canonical in C, for some o <0.
(vi) The system (2.1) is XP-stable ¥ 1 < p < oo and it is canonical in C, for some o <0.

Proof. (i) = (ii): By Remark 2.3(ii) there exists o <0 such that det(A(s))# 0 Vs&C,. It follows in
particular that the system is canonical in C,. Moreover we obtain from Lemma 3.2 that det(4,(s))+# 0
V s € C,. Therefore we can conclude in exactly the same way as in the proof of Proposition 3.8 that
inf,c¢, |det(4,(s))| > 0. Hence there exists a constant R > 0 such that (cf. Proof of Theorem 3.6(i1)

Slélé‘o ldet(D(s))]| >0

|s|=R



400 H. Logemann / Transfer matrix of a neutral system

and Remark 1.2(iii) yields that D~! € 7"*" It is clear that A~! is holomorphic in €, and it follows from

the identity
1 A iy -1_ ad(sI D~ 1(s)A(s)) pH1
(s) = (sD(s) = 4(s)) det(sI - D~ 1(s)A(s)) (s) (4.1)

that the function A~! is bounded in €, for some ¢ < & < 0. This implies that G = CA~'B € H®"*q

(i) = (vi): Inspection of (4.1) yields that A~'(s)=0(1/s) as |s| = oo in C,. If we choose a <8 <0
then we obtain from a result of Mossaheb [19] (cf. also [17], p. 16) that there exists a matrix-valued
function K& L' g(R"*™) such that A~!(s) = [ K(t)e™* dt Vs & C,. Consider the system (2.1) and
suppose that x, =0 and v € L?(R7). The solution of (2.1a) is then given by x = K *(d B * u) (cf. [13], p
22). It follows from Remark 2.1(ii) that the i/o-operator T:u—dC*(K*(dB+*u)) of (2.1) is in
L(LI(R?), LE(R™)) for all numbers 6,20, 0 <o, < — B satisfying oy 20;, 1 <p<co. Hence T€
L(XP,XP) (1 <p < o0) by [10], 3.6.2.

(ii) = (i): Since the system (2.1) is canonical on C, for some o < 0 the poles of G in C, and the zeros of
det(4) in €, coincide (cf. [21], Sec. 5 and 6, or [16]). Hence there exists ¢ < @ < 0 such that det(A(s)) #0
Vs € C,. The exponential stability of the system (2.1) follows now from Remark 2.3(ii).

The implications (iii) = (it), (iv) = (ii) and (v) = (ii) hold by [10], 3.6.4 and 3.6.5.

4.2. Theorem. Suppose that (NS) is satisfied and that inf,c ¢, |det(Ao(s))| > 0. Then Theorem 4.1 remains
true if we replace H® by Hy°, C, by C, and X? by L”? (p——12 0).

The proof is similar to that of Theorem 4.1 and is omitted for brevity.
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