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The Circle Criterion 
and Input-to-State Stability

F
eedback interconnections 
consisting of a linear sys-
tem L in the forward path 
and a static sector-bound-
ed nonlinearity f in the 

negative feedback path are ubiqui-
tous in control theory and practice 
(see figures 1 and 2). With origins 
in the classical work [1], such inter-
connections are referred to as sys-
tems of Lur’e type, while the study 
of their stability properties consti-
tutes absolute stability theory. 

Absolute stability theory inves-
tigates stability through the inter-
play of the frequency-domain 
properties of the linear component 
L and sector data for the nonlinear-
ity f. In essence, if L  and the sector 
data of f are matched in a suffi-
ciently “nice” manner, then the 
interconnection is stable. Notwith-
standing the simplicity of its for-
mulation, stability analysis of Lur’e 
systems and closely related topics, 
such as hyperstability, the Kalman-
Popov-Yakubovich lemma, also 
known as the positive-real lemma, 
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passivity, positive realness, and the S-procedure, embrace 
subtle features that have generated much attention since 
the appearance of [1]. This attention relates not only to the 
early literature on the emerging area of nonlinear control—
in [2], it is noted that, by 1968, over 200 papers on absolute 
stability had appeared—but also to the later literature as 
evidenced by the survey articles [3]–[5]. Accounts of the 
classical theory can be found in many textbooks and mono-
graphs [6]–[15]. A central theme of the present article is a 
particular criterion for absolute stability, namely, the circle 
criterion. We recall this result in the section “The Circle 
Criterion and Lyapunov Stability.” While the circle crite-
rion is well established, we consider it from a perhaps unfa-
miliar—but nevertheless intriguing—point of view, 
namely, by relating it to a  complexified version of the Aizer-
man conjecture [16], [17]. With reference to the feedback 
interconnection of Figure 1, with L5 1A, b, c 2 , a linear sin-
gle-input, single-output state-space system, and locally 
Lipschitz sector-bounded f, with av2 , vf 1v 2 , bv2 for all 
v, the Aizerman conjecture postulates a characterization of 
asymptotic stability of the zero equilibrium of the intercon-
nection, for all such f,  in terms of stabilizing gains for L. In 
particular, it conjectures that the equilibrium of the inter-
connection is asymptotically stable if and only if A2 kbc* is 
Hurwitz for all gains k [ 1a, b 2 . This conjecture is known 
to be false but holds true in case of the complexified version 
alluded to above. 

A distinguishing facet of this article is a treatment of 
systems of Lur’e type with the additional feature of an 
exogenous input or disturbance d, as shown in Figure 3, 
wherein the single-input, single-output linear system L in 
the forward path has the state-space realization 

 x
# 1t 2 5Ax 1t 2 1 bu 1t 2 , x 10 2 5 x0,

 y 1t 2 5 c*x 1t 2
with the function u given by the feedback relation 

 u 1t 2 5 d 1t2 2 f 1c*x 1t 22 .
For a specific example, see “An Example from Circuit 
Theory.” The investigation in this article of Lur’e-type sys-
tems with input is predicated on the concept of input-to-
state stability (ISS), which we outline in ”The Concept of 

Input-to-State Stability.” In the specialized context of the 
Lur’e interconnection in Figure 3, ISS pertains to stability of 
the map from the initial condition and disturbance pair 1x0, d2  to the state x. Moreover, ISS of the interconnection 
implies absolute stability of the interconnection. In the sec-
tion “The Circle Criterion and ISS,” the circle criterion is 
embedded in an ISS framework. This framework subsumes 
variants of the classical circle criterion and establishes that 
the hypotheses of the classical theory not only imply abso-
lute stability but also ensure the stronger ISS property. 
Applications of this theory to systems with quantization, 
output disturbances, and hysteresis are described in 
“Quantization and Output Disturbances” and “Hysteretic 
Feedback Systems.” 

The treatment of the circle criterion in this article dif-
fers from the classical framework in three fundamental 
aspects:  i) nonlinearities of greater generality than the 
standard class of locally Lipschitz functions are permitted 
in the feedback path; ii) in contrast with most of the exist-
ing literature, wherein the focus is on global asymptotic 
stability and L2 or L` stability, ISS issues are addressed 
here, in the spirit of [18], [19]; and iii) the sector conditions 
of the classical theory are weakened. With reference to i), 
we develop a framework of sufficient generality to encom-
pass not only time-varying continuous nonlinearities but 
also discontinuous nonlinearities, such as quantization as 
well as certain causal operators, in particular, hysteresis, 
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FIGURE 1 A classical Lur’e system. The negative feedback inter-
connection consists of a linear system L in the forward path and a 
static, sector-bounded nonlinearity f  in the feedback path.

FIGURE 2 Sector-bounded nonlinearity f. The graph of f  is con-
tained in the shade d sector determined by two lines through the 
origin.
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FIGURE 3 Lur’e system. This system consists of a linear system L 
and a static nonlinearity f with exogenous  input d, representing 
either a reference or disturbance signal.
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in the feedback path. With reference to ii), we identify con-
ditions on the linear and nonlinear components in the 
feedback loop under which ISS of the interconnection is 
guaranteed. With reference to iii), through the concept of 
a generalized sector condition, the investigation is 
extended to include nonlinearities that satisfy a sector 
condition only within the complement of a compact inter-
val; see Figure 4. For a prototype of iii), see “An Example 
from Circuit Theory.” To facilitate the treatment of iii), a 
theory is developed pertaining to ISS with bias; this con-

cept is outlined in “The Concept of Input-to-State Stabil-
ity.” The underlying approach to ISS with bias can be 
described as follows. With a given continuous nonlinear-
ity f  satisfying a sector condition on the complement R\K 
of the compact interval K, as in Figure 4, we associate a 
continuous function f

|
 that  satisfies the sector condition 

on R, as in Figure 2, and coincides with f  on R\K. We then 
exploit the equivalence of the two interconnections shown 
in Figure 5, wherein d

|
J d1 f

|1y22 f 1y2 . In particular, if the 
interconnection in Figure 5(b) is ISS, then the original 

Consider the circuit in Figure S1, consisting of a capaci-

tor with capacitance C . 0, an inductor with inductance 

L . 0, a current source i, and a nonlinear resistive element 

with current-voltage characteristic given by the continuously 

differentiable function h : R S R. Adopting the current through 

the inductor L and the voltage across the capacitor C as the 

state variables x1 and x2, respectively, elementary circuit anal-

ysis gives 

 Lx
#
1 1t 2 5 x2 1 t 2 , Cx

#
2 1t 2 52x1 1t 2 2 h 1x2 1t 22 1 i 1t 2 .

We thus arrive at the equivalent representation 

 x
# 1 t 2 5Ax 1 t 2 1 bu 1 t 2 , u 1 t 2 5 d 1 t 2 2 f 1c*x 1 t 22 ,  (S1) 

where 

 x5 ¢x1

x2
 ≤ , A5 ¢ 0 1/L

21/C 0
≤ , b5 ¢0

1
≤ 5 c,

 f 1v 2 5 h 1v 2
C

, d 1t 2 5 i 1t 2
C

, (S2)

and c* denotes the transpose of the column vector c. This 

structure forms a prototype for the general class of systems 

investigated in this article. Note that the transfer function G of 

the linear system 1A, b, c 2 , given by 

 G 1s 2 5 c* 1sI2A 221b5
s

s 21 1/ 1CL 2 ,  (S3) 

is positive real. 

NONNEGATIVE RESISTANCE ELEMENT 

We assume that h satisfies the condition 

 0 # h 1v 2v, v [R. (S4) 

Consider first the unforced system, that is, i5 0. Then a 

suitable version of the classical circle criterion, given in Theo-

rem 13, guarantees that there exists g . 0 such that every so-

lution x  of (S1) is defined on 30, ` 2  and 

7x 1 t 2 7 # g 7x 10 2 7 , t $ 0.

If, in (S4), strict inequality holds for every v 2 0, then, by Theo-

rem 13, limtS`x 1 t 2 5 0, that is, zero is globally attractive. 

Now consider the system with forcing, that is, i20. If, in (S4), 

strict inequality holds for every v 2 0 and if limvS;` k h 1v 2 k 5 `, 

then Theorem 17 can be used to show that the system given 

by (S1) and (S2) is ISS; see Example 19. 

NEGATIVE RESISTANCE ELEMENT 

Finally, let h describe a negative resistance element, that is, 

h 10 2 5 0, hr 10 2 , 0, h 1v 2 S ` as v S `, and h 1v 2S2` as 

vS2`; an example is shown in Figure S2. Such a character-

istic typically occurs if the resistive element is given by a twin-

tunnel-diode circuit. In the case of negative resistance, condi-

tion (S4) does not hold for all v [ R but only for all v [ R\K  for 

some suitable compact interval K. This situation is addressed 

in Example 22. 

An Example from Circuit Theory

FIGURE S2 Negative resistance element with characteristic h. 
The function h satisfies h 10 2 5 0, h r 10 2 , 0, h 1v 2S` as v S `, 
and h 1v2S 2` as v S `.

Voltage v

Current = h (v )

ιCurrent
Source

Nonlinear
Resistance
Element h

C

L

FIGURE S1 Example from circuit theory. A parallel connection 
of a current source, capacitor, inductor, and nonlinear resistive 
element h.
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Since its inception in the 1980s, the concept of ISS has gen-

erated a rich body of results relating to stability properties 

of nonlinear systems with inputs. A succinct description of the 

area can be found in [38]. Here, we provide a brief overview, 

and, for simplicity of presentation, we restrict attention to sin-

gle-input systems. 

ISS concerns stability-type questions pertaining to systems 

with input u, which, on the one hand, might be an exogenous 

disturbance/perturbation or, on the other hand, might be a con-

trol open to choice. These systems are of the form 

 x
# 1t 2 5 g 1x 1 t 2 , u 1 t 22 , x 10 2 5 x0,  (S5) 

where, typically, it is assumed that g : Rn 3 R S Rn is suffi-

ciently regular to ensure that, for each initial condition x0 [ Rn 

and every locally essentially bounded input u [ Lloc
` 30, ` 2 , sys-

tem (S5) has a unique solution x : 30, 2̀ S Rn. ISS investigates 

properties of the map 

1x 0, u 1 # 22  A x 1 # 2
using a concept that encompasses two desirable modes of dy-

namic behavior. 

i) Bounded-input bounded-state (BIBS) property: for every 

x0 [ Rn and every essentially bounded input u, the solution 

x  of (S5) is bounded. 

ii) Convergent-input convergent-state (CICS) property: for ev-

ery x0[Rn and every input u with u 1 t 2 S 0 as t S `, the 

solution x  of (S5) is such that x 1 t 2 S 0 as t S `. 

By way of motivation, consider the single-input, linear ini-

tial-value problem 

x
# 1 t 2 5Ax 1 t 2 1 bu 1 t 2 , x 10 2 5 x0, A [ Rn3n, b [ Rn (S6) 

with unique solution x : 30, 2̀ S Rn given by 

x 1t 2 5 eAtx013
t

0
eA1t2s2bu 1s 2  ds, t $ 0.

If we assume that A is Hurwitz, then there exist M $ 1 and 

a . 0 such that 

7eAt 7 # Me2at, t $ 0.

Therefore, 

7x 1 t 2 7 # Me2at 7x0 7 1M 7b 7  sup
s[ 30,t4 7u 1s2 73

t

0
e2a

1t2s2ds, t $ 0.

and hence, with g J M 7b 7 /a, we have 

 7x 1 t 2 7 # Me2at 7x0 7 1g sup
s[ 30,t4 7u 1s 2 7 , t $ 0. (S7) 

Thus, for the linear system (S6), the Hurwitz condition on A 

leads to the estimate (S7), which, in turn, implies both the BIBS 

property and the CICS property. Conversely, if there exist con-

stants M, a, g . 0 such that (S7) holds for all solutions of (S6), 

then A is Hurwitz. 

In the context of the nonlinear system (S5), the natural coun-

terpart of the Hurwitz condition on A is the property that, with 

zero input u5 0, the origin 0 [ Rn is an equilibrium of the system 

x
#
5 g 1x, 0 2 , that is, g 10, 0 2 5 0, and this equilibrium is globally 

asymptotically stable (GAS). In contrast with the linear system, 

the GAS property implies neither the BIBS nor the CICS prop-

erty. For example, the scalar system x
#
52x1 x2u has the GAS 

property; however, with initial data x 10 2 5 1 and bounded and 

convergent input u : t A 2e2t, the system has the unbounded 

solution x : t  A et, and thus both the BIBS and CICS properties 

fail to hold. In the nonlinear case, it is therefore natural to seek 

a counterpart to (S7) that implies the GAS property, the BIBS 

property, and the CICS property. This goal forms the basis of the 

definition of input-to-state stability. In the following, comparison 

functions of class K, K`, and KL play a key role; these function 

classes are defined in “Notation and Terminology.” 

DEFINITION S1 

System (S5) is ISS if there exist g1 [ KL and g2 [ K such 

that, for all 1x0,u 2 [ Rn 3 Lloc
` 30, 2̀ , the unique solution 

x : 30, 2̀ S Rn is such that 

 7x 1 t 2 7 # g1 1 t, 7x 0 7 2 1g2 1 sup
s[ 30,t4 7u 1s2 7 2 , t $ 0. (S8)

The concept of ISS has an equivalent definition. 

DEFINITION S2 

System (S5) is ISS if there exist g1 [ KL and g2 [ K such 

that, for all 1x0,u 2 [ Rn 3 Lloc
` 30,`2 , the unique solution 

x : 30, 2̀ S Rn is such that 

 7x 1 t 2 7 # max5g1 1 t, 7x0 7 2 , g2 1 sup
s[ 30,t4 7u 1s 2 7 26, t $ 0. (S9) 

If system (S5) is ISS, then it has the GAS, BIBS, and 

CICS properties. ISS admits a characterization in terms of 

a Lyapunov-like function. Specifically, system (S5) is ISS 

if and only if there exists a smooth function V : Rn 3 R S R 

and a1, a2, a3, a4 [ K ̀  such that a1 1 7 z 7 2 # V 1z 2 # a2 1 7z 7 2 
and 8=V 1z 2 , g 1z, v 2 9 # 2a3 1 7z 7 2 1a4 1|v |2  for all z [ Rn and all 

v [ R. 
A variant of the ISS estimate (S9), namely, 

7x 1 t 2 7 # max5g1 1 7x0 7 , t 2 ,g2 1 sup
s[ 30,t4 7u 1s 2 7 1u26, t $ 0,  (S10) 

where u $ 0 is a constant, plays a role in the investigations in 

this article. 

If u 5 0 in (S10), then (S9) is recovered. If u . 0 and 

there exist g1 [ KL and g2 [ K` such that (S10) holds for all 1x 0, u 2 [ Rn 3 Lloc
` 30,`2 , then we say that (S5) is ISS with bias 

The Concept of Input-to-State Stability
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interconnection in Figure 5(a) is ISS with bias, where the 
bounded function f

|
2 f  is the source of the bias term. 

With a view to a broad treatment of i) and iii), we adopt 
a set-valued standpoint that gives rise to a formulation of 
the basic problem in terms of a differential inclusion. The 
theory of differential inclusions mirrors fundamental 
aspects of the standard theory of differential equations [20]–
[22]. In a control context, this theory has ramifications in the 
study of discontinuous feedback, hybrid systems, systems 
with quantization, and hysteretic systems. Differential 
inclusions are prominent in the tutorial articles [23] and [24] 
on discontinuous dynamical systems and hybrid dynamical 
systems, respectively. 

Against this background and with reference to Figure 6, 
the focus of this article is a tutorial overview of absolute 
 stability, ISS, and boundedness properties of the feedback 
interconnection of a finite-dimensional, linear, single-
input, single-output system 1A, b, c 2  and a set-valued non-
linearity F. Throughout, we assume that D is a set-valued 
map in which input or disturbance signals are embedded. 
As a simple example to fix ideas, consider again the inter-
connection shown in Figure 3 with a sector-bounded non-
linearity as in Figure 2, with ay2 # yf 1y2 # by2 for all y, 
and disturbance d. This system is subsumed by the system 
shown in Figure 6, where the set-valued maps D and F are 
defined by 

 D 1t 2 J 5d 1t 2 6,
 F 1 y2 J e 3ay, by 4, y $ 0, 3by, ay 4, y , 0.

Note that F satisfies the sector condition 

 ay2 # yw # by2,  y [ R, w [ F 1y 2 ,
which, for economy of notation and keeping mind that 
F 1y 2  is a set, we also write as 

 ay2 # yF 1y2 # by2,  y [ R.

Absolute stability results typically depend on the interplay of 
frequency-domain properties of the linear component and the 
sector constraints for the nonlinearity, but not onthe particular 
form or shape of the nonlinear component. Therefore, it seems 
natural to consider set-valued nonlinearities in the context 

f (y )

y

FIGURE 4 Nonlinearity f satisfying a generalized sector condition. 
The points 1y,f 1y 22  of the graph of f are contained in the shaded 
area, for all |y| sufficiently large.
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(a) (b)

FIGURE 5 Equivalent interconnections. The nonlinearity f satisfies 
a sector condition on the complement R\K  of the compact interval 
K. The continuous function f

|
 coincides with f on R\K  and satisfies 

the same sector condition but on the whole real line. Then f
|
2 f  is 

bounded, and d
|
J d1 f

|1y 2 2 f 1y 2  is locally bounded. The term 
f
|1y 2 2 f 1y 2  is the source of the ISS bias.

Δ
+

−
(A, b, c )

Φ

FIGURE 6 A system of Lur’e type in a set-valued setting. The linear 
system 1A, b, c 2  is interconnected with the set-valued nonlinearity 
F, and the resulting feedback system is subjected to a set-valued 
exogenous input D.

g2 1u2 . 0. In this case, the BIBS property continues to hold, 

but the CICS property fails to hold. However, with a converg-

ing input u 1t 2S 0 as t S `, a particular asymptotic property of 

solutions is guaranteed, namely, 

 lim sup
tS`

7x 1 t 2 7 # g2 1u2 ,  
and therefore, while the state might fail to approach zero 

asymptotically, it must approach the ball of radius g2 1u 2  cen-

tered at zero. In other words, the asymptotic behavior cannot 

deviate from zero by more than the bias term g2 1u 2 . 0. Note 

that, since g2 [ K`, if the bias parameter u tends to zero, 

then g2 1u 2  also tends to zero and thus ISS, and its attendant 

properties of GAS and CICS are guaranteed in the limit as 

u T 0. The concept of ISS with bias is equivalent to that of 

input-to-state practical stability discussed in [49, Definition 

2.2, Remark 1].
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of absolute stability theory. This point of view is becoming 
more widespread [15], [19], [25], [26]. 

Of course, if, as in the early classical literature on abso-
lute stability, we restrict attention to interconnections with 
only static nonlinearities in the feedback path, then there is 
nothing to be gained by adopting a set-valued formula-
tion; indeed such a formulation would be pedantic. The 
point to bear in mind here is that we seek an analytical 
framework of sufficient generality to encompass interalia 
feedback systems with causal operators, and hysteresis 
operators in particular, in the feedback loop. To illustrate 
this objective, let F be a causal operator acting on scalar-
valued functions in the domain dom 1F 2  of F, which is a 
subset of C 30, `2 . Consider the feedback system, structur-
ally of Lur’e type, with input d, given by the functional 
differential equation 

 x
# 1t2 5Ax 1t 2 1 b 3d 1t2 2 1F 1c*x 22 1t 24. (1)

By causality of F we mean that, for all y, z [ dom 1F 2  and 
all t . 0, if y and z coincide on the interval 30, t 4, then F 1y 2  
and F 1z 2  also coincide on 30, t 4. To associate (1) with the 
structure of Figure 6, we assume that F can be embedded 
in a set-valued map F in the sense that, for every 
y [ dom 1F 2 , 
 1F 1y22 1t2 [F 1y 1t 22 ,  a.a. t $ 0. (2)

If the input d is such that d 1t 2 [ D 1t 2  for almost every t, 
then every solution of (1) is necessarily a solution of the 
feedback interconnection in Figure 6. In this sense, proper-
ties of solutions of the feedback interconnection are inher-
ited by solutions of (1). Therefore, if the analysis can 
establish desirable properties of solutions of the overarch-
ing formulation in Figure 6, then these properties also 
hold for solutions of (1). As a concrete example, consider 
backlash or mechanical play, illustrated in Figure 7(a), and 
 comprising a link consisting of two components, denoted 
I and II. The displacements of each part, with respect to a 
fixed origin, at time t $ 0 are given by y 1t 2  and z 1t 2  with 0 y 1t2 2 z 1t2 0 # s for all t $ 0, and z 10 2 5 y 10 2 1j, where 
j [ 32s, s4 plays the role of the initial condition. The posi-
tion z 1t 2  of II remains constant as long as the position y 1t 2  
of I remains within the interior of II. For each continuous 
function y, we describe the evolution of the position of I by 
denoting the corresponding position of II by z 1t2 5 1F 1y22 1t2 . 
The action of the operator F is captured in Figure 7(b). 
Observe that, for each y [ C 30, ` 2 , the embedding 

(2) holds if we define the set-valued map F by 
F 1s2 J 3s2s, s1s4 for all s [ R. As shown in this article, 
the operator F is causal and forms the basic building block 
of the class of hysteresis operators known as Preisach 
operators, see ”Hysteretic Feedback Systems.” The rele-
vance of hysteresis within the control community is under-
lined by the special issue of IEEE Control Systems Magazine 
[27]; see also [28]–[35]. 

For notation and terminology used throughout this arti-
cle, see “Notation and Terminology.” Formal proofs of the 
stated results can be found in the section “Proofs.” 

FEEDBACK SYSTEMS WITH 
SET-VALUED NONLINEARITIES
The feedback system shown in Figure 6 corresponds to the 
initial-value problem 

 x
# 1t22Ax 1t 2 [ b 1D 1t 22F 1c*x 1t222 ,  x 102 5 x0 [ Fn, D [ DF,

 (3)

where A [ Fn3n, b, c [ Fn, F [ UF, and F is either R or C. 
For most applications, only the case F5R is relevant. How-
ever, to investigate the relationship between the classical 
circle criterion and the complex Aizerman conjecture, it is 
convenient to develop the theory also for the complex case. 
As for the set-valued input D, the situation most relevant for 
applications is the singleton-valued case D 1t 2 5 5d 1t 2 6, with 

−σ σ

(b)

z (t )
z  = F (y )

y

y (t )

2σ

II

I

(a)

FIGURE 7 Backlash or play hysteresis. (a) depicts a mechanical 
play consisting of two components, denoted I and II. The di splace-
ments of each part at time t $ 0, denoted by y 1 t 2  and z 1 t 2 , satisfy 
|y 1 t 2 2 z 1 t 2 | # s for all t $ 0, where z 10 2 5 y 10 2 1j for the initial 
condition j [ 32s, s 4. In particular, the position z 1 t 2  of II remains 
constant as long as the position y 1 t 2  of I remains within the interior 
of II. Denoting the corresponding operator by F, (b) illustrates the 
action of F. If, for example, component I makes contact with the 
right end of component II at t0 $ 0 and y 1 t 2  is nondecreasing on the 
interval 3t0, t1 4, where t1 . t0, then z 1 t 2 5 y 1 t 2 2s for all t [ 3t0, t1 4.

This article provides an overview of the circle criterion 

and its connection with ISS.
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Here, we show how Corollary 16 can be used to analyze 

stability properties of hysteretic feedback systems. 

Consider the feedback interconnection shown in Figure S3, 

with a hysteresis operator F in the feedback path and a single-

valued input d. In the context of hysteretic feedback systems, 

absolute stability and ISS are discussed in [19], [28]–[30], 

[32],[34], [50], [51]. In the following, we focus on the class of 

Preisach hysteresis operators. The Preisach operator encom-

passes both backlash and Prandtl operators. The Preisach 

operator can model complex hysteresis effects, for example, 

nested loops in input–output characteristics. A basic building 

block for these operators is the backlash operator, shown in 

Figure 7. The backlash operator, also called the play operator, 

is discussed in [31] and [52]–[54]. 

Let s $ 0 and define bs : R2 S R by 

 bs 1v1, v2 2 J max5v12s, min5v11s, v266
 5 • v12s, if v2 , v12s, 

v2,  if v2 [ 3v12s, v11s4, 
v11s,  if v2 . v11s.

Let Cpm 30, 2̀  denote the space of continuous piecewise mono-

tone functions defined on 30, 2̀ . For all s $ 0 and z [ R, de-

fine the operator Bs, z : Cpm 30, ̀ 2 S C 30,`2  by 

1Bs, z 1y22 1 t 2 5
 ebs 1y 102 , z2 for t5 0,

bs 1y 1t 2 , 1Bs, z 1y 22 1 ti 22 for ti , t # ti11, i5 0,1, 2, c,

where 05 t0 , t1 , t2 , c, limnS` tn5 `, and u is monotone 

on each interval 3ti, ti114. We remark that z plays the role of an 

initial state. It can be shown that the definition is independent of 

the choice of the partition 1 ti 2 . Figure S4 illustrates how Bs, z acts. 

The operator Bs, z extends to a Lipschitz continuous hysteresis 

operator on C 30, ̀ 2 , with Lipschitz constant L5 1, which is called 

the backlash operator and is denoted by the same symbol Bs, z.

Let j : 30,` 2 S R be a compactly supported and globally 

Lipschitz function with Lipschitz constant 1. Let m be a signed 

Borel measure on 30, `2  such that |m| 1K 2 , ` for all compact 

sets K ( 30,` 2 , where |m| denotes the total variation of m. Denot-

ing the Lebesgue measure on R by mL, let w : R 3 30, ` 2 S R 

be a locally 1mL # m 2 -integrable function, and let w0 [ R. The 

operator Pj : C 30, ` 2 S C 30, ` 2  defined by 

1Pj 1y 22 1t 2 5
3
`

0
3
xBs,jxs2xyccxt c

0
w 1s, s 2mL 1ds 2m 1ds 2 1w0, y [ C 30,` 2 , t $ 0,

 (S11) 

is called a Preisach operator. This definition is equivalent to 

that adopted in [53, Sec. 2.4], where it is shown that Pj is caus-

al and rate independent. Here rate independence means that 

Pj 1y°h 2 5Pj 1y 2°h for every continuous, nondecreasing, and 

surjective function h : 30,`2 S 30, 2̀  and all y [ C 30, 2̀ . 
Under the assumption that the measure m is finite and w  is 

essentially bounded, the operator Pj is Lipschitz continuous 

with Lipschitz constant L5 |m| 1 30, ̀ 22 7w 7` in the sense that 

sup
t$0

|1Pj 1y122 1t 221Pj 1y222 1t 2|# L sup
t$0

|y11t 22y2 1t 2 |, y1,y2 [ C 30, 2̀ .
See [31] for details. This property ensures well-posedness of 

the feedback interconnection shown in Figure S3 with F5Pj. 
Setting w 1 #, # 2 5 1 and w05 0 in (S11) yields the Prandtl op-

erator Pj : C 30,`2 S C 30, ̀ 2  defined by 

1Pj 1y 22 1t 2 5 3`
0

1Bs, j1s2 1y22 1 t 2m 1ds2 , y [ C 30, ` 2 , t $ 0 . (S12) 

Roughly speaking, a Prandtl operator is a weighted sum of back-

lash operators. For j ; 0 and m given by m 1E 2 5 eEx30,54 1s2ds, 

where x30, 54 denotes the indicator function of the interval 30, 5 4, 
the Prandtl operator is illustrated in Figure S5. 

The next theorem identifies conditions under which the 

Preisach operator (S11) satisfies a generalized sector bound. 

For simplicity, we assume that the measure m and the function 

w  are nonnegative, although the theorem can be extended to 

signed measures m and sign-indefinite functions w. 

Hysteretic Feedback Systems

+

−
d (A,b,c )

F

y

FIGURE S3 Hysteretic Lur’e system. Feedback interconnection of 
the linear system 1A, b, c 2  in the forward path, a hysteresis oper-
ator F  in the negative feedback path, and exogenous input d.

y

Bσ , ζ (y )

σ

–σ

FIGURE S4 Backlash hysteresis revisited. This diagram shows 
how the backlash operator Bs,z acts. If, for example, z 5s/2, 
y 10 2 5 0 and y  is strictly increasing with limtS`y 1 t 2 . 3s/2, 
then 1Bs,z 1y 22 1t 25z5s/2 for 0 # t # ts and 1Bs,z 1y 22 1t 2 5 y 1t 22s 
for t . ts, where ts is the unique positive number such that 
y 1 ts 2 5 3s/2.
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THEOREM S3 

Let Pj be the Preisach operator defined in (S11). As-

sume that the measure m is nonnegative, a1 J m 1 30,` 22
, `, a2 J e`0sm 1ds 2 , `, b1 J ess inf1s, s2[R3 30, `2w 1s, s 2 $ 0, 

b2 J ess sup1s, s2[R3 30, `2w 1s, s 2 , `, and set 

 aP J a1b1, bP J a1b2, uP J a2b21|w0|. (S13) 

Then, for all y [ C 30, ` 2  and all t $ 0, 

aPy 1 t 2 2 uP # 1Pj 1y 22 1 t 2 # bPy 1 t 2 1 uP, y 1 t 2 $ 0,  (S14) 

and 

bPy 1 t 2 2 uP # 1Pj 1y 22 1 t 2 # aPy 1 t 2 1 uP, y 1 t 2 # 0. (S15) 

Furthermore, for every d . 0, 

1aP2d 2y 2 1 t 2 # 1Pj 1y 22 1 t 2y 1 t 2 # 1 bP1d 2y 2 1 t 2 , |y 1 t 2 | $ uP/d.
 (S16) 

For example, the Prandtl operator illustrated in Figure S5 

satisfies the hypotheses of Theorem S3. The proof of Theorem 

S3 can be found in the section “Proofs.” 

Let Pj be a Preisach operator satisfying the hypotheses of 

Theorem S3. Let aP, bP and uP be given by (S13) and define 

F [ UR by 

 F 1v 2 J e 3aPv2 uP, bPv1 uP 4, v $ 0,3bPv2 uP, aPv1 uP 4, v , 0.
 (S17)

In view of (S14) and (S15), 

 1Pj 1y 22 1t 2 [ F 1y 1 t 22 , y [ C 30,`2 , t $ 0. (S18) 

We note that, for d . 0 and K J 32uP / d,uP /d 4, 
 1aP2d 2v 2 # F 1v 2v # 1 bP1d 2v 2, v [ R\K, 

Let the linear system 1A,b,c 2 , with transfer function G, be 

stabilizable and detectable. Write 

 a J aP2 2d, b J bP1 2d (S19) 

and assume that 111 bG 2 111aG 221 is positive real. Then the 

hypotheses of Corollary 16 hold with F given by (S17). More-

over, it can be shown that the bias parameter u, defined by 

(35), is given by u 5 uP. Therefore, we can invoke Corollary 16 

to conclude properties of solutions of the functional differential 

equation 

 x
# 1t 2 5Ax 1t 2 1 b 3d 1t 2 2 1Pj 1c*x 22 1t 2 4, x 102 5 x0. (S20) 

By arguments similar to those adopted in [32], it can be shown 

that, for each x0 [ Rn and d [ Lloc
` 30, ` 2 , (S20) has a unique 

global solution x. By (S18), x also satisfies 
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FIGURE S5 Example of Prandtl hysteresis. Consider the Prandtl 
operator Pj defined in (S12) with j 5 0 and measure m given by 
m 1E 25eEx30, 54 1s 2ds, where x30, 54 is the indicator function of the 
interval 30,5 4. The plots depict the response P0 1y 2  to a continu-
ous, piecewise linear input y.

FIGURE S6 System response for Example S4. Consider Exam-
ple S4 with parameter values g5 5, s5 1, z 5 0, initial data 
y 10 2 5 x1 10 2 5 10, y

# 10 2 5 x2 10 2 5 0, and zero disturbance 
d5 0. This plot shows the evolution of the norm 7x 1 t 2 7 , and 
suggests that limtS` 7x 1 t 2 7 5 u 5s5 1. However, the theory 
predicts only the existence of a positive constant g2 such that 
lim suptS` 7x 1 t 2 7 # g

2
u
P
5 g

2
s5 g

2
, see (S21). 
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FIGURE S7 System response for Example S4. Consider Exam-
ple S4 with parameter values g5 5, s5 1, z 5 0, initial data 
y 10 2 5 x1 10 2 5 10, y

# 10 2 5 x2 10 2 5 0, and sinusoidal distur-
bance d : t A sin t. This plot shows the evolution of the norm 7x 1 t 2 7 , and suggests that lim suptS` 7x 1 t 2 7 , 2. However, the 
theory predicts only the existence of a positive constant g2 
such that lim suptS` 7x 1 t 2 7 # g2 1 7d 7L` 1 uP 2 5 2g2, see (S21). 



40 IEEE CONTROL SYSTEMS MAGAZINE » AUGUST 2011

d [ Lloc
` 30, `2 . However, including set-valued inputs D 

comes at no extra cost and turns out to be convenient in the 
analysis of ISS with bias, in the context of which the nonlin-
earity F is replaced by another set-valued nonlinearity F

|
, 

and the resulting set-valued difference 

F
| 1c*x 1t 222F 1c*x 1t 225 5w| 2w : w| [F

| 1c*x 1t 22 , w [F 1c*x 1t 226
is absorbed into D 1t 2  for all t $ 0. See the proof of Corollary 
16 for a detailed elaboration of this idea. 

A solution of (3) is an absolutely continuous function 
x : 30, T 2 S Fn, where 0 , T # `, such that x 10 2 5 x0 and 
the differential inclusion in (3) is satisfied almost every-
where on 30, T 2 . A solution x : 30, T 2 S Fn is maximal if it has 
no right extension that is also a solution, that is, there does 
not exist a solution xe : 30, Te 2 S Fn of (3) such that Te . T 
and xe 1t 2 5 x 1t 2  for all t [ 30, T 2 . A solution x : 30, T 2 S Fn 
is global if T5 `, that is, if it exists on 30, ` 2 . 

Before developing a stability theory for systems of the 
form (3), we state an existence result that is an immediate 
consequence of [21, Corollary 5.2]. 

Lemma 1
Let F [ UF. For each x0 [ Fn and each D [ DF, the initial-
value problem (3) has a solution. Moreover, every solu-
tion can be extended to a maximal solution. Finally, if a 
maximal solution is bounded, then it is global. 

As noted above, one of the motivations for considering 
feedback systems given by differential inclusions of the 
form (3) is that functional differential equations of the 
form (1) with a dynamic nonlinearity F can be imbedded 
into the set-valued formulation (3), provided there exists 
F [ UF such that (2) holds for every y [ dom 1F 2 . Another 
motivation for studying the inclusion (3) is that it allows 
us to consider discontinuous nonlinearities. To be more 
specific, we consider the  following example of a quan-
tized feedback system [36], [37]. 

Example 2
Let A [ Rn3n, b, c [ Rn, let f : R S R be a continuous static 
nonlinearity and consider the system 

 x
# 1t 2 5Ax 1t 2 1 b 1d 1t 2 2 f 1c*x 1t 222 ,  x 102 5 x0 [ Rn,  (4)

where d [ Lloc
` 30, `2 . If system (4) is subject to quantization 

of the output y5 c*x, we obtain the differential equation 
with discontinuous right-hand side given by 

 x
# 1t 2 5Ax 1t 2 1 b 1d 1t 2 2 1 f ° qh 2 1c*x 1t 222 ,  x 102 5 x0 [ Rn,  (5) 

where qh : R S R, parameterized by h . 0, is the uniform 
quantizer (see Figure 8) given by 

 qh 1v2 5 2mh,   v[ 112m2 12h, 12m1 12h 4,   m [ Z. (6)

 x
# 1 t 2 2Ax 1 t 2 [ b 1D 1 t 2 2F 1c*x 1 t 222 , x 10 2 5 x0, 

where D 1 t 2 5 5d 1t 26. Now an application of Corollary 16 yields the 

existence of constants e, g1, g2 . 0 such that, for every x0 [ Rn, 

 7x 1t 2 7 # g1e
2et 7x 0 7 1 g2 1 7d 7L` 30,t 41 uP 2 , t $ 0. (S21) 

Example S4 

Consider the mechanical system with damping coefficient 

g . 0 and hysteretic restoring force in the form of backlash, 

with real parameters s . 0 and z, given by 

 y
$ 1t 2 1gy

# 1t 2 1 1Bs,z 1y 22 1t 2 5 d 1t 2 . (S22) 

Since 1Bs, z 1y 22 1 t 2 [ 3y 1 t 2 2s, y 1 t 2 1s 4 for every y [ C 30, ` 2  
and every t [ 30,` 2 , it follows that, for every d . 0 and every 1 t, y 2 [ 30,` 2 3 C 30,` 2  such that |y 1 t 2 | $ s/d, 

 112d 2y 2 1t 2 # 1Bs,z 1y 22 1t 2y 1t 2 # 111d 2y 2 1t 2 .
Of course, this fact is also a consequence of Theorem S3, 

since the backlash operator Bs, z is a special case of the Prei-

sach operator with aP5 bP5 1 and uP5s, in the notation of 

Theorem S3. 

As in (S19), set a J aP2 2d 5 12 2d and b J bP1 2d 5 

11 2d. The transfer function G is given by G 1s 2 5 1/ 1s21gs 2 , 
and thus, 

11 bG

11aG
5 11

4d

s 21gs1 122d
.

For all d . 0 sufficiently small, 111 bG 2 111aG 221 is posi-

tive real. Setting x J 1y,y
# 2 , it follows that there exist constants 

e, g1, g2 . 0 such that, for every x 0 J 1y 102, y# 10 22 [ R2, (S21) 

holds with uP5s. 
For numerical simulation, assume the data 

g5 5, s5 1, z 5 0, y 10 2510, y
# 10 250.

The evolution of the norm 7x 1 t 2 7  of the solution is depicted in 

Figure S6 in the case of zero forcing d5 0, and in Figure S7 

in the case of sinusoidal forcing d 1t 2 5 sin t.  e

Returning to the nonspecific setting given by (S20), we 

emphasize that estimate (S21) does not guarantee that 

d 1 t 2 S 0 as t S ` implies convergence of x 1 t 2  as t S `. To 

see this, consider again the mechanical example (S22). 

Then, for each g . 0, there exist constants e, g1, g2 . 0 

such that (S21) holds with x 1 t 2 5 1y 1t 2 , y# 1 t 22  and uP5s. 
However, we know from [34, Ex. 4.8] that, if d5 0 and 

g [ 11, 2 2 , then, for all initial conditions, lim suptS`y 1 t 2 5s 

and lim inftS`y 1 t 2 52s, equivalently, y  has omega-limit 

set 32s, s 4, and so x 1 t 2 5 1y 1t 2 , y# 1 t 22  does not converge as 

t S `.
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We interpret the differential equation in (5), which has a 
discontinuous right-hand side, in a set-valued sense as fol-
lows. First, we embed the quantizer qh in the set-valued 
map Qh [ UR defined by 

Qh 1v2 J e5qh 1v26, v[ 112m212h, 12m112h2 , m[Z, 32mh, 21m112h4, v5 12m112h, m[ Z.
 (7)

This embedding essentially “fills in” the jumps in Figure 8 
to yield the graph shown in Figure 9. Now, we subsume (5) 
in the differential inclusion 

 x
# 1t 2 2Ax 1t2 2 bd 1t2 [2bFh 1c*x 1t 22 ,  x 102 5 x0 [Rn,  (8)

where Fh [ UR is given by 

 Fh 1v2 J f 1Qh 1v22 5 5f 1z2  : z [ Qh 1v26.

For M [ C
p3q, M *[ Cq3p denotes the conjugate transpose 

of M. If all entries of M are real, then M * is the transpose 

of M. For z [ C and r . 0, let D 1z, r 2  denote the open disc 

in C of radius r  and with center z. The open right-half com-

plex plane is denoted by C1. The space of bounded analytic 

functions on C1 is denoted by H`5H` 1C1 2 . If H [ H `, then 

iHiH ` J sups[C1
0H 1s 2 0 . 

POSITIVE REAL FUNCTIONS

Let H be a real or complex rational function. The function H is 

positive real if Re H 1s 2 $ 0 for all s [ C1 such that s is not a 

pole of H. It can be shown that positive realness of H implies 

that H does not have any poles in C1. The function H is strictly 

positive real if there exists e . 0 such that the shifted rational 

function s AH 1s2 e 2  is positive real. 

ABSOLUTELY CONTINUOUS FUNCTIONS 

The importance of absolute continuity stems from the fact that 

absolutely continuous functions are precisely those functions 

for which the fundamental theorem of calculus in the context of 

Lebesgue integration is valid. Let I ( R be an interval and F ei-

ther R or C. A function x : I S Fn is absolutely continuous if, and 

only if, x  is differentiable at almost all (a.a.) t [ I, x
#
[ Lloc

1 1 I, Fn 2 , 
the space of locally Lebesgue integrable functions I S Fn, and, 

for every fixed a [ I, x 1 t 2 5 x 1a 21 e t

a x
# 1s 2ds for all t [ I. 

FUNCTION CLASSES K, K`, AND KL 

Let K denote the set of continuous and strictly increas-

ing functions f : 30, 2̀ S 30, `2  with f 102 5 0. The set of all 

functions f [ K with the property that f 1s 2 S ` as s S ` is 

denoted by f [ K`. Finally, KL denotes the class of all func-

tions f : 30,`2 3 30,`2 S 30,`2  such that, for each r [ 30, ` 2 , 
the function s A f 1r,s 2  is in K  and, for each s [ 30, ` 2 , the 

function r A f 1r,s 2  is nonincreasing with f 1r, s 2 S 0 as r S `. 

Functions in K , K`, and KL  are sometimes referred to as com-

parison functions. 

SET-VALUED MAPS 

In the following, F is either R or C. A set-valued map v AF 1v 2 ( F, 
with nonempty values and defined on F, is upper semicontinuous 

at v0 [ F if, for every open set W  containing F 1v0 2 , there exists 

an open set V  containing v0 such that, for all v [ V, F 1v 2 ( W; 

see Figure S8. The map F is upper semicontinuous if it is upper 

semicontinuous at every point in F. 
Let UF denote the set of all upper semicontinuous maps 

 v A F 1v 2 ( F such that, for all v [ F, the set F 1v 2  is compact 

and convex. In the real case, F [ UR if and only if F is upper 

semicontinuous and, for all v [ R, F 1v 2  is of the form 3w1, w2 4 
for w1, w2 [ R with w1 # w2. 

Let D be a set-valued map defined on an interval I ( R and 

with nonempty values contained in Fm. The map D is measur-

able if the preimage D21 1W 2 J 5t [ I : D 1 t 2 d  W 2 [6 of ev-

ery open set W ( Fm is Lebesgue measurable. Moreover, for 

nonempty S ( F, we define |S | J sup5|s| : s[S6. A set-valued 

map D defined on 30, ` 2  with nonempty values contained in F 

is locally essentially bounded if D is measurable and the func-

tion t A|D 1 t 2 | is in Lloc
` 30, `2 , the space of measurable locally 

essentially bounded functions 30, ` 2 S R. The set of all locally 

essentially bounded set-valued maps defined on 30, ` 2  and 

with compact and convex values contained in F is denoted by 

DF. Finally, for D [ DF and a bounded interval I ( 30, ` 2 , we 

define 

 7D 7  Lp1I2 J a3
I
|D 1 t 2 |pdtb1/p

, 1# p , `

and 

 7D 7L`1I 2 J ess supt[ I |D 1t 2 |.

FIGURE S8 Upper semicontinuity of the set-valued map F. For 
every v0 in F, every open neighborhood W  of F 1v0 2  contains 
the image under F  of some open neighborhood V  of v0, that is, 
F 1v 2 ( W  for all v [ V.
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With D [ DR defined by D 1t 2 J 5d 1t26, (8) can be rewritten as 

 x
# 1t 2 2Ax 1t 2 [ b 1D 1t 2 2Fh 1c*x 1t 222 ,  x 102 5 x0 [ Rn,

which is of the form (3). We return to this example in the 
section “Quantization and Output Disturbances.” e

In the following, for each x0 [ Fn and each D [ DF, the 
notation X 1x0, D 2  denotes the set of all maximal solutions of 
(3) corresponding to the initial condition x0 and the input 
D. It follows from Lemma 1 that X 1x0, D2 2[  for each 1x0, D 2 [ Fn 3 DF. We emphasize that maximal solutions of 
(3) are not necessarily unique, in which case X 1x0, D 2  con-
tains more than one element. For convenience, we set 
X 1x0 2 JX 1x0, 0 2 , wherein, and henceforth, the particular 
map D : t A506 is denoted by D5 0. 

Definition 3
Assume that D5 0 in (3). System (3) is stable in the large 
if every maximal solution of (3) is global and there 

exists g [ K such that, for every x0 [ Fn and every 
x [ X 1x0 2 , 
 7x 1t2 7 # g 1 7x0 7 2 ,  t $ 0. (9)

System (3) is asymptotically stable in the large if (3) is stable in 
the large and limtS`x 1t2 5 0 for every global solution x of 
(3). System (3) is globally exponentially stable if every maxi-
mal solution of (3) is global and there exist constants g and 
e . 0 such that, for every x0 [ Fn and every x [ X 1x0 2 , 
 7x 1t 2 7 # ge2et 7x0 7 ,  t $ 0. (10)

Definition 4
System (3) is ISS with bias if there exist g1 [ KL, g2 [ K, 
and u $ 0 such that, for each 1x0, D 2 [ Fn 3 DF, every solu-
tion x [ X 1x0, D 2  is global and 

 7x 1t 2 7 # max5g1 1t, 7x0 7 2 , g2 1 7D 7L`30,t41 u26,  t $ 0. (11)

The numbers u and g2 1u 2  are the bias parameter and bias, 
respectively. If u 5 0, then (3) is ISS. 

Definition 4 generalizes the concept of ISS [38] to encom-
pass set-valued nonlinearities and allow for bias. We also 
remark that, in Definition 4, the assumption that every solu-
tion x [ X 1x0, D 2  is global is made for presentational pur-
poses only and is, in fact redundant. If 30, T 2  is the interval 
of existence of a maximal solution x [ X 1x0, D 2  and the 
 estimate in (11) holds for all t [ 30, T 2 , then, by Lemma 1, it 
follows that T5 `. 

THE CIRCLE CRITERION 
AND LYAPUNOV STABILITY
Initially, we consider stability properties of the system (3) 
with D5 0. Let G denote the transfer function of the linear 
system 1A, b, c 2 , that is, the strictly proper rational function 
given by 

 G 1s 2 5 c* 1sI2A 221b. (12)

In the context of real systems 1A, b, c 2 [ Rn3n 3 Rn 3 Rn, 
the Aizerman conjecture [39], which is known to be false, 
can be stated as follows. 

Aizerman Conjecture
If A2 kbc* is Hurwitz for all k [ 1a, b 2 , then the origin of 
the system x

#
5Ax2 bf 1c*x 2  is globally asymptotically 

stable for every locally Lipschitz f : R S R with the prop-
erty that a , f 1v 2 /v , b for all v 2 0.

The first goal is to state and prove a version of the circle 
criterion, which we call the Aizerman version of the circle 
criterion because it shows that the Aizerman conjecture is 
true in the context of complex systems. We then show how 
more familiar versions of the circle criterion can be derived 
from the Aizerman version. 
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FIGURE 8 Uniform quantizer qh. For every v [ R there exists a 
unique integer m [ Z such that v [ 112m21 2h, 12m11 2h 4 and the 
quantizer qh maps v  to 2mh.

FIGURE 9 The graph of the set-valued map Qn [ UR. This map is the 
natural set-valued version of the single-valued uniform quantizer qh. 
For each v [ R, the set Qh 1v 2  is the smallest convex set containing 
limwcv qh 1w 2  and limwTv qh 1w 2 . In particular, for m [ Z, Qh 1v 2 5 52mh6 
for all v [ 112m2 1 2h, 12m1 1 2h 2  and Qh 1v 2 5 32mh, 2 1m1 1 2h 4 
for all v5 12m1 1 2h.
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For 1A, b, c 2 [ Cn3n 3 Cn 3 Cn, let S 1A, b, c 2  denote the 
set of all stabilizing complex gains, that is, 

 S 1A, b, c 2 J 5k [ C : A2 kbc* is Hurwitz6.
Theorem 5: (Aizerman Version of the Circle Criterion) 
Assume that D5 0, F [ UC, and F 10 2 5 506. Furthermore, 
let z [ C and r . 0, and assume that D 1z, r 2 ( S 1A, b, c 2 . 
For v 2 0, let F 1v 2 /v denote the set 5w/v: w [ F 1v 2 6.

i) If 

 F 1v 2yv ( D 1z, r 2, v [ C ? 506, (13)

then (3) is stable in the large. Moreover, (9) holds with 
g [ K given by g 1s 2 5 gs, where the constant g . 0 
depends on 1A, b, c 2 , z, and r, but not on F. 

ii) If 

 F 1v2  yv ( D 1z,r 2 , v [ C ?506, (14)

then (3) is asymptotically stable in the large. 
iii) If there exists r1 [ 10, r 2  such that 

 F 1v 2yv ( D 1z, r1 2 , v [ C ? 506, (15)

then (3) is globally exponentially stable. Moreover, 
(10) holds with constants e . 0 and g . 0 depending 
on 1A, b, c 2 , z, r, and r1, but not on F. 

To interpret Theorem 5, it is useful to introduce some ter-
minology. The complex number k is a gain of F if there exist 
v [ C ? 506 and w [ F 1v 2  such that k5w/v. With this termi-
nology, Theorem 5 says, roughly speaking, the following. If 
all linear gains in D 1z, r 2  stabilize 1A, b, c 2 , as illustrated in 
Figure 10, then every set-valued nonlinearity F [ UC that 
has all its gains in D 1z, r 2  stabilizes 1A, b, c 2 . Consequently, 
Theorem 5 shows that the complex version of Aizerman’s 
conjecture is true. This fact is in stark contrast with the fail-
ure of Aizerman’s conjecture over the reals. For more details, 
including counterexamples, on Aizerman’s conjecture over 
the reals, see [40, Chapter 7]. Furthermore, [16, Example 4.1] 
analyzes a class of counterexamples given in [40]. The analy-
sis in [40] shows that Aizerman’s conjecture over the reals 
fails “dramatically” in the sense that, for every d [ 10, 1 2 , 
there exists a system 1A, b, c 2  and b . 0 such that A2 kbc* is 
Hurwitz for all k [ 12b, b 2  but there exists a globally Lip-
schitz function f : R S R satisfying 2db , f 1v2yv , db for 
all v [ R/506 and such that the origin of x# 5Ax2 bf 1c*x 2  is 
not globally asymptotically stable. 

Theorem 5 is closely related to stability radius theory. To 
see this, assume that A is Hurwitz. Then Theorem 5 applies 
with r5 rC 1A; b, c 2 , where 

 rC 1A; b, c 2 J inf5 0k 0 : k[C s.t. A2 kbc* is not Hurwitz6
is the structured complex stability radius of A with respect 
to the “weightings” b and c [17], [41]. Theorem 5 shows that, 
for every F [ UC with F 10 2 5 506 and such that all gains of 
F are bounded by rC 1A; b, c 2 , the nonlinear system (3) 
remains stable. Moreover, if k [ C is a destabilizing gain of 
minimal modulus, that is, A2kbc* is not Hurwitz and 0k 0 5 rC 1A; b, c 2 , then, by statement i) of Theorem 5, A2kbc* 
is still marginally stable, or equivalently, if l is an eigen-
value of A2kbc*, then Re l # 0 and l is semisimple if 
Re l5 0. The complex stability radius also plays a role in 
the proof of Theorem 5. In particular, the proof is based on a 
Riccati equation result from stability radius theory com-
bined with Lyapunov techniques; see the section “Proofs.” 

Discs of stabilizing gains play a pivotal role in Theorem 
5, in contrast with classical versions of the circle criterion 
wherein positive-real and sector conditions are ubiquitous. 
In many situations, it is more intuitive to think in terms of 
discs of stabilizing gains. This point of view is partially 
inspired by classical results from the stability theory of 
linear multistep methods in numerical analysis, which can 
be considered as Aizerman versions of the discrete-time 
circle criterion [42]. 

We now show how more classical, and perhaps more 
familiar, versions of the circle criterion can be obtained 
as corollaries of Theorem 5. To this end, if H is a rational 
function and k [ C, we set Hk J H 111 kH 221 and define 

FIGURE 10 A disc D 1z, r 2   of stabilizing complex gains. If 1A, b, c 2  is 
stabilizable and detectable, then, by Lemma 6, the disc D 1z, r 2  is 
contained in the set S 1A, b, c 2  of stabilizing complex gains if and 
only if the rational function 11 2rc* 1sI2 1A2kbc* 2221b is positive 
real, where k J z2 r.

(z, r )

S (A ,b ,c )

The relationship between the classical circle criterion 

and the complex Aizerman conjecture is investigated.
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 S 1H2 J 5k [ C : Hk [ H `6.
Note that if 1A, b, c 2  is stabilizable and detectable, then 
S 1A, b, c 2 5 S 1G 2 , where G is given by (12). 

In the following, we relate the disc conditions of 
Theorem 5 to positive-real and sector conditions. The 
next result characterizes the disc condition 
D 1z, r 2 ( S 1H 2  for a rational function H in terms of a 
positive-real  property. 

Lemma 6
Let H be a rational function, r . 0, and z [ C. Set k J z2 r 
and assume that H 1s2 [ 21yk. Then D 1z, r 2 ( S 1H 2  if and 
only if 112rHk is positive real. 

Lemma 7 expresses sector conditions for a set-valued 
nonlinearity F in the form of conditions requiring all 
gains of F to be contained in suitable discs. This result is 
proved by direct algebraic calculation, which is therefore 
omitted. 

Lemma 7
Let v A F 1v2 ( C be a set-valued map defined on C and 
with nonempty values, let a, b [ C,  a 2 b, and set 

 z J 1a1 b2 /2 [ C, r J 0a2 b 0 /2 . 0.

i) The map F satisfies the sector condition 

 Re 11w2av 2 1w2 bv 22 # 0,  w [ F 1v 2 , v [ C

if and only if F 10 2 5 506 and F 1v 2 /v ( D 1z, r 2  for all 
v [ C ?506.

ii) The map F satisfies the sector condition 

 Re 11w2av 2 1w2 bv 22 , 0, w [ F 1v 2 , v [ C ?506
if and only if F 1v 2 /v ( D 1z, r 2  for all v [ C ?506. 

iii)   Let h [ 10, r2 2 . The map F satisfies the sector con-
dition 

 Re 1 1w2av 2 1w2 bv 2 2 # 2h|v|2,  w [ F 1v 2 , v [ C

if and only if F 10 2 5 506 and F 1v 2 /v ( D 1z, "r22h 2  
for all v [ C ?506. 

We now formulate a result that generalizes the classical 
circle criterion to differential inclusions of the form (3) 
with F5C. 

Theorem 8: (Classical Circle Criterion—
The Complex Case)
Assume that D5 0, 1A, b, c 2 [ Cn3n 3 Cn 3 Cn is stabiliz-
able and detectable, and F [ UC. Furthermore, let a, b [ C 
and assume that 111 bG 2 111aG 221 is positive real.

i) If 

 Re 11w2av 2 1w2 bv 22 # 0,  w [ F 1v 2 , v [ C,  (16)

then (3) is stable in the large. Moreover, (9) holds with 
g [ K given by g 1s 2 5 gs, where the constant g . 0 
depends on 1A, b, c 2 , a, and b, but not on F. 

ii) If F 10 2 5 506 and 

 Re 11w2av 2 1w2 bv 22, 0, w [ F 1v 2 , v [ C ?506, (17)

then (3) is asymptotically stable in the large. 
iii) If there exists h . 0 such that 

 Re 11w2av 2 1w2 bv 22#2h|v|2, w [ F 1v 2 , v [ C,  (18)

then (3) is globally exponentially stable. Moreover, 
(10) holds with constants e . 0 and g . 0 depending 
on 1A, b, c 2 , a, b, and h, but not on F. 

Note that the linear system 1A, b, c 2  is assumed to be 
only stabilizable and detectable, in contrast with the presen-
tation of the circle criterion in [7], [11], and [14], wherein 
controllability and observability are assumed. 

We show how Theorem 5, Lemma 6, and Lemma 7 
can be used to prove Theorem 8. We consider the deri-
vation of only statement i); statements ii) and iii) can be 
dealt with in an analogous way. To this end, let 
c [ 30, 2p 2  be the argument of b2 a, so that 
b2 a5 |b2 a|eic. Set A

|
J A2abc* and b

|
J eicb and 

define F
|
[ UC by 

 F
| 1v 2 J e2ic 1F 1v 2 2av 2 ,  v [ C.

By positive realness of 111 bG 2 111aG 221 it follows that 
11 |b2 a|G

|
 is positive real, where 

 G| 1s2 J eicGa 1s 2 5 eicG 1s 2 111aG 1s22215 c* 1sI2A| 221b
|
.

Setting r J |b2 a|/2, it follows from Lemma 6 that 
D 1r, r 2 ( S 1G| 2 . Since 1A, b, c 2  is stabilizable and detectable, 
it follows that 1A| , b

|
, c 2  is stabilizable and detectable, and we 

conclude that 

 D 1r, r 2 ( S 1A| , b
|
, c 2 . (19)

By (16), F 10 2 5 506 and, moreover, by Lemma 7, 
F 1v 2 /v ( D 1z, r 2  for all v [ C ?506, where z J 1a1 b 2 /2. 
Observe that F

| 10 2 5 506 and e2ic 1D 1z, r 2 2a 2 5D 1r, r 2 . 
Therefore, F

| 1v 2 /v ( D 1r, r 2  for all v [ C ?506, which, in 
conjunction with (19) and an application of statement i) of 
Theorem 5 to the system 

 x
#
2A

|
x [ 2 b

|
 F
| 1c*x 2 , x 10 2 5 x0 [ Cn,  (20)

shows that (20) is stable in the large. Since (3) and (20) have 
the same solutions, it follows that (3) is stable in the large, 
establishing statement i) of Theorem 8. 

As a corollary of Theorem 8, we obtain the following 
real version of the circle criterion. 
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Corollary 9: (Classical Circle Criterion—The Real Case) 
Assume that D5 0, 1A, b, c 2 [ Rn3n 3 Rn 3 Rn is stabiliz-
able and detectable, and F [ UR with F 10 2 5 506. Further-
more, let a, b [ R with a , b, and assume that 111 bG 2 111aG 221 is positive real.

i) If 

 av2 # F 1v 2v # bv2,  v [ R,  (21)

then (3) is stable in the large. Moreover, (9) holds with 
g [ K given by g 1s 2 5 gs, where the constant g . 0 
depends on 1A, b, c 2 , a, and b, but not on F. 

ii) If 

 av2 , F 1v 2v , bv2,  v [ R\506,  (22)

then (3) is asymptotically stable in the large.
iii) If there exists d . 0 such that 

 1a1 d 2v2 # F 1v 2v # 1 b2 d 2v2,  v [ R,  (23)

then (3) is globally exponentially stable. Moreover, 
(10) holds with constants e . 0 and g . 0 depending 
on 1A, b, c 2 , a, b, and d, but not on F. 

To derive Corollary 9 from Theorem 8, it is convenient to 
complexify the real map F [ UR by defining 

 Fc 1v 2  J F 1Re v 2 1 iF 1Im v 2  
 5 5w11 iw2 : w1 [ F 1Re v 2 ,  w2 [ F 1Im v 2 6,
 v [ C.

Observe that Fc [ UC and, if F 10 2 5 506, then Fc 1v 2 5F 1v 2  
for all v [ R. Furthermore, if F 10 2 5 506 and F satisfies 
(21), then 

 Re 11w2av 2 1w2 bv 22 # 0,  w [ Fc 1v 2 , v [ C, 

that is, Fc satisfies the complex sector condition (16). 
Part i) of Corollary 9 follows now from part i) of 
 Theorem 8. Parts ii) and iii) of Corollary 9 can be proved 
in a similar way. 

While the set-valued quantization map Qh, defined by 
(7) and illustrated in Figure 9, satisfies the sector condition 
(21) with a5 0 and b5 2, there are many set-valued nonlin-
earities of interest, in particular, set-valued nonlinearities 
relevant to the description of hysteretic and friction phe-
nomena, that satisfy one of the sector conditions (21), (22), 
or (23) not for all v [ R, or not for all v [ R?506 in the case 
of (22), but only for all v with |v| sufficiently large. Stability 
results for the Lur’e-type system (3) with set-valued nonlin-
earities F of this type, that is, sector bounded outside a com-
pact interval, are presented in an ISS context in the section 
“The Circle Criterion and ISS”; see corollaries 16, 20, and 21. 

Corollary 9 can be used to derive stability properties of 
time-varying Lur’e-type systems of the form 

 x
# 1t 2 5Ax 1t 2 1 b 1d 1t 2 2 f 1t, c*x 1t 222 ,  x 10 2 5 x0 [ Rn,  (24)

provided that f : 30, ` 2 3 R S R satisfies a suitable sector 
condition uniformly in t. Here we assume that f  is suffi-
ciently regular to guarantee well-posedness of (24). In par-
ticular, it is assumed that f  is continuous in its second 
argument. If, for example, there exists d . 0 such that f  sat-
isfies the sector condition 

 1a1 d 2v2 # f 1t,v 2 # 1 b2 d 2v2,  1t,v 2 [ 30, ` 2 3 R, 

then define F [ UR by 

 F 1v 2 5 e 3 1a1 d 2v, 1 b2 d 2v 4, v $ 0, 3 1 b2 d 2v, 1a1 d 2v 4, v , 0.
 (25)

Note that F 10 2 5 506 and F satisfies the sector condition 
(23). Furthermore, for each v [ R, f 1t, v 2 [ F 1v 2  for all 
t $ 0, and every solution of the time-varying system (24) is 
also a solution of (3) with F given by (25). Consequently, if 111 bG 2 111aG 221 is positive real, statement iii) of 
 Corollary 9 guarantees that all solutions of the time-vary-
ing system (24) decay exponentially fast. 

We give an example that shows that, in statement iii) 
of Corollary 9, the constant d . 0 is essential for expo-
nential stability. Consider the integrator x# 5 u and apply 
negative feedback u52f 1x 2  to obtain the initial-value 
problem 

 x
#
52f 1x 2 , x 10 2 5 x0,  (26)

where f : R S R is the saturating nonlinearity given by 

 f 1v 2 5 •  v3, v [ 3 2 1, 1 4, 
1 1, v . 1, 
2 1, v , 2 1, 

(see Figure 11). Setting F 1v 2 J 5 f 1v 2 6, we see that the 
sector condition (22) holds if and only if a # 0 and b . 1. 
We also note that there exists d . 0 such that (23) is  satisfied 

υ

f (υ )

+1

−1

+1

−1

FIGURE 11 Saturating nonlinearity f. The feedback u52f 1x 2  
applied to the integrator x

#
5 u yields asymptotic stability in the 

large but not global exponential stability.
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if and only if a , 0 and b . 1. The transfer function G in 
this example is given by G 1s 2 5 1/s, and 

 
11 bG 1s 2
11aG 1s 2 5 s1 b

s1a

is positive real if and only if a $ 0 and b $ 0. Therefore, if 1s1 b 2 / 1s1a 2  is positive real, then there is no value d . 0 
for which the sector condition (23) on F holds. On the other 
hand, both the positive real condition on 1s1 b 2 / 1s1a 2  
and the sector condition (22) hold if and only if a5 0 and 
b . 1. Consequently, by statement ii) of Corollary 9, we can 
conclude that (26) is asymptotically stable in the large. 
While the sufficient conditions associated with statement 
iii) of Corollary 9 fail to hold in this example, this failure 
does not by itself rule out the possibility of global exponen-
tial stability. However, the conclusion that (26) is not glob-
ally exponentially stable can be arrived at by computing 
the solution of (26). For example, if x0 . 1, the solution x of 
(26) is given by 

 

 x 1t 2 5 e x02 t, t [ 30, x02 1 4, 
1/"11 2 1t1 12 x0 2 , t . x02 1.

 (27)

Formula (27) implies in particular that (26) is not globally 
exponentially stable. Hence, this example shows that, in 
statement iii) of Corollary 9, the existence of a positive con-
stant d . 0 is essential for global exponential stability; in 
fact, the weaker sector condition (22) does not suffice. 

The following lemma, which gives graphical character-
izations of the positive realness of 111 bG 2 111aG 221 in 
terms of the Nyquist diagram of G, shows why Corollary 9 
is called the circle criterion. Recall that, if G does not have 
any poles on the imaginary axis, then the Nyquist diagram 
of G is defined to be the closure of the set 
G 1 iR 2 5 5G 1 iv 2  : v [ R6 regarded as an oriented curve, 
whose orientation is induced by increasing v. 

Lemma 10
For a , b with ab 2 0, let D 1a, b 2  denote the open disc in 
the complex plane with center in R and such that 21/a and 
2 1/b belong to the boundary of D 1a, b 2 . The following 
statements hold. 

i) If ab . 0 and G does not have any poles on the imag-
inary axis, then 111 bG 2 111aG 221 is positive real 
if and only if the Nyquist diagram of G does not 
intersect the disc D 1a, b 2  and encircles it p times in 
the counterclockwise sense, where p denotes the 
number of poles in C1. 

ii) If ab , 0, then 111 bG 2 111aG 221 is positive real if 
and only if G [ H` and the Nyquist diagram of G is 
contained in D 1a, b 2 . 

For convenience, in Lemma 10 we use the notation 
D 1a, b 2 . This disc is identical to D 1z, r 2 , where 
z5 2 1a1 b 2 / 12ab 2  and r5 1 b2 a 2 / 12ab 2 . 

The following example illustrates Lemma 10. 

Example 11
Assume that G is given by G 1s 2 5 10/ 1s31 5s21 4s2 10 2 , 
which has one pole in C1 at s5 1. The remaining poles are 
located at s522 6 i. With reference to Figure 12, we see 
that, for a5 1.07 and b5 1.5, the Nyquist diagram of G 
does not intersect the disc D 1a, b 2  and encircles it once in 
the counterclockwise sense. Therefore, by statement i) of 
Lemma 10, 111 bG 2 111aG 221 is positive real. 

Now assume that G is given by G 1s 2 5
10/ 1s31 7s21 16s1 10 2 , whose poles are s521 and 
s522 6 i. With reference to Figure 13, we see that the 
Nyquist diagram of G is contained in the closed disc 
D 121, 1 2  and thus, by statement ii) of Lemma 10, 111G 2 112G 221 is positive real.   e

The following result shows that if, in Corollary 9, the 
assumption of positive realness is replaced by the stronger 
assumption of strict positive realness, then the value of the con-
stant d in statement iii) of Corollary 9 can be taken to be zero. In 
this context, see also [43, Theorem 5.1] and [11, Theorem 7.1]. 

FIGURE 13 The Nyquist diagram of G 1s 2510/ 1s317s2116s110 2  
and the closed unit disc D 121, 1 2 . The Nyquist diagram of G is 
contained in the closed disc D 121, 1 2 , and thus, by statement ii) 
of Lemma 10, 111G 2 112G 221 is positive real.

Re

Im

(1, 0)
(–1, 0)

Re

Im

(0, 0)

(–1/β, 0)(–1/α, 0)

(–1, 0)

FIGURE 12 Nyquist diagram of G 1s 2 5 10/ 1s31 5s21 4s2 10 2  and 
the disc D 1a, b 2  with a5 1.07 and b5 1.5. The Nyquist diagram of 
G does not intersect the disc D 1a, b 2  and encircles it once in the 
counterclockwise sense. Therefore, by statement i) of Lemma 10, 111 bG 2 111aG 221 is positive real.
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Corollary 12
Assume that D5 0, 1A, b, c 2 [ Rn3n 3 Rn 3 Rn is stabiliz-
able and detectable, and F [ UR, where F 10 2 5 506. Let 
a, b [ R with a , b. If 111 bG 2 111aG 221 is strictly pos-
itive real and 

 av2 # F 1v 2v # bv2,  v [ R, 

then (3) is globally exponentially stable. Moreover, (10) 
holds with constants e . 0 and g . 0 depending on 1A, b, c 2 , a, b, and d, but not on F. 

The next result extends statements i) and ii) of Corollary 
9 to the case b5 `; note, however, that the assumption of 
stabilizability is replaced by controllability. 

Theorem 13
Assume that D5 0, 1A, b, c 2 [ Rn3n 3 Rn 3 Rn is control-
lable and detectable, and F [ UR, where F 10 2 5 506. Fur-
thermore, let a [ R and assume that G 111aG 221 is 
positive real. 

i) If F 10 2 5 506 and 

 av2 # F 1v 2v,  v [ R,  (28)

then (3) is stable in the large. If, in addition, 1A, b, c 2  
is observable, then there exists g . 0 such that 

 7x 1t 2 7 # g 7x0 7 ,  t $ 0, x [ X 1x0 2 , 
where g depends on 1A, b, c 2  and a, but not on F. 

ii) If 

 av2 , F 1v 2v, v [ R ? 506, (29)

then (3) is asymptotically stable in the large. 
Theorem 13 can be used to extend statements i) and ii) of 

Corollary 9 to the case a52` and b , `. 
We close this section with a result that is in the spirit of 

the real Aizerman conjecture in the sense that a condition 
on the linear component of the feedback system is identi-
fied that together with the assumption 1a, b 2 ( S 1A, b, c 2  
guarantees that (3) is asymptotically stable in the large for 
all F [ UR with F 10 2 5 506 and such that (22) holds. To 
this end, recall the notation Gk5G 111 kG 221. 

Corollary 14
Assume that 1A, b, c 2 [ Rn3n 3 Rn 3 Rn is stabilizable and 
detectable. Let a , b and set k J 1a1 b 2 /2. If 1a, b 2 ( S 1A, b, c 2  and 

 max5|Gk 1 iv 2|: v [ R s.t. Gk 1 iv 2 [ R6 5 7Gk 7H`,  (30)

then (3) is asymptotically stable in the large for all F [ UR 
with F 10 2 5 506 and such that av2 , F 1v 2v , bv2 for all 
v [ R?506. 

Note that (30) says that the maximal distance from the 
Nyquist diagram of Gk to the origin is attained when the 
Nyquist diagram intersects with the real axis. The transfer 
function G given by G 1s 2 5 10/ 1s31 7s21 16s1 10 2 , which 
is considered in Example 11, satisfies (30) with k5 0; see 
Figure 13. 

To see how Corollary 14 can be derived from Corollary 
9, it is convenient to define 

 l J
b2 a

2
,  Ak J A2 kbc*.

Then 1a, b 2 5 1k2 l, k1 l 2  and, since 1a, b 2 ( S 1A, b, c 2 , 
we have 

 12l, l 2 ( S 1Ak, b, c 2 . (31)

By (30), there exists v0 [ R such that Gk 1 iv0 2 [ R and 
|Gk 1 iv0 2|5 7Gk 7H`. Setting r J 1/|Gk 1 iv0 2|5 1/ 7Gk 7H`, it 
follows from a small-gain argument that 

 D 10, r 2 ( S 1Gk 2 5 S 1Ak, b, c 2 . (32)

Furthermore, the real output feedback gain k J 21/Gk 1 iv0 2 , 
if applied to Gk, is destabilizing in the sense that 
Gk 111kGk 221 has a pole at iv0. Consequently, the matrix 
Ak2kbc* is not Hurwitz. Now k5 r or k52r and thus, by 
(31), l # r. Invoking (32) yields D 10, l 2 ( S 1Ak, b, c 2 , which 
is equivalent to D 1k, l 2 ( S 1A, b, c 2 . Therefore, by Lemma 6, 
11 2lGa 5 111 bG 2 111aG 221 is positive real, and Corol-
lary 14 follows from Corollary 9. 

THE CIRCLE CRITERION AND ISS
We now arrive at one of the main concerns, namely, ISS 
properties of feedback interconnections of Lur’e type. The 
following theorem is the first of the two main results on 
input-to-state stability. 

Theorem 15
Assume that 1A, b, c 2 [ Rn3n 3 Rn 3 Rn is stabilizable and 
detectable, and F [ UR, where F 10 2 5 506. Furthermore, let 
a, b [ R with a , b and assume that 111 bG 2 111aG 221 
is positive real and (23) holds for some d . 0. Then there 
exist constants g1 . 0, g2 . 0, and e . 0, depending on 1A, b, c 2 , a, b, and d, but not on F, such that, for each x0 [ Rn 
and each D [ DR, every solution x [ X 1x0, D 2  of (3) is 
global and 

 7x 1t 2 7 # g1e
2et 7x0 7 1 g2 7D 7L`30, t4,  t $ 0. (33)

In particular, system (3) is ISS 
Theorem 15 is a refinement of a version of the classi-

cal circle criterion [11], [14]. In particular, Theorem 15 
shows that, under the standard assumptions of the circle 
criterion, ISS is guaranteed. We emphasize that the 
proof of Theorem 15 is based on small-gain and 
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 exponential weighting techniques but not on Lyapunov 
methods; see “Proofs” for details. This technique is 
used in [8, Sec. V.3] to prove classical stability results of 
input–output type as well as in [44] to derive a version 
of the circle criterion that guarantees exponential stabil-
ity for a class of infinite-dimensional, state-space sys-
tems. However, its application here is in an ISS context, 
with origins in [19]. In particular, while the standard 
textbook version of the circle criterion for state-space 
systems is usually proved using Lyapunov techniques 
combined with the positive-real lemma [9, pp. 375], [11, 
Theorem 7.1], [14, p. 227], or [45, pp. 587], the proof of 
Theorem 15 given in the section “Proofs” provides an 
alternative, more elementary, approach. Moreover, the 
methodology can be extended to an infinite-dimen-
sional setting [29]. 

In the following corollary of Theorem 15, we consider 
not only nonlinearities satisfying (23) for all arguments 
v [ R but also nonlinearities F [ UR with the property 
that there exists a compact interval K ( R such that (23) 
holds for all arguments v [ R?K, that is, 

 1a1 d 2v2 # F 1v 2v # 1 b2 d 2v2,   v [ R?K  (34)

(see Figure 14). For example, single-input, single-output 
hysteretic elements can be subsumed by this set-valued for-
mulation provided that the characteristic diagram of the 
hysteresis is contained in the graph of some F [ UR; see 
Theorem S3 in “Hysteretic Feedback Systems.” 

Corollary 16
Assume that 1A, b, c 2 [ Rn3n 3 Rn 3 Rn is stabilizable and 
detectable, and F [ UR. Let a, b [ R with a , b and 
assume that 111 bG 2 111aG 221 is positive real. Further-
more, assume that there exist d . 0 and a compact interval 
K ( R, with 0 [ K, such that (34) holds. Define 

 u J sup
v[K

sup  
w[F1v2dist 1w, Iv 2 ,  (35)

where 

 Iv J e 3 1a1 d 2v, 1 b2 d 2v 4,  v $ 0, 3 1 b2 d 2v, 1a1 d 2v 4,  v , 0.

Then there exist constants g1 . 0, g2 . 0, and e . 0, 
depending on 1A, b, c 2 , a, b, and d, but not on F and K, such 
that, for each x0 [ Rn and each D [ DR, every solution 
x [ X 1x0, D 2  of (3) is global and 

 7x 1t 2 7 # g1e
2et 7x0 7 1 g2 1 7D 7L`30, t41 u 2 ,   t $ 0. (36)

In particular, system (3) is ISS with bias g2u. 
The bias parameter u defined by (35) provides a natu-

ral measure of the extent of the violation of the sector con-
dition 1a1 d 2v2 # F 1v 2v # 1 b2 d 2v2 for v in the interval 
K. The assumption that the interval K contains zero is 
imposed for convenience. This assumption is not essential 
for ISS with bias. Indeed, an inspection of the proof of 
Corollary 16 shows that, if zero is not contained in K, then 
the assertion of Corollary 16 remains valid provided that, 
on the right-hand side of (36), the term u is replaced by 
max5|F 102|, u6. 

Note that even if the feedback system under investiga-
tion is not subject to external inputs or disturbances, Corol-
lary 16 is still of interest because, although the sector 
condition is not required to hold globally but holds only 
outside a compact interval, boundedness of all solutions is 
guaranteed and, moreover, lim suptS` 7x 1t 2 7 # g2u. 

Next we consider situations that are not covered by 
Theorem 15. In particular, such situations involve the 
consideration of feedback nonlinearities with not neces-
sarily linear sector boundaries, as typified, in the case of 
singleton-valued maps F, by figures 15 and 16. For exam-
ple, the latter figure encompasses nonlinearities with 
logarithmic growth as well as nonlinearities with expo-
nential growth. 

The following two hypotheses involve nonlinear coun-
terparts of the sector conditions (23) and (28). 

 » Hypothesis (H1) 
F 10 2 5 506, and there exist w [ K` and b, d . 0 such 
that 

 w 1|v|2|v|# F 1v 2v # 1 b2 d 2v2,    v [ R,  (37)

and 11 bG is positive real. 
 » Hypothesis (H2)
F 10 2 5 506, and there exists w [ K` such that 

 w 1|v|2|v| # F 1v 2v,    v [ R,  (38)

and G is positive real. 
In both (H1) and (H2), the assumption that w is 

unbounded is essential for ISS. If K` is replaced by K in 
either case, then the ISS property does not necessarily 
hold. For example, let w [ K be bounded and choose a 

k

–k

Graph (Φ)

FIGURE 14 Set-valued F satisfying the sector condition (34) with 
K5 32k, k 4. For every v [ R such that |v| . k  and every 
w [ F 1v 2 , the point 1v, w 2  lies in the sector given by the shaded 
area bounded by the two dashed lines passing through the origin.
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bounded nonlinearity F [ UR satisfying either (37) for 
some b, d . 0 or (38). Consider the one-dimensional case 
wherein 1A, b, c 2 5 10, 1, 1 2  and thus G is given by 
G 1s 2 5 1/s. Evidently, both G and 11 bG are positive 
real. Therefore, (H1) or (H2), as appropriate, holds with 
K` replaced by K. In either case, and with constant input 
D 1t 2 5 5d6, we have 

 x
# 1t 2 2 d [ 2F 1x 1t 22 , x 10 2 5 x0, 

which, for d . supv[R|F 1v 2|, has an unbounded solution, 
and thus the ISS property fails to hold. 

Theorem 17
Assume that 1A, b, c 2 [ Rn3n 3 Rn 3 Rn is controllable 
and observable, F [ UR, and either (H1) or (H2) holds. 

i) There exist functions g1 [ KL and g2 [ K such that, 
for each 1x0, D 2 [ Rn 3 DR, every solution 
x [ X 1x0, D 2  of (3) is global and 

 7x 1t 2 7 # max5g1 1t, 7x0 7 2 , g2 1 7D 7L`30, t4 2 6,   t $ 0.

In particular, system (3) is ISS. 
ii) In the case wherein (H1) holds, g1 and g2 depend on 1A, b, c 2 , w, b, and d, but not on F. 
In contrast with the small-gain and exponential weight-

ing technique, which is crucial in the proof of Theorem 15, 
the proof of Theorem 17 is based on a Lyapunov argument. 
The key step in this argument is to establish the existence 
of a ISS Lyapunov function, which is a Lyapunov function 
with special properties. More precisely, we have the fol-
lowing lemma. 

Lemma 18
Under the hypotheses of Theorem 17, there exist 
a1, a2, a3, a4 [ K` and a continuously differentiable function 
V : Rn S 30, ` 2  such that 

 a1 1 7j 7 2 # V 1j 2 # a2 1 7j 7 2 , j [ Rn,  (39)

 max
w[F1c*j2 8=V 1j 2 , Aj1b 1d2w2 9 # 2a3 1 7j 7 21a4 1|d|2 , 

  1j, d 2[ Rn 3 R. (40)

Moreover, in the case wherein (H1) holds, a1, a2, a3, a4, and 
V depend on 1A, b, c 2 , w, b, and d but not on F. 

The proof of Lemma 18 is rather technical, see 
“Proofs” for details. The approach is akin to that of [18] 
insofar as parts of the argument adopted in the proof of 
Lemma 18 are variants of arguments used in [18]. Lemma 
18 plays a central role in the proof of Theorem 17. In the 
extensive literature on ISS in the context of differential 
equations, the fact that the existence of a C` ISS Lyapu-
nov function is both necessary and sufficient for ISS is 
well established [38], [46]. See also “The Concept of 

Input-to-State Stability.” For the present purposes, we 
require a suitable variant of the arguments establishing 
sufficiency of the ISS-Lyapunov function condition, 
wherein we impose only C1 smoothness on the function. 
Again, details can be found in “Proofs.” 

Example 19
Consider the circuit example in “An Example from Circuit 
Theory,” that is, the system given by (S1) and (S2), where, in 
(S4), strict inequality holds for v 2 0  and, moreover, 
limvS6`|h 1v 2|5 `. Define w [ K` by 

 w 1s 2 5w0 1s 2 inf
|s|$s

|h 1s2|,  s $ 0, 

where w0 : 30,` 2 S 30, `2  is continuous, strictly increasing, 
and such that 0 , w0 1s 2 , 1 for all s . 0; the functions 
given by w0 1s 2 5 121/ 1s1 1 2  and w0 1s 2 5 12e2s are typical 
examples. By construction, 

FIGURE 16 (H2)-type sector. Inequality (38) holds if and only if the 
graph of the nonlinearity F, illustrated here in the case of a single-
ton-valued map for simplicity, lies in the shaded region bounded 
by the vertical axis and the curve given by the graph of w and its 
reflection through the origin.

FIGURE 15 (H1)-type sector. Inequalities (37) hold if and only if the 
graph of the nonlinearity F, illustrated here in the case of a single-
ton-valued map for simplicity, lies in the shaded region bounded 
by the line of slope b2 d  through the origin and the curve given by 
the graph of w and its reflection through the origin. 
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 w 1|v|2|v| # h 1v 2v,  v [ R.

Combining this inequality with the positive realness of the 
transfer function (S3), it follows that (H2) holds, and thus, 
by Theorem 17, we conclude that the system (S1) is ISS.  e

In the next result, we consider nonlinearities for which 
inequality (37) is required to hold only for values v out-
side some nonempty compact interval K, thereby relax-
ing hypotheses (H1) and (H2). The price paid for this 
added generality is that the ISS property is lost and 
replaced by ISS with bias. 

Corollary 20
Assume that 1A, b, c 2 [ Rn3n 3 Rn 3 Rn is controllable and 
observable, let F [ UR, let b . 0, and assume that 11 bG 
is positive real. Furthermore, assume that there exist 
w [ K`, d . 0, and a compact interval K ( R, with 0 [ K, 
such that w 1s 2 # 1 b2d 2s for all s $ 0 and 

 w 1|v|2|v| # F 1v 2v # 1 b2d 2v2,  v [ R?K. (41)

Define 

 u J sup 
v[K

sup
w[F1v2dist 1w, Iv2 , 

where 

 Iv J e 3w 1v 2 , 1 b2d 2v 4,  v $ 0, 31b2d 2v, 2w 1|v|2 4,  v , 0.

Then there exist functions g1 [ KL and g2 [ K, depending 
on 1A, b, c 2 , w, b, and d, but not on F  and K, such that, for 
each x0 [ Rn and each D [ DR, every solution x [ X 1x0, D 2  
of (3) is global and 

  7x 1t 2 7 # max5g1 1t, 7x0 7 2 , g2 1 7D 7L`30, t41 u 26,  t $ 0. (42)

In particular, system (3) is ISS with bias g2 1u 2 . 
Corollary 21
Assume that 1A, b, c 2 [ Rn3n 3 Rn 3 Rn is controllable 
and observable, F [ UR, and G is positive real. Further-
more, assume that there exist w, c [ K` and a compact 
interval K ( R, with 0 [ K, such that w 1s 2 # c 1s 2  for all 
s $ 0 and 

 w 1|v|2  0 v 0 # F 1v 2v # c 1|v|2|v|, v[ R?K. (43)

Define 

 u J sup
v[K  

sup
w[F1v2dist 1w,Iv 2 ,  (44)

where 

 Iv J e 3w 1v 2 , c 1v 2 4, if v $ 0, 32c 1|v|2 , 2w 1|v|24, if v , 0.
 

Then there exist functions g1 [ KL and g2 [ K, depending 
on 1A, b, c 2 , w, and c, but not on F and K, such that, for each 
x0 [ Rn and each D [ DR, every solution x [ X 1x0, D 2  of (3) 
is global and 

  7x 1t 2 7 # max5g1 1t, 7x0 7 2 , g2 1 7D 7L`30, t41 u 2 6, t $ 0. (45)

In particular, system (3) is ISS with bias g2 1u 2 . 
The proofs of corollaries 20 and 21 are similar to that of 

Corollary 16 and are therefore left to the reader. 

Example 22
Consider again the circuit example, that is, the system 
given by (S1) and (S2), where h now describes a negative 
resistance element, that is, h 10 2 5 0, h r 10 2 , 0, h 1v 2 S ` as 
v S `, and h 1v 2 S2` as v S 2`. As in Example 19, 
let w0 : 30, ` 2 S 30, ` 2  be continuous, strictly increasing, 
and such that 0 , w0 1s 2 , 1 for all s . 0. Let 
k . max5|v|: h 1v 2 5 06 and define w [ K` by setting 

 w 1s 2 5w0 1s 2 inf
|s|$s

|h 1s 2|, s $ k, 

and 

 w 1s 2 5 sw 1k 2 /k, 0 # s , k.

Furthermore, let c0 : 30, ` 2 S 30, ` 2  be continuous, strictly 
increasing, and such that c0 1s 2 . 1 for all s . 0. Define 
c [ K` by 

 c 1s 2 5c0 1s 2 sup
k#|s|#s

|h 1s 2|, s $ k, 

and 

 c 1s 2 5 sc 1k 2 /k, 0 # s , k.

Then w 1s 2 # c 1s 2  for all s $ 0 and 

 w 1|v|2|v| # h 1v 2v # c 1|v|2|v|,  v [ R? 32k, k 4.
Combining this fact with the positive realness of the transfer 
function (S3), it follows from Corollary 21 that the system 
(S1) is ISS with bias. The bias parameter u is given by 

 u 5 sup
v[ 32k, k4dist 1h 1v 2 , Iv 2 , 

where Iv is defined as in (44). e

This framework subsumes variants of the classical circle criterion and 

establishes that the hypotheses of the classical theory not only imply 

absolute stability but also ensure the stronger ISS property.
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QUANTIZATION AND OUTPUT DISTURBANCES
Let A [ Rn3n, b, c [ Rn, let f : R S R be a continuous static 
nonlinearity, and consider the system 

 x
# 1t 2 5Ax 1t 2 1 b 1d 1t 2 2 f 1c*x 1t 222 ,  x 10 2 5 x0 [ Rn,  (46)

where d [ Lloc
` 30, ` 2 . As before, we denote the transfer 

function of the linear system 1A, b, c 2  by G, that is, 
G 1s 2 5 c* 1sI2A 221b. In the following, we want to analyze 
asymptotic properties of system (46) subject to two classes 
of disturbances, namely, output disturbances, that is, in (46) 
the term f 1c*x 1t 22  is replaced by f 1c*x 1t 2 1 do 1t 22 , where 
do [ Lloc

` 30, ` 2 , and output quantization, that is, in (46) the 
term f 1c*x 1t 22  is replaced by 1 f + qh 2 1c*x 1t 22 , where the uni-
form output quantizer qh is given by (6). 

To this end, it is useful to state two auxiliary robustness 
results. Let .5 1.1, .2 2 [ 30, ` 2 3 30, `2  and define F. [  U R 
by 

 F. 1v 2 5 5 f 1v1 r2  : r [ 32 .1, .1 4 6 1 32.2, . 2 4, v [ R. (47)

The following lemma is a consequence of Corollary 16. 
A detailed proof can be found in the section “Proofs.” 

Lemma 23
Assume that 1A, b, c 2  is stabilizable and detectable. Let 
a, b [ R with a , b, and assume that 111 bG 2 111aG 221 
is positive real and there exists d . 0 such that 

 1a1 d 2v2 # f 1v 2v # 1 b2 d 2v2,  v [ R. (48)

Then there exist constants g1 . 0, g2 . 0, and e . 0, 
depending on 1A, b, c 2 , a, b, and d, but not on f, such that, 
for each . [ 30, ` 2 3 30, ` 2 , each F [  UR satisfying 
F 1v 2 ( F. 1v 2  for all v [ R, each x0 [ Rn, and each 
d [ Lloc

` 30, ` 2 , every maximal solution x of 

 x
# 1t 22Ax 1t 22bd 1t 2 [ 2bF 1c*x 1t 22 ,  x 10 2 5 x0 (49)

is global and 

 7x 1t 2 7 # g1e
2et 7x0 7 1 g2 1 7d 7L`30,t41 7  . 7 2 , t $ 0.

In particular, system (49) is ISS with bias g2 7 . 7 . 
Lemma 23, in the context of the special case .5 0, shows 

that under the assumptions imposed on 1A, b, c 2 , G, and f, 
there exist constants g1 . 0, g2 . 0, and e . 0 such that, for 
every x0 [ Rn and every d [ Lloc

` 30, ` 2 , every maximal 
solution x of (46) is global and 

 7x 1t 2 7 # g1e
2et 7x0 7 1 g2 7d 7L` 30, t4,  t $ 0,  (50)

which can also be obtained as a consequence of Theorem 
15. Lemma 23 also guarantees that if, in (46), the nonlinear-
ity f  is subjected to a set-valued perturbation such that the 

resulting nonlinearity F is in  UR and contained in the .-neigh-
borhood F. of f, then, by adding the constant g2 7. 7  to the 
right-hand side of (50), we obtain an estimate for the solu-
tions of the perturbed system. 

The next lemma is a consequence of corollaries 20 and 
21. The proof is given in the section “Proofs.” 

Lemma 24 
Assume that 1A, b, c 2  is controllable and observable and 
either (H1) or (H2) holds with F 1v 2 5 5 f 1v 2 6 for all v [ R. 
Then there exist functions g1 [  KL  and g2 [  K  such that, 
for each . [ 30,` 2 3 30,` 2 , each F [  UR satisfying F 1v 2 (
F. 1v 2  for all v [ R, each x0 [ Rn, and each d [ Lloc

` 30, ` 2 , 
every maximal solution x of (49) is global and 

 7x 1t 2 7 # max5g1 1t, 7x0 7 2 ,g2 1 7d 7L`30,t41 7. 7 26, t $ 0.

In particular, system (49) is ISS with bias g2 1 7. 7 2 . 
The comment after the statement of Lemma 23 applies 

mutatis mutandis to Lemma 24. 

PID Control in the Presence of Quantization
With reference to Figure 17, we consider the double integra-
tor with a static nonlinearity f : R S R in the input channel 
and subject to input quantization given by 

 j
$ 1t 2 5 1 f ° qh 2 1u 1t 22, j 10 2 5j0, j

# 10 2 5j1,  (51)

where qh  :  R S R, parameterized by h . 0, is the uniform 
quantizer described in Example 2; see Figure 8. The nonlin-
earity f  :  R S R is assumed to be continuous and sector 
bounded in the sense that there exist a . 0 and w [  K` such 
that 

 av21w 1 0 v 0 2|v| # vf 1v2 ,  v [ R. (52)

Figure 18 illustrates the case in which w is linear, that is, 
there exists e . 0 such that w 1s 2 5 es for all s $ 0. 

Adopting the PID control structure 

u 1t 2 5
 2akp 1j 1t 22r 2 1 kdj

# 1t 2 1 ki 3
t

0
1j 1t 22r 2dt 1 kiz

0b, z0 [ R

 (53)

with gains kp, kd, ki . 0, the control objective is to asymp-
totically track an arbitrary constant reference signal r [ R, 
that is, e 1t 2 S 0 as t S `, where e 1t 2 J j 1t 22r. 

u qη f ξ = (f ° qη) (u ) ξ

FIGURE 17 PID control application. The controlled system is the 
double integrator with input nonlinearity f and a uniform quantizer 
qh parameterized by h . 0.
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Writing z 1t 2 J e t
0 e 1t 2dt 1 z0, x 1t2 J 3e 1t2 , e# 1t 2 , z 1t 24*,  

x0 J 3j02r, j1, z0 4*and 

 A J ° 0 1 0
0 0 0
1 0 0

¢ ,    b J ° 0
21
0
¢ ,    c J ° 2 kp

2 kd

 2 ki

¢ , (54)

with transfer function G  given by 

 G 1s2 5 c* 1sI2A 221b5
kds21 kps1 ki

s3 , 

we see that the closed-loop initial-value problem (51)–(53) 
can be expressed in the form 

 x
# 1t 2 5Ax 1t 22b 1 f ° qh 2 1c*x 1t 22 , x 10 2 5 x0. (55)

Note that the linear system 1A, b, c 2  is controllable and 
observable, and its transfer function G  is given by 

 G 1s 2 5 c* 1sI2A 221b5
kds

21 kps1 ki

s3 .

As in Example 2, we interpret the differential equation (55) 
with discontinuous right-hand side in a set-valued sense by 
embedding the quantizer qh in the set-valued map Qh [  U R; 
see (6) and (7) and also figures 8 and 9. We now subsume 
(55) in the differential inclusion 

 x
# 1t22Ax 1t2 [ 2bFh 1c*x 1t 22 , x 10 2 5 x0 [ R3,  (56)

where Fh[ U is given by 

 Fh 1v2 J f 1Qh 1v 22 5 5 f 1z2 : z [ Qh 1v26. (57)

Set f
|1v2 J f 1v 22av and F

|

h 1v2 J Fh 1v22av for all v [ R 
and A

|
J A2abc*. Note that x is a solution of (56) if and only 

if x is solution of 

 x
# 1t 2 2A| x 1t 2 [ 2bF

|

h 1c*x 1t 22 , x 10 2 5 x0 [ R3. (58)

Note further that, for all v [ R, 

 F
|

h 1v 2 ( f
|1Qh 1v 22 1aQh 1v2 2av

 ( 5  f
|1v1 r 2  : r [ 32h, h 4 6 1a 32h, h 4.

Therefore, to apply Lemma 24 to (58), it is sufficient to 
check that, in the context of the linear system 1A| , b, c 2  and 
the nonlinearity f

|
, the hypotheses of Lemma 24 are satis-

fied. It follows from (52) that 

 w 1|v|2|v|# f
|1v2v, v [ R. (59)

Next, we choose the controller gains to ensure that 
the transfer function G 111aG 221 of the linear system 
given by 1A| , b, c 2  is positive real. Let kp . 0. Choose 
kd . 0 sufficiently large and ki . 0 sufficiently small so 
that 

 akd
2 . kp,  ki , min 5akdkp,  kp

2/ 12kd 2 6.
With these choices, we have G 111aG 221 [ H` and 

 Re 1G 1 iv2 111aG 1 iv 22212 $ 0, v[R, 

showing that G 111aG 221 is positive real. Using (59), it 
follows that, in the context of the linear system 1A| , b, c 2  
and the single-valued nonlinearity f

|
, hypothesis (H2) 

holds. 
Therefore, Lemma 24 can be applied to (58) and thus we 

can conclude that there exist g1 [  KL  and g2 [  K  such 
that, for all h . 0 and all x0 [ R3, every maximal solution x 
of (58), and hence of (56), is global and satisfies 

 7x 1t 2 7 # max5g1 1t, 7x0 7 2 ,g2 1h 2 6, t $ 0 .

In particular, for each fixed h . 0, Lemma 24 guarantees 
tracking with asymptotic accuracy g2 1h 2 . Moreover, we 
see that the quantized PID-controlled system is such 
that exact asymptotic tracking is achieved in the limit as 
h T 0. 

For numerical simulation, let f 1v 2 5 v 111 v2 2 , which 
satisfies (52) with a5 1/2 and w given by w 1s 2 5 es, 
where e [ 10, 1/2 2 . For the reference value r5 1 and the 
controller gains kp5 1, kd5 4, and ki5 0.1, Figure 19 
shows Matlab-generated simulations for three values of 
the quantization parameter h, illustrating the property 
that asymptotic tracking is recovered as h tends to zero. 

LUR’E SYSTEMS SUBJECT 
TO OUTPUT QUANTIZATION
Consider again the quantized feedback system described 
in Example 2. Recall that this system, with input 
d [ Lloc

` 30, ` 2  and continuous static nonlinearity f, is 
expressed in the form 

Gradient α + ε

f

FIGURE 18 PID control application. Sector-bounded static nonlin-
earity. The graph of f  is required to lie in the shaded region 
bounded by the vertical axis and the line of slope a1 e through the 
origin.
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 x
# 1t 22Ax 1t 22bd 1t 2 [ 2bFh 1c*x 1t 22 , x 10 2 5 x0 [ Rn, 

 (60)

where Fh [  UR is given by 

 Fh 1v 2 J f 1Qh 1v 22 5 5 f 1z 2  : z [ Qh 1v26.
Note that (60) is of the form (3) with F5Fh and D 1t 2 5 5d 1t 2 6 
for all t $ 0. 

Corollary 25 
Assume that 1A, b, c 2  is stabilizable and detectable. Let 
a, b [ R with a , b, and assume that 111 bG 2 111aG 221 
is positive real and there exists d . 0 such that 

 1a1 d 2v2 # f 1v 2v # 1 b2 d 2v2, v [ R. (61)

Then there exist constants g1 . 0, g2 . 0, and e . 0, 
depending on 1A, b, c 2 , a, b, and d, but not on f, such that, 
for each x0 [ Rn, each h . 0, and each d [ Lloc

` 30, ` 2 , every 
maximal solution x of (60) is global and 

 7x 1t 2 7 # g1e
2et 7x0 7 1 g2 1 7d 7L`30,t41h 2 , t $ 0.

In particular, system (60) is ISS with bias g2h. 
To show how Corollary 25 follows from Lemma 23, let x 

be a maximal solution of (60) and let F1h, 02 [  UR be defined 
by (47). Then Fh 1v 2 ( F1h, 02 1v 2  for all v [ R, and, therefore, 
x is also a maximal solution of 

 x
# 1t 22Ax 1t 22bd 1t 2 [ 2bF1h,02 1c*x 1t 22 , x 10 2 5 x0.

It follows from Lemma 23 that there exist constants g1 . 0, 
g2 . 0, and e . 0, depending on 1A, b, c 2 , a, b, and d, but 
not on f, such that, for each x0 [ Rn, each d [ Lloc

`
  30, ` 2 , 

and each h . 0, x is global and 

 7x 1t 2 7 # g1e
2et 7x0 7 1 g2 1 7d 7L`30,t41h 2 , t $ 0, 

establishing Corollary 25. 
Invoking Lemma 24 instead of Lemma 23, an argu-

ment similar to the one above yields the following 
 corollary. 

Corollary 26 
Assume that 1A, b, c 2  is controllable and observable, and 
either (H1) or (H2) holds with F 1v 2 5 5 f 1v 2 6  for all v [ R. 
Then there exist functions g1 [  KL  and g2 [  K  such 
that, for each x0 [ Rn, each h . 0, and each d [ Lloc

` 30, ` 2 , 
every maximal solution x of (60) is global and 

 7x 1t 2 7 # max5g1 1t, 7x0 7 2 , g2 1 7d 7L`30, t41h 2 6,  t $ 0.

In particular, system (60) is ISS with bias g2 1h 2 . 
LUR’E SYSTEMS SUBJECT 
TO OUTPUT DISTURBANCES
Consider the system 

x
# 1t 2 5Ax 1t 2 1 b 1d 1t 2 2 f 1c*x 1t 2 1 do 1t 222 ,  x 10 2 5 x0 [ Rn, 
 (62)

where A [ Rn3n, b, c [ Rn, f : R S R is continuous and 
d, do [ Lloc

` 30, ` 2 ; see also Figure 20. The following result 
shows that, under the standard assumptions of the classical 
circle criterion, system (62) is ISS with respect to d and do. 

Corollary 27 
Assume that 1A, b, c 2  is stabilizable and detectable. Let 
a, b [ R with a , b, and assume that 111 bG 2 111aG 221 
is positive real and there exists d . 0 such that 

 1a1 d 2v2 # f 1v 2v # 1 b2 d 2v2,  v [ R. (63)

Then there exist constants g1 . 0, g2 . 0, and e . 0, 
depending on 1A, b, c 2 , a, b, and d, but not on f, such that, 
for all x0 [ Rn and all d, do [ Lloc

` 30, ` 2 , every maximal 
solution x of (62) is global and 

 7x 1t 2 7 # g1e
2et 7x0 7 1 g2 1 7d 7L`30, t41 7do 7L`30, t4 2 ,  t $ 0. 

 (64)

200
–0.5

0

0

1

2

3

Time t

||x
(t

)|| η = 0.05
η = 0.005

η = 0.0005

FIGURE 19 PID-controlled system (56). This plot shows the behav-
ior of the system (56) for three values of the quantization  parameter 
h. In (56), 1A, b, c 2  and Fh are given by (54) and (57), respectively, 
with nonlinearity f :v Av 111 v2 2 , controller gains kp5 1, kd5 4, 
and ki5 0.1, and reference signal r5 1. The objective of asymp-
totic tracking of the reference signal, equivalently, convergence to 
zero as t S ` of the first component e 1 t 2  of the solution, is attained 
in the limit as h S 0.

FIGURE 20 Lur’e system. The linear system 1A, b, c 2  is in the for-
ward path, the nonlinearity f  is in the negative feedback path, the 
exogenous input is d , and the output disturbance is do.
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In particular, system (62) is ISS with respect to d and do. 
If either (H1) or (H2) holds, then we have the following 

result. 

Corollary 28 
Assume that 1A, b, c 2  is controllable and observable, and 
either (H1) or (H2) holds with F 1v 2 5 5f 1v 2 6 for all v [ R. 
Then there exist functions g1 [  KL  and g2 [  K  such 
that, for all x0 [ Rn and all d, do [ Lloc

` 30, ` 2 , every maximal 
solution x of (62) is global and 

 7x 1t 2 7 # max5g1 1t, 7x0 7 2 , g2 1 7d 7L`30, t41 7do 7L`30, t4 2 6,  t $ 0.

In particular, system (62) is ISS with respect to d and do. 
The proof of Corollary 27 can be found in the section 

“Proofs.” The proof of Corollary 28 is similar and is there-
fore not included. 

PROOFS

Proof of Theorem 5
Let z [ C, r . 0 and assume that D 1z, r 2 ( S 1A, b, c 2 . 
Assume further that D5 0. Let x0 [ Cn and x [  X 1x0 2 . Set-
ting A

|  J A2 zbc* and defining F
|
[  UC by F

| 1v 2 J F 1v 2 2 zv, 
it follows that x is also a maximal solution of 

 x
# 1t 2 2A

|
x 1t 2 [ 2bF

| 1c*x 1t 22 , x 10 2 5 x0. (65)

The proof of statement i) makes essential use of argu-
ments from [17, pp. 703]. Note that the complex stability 
radius 

 rC 1A| ; b, c 2 J inf5|k|: k [ C s.t. A| 1 kbc* is not Hurwitz6
satisfies rC 1A|; b, c 2 $ r. By [41] or [47, Thm. 23.3.1], there 
exists a matrix P5 P* $ 0 solving the Riccati equation 

 PA| 1A| *P1 r2cc*1 Pbb*P5 0. (66)

Note that, as an immediate consequence of (66), we have 

 ker P ( ker c*. (67)

For all j [ Cn, define V 1j 2 J 8j, Pj9 and 

 Vd 1j 2 J 52Re 8A|j 2 bw, Pj9 : w [ F
| 1c*j 26, 

so that 

 1V + x 2r 1t 2 [ Vd 1x 1t 22 , a.a. t [ 30, T 2 ,  (68)

where 30, T 2  is the maximal interval of existence of x. 
Invoking (66), we have 

      Vd 1j 2 5 52|w1 b*Pj|22 r2|c*j|21|w|2 : w [ F
| 1c*j 26,

  j[Cn. (69)

Assume now that (13) holds. Then, 

 |F
| 1c*j 2|# r|c*j|, j [ Cn , (70)

and therefore, by (69), 

 maxVd 1j 2 # 0, j [ Cn. (71)

Consequently, by (68), 

 1V ° x 2r 1t 2 # 0 a.a.  t[ 30, T 2 . (72)

Let P be the orthogonal projection of Cn onto 1ker P 2' 
and define the function x' by setting x' 1t 2 5Px 1t 2  for all 
t [ 30, T 2 . The restriction of the quadratic form V to 1kerP 2' is positive definite, so that there exists e . 0 such 
that V 1j 2 $ e 7j 7 2 for all j [ 1kerP 2'. Moreover, 
V 1x 1t 22 5V 1x' 1t 22  for all t [ 30, T 2 , and thus, invoking (72), 
we conclude that 

e 7x'1t 2 7 2#V 1x'1t 22#V 1x'10 225V 1x0 2# 7P 7 7x0 7 2,  t[ 30, T 2 .
 (73)

Now, by (67), c*x 1t 2 5 c*x' 1t 2  for all t [ 30, T 2 , and there-
fore, by (73), 

 |c*x 1t 2|# g0 7x0 7 , t[ 30, T 2 ,  (74)

where g0 J 7c 7"7P 7 /e. Furthermore, applying Filippov’s 
selection theorem shows that there exists a measurable 
function u : 30, T 2 S R such that u 1t 2[2F| 1c*x 1t 22  for a.a. 
t [ 30, T 2  and 

 x
# 1t 2 5A

|
x 1t 2 1 bu 1t 2 ,  a.a.  t[ 30, T 2 . (75)

See “Filippov’s Selection Theorem” for details. By (70), 

 |u 1t 2| # r|c*x 1t 2|,  a.a.  t [ 30, T 2 ,  (76)

which, combined with (74), yields 

 |u 1t 2| # rg0 7x0 7 ,  a.a.  t [ 30, T 2 . (77)

Since A
|

 is Hurwitz, an application of the variation-of-
parameters formula to (75) shows that there exist positive 
constants g1 and g2, depending only on A

|
 and b, such that 

 7x 1t 2 7 # g1 7x0 7 1 g2 7u 7L`10, T2, t [ 30, T 2  .
This argument shows that x is bounded and thus, by 
Lemma 1, T5 `, that is, the solution x is global. Moreover, 
using (77) and setting g J g11 rg0 g2, we obtain 
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 7x 1t 2 7 # g 7x0 7 , t $ 0, 

completing the proof of statement i). 
We proceed to prove statement ii). Note that, by (72) 

and the fact that T5 `, the limit of V 1x 1t 22  as t S ` exists 
and is finite. Let V  denote the omega-limit set of x. We 
claim that 

 V ( ker c*. (78)

Seeking a contradiction, suppose the claim is not true. Then 
there exists z [ V such that c*z Z 0.  Choose e . 0 such 
that c*j Z 0  for all j [ Be, where Be J 5j [ Cn : 7j2z 7 # e6. 
Since (14) holds, it follows that 

 |F
| 1c*j 2|2r|c*j|, 0, j[Be. (79)

Next, we assert that a stronger property holds, namely, that 
there exists d . 0 such that 

 |F
| 1c*j 2|2r|c*j|, 2d, j[Be. (80)

Suppose otherwise. Then there exists a sequence 1jj, wj 2  
with jj [ Be and wj [ F

| 1c*jj 2  for all positive integers j, 
and 

 lim
jS`

1|wj|2 r|c*jj|2 5 0.

This sequence is bounded and thus has a convergent subse-
quence, the limit of which we denote by 1j`, w` 2 . By com-
pactness of Be, it follows that j` [ Be. By upper 
semicontinuity of the map F

|
 and compactness of its values, 

w` [ F
| 1c*j` 2 . Hence, |w |̀2 r|c*j |̀5 0 and thus 

|F| 1c*j` 2|2r|c*j |̀$ 0, contradicting (79). Therefore, (80) 
holds, which, in conjunction with (69), gives 

 maxVd 1j 2#2d, j [ Be. (81)

Let 1tj 2  be a sequence in 30, ` 2  such that tj S ` and 
x 1tj 2 S z as j S `. Since x is bounded, it follows that x#  is 
essentially bounded and thus x is uniformly continuous. 
Therefore, there exists t . 0 such that 

 7x 1tj1 t 2 2 x 1tj 2 7 # e/2, t[ 30, t4, j[N.

Choosing j0 [ N such that 7x 1tj 22z 7 # e/2 for all j $ j0, it 
follows that 

 x 1t 2[Be, t [hj$ j0
3tj, tj1t 4.

Combining this fact with (68) and (81), we conclude that 

 1V ° x 2r 1t2 # 2d, a.a.  t [ hj$ j0
3tj, tj1t 4.

Integrating from tj to tj1t, j $ j0, yields 

 V 1x 1tj1t 22 # V 1x 1tj 222dt, j$ j0, 

contradicting the convergence of V 1x 1t 22  as t S `. Conse-
quently, (78) is true and thus, limtS`

 
c*x 1t 2 5 0. Invoking 

(75), (76), the fact that T5 `, and the Hurwitz property of 
A
|
, we obtain that x 1t 2S 0 as tS ,̀ completing the proof of 

statement ii). 
To prove statement iii), assume that there exists 

r1 [ 10, r 2  such that (15) holds. Since rC 1A| ; b, c 2 $ r, there 

Let I be an interval and let U  be a set-valued function de-

fined on I with nonempty values contained in Fm. A function 

u : I S Fm is a measurable selection of U  if u is measurable and 

u 1t 2 [ U 1t 2  for a.a. t [ I. 

Of particular significance in applications to control theory is 

Theorem S5, a measurable selection result involving the com-

position of a function and a set-valued function. This theorem 

is frequently referred to as Filippov’s selection theorem. For a 

proof of Theorem S5, see [55, p. 72]. 

THEOREM S5 

Let I be an interval, let U  be a measurable set-valued func-

tion defi ned on I with nonempty closed values contained in Fm, 

and let g : I 3 Fm S Fp be a function such that, for each t [ I, 

the function v A g 1t, v 2  is continuous and, for each v [ Fm, the 

function t A g 1t, v 2  is measurable. If z : I S Fp is a measurable 

selection of the set-valued function t A5g 1t, v 2  : v [ U 1t 26, then 

there exists a measurable selection u : I S Fm of U  such that 

g 1t, u 1t 22 5 z 1t 2  for a.a. t [ I. 

In the proofs of theorems 5, 13, and 15, Theorem S5 is 

used as follows. Let x : 30, T 2 S Fn be a maximal solution of 

the differential inclusion (3) with F [ UF and D [ DF. Defining 

U 1t 2 J D 1t 2 2 F 1c*x 1t 22  for all t [ 30, T 2  and g 1t, v 2 J Ax 1t 2 1 bv  

for all 1t, v 2 [ 30, T 2 3 F, the functions U  and g satisfy the 

assumptions imposed in Theorem S5 with m5 1 and p5 n. 

Furthermore, x
#
 is a measurable selection of the set-valued 

function 

t A 5g 1t, v 2  : v [U 1t 265Ax 1t 2 1 bD 1t 2 2 bF 1c*x 1t 22 .
Consequently, by Theorem S5, there exists a measurable se-

lection u : I S F of U  such that g 1t, u 1t 22 5 x
# 1t 2  for a.a. t [ I, or, 

equivalently, x
# 1t 2 5Ax 1t 2 1 bu 1t 2  for a.a. t [ I. 

Filippov’s Selection Theorem
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exists k . 0 such that rC 1A| 1kI; b, c 2 . r1. Again, by [41] or 
[47, Thm. 23.3.1], there exists a matrix Pk 5 Pk

* $ 0 solving 
the Riccati equation 

 Pk 1A| 1kI 2 1 1A|*1kI 2Pk 1 r1
2cc*1 Pkbb*Pk 5 0, 

and hence 

 PkA
|
1A

|*Pk 1 r1
2cc*1 Pkbb*Pk 5 2 2kPk. (82)

As an immediate consequence of (82) we have that 
ker Pk ( ker c*. Defining V and Vd as before, but with Pk 
replacing P, and invoking (82), we have 

 Vd 1j 2 5 52|w1 b*Pkj|22 r1
2|c*j|21 |w|2

 2 2kV 1j 2 : w [ F
| 1c*j 26,  j [ Cn.

Since 

 |w| # r1|c*j|,    w [ F
| 1c*j 2 ,  j [ Cn,  (83)

we conclude that 

 maxVd 1j 2 # 2 2kV 1j 2 ,  j [ Cn.

Consequently, by (68) with T5 `, 

 1V ° x 2 r 1t 2 # 2 2k 1V ° x 2 1t 2 ,  a.a. t $ 0, 

and thus, 

 V 1x 1t 22 # e22ktV 1x0 2 ,  t $ 0.

An argument similar to that used to obtain (73) shows 
that there exists a constant gk . 0, depending only on 1A, b, c 2 , z, r, and r1, such that 

 0 c*x 1t 2 0 # gke2kt 7x0 7 ,  t $ 0. (84)

As above, Filippov’s selection theorem guarantees the exis-
tence of a measurable function u : R S R such 
u 1t 2 [ 2F

| 1c*x 1t 22  for a.a. t $ 0 and 

 x
# 1t 2 5A

|
x 1t 2 1 bu 1t 2 ,  a.a. t $ 0. (85)

By (83) and (84), 

 0 u 1t 2 0 # r1gke
2kt 7x0 7 ,  a.a. t $ 0. (86)

Since A
|

 is Hurwitz, the conjunction of (85) and (86) 
imply the existence of constants g . 0 and e . 0 such 
that 

 7x 1t 2 7 # ge2et 7x0 7 ,    t $ 0.

Hence statement iii) holds. u 

Proof of Lemma 6 
We proceed in two steps. 

Step 1
In this step, we first prove the assertion in the specific case of 
z5 r. The more general case z [ C is treated in Step 2. If z5 r, 
then k5 0 and Hk 5H05H. Furthermore, note that 
D 1r, r 2 ( S 1H 2  if and only if 2 1/H 1s 2 o D 1r,r 2   for all 
s [ C1. Now, for every s [ C, the condition  2 1/H 1s 2
o D 1r,r 2  is equivalent to |11 rH 1s 2 0 2 $ r2|H 1s 2 0 2, which, 

in turn, is equivalent to 11 2rRe H 1s 2 $ 0. Hence 
D 1r, r 2 ( S 1H 2  is equivalent to the positive realness of 
11 2rH. 

Step 2
Let z [ C and note that 

 S 1Hk 2 5 S 1H 2 2k.

Therefore, since D 1z, r 2 ( S 1H 2 is equivalent to D 1r, r 2 5 
D 1z, r 2 2k ( S 1H 2 2k, it follows that D 1z, r 2 ( S 1H 2  if and 
only if D 1r, r 2 ( S 1Hk 2 . By Step 1, the last inclusion is 
equivalent to the positive realness of 11 2rHk, complet-
ing the proof. h 

Proof of Lemma 10 
The positive realness of 111 bG 2 111aG 221 is equivalent 
to the positive realness of 11 1 b2 a 2G 111aG 221, which 
in turn, by Lemma 6, is equivalent to 

 D 1z, r 2 ( S 1G 2 ,  (87)

where r J 1 b2 a 2 /2, z J 1a1 b 2 /2, and S 1G 2 J 5k [ C :
G 111 kG 221 [ H`6. 

To prove statement i), assume that ab . 0 and note 
that in this case the function s A2 1/s maps D 1z, r 2  onto 
D 1a, b 2 . It now follows from the Nyquist criterion that 
(87) is equivalent to the statement that the Nyquist dia-
gram of G does not intersect the disc D 1a, b 2  and encir-
cles it p times in the counterclockwise sense. 

The theory has ramifications in the study of discontinuous feedback, 

systems with quantization, and hysteretic systems.
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To prove statement ii), assume that ab , 0 and note 
that, in this case, 0 [ D 1z, r 2  and the function sA2 1/s 
maps D 1z, r 2  onto 1C ? D 1a,b 22 h5`6. Consequently, if (87) 
holds, then G [ H` and 

 G 1 iv 2 [ D 1a, b 2 ,  v [ R. (88)

Conversely, if G [ H` and (88) is satisfied, then it follows 
from the Nyquist criterion that (87) holds. h 

Proof of Corollary 12
By statement iii) of Corollary 9, it suffices to show that strict 
positive realness of 111 bG 2 111aG 221 implies positive real-
ness of 111 1 b1 d 2G 2 111 1a2 d 2G 221 for all sufficiently 
small d . 0. Recalling that Ga J G 111aG 221 and noting 
that 111 bG 2 111aG 2215 11 1 b2 a 2Ga, it follows from 
strict positive realness that there exists h . 0 such that 

 11 1 b2 a 2Re Ga 1s2h 2 $ 0,  s [ C1. (89)

We claim that 

 11 1 b2 a 2 inf
s[C1

Re Ga 1s 2 . 0. (90)

Seeking a contradiction, suppose that (90) is not true. 
Then, since Ga is strictly proper, there exists s0 [ C1 such 
that 11 1 b2 a 2Re Ga 1s0 2 5 0. By (89), Ga is analytic in the 
half-plane Re s . h, and, consequently, 11 1 b2 a 2Re Ga 
is harmonic in the half-plane Re s . h. The minimum 
 principle for harmonic functions shows that 
11 1 b2 a 2Re Ga 1s 2 5 0 for all s with Re s . h. On the 
other hand, by strict properness of Ga, 

 lim
|s|S`

111 1 b2 a 2Re Ga 1s 2 2 5 1, 

yielding the desired contradiction. Therefore, (90) holds. 
Since 

 lim
dT0
7Ga2d 2Ga 7H` 5 0, 

we conclude from (90) that, for all sufficiently small d . 0, 

 11 1 b1 d2 1a2 d 22Re Ga2d 1s 2 $ 0,  s [ C1.

Therefore, 

 
11 1 b1 d 2G
11 1a2 d 2G 5 11 1 b1 d2 1a2 d 22Ga2d

is positive real for all sufficiently small d . 0. h 

Proof of Theorem 13
Let x0 [ Rn and x [  X 1x0 2 . Defining A| J A2abc* and 
F
|
[  UR by F

| 1v 2 J F 1v 2 2av, it follows that x is also a 
maximal solution of 

 x
# 1t 2 2A

|
x 1t 2 [ 2 bF

| 1c*x 1t 22 ,  x 10 2 5 x0.

Note that 1A| , b, c 2  is a controllable and detectable realiza-
tion of G 111aG 221. A variant of the positive-real lemma, 
see [48, Prob. 5.2.2], guarantees the existence of a real 
matrix P5 P* $ 0 such that 

 PA
|
1A

| *P # 0,  Pb5 c. (91)

For all j [ Rn, define V 1j 2 J 8j, Pj9 and 

 Vd 1j 2 J 528A|j 2 bw, Pj9 : w [ F
| 1c*j 26.

Then we have 

 1V ° x 2 r 1t 2 [ Vd 1x 1t 22 ,  a.a. t [ 30, T 2 ,  (92)

where 30, T 2  is the maximal interval of existence of x. The 
second identity in (91) yields 

 Vd 1j 2 5 528PA
|
j, j92 2w 1c*j 2  : w [ F

| 1c*j 2 6,  j [ Rn.
 (93)

Assume that (28) holds. Then 

 0 # w 1c*j 2 ,  w [ F
| 1c*j 2 ,   j [ Rn. (94)

Combining this inequality with (93) and with the fact that, 
by (91), 8PA

|
j, j9 # 0 for all j [ Rn, it follows that 

 maxVd 1j 2 # 22min5w 1c*j 2  : w [ F
| 1c*j 26 # 0,  j [ Rn.

 (95)

Consequently, by (92), 

 1V° x 2 r 1t 2 # 0,  a.a. t [ 30, T 2 . (96)

Let P be the orthogonal projection of Rn onto 1kerP 2' 
and define the function x' by setting x' 1t 2 5Px 1t 2  for all 
t [ 30, T 2 . As in the proof of Theorem 5, it can be shown 
that there exists g0 . 0, depending only on P and c, such 
that 

 7c*x 1t 2 7 # g0 7x0 7 ,  t [ 30, T 2 . (97)

A central theme of the present article is a particular criterion 

for absolute stability, namely, the circle criterion.
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Let h . 0 and note that positive realness of G 111aG 221 
implies that G 111 1a1 h 2G 221 [ H`. Consequently, 
Â J A2 1a1 h 2bc* is Hurwitz. Defining F^ [  UR by 
F^ 1v 2 J F 1v 2 2 1a1 h 2v, it follows that x is also a maximal 
solution of 

 x
# 1t 2 2 Âx 1t 2 [ 2 bF̂ 1c*x 1t 22 ,  x 10 2 5 x0. (98)

Furthermore, an application of Filippov’s selection theorem 
shows that there exists a measurable function u : 30, T 2 S R 
such that u 1t 2 [ 2 F̂ 1c*x 1t 22  for a.a. t [ 30, T 2  and 

 x
# 1t 2 5 Âx 1t 2 1 bu 1t 2 ,  a.a.  t [ 30, T 2 . (99)

Define a nondecreasing function g0 : 30, ` 2 S 30, ` 2  by 
g0 1s 2 J max5|F̂ 1v 2|:|v| # s6. Then the function 
g1 : 30, ` 2 S 30, ` 2  defined by 

 g1 10 2 5 0,  g1 1s 2 5 1
s3

2s

s
g0 1s 2ds,  s . 0, 

is in  K ` and satisfies g0 1s 2 # g1 1s 2  for all s $ 0. It follows 
that 

 0 u 1t 2 0 # g1 1 0 c*x 1t 2 0 2 ,  a.a. t [ 30, T 2 ,  (100)

which, combined with (97), yields 

 0u 1t 2 0 # g1 1g0 7x0 7 2 ,  a.a.  t [ 30, T 2 . (101)

Since Â is Hurwitz, an application of the variation-
of-parameters formula to (99) shows that there exist 
positive constants g1 and g2, depending only on Â and 
b, such that 

 7x 1t 2 7 # g1 7x0 7 1 g2 7u 7L`10, T2,  t [ 30, T 2 .
It follows that x is bounded and thus, by Lemma 1, 

T5 `, that is, the solution x is global. Moreover, using 
(101) and defining g [  K` by g 1s 2 J g1s1 g2g1 1g0s 2 , we 
obtain 

 7x 1t 2 7 # g 1 7x0 7 2 ,  t $ 0, 

completing the proof of stability in the large. 
If 1A, b, c 2  is observable, then the positive-real lemma 

guarantees the existence of a positive-definite solution 
P5 P* . 0 of (91). Consequently, (96) leads to 

 7x 1t 2 7 #"7P 7 7P21 7 7x0 7 ,  t [ 30, T 2 , 

which, together with Lemma 1, implies that T5 `. Hence 
the above inequality is valid for T5 `, showing that (9) 
holds with g 1s 2 5 gs, where g J"7P 7 7P21 7 . 

Finally, the proof of statement ii) is similar to the proof 
of statement ii) of Theorem 5. h 

Proof of Theorem 15
Let x0 [ Rn, D [  DR, and x [  X 1x0, D 2 . Let 30, T 2  be the 
maximal interval of existence of x, where 0 , T # `. An 
application of Filippov’s selection theorem shows that there 
exists a measurable function u : 30, T 2 S R such that 
u 1t 2 [ D 1t 2 2F 1c*x 1t 22  for a.a. t [ 30, T 2  and 

 x
# 1t 2 5Ax 1t 2 1 bu 1t 2 ,  a.a.  t [ 30, T 2 .

With k J 1a1 b 2 /2 and Ak J A2 kbc*, we have 

 x 1t 2 5 eAktx01 3
t

0
eAk1t2t2b 1u 1t 2 1 kc*x 1t 2 2dt,  t [ 30, T 2 .

 (102)

Since u 1t 2 [ D 1t 2 2F 1c*x 1t 22  for a.a. t [ 30, T 2 , there 
exist functions d, w : 30, T 2 S Rm, not necessarily mea-
surable, such that u 1t 2 5 d 1t 2 2w 1t 2 , d 1t 2 [ D 1t 2  and 
w 1t 2 [ F 1c*x 1t 22  for a.a. t [ 30, T 2 . By assumption, there 
exists d . 0 such that (23) holds, and thus 

1a1 d2 k 2 1c*x 1t 22 2 # w 1t 2 1c*x 1t 22 2 k 1c*x 1t 22 2
 # 1 b2d2 k 2 1c*x 1t 22 2, a.a. t [ 30, T 2 .
Since F 10 2 5 506, it follows that 

 |w 1t 2 2 kc*x 1t 2| # 1 l2d 2|c*x 1t 2|,  a.a. t [ 30, T 2 , 
where l J 1 b2 a 2 /2. Consequently, 

0 u 1t 2 1 kc*x 1t 2 0 # 0D 1t 2 0 1 1 l2d 2|c*x 1t 2|, a.a. t [ 30, T 2 .
 (103)

Using the estimate (103) in (102) leads to 

 7x 1t 2 7 # 7eAktx0 7 1 7b 73 t

0
7eAk1t2t2 7|D 1t 2|dt 1 1 l2d 2 7b 7 7c 7

 3 3
t

0
7eAk1t2t2 7 7x 1t 2 7dt,   t [ 30, T 2 . (104)

We now show that T5 `. Seeking a contradiction, sup-
pose that T , `. Then, by inequality (104), there exists a 
constant a . 0 such that 

Adopting a tutorial style of presentation, this article provides an overview 

of the circle criterion and its connection with ISS.
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 7x 1t 2 7 # a¢11 3
t

0
7x 1t 2 7dt≤ ,   t [ 30, T 2 .

By Gronwall’s lemma, it follows that the maximal solution 
x of (102) is bounded on 30, T 2 , which, in conjunction with 
Lemma 1, contradicts the supposition that T , `. Conse-
quently, T5 `. 

The positive-real assumption implies that 

 iGkiH` #
1
l
, (105)

as is shown at the end of the proof. Since Gk [ H` and 
Gk 1s 2 5G 1I1 kG 1s 2 2215 c* 1sI2Ak 221b,  the stabilizability 
and detectability assumptions guarantee that Ak is Hur-
witz. Let e . 0 be sufficiently small so that Ak1 eI is Hur-
witz and 

 g J sup
Re s$2e

|Gk 1s 2| , 1/ 1 l2d 2  . (106)

Set y J c*x and, for all t $ 0, define ye 1t 2 J eety 1t 2  and 
ue 1t 2 J eetu 1t 2 . It follows from (102) that 

ye 1t 25 c*e1Ak1eI2 tx013
t

0
c*e1Ak1eI21t2t2b 1ue 1t 21 kye 1t 22 dt,   t $ 0.

Setting k0 J a3`
0

c*e1Ak1PI2 t 7 2dtb1/2

, `  we obtain

 7ye 7L230, t4 # k0 7x0 7 1 g 7ue 1 kye 7L230, t4,   t $ 0. (107)

By (103), 

0 ue 1t 2 1 kye 1t 2 0 # 0De 1t 2 0 1 1 l2d 2 0 ye 1t 2 0 ,  a.a. t $ 0 ,  

 (108)

where De 1t 2 J eetD 1t 2  for all t $ 0. From (106), we see that 
g 1 l2d 2 , 1. Hence, setting k1 J 1/ 112g 1 l2d 22  and invok-
ing (107) and (108), we have 

 7ye 7L230, t4 # k1 1k0 7x0 7 1 g 7De 7L230, t4 2 , t $ 0. (109)

By (102), 

eetx 1t 2 5 e1Ak1eI2tx013
t

0
e1Ak1eI21t2t2b 1ue 1t 21 kye 1t 222dt,   t $ 0, 

which, together with (108), yields 

 ix 1t 2 ieet # k2 ix0i 1 ibi3
t

0
ie1Ak1eI21t2t2i 1 0De 1t 2 0  

 1 1 l2d 2 0 ye 1t 2 0 2dt,   t $ 0,  (110)

where k2 J supt$0  7e1Ak1eI2t 7 . Invoking Hölder’s inequality to 
estimate the integral on the right-hand side of (110), we con-
clude that there exists a constant k3 . 0 such that 

 7x 1t 2 7eet # k2 7x0 7 1 k3 1 7De 7L230, t41 1 l2d 2 7ye 7L230, t4 2 ,   t $ 0.
 (111)

Combining (109) with (111), we conclude that there exist 
constants k4 and k5 such that 

 7x 1t 2 7eet # k4 7x0 7 1 k5 7De 7L230, t4,   t $ 0.

Finally, noting that 7De 7L230, t4 # 1eet/"2e 2 7D 7L`30, t4 for all 
t $ 0, we conclude that there exist constants g1 $ 1 and 
g2 . 0 such that 

 7x 1t 2 7 # g1e
2et 7x0 7 1 g2 7D 7L`30, t4,   t $ 0, 

which is (33). 
It remains to be shown that (105) holds. To this end note 

that, by positive realness of the transfer function 111 bG 2 111aG 221, 

 0 #
11 bG 1s 2
11aG 1s 2 1 11 bG 1s 2

11aG 1s 2 ,   s [ C1.

Multiplying by 0 11aG 1s 2 0 2/2 and rearranging, we obtain 

2
ab

2
|G 1s 2|2 # 11 k 1G 1s 21G 1s 221 ab

2
|G 1s 2|2,   s[ C1.

Adding 1a21 b2 2|G 1s 2|2/4 to both sides shows that 

 l2|G 1s 2|2 # 111 kG 1s 22 111 kG 1s 22 , s [ C1.

Consequently, 

 ` G 1s 2
11 kG 1s 2 ` 2 # 1

l2 ,   s [ C1, 

from which (105) follows.  h 

Proof of Corollary 16
First, it follows from the upper semicontinuity of the set-
valued nonlinearity F together with the compactness of its 
values and the compactness of K that u is finite. Let x0 [ Rn, 
D [ DR, and x [  X 1x0, D 2 . Let 30, T 2 , 0 , T # `, be the 
maximal interval of existence of x and write y J c*x. Define 
z [ Lloc

1 1 30, T 2 , Rn 2  by z J x
#
2Ax. Since z 1t 2 [ b 1D 1t 2 2 

F 1y 1t 222  for almost every t [ 30, T 2 , there exist functions 
d, w : 30, T 2 S R such that 

 1d 1t 2 , w 1t 22 [ D 1t 2 3 F 1y 1t 22 , t [ 30, T 2 ,   
and z 1t 2 5 b 1d 1t 22w 1t 22  for a.a. t [ 30, T 2 . Define a set-val-
ued function F

|
[  U R by setting F

| 1v 2 J Iv for all v [ R. 
Then F

| 10 2 5 506 and 

 1a1 d 2v2 # F
| 1v 2v # 1 b2 d 2v2,  v [ R.

For each t [ 30, T 2 , let w| 1t 2 [ F
| 1y 1t 22  be the unique point 

of the compact interval F
| 1y 1t 22  closest to w 1t 2 [ F 1y 1t 22 . 

Then 
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 0w 1t 2 2w| 1t 2 0 5 edist 1w 1t 2 , Iy1t2 2 , if y 1t 2 [ K, 
0,  if y 1t 2 [ R ?K,

so that 0w 1t 2 2w| 1t 2 0 # u for all t [ 30, T 2 . 
Define D

|
[  DR by D

| 1t 2 J D 1t 2 1 32u, u 4 and 
d
| : 30, T 2 S R by d

| 1t 2 J d 1t 2 2w 1t 2 1w| 1t 2 . Then, for a.a. 
t [ 30, T 2 , 
 z 1t 2 5 b 1d| 1t 2 2w| 1t 22 , d

| 1t 2 [ D
| 1t 2 , w| 1t 2 [ F

|  1y 1t 22 , 
and thus the solution x of (3) is also a solution of 

 x
# 1t 2 2Ax 1t 2 [ b 1D| 1t 2 2F| 1c*x 1t 222 , x 10 2 5 x0. (112)

Applying Theorem 15 to (112) completes the proof.  h  

Proof of Theorem 17 
By Lemma 18, there exist a1, a2, a3, a4 [  K ` and a continu-
ously differentiable function V : Rn S 30, ` 2  such that (39) 
and (40) hold. Let x0 [ Rn and D [  DR be arbitrary. By 
Lemma 1, (3) has a solution and every solution can be max-
imally extended. Let x : 30, T 2 S Rn be a maximal solution 
of (3). By (40), we have 

 1V + x 2 r 1t 2 # 2a3 1 7x 1t 2 7 2 1a4 1|D 1t 2| 2 , a.a. t [ 30, T 2 .
 (113)

We first show that T5 `. Seeking a contradiction, suppose 
T , `. Then, by local essential boundedness of D and con-
tinuity of a4, there exists c0 . 0 such that a4 1|D 1t 2|2 # c0 for 
all t [ 30, T 2 . By the final assertion of Lemma 1, x is 
unbounded, contradicting the fact that, by (113), 
a1 1 7x 1t 2 7 2 # V 1x 1t 22 # V 1x0 2 1 c0T for all t [ 30, T 2 . There-
fore, every maximal solution of (3) is global. 

Write a5 J a3 + a2
21 [  K ` and let a6 : 30, ` 2 S 30, ` 2  

be a locally Lipschitz function such that a6 # a5 1s 2  for all 
s $ 0 and a6 1s 2 . 0 for all s . 0. The existence of such a 
function a6, which is intuitively reasonable, is estab-
lished at the end of this proof. Define the locally Lip-
schitz function 

 Z : R S R,   z AZ 1z 2 J e2a6 1z 2y2, z $ 0, 
0,  z , 0, 

consider the scalar system 

 z
# 1t 2 5Z 1z 1t 22 , 

and let g : R 3 R S R denote the corresponding flow. 
Observe that zero is an equilibrium of this system and 

Z 1s 2s , 0 for all s . 0. It follows that the restriction g0 of g 
to 30, ` 2 3 30, ` 2  is in  KL. Now define g1 [  KL  and 
g2 [  K ` by 

g1 1t, s 2 J a1
21 1g0 1t, a2 1s 2 2 2 ,  g2 1s 2 J 1a1

21 + a2 + a3
21 2 12a4 1s22 .

For simplicity of notation, write k 1t 2 J a4 1 7D 7L`30, t4 2 , where 
t $ 0, and define the sets 

 T1 J 5t $ 0: V 1x 1t 22 # 1a2 + a3
21 2 12k 1t 22 6, 

 T2 J 30, ` 2 ?T15 5t $ 0: V 1x 1t 22 . 1a2 + a3
21 2 12k 1t 226.

Observe that 

 7x 1t 2 7 # g2 1 7D 7L`30, t4 2 ,  t [ T1,  (114)

and, moreover, 

 a3 1 7x 1t 2 7 2 . 2k 1t 2 ,  t [ T2.

Invoking (40), we obtain 

 1V + x 2 r 1t 2 # 2a3 1 7x 1t 2 7 2 1 k 1t 2 ,  a.a. t $ 0.

Combining the last two inequalities gives 

 1V + x 2 r 1t 2 # 2
a3 1 7x 1t 2 7 2

2
,  a.a. t [ T2.

By (39), a3 1 7x 1t 2 7 2 $ a5 1V 1x 1t 22 , whence a3 1 7x 1t 2 7 2 $  
a6 1V 1x 1t 222 5 2 2Z 1V 1x 1t 222and thus 

 1V + x 2 r 1t 2 # Z 11V + x 2 1t 22 , 0,  a.a. t [ T2. (115)

We claim that, if t [ T2, then 30, t 4 ( T2. Let t [ T2. 
Since k is nondecreasing, it follows from the definition 
of T2, that, to establish the claim, it is sufficient to prove 
that 

 V 1x 1s 22 $ V 1x 1t 22 ,  s [ 30, t 4. (116)

Let t [ 10, t 4 be such that V 1x 1t 22 $ V 1x 1t 22 . Then t [ T2 
and, appealing to the continuity of V + x and the fact that k 
is nondecreasing, we can conclude that there exists 
s [ 30, t 2  such that 3s, t 4 ( T2. Therefore, by (115), 1V ° x 2r , 0 almost everywhere on 3s, t 4, which shows 
V 1x 1s 22 . V 1x 1t 22 $ V 1x 1t 22  for all s [ 3s, t 2 . Conse-
quently, (116) holds, and thus 30, t 4 ( T2. 

Nonlinearities of greater generality, including hysteresis 

and quantization operators, are permitted in the feedback path.
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Let t [ T2. Then, 30, t 4 ( T2, and hence, by (115), 

 1V + x 2r 1s 2 # Z 11V + x 2 1s 22 , a.a. s [ 30, t 4.
Therefore, 1V + x 2 1t 2 # g0 1t, V 1x0 22 , and, since t [ T2 is 
arbitrary, 

 V 1x 1t 22 # g0 1t, V 1x0 22 # g0 1t, a2 1 7x0 7 22 ,  t [ T2.

Invoking (39), we conclude that 

 7x 1t 2 7 # g1 1t, 7x0 7 2 ,  t [ T2, 

which, in conjunction with (114), yields 

 7x 1t 2 7 # max5g1 1t, 7x0 7 2 , g2 1 7D 7L`30, t4 26,  t $ 0, 

completing the proof of i). 
Now assume that (H1) holds. Then, by Lemma 18, the 

functions a1, a2, a3, a4, and V depend on 1A, b, c 2 , w, b, and 
d, but not on F. Therefore, functions g1 and g2, constructed 
in the above argument, also depend only on 1A, b, c 2 , w, b, 
and d, but not on F. 

Finally, it remains to show that there exists a locally Lip-
schitz function a6  : 30, ` 2 S 30, ` 2  such that a6 1s 2 # a5 1s 2  
for all s $ 0 and a6 1s 2 . 0 for all s . 0. Define 
a6  : 30, ` 2 S 30, ` 2  by a6 10 2 J 0 and 

 a6 1s 2 J 2b 1s 2
s 3

s

s/2
a5 1t 2dt,  s . 0.

where b : 30, ` 2 S 30, 1 4 is given by b 1s 2 5 s 122 s 2  for 
s [ 30, 1 4 and b 1s 2 5 1 for s . 1. Then a6 1s 2 # a5 1s 2  for all 
s $ 0 and a6 1s 2 . 0 for all s . 0. Moreover, a6 is continu-
ously differentiable and hence locally Lipschitz. h  

Proof of Lemma 18 
For brevity, we present the argument only in the case for 
which hypothesis (H1) holds. The case in which (H2) holds 
is structurally similar and we refer the reader to the proof 
of [19, Lemma 5.1] for full details. 

Let 1A, b, c 2 [ Rn3n 3 Rn 3 Rn be controllable and 
observable, let F [  UR, and assume that (H1) holds. Then, 
11 bG is positive real and thus, by the positive-real lemma, 
there exists l [ Rn and a symmetric, positive-definite 
P [ Rn3n such that 

 PA1A*P5 2 ll*,   Pb5 c2"2/b  l . (117)

Define V0 : Rn S 30, ` 2 , jA8j, Pj9.  Then, for j [ Rn and 1d, w 2 [ R 3 F 1c*j 2 , 
 8=V0 1j 2 , Aj1 b 1d2w 2 95 8j, 1PA1A*P 2j9128j, Pb 1d2w 2 9
 521 l*j 2 212 1c*j 2

 3 1d2w 2 2 2"2/b 1 l*j 2 1d2w 2

 52 1 l*j1"2/b 1d2w 22 21 12/b 2
  3 1d2w 2 21 2 1c*j 2 1d2w 2
 # 2d2/b1 14/b 2|d 7w|1 2w2/b

 1 2|c*j 7d|2 2 1c*j 2w. (118)

Note that, by (37) and the fact that F 10 2 5 506, 
 |w| # 1 b2 d 2|c*j|,  w2 # 1 b2 d 2 1c*j 2w, 

 j [ Rn,  w [ F 1c*j 2 , 
which, when combined with (118), gives 

8=V0 1j 2 , Aj 1b 1d2w 2 9 # 2d2/b 1 1214 1 b2 d 2/b 2 0 d 7c*j|

 2 12d/b 2 1c*j 2w
 5 2d2/b1 2 132 2k0 2|d 7c*j 0  
 2 2k0 1c*j 2w, 

 j [ Rn,  1d, w 2 [ R 3 F 1c*j 2 ,  (119)

wherein, for notational convenience, we have set 
k0 J d/b. 

For j [ Rn and d [ R, we consider two exhaustive cases. 

Case 1
If 2 132 2k0 2|d| # k0w 1|c*j|2 , then 

2 132 2k0 2 0 d 7c*j 0 # k0w 1|c*j|2|c*j| # k0 1c*j 2w,   
 w [ F 1c*j 2 .

Case 2
If 2 132 2k0 2|d| . k0w 1|c*j|2 , then

 w21 12 132 2k0 2|d|/k0 2 . |c*j|,

and thus

 2 1322k0 2|d 7c*j|,2 1322k0 2|d|w21 12 1322k0 2 0 d 0 /k0 2  
 5g 1 0 d 0 2 , 
where the function g [  K ` is defined by 

 g 1s 2 J 2 132 2k0 2sw21 12 132 2k0 2s/k0 2 ,  s $ 0.

Therefore, we conclude that 

 2 132 2k0 2 0 d 7c*j 0 # k0 1c*j 2w1g 1 0 d 0 2 ,   j [ Rn,  

 1d, w 2 [ R 3 F 1c*j 2 , 
which, together with (119), yields 

8=V0 1j 2 , Aj 1 b 1d2w 2 9 #2 k0 1c*j 2w1g 1|d|2 1 2d2/b,

 j [ Rn,   1d, w 2 [ R 3 F 1c*j2 . (120)

Next, by observability, there exists h [ Rn such that 
A2 hc* is Hurwitz. Let Q [ Rn3n be a symmetric, positive-
definite matrix such that 
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 Q 1A2 hc* 2 1 1A2 hc* 2 *Q523I, 

and define W : Rn S 30, ` 2  by W 1j 2 J 8j, Qj9. Then, we have 

 8=W 1j2, Aj1b 1d2w29 #22 7j 7 21 k1 7j 7 1|c*j|1|w|2
 1k1d

2, j[Rn,
 1d, w 2 [ R 3 F 1c*j 2 ,  (121)

with k1 J max52 7Qb 7 , 2 7Qh 7 , 7Qb 7 26. 
For notational convenience, define f0 : 30, ` 2 S 30, ` 2  by 

f0 1s 2 5 111 b2 d 2s and define the continuous, nonde-
creasing function f1 : 10, 1 4 S 10, ` 2  by 

 f1 1s 2 J min
t[ 3s,14 

tw 1t 21 f0 1t 22 2 .

Moreover, define f2 : 30, ` 2 S 30, ` 2  by 

 f2 1s 2 J • 0,  s5 0, 
min5s, f1 1s 2 6, s [ 10,1 4,
f1 11 2 1 s2 1, s . 1.

It can be verified that f2 is continuous, nondecreasing, 
and unbounded. Writing f3 J f2 + f0

21, we see that f3 is con-
tinuous, nondecreasing, and unbounded, with f3 10 2 5 0 
and, for later use, we record that 

 f3 1111b2d 2|v|2 1111 b2d 2|v|2 25 1 f3 + f0 2 1|v|2 1 f0 1|v|22 2
 5 f2 1|v|2 1 f0 1|v|22 2
 # f1 1|v|2 1 f0 1|v|22 2
 # |v|w 1|v|2 , |v|# 1.
 (122)

Next, define h [ K ` by 

 h 1s 2 J 1
k1Å s7Q 7  ,   s $ 0, 

and define the continuous, nondecreasing, and unbounded 
function s J f3 + h. Let s* be the unique point in 10, ` 2  with 
the property h 1s* 2s 1s* 2 5 1. Define the continuous func-
tion r : 30, ` 2 S 30, ` 2  and the continuously differentiable 
function V1 : Rn S 30, ` 2  by 

 r 1s 2 J es 1s 2 ,   0 # s # s*,
1/h 1s 2 , s . s*, 

and 

 V1 1j 2 J 3
WAjB

0
r 1s 2  ds , 

respectively. Note that 

 r 1s 2 # s 1s* 2 5 1/h 1s* 25: k2,    s $ 0 ,  (123)

 r 1W 1j 22 7j 7 # k1"7Q 7 7Q21 7  5:  k3,    j [ Rn ,  (124)

r 1W 1j 22 7j 7 2 $ 7j 7  min 5 7j 7  f3 1 7j 7yk3 22 ,  k16,    j [ Rn .
 (125)

Equation (123) is an immediate consequence of the defini-
tion of r. To confirm that (124) and (125) hold, we introduce 
the sets 

 S1 J 5j [ Rn : W 1j 2 . s*6, 
 S2 J Rn?S15 5j [ Rn : W 1j 2 # s*6.
Then we have 

 r 1W 1j 22 iji 5 7j 7
h 1W 1j 22 5 7j 7k1"7Q 7"8j, Qj9 # k3,  j [ S1, 

and 

 r 1W 1j 22 iji # "7Q21 7s*

h 1s* 2 5 k3,  j [ S2, 

and thus (124) holds. To see that (125) also holds, simply 
note that 

 r 1W 1j 22 5 1
h 1W 1j 22 5 k1"7Q 7"8j, Qj9 $ k17j 7 ,  j [ S1,

and 

r 1W 1j 22 5s 1W 1j 22 5 f3a"W 1j 2
k1"7Q 7 b $ f3 1 7j 7yk3 2 ,  j [ S2.

The conjunction of (121) and (123) now gives 

 8=V1 1j2, Aj1 b 1d2w2 9 # 2 2r 1W 1j 22 7j 7 2
 1 k1r 1W 1j 22 7j 7 1|c*j|1|w|2
 1 k1k2d

2, 

  j[Rn, 1d, w2[ R3F 1c*j2 . 
 (126)

We proceed to obtain a convenient estimate of the term 
k1r 1W 1j 22 7j 7 1|c*j|1|w|2 . Observing that 

 vw5 |v||w| $ |w|,   w [ F 1v 2 ,   |v| $ 1, 

writing k4 J min51, w 11 26/2, and invoking (37), we can 
conclude that 

 2vw $ |v|w 1|v|2 1 |w|
 $ |v|w 11 2 1 |w|
 $ 2k4 1|v|1|w|2 ,   w [ F 1v 2 ,   |v| $ 1, 

which, together with (124), gives 

r 1W 1j 22 iji 1|c*j|1|w|2 # k3

k4
 1c*j 2w,  w[F 1c*j 2 , |c*j|$1.

 (127)

Moreover, by (37) and (122), 

 f3 1 0 v 01 0F 1v 2 0 2 1 0 v 01 0F 1v 2 02 2 # 0 v 0w 1 0 v 0 2 , 0 v 0 , 1.
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Note that, if w [ F 1c*j 2  and k1 1 0 c*j 01 0w 0 2 $ 7j 7 , then 

 r 1W 1j22 # s 1W 1j 22 # s 1 7Q 7 7j 722
 # s 1k1

2 7Q 7 1 0 c*j 01 0w 0 2 22
 5 f3 1 0 c*j 01 0w 0 2 .
Therefore, if w [ F 1c*j 2 , k1 1 0 c*j 01 0w 0 2  $ 7j 7  and 0 c*j 0, 1, 
then 

 k1r 1W 1j 22 7j 7 1|c*j|1|w|2 # r 1W 1j 22 ij 2i
 1

k1
2

4
 r 1W 1j 22 1 0 c*j 01 0w 0 2 2

 # r 1W 1j 2 2 iji 21
k1

2

4
 1c*j 2w.

On the other hand, if w [ F 1c*j 2 ,  k1 1 0 c*j 01 0w 0 2 # 7j 7  and 0 c*j 0, 1, then 

 k1r 1W 1j 22 7j 7 1 7c*j 01 0w 0 2 # r 1W 1j 22 7j 7 2.
Using the fact that 1c*j 2w $ 0 for all w [ F 1c*j 2  and all 
j [ Rn, it follows that 

k1r 1W 1j 22 iji 1 0c*j 0 1 0w 0 2 # r 1W 1j 22 iji 21
k1

2

4
 1c*j 2w, 

  w [ F 1c*j 2 ,   0c*j 0 , 1. (128)

Writing k5 J max5k1k3/k4, k1
2/46, the conjunction of (127) and 

(128) gives 

 k1r 1W 1j 2 2 iji 1 0c*j 0 1 0w 0 2 # r 1W 1j 2 2 7j 7 21 k5 1c*j 2w,  

   j [ Rn,  w [ F 1c*j 2 .
The latter, together with (126), implies 

 8=V1 1j 2 , Aj 1 b 1d2w 2 9 # 2r 1W 1j 2 2 7j 7 21 k5 1c*j 2w
 1 k1k2d

2,  j [ Rn, 

  1d, w 2 [ R 3 F 1c*j 2 . (129)

Now define V J k5V01 k0V1. Then, by (120) and (129), 

8=V 1j 2 , Aj 1 b 1d2w 2 9# 2k0r 1W 1j 2 2 iji 2 

 1 1k0k1k21 2k5/b 2d21 k5g 1 0d 0 2 , 
  j [ Rn,   1d, w 2 [ R 3 F 1c*j 2 .
 (130)

Finally, defining a1, a2, a3, a4 [  K ̀  by 

a1 1s 2 J k5s
2YiP21i ,   a2 1s 2 J k5 iPis21 k03

iQis2

0
r 1t 2dt,

 a3 1s 2 J k0 s min5sf3 1syk3 2 ,  k16,   a4 1s 2
 J 1k0k1k21 2k5/b 2s21 k5g 1s 2 ,

we have 

 a1 1 7j 7 2 5 k5 7P21 721 7j 7 2
 # k58j, Pj9
 5 k5V0 1j 2
 # V 1j 2
 # k5 iPi iji 21 k03

iQiiji2

0
r 1t 2  dt

 5a2 1 7j 7 2 ,     j [ Rn,

and, invoking (125) and (130), 

 8=V 1j 2 , Aj 1 b 1d2w 2 9 # 2a3 1 7j 7 2 1a4 1|d| 2 ,    
 1j, d 2 [ Rn 3 R. u 

Proof of Lemma 23 
The sector condition (48) implies 

 1a1 d 2 1v1 r 2 22 f 1v1 r 2r # f 1v1 r 2v # 1 b2 d 2 1v1 r 2 2
 2 f 1v1 r 2r,  1r, v 2 [ R2.

Setting k J max5|a1 d|, |b2 d|6 and again invoking 
(48) shows that 

 |f 1v1 r 2r| # k 1|vr|1 r2 2 ,  1r, v 2 [ R2. (131)

Therefore, 

 1a1 d 2v22 3k 1|vr|1 r2 2 # f 1v1 r 2v # 1 b2 d 2v2

 1 3k 1|vr|1 r2 2 ,  1r, v 2 [ R2.

Defining l1 J max51, 12kyd6, it follows that 

 k 1|v|.11  .1
2 2 # dv2/6, v [ R? 3 2l1.1, l1.1 4,

and thus, 

 1a1 dy2 2v2 # f 1v1 r 2v # 1 b2 d/2 2v2, r [ 32.1, .1 4, 
   v [ R? 32l1.1,l1.1 4.
Consequently, 

1a1 dy22  . 2y|v| 2v2 # F. 1v 2v # 1 b2 dy21  .2y|v| 2v2, 

  v [ R? 32l1.1,l1.1 4.
Setting l2 J 4yd and noting that  .2y|v| # d/4 for all 
v [ R? 3 2l2.2,l2.2 4, we obtain 

1a1 dy4 2v2 # F. 1v 2v # 1 b2 dy4 2v2,  v [ R? 3 2l 7. 7 ,l 7. 7 4,
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where l J max5l1, l26. Therefore, we can apply Corollary 
16, with F5 F.  and K5 3 2l 7. 7 , l 7. 7 4, to conclude that 
there exist constants k1 . 0, k2 . 0, and e . 0, depending 
only on 1A, b, c 2 , a, b, and d, such that, for each 
. [ 30,` 2 3 30,` 2 , each x0 [ Rn, and each d [ Lloc

` 30, ` 2 , 
every maximal solution x of 

 x
# 1t 2 2Ax 1t 2 2 bd 1t 2 [ 2 bF. 1c*x 1t 2 2 , x 10 2 5 x0 (132)

is global and 

 7x 1t 2 7 # k1e
2et 7x0 7 1 k2 1 7d 7L`30,t41 u. 2 , t $ 0, (133)

where 

 u. J sup
|v|#l7 . 7 sup

w[F . 1v2dist 1w, Iv 2 ,
with 

 Iv J e 3 1a1 d/4 2v, 1 b2 d/4 2v 4, v $ 0, 3 1 b2 d/4 2v, 1a1 d/4 2v 4, v , 0.

From (131), it follows that 

 |f 1v1 r 2| # k 1l 7. 7 1 7. 7 2 # 2kl 7. 7 , v [ 3 2l 7. 7 ,l 7. 7 4, 
  r [ 3 2 .1, .1 4,
and thus, 

 |F. 1v 2| # 12kl1 1 2 7. 7 ,  v [ 3 2l 7. 7 ,l 7. 7 4. (134)

Setting 

 k3 J max52kl1 1 ,  l|a1 dY4| ,  l|b2 dy4|6, 
we have that, for all v [ 32l 7. 7 , l 7. 7 4, 
 F. 1v 2 ( 32k3 7. 7 , k3 7. 7 4,  Iv ( 3 2 k3 7. 7 , k3 7. 7 4.
Consequently, u. # 2k3 7. 7 . Setting g1 J k1 and g2 J 2k2k3, 
and invoking (133), it follows that every maximal solution x 
of (132) is global and 

 7x 1t 2 7 # g1e
2et 7x0 7 1 g2 1 7d 7L`30,t41 7. 7 2 , t $ 0.

The assertion of the lemma now follows, since, for each 
F [ U R satisfying F 1v 2 ( F. 1v 2  for all v [ R, every maxi-
mal solution of (49) is also a maximal solution of (132). u 

Proof of Lemma 24 
Assume first that (H2) holds with F 1v 2 5 5 f 1v 2 6. Defining 
c [  K` by 

 c 1s 2 5 s1 max
|s|#s

|f 1s 2|,  s $ 0, 

it follows that 

 w 1|v| 2|v| # f 1v 2v # c 1|v| 2|v|,  v [ R. (135)

For |v| $ 2r1 and |r| # r1, we have |v|y2 # |v|2 |r|
# |v1 r| # |v|1 |r| # 2|v|. Therefore, 

 w 1|v|y2 2 # w 1|v1 r| 2 , r [ 32.1, .1 4, v [ R? 322 .1,2 .1 4
and 

 c 12|v| 2 $ c 1|v1 r| 2 , r [ 32.1, .1 4, v [ R? 32.1, . 1 4.
Invoking (135), it follows that 

 w 1|v|Y2 2 # |f 1v1 r 2| # c 12|v| 2 ,
  r [ 32.1, .1 4, v [ R? 322.1, 2.1 4.
Since f 1v1 r 2v $ 0 for all r [ 32.1, .1 4 and all v [
R? 322.1, 2.1 4, we conclude that 

 w 1|v|/2 2|v| # f 1v1 r 2v # c 12|v| 2|v|,

 r [ 32.1, .1 4,
 v [ R? 322.1, 2.1 4.
Hence, 

w 1|v|/2 2|v|2  .2|v| # F. 1v 2v # c 12|v| 2|v|1  .2|v|, 

 v [ R? 322.1, 2.1 4. (136)

Defining m [  K` by 

 m 1s 2 J max52w21 12s 2 , c21 1s 2Y26,  s $ 0, 

we have that, for every s $ 0 and every t $ m 1s 2 , w 1t/2 2 $ 2s 
and c 12t 2 $ s. Consequently, defining w1, c1 [  K ̀  by 

 w1 1s 2 J w 1s/2 2 /2,  c1 1s 2 J 2c 12s 2 ,  s $ 0, 

and setting a 1. 2 J max52.1, m 1.2 2 6, we have that 

w1 1|v| 2|v| # F. 1v 2v # c1 1|v|2|v|,  v [ R? 32a 1. 2 , a 1. 2 4.
Therefore, it follows from Corollary 21, with F5 F. and 
K5 32a 1. 2 , a 1. 2 4, that there exist k1 [  KL  and k2 [  K  
such that, for each  . [ 30,` 2 3 30,` 2 , each x0 [ Rn, and 
each d [ Lloc

` 30, ` 2 , every maximal solution x of 

 x
# 1t 2 2Ax 1t 2 2 bd 1t 2 [ 2bF. 1c*x 1t 2 2 , x 10 2 5 x0 (137)

is global and 

 7x 1t 2 7 # max5k1 1t, 7x0 7 2 ,  k2 1 7d 7L`30,t41 u. 2 6, t $ 0, (138)

where 
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 u. J sup
|v|#a1 . 2 sup

w[F . 1v2dist 1w, Iv 2 ,
with 

 Iv J e 3w1 1v 2 , c1 1v 2 4, v $ 0,32c1 1|v| 2 , 2w1 1|v| 2 4, v , 0.

Moreover, note that, for all r [ 32.1, .1 4 and all 
v [ 32a 1. 2 , a 1. 2 4, 
 |f 1v1 r 2| # c 1|v1 r| 2 # c 1a 1. 2 1  .1 2 # c1 1a 1. 2 1  .1 2 .
Consequently, 

 |F. 1v 2| # c1 1a 1. 2 1 .1 2 1  .2, v [ 32a 1. 2 , a 1. 2 4.
Setting b 1. 2 J c1 1a 1. 2 1 .1 2 1  .2, it follows that 

F. 1v 2 ( 32b 1. 2 ,b 1. 2 4 and Iv ( 32b 1. 2 ,b 1. 2 4  for all 
v [ 32a 1. 2 ,a 1. 2 4,  implying 

 u. # 2b 1. 2 ,  . [ 30,` 2 3 30,` 2 . (139)

Also, since a 1. 2 # m 1 7. 7 2 1 2 7. 7  for all  . [ 30,` 2 3 30,` 2 , 
we have 

 b 1. 2 # c1 1m 1 7. 7 2 1 3 7. 7 2 1 7. 7 ,  . [ 30,` 2 3 30,` 2  (140)

The function c2 : 30, ` 2 S 30, ` 2  defined by 

 c2 1s 2 J 2 1c1 1m 1s 2 1 3s 2 1 s 2 ,  s $ 0, 

is in  K`. Inequalities (139) and (140) now yield 

 u. # c2 1 7. 7 2 ,  . [ 30,` 2 3 30,` 2 .
Setting g1 J k1 and g25k2 + 1 id1c2 2 , it follows, invok-

ing (138), that every maximal solution x of (137) is global 
and 

 7x 1t 2 7 # max5g1 1t, 7x0 7 2 ,  g2 1 7d 7L`30,t41 7. 7 2 6, t $ 0.

Since, for each F [  U R satisfying F 1v 2 ( F. 1v 2  for all 
v [ R, every maximal solution of (49) is also a maximal 
solution of (137), we can conclude that the assertion of the 
lemma is valid under the assumption that (H2) holds. 

Under the assumption that (H1) holds, proof of the 
assertion of the lemma is similar to the above proof and is 
therefore omitted.  h 

Proof of Corollary 27 
We proceed in two steps. 

Step 1
In this step, we assume that do [ L` 30, ` 2 . Set . J1 7do 7L`30,`2,0 2 . Let F. [  U R be defined by (47), and let x be a 

maximal solution x of (62). Every maximal solution x of 
w(62) is also a maximal solution of 

 x
# 1t 2 2Ax 1t 2 2 bd 1t 2 [ 2 bF. 1c*x 1t 2 2 , x 10 2 5 x0. (141)

Applying Lemma 23 shows that there exist constants 
g1 . 0, g2 . 0, and e . 0, depending on 1A, b, c 2 , a, b, and 
d, but not on f, such that, for each x0 [ Rn, each d [ Lloc

` 30, ` 2  
and each do [ L` 30, ` 2 , every maximal solution x of (141) is 
global and 

 7x 1t 2 7 # g1e
2et 7x0 7 1 g2 1 7d 7L`30, t41 7do 7L`30, `2 2 ,  t $ 0.

Step 2
Now, let do [ Lloc

` 30, ` 2 . Let x be a maximal solution of (62). 
Seeking a contradiction, suppose that the maximal interval 
of existence of x is of the form 30, T 2 , where T , `. By 
Lemma 1, lim suptST 7x 1t 2 7 5 `. Define d

|

o [ L` 30, ` 2  by 

 d
|

o 1t 2 J e do 1t 2 , 0 # t # T, 
0, t . T, 

and note that x is also a maximal solution of 

 x
# 1t 2 5Ax 1t 2 1 b 1d 1t 2 2 f 1c*x 1t 2 1 d

|

o 1t 222 ,  x 10 2 5 x0. (142)

By Step 1, every maximal solution of (142) is global, 
yielding a contradiction. Therefore, the solution x is global. 

It remains to show that (64) holds. To this end, let t . 0 
be fixed, but arbitrary, define d̂o [ L` 30, ` 2  by 

 d̂o 1t 2 J e do 1t 2 , 0 # t # t, 
0, t . t, 

and consider the initial-value problem 

x
# 1t 2 5Ax 1t 2 1 b 1d 1t 2 2 f 1c*x 1t 2 1 d̂o 1t 2 2 2 ,  x 10 2 5 x0. (143)

Let x be a maximal solution of (62). We know that x is 
global and x|30, t4 is a solution of (143) on the interval 30, t 4. 
Let x̂ be a maximal solution of (143) extending x|30, t4. By 
Step 1, x̂ is global and 

 7 x̂ 1t 2 7 # g1e
2et 7x0 7 1 g2 1 7d 7L`30, t41 7 d̂o 7L` 30, ` 2 2 ,  t $ 0.

Finally, since 7 d̂o 7L`30, `25 7do 7L`30, t4 and x 1t 2 5 x̂ 1t 2 , we con-
clude that 

 7x 1t 2 7 # g1e
2et 7x0 7 1 g2 1 7d 7L`30, t41 7do 7L`30, t4 2 .

Since t is arbitrary, (64) now follows.  h

Proof of Theorem S3 
Let y [ C 30, ` 2  and t $ 0 be arbitrary. Note initially that, 
by the definition of the backlash operator, 
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 1B s,  j1s2 1y 2 2 1t 2 [ 3y 1t 2 2s, y 1t 2 1s 4,    t $ 0.

Case 1
Assume y 1t 2 $ 0. Writing E1 J 30, y 1t 2 4 and E2 J 1y 1t 2 , ` 2 , 
we have 

1P j 1y 2 2 1t 2 $  a3
E1

1 3
E2

b3yQtR2s
0

w 1s, s 2mL 1ds 2m 1ds 2 2 |w0|

 $ b13
E1

1y 1t 2 2s 2m 1ds 2
 1 b23

E2

1y 1t 2 2s 2m 1ds 2 2 |w0|

 5 1b1m 1E1 2 1 b2m 1E2 2 2y 1t 2 2 b13
E1

s m 1ds 2
 2 b23

E2

s m 1ds 2 2 |w0|

 $ a1b1y 1t 2 2 a2b22 |w0|5 a P y 1t 2 2 u P  .

Moreover, 

 1P j 1y 2 2 1t 2 # 3
`

0
3

yQtR1s
0

w 1s, s 2mL 1ds 2m 1ds 2 1 |w0|

 # b23
`

0
1y 1t 2 1s 2m 1ds 2 1 |w0|

 # a1b2y 1t 2 1 a2b21 |w0|

 5 b P y 1t 2 1 u P , 

which establishes (S14). 

Case 2
Now assume y 1t 2 # 0. The argument used in Case 1 applies 
mutatis mutandis to conclude (S15). 

Finally, the inequality (S16) is a consequence of (S14) and 
(S15).  h 

CONCLUSIONS
Adopting a tutorial style of presentation, this article pro-
vides an overview of the circle criterion and its connection 
with ISS. Classical absolute stability theory, and the circle 
criterion in particular, is concerned with the analysis of a 
feedback interconnection of Lur’e type, which consists of a 
linear system in the forward path and a sector-bounded 
nonlinearity in the negative feedback path. The classical 
methodology seeks to conclude stability of the intercon-
nected system through the interplay of frequency-domain 
properties of the linear component and sector data for the 
nonlinearity. This article adopts a similar standpoint but 
with several features that distinguish it from the classical 
approach. First, classical absolute stability results are revis-
ited in the context of systems described by differential 
inclusions and within a framework based on the complex 

Aizerman conjecture. This methodology provides new per-
spectives on classical results. Second, nonlinearities of 
greater generality, including hysteresis and quantization 
operators, are permitted in the feedback path. To accommo-
date this generality, an analytic framework of set-valued 
maps and differential inclusions is adopted. Third, in con-
trast with the classical literature that is focused mainly on 
asymptotic stability of the feedback interconnection, ISS 
issues are addressed and resolved. Fourth, the sector condi-
tions of the classical theory are significantly weakened. In 
particular, through the interaction of the notions of ISS with 
bias and generalized sector conditions, results pertaining to 
feedback nonlinearities satisfying a sector condition only in 
the complement of a compact set are obtained. These results 
facilitate applications to hysteretic and quantized feedback 
systems.
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