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In this paper we study the feedback interconnection (a) of two neutral systems
and (b) of two Volterra integrodifferential systems. We show that under very mild
assumptions the closed-loop system pair is internally stable iff every transfer
function which occurs around the loop is holomorphic in a right half plane
containing {s : Res ^ 0 } .

1. Introduction

CONSIDER the feedback interconnection of the transfer matrices Gx and G2 shown
in Fig. 1. Following Desoer & Chan (1975) we consider every transfer function

which occurs around the loop. The transfer matrix Gc of the closed-loop

-GrG2(I + Gt

system relating 1 and is given by

G2Gl{I+G2Gl)

Suppose that G, has a finite-dimensional stabilizable and detectable state-space
realization (/I/, Bit Q, Dt) (i = 1, 2). Then it is known that the composite
state-space realization of the closed-loop system is exponentially stable iff Gc has
no poles in the closed right half plane. This theorem has been a 'folk result' in the
control community for several years. The proof can be found in Bhattacharyya &
Howze (1985). Jacobson (1984) has shown that the same is true if G, admits a
stabilizable and detectable Hilbert-space realization {Ah Bt, Q, Dt), where Bt, Q,
Dt are bounded operators and A( is the infinitesimal generator of a strongly

\
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JX "2
Fio 1.
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10 HARTMUT LOGEMANN

continuous semigroup (i = 1,2). Moreover At is required to satisfy certain
conditions.

The purpose of the present paper is to prove similar results for two classes of
infinite-dimensional systems which do not fit into the set-up of Jacobson (1984).
More precisely, we show under very mild assumptions that:

(1) the feedback interconnection of two neutral systems is exponentially stable
iff the transfer matrix Gc has no poles in {s : Re s s» a) for some a < 0;

(2) the feedback interconnection of two Volterra integrodifferential systems is
uniformly asymptotically stable iff Gc has no poles in Re s =s 0.

In Section 2 of this paper we introduce the notion of a holomorphic realization
of a meromorphic matrix. Moreover, we study a certain holomorphic realization
of the closed-loop matrix Gc. In Section 3 we use Theorem 2.5—the main result
of Section 2—in order to prove the results which we have just mentioned. In
Section 4 we give the proof of a technical lemma which we need in Section 3.

We use the following notation: R+ := {x e U : J O O } and CCT:= {s e C : Res>
a} for oeR. Let flcC be a region, then H(f2) is the ring of holomorphic
functions on Q and M(fl) is the field of meromorphic functions on Q. Finally let
R be a ring, then Rm*n is the set of m x n-matrices over R. Other notation will be
introduced as it is needed.

2. A hokunorphic realization of the dosed-kwp transfer matrix

For the convenience of the reader we recall some facts concerning the algebraic
structure of H(fl). The units of the integral domain H(fl) are exactly those
functions in H(Q) which have no zeros in Q. It is well known (Helmer's theorem)
that H(f2) is a Bezout domain, i.e. every finitely generated ideal in H(fl) is
principal (Helmer, 1940, or Narasimhan, 1985, p. 136). Thus, any finite set of
functions in H(i2) has a greatest common divisor. Moreover, it is known
(Wedderburn's theorem) that H(ft) forms a so called elementary divisor ring, i.e.
every matrix of holomorphic functions admits a Smith normal form (Wedderburn,
1915, or Narasimhan, 1985, p. 141).

The following lemma can be proved in the same way as for polynomial matrices
(Rosenbrock, 1970, p. 71).

LEMMA 2.1 For PeH(Q) m x ' and Q eH(fl)"x / the following statements are
equivalent:

(i) P and Q are right coprime. (This means that every common right divisor
D e H(fl)'x/ of P and Q is unimodular, i.e. det D(s) # 0 for all s e £3.)

i
(in) There exist matrices X e H(fl)'xm and Y e H(i2)'x" such that

XP + YQ = I on ii.

An immediate consequence of the above lemma is stated in
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STABILITY OF NEUTRAL AND VOLTERRA INTEGRODIFFERENTIAL SYSTEMS 11

COROLLARY 2.2 Let a e Q, Pe H(fl)mX/, and Q e H(Q)nxl. The following are
equivalent:

(ii) There exists a neighbourhood U czQ of a and matrices Xe H(t/)'Xm and
YeH(U)'Xn such that

XP + YQ=I on U.

Completely analogous results can be stated for left coprimeness.
Since a Smith form exists for holomorphic matrices, a Smith-McMillan form

exists for meromorphic matrices. This implies that every meromorphic matrix
admits left and right coprime factorizations. These factorizations are unique up to
unimodular factors.

We have to introduce some notation. Let a eQ, f e H(Q), and M e M(£?)pXm.
Assume that M = NtD~x and M = Dj*N( are right coprime and left coprime
factorizations, respectively. We define

ordfl/:=min{/,6No:^(a)^o} (1^:= {0, 1, 2, . . .}),

Pa(M): = ordadetD r

= ord0 det £>,.

If ord,, / > 0 then a is a zero of / and orda / is the order of the zero of / at a. Of
course, if Pa(M) > 0 we call a a pole of M and Pa(M) is called the order of the
pole of M at a.

A (holomorphic) realization of M e M(fl)pXm is a representation of the form

M = VT~1U + W (2.1)

where T, U, V, and W are holomorphic matrices on Q of size n x n, nxm,
p*.n, and p x m , respectively, and det T&0. The realization (2.1) is called
canonical in a e Q if

U(a)] = n, * [ ^ ] = » . (2.2)

The realization (2.1) is called canonical in Q' c Q if the conditions (2.2) are
satisfied for all a e Q'. In particular, every right or left coprime factorization of M
is a realization of M which is canonical in Q.

Remark 2.3. For the polynomial/rational case (i.e. M in (2.1) is a rational matrix
and T, U, V, and W in (2.1) are polynomial matrices) Coppel (1974) has
developed a theory of realizations, which is not based on state-space techniques
like the theory presented in Rosenbrock (1970). Because of the nice algebraic
properties of H(fl) mentioned at the beginning of this section the theory of
Coppel (1974) extends to the holomorphic/meromorphic case.

The next lemma follows from Pandolfi (1983) (cf. also Pandolfi (1982)).
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12 HARTMUT LOGEMANN

LEMMA 2.4 Assume that M e M(J2)pXm admits the realization M = VT~lU + W.
Then for arbitrary a e Q

Pfl(M)«ordadetr.

Moreover equality holds iff the realization M = VT~1U + W is canonical in a.

Consider the feedback configuration shown in Fig. 1. For the sake of simplicity
we shall deal with realizations of the form VT~lU only, i.e. we assume that
W = 0in (2.1).

THEOREM 2.5 Let GxeM(QY*m and G2eM(fl)mXp and assume that the
condition

det (/ + G2Gi) * 0

is satisfied. Moreover suppose that Gt and G2 admit the realizations

Gt = VtTTlUt 0 = 1,2). (2.3)

Define:

T-=\ * W]
c- v-u2vl T2 r

1 U\
o v2r " Lo u

Under these conditions we have:
(a) det Tc = det Tx det T2 det (/ + GtG^ and

Gc = VcT;lUc. (2.4)

(b) The realization (2.4) is canonical in a e Q iff the realizations (2.3) are
canonical in a.

(c) For a e Q the following statements are equivalent:
(i) The realizations (2.4) are canonical in a.
(ii) Pa(Gc) = ordadetTc.

Proof, (a) The first equation is a generalization of a well-known formula of Hsu
& Chen (1968) and can be proved in a completely analogous way.

In order to prove the second equation note that

niu1v2A2i
A2 J

where

A, := (7i + C/^rr'tW)-1, A2:= (T2+ U^T^U^y1

(Zurmuhl & Falk (1984), p. 303).
(b) Assume that the realizations (2.3) are canonical in a. By Corollary 2.2

there exists a neighbourhood A cz Q of a and holomorphic matrices P,, Qit Rh

Si (i = 1, 2) on A such that

+ Q,V, = / on A, T,R, + U,S, = / o n A
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STABILITY OF NEUTRAL AND VOLTERRA INTEGRODIFFERENTIAL SYSTEMS 13

Define

0 - \ Q l

p2u2 Q y R-[
We obtain

PTC + QVC = I on A , TCR + UCS*=I on A . (2.5)

Equation (2.5) implies that the realization (2.4) is canonical in a.
Conversely, assume that the realization (2.4) is canonical in a. Then there

exists a neighbourhood Ac Q of a and holomorphic matrices P, Q, R, S on A
such that (2.5) holds. With

2 l "22-1 Li^21 WT22-I

it follows that

PnTi + iQn-PMVt^I on A,
P22T2 + (PnUx + Qn)V2 »= / on A.

Corollary 2.2 yields that rk ' is full (i = 1, 2). By a similar argument it can
LK((a)J

be shown that rk [T,(a) U,(a)] is full (1 = 1, 2).
(c) The assertion follows from Lemma 2.4 and (b). D

3. Application of Theorem 2.5 to neutral and Volterra integrodiffereiitial systems

In this section we study feedback interconnections of neutral and Volterra
integrodifferential systems. We shall use Theorem 2.5 in order to show that
(under very mild assumptions) the transfer matrix Gc of the closed loop gives the
correct stability information. The reader is referred to Hale (1977) and Burton
(1983) for the basic facts concerning neutral functional differential equations and
Volterra integrodifferential equations.

3.1 Neutral Systems

Consider the neutral systems Jft for / = 1, 2:

- f [dD,(x)Xl(t - T)] = f[<L4,(T)jr,(f - T)] + f [dfl,(r) e,{t - x)],
d / J ° * * (3.1)

where r > 0, xt{t) g R"', et{t) e R«', and y^t) e Rp'. The functions A,, Bh Q, and
D, are of bounded variation on the interval [0, r], with values in R"'*"*, Rn'x",
R/"x"', and R"'*"', respectively. Moreover, in order to get a reasonable theory we
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14 HARTMUT LOGEMANN

we have to impose an additional hypothesis on D, (Henry, 1974):

D, = 0/ - D,

where 8(x) := | "~* and D, is a function of bounded variation on [0, r]

which is continuous at 0 (r = 1, 2).
In order to introduce the transfer matrix G, of the system Jf, we define

A,(s): = f e"" <U,(T), 6,{s): = f e"« dB,(r), C,(s):= f e"" dQ(x),
•>o Jo Jo

/>,(*): = fe"" dD,(r), A,(s): = sfifa) - A,(s).
Jo

The entries of Ait 6,, Ch and 4, are entire functions. If we extend A,, B,, Q, and
Dt to the complete positive real axis by defining At(t) = At(r), Bt(t) = B,{r),
Q(i) = Q(r), and D,(f) = D,(r) for t>r, then the functions A,, 8h Clt and i5, are
the Laplace-Stieltjes transforms (Widder (1972), p. 37) of A,, Bh Q, and D,,
respectively.

We obtain the following expression for G,:

G^C^AT1^. (3.2)

We shall now consider the feedback interconnection of ^ and Jf2 (j>i = q2,
P2 = 9i» ti = U\—yz, <2 = «2 + J'i)- The state-space equations of the closed-loop

system Jfe relating l and are given by

c(r)x{t - T)] = |^[ (L4 C (T)x( / - T)] + ^ [ d S ^ r ) u(t - T)], (3.3a)

(3.3b)

where

(x denotes the Stieltjes convolution, i.e. (fl, x QXO := Jo Bx{t - s)

See Section 4 for the verification of (3.3).
Note that the closed-loop system is again a neutral system. The transfer matrix

Gcof (3.3) is given by
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STABILITY OF NEUTRAL AND VOLTERRA INTEORODIFFERENTIAL SYSTEMS 15

where

Here we have used the convolution theorem for the Laplace-Stieltjes transform
(see Widder, 1972, p. 88).

We shall need a further assumption on the system Jf, (/ = 1, 2):

(NS) The function D, of bounded variation contains no singular part (see e.g.
Kolmogorov & Fomin (1975), p. 341).

Remark 3.1. As far as applications are concerned the restriction of generality
induced by the assumption (NS) is not very serious.

COROLLARY 3.2 Assume that the condition (NS) is satisfied. Then the closed-loop
system (3.3) is exponentially stable (i.e. the strongly continuous solution semigroup
of the homogeneous part of (3.3a) is exponentially stable) iff there exists a<0 such
that

(a) the realizations (3.2) are canonical in Ca,
(b) the transfer matrix Gc has no poles in Ca.

Proof.
Step 1. Of course, condition (NS) implies that Uc contains no singular part and
therefore it follows from Henry (1974) that Jfc is exponentially stable iff there
exists a > 0 such that

det Ac(s) = det [$£<:(•*) - ^c(*)]

Step 2. Assume that (a) and (b) hold. Then it follows from Theorem 2.5(c) that
det /4c(s)#0 (seCa). Step 1 yields the claim. Conversely assume that Jfc is
exponentially stable. Therefore (by Step 1) there exists o<0 such that

ord, det Ac = 0 (s e Ca).

Hence by Lemma 2.4

Px(G)c = 0 (5 6Ca).

which means that Cc has no poles in Ca. Moreover we conclude via Theorem
2.5(c) that the realizations (3.2) are canonical in Ca. O

Remark 3.3. For the interpretation of condition (a) in terms of controllability
and observability see Salamon (1984).

If the function D, is required to satisfy an additional assumption (I: = 1, 2), the
constant a in Corollary 3.2 may be replaced by 0. More precisely we have:

COROLLARY 3.4 Assume that
(i) Condition (NS) is satisfied.

(ii) inf,eCJdet £,(*)! > 0 (i = l,2).
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16 HARTMUT LOGEMANN

Under these conditions the closed-loop system Jfc is exponentially stable iff
(a) the realizations (3.2) are canonical in Co-
(b) the transfer matrix Gc has no poles in Co-

Proof. Trivially the assumptions (i) and (ii) hold also for Dc. Therefore JVC is
exponentially stable iff det4 c(s)#0 (seCo) (Logemann, 1985). Now use the
same arguments as in Step 2 of the proof of Corollary 3.2.

Remark 3.5. The assumptions (i) and (ii) are satisfied by every retarded system
('retarded' means that there are no delays in the derivative). For every
finite-dimensional system and for certain classes of retarded systems condition (a)
admits an interpretation in terms of stabilizability and detectability (Hautus,
1970; Pandolfi, 1975; Olbrot, 1978). In particular Corollary 3.4 contains the result
of Battacharyya & Howze (1985).

3.2 Volterra Integrodifferential Systems

Consider the Volterra integrodifferential system Y, for i = 1, 2:

x,(t) = I A,(t - s)Xi(s) ds + [ B,(t - s)ei(s) ds
h Jo

where x,(f) e W', e,(t) e R"', and j>,(f) e W1. The entries of the matrices A,, Bt>

and C, are all functions in

LL := {/e LX(IR + ,R) : 3 a > 0 s.t. /(rje* e L^R"", R)}.

The sizes of Ah B,, and Q are given by n, x n,, n, x qit and p, x nh

respectively (i = 1, 2).
For the transfer matrix Gt of Yt we obtain the following expression:

G,(s) = C,(s)[sl - A^s)]-1^), (3.4)

where A,, Bh and tt denote the Laplace transforms of Ah Bh and Q. The matrix
G/ is meromorphic on an open right half plane containing Co (i = 1, 2).

We shall consider the feedback interconnection of Yl and Y2 {py = q2, P2 = ou

ei = U\—y2, «2 = «2 + .yi)- The state equations of the closed-loop system YQ

relating l and 1 are given by

i ( 0 = l'Ae{t - s)x(s) ds + fflc(f - 5)11(5) ds, (3.5a)
Jo Jo

y(t)=['cc(t-s)x(s)ds, (3.5b)
Jo
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STABILITY OF NEUTRAL AND VOLTERRA INTEGRODIFFERENTIAL SYSTEMS 17

where
e, o. _\ Ax -B^CA n . \ B x o ]

' • " L B ^ C , A 2 J' C- LO B J '

(• denotes the convolution in V(R+, R)),

We note that the closed-loop system is again a Volterra integrodifferential
system.

The transfer matrix Gc of (3.5) is given by

where " denotes the Laplace transformation.

COROLLARY 3.6 The closed-loop system (3.5) is uniformly asymptotically stable
{i.e. the trivial solution of the homogeneous part of (3.5a) is uniformly asymptoti-
cally stable in the sense of Miller (1971, 1972)) iff

(a) the realizations (3.4) are canonical in Q,,
(b) the transfer matrix Gc has no poles in CQ.

Proof. It is known that Vc is uniformly asymptotically stable iff

det[sI-Ac(s)]*0 (seCo). (3.6)

The necessity of condition (3.5) is proved in Miller (1971). For the sufficiency of
(3.6) see Miller (1972). Now the assertion of the corollary can be proved using
the same arguments as in Step 2 of the proof of Corollary 3.2. •

4. Derivation of equations (3 J )

We now derive the closed-loop equations (3.3) for the system JVC. By setting
<i = « i -y2 a nd «2 = «2 + 3'i we obtain from (3.1) the state-space equations
describing the closed-loop system ^"c:

d/J0 V L 0 D2(T)JLJ 2 O-T)

\\dAM x,(r - T)] - f(dfl,(T) f[dQ(£)jr2(f - T -
Jo Jo \ Jo

- r - C)]) + j[[cL42(T)x2(r -

f2'/ VBM 0 ] ( • « , ( / - r ) ] \

Jo I ! 0 lfe(r)JU(*-r)Ji'
r) o ir*,«-*)i\

Ci(r)JLr2(l-T)J/"
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18 HARTMUT LOGEMANN

All that remains to show is that the homogeneous part of (4.1) can be written in
the form

dtio \ L 0 D2{x)\lx2{t - x)\)

= F
Jo
Jo \ L ^ X Q K T ) A2(r)

This follows from the next lemma.

LEMMA 4.1 For r >0 let f : [0, 2r]^>R be continuous and let a,fi : [0, r]-» R be
of bounded variation; without loss of generality we may assume that a and /3 are
normalized in the sense of Widder (1972), p. 13. Moreover we extend a and /} to R
by defining a(i) = /3(0 = 0 {t < 0), and a{t) = a{r) and fi(t) = /3(r) (t > r). The
following formula holds:

jTjT/(T + 0 d*(T) d/3(O = j[7(T) d(«X/8)(T).

Proof. Define:

f(s)d,a(s -x),

R : 5 •-» | cr(s - x) d/3(x).
Jo

: R |
Jo

It is routine to show that <P is continuous, and that rp is of bounded variation on
[0, 2r] and normalized in the sense of Widder (1972), p. 13. Furthermore we
have TM0 = 0 (*<0) and V>(f) = V>(2r) (t>2r). Therefore we can use the same
arguments as in the proof of Theorem 5 in Bray (1919) in order to establish the
equation

f
Jo

/ ( T ) d,£a(T - S) d/5(C). (4.2)

The assertion follows from a straightforward calculation:

7(T)d(afX/8)(T)

= I / ( T ) d» I a{x - t,) d/3(C) (by definition of the Stieltjes convolution)

- C) d/5(C) (by (4.2))

= [ [ / ( T ) dTo-(r - C) djS(C) (by definition of a-)

/ ( T + 0 da-(r) d0(£) (change of variables) D.

[ [

= f [
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