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On the existence of finite-dimensional compensators for retarded and
neutral systems

HARTMUT LOGEMANNT

In this paper we study a large class of neutral systems containing the class of retarded
systems. A necessary and sufficient condition is given for the existence of a finite-
dimensional compensator achieving exponential stability

1. Introduction

A fundamental problem in the control of time-delay systems is determining
whether or not there exists a finite-dimensional system (compensator) (4, B, C) such
that the closed-loop system shown in Fig. 1 is exponentially stable. In the present
paper we discuss this problem for a fairly large class of neutral systems with general
delays in the state variables and input/output variables. The term ‘general delay’
indicates that we allow for distributed delays and infinitely many point delays. In
particular, the class of neutral systems under consideration contains the class of
retarded systems.

There are several recent papers (Byrnes et al. 1984, Emre and Knowles 1984,
Kamen er al. 1984, 1985) on the stabilization of time-delay systems based on a
delay-operator approach in the context of the theory of linear systems over rings. In

these papers retarded systems are considered as systems over B[z, . . ., z,] (ring of
polynomials in 7 variables with real coefficients). In case of neutral systems the ring
R[z,, .. ., z,] has to be replaced by a certain localization of R[z,, . . ., z,]. It should

be clear that systems with distributed delays and/or infinitely many point delays do
not fit into the framework of the ring approach to neutral systems.

Byrnes e al. (1984) are concerned with stabilization by non-dynamic state feed-
back, while Emre and Knowles (1984) and Kamen er al. (1984) consider dynamic
output feedback. However, the resulting stabilization schemes are infinite-
dimensional. As far as I am aware the paper of Kamen ef al. (1985) is the only one
which uses the ring approach to time-delay systems in order to tackle the problem of
finite-dimensional stabilization via dynamic output feedback. Using the systems-over-
rings approach in Kamen e al. (1984) 1t is shown that for the finite-dimensional
stabihzation of a retarded system with finitely many point delays it is necessary and
sufficient that the generalized Hautus conditions are satisfied in the closed right
half-plane (See Definition 3.6).

The purpose of the present paper is to show that the same holds for a much more
general class of a neutral systems containing infinitely many point delays and distri-
buted delays. This cannot be done in the context of the ring approach to neutral
systems. Our results depend on frequency-domain methods for distributed-parameter
systems as developed by Callier and Desoer (1978, 1980 a, b), Nett (1984) and
Pandolfi (1982, 1983).
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Figure 1.

So far we have not mentioned the functional analytic semigroup approach to the
stabilization of infinite-dimensional systems (see Curtain (1983) for a survey). In this
context there have been several articles in the literature dealing with the problem of
finite-dimensional compensators for infinite-dimensional systems, see for example
Curtain and Salamon (1984), Jacobson (1984) and Schumacher (1983) to name but
a few. These papers are concerned with the following class of systems:

x(1) Ax(7) + Bu(r) }
»(1) Cx(1)

where A, B and C are linear operators. Furthermore A is assumed to be the infinitesi-
mal generator of a strongly continuous semigroup on the state space (a Hilbert space
or a Banach space). A large class of neutral systems can be interpreted as an abstract
evolution system of the form (1.1). However, it seems that in the context of the
semigroup approach to distributed systems the problem of finite-dimensional stabil-
ization of time delay systems with simultaneous input and output delays has not yet
been solved (cf. Curtain and Salamon (1984), Remark 3.7)

As far as the present paper is concerned, the article of Jacobson (1984) is very
interesting. He has shown for the case of bounded operators B and C that stabil-
izability and detectability of (1.1) are necessary and sufficient for the existence of a
finite-dimensional compensator. It is notable that this is done using both semigroup
methods and frequency-domain methods for distributed systems (Callier and Desoer
(1978, 1980 a, b), Nett (1984)). His paper is close in spirit to the present one.

The paper is organized as follows: Section 2 is devoted to preliminaries concerning
the system and the feedback configuration under consideration. In § 3, it is shown that
under certain conditions the exponential stability and the input/output stability of the
closed-loop system are equivalent concepts. A necessary and sufficient condition for
the existence of a finite-dimensional compensator (achieving exponential stability) is
presented in §4. In §5 we collect some facts concerning the algebra of transfer
functions introduced by Callier and Desoer (1978, 1980 a). Furthermore, we show
that the transfer function of the neutral system under consideration is an element of
this algebra.

We use the following notation:

(1.1)

R denotes the field of real numbers, and C the field of complex numbers.
Let o be a real number, then
C,=1{seC: Re(s) > al.

Let R be a ring, then R™*" denotes the set of (m, n) matrices over R.
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2. System definition and stability
Consider the neutral system (.4°):

ro

0 ro
([ dL(t) x(1 + r)) = J dA(t) x(t + 1) 4 J dB(t)u(t + 1) 2.1 @)

d

dt
0 r0 ,

.. dC(@) x(t + 1) + J dD(t)u(t + 1), t 20

J - r (21 h,
where r > 0, x(1) e R", u(r) e R*, y(1) e R”. A, B, C, D and L are functions of

bounded variation on the interval [ r, 0] with values in R"*", R"*%, R**", B**% and
""" respectively. Without loss of generality we can assume that the functions A4, B,
C, D and L are normalized, i.c. they are left-continuous on (— r, 0) and vanish at 0.

We call the system (A7) retarded if L = 01, where 0 is defined by

-1, x<0
0;: "% 20

y(n)

[n order to get a reasonable theory we have to impose some additional conditions on
L (see Hale 1977):

L=0I-L
where £ is a function of bounded variation on [—r, 0] with values in B"*" which is
continuous at 0.

[tis well known (see Hale 1977) that eqn. (2.1 @) has a unique solution if the
function u 1s continuous on [—r, o), and if we specify that the function x is equal to
a given continuous initial function ¢ on the interval [ r, 0]. (Of course the continuity
assumptions could be relaxed, but we do not need more than this.)

Let S(7) denote the strongly continuous solution semigroup of the corresponding
homogeneous problem

Definition 2.1
The system (47) is called exponentially stable if there exist e > 0and M > 0 such
that
SO < Mexp(—et) Vi=0

We shall need the following assumption on the function L:

(A1) The function L of bounded variation contains no singular part (see for
example Kolmogorov and Fomin (1975)).

As far as applications are concerned, the restriction of generality induced by (Al) is
not very serious.

Theorem 2.2
Assume that (A1) holds. The neutral system (.4") is exponentially stable if and only
if there exists @ < 0 such that

0 r0
det (sJ‘ exp (st) dL(t) — J exp (s1) dA(r)) #0 VseC,.

In the retarded case (i.e. L = 61) the negative constant x may be replaced by 0.
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Proof =
[t has been proved by Henry (1974) (cf. also Hale 1977) that, under assumptiop
(A1), the exponential growth of the semigroup S(7) is determined by the spectrum of

its infinitesimal generator H. More precisely,
w, = inf{w: 3 M, such that |S(1)|| < M, exp(wt);

= lim«¢ "In ||S(0)|

= sup { Re (z): z € spec (H)}.
The conclusion follows from the well-known fact that spec (H) coincides with the
zeros of

~o

0 \
d(s) = det (s J exp (st) dL (1) — J exp (s1) dA (r))

(see Hale 1977). In the retarded case the characteristic function d(s) has at most
finitely many zeros in every right halfplane. Therefore the condition

ds) # 0 Vse(,
implies the existence of « < 0 such that d(s) # 0V se C,. 0O

In order to introduce the transfer matrix of the system (.4') we define

0

0
j exp (st) dB(1), C((s) :—[ exp (st) dC ()

v

~0

A(s) i= J exp(s7) dA (), B(s) :

I

|

0 0
D(s) = J exp (st)dD(t), L(s) := [ exp (st)dL(t), A(s) := sL(s) — Als)
Observe that, for example, A(t) and A(s) have different meanings. A(s) is a complex
matrix, defined in terms of the real matrix A(z). We shall consistently use s to denote
complex variables, so that no confusion will arise. The entries of A(s), B(s). C(s). D(s)
and L(s) are entire functions which are bounded on every right half-plane.

[fx(r) = 0,u(r) = Oforallr < 0, then by Laplace transformation we obtain the
following expression for the transfer matrix G of the system (.4°):

G(s) = C(s)A '"(5)B(s) + D(s)

G 1s a meromorphic matrix on the whole complex plane, i.c. the entries of G are
meromorphic functions on C.
Consider the finite-dimensional system

2(t) = Apz() + Bo(1)
w(t) = Cez(0)

(#)

where z(r) € R™, v(1) € R’, w(f) € R? and Ay, By and Cy are real matrices of appro-
priate dimensions.
The transfer matrix of the system (#) is given by

F(s): = CiA;'(s5)B,
where Ag(s) == sl — A,.

In what follows we shall be concerned with the feedback configuration shown In
Fig. 2, where e and f denote external inputs. The closed-loop equations are given by
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8 1

P

Figure 2.

r0

d (" 0
EU dL.(t)x (1 + r)) = [ dA.(t) x.(t + 1) +

dB (t)u(t + 1)

v

ro

0
y.() = J dC.(t)x.(t + ©) + J dD.(t)u (1 + 1)

--"(’)] [6’(!) (1)
x. (1) = s Uu(l) = s Tyie) =
L 2(1) f() w(t)

" A1) — B(1)C;
| B,C(t) A;0(r) — B.D(1)C;

[ B(r) 0 ]
B.(7) :=
L ByD(t) B0(1)

where

Ac(r) =

e —D(7)C
A (7) () f]

| 0 C,0(z)

[ D(7) Oj|
D(t) :=

L 0 0

[L(r) O ]
LL’(T) ==

| 0 16(7)

Moreover we define

0 0
A(s) = sj exp (st) dL (1) — |. exp (s7) dA (1)
The closed-loop system (denoted by (£) = (.47, %)) s a neutral system which satisfies
the assumption (Al).

3. Input/output description
We shall need two further assumptions on (.4"):

(A2) The singular parts (see Kolmogorov and Fomin 1975) of the functions A. B.
C and D vanish identically.
(A3) i’rilfldcl(l.(s))l > 0.
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Figure 3.

Remark 3.1 o
(@) As far as applications are concerned the restriction of generality induced by
(A2) is not very serious. _
(h) Since det (L(s)) is holomorphic and bounded on every right half-pluqc Ciaiit
follows by Corduneanu (1968, p. 72) that det (Z(s)) is uniformly continuous in every
vertical strip {s € C:6, < Re(s) < o,}. Hence if assumption (A3) is satisfied there
even exists o < 0 such that

inf|det (L(s))] > 0
seC,

Therefore the assumption (A3) is the same as the corresponding one in Emre and
Knowles (1984). Furthermore it is easy to see that (A3) is weaker than the stability
hypothesis on L(s) used in Byrnes er al. (1984) and Kamen et al. (1984) (formal
stability).

(¢) The closed-loop system (.47, #) is again a neutral system satisfying (A1) (A3).

Under the additional assumption (A3) it is possible to simplify the characteriz-
ation of exponential stability given in Theorem 2.2.

Corollary 3.2
Assume that (A1) and (A3) hold. The system (.47) is exponentially stable if and
only if
det(sL(s) — A(s)) # 0 Vse C,

Proof
By Theorem 2.2 it is sufficient so show the existence of a constant x < 0 such that

det (A(s)) has at most finitely many zeros in C,. det(A) can be written in the form
det(A(s)) = det(L(s))det(s] — L '(5)A(s))

By assumption (Al) and Remark 3.1 (b) there exists a < 0 such that
ir(]f[dcl(L(.v))l > 0. Therefore the entries of L~ '(5) A(s) are holomorphic and bounded

on C,. We can use the same reasoning as in Driver (1977, p- 322) in order to show
that det(s/ — L '(5)A(s)) has at most finitely many zeros in C,. 0

In what follows we shall deal with the sets of transfer functions d(0), 4 ().
0 (o) and J?(a) which were introduced by Callier and Desoer (1978, 1980 a, b) (see
§ 5 of the present paper). Under the assumptions (A1)-(A3), it is not difficult to show
that there cxisls % < 0 such that for all ¢ > « the transfer matrix G of (.4)1s an
element of (#A(a)y ™ (see § 5).
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outcl;:nil'd;'l;'[h(?'fCCdbaCk system shown in Fig. 3. The following notion of input
a ;)b‘ sk .1. vl.lly is w‘c.ll established in the so-called fractional-representation theory of
eedback system design (see ¢.g. Vidyasagar et al. 1982 and Desoer ef al. 1980).
Definition 3.3

A pair of transfer matrices (T\, T,) e B(o)"*" x B(0)"*™ is called a-stable
(x 2 o) if
4 BT =T LTy
T+ EL7 s i £
In the case « = 0 we shall simply say that (7, T;) is stable.
Lemma 3.4

Le} (T T;l) € B(a)"" x B(o)y*™ T, = N, D 'be a right-coprime factorization
and T, = D,;'N, be a left-coprime factorization (see §5, Theorem 5.4). The pair

(T,, T,) is a-stable if and only if D,D, + N,N, is unimodular in 7 (2)"*", i.e.
}_f(‘”dﬁ (DD, + N,N))(s)| > 0.

H(T,, T)w= { :,C (A _(a))m+mm+n

The proof follows immediately from Vidyasagar et al. (1982).

The m:iiq purpose of this section is to relate the exponential stability of
(£) = (A, #) and the stability of (G, ). An important fact which we need is the
following

Lemma 3.5

Suppose that the assumptions (AT)(A3) are satisfied. For appropriate o € B
consider G and F as elements of #(ay " and HB(a)""? respectively. Let G = N, D, 'be
a right-coprime factorization and let F = D;'N, be a left-coprime factorization.
Then the following equation holds:

det (A) det(A,)

Es e Y
det (D;;) det(D;) det(DrDg + NpN;) (3.1)

det(A,) =

Proof
Using the same calculations as in the finite-dimensional case (see Hsu and Chen

1968) we obtain

det(A,) = det(A)det(A;)det(I + FG) (3.2)
Now by substituting the coprime factorizations of G and F into eqn. (3.2) we obtain
eqn. (3.1). O

In order to show that, under certain conditions, the two stability concepts are
equivalent, the following notion is useful (cf. Pandolfi 1982, 1983).

Definition 3.6

Let Q be a subset of C. The system (.47) 1s said to be canonical in Q if

(1) rank (sL(s) — A(s), B(s)) = n VseQ

sL(s) — A(s)
(1) rank =n VseQ
C(s)

The conditions (i) and (i) are sometimes called generalized Hautus conditions (cf
Hautus 1969, 1970).
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Remark 3.7 ' )
(a) In the finite-dimensional case (i.e. L(s) = I, A(s), B(s), C(s) and D(s) are

constant matrices) the following equivalences are valid: .
Conditions (i) holds for all s € C (C,) if and only if the system is controllable
(stabilizable). Condition (ii) holds for all s € C (C,) if and only if the system
is observable (detectable) (see Hautus 1969. 1970). .

(h) As far as the general (infinite-dimensional) situation is concerned, see Salamon
(1984) for the interpretation of the conditions (1) and (ii) in terms of control-
lability and observability.

Let Q « € be open. For a holomorphic function f on € and z € Q we define
{0, if f(z) # 0

Z(f,2): = o
b multiplicity of z if f(z) = 0

Lemma 3.8
Assume that (A1)-(A3) hold. Consider the transfer matrix & of the neutral system

(.4")as an element of 4(¢). Let G = ND ' be a right coprime factorization. Then the
following are equivalent:

(1) (.4") 1s canonical in C,

(1) Z(det(D), s) = Z(det(A),s) VseC,
A similar equivalence is valid if we use a left-coprime factorization instead of a
right-coprime factorization.

Proof

Pandolfi (1982, 1983) defines the poles of a meromorphic matrix via a local
Smith-MacMillan form (which is essentially due to Kappel and Wimmer (1976)). It
is not difficult to show that the zeros of det(D) in C, coincides with the set of
Smith MacMillan poles of G in C,. It now follows from Pandolfi (1983) (for the
retarded case cf. also Pandolfi (1982)) that

Z(det(D), s) < Z(det(A),s) VseC,

Moreover equality holds for all s € C, if and only if (.47) is canonical in €. O

T'he following theorem shows the interrelation between exponential stability of
(.47, #) and stability of (G, F).

Theorem 3.9
Under the assumptions (A1) (A3) the following are true.
The system (.4, #) is exponential stable if and only if
(1) (G, F) 1s stable.
(i1) The systems (.47) and (.#) are canonical in C,.

Proof

if- it follows from eqn. (3.1), Lemma 3.4 and Lemma 3.8 that det (A,) has no zeros
in C,. Therefore the closed-loop system is exponential stable by Remark 3.1 ¢ and
Corollary 3.2.

only if: by Theorem 2.2 we have

sup {Re(s):det(A.(s)) = 0} <0
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Since all three factors on the right-hand side

5 N of equation (3.1 ) are holomorphic on ¢
(cf. the proof of Lemma 3.8) we obt £ ‘

ain
det(A)  det(a,) o
det (D)’ mm have no zeros inside ¢ -
(*+) det(D,D; + N, NG) has no zeros inside Cs:
With () it follows from Lemma 3.8 that (.4
[t remains to show that t
and lim (N, N,)(s) = 0.

s—el

) and (#) are canonical in ( -
he pair (G, F) is stable. Realize that det (D, D,) € <77 (0)

)

Therefore there exists R > 0 such that

Jirfl,; \det (D, D, + NeNG) () > 0

seCy
Since det (D, D, + Ny N;) has no finite zeros in C, (see (#+)), we conclude that I

inf [det (D, D, + N, No)() > 0

seC

Now Lemma 3.4 yields that (G, F) is stable. O

4. Existence of finite-dimensional compensators
Nett (1984) proved that for every transfer matrix 7 e 4(s)""" there exists a
finite-dimensional compensator. More precisely, we can state the following result.

Theorem 4.1

Let T € #4(6)"*", then there exists a strictly proper rational matrix R such that the
pair (7, R) is a-stable.

For the proof see Nett (1984) or Logemann (1984).

It should be mentioned that the state-space results presented by Curtain and
Salamon (1984) and Schumacher (1983) for example are more constructive than the
frequency-domain result Theorem 4.1. Although the proof of Theorem 4.1 is con-
structive in nature, there still remains much to be done in order to develop implement-
able algorithms.

Now we can state our main result.

Theorem 4.2
Under the assumptions (A1)-(A3) the following statements are equivalent:

(1) There exists a finite-dimensional compensator for (.47), ie. there exists a
finite-dimensional system (#) = (A,, B,, C,) such that the closed-loop sys-
tem (.4, #) is exponential stable.

(11) The system (.4") is canonical in C,.

Proof

(1) = (1) follows from eqn. (3.1). _ ‘_

(i1) = (1) Itisshownin Lemma 5.5 that G € A(0)""?. By Ihcorgm 4.1 there exists
astrictly proper matrix R such that (G, R) is stable. Now choose a minimal realization
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(#) = (A,, B, C,) of R. (This means, in particular, thﬂ(‘(iv) is canonical in C,.) It
follows from Theorem 3.9 that the closed-loop system (47, #) 1s exponential stable
O
Remark 4.3 s
It can be shown that condition (ii) in Theorem 4.2 is also a necessary condition
for the stabilization of (.4°) by an infinite-dimensional neutral compensator.
Therefore we conclude from Theorem 4.2 that we cannot achieve stability by using
neutral compensators if it is impossible to stabilize the system (.47) by a finite-
dimensional compensator.

There is a graphical criterion checking condition (ii) of Theorem 4.2.

Lemma 4.4
Suppose that (A1) (A3) are satisfied. Choose a right-coprime factorization
G = ND 'with D rational (see Theorem 5.4). Then condition (ii) of Theorem 4.2 is
satisfied if and only if
det(iwl — L "(im)A(iw))
(1w + 1)'det(D(iw))

(a) #0 YVoeR

det(io] — L '(iw)A(iw))
(i + 1)" det (D(iw))

(b)

does not encircle the origin if o tends from — 0 to + «.

Proof 1t follows from Lemma 3.8 that the neutral system (1) is canonical in C,if and
only if

det(sT — L '(5)A(s)) - ) See
(*) () == G + 17 det(D() has no zeros in C,

Note that

|
li ) = —m M
h‘l;n, V() det(D(x)) %9

Therefore it follows by the argument principle that () holds if and only 1f the
conditions (a) and (b) are satisfied. 0
5. Appendix

In this section we collect some definitions and facts concerning the frequency-
domain description of distributed-parameter systems developed by Callier and
Desoer (1978, 1980 a, b). Furthermore we show that the transfer matrix of the neutral
system (.4) fits into this framework.

Definition 5.1

(i) For g € R we define /() to be the set of distributions of the form

f = Y 18 + 7,
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erc ly=0,t, >0V > I, 6, is the Dirac distribution at the point £, C)rse
s a real sequence and Ja: [0, 00) — R is a measurable function such that

2 |/l exp (~at) + J |f.(D] exp (— o1) di < «
I=0 0

(1) o (o) := {fe H(6):30' < o such that f e /(c"))

A_(0):={ffeo (9)}, where f denotes the Laplace transform of f.

#(0) = {fe &_(6):3R > 0 such that inf|/(s)] > 0}

Isl2R

Remark 5.2

A (o) amd /(o) are convolution algebras of distributions. .7 (o) is an algebra of
hplomorphlc functions which are defined on some right half-plane C,, ¢ < o.
™ (o) is a multiplicative subset of .7 (o).

Lemma 5.3
g € .9/ (0)is a unit of o (o) if and only if inf |g(s)| > 0.
seC,

HB(o) = (A (0))(A” (0))"' denotes the commutative algebra of fractions
g = nd ', where ne o7 (6) and d € 7" (). In particular, %(s) contains the set of
proper rational functions.

It is an important property of %(s) that every matrix in 4(a)™"" admits right- and
left-coprime factorizations. This can be stated more precisely as follows.

Theorem 5.4

For T € #(a)"*" there exists a right-coprime factorization, i.e. there exist
N e o/ (0)""" and D € o/ (6)"" such that

(1) det(D) € * (o)

() T = ND! A

(i) N and D are right-coprime, i.e. there exist matrices U € .7 (6)""™and V €

A ()" such that
UN+ VD = |

Moreover, it is possible to choose D rational. A similar statement is valid for
left-coprime factorizations.

Lemma 5.5 ( '
Under the assumptions (A1)-(A3), the transfer matrix G of the system (_47) is an

element of 4(ay* for all ¢ > a, for some x < 0.

Proof

Step 1 , T i
We show that the entries of A(s), B(s), C(s), D(s) and L(s) are elements of <7 (g)

for all o € R. ) it .
Let f:[—r, 0] - R be a normalized function of bounded variation containing no

singular part. This means that f(t) can be written in the form

——_.
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0
Hsy - - Z [y 7 [ fAdl, —FrK 1% 0 (5.1 a)
i o " F Jt
where 0 < r, < r.z, ., denotes the indicator function of the interval (— o0, —r/],

(/)50 and [, satisfy

i=0

X O
Y 1A+ [ |fo(Dldl < (5.1 b)

By assumptions (A1) and (A2) every entry of A(1), B(x), C(x), D(7) and L(7) can be
written 1n the form (5.1).
An casy calculation yields for all s € C

j exp (s7) df(r) = if‘exp (—sr) + ‘. f.(1) exp (— st) dt
r (=0 JO

where the function f, is defined by
[ (=0, 0Kt

-

Therefore we have

0
J exp (s7) df (1) € o (o)
for all 6 € R.

Step 2

It remains to show that there exists « < 0 such that (sL(s) — A(s)) 'isan element
of #(e)”"" for all ¢ > a. By Remark 3.1 thgre exists a < 0 such that
ir}ﬂdct(l.(s))! > 0. By Lemma 5.3 we have L '(s) € o/ (x). Hence the claim follows

if we show that
(sI — L '(9A) " = (sL(s) — A(5)) "L(s)

is an element of Z(x)"*".
Let Adj(X(s)) denote the adjoint of X(s) == sI — L '(s)A(s), then by Cramer’s
rule

X=(s)

Adj (X (s)) [det(X(s) '
s+ p)" \(s+ p)

where we choose f§ > |af.
det (X (s)) can be written in the form
det(X(s)) = & + ¢, ()" " + -+ + ¢o(s)
where the ¢, belong to the subalgebra of o/ (x) generated by the entries of L' (5)A(s).
Therefore we have
det (X(s))

G+ By e o (a)




Finite-dimen«
e-dime nstonal ¢ ompensators 121

Finally we note that

iy .o
RN ke

It follows from eqn. (5.2) that xy ! € _,}(1)’,,.,'
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