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Abstract. We consider operator-valued positive real functions H and show that the intersections of
the point, continuous and residual spectra of H(s) with the imaginary axis do not depend on s. In
particular, if H is positive real and H(z) is invertible for some z in the open right-half plane, then H(s)
is invertible for all s in then open right-half plane. Furthermore, we prove that the eigenspace of H(s)
corresponding to an imaginary eigenvalue does not depend on s. It is also shown that the intersection
of the numerical range of H(s) with the imaginary axis is independent of s. Finally, we prove that,
under suitable assumptions, application of a “sufficiently positive real” static output feedback to a
positive real transfer function leads to a strictly positive real closed-loop system.
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1 Introduction

I met Ruth in November 1984 when I gave a seminar to the Systems & Control Group in the Depart-
ment of Mathematics at the University of Groningen. At the time I was a PhD student (supervised
by Diederich Hinrichsen) at the University of Bremen and Ruth had invited me to talk about my
research.† Her interest in my work provided strong encouragement. In subsequent years, Ruth and
I became collaborators and friends. I visited Groningen many times, and, with great fondness, I
remember the relaxed and stimulating atmosphere in the Groningen Systems & Control Group and
the many discussions I had with Ruth and other members of the group (including Hans Nieuwenhuis,
Martin Weiss, Jan Willems and Hans Zwart) over coffee, lunch and dinner, not only on systems &
control (or, more generally, on mathematics), but also on politics and on art, movies and music. Sadly,
these inspiring conversations and discussions with Ruth are now a thing of the past.

Ruth had a longstanding interest in frequency-domain methods, positive realness and their role in
absolute stability theory [7, 8, 9, 10, 11, 12, 20] and therefore I believe that the topic of the current
paper is very appropriate for this memorial issue of Systems & Control Letters.

∗Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK, email:
h.logemann@bath.ac.uk
†My seminar was well received and when I got on the train back to Bremen, I felt quite pleased with myself. But

this did not last long: just after the train had crossed the border into to Germany, I was confronted and searched by two
plain clothes German police officers who suspected me to be a drug smuggler. They did not hide their frustration when
it became clear that I did not have any drugs on me. Being a gentleman, I apologized to the two officers for not being a
drug smuggler, but they were not amused. Bizzarely, in 1998/99, Ruth suffered a similar fate: due to a clerical error by
Australian customs and excise staff, Ruth came under suspicion of being a drug smuggler.
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Positive realness and the corresponding time-domain notion of passivity are key concepts in the theory
of circuits and networks and in systems & control (e.g. [1, 13, 14, 15, 18, 19, 21, 26, 32, 33]), with
the positive-real lemma (or Kalman-Yakubovich-Popov lemma) being one of the best known results
of the field. Here we will consider operator-valued positive real functions which, for example, arise as
resolvent operators of dissipative operators or as transfer functions of impedance-passive well-posed
infinite-dimensional systems (or, more generally, impedance-passive system nodes) [13, 25, 28, 29, 31].
Specific instances of the latter are distributed parameter systems with certain passivity properties and
with control and observation applied on infinitely many points of the boundary (a submanifold of the
boundary, for example).

The question which triggered the research presented in this paper is as follows: given an operator-
valued positive-real function H, and assuming that there exists a point z in the open right-half plane
such that H(z) is invertible, does it follow that H(s) is invertible for every s with Re s > 0 (in which
case H−1 is positive real)? The answer to the above question is yes and it follows from the main result
of this paper which says that the intersections of the imaginary axis with the point, continuous and
residual spectra of H(s), where H is an operator-valued positive-real function, do not depend on s,
with the intersection of the imaginary axis with the residual spectrum of H(s) being empty for all
s with Re s > 0. Moreover, the eigenspaces of H(s) corresponding to imaginary eigenvalues do not
depend on s. We also prove that 0 is not in the residual spectrum of the real part of H(s) for any s
with Re s > 0, and that if 0 is in the point (continuous) spectrum of the real part of H(z) for some z
in the open right-half plane, then 0 is in the point (continuous) spectrum of the real part of H(s) for
all s with Re s > 0. The intersection of the numerical range of H(s) with the imaginary axis is also
shown to be independent of s.

Invertibility of positive-real functions plays a key role in Section 5 which addresses the problem of
obtaining a strictly positive-real closed-loop transfer function by the application of suitable static
output feedback to a positive-real transfer function. The results in Section 5 provide easily checkable
sufficient conditions for the existence of such output feedback operators.

The paper is structured as follows. Section 2 is devoted to a number of preliminaries. In Section
3, we investigate certain spectral properties of matrix-valued positive-real functions, and, in Section
4, we consider the infinite-dimensional operator-valued case. Section 5 focuses on the problem of
achieving stric positive realness by application of a “suffciently positive real” static output feedback
to a positive-real transfer function.

2 Preliminaries

As usual, N, R and C denote the natural, real and complex numbers, respectively. For α ∈ R, we
define Cα := {s ∈ C : Re s > α}. We denote the set of all imaginary numbers by I, that is,

I := iR = {ir : r ∈ R} ⊂ C0.

For a set S ⊂ C, the closure of S is denoted by clS. For the rest of this paper, U denotes a complex
Hilbert space with inner product 〈· , ·〉 and we set EU := {u ∈ U : ‖u‖ = 1}, where ‖ · ‖ is the norm
induced by the inner product. The Banach algebra of all bounded linear operators U → U is denoted
by L(U). We say that T ∈ L(U) is positive semi-definite, and write T � 0, if 〈Tu, u〉 ≥ 0 for all u ∈ U .
Since U is a complex vector space, every positive semi-definite operator is necessarily self-adjoint. For
T1, T2 ∈ L(U), we write T1 � T2 if T1 − T2 � 0.

Let σ(T ) denote the spectrum of T ∈ L(U). We recall that

σ(T ) = σp(T ) ∪ σc(T ) ∪ σr(T ),
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where σp(T ), σc(T ) and σr(T ) denote the point, continuous and residual spectra of T , respectively,
that is, σp(T ) is the set of all λ ∈ C such that T − λI is not injective (the set of all eigenvalues of T ),
σc(T ) consists of all λ ∈ C such that T − λI is injective, not surjective and im(T − λI) is dense, and

σr(T ) = {λ ∈ C: T − λI is injective and im(T − λI) is not dense}.

Clearly, if λ ∈ σc(T ), then the densely defined operator (T − λI)−1 is unbounded. Moreover, it is
obvious that the sets σp(T ), σc(T ) and σr(T ) are mutually disjoint. As usual, we say that λ ∈ C is an
approximate eigenvalue of T if infu∈EU ‖(T − λI)u‖ = 0. Setting

σap(T ) := {λ ∈ C : λ is an approximate eigenvalue of T},

we have that σc(T ) ⊂ σap(T )\σp(T ). If λ ∈ σap(T ), then every sequence (uj)j∈N in EU such that
(T − λI)uj → 0 as j →∞ is said to be an eigensequence of T associated with λ.

The numerical range W (T ) of an operator T ∈ L(U) is defined by

W (T ) := {〈Tu, u〉 : u ∈ EU}.

It is well-known that W (T ) is convex, σ(T ) ⊂ clW (T ) and, if T is normal, then clW (T ) is the convex
hull of σ(T ), see, for example, [16, 23].

For T ∈ L(U), we define the real part ReT of T by

ReT :=
1

2
(T + T ∗),

where T ∗ is the Hilbert space adjoint of T .

In the following lemma, we present some simple properties of operators which have positive semi-
definite real part.

Lemma 2.1. Let T ∈ L(U) and assume that ReT � 0. Then the following statements hold.

(1) If λ ∈ σ(T ), then Reλ ≥ 0.

(2) If 0 6∈ σ(T ) (that is, T is invertible), then ReT−1 � 0.

(3) ker(T − λI) = ker(T ∗ + λI) for all λ ∈ I.

(4) I ∩ σr(T ) = ∅.

Proof. (1) Let z ∈ C with Re z < 0. Then

‖(T − zI)u‖ ≥ |〈(T − zI)u, u〉| ≥ |Re 〈(T − zI)u, u〉| = 〈(ReT + |Re z|I)u, u〉 ≥ |Re z| > 0 ∀u ∈ EU ,

that is, T − zI is bounded away from 0. By an identical argument, it can be shown that the adjoint
(T − zI)∗ = T ∗ − z̄I of T − zI is also bounded away from 0, showing that T − zI is invertible [23,
Proposition 3.2.6], that is, z 6∈ σ(T ). Consequently, if λ ∈ σ(T ), then Reλ ≥ 0.

(2) Assume that T is invertible. Let u ∈ U and set v := T−1u. Then

〈ReT−1u, u〉 = Re 〈T−1u, u〉 = Re 〈v, Tv〉 = Re 〈Tv, v〉 ≥ 0,

and since u ∈ U was arbitrary, it follows that ReT−1 � 0.

(3) Let λ ∈ I and u ∈ ker(T − λI). Then

〈(T − λI)u, u〉 = 0 = 〈u, (T ∗ + λI)u〉,
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and so 〈(T ∗ + λI)u, u〉 = 0. Consequently,

〈(T + T ∗)u, u〉 = 〈(T − λI)u, u〉+ 〈(T ∗ + λI)u, u〉 = 0,

showing that 〈(ReT )u, u〉 = 0. Since ReT � 0, we conclude that (ReT )u = 0. Thus, T ∗u = −Tu,
implying that (T ∗ + λI)u = −(T − λI)u = 0, whence u ∈ ker(T ∗ + λI). We have now shown that

ker(T − λI) ⊂ ker(T ∗ + λI) (2.1)

Replacing in (2.1) T by T ∗ and λ by −λ and using that (T ∗)∗ = T and ReT ∗ = ReT � 0, we see that
ker(T ∗ + λI) ⊂ ker(T − λI), completing the proof of statement (3).

(4) It is well-known that σr(T ) ⊂ σp(T ∗) (because (im(T − λI))⊥ = ker(T ∗ − λ̄I) for all λ ∈ C). As
σp(T ) ∩ σr(T ) = ∅, it now follows from statement (3) that I ∩ σr(T ) = ∅. �

For a non-empty open set Ω ⊂ C and a complex Banach space X, the vector space of all holomorphic
functions Ω→ X is denoted by H(Ω, X). Furthermore, H∗(Ω, X) is the set of all X-valued functions
which are holomorphic on Ω with exception of isolated points, namely poles and essential singularities
(where it is understood that any removable singularities have been removed holomorphic extension).

For α ∈ R, we set
Hα(X) := H(Cα, X) and H∗α(X) := H∗(Cα, X).

If dimX = 1, that is, X = C, we write Hα := Hα(C) and H∗α := H∗α(C).

Definition 2.2. A function H ∈ H∗0(L(U)) is said to be positive real if Re H(s) � 0 for all s ∈ C0

which are not singularities of H. ♦

Note that holomorphy of H on C0 is not assumed in the above definition. In fact, the holomorphy of H
on the open right-half plane, or, equivalently, the absence of any singularities in C0, is a consequence
of the positive-real property as was shown in [13].

Proposition 2.3. If H ∈ H∗0(L(U)) is positive real, then H does not have any singularities in C0,
that is, H ∈ H0(L(U)).

We close this section with two examples of operator-valued positive-real functions.

Example 2.4. (a) Consider the following heat equation on the square (0, 1)× (0, 1):

∂w

∂t
(x1, x2, t) =

∂2w

∂x2
1

(x1, x2, t) +
∂2w

∂x2
2

(x1, x2, t),

w(0, x2, t) = 0, w(1, x2, t) = 0,

∂w

∂x2
(x1, 0, t) = 0,

∂w

∂x2
(x1, 1, t) = u(x1, t),

y(x1, t) = w(x1, 1, t),

where u is the control function and y is the observation. It is shown in [13] that the transfer function
of the above system is given by

H(s)v =

∞∑
n=1

cosh(
√
s+ n2π2)γn(v)√

s+ n2π2 sinh(
√
s+ n2π2)

√
2 sin(nπ ·) ∀ v ∈ L2(0, 1),

where the linear functional γn is defined by

γn(v) :=
√

2

∫ 1

0
v(x1) sin(nπx1)dx1.
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We note that H ∈ H0(L(U)) with U = L2(0, 1). For each n ∈ N, the scalar-valued function

s 7→ 1√
s+ n2π2 tanh(

√
s+ n2π2)

is positive real, implying the positve realness of H.

(b) Let A : D(A) ⊂ U → U be densely defined and closed, and let H be the resolvent of A, that is,
H(s) = (sI −A)−1. Then the following statements are equivalent.

(1) A is dissipative and there exists z ∈ C0 such that z 6∈ σ(A).

(2) H is positive real.

(3) A is the generator of a strongly continuous contraction semigroup.

The equivalence of statements (1) and (3) is the Lumer-Phillips Theorem (see, for example, [28,
Theorem 3.4.8]), and the equivalence of statements (1) and (2) is proved in [13]. Note that, under the
assumption that (1) holds, 0 ∈ σc(H(s)) for every s ∈ C0 if A is unbounded, whilst there does not
exist s ∈ C0 such that 0 ∈ σ(H(s)) if A is bounded. ♦

3 Spectral properties of positive-real functions: the case of finite-
dimensional U

In this section, we assume that dimU = m <∞, that is, U = Cm, for some positive integer m.

Proposition 3.1. Assume that H ∈ H0(Cm×m) is positive real. Then the set I ∩ σ(H(s)) does not
depend on s.

Proof. Let z ∈ C0 and λ ∈ I be fixed and assume that λ 6∈ σ(H(z)). It is sufficient to show that
λ 6∈ σ(H(s)) for all s ∈ C0. To this end, set G(s) := H(s) − λI. Obviously, G ∈ H0(Cm×m),
G is positive real, G(z) is invertible and, for each s ∈ C0, the invertibility of G(s) is equivalent to
λ 6∈ σ(H(s)). We therefore have to show that G(s) is invertible for s ∈ C0. Since G(z) is invertible, the
set of zeros of det G(s) does not have accumulation points in C0 and therefore, G−1 is a meromorphic
Cm×m-valued function on C0, and, a fortiori, G−1 ∈ H∗0(Cm×m). By statement (2) of Lemma 2.1,
Re G(s) � 0 for s ∈ C0 such that det G(s) 6= 0, showing that G−1 is positive real. Proposition 2.3
now guarantees that G−1 does not have any singularities in C0, implying that G(s) is invertible for
s ∈ C0. �

The following corollary is an immediate consequence of Proposition 3.1.

Corollary 3.2. Assume that H ∈ H0(Cm×m) is positive real. If there exists z ∈ C0 such that H(z) is
invertible, then H(s) is invertible for all s ∈ C0. Equivalently, if det H(z) = 0 for some z ∈ C, then
det H(s) = 0 for all s ∈ C0.

Another consequence of Proposition 3.1 is the following result in which the focus is on the scalar case
(m = 1).

Corollary 3.3. Assume that H ∈ H0 is positive real. If there exists z ∈ C0 such that Re H(z) = 0,
then H(s) = i Im H(z) for all s ∈ C0, and, in particular, Re H(s) = 0 for all s ∈ C0.

Of course, Corollary 3.3 is well-known, but the way we have derived it here seems to be new. The
usual proof involves an application of the maximum principle for holomorphic (harmonic) functions
to the function s 7→ e−H(s) (s 7→ −Re H(s)) to establish that Re H(s) ≡ 0, followed by an application
of the Cauchy-Riemann equations (or, alternatively, of the open mapping theorem for holomorphic
functions) to show that H(s) ≡ i Im H(z).
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4 Spectral properties of positive-real functions: the case of infinite-
dimensional U

We start by stating the generalization of Proposition 3.1 to the operator-valued case.

Proposition 4.1. Assume that H ∈ H0(L(U)) is positive real. Then the set I ∩ σ(H(s)) does not
depend on s.

The proof of Proposition 3.1 relies on the fact that, for H ∈ H0(Cm×m) and λ ∈ C, the set {s ∈ C0 :
H(s)− λI is not invertible} does not have any accumulation points in C0, provided that H(z)− λI is
invertible for some z. The following simple example shows that this does not necessarily hold when
dimU =∞.

Example 4.2. Let U = `2(N,C), let (ξj)j∈N be a bounded sequence in C0 and set Ξ := {ξj : j ∈ N}.
Then the function H : C0 → L(U) given by

H(s) := diagj∈N(s− ξj) ∀ s ∈ C0 (4.1)

is in H0(L(U)) and 0 ∈ σp(H(ξ)) for every ξ ∈ Ξ

(a) Assume that ξj → ξ∞ ∈ C0 as j →∞ and ξj 6= ξ∞ for all j ∈ N. Obviously, cl Ξ = Ξ∪{ξ∞} ⊂ C0,
H(z) is invertible for every z ∈ C0\cl Ξ, 0 ∈ σc(H(ξ∞)) and ξ∞ ∈ C0 is an accumulation point of the
set {s ∈ C0 : H(s) is not invertible} = cl Ξ.

(b) It is easy to construct more striking examples. Let Γ ⊂ C0 be a compact set (a closed disc,
for example) and let (ξj)j∈N be an enumeration of the countable set Γ ∩ {p + iq : p, q ∈ Q}. Then
Γ = cl Ξ, H(z) is invertible for every z ∈ C0\Γ, 0 ∈ σc(H(ζ)) for every ζ ∈ Γ\Ξ and {s ∈ C0 :
H(s) is not invertible} = Γ. ♦

Whilst the above example shows that the above proof of Proposition 3.1 does not extend to the
operator-valued case, there is an alternative argument which is based on certain subharmonicity prop-
erties of the spectrum [3, 30]. For the basic theory of subharmonic functions we the reader to [22, 24].

Proof of Proposition 4.1. By [30, Proposition 2.5] (or [3, Corollary 3.4.9]) the function

θ : C0 → R, s 7→ max{Reλ : λ ∈ σ(−H(s))}

is subharmonic. Invoking statement (1) of Lemma 2.1, we have that θ(s) ≤ 0 for all s ∈ C0. Let z ∈ C0

and assume that I ∩ σ(H(z)) 6= ∅. Then θ(z) = 0, and thus, the maximum principle for subharmonic
functions implies that θ(s) ≡ 0. It follows now from [30, Proposition 2.10] that the set I ∩ σ(H(s))
does not depend on s. �

The following corollary is a straightforward consequence of statement (2) of Lemma 2.1 and Proposition
4.1.

Corollary 4.3. Assume that H ∈ H0(L(U)) is positive real and there exists z ∈ C0 such that H(z) is
invertible (that is, 0 6∈ σ(H(z)). Then H(s) is invertible for every s ∈ C0 and H−1 is positive real.

The main result of this paper (see Theorem 4.8 below) is a refinement of Proposition 4.1: the point, con-
tinuous and residual spectra will be considered separately and properties of eigenvectors and eigense-
quences will be proved. To this end, it is convenient to establish first some spectral properties of the
real part of a positive real function.

Theorem 4.4. Assume that H ∈ H0(L(U)) is positive real and let z ∈ C0. The following statements
hold.
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(1) For every s ∈ C0, 0 6∈ σr(Re H(s)).

(2) If 0 ∈ σp(Re H(z)), then 0 ∈ σp(Re H(s)) for all s ∈ C0 and the subspace ker(Re H(s)) does not
depend on s.

(3) If 0 ∈ σap(Re H(z)), then 0 ∈ σap(Re H(s)) for all s ∈ C0, and, furthermore, if (uj)j∈N is an
eigensequence of Re H(z) associated with the approximate eigenvalue 0, then there exists a subsequence
(ujk)k∈N of (uj)j∈N which, for every s ∈ C0, is an eigensequence of Re H(s) associated with 0.

(4) If 0 ∈ σc(Re H(z)), then 0 ∈ σc(Re H(s)) for all s ∈ C0.

Proof. Applying statement (4) of Lemma 2.1 with T = Re H(s), we obtain that 0 6∈ σr(Re H(s)) for
all s ∈ C0, establishing statement (1).

To prove statement (2), assume that 0 ∈ σp(Re H(z)) and let u be an arbitrary element in ker(Re H(z)).
Defining a scalar-valued function h ∈ H0 by h(s) = 〈H(s)u, u〉, it is clear that h is positive real and
Reh(z) = 0. Hence, by Corollary 3.3, Reh(s) = 0 for all s ∈ C0. By positive realness of H, the
operator Re H(s) has a self-adjoint positive semi-definite square root (Re H(s))1/2 for each s ∈ C0.
Consequently,

‖(Re H(s))1/2u‖2 = 〈(Re H(s))1/2u, (Re H(s))1/2u〉 = 〈(Re H(s))u, u〉 = Reh(s) = 0 ∀ s ∈ C0.

Hence, (Re H(s))u = 0 for all s ∈ C0 and thus 0 ∈ σp(Re H(s)) and u ∈ ker(Re H(s)) for all s ∈ C0,
establishing statement (2).

We proceed to prove statement (3). Assume that 0 ∈ σap(Re H(z)) and let (uj)j∈N be an eigense-
quence of Re H(z) corresponding to the approximate eigenvalue 0, that is, uj ∈ EU for all j ∈ N and
(Re H(z))uj → 0 as j →∞. We define a sequence (hj)j∈N of functions in H0 by setting

hj(s) := 〈H(s)uj , uj〉 ∀ s ∈ C0, ∀ j ∈ N.

Then, obviously, hj is positive real for all j ∈ N and Rehj(z)→ 0 as j →∞. Moreover,

|hj(s)| ≤ ‖H(s)‖ ∀ s ∈ C0, ∀ j ∈ N,

showing that the sequence (hj)j∈N is locally bounded. An application of Montel’s theorem [22, The-
orem 2, p. 34] yields the existence of a subsequence (hjk)k∈N which converges locally uniformly to a
function g ∈ H0 as k →∞. It is clear that g is positive real and Re g(z) = 0, and thus, by Corollary
3.3, Re g(s) = 0 for all s ∈ C0. As a consequence, for every s ∈ C0,

〈Re H(s)ujk , ujk〉 = Re 〈H(s)ujk , ujk〉 = Rehjk(s)→ Re g(s) = 0 as k →∞.

Thus, for every s ∈ C0, (Re H(s))1/2ujk → 0 as k →∞, which in turn implies that, for every s ∈ C0,
(Re H(s))ujk → 0 as k →∞. We conclude that, for all s ∈ C0, 0 ∈ σap(Re H(s)) and the subsequence
(ujk)k∈N of (uj)j∈N is an eigensequence of Re H(s) associated with 0.

Finally, to prove statement (4), assume that 0 ∈ σc(Re H(z)). As σc(Re H(z)) ⊂ σap(Re H(z)), it
follows from statement (3), that 0 ∈ σap(Re H(s)) for all s ∈ C0. Since 0 ∈ σc(Re H(z)), statement
(2) yields that 0 6∈ σp(Re H(s)) for all s ∈ C0. Furthermore, appealing to statement (1), we see that
0 6∈ σr(Re H(s)) for all s ∈ C0. It now follows that 0 ∈ σc(Re H(s)) for every s ∈ C0, completing the
proof. �

An interesting consequence of Theorem 4.4 is provided by the following corollary.

Corollary 4.5. Assume that H ∈ H0(L(U)) is positive real and let z ∈ C0. If Re H(z) is invertible,
then, for every compact set Γ ⊂ C0, there exists γ > 0 such that Re H(s) � γI for all s ∈ Γ.
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Proof. Define the function h : C0 → [0,∞) by

h(s) := inf
u∈EU

Re 〈H(s)u, u〉 = inf
u∈EU

〈(Re H(s))u, u〉 ∀ s ∈ C0,

and note that h is continuous. We proof the claim by contraposition. To this end, assume that there
exists compact Γ ⊂ C0 such that there does not exist γ > 0 with Re H(s) � γI for all s ∈ Γ, in which
case mins∈Γ h(s) = 0. Consequently, h(s0) = 0 for some s0 ∈ Γ, and so

inf
u∈EU

‖(Re H(s0))1/2u‖2 = inf
u∈EU

〈(Re H(s0))u, u〉 = 0,

showing that (Re H(s0))1/2 is not invertible. Consequently, Re H(s0) is not invertible, and so, by
Theorem 4.4, for every s ∈ C0, the operator Re H(s) is not invertible, completing the contraposition
argument. �

Recall that H ∈ H∗α(L(U)), where α < 0, is said to be strictly positive real if there exists β ∈ [α, 0)
such that the function s 7→ H(s+ β) is positive real (in which case H is holomorphic on Cβ).

Corollary 4.6. Let α < 0, H ∈ Hα(L(U)) and D ∈ L(U). Assume that H is strictly positive real
and H(s) converges to D in the uniform topology of L(U) as |s| → ∞ in C0. If ReD is invertible,
then there exists γ > 0 such that Re H(s) � γI for all s ∈ C0.

A function H ∈ H∗0(L(U)) for which there exists γ > 0 such that Re H(s) � γI for all s ∈ C0

which are are not singularities of H is somestimes called strongly positive real, see, for example, [13].
Adopting this terminology, Corollary 4.6 says that strict positive realness together with the existence
of a uniform limit with invertible real part guarantees strong positive realness.

Proof of Corollary 4.6. By the positive realness of H and the convergence assumption, it is clear that
ReD � 0, and, so by invertibilty of ReD, there exists γ1 > 0 such that ReD � 2γ1I. Consequently,
there exists ρ > 0, such that Re H(s) � γ1I for all s ∈ clC0 with |s| > ρ. By strict positive realness
of H, there exists β ∈ [α, 0) such that H̃, defined by H̃(s) := H(s+ β) for all s ∈ C0, is positive real.
Choose z ∈ C0 such that z + β ∈ C0 and |z + β| > ρ. Then Re H̃(z) = Re H(z + β) � γ1I, implying
that Re H̃(z) is invertible. Setting Γ := {s ∈ clC0 : |s| ≤ ρ}, it is clear that the set Γ̃ := Γ−β = Γ+ |β|
is compact and contained in C0, and an application of Corollary 4.6 to H̃ yields the existence of a
number γ2 > 0 such that Re H̃(s) ≥ γ2I for all s ∈ Γ̃. Consequently, Re H(s) ≥ γ2I for all s ∈ Γ.
Setting γ := min(γ1, γ2) > 0, it now follows that Re H(s) ≥ γI for all s ∈ C0, completing the proof. �

The following result on the numerical range of a positive-real function can be proved by arguments
similar to those used in the proof of Theorem 4.4, and we therefore omit the details.

Proposition 4.7. Assume that H ∈ H0(L(U)) is positive real. The following statements hold.

(1) The set I ∩W (H(s)) does not depend on s. If there exists z ∈ C0 such that I ∩W (H(z)) 6= ∅,
then, for every u ∈ EU such that 〈H(z)u, u〉 ∈ I, it follows that 〈H(s)u, u〉 = 〈H(z)u, u〉 for all s ∈ C0.

(2) The set I ∩ clW (H(s)) does not depend on s. If there exists z ∈ C0 and λ ∈ I such that
λ ∈ clW (H(z))\W (H(z)), then there exists a sequence (uj)j∈N in EU , such that 〈H(s)uj , uj〉 → λ as
j →∞ for all s ∈ C0.

We are now in the position to state and prove the main result of this paper.

Theorem 4.8. Assume that H ∈ H0(L(U)) is positive real. The following statements hold.

(1) For all s ∈ C0, I ∩ σr(H(s)) = ∅.

(2) The set I ∩ σp(H(s)) does not depend on s and, for every λ ∈ I, the subspace ker(H(s) − λI) is
independent of s.
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(3) The set I ∩ σc(H(s)) does not depend on s. Moreover, if there exists z ∈ C0 such that I ∩
σc(H(z)) 6= ∅ and if (uj)j∈N is an eigensequence of H(z) associated with the approximate eigenvalue
λ ∈ I ∩ σc(H(z)), then there exists a subsequence (ujk)k∈N of (uj)j∈N which, for every s ∈ C0, is an
eigensequence of H(s) associated with λ.

It is obvious that Proposition 4.1 can be obtained as an immediate corollary of Theorem 4.8.

Proof of Theorem 4.8. Statement (1) follows immediately from statement (4) of Lemma 2.1. To
establish statements (2) and (3), we will use a representation theorem for positive-real functions which
guarantees that there exist H0, H1 ∈ L(U) and a L(U)-valued measure H [33, Definition 2.2-1] defined
on the σ-algbra B of Borel subsets of R such that H∗0 = H0, H1 � 0, H(B) � 0 for all B ∈ B and

H(s) = iH0 + sH1 +

∫ ∞
−∞

1− iτs
s− iτ

dH(τ) ∀ s ∈ C0, (4.2)

see [27, Satz 9.2] or [33, Theorem 8.11-2].† Note that (4.2) implies in particular

Re H(1) = H1 +H(R). (4.3)

It is useful to note that, as the map B 7→ 〈H(B)u, u〉 defines a finite positive measure on B [33,
Theorem 2.2-1], we have

H(R) � H(B) ∀B ∈ B. (4.4)

Furthermore, for every s ∈ C0, let (fs,n)n∈N be a sequence of simple complex-valued functions defined
on R (that is, fn,s is Borel measurable and attains only a finite number of values) such that

sup
τ∈R

∣∣∣∣1− iτss− iτ
− fs,n(τ)

∣∣∣∣→ 0 as n→∞ ∀ s ∈ C0.

We then have that∫ ∞
−∞

fs,n(τ)dH(τ)→
∫ ∞
−∞

1− iτs
s− iτ

dH(τ) in L(U) as n→∞, ∀ s ∈ C0. (4.5)

We proceed to prove statement (2). To this end, let z ∈ C0 and assume that I ∩ σp(H(z)) 6= ∅. Let
λ ∈ I ∩ σp(H(z)) and u ∈ ker(H(z)− λI). Consequently, as 2Re H(z) = (H(z)− λI) + (H∗(z) + λI),
it follows from statement (3) of Lemma 2.1 that Re H(z)u = 0. Invoking statement (2) of Theorem
4.4, we obtain that u ∈ ker(Re H(1)). Hence, as H1 � 0 and H(R) � 0, it follows from (4.3) that

H1u = 0, (4.6)

and, furthermore, H(R)u = 0. Combining the latter with (4.4), we obtain that H(B)u = 0 for all
B ∈ B, and so, (∫ ∞

−∞
fs,n(τ)dH(τ)

)
u = 0 ∀n ∈ N, ∀ s ∈ C0. (4.7)

Together with (4.5) this yields (∫ ∞
−∞

1− iτs
s− iτ

dH(τ)

)
u = 0 ∀ s ∈ C0.

Invoking (4.2) and (4.6), we conclude that (H(s) − λI)u = (iH0 − λI)u for all s ∈ C0. But (H(z) −
λI)u = 0, showing that (iH0 − λI)u = 0. Therefore, (H(s) − λI)u = 0 for all s ∈ C0, establishing
statement (2).

† The representation formula (4.2) is the operator-valued version of a result by Cauer [6] which in turn is the right-half
plane version of a theorem due to Herglotz, see, for example, [5, Theorem 31].
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To prove statement (3), let z ∈ C0, assume that I∩σc(H(z)) 6= ∅, let λ ∈ I∩σc(H(z)) and let (uj)j∈N
be an eigensequence of H(z) corresponding to λ, that is,

lim
j→∞

(H(z)− λI)uj = 0, ‖uj‖ = 1 ∀ j ∈ N.

As an obvious consequence we have that

〈Re H(z)uj , uj〉 = Re 〈H(z)uj , uj〉 = Re 〈(H(z)− λI)uj , uj〉 → 0 as j →∞.

As Re H(z) � 0, we conclude that Re H(z)uj → 0 as j →∞, and so, in particular, 0 ∈ σap(Re H(z)).
Statement (3) of Theorem 4.4 now guarantees the existence of a subsequence (ujk)k∈N of (uj)j∈N such
that Re H(1)ujk → 0 as k →∞. Hence, as H1 � 0 and H(R) � 0, it follows from (4.3) that

H1ujk → 0 as k →∞ (4.8)

and H(R)ujk → 0 as k →∞. The latter, together with (4.4) and the fact that H(B) � 0 for all B ∈ B
implies that H(B)ujk → 0 as k →∞ for every B ∈ B. Therefore,(∫ ∞

−∞
fs,n(τ)dH(τ)

)
ujk → 0 as k →∞, ∀n ∈ N, ∀ s ∈ C0. (4.9)

For each s ∈ C0 and n ∈ N, we define operators J(s) and Jn(s) in L(U) by setting

J(s) :=

∫ ∞
−∞

1− iτs
s− iτ

dH(τ) and Jn(s) :=

∫ ∞
−∞

fs,n(τ)dH(τ)

Let ε > 0. By (4.5), for every s ∈ C0, there exists m = m(s) ∈ N such that

‖Jm(s)− J(s)‖ ≤ ε

2
. (4.10)

Moreover, (4.9) shows that, for every s ∈ C0, there exists k∗ = k∗(s) ∈ N such that

‖Jm(s)ujk‖ ≤
ε

2
∀ k ≥ k∗. (4.11)

Now, for every s ∈ C0 and every k ∈ N,

‖J(s)ujk‖ ≤ ‖J(s)ujk − Jm(s)ujk‖+ ‖Jm(s)ujk‖ ≤ ‖J(s)− Jm(s)‖+ ‖Jm(s)ujk‖.

Thus, by (4.10) and (4.11), we have that, for every s ∈ C0,

‖J(s)ujk‖ ≤ ε ∀ k ≥ k∗,

whence (∫ ∞
−∞

1− iτs
s− iτ

dH(τ)

)
ujk = J(s)ujk → 0 as k →∞, ∀ s ∈ C0. (4.12)

As (H(z) − λI)ujk → 0 as k → ∞ by hypothesis, it now follows from (4.8) and the representation
formula (4.2) with s = z that (iH0 − λI)ujk → 0 as k → ∞. Another application of (4.2) together
with (4.8) and (4.12) now shows that, for every s ∈ C0, (H(s) − λI)ujk → 0 as k → ∞. Hence, for
every s ∈ C0, (ujk) is an eigensequence of H(s) associated with λ. As λ ∈ σc(H(z)), it is now a
consequence of statements (1) and (2) that λ ∈ σc(H(s)) for all s ∈ C0, completing the proof. �

An alternative proof of statement (2) of Theorem 4.8 which does not rely on the representation formula
(4.2) can be found in the Appendix.

The following corollary shows that if H ∈ H∗0(Ω,L(U)) where Ω ⊃ C0 and if the restriction of H to
C0 is positive real, then some of the spectral properties of the restriction are inherited by H(s) for all
s in Ω\C0 which are not singularities of H.
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Corollary 4.9. Let Ω ⊂ C be open, connected and such that C0 ⊂ Ω. Let H ∈ H∗(Ω,L(U)) and set
Ω∗ := {s ∈ Ω : s not a singularity of H}. Assume that H|C0 is positive real. Then C0 ⊂ Ω∗ and the
following statements hold.

(1) Let z ∈ C0 be such that I ∩ σp(H(z)) 6= ∅ and let λ ∈ I ∩ σp(H(z)). Then λ ∈ σp(H(s)) and
ker(H(z)− λI) ⊂ ker(H(s)− λ) for all s ∈ Ω∗.

(2) Let z ∈ C0 be such that I ∩ σc(H(z)) 6= ∅ and let λ ∈ I ∩ σc(H(z)). Then λ ∈ σap(H(s)) for
all s ∈ Ω∗; furthermore, if (uj)j∈N is an eigensequence of H(z) associated with λ, then there exists a
subsequence (ujk)k∈N of (uj)j∈N which, for all s ∈ Ω∗, is an eigensequence of H(s) associated with λ.

Proof. By hypothesis, H|C0 is positive real, and so Proposition 2.3 guarantees that H does not have
any singularities in C0. Since C0 ⊂ Ω, we conclude that C0 ⊂ Ω∗.

To prove statement (1), let λ ∈ I ∩ σp(H(z)) and u ∈ ker(H(z) − λI). By statement (2) of Theorem
4.8, u ∈ ker(H(s) − λI) for all s ∈ C0, that is, (H(s) − λI)u = 0 for all s ∈ C0. As C0 ⊂ Ω∗ and
Ω∗ is connected, the identity theorem yields that (H(s) − λI)u = 0 for all s ∈ Ω∗. Consequently,
ker(H(z)− λI) ⊂ ker(H(s)− λI) and λ ∈ I ∩ σp(H(s)) for all s ∈ Ω∗, establishing statement (1).

We proceed to prove statement (2). To this end, let z ∈ C0 be such that I ∩ σc(H(z)) 6= ∅, let
λ ∈ I ∩ σc(H(z)) and let (uj)j∈N be an eigensequence of H(z) associated with λ. Invoking statement
(3) of Theorem 4.8, there exists a subsequence (vl)l∈N := (unl)l∈N of (un)n∈N which, for all s ∈ C0, is
an eigensequence of H(s) associated with λ, whence

lim
l→∞

(H(s)− λI)vl = 0 ∀ s ∈ C0.

Setting hl(s) := (H(s)− λ)vl for all s ∈ Ω∗ and all l ∈ N, it is clear that (hl)l∈N is a locally bounded
sequence in H(Ω∗, U) and hl(s)→ 0 for all s ∈ C0 as l→∞. By the vector-valued version of Vitali’s
theorem (see [2, Theorem 2.1] or [17, Theorem 3.14.1]), there exists a subsequence (hlk)k∈N of (hl)l∈N
such that (hlk)k∈N converges locally uniformly to a function h ∈ H(Ω∗, U) as k → ∞. As hl(s) → 0
for all s ∈ C0 as l→∞, we see that h(s) = 0 for all s ∈ C0 and an application of the identity theorem
shows that h(s) = 0 for all s ∈ Ω∗. Hence, setting jk := nlk , we obtain

lim
k→∞

(H(s)− λI)ujk = 0 ∀ s ∈ Ω∗.

We conclude that, for every s ∈ Ω∗, λ ∈ σap(H(s)) and (ujk)k∈N is an eigensequence of H(s) associated
with λ. �

Inspecting the proof of statement (2) and given that λ ∈ σ(H(s)) for all s ∈ C0, it may be tempting to
expect that there is a version of the identity theorem for the spectrum which ensures that λ ∈ σ(H(s))
for all s ∈ Ω∗ (and which could replace the use of the vector-valued Vitali theorem). However, in the
absence of any compactness assumptions on H(s), such an identity theorem does not hold as Example
4.2 shows.

5 Strict positive realness through feedback

Proposition 4.1 (or, alternatively, Theorem 4.8) shows that if H is an operator-valued positive-real
function and H(z) is invertible at some point z ∈ C0, then H(s) is invertible for all s ∈ C0. This
invertibility property of positive-real functions will play a key role in this section.

Let H ∈ H∗0(L(U)) be positive real and let K ∈ L(U) be such that ReK � κI for some κ > 0. Then,
by [13, Lemma 2], the operator I +KH(s) is invertible for every s ∈ C0, and so,

HK := H(I +KH)−1 ∈ H0(L(U)).
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In fact, by [13, Theorem 6.4], HK(s) is bounded on C0 as a function of s, that is, K is a stabilizing
feedback for H. Furthermore, letting u ∈ U , s ∈ C0, and setting v := (I +KH(s))−1u, we have that

Re 〈HK(s)u, u〉 = Re 〈H(s)v, (I +KH(s))v〉 = Re 〈H(s)v, v〉+ Re 〈H(s)v,KH(s)v〉 ≥ 0,

and we see that HK is positive real. We will show that, under suitable additional assumptions, HK

is strictly positive real. This can be useful in the context of absolute stability theory where frequently
strict positve realness assumptions are made.

Theorem 5.1. Let H ∈ H∗α(L(U)) with α < 0 and let β ∈ (α, 0). Assume that H|C0 is positive real
and that there exists z ∈ C0 such that H(z) is invertible. Then H(s) is invertible for every s ∈ C0

and H−1 is positive real. Under the additional assumptions

(A1) H−1 extends holomorphically to clCβ,

(A2) there exists κ > 0 such that

Re 〈H−1(β + iω)u, u〉 ≥ −κ ω ∈ R, ∀u ∈ EU ,

(A3) lim inf |s|→∞
(
Re 〈H−1(s)u, u〉/ log |s|

)
≥ 0 for all u ∈ EU , where the limes inferior is taken in

the vertical strip β ≤ Re s ≤ 0,

the function HK is strictly positive real for every K ∈ L(U) such that ReK � κI.

Theorem 5.1 combined with loop-shifting can be useful in the context of absolute stability theory where
frequently strict positve realness assumptions are made: a Lur’e system with positive-real linear part
H and nonlinearity N can be replaced, via an application of Theorem 5.1 together with loop-shifting,
by an equivalent Lur’e system with strictly positive-real linear part HK and nonlinearity N +K.

Proof of Theorem 5.1. Since H|C0 is positive real and there exists z ∈ C0 such that H(z) is
invertible, it follows from Corollary 4.3 that H(s) is invertible for all s ∈ C0 and H−1 is positive real.
Let K ∈ L(U) be such that ReK � κI. Noting that

HK = H(I +KH)−1 = (H−1 +K)−1,

it is clear that it is sufficient to show that H−1 +K is strictly positive real. Obviously, by assumption
(A1), the function s 7→ H−1(β+ s) is holomorphic on clC0 and, in particular, does not have any poles
in clC0. Invoking assumption (A2), we obtain

Re 〈(H−1(β + iω) +K)u, u〉 ≥ 0 ∀ω ∈ R, ∀u ∈ EU . (5.1)

Furthermore, the positive realness of H−1 together with assumption (A3) yields

lim inf
|s|→∞, s∈clC0

(
Re 〈(H−1(s+ β) +K)u, u〉/ log |s+ β|

)
≥ 0 ∀u ∈ EU . (5.2)

Inequalities (5.1) and (5.2) together with the Phragmén-Lindelöf principle (see [24, Corollary 2.3.3])
applied to the harmonic function C0 → R, s 7→ −Re 〈(H−1(s+ β) +K)u, u〉 lead to

Re 〈(H−1(s+ β) +K)u, u〉 ≥ 0 ∀ s ∈ C0, ∀u ∈ EU ,

establishing the strict positive realness of the function s 7→ H−1(s) +K. �
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Corollary 5.2. Let H ∈ H∗α(L(U)) with α < 0 and let β ∈ (α, 0). Assume that H|C0 is positive real
and that there exists z ∈ C0 such that H(z) is invertible. Then H(s) is invertible for every s ∈ C0

and H−1 is positive real. If assumption (A1) of Theorem 5.1 holds and there exists κ > 0 such that

lim inf
|s|→∞, β≤Re s≤0

(
inf
u∈EU

Re 〈H−1(s)u, u〉
)
> −κ, (5.3)

then the function HK is strictly positive real for every K ∈ L(U) such that ReK � κI.

Proof. By hypothesis there exists ρ > 0 such that

inf
u∈EU

Re 〈H−1(s)u, u〉 ≥ −κ for all s ∈ C such that β ≤ Re s ≤ 0 and |s| > ρ.

The function Cβ → R, s 7→ infu∈EU Re 〈H−1(s)u, u〉 is continuous and since infu∈Eu Re 〈H−1(iω)u, u〉 ≥
0 for all ω ∈ R, it follows that there exists γ ∈ (β, 0) such that

inf
u∈EU

Re 〈H−1(s)u, u〉 ≥ −κ for all s ∈ C such that γ ≤ Re s ≤ 0 and |s| ≤ ρ.

Consequently,

Re 〈H−1(s)u, u〉 ≥ −κ for all u ∈ EU and all s ∈ C such that γ ≤ Re s ≤ 0,

implying that assumptions (A2) and (A3) of Theorem 5.1 hold (with β in Theorem 5.1 replaced by
γ). Hence, HK is strictly positive real for every K ∈ L(U) such that ReK � κI. �

Example 5.3. Consider the matrix-valued function

H(s) :=


1√

s tanh(
√
s)

1

s
1

s

2(s2 + s+ 1)

s(s+ 1)


Noting that the function 1/(

√
s tanh(

√
s)) is meromorphic on C, it is clear that H is also meromorphic

on C. The poles of H are located at 0, −1 and −n2π2, where n ∈ N. It is straightforward to check
that 2(s2 + s + 1)/(s(s + 1)) is positive real. Furthermore, it is well-known that 1/(

√
s tanh(

√
s)) is

positive real, see [10, Section 1.1] or [13, Example 7.11]. Combining this with [13, Theorem 3.7], it is
a routine exercise to show that H is positive real.

We claim that the conditions of Corollary 5.2 hold. This means we need to show that assumption
(A1) of Theorem 5.1 and (5.3) are satisfied.

Assumption (A1) of Theorem 5.1. Setting

N(s) :=


√
s

tanh(
√
s)

1

1
2(s2 + s+ 1)

s+ 1

 and D(s) :=

(
s 0
0 s

)
,

we see that H = ND−1. Obviously, for all sufficiently large x > 0, N(x) is invertible, and, hence, so
is H(x). Therefore, N−1 and H−1 are meromorphic on C and

H−1(s) = D(s)N−1(s) =
s

det N(s)


2(s2 + s+ 1)

s+ 1
−1

−1

√
s

tanh(
√
s)

 . (5.4)
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As H is positive real, it follows from Proposition 3.1 that H(s) is invertible for all s ∈ C0. Consequently,
N(s) is invertible for all s ∈ C0. Furthermore, it can be shown that∣∣∣∣ √

s

tanh(
√
s)

∣∣∣∣ ≥ 1 and

∣∣∣∣2(s2 + s+ 1)

s+ 1

∣∣∣∣ > 4

3
∀ s ∈ I,

and thus, N(s) is invertible for all s ∈ I. It now follows that,

H(s) is invertible for all s ∈ clC0. (5.5)

Let α ∈ (−1, 0). Since

lim
|s|→∞, s∈Cα

∣∣∣∣ √
s

tanh(
√
s)

∣∣∣∣ = lim
|s|→∞, s∈Cα

∣∣∣∣2(s2 + s+ 1)

s+ 1

∣∣∣∣ =∞,

we see that there exists ρ > 0 such that N(s), and hence H(s), is invertible for all s ∈ Cα with
|s| ≥ ρ. Together with (5.5) this implies that there exists β ∈ (α, 0) such that H(s) is invertible for
all s ∈ clCβ. Thus, H−1 is holomorphic on clCβ, showing that the assumption (A1) of Theorem 5.1
holds.

Condition (5.3). Note that

det N(s) = 2s3/2h(s) ∀ s ∈ Cβ\(β, 0]

where h is holomorphic on Cβ\(β, 0] and

lim
|s|→∞,s∈Cβ

h(s) = 1. (5.6)

Setting

h1(s) :=
1√

s(s+ 1)
and h2(s) :=

1

2 tanh(
√
s)
∀ s ∈ Cβ\(β, 0]

it follows from (5.7) that

H−1(s) =
1

h(s)


√
s+ h1(s) − 1

2
√
s

− 1

2
√
s

h2(s)

 .

Now h1(s) → 0 and h2(s) → 1/2 as |s| → ∞ in Cβ, and so, invoking (5.6), we see that there exists
r > 0 such that

Re
(
(
√
s+ h1(s))/h(s)

)
> 0 and Re(h2(s)/h(s)) > 0 ∀ s ∈ Cβ such that |s| ≥ r.

As a consequence, it is now straightforward to show that

〈(Re H−1(s))u, u〉 ≥ −2|1/(2h(s)
√
s)| ∀u ∈ EC2 , ∀ s ∈ Cβ such that |s| ≥ r,

which in turn implies that

lim inf
|s|→∞, s∈Cβ

(
inf

u∈EC2
Re 〈H−1(s)u, u〉

)
≥ 0.

This means that (5.3) holds for every κ > 0 and it follows from Corollary 5.2 that HK is strictly
positive real for every K ∈ C2×2 such that ReK is positive definite. ♦

If H is a square rational matrix, then Theorem 5.1 takes a particularly simple form. We recall that
z ∈ C is said be a zero of a square rational matrix H = ND−1 if det N(z) = 0, where D and N are
right-coprime polynomial matrices. The poles of H coincide with the zeros of det D.
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Corollary 5.4. Let H be a rational Cm×m-valued positive-real function and assume that H does not
have any zeros in I. Then HK is strictly positive real for every K ∈ Cm×m such that ReK is positive
definite.

Proof. Write H = ND−1, where D and N are right-coprime polynomial matrices. It follows from the
assumption on the zeros of H that det N(s) 6≡ 0, and so there exists z ∈ C0 such that det N(z) 6= 0. By
positive realness of H, z is not a pole of H, and thus, det D(z) 6= 0. Consequently, H(z) is invertible
with inverse D(z)N−1(z). Therefore, by Corollary 4.3, H(s), and hence N(s), are invertible for all
s ∈ C0 and H−1 is positive real. Furthermore,

H−1(s) = D(s)N−1(s) ∀ s ∈ C0. (5.7)

By hypothesis, det N(s) 6= 0 for all s ∈ I which, together with (5.7), implies that there exists α < 0
such that H−1 does not have any poles in Cα, showing that assumption (A1) of Theorem 5.1 holds
for any β ∈ (α, 0).

Since H−1 is rational and positive real, it follows from [1, Theorem 2.7.2] or [13, Corollary 3.10] that

H−1(s) = J0 + J1s+ J(s) ∀ s ∈ C, (5.8)

where J0, J1 ∈ Cm×m with J1 = J∗1 � 0 and J is a strictly proper rational matrix. As an immediate
consequence of (5.8) we have that

Re H−1(iω) = ReJ0 + Re J(iω) ∀ω ∈ R.

As Re H−1(iω) � 0 for all ω ∈ R and Re J(iω)→ 0 as |ω| → ∞, we see that

Re J0 � 0. (5.9)

Let K ∈ Cm×m be such that ReK is positive definite. Then there exists κ > 0 such that ReK � κI.
Invoking (5.8) and (5.9) and using that J is strictly proper, we conclude that there exist γ ∈ (α, 0)
and ρ > 0 such that

Re H−1(s) + κI � 0 ∀ s ∈ Σ(γ, 0) such that |s| > ρ, (5.10)

where Σ(γ, 0) denotes he closed vertical strip given by γ ≤ Re s ≤ 0. On the compact set Σ(γ, 0)∩{ξ ∈
C : |ξ| ≤ ρ}, the function Re H−1 is uniformly continuous and, since Re H−1(iω) � 0 for all ω ∈ R, it
is clear that there exists β ∈ [γ, 0) such that

Re H−1(s) + κI � 0 ∀ s ∈ Σ(β, 0) such that |s| ≤ ρ, (5.11)

It now follows from (5.10) and (5.11) that

Re H−1(s) + κI � 0 ∀ s ∈ Σ(β, 0),

showing that assumptions (A2) and (A3) of Theorem 5.1 hold. Consequently, Theorem 5.1 guarantees
that HK is strictly positive real. �

6 Appendix

Here we give an alternative proof of statement (2) of Theorem 4.8 which does not rely on the repre-
sentation formula (4.2).
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Alternative proof of statement (2) of Theorem 4.8. Let H ∈ H0(L(U)) be a positive-real
function, let z ∈ C0, assume that I ∩ σp(H(z)) 6= ∅, let λ ∈ I ∩ σp(H(z)) and u ∈ ker(H(z)− λI). We
need to prove that u ∈ ker(H(s)− λI) for all s ∈ C0. We claim that it is sufficient to show that

H(s)v = H(z)v ∀ s ∈ C0, ∀ v ∈ ker(Re H(z)) (6.1)

Indeed, as u ∈ ker(H(z)− λI), it follows from statement (3) of Lemma 2.1 that u ∈ ker(H∗(z) + λI),
and so u ∈ ker(Re H(z)), which, together with (6.1), yields

(H(s)− λI)u = (H(z)− λI)u = 0 ∀ s ∈ C0.

To establish (6.1), let v ∈ ker(Re H(z)). By statement (2) of Theorem 4.4, v ∈ ker(Re H(s)) for all
s ∈ C0, and so

H(s)v = −H∗(s)v ∀ s ∈ C0.

Consequently,
〈H(s)v, w〉 = −〈v,H(s)w〉 ∀ s ∈ C0, ∀w ∈ U.

Hence, for s ∈ C0 and ζ ∈ C, ζ 6= 0, such that s+ ζ ∈ C0, the following identity holds〈
1

ζ
(H(s+ ζ)−H(s))v, w

〉
= −

〈
v,

1

ζ̄
(H(s+ ζ)−H(s))w

〉
∀w ∈ U.

Now consider the special cases ζ = r and ζ = ir, where r ∈ R, r 6= 0, and let r → 0 to obtain

〈H′(s)v, w〉 = ∓〈v,H′(s)w〉 ∀ s ∈ C0, ∀w ∈ U.

It follows that
d

ds
〈H(s)v, w〉 = 0 ∀ s ∈ C0, ∀w ∈ U,

whence
〈H(s)v, w〉 = 〈H(z)v, w〉 ∀ s ∈ C0, ∀w ∈ U.

Therefore, H(s)v = H(z)v for all s ∈ C0, establishing (6.1) and completing the proof. �

The above proof is similar to that of [4, Proposition 2.2] which shows that for a rational Cm×m-valued
positive real function H, the function s 7→ H(s)u is constant for every u ∈ Cm for which there exists
z ∈ C0 such that 〈H(z)u, u〉 = 0.
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