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It is known that if a continuous-time feedback system is exponentially stable, then the corresponding
sampled-data system obtained by sample-hold discretisation with constant sampling period is also exponentially
stable, provided that the sampling period �40 is sufficiently small. In general, it is difficult to estimate how small
the sampling period has to be in order to achieve the stability of the sampled-data system. In this article,
we present an adaptive mechanism for adjusting the sampling period. This mechanism has the properties that,
for every initial state, (i) the adaptation of the sampling period terminates after finitely many time steps and
(ii) the state of the adaptive sampled-data system is integrable and converges to zero as time goes to infinity.

Keywords: adaptive control; feedback stabilisation; indirect sampled-data control; variable sampling period

1. Introduction

Consider the finite-dimensional continuous-time static

output feedback system

_xðtÞ ¼ AxðtÞ þ BuðtÞ; xð0Þ ¼ x0,

yðtÞ ¼ CxðtÞ,

uðtÞ ¼ FyðtÞ,

9>=
>; ð1:1Þ

where A2R
n�n, B2R

n�m, C2R
p�n, F2R

m�p and

x02R
n. System (1.1) is exponentially stable if, and only

if, the matrix AþBFC is exponentially stable, that is,

all eigenvalues of AþBFC have negative real parts.
Digital implementation of the output feedback

in (1.1) requires the application of sampling and

(zero-order) hold, leading to the sampled-data feed-

back system

_xðtÞ ¼ AxðtÞ þ BuðtÞ; xð0Þ ¼ x0,

yðtÞ ¼ CxðtÞ,

uðtÞ ¼ Fyð j�Þ, 8t 2 ½ j�, ð jþ 1Þ�Þ,

9>=
>; ð1:2Þ

where �40 is the sampling period. It is well known

that if system (1.1) is exponentially stable and if

sampling period � is sufficiently small, then system

(1.2) is also exponentially stable in the sense that there

exist an M� 1 and an �40 such that

kxðt;x0, �Þk �Me��tkx0k, 8x0 2 R
n
8t � 0,

where x(�; x0, �) denotes the solution of (1.2) (for the

proof and for related results, see Dragan (1990),

Chen and Francis (1991), Logemann, Rebarber, and

Townley (2003) and Ke (2008).
Given that the continuous-time system (1.1) is

exponentially stable, it is in general difficult to estimate

how small the sampling period has to be in order to

achieve the stability of the sampled-data system (1.2)

(Tokarzewski and Olbrot 1995). In this article,

we develop an adaptive strategy for adjusting the

sampling period, so that, for every initial condition x0,

the adaptation of the sampling period terminates

after finitely many time steps and the

corresponding solution of (1.2) is integrable and
tends to 0 as t!1.

The idea to invoke sampling period adaptation in

the synthesis of stable sampled-data feedback systems

seems to have been introduced in Owens (1996), where

it is used in a high-gain control context. The approach

in Owens (1996), developed for single-input–

single-output minimum phase systems with relative

degree one, was extended in Ilchmann and Townley

(1999) to include multi-input–multi-output systems.

Additionally, a number of other assumptions imposed

in Owens (1996) were relaxed in Ilchmann and

Townley (1999). Furthermore, sampling period adap-

tation has also been used in Özdemir and Townley

(2003) in a low-gain integral control context. However,

the results in Ilchmann and Townley (1999), Owens

(1996) and in Özdemir and Townley (2003) are specific

to high-gain stabilisation and low-gain tracking,

respectively, and have little overlap with the general
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result on adaptive sampling in indirect sampled-data

control presented in this article.
The rest of this article is structured as follows.

Section 2 is devoted to the statement, discussion and

illustration (by means of an example) of Theorem 2.2,

the main result of this article. Whilst Theorem 2.2 is

restricted to static output feedback, it is shown in

Section 3 how it can be extended to indirect

sampled-data control involving dynamic feedback.

All proofs can be found in Section 4. Finally, some

conclusions are drawn in Section 5.

Nomenclature and terminology

A sequence ðsj Þj2N0
is said to be ultimately constant

if, and only if, there exists an N2N0 such that

sNþj¼ sN for all j2N0.

2. Adaptation of the sampling period

The purpose of this section is to develop an adaptive

feedback mechanism for adjusting the sampling period.
The use of sampling and hold in (1.1), corresponding

to the sampling points ðtj Þj2N0
, leads to the following

sampled-data feedback system:

_xðtÞ ¼ AxðtÞ þ BuðtÞ; xð0Þ ¼ x0,

yðtÞ ¼ CxðtÞ,

uðtÞ ¼ Fyðtj Þ, 8t 2 ½tj, tjþ1Þ:

9>>=
>>; ð2:1Þ

The sampling points tj, or, equivalently, the sampling

periods �j :¼ tjþ1� tj, are determined by the following
adaptive strategy:

for given �2 ð0,1Þ and ð�j Þj2N0
2 ‘1ðN0,RÞ

with infj2N0
�j40 ,

set t0¼ 0, let �0� 0,

and, for j¼ 0,1,2, . . . , set

kj¼b�jc,

�j¼max �j=ð jþ1Þ�, �kj=ðkjþ1Þ�
� �

,

tjþ1¼ tjþ �j,

�jþ1¼ �jþkyðtjÞk:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ð2:2Þ

The rationale for the adaptive strategy (2.2) is

described in the following remark.

Remark 2.1:

(i) The choice of ð�j Þj2N0
and � in (2.2) allows to

influence the size of the sampling periods �j in
the transient phase where j is ‘small’: for

example, the larger the �j, the larger the �j and
similarly, the smaller the �, the larger �j.
Moreover, we emphasise that the sequence

ð�j Þj2N0
plays a further role which will become

clear later (see part (iii) of Remark 2.8).
(ii) Obviously, the last line in (2.2) (the recursion

for �j) is a discrete-time integrator with initial

state �0 and input ðk yðtj ÞkÞj2N0
, so that

�j ¼ �0 þ
Xj�1
l¼0

k yðtl Þk, 8j 2 N: ð2:3Þ

It is immediate that the following properties

are equivalent:

(a) ð�j Þj2N0
is ultimately constant;

(b) ðkj Þj2N0
is ultimately constant;

(c) ð�j Þj2N0
2 ‘1ðN0,RÞ;

(d) yðtj Þ
� �

j2N0
2 ‘1ðN0,R

p
Þ.

We note that if ð�j Þj2N0
is not ultimately

constant, then limj!1�j¼ 0 (as follows from

the equivalence of (a) and (b)). Furthermore,

we see that if the sequence ð�j Þj2N0
is non-

increasing (a natural choice), then ð�j Þj2N0
is

non-increasing. The idea behind (2.2) is to

drive �j to zero as long as the norm of the

sampled output values y(tj) is ‘large’ in the

sense that the partial sum �j has not ‘started to

converge’.

For the following, it is convenient to define

�l :¼ �l=ðlþ 1Þ�, 8l 2 N0: ð2:4Þ

Note that, for each sampling period �j generated

by (2.2), there exists an lj2N0 such that �j ¼ �lj .
We introduce the following detectability hypothesis.

(D) The pair ðC, eA�lÞ is discrete-time detectable for

every l2N0.

We are now ready to state the main result of this

contribution. The proof can be found in Section 4.

Theorem 2.2: Assume that the continuous-time feed-

back system (1.1) is exponentially stable and let x(�; x0)

denote the solution of the adaptive sampled-data system

given by (2.1) and (2.2). Then, for every initial state

x02R
n, the following statements hold:

(i) the sequence ð�j Þj2N0
is ultimately constant, that

is, the adaptation of the sampling period

terminates in finite time;

b�c :¼ max{n2N0jn� �}, � 2Rþ

‘1(N0, R
n) space of bounded R

n-valued
sequences ðsj Þj2N0

‘1(N0, R
n) space of R

n-valued sequences ðsj Þj2N0

with
P1

j¼0 ksj k51
L1(Rþ, R

n) vector space of all measurable functions
f : Rþ!R

n with
R1
0 k f ðtÞkdt51
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(ii) if, additionally, hypothesis (D) is satisfied, then
limt!1 x(t; x0)¼ 0, x(�; x0)2L1(Rþ,R

n) and
ðxðtj;x

0ÞÞj2N0
2 ‘1ðN0,R

n
Þ.

Note that, by part (i) of Theorem 2.2, the limit
� :¼ limj!1 �j exists. Whilst Theorem 2.2 guarantees
that, for every x02R

n, x(t; x0)! 0 as t!1, it does
not ensure that the sampled-data feedback system (2.1)
with constant sampling period � is asymptotically
stable or, equivalently, that the spectral radius of
the matrix

D� :¼ eA� þ

Z �

0

eAsdsBFC ð2:5Þ

is smaller than 1, as the following trivial example shows.

Example 2.3: Let C¼ I (in which case, for every
sequence ð�j Þj2N0

and every �, hypothesis (D) is
trivially satisfied). Choose A, B, F and �40 such that
AþBF is Hurwitz and D� has at least one eigenvalue �u
with j�uj � 1 and at least one eigenvalue �s with j�sj51.
Let vs be in the �s-eigenspace of D� with

kvsk5 1� j�sj: ð2:6Þ

With �j¼ � for all j2N0, �2 (0, 1) arbitrary, x
0
¼ vs and

�0¼ 0, it follows easily that the adaptive sampled-data
system given by (2.1) and (2.2) has the following
properties: �j¼ � for all j2N0, yðtj Þ ¼ xðtj; x

0Þ ¼

xð j�;x0Þ ¼ �jsvs and kj¼ 0 for all j2N0. This can be
shown by an elementary induction argument combined
with the observation that

�j ¼
Xj�1
l¼0

j�sj
l kvsk �

1

1� j�sj
kvsk5 1, 8j 2 N,

which is a consequence of (2.3) and (2.6).

The phenomenon described in Example 2.3 is
reminiscent of the well-known fact that, in adaptive
stabilisation, the limiting feedback controller is not
necessarily stabilising (see Townley (1996, 1999) and
the references therein for more details).

Remark 2.4: As has already been indicated in
Section 1: given a feedback matrix F rendering the
continuous-time system (1.1) exponentially stable, it is
a difficult task to derive conditions (in terms of A, B, C
and F) for a sampling period �* guaranteeing that the
sampled-data system (1.2) is asymptotically stable for
every (fixed) sampling period � 2 (0, �*), or equiva-
lently, such that the spectral radius of the matrix D�
given by (2.5) is smaller than 1 for every � 2 (0, �*)
(see Tokarzewski and Olbrot (1995), one of the very
few papers addressing this issue). To the best of our
knowledge, no satisfactory solution of this problem
is available in the literature. Naturally, whilst this
problem becomes even more difficult in the presence of

plant uncertainty, the adaptive strategy (2.2)

‘handles’ plant uncertainty easily. More precisely,

assume that the plant is not exactly known, but that

it is known to be contained in a (known) set P of plants

and that (by using methods from robust control) a

feedback F has been designed which stabilises all plants

in P in continuous time (i.e. (1.1) is exponentially

stable for every system (A,B,C) in P). Then the

conclusions of Theorem 2.2 are valid for every

(A,B,C ) in P.

As we have already noted in Example 2.3: in the

case of state feedback (that is, p¼ n and C¼ I ),

hypothesis (D) is trivially satisfied (for every sequence

ð�j Þj2N0
and every �). In general, however, the

appearance of hypothesis (D) in statement (ii) of

Theorem 2.2 is somewhat unsatisfactory, because it is

formulated in discrete-time terms and not in terms of

the original continuous-time data. The following

definition will be useful in addressing this issue.

Definition 2.5: A number �40 is said to be patholo-

gical relative to A2R
n�n if, and only if, there exist

q2Zn{0} and �, �2 �(A)\ {s2C : Re s� 0} such

that �(���)¼ 2q	i. Otherwise, � is said to be

non-pathological relative to A.

We shall see that, in Theorem 2.2, hypothesis (D)

can be replaced by the following hypothesis.

(D0) For every l2N0, �l is non-pathological relative

to A.

Lemma 2.6: If the pair (C,A) is detectable in con-

tinuous time and hypothesis (D0) is satisfied, then

(D) holds.

The proof of Lemma 2.6 can be found in Section 4.
The assumption of exponential stability of the

continuous-time feedback system (1.1) in Theorem 2.2

trivially implies that (C,A) is detectable in continuous

time. Therefore the following corollary is an immediate

consequence of Lemma 2.6.

Corollary 2.7: The conclusions of Theorem 2.2 remain

valid if, in the statement of Theorem 2.2, hypothesis (D)

is replaced by hypothesis (D0).

The following remark contains some commentary

on hypotheses (D) and (D0).

Remark 2.8:

(i) The converse of Lemma 2.6 is not correct.

Whilst hypothesis (D) implies the continuous-

time detectability of (C,A), it does, in general,

not imply (D0). Consequently, in the context of

Theorem 2.2, hypothesis (D) is weaker than

hypothesis (D0).
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(ii) Let � and ð�l Þl2N0
be given as in (2.2) and

define ð�l Þl2N0
by (2.4). Then it can be shown

that the set

fA 2 R
n�n : �l is non-pathological relative to A

for every l 2 N0g

is open and dense in R
n�n [Ke (2008),

Appendix A.1]. Consequently, the probability

that, for a randomly chosen matrix A2R
n�n,

there exists l2N0 such that �l is pathological

relative to A is zero.
(iii) Let A2R

n�n and �2 (0, 1) be given and let

NP(A,�) denote the set of all bounded

sequences ð�l Þl2N0
with infl2N0

�l 4 0 and such

that �l (defined in (2.4)) is non-pathological

relative to A for every l2N0 (i.e. hypothesis

(D0) holds). It is easy to show that NP(A,�) is
open and dense (with respect to the ‘1-norm)

in the set of all bounded sequences ð�l Þl2N0

with infj2N0
�l 4 0. As a consequence, the

probability that a randomly chosen sequence

ð�l Þl2N0
with infl2N0

�l 4 0 is not contained in

NP(A,�) is zero.

Part (ii) of Remark 2.8 shows that, if � and ð�l Þl2N0

are fixed, then, with respect to A, (D0) is generically

satisfied. Similarly, if � and A are fixed, then part (iii)

of Remark 2.8 shows that, with respect to ð�l Þl2N0
, (D0)

holds generically. The same comment applies to

hypothesis (D), provided that (C,A) is detectable in

continuous time (the latter is trivially satisfied if the

continuous-time feedback system (1.1) is exponentially

stable). Consequently, assumptions (D) and (D0)

imposed in Theorem 2.2 and Corollary 2.7, respec-

tively, are not very restrictive.

We illustrate Theorem 2.2 by an example (including
a numerical simulation).

Example 2.9: Assume that A, B, C and F in
system (2.1) are given by

A ¼

�a1 1 a2

�1 0 a3

�a2 �a3 0

0
B@

1
CA, B ¼

1 0

0 0

0 1

0
B@

1
CA,

C ¼ I, F ¼ �BT:

Then, for all (a1, a2, a3)2Rþ�R�R, the matrix A
is dissipative (that is hAz, zi� 0 for all z2R

3) and
the pair (A,B) is continuous-time controllable.
Consequently, as is well known, the corresponding
continuous-time feedback system (1.1) is exponentially
stable (for all (a1, a2, a3)2Rþ�R�R). Hypothesis (D)
is trivially satisfied (for every sequence ð�j Þj2N0

and
every �) and therefore the conclusions of Theorem 2.2
hold (for all (a1, a2, a3)2Rþ�R�R).

Consider A with specific parameter values given
by a1¼ 0, a2¼ 1/2 and a3¼ 1, in which case A has
eigenvalues 0 and �i3/2 and the eigenvalues of
A�BBT are approximately �0.8836 and �0.5582 �
i1.3971. Moreover, with �, (�j), x

0 and �0 given by

� ¼ 0:3, �j ¼ 1 8j 2 N0, x0 ¼ ð1, 2, 1ÞT, �0 ¼ 0,

the evolution of the sampled-data system given by (2.1)
and (2.2) is illustrated in Figure 1.

3. Generalisation to dynamic output feedback

Consider a dynamic output feedback system with plant
given by

_xp ¼ Apxp þ Bpup; xpð0Þ ¼ x0p,

yp ¼ Cpxp,
ð3:1Þ

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

t

||x
(t

,x
0 )|

|

0 10 20 30 40 50
0

0.5

1

1.5

j

t j

Figure 1. Sampled-data control with adaptive sampling period.
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controller given by

_xc ¼ Acxc þ Bcuc; xcð0Þ ¼ x0c ,

yc ¼ Ccxc þDcuc,
ð3:2Þ

and feedback interconnection equations

uc ¼ yp, up ¼ yc, ð3:3Þ

where Ap 2 R
np�np , Bp 2 R

np�m, Cp 2 R
p�np , Ac 2

R
nc�nc , Bc 2 R

nc�p, Cc 2 R
m�nc , Dc 2 R

m�p, x0p 2 R
np

and x0c 2 R
nc . Defining

A :¼ diagðAp,AcÞ, B :¼ diagðBp,BcÞ,

C :¼
Cp 0

DcCp Cc

� �
, F :¼

0 I

I 0

� �
,

ð3:4Þ

a routine calculation shows that the continuous-time

dynamic feedback system given by (3.1)–(3.3) can be

written as

_x¼ ðAþBFC Þx; xð0Þ ¼x0¼
x0p
x0c

� �
, where x :¼

xp
xc

� �
:

ð3:5Þ

Let ðtj Þj2N0
be the sampling points to be determined

adaptively. As before, we define the associated

sampling periods �j :¼ tjþ1� tj for j2N0. Consider the

corresponding sample-hold discretisation of (3.2):

xdc ð jþ 1Þ ¼ eAc�jxdc ð j Þ þ

Z �j

0

eAcsdsBcu
d
c ð j Þ;

xdc ð0Þ ¼ x0c 2 R
nc ,

ydc ð j Þ ¼ Ccx
d
c ð j Þ þDcu

d
c ð j Þ,

9>>>=
>>>;
ð3:6Þ

together with the feedback interconnection equations

udc ð jÞ ¼ ypðtj Þ, upðtjþ 
Þ ¼ ydc ð jÞ, 8
2 ½0,�j Þ, 8j2N0:

ð3:7Þ

The adaptive strategy for determining the sampling

points is very similar to that in the case of static

feedback, the only difference being in the equation for

ð�j Þj2N0
:

for given � 2 ð0, 1Þ and ð�j Þj2N0
2 ‘1ðN0,RÞ

with infj2N0
�j 4 0 ,

set t0 ¼ 0, let �0 � 0,

and, for j ¼ 0, 1, 2, . . . , set

kj ¼ b�jc,

�j ¼ max �j=ð jþ 1Þ�, �kj=ðkj þ 1Þ�
� �

,

tjþ1 ¼ tj þ �j,

�jþ1 ¼ �j þ
��� ypðtjÞ, ydc ð j Þ���:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;
ð3:8Þ

Remark 3.1: Remark 2.1 remains true in the context

of the adaptive strategy (3.8), provided that, in (2.3),

ky(tj)k is replaced by kð ypðtj Þ, y
d
c ð j ÞÞk and, in item (d)

of part (ii), ð yðtj ÞÞj2N0
and ‘1(N0,R

p) are replaced by

ð ypðtj Þ, y
d
c ð j ÞÞj2N0

and ‘1(N0,R
pþm), respectively.

The sampled-data feedback system given by (3.1),

(3.6), (3.7) and (3.8) has a unique solution which will be

denoted by

xpðtj þ 
;x
0Þ

xdc ð j;x
0Þ

� �
, 8
 2 ½0, �j Þ, 8j 2 N0: ð3:9Þ

The following corollary is the main result of this

section. The proof can be found in Section 4.

Corollary 3.2: Assume that the continuous-time

dynamic feedback system given by (3.1)–(3.3) (or,

equivalently, system (3.5)) is exponentially stable.

Then, for every initial state x0 2 R
npþnc , the sampled-

data feedback system given by (3.1), (3.6)–(3.8) has the

following properties:

(i) the sequence ð�j Þj2N0
is ultimately constant, that

is, the adaptation of the sampling period

terminates in finite time;
(ii) if, additionally, �l/(lþ 1)� is non-pathological

relative to A¼diag(Ap,Ac) for every l2N0,

then limt!1xp(t;x
0)¼ 0, xpð � ;x

0Þ 2

L1ðRþ,R
npÞ, ðxpðtj; x

0ÞÞj2N0
2 ‘1ðN0,R

npÞ and

ðxdc ð j; x
0ÞÞj2N0

2 ‘1ðN0,R
nc Þ.

4. Proofs

To facilitate the proofs of the results in Sections 2 and

3, it is convenient to first state and prove a technical

lemma. To this end, consider the sampled-data feed-

back system (2.1) with a prespecified sequence

t :¼ ðtj Þj2N0
of sampling points satisfying

t0 ¼ 0, tjþ1 4 tj 8j 2 N0, tj !1 as j!1:

Let x(�; x0, t) denote the corresponding solution of

system (2.1).
The following lemma shows that if the continuous-

time system (1.1) is exponentially stable and if the

sampling periods �j :¼ tjþ1� tj converge to 0 as j!1,

with rate of convergence sufficiently small, then the

sequence ðxðtj; x
0, tÞÞj2N0

is summable. Here ‘suffi-

ciently small’ means that there exist constants M40

and �2 (0, 1) such that �j4Mj�� for all j2N.

Lemma 4.1: Assume that the continuous-time feed-

back system (1.1) is exponentially stable. Let the

sequence t ¼ ðtj Þj2N0
be such that t0¼ 0 and tjþ14tj
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for all j2N0. Set �j :¼ tjþ1� tj and assume that

lim
j!1

�j ¼ 0 and inf
j2N
�j j

�4 0 for some � 2 ð0, 1Þ:

ð4:1Þ

Then, for every x02R
n, the sequence ðxðtj;x

0, tÞÞj2N0
is

in ‘1(N0,R
n).

Proof: The variation-of-parameters formula yields

xðtjþ1;x
0,tÞ¼ eA�j þ

Z �j

0

eAsdsBFC

� �
xðtj;x

0,tÞ, 8j2N0:

ð4:2Þ

Considering

Dj :¼ eA�j þ

Z �j

0

eAsdsBFC and xj :¼ xðtj;x
0, tÞ; 8j2N0,

Equation (4.2) becomes

xjþ1 ¼ Djxj, 8j 2 N0; x0 ¼ x0: ð4:3Þ

It follows from the exponential stability of (1.1) that

there exists a unique matrix P¼PT40, such that (see,

e.g. Sontag (1998), Theorem 18, p. 231)

ðAþ BFC ÞTPþ PðAþ BFC Þ ¼ �I: ð4:4Þ

Let k � kP be the norm on R
n defined by

kzk2P :¼ hz,Pzi, 8z 2 R
n:

Using the power series expansion of eAt, we may

decompose

Dj ¼ Iþ �j ðAþ BFC Þ þ �2j �ð�j Þ, 8j 2 N0, ð4:5Þ

where

�ð�Þ :¼
X1
l¼0

�l

ðlþ 2Þ!
Alþ1ðAþ BFC Þ, 8� � 0:

The boundedness of ð�j Þj2N0
implies the boundedness

of the sequence ð�ð�j ÞÞj2N0
and hence, invoking (4.3)

and (4.5), we conclude that there exists a constant

L� 0 such that

kxjþ1k
2
P � kxj k

2
P

¼ hDjxj,PDjxji � hxj,Pxji

� �j
	
xj,


ðAþ BFC ÞTPþ PðAþ BFC Þ

�
xj
�

þ L�2j kxj k
2, 8j 2 N0:

Combining this with (4.4), we have

kxjþ1k
2
P � kxj k

2
P � ð��j þ L�2j Þkxj k

2, 8j 2 N0,

and therefore, in view of limj!0 �j¼ 0, we obtain that

there exists an N2N such that

kxjþ1k
2
P � kxj k

2
P � �

�j
2
kxj k

2, 8j � N:

Consequently,

kxjþ1k
2
P�kxj k

2
P�

�j
2
kxj k

2� 1�
�j

2kPk

� �
kxj k

2
P, 8j�N,

ð4:6Þ

and hence,

kxjk
2
P �

Yj�1
l¼N

1�
�l

2kPk

� �" #
kxNk

2
P, 8j � Nþ 1: ð4:7Þ

If xj0 ¼ 0 for some j0�N, then it follows from (4.6)

that xj¼ 0 for all j� j0, and thus ðxj Þj2N0
2 ‘1ðN0,R

n
Þ.

Now assume that xj 6¼ 0 for all j�N. Then, by (4.6),

1� �j/(2kPk)40 for all j�N. Moreover, since (4.1)

yields M :¼ infj2N{�j j
�}40, we have �j�M/j� for all

j2N, and thus

05 1�
�j

2kPk
� 1�

M

2kPk j�
, 8j � N:

Combining this with (4.7) yields

kxj kP �
Yj�1
l¼N

1�
M

2kPkl�

� �1=2
" #

kxNkP, 8j � Nþ 1:

ð4:8Þ

Define a positive sequence ðvj Þj2N0
by

vj :¼
YNþj
l¼N

1�
M

2kPkl�

� �1=2

¼
YNþj
l¼N

1�
�

l�


 �1=2
,

where � :¼M/(2kPk). By (4.8), to show that ðxj Þj2N0
2

‘1ðN0,R
n
Þ, it suffices to prove that ðvÞj2N0

2 ‘1ðN0,RÞ.

Invoking the inequality 1� t� e�t (which holds for all

t2R), we have

Xk
j¼0

vj �
Xk
j¼0

exp �
�

2

XNþj
l¼N

1

l�

 !

�
Xk
j¼0

exp �
�ð jþ 1Þ

2ðNþ j Þ�

� �
, 8k 2 N0: ð4:9Þ

Since, by (4.1), we have �2 (0, 1), it follows that

exp �
�ð jþ 1Þ

2ðNþ j Þ�

� �
�

1

j2
, for all sufficiently large j.

Hence, the right-hand side of (4.9) converges to a finite

limit as k!1, showing that ðvj Þj2N0
2 ‘1ðN0,RÞ. œ

Proof of Theorem 2.2: Let x02R
n be fixed, but

arbitrary.
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To prove statement (i), we adopt a contradiction

argument and suppose that the sequence of sampling

periods ð�j Þj2N0
is not ultimately constant. Then, by

Remark 2.1, limj!1 �j¼ 0. Moreover, invoking the

definition of �j in (2.2), we obtain

�j j
� � �j

j

jþ 1

� ��
, 8j 2 N:

By assumption, infj2N0
�j 4 0, and thus,

inf
j2N
�j j

�4 0:

Therefore, (4.1) is satisfied and Lemma 4.1 yields that

ðxðtj;x
0ÞÞj2N0

2 ‘1ðN0,R
n
Þ, and hence, ð yðtj ÞÞj2N0

2

‘1ðN0,R
p
Þ. Invoking again Remark 2.1 shows that

ð�j Þj2N0
is ultimately constant, contradicting the sup-

position that ð�j Þj2N0
is not ultimately constant.

To prove statement (ii), we first note that, by the

variation-of-parameter formula,

xðtj þ 
; x
0Þ ¼ eA
 þ

Z 


0

eAsds BFC

� �
xðtj;x

0Þ,

8
 2 ½0, �j �, 8j 2 N0: ð4:10Þ

By statement (i), there exists an N2N0 such that

�j ¼ �N ¼: �, 8j � N:

Hypothesis (D) guarantees that the pair (C, eA�) is

discrete-time detectable. Hence, there exists H2R
n�p

such that eA�þHC is power stable, i.e. all eigenvalues

of eA�þHC are in the open unit disc {s2C : jsj51}.

Setting B� :¼
R �
0 e

Asds B, it follows from (4.10) with


¼ � that

xðtjþ1;x
0Þ ¼ eA�xðtj; x

0Þ þ B�FCxðtj;x
0Þ

¼ ðeA� þHCÞxðtj;x
0Þ þ ðB�F�HÞ yðtj Þ,

8j � N:

Combining this with the power stability of eA�þHC

and the fact that ð yðtj ÞÞj2N0
2 ‘1ðN0,R

p
Þ (guaranteed

by Remark 2.1), we conclude that ðxðtj; x
0ÞÞj2N0

2

‘1ðN0,R
n
Þ. This implies in particular that

lim
j!1

xðtj;x
0Þ ¼ 0: ð4:11Þ

Setting

�� :¼ sup
j2N0

�j51 and M :¼ sup

2½0, ���

eA
þ

Z 


0

eAsdsBFC

����
����,

we obtain from (4.10) that

kxðtj þ 
;x
0Þk �Mkxðtj;x

0Þk, 8
 2 ½0, �j �, 8j 2 N0:

Consequently, by (4.11),

lim
t!1

xðt; x0Þ ¼ 0:

Finally,Z 1
0

kxðtÞkdt ¼
X1
j¼0

Z tjþ1

tj

kxðt; x0Þkdt

�M ��
X1
j¼0

kxðtj;x
0Þk51,

showing that x2L1(Rþ,R
n) and completing the proof

of statement (ii). œ

Proof of Lemma 2.6: By assumption, (C,A) is
continuous-time detectable and �l is non-pathological
relative to A for all l2N0. Therefore, by a standard
result (Francis and Georgiou (1988), Lemma 8), the
pair ðC, eA�l Þ is discrete-time detectable for all l2N0,
showing that hypothesis (D) holds. œ

Proof of Corollary 3.2: Let x0 2 R
npþnc be fixed, but

arbitrary. Moreover, let the matrices B, C and F
be defined as in (3.4). Invoking the variation-
of-parameters formula, we conclude that

xpðtjþ 
;x
0Þ

xdc ð jþ1;x0Þ

 !

¼
eAp
 0

0 eAc�j

 !
þ

Z 


0

eApsds 0

0

Z �j

0

eAcsds

0
BBB@

1
CCCABFC

2
6664

3
7775

�
xpðtj;x

0Þ

xdc ð j;x
0Þ

 !
, 8
 2 ½0,�j Þ, 8j2N0: ð4:12Þ

Since, by continuity of xp(�; x
0), xp(tjþ 
; x

0)!xp(tjþ1;
x0) as 
 " �j, we obtain the following from (4.12),
as 
 " �j,

xpðtjþ1;x
0Þ

xdc ð jþ 1;x0Þ

 !
¼ Dj

xpðtj;x
0Þ

xdc ð j;x
0Þ

 !
, 8j 2 N0;

xpð0;x0Þ

xdc ð0;x0Þ

 !
¼ x0, ð4:13Þ

where Dj :¼ eA�j þ
R �j
0 eAsds BFC with A, B, C and F

given by (3.4). Now consider the adaptive
sampled-data system defined by (2.1) and (2.2),
where again A, B, C and F are given by (3.4) and,
furthermore, n¼ npþ nc. Denoting its solution by
x(�; x0), it follows that

xðtjþ1; x
0Þ ¼ Djxðtj; x

0Þ, 8j 2 N0; xð0;x0Þ ¼ x0:

Combining this with (4.13) shows that

xðtj; x
0Þ ¼

xpðtj; x
0Þ

xdc ð j; x
0Þ

 !
, 8j 2 N0:
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An application of Corollary 2.7 to the sampled-data

system defined by (2.1) and (2.2), with A, B, C and F

given by (3.4), then shows that ð�j Þj2N0
is ultimately

constant and the sequence ðxðtj;x
0ÞÞj2N0

is in

‘1(N0,R
n). In particular,

lim
j!1

xðtj;x
0Þ ¼ lim

j!1

xpðtj;x
0Þ

xdc ð j; x
0Þ

� �
¼ 0: ð4:14Þ

Finally, we note that by using (4.12) and (4.14) in

combination with an argument similar to that adopted

at the end of the proof of Theorem 2.2 (after

Equation (4.11)), it follows that limt!1 xp(t; x
0)¼ 0

and xpð � ;x
0Þ 2 L1ðRþ,R

np Þ, completing the

proof. œ

5. Conclusions

We have proved that if the controlled continuous-time

system _x ¼ Axþ Bu with output y¼Cx is exponen-

tially stabilised by the static output feedback u¼Fy

and if hypothesis (D) or hypothesis (D0) holds, then the

corresponding indirect sampled-data control together

with the adaptive strategy (2.2) leads to a stable

sampled-data system in the sense that, for all initial

states, the adaptation of the sampling period termi-

nates after finitely many time steps and the state is

integrable and converges to zero as time goes to

infinity. Furthermore, we have shown how this result

can be generalised to dynamic output feedback.
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