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Abstract

For a class of high-gain stabilizable multivariable linear in�nite-dimensional systems we present an adaptive control
law which achieves approximate asymptotic tracking in the sense that the tracking error tends asymptotically to a ball
centred at 0 and of arbitrary prescribed radius �¿0. This control strategy, called �-tracking, combines proportional error
feedback with a simple nonlinear adaptation of the feedback gain. It does not involve any parameter estimation algorithms,
nor is it based on the internal model principle. The class of reference signals is W 1;∞, the Sobolev space of absolutely
continuous functions which are bounded and have essentially bounded derivative. The control strategy is robust with
respect to output measurement noise in W 1;∞ and bounded input disturbances. We apply our results to retarded systems
and integrodi�erential systems. c© 1998 Elsevier Science B.V. All rights reserved.

Keywords: Adaptive control; Tracking; High-gain control; In�nite-dimensional systems; Functional di�erential equations;
Integrodi�erential equations

1. Introduction

We present an adaptive regulator for the class of in�nite-dimensional m-input–m-output systems described by

ẏ(t) =H(y)(t) + Gu(t) + w(t); y(0) = y0∈Rm; (1.1)

where as usual u(·) and y(·) denote the plant input and output, respectively, G is a real m×m-matrix whose
eigenvalues have positive real parts, and H is a causal linear operator, which is input–output stable in a
certain sense; see Section 2 for details. In applications H will be the input–output operator of a state-space
system or a system described by a functional or partial di�erential equation. The function w(·) then models
the e�ect of non-zero inital conditions. Our class covers retarded and integrodi�erential systems which satisfy
a generalized minimum phase condition and have a generalized high-frequency gain whose eigenvalues have
positive real parts, and are hence stabilizable by static high-gain output feedback (for a detailed discussion
see Section 4).
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Fig. 1. Closed-loop system.

To the above class of systems we apply a simple adaptive controller of the form

e(t) = yr(t)− y(t);
u(t) = k(t) e(t);

k̇(t) =

{
(‖e(t)‖ − �)2 if ‖e(t)‖¿�;
0 if ‖e(t)‖¡� k(0) = k0:

(1.2)

This control strategy, called �-tracking, is similar to a control law introduced by Ilchmann and Ryan [7]
in a �nite-dimensional context. In Eq. (1.2), yr(·) is a reference signal which is assumed to belong to
W 1;∞(R+;Rm), i.e. yr is absolutely continuous on every compact subinterval of R+ and yr and ẏr are
essentially bounded. The constant �¿0 is an upper bound for the asymptotic tracking error and is chosen by
the designer. Setting D(e) = ‖e‖ − � if ‖e‖¿� and D(e) = 0 otherwise, the gain adaptation in Eq. (1.2) can
be written as k̇ = D2(e). The closed-loop system given by Eqs. (1.1) and (1.2) is shown in Fig. 1.
Our main result shows that for all reference signals yr∈W 1;∞(R+;Rm), all initial conditions (y0; k0)∈Rm×R

and all essentially bounded functions w(·), the controller (1.2) achieves convergence of the feedback gain k(t),
and the output y(t) will approach the ball B�(yr(t)) of radius � centred at yr(t) as t→∞, i.e.

lim sup
t→∞

‖e(t)‖6�: (1.3)

Moreover, we show that the closed-loop system is robust with respect to measurement noise in W 1;∞(R+;Rm)
and bounded input disturbances. Note that the control law (1.2) is of striking simplicity – it combines propor-
tional error feedback with a simple nonlinear adaptation of the feedback gain. It does not invoke any parameter
estimation, nor is it based on the internal model principle. We mention that for �nite-dimensional problems,
the concept of �-tracking has been successfully applied to the control of industrial plants and processes as
for example: continuous stirred tank reactors for methanol synthesis [1], binary distillation columns [2] and
biogas tower reactors [6].
The technique of representing a large class of high-gain stabilizable in�nite-dimensional linear systems by

an abstract Volterra integrodi�erential equation of the form (1.1) was introduced by Logemann and Owens
[9]. It has been exploited for adaptive asymptotic tracking by Logemann and Ilchmann [8]. However, in [8]
we needed to invoke the internal model principle and the class of reference signals was essentially restricted
to �nite sums of sinusoids. In this paper we overcome this drawback by weakening the control objective
slightly: instead of exact asymptotic tracking the design goal is approximate asymptotic tracking in the sense
of Eq. (1.3).
The paper is organized as follows. Section 2 contains some preliminaries on abstract Volterra integrodi�er-

ential systems which are needed to establish existence and uniqueness of solutions for the closed-loop system
given by Eqs. (1.1) and (1.2). Moreover, we give a frequency-domain interpretation for our class of systems
in the case of shift-invariant H. Section 3 contains the main result on adaptive �-tracking, whilst Section 4
is devoted to the application of this result to retarded and integrodi�erential systems.

Nomenclature. As usual, set C� := {s∈C |Re s¿�}, where �∈R. The Euclidean norm on Rn and Cn and
the matrix norm induced by the Euclidean norm will be denoted by ‖ · ‖. We will make use of the following
function spaces, where I ⊂R denotes an interval and K = R;C.
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C(I;Kn) := vector space of all continuous functions on I with values in Kn.
Lp(I;Kn) := vector space of all p-integrable functions on I with values in Kn, p¿1.
L∞(I;Kn) := vector space of all essentially bounded functions on I with values in Kn.
Lploc(I;Kn) := vector space of all locally p-integrable functions on I with values in Kn, p¿1.
W 1;∞(R+;Kn) := vector space of all Kn-valued functions f de�ned on R+ such that f is absolutely conti-

nuous on every compact subinterval of R+ and f and ḟ are essentially bounded.
BV (I;Kn×n) := vector space of Kn×n-valued functions of bounded variation de�ned on I .
M (R+;Kn×n) := vector space of bounded Borel measures on R+ with values in Kn×n.
H∞(Cn×n) := algebra of bounded holomorphic functions de�ned on C0 with values in Cn×n.

Let f be a function de�ned on [0; a), where 0¡a6∞. Then for all �∈ [0; a)

(P�f)(t) :=

{
f(t); 06t6�;

0; t¿�:

If X is a normed space, then B(X ) denotes the set of linear bounded operators from X into X . If T ∈B(X ),
then �(T ) denotes the spectrum of T .

L denotes the Laplace transform. The superscript ˆ is used to denote Laplace transformed or Laplace–Stieltjes
transformed functions.

2. Preliminaries and system description

The plant to be controlled is given by Eq. (1.1), where we assume that
(A1) G∈Rm×m with �(G)⊂C0,
(A2) H is causal and H∈B(L2(R+;Rm))∩B(L∞(R+;Rm)).
Recall that H is called shift-invariant if StH=HSt for all t¿0, where St denotes the operator of

right-shift by t. Since shift-invariance implies causality (see [11]), assumption (A2) is implied by
(A2′) H is shift-invariant and H∈B(L2(R+;Rm))∩B(L∞(R+;Rm)).
Assumption (A2′) (and hence assumption (A2)) is usually satis�ed for the input–output operators of systems

given by linear autonomous exponentially stable di�erential equations (ODEs, PDEs as well as FDEs). In
particular, it is satis�ed for the classes of retarded and integrodi�erential systems considered in Section 4.
It follows from [12] that (A2′) holds if and only if H is a convolution operator of the form H(y)=H ∗y,

where H ∈M (R+;Rm×m). In this case, if y0 = 0 and w ≡ 0, Laplace transformation of Eq. (1.1) gives

sŷ(s) = Ĥ (s)ŷ(s) + Gû(s):

Setting

G(s) = (sI − Ĥ (s))−1G; (2.1)

it follows that ŷ(s) = G(s)û(s). Using assumption (A1) and the fact that Ĥ is in H∞(Cm×m), it is not di�cult
to show that for all su�ciently large 
¿0

G(I + 
G)−1∈H∞(Cm×m);

i.e. static high-gain feedback leads to a L2-stable closed-loop system. 3 This observation is the motivation for
applying the high-gain adaptive control law (1.2) to the system (1.1).

3 In fact, combining this result with a Paley–Wiener type theorem for integrodi�erential equations (see Theorem 3.5 on p. 83 in [3]),
it can be shown that for su�ciently large 
¿0, the inverse Laplace transform of G(I + 
G)−1 is in L1(R+;Rm×m). Hence it follows
that the closed-loop system is Lp-stable for all p∈ [1;∞].
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Conversely, if a system is externally described by a transfer function G(s), and there exists Ĥ ∈H∞(Cm×m)
and G∈Rm×m with �(G)⊂C0 such that (2.1) holds, then the system can be represented by Eq. (1.1), where
H(y) = L−1(Ĥ ŷ). Whilst in this case the operator H is shift-invariant and in B(L2(R+;Rm)), it is not true
in general that H∈B(L∞(R+;Rm)). However, under the extra assumption that the inverse Laplace transform
H of Ĥ is in M (R+;Rm×m) (which is usually satis�ed in applications), it follows that H∈B(L∞(R+;Rm)).
Finally, we mention that a transfer function G which is meromorphic in C� for some �¡0, admits a

factorization of the form (2.1) with G nonsingular and Ĥ ∈H∞(Cm×m) if and only if sG(s) − G = O(s) as
|s|→∞ in C0 (generalized “relative-degree-one” condition) and G(s) has no zeros in Ccl0 (minimum-phase
condition), see [10].
To prove existence and uniqueness of the solution of the closed-loop system given by Eqs. (1.1) and (1.2),

we �rst consider the following more general initial-value problem

ẋ(t) = (Ax)(t) + f(t; x(t)) + g(t); t¿0; (2.2a)

x(0) = x0∈Rn: (2.2b)

Here we assume:
(i) A : L2loc(R+;Rn)→ L2loc(R+;Rn), A(0) = 0 and there exists �¿0 such that

‖Pt(Ax −Ax′)‖L26�‖Pt(x − x′)‖L2 for all x; x′∈L2loc(R+;Rn), t¿0;

i.e. A is unbiased, causal and of �nite incremental gain;
(ii) f : R+×Rn→Rn is a function with f(t; x) being continuous in t and locally Lipschitz continuous in x,

uniformly in t on bounded intervals;
(iii) g is in L1loc(R+;Rn).
In order to de�ne what we mean by a solution of the initial value problem (2.2) on [0; T ), where 0¡T6∞,

we have to give a meaning to Ax if x∈C([0; T );Rn) (remember that A operates on functions whose domain
of de�nition is R+). We set (Ax)(t) = (AP�x)(t) for 06t6�¡T . Since A is causal, this de�nition does not
depend on the choice of �. By a solution of Eqs. (2.2a) and (2.2b) on [0; T ) we mean a function x de�ned on
[0; T ) which is absolutely continuous on every compact subinterval of [0; T ), satis�es the di�erential equation
(2.2a) for almost every t∈ [0; T ) and matches the initial condition (2.2b).

Theorem 2.1. The initial-value problem (2.2) has a unique solution de�ned on a maximal interval of ex-
istence [0; !); where 0¡!6∞. If !¡∞; then there exists a sequence ti∈(0; !) with limi→∞ ti = ! and
such that limi→∞ ‖x(ti)‖ =∞.

The above theorem has been proved in [9]. Similar results can be found in [3] (p. 359) and in [4].
Theorem 2.1 implies that the initial value problem (1.1) has a unique solution for all u; w∈L1loc(R+;Rm) and
y0∈Rm. Moreover, it shows that the closed-loop system given by Eqs. (1.1) and (1.2) has a unique solution.

3. Adaptive �-tracking

The following theorem is the main result of this paper.

Theorem 3.1. Let the assumptions (A1) and (A2) be satis�ed and let �¿0 be given. Then, for all initial
conditions y0∈Rm; k0∈R; all w∈L∞(R+;Rm) and all reference signals yr∈W 1;∞(R+;Rm); the closed-loop
system given by Eqs. (1.1) and (1.2) has the following properties:
(1) The unique solution (y(·); k(·)) exists on [0;∞);
(2) limt→∞ k(t) exists and is �nite,
(3) lim supt→∞ ‖yr(t)− y(t)‖6�:
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Proof. To reduce the technical e�ort, we assume without loss of generality that k0¿0 in Eq. (1.2). By
assumption (A1) there exists a positive de�nite real m× m-matrix P = PT satisfying the Lyapunov equation

GTP + PG = 2I: (3.1)

We de�ne the P-induced norm ‖ · ‖P on Rm by setting ‖x‖P =
√〈x; Px〉. Let %¿0 denote the square root of

the smallest eigenvalue of P and set %P = 1=
√‖P‖. Then,

%‖x‖6‖x‖P; %P‖x‖P6‖x‖ for all x∈Rm: (3.2)

We introduce the following functions which will be used throughout the proof:

D : Rm→R+; x 7→D(x) =

{
‖x‖ − � if ‖x‖¿�
0 if ‖x‖¡�;

d : Rm→Rm; x 7→d(x) =




‖x‖ − �
‖x‖ x if ‖x‖¿�

0 if ‖x‖¡�;

DP : Rm→R; x 7→DP(x) =

{
‖x‖P − �% if ‖x‖P¿�%
0 if ‖x‖P¡�%;

dP : Rm→Rm; x 7→dP(x) =




‖x‖P − �%
‖x‖P x if ‖x‖P¿�%

0 if ‖x‖P¡�%:
The function D is the same as introduced in Section 1. Clearly, for given x∈Rm, D(x) (respectively, DP(x))
is the distance of x from the ball of radius � (respectively, �%) centred at 0 in the norm ‖ · ‖ (respectively,
‖ · ‖P).
We proceed in �ve steps.
Step 1 (Existence and uniqueness of a maximal solution): Setting

e = yr − y and w̃ = ẏr − w −H(yr)

the closed-loop system given by Eqs. (1.1) and (1.2) can be written in the following form:

ė(t) = −k(t)Ge(t) +H(e)(t) + w̃(t); e(0) = e0 := yr(0)− y0; (3.3a)

k̇(t) = D2(e(t)); k(0) = k0: (3.3b)

By assumption yr∈W 1;∞(R+;Rm), and so ẏr∈L∞(R+;Rm) and, by assumption (A2),H(yr)∈L∞(R+;Rm).
Moreover, w∈L∞(R+;Rm), and thus

w̃∈L∞(R+;Rm): (3.4)

The system (3.3) is of the form (2.2), and hence we can apply Theorem 2.1 to conclude that Eqs. (3.3a) and
(3.3b) has a unique maximal solution (e(·); k(·)) de�ned on [0; !), the maximal interval of existence. Using
the linearity of H and Eq. (3.3a), we see that e satis�es

ė(t) = −k(t)Ge(t) +H(dP(e))(t) + h(t); (3.5)

where

h(t) :=H(e − dP(e))(t) + w̃(t); t∈ [0; !):
It follows from the de�nition of dP that e−dP(e)∈L∞(0; !;Rm) and hence by assumption (A2) and Eq. (3.4)
we conclude

h∈L∞(0; !;Rm): (3.6)
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Step 2 (An estimate for a Lyapunov-type function): We claim that there exist constants �1; �2¿0 such
that di�erentiation of the function

V : Rm→R+; x 7→V (x) = 1
2D

2
P(x)

along the solution of Eq. (3.5) yields, for almost all t∈ [0; !),
d
dt
V (e(t))6− �1[k(t)− �2]DP(e(t))‖e(t)‖P + �2‖dP(e(t))‖‖H(dP(e))(t)‖: (3.7)

In the following the argument t will be omitted for brevity. By Eqs. (3.1), (3.2), (3.5) and (3.6) and since
k(t)¿k0¿0, we have almost everywhere on [0; !),

d
dt
V (e) =

DP(e)
‖e‖P 〈e; Pė〉

= −DP(e)‖e‖P k‖e‖
2 +

DP(e)
‖e‖P 〈e; PH(dP(e)) + Ph〉

6−%2PkDP(e)‖e‖P + ‖P‖‖dP(e)‖‖H(dP(e))‖+ ‖P‖‖h‖L∞(0; !)‖dP(e)‖: (3.8)

Using Eq. (3.2) and the de�nitions of DP and dP we obtain

‖dP(x)‖6DP(x)1%6DP(x)
1
%2�

‖x‖P for all x∈Rm: (3.9)

Combining Eqs. (3.8) and (3.9), we see that there exist positive constants �1 and �2 such that Eq. (3.7) holds
on [0; !).
Step 3 (Boundedness of k on [0; !)): We claim that k∈L∞(0; !;R). Let �¿0 be the L2-induced operator

norm of H. It follows from H�older’s inequality that for all f∈L2loc(R+;Rm) and all t∈R+,∫ t

0
‖f‖‖H(f)‖6�

∫ t

0
‖f‖2: (3.10)

Now either k(t)6�2(1+ �=�1%2) for all t∈ [0; !), whence the claim follows, or there exists a t0∈ [0; !) such
that k(t0)¿�2(1 + �=�1%2). Then

�3 := �1(k(t0)− �2)¿��2=%2¿0: (3.11)

Integration of Eq. (3.7) from t0 to t∈ [0; !), using that k(·) is nondecreasing and an application of Eq. (3.10)
yields

V (e(t))6 V (e(t0))− �3
∫ t

t0
DP(e)‖e‖P + �2

∫ t

t0
‖dP(e)‖‖H(dP(e))‖

6 V (e(t0))− �3
∫ t

t0
DP(e)‖e‖P + ��2

∫ t

0
‖dP(e)‖2: (3.12)

Clearly, for all x∈Rm, we have
DP(x)‖x‖P =DP(x)(‖x‖P − %�) + %�DP(x)¿D2P(x):

Combining this with Eqs. (3.2) and (3.12) shows that

06V (e(t0)) + ��2

∫ t0

0
‖dP(e)‖2 −

∫ t

t0
(�3 − ��2=%2)D2P(e):
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Setting

�4 :=V (e(t0)) + ��2

∫ t0

0
‖dP(e)‖2; �5 := 2(�3 − ��2=%2);

we obtain

06�4 − �5
∫ t

t0
V (e) for all t ∈ [t0; !):

By Eq. (3.11), �5¿0, and thus we may conclude∫ t

t0
V (e)6�4=�5 for all t ∈ [t0; !): (3.13)

Now, using Eq. (3.2), it is easy to show that

DP(x)¿%D(x) for all x∈Rm:
Therefore, for all t ∈ [t0; !),

k(t)= k(t0) +
∫ t

t0
D2(e)6k(t0) +

1
%2

∫ t

t0
D2P(e):

Appealing to Eq. (3.13), we obtain

k(t)6k(t0) +
2�4
�5%2

for all t ∈ [t0; !);

which shows that k(·) is bounded on [0; !).
Step 4 (Boundedness of e on [0; !)): From Eq. (3.13) we see that DP(e)∈L2(0; !;R), and thus dP(e)∈

L2(0; !;Rm). Moreover, by the de�nition of the function dP(·) we have that e− dP(e)∈L∞(0; !;Rm). Hence
Step 3, assumption (A2) and Eq. (3.6) yield

f1 := (1− k)GdP(e) +H(dP(e))∈L2(0; !;Rm);
f2 := (1− k)G[e − dP(e)] + h∈L∞(0; !;Rm):

Trivially, Eq. (3.5) may be rewritten as

ė(t)= − Ge(t) + f1(t) + f2(t):
An application of the variations-of-constants formula to this equation yields

e(t)= e−Gte0 +
∫ t

0
e−G(t−�)[f1(�) + f2(�)] d�:

By assumption (A1), e−Gt is exponentially stable, and therefore by a standard result on convolutions (see
Theorem 2.2 on p. 39 in [3]) we obtain that

e∈L∞(0; !;Rm): (3.14)

Step 5 (Global existence and convergence): From Steps 3 and 4 we have boundedness of k and e on [0; !).
Therefore, combining the maximality of ! and Theorem 2.1, we obtain that !=∞, and hence statement (1)
follows. Consequently, using Steps 3 and 4, we conclude that k(·) and e(·) are bounded on [0;∞). Since k(·)
is non-decreasing we obtain statement (2). To prove statement (3), note that by assumption (A2), Eqs. (3.5)
and (3.6) and the boundedness of e on [0;∞),

ė∈L∞(R+;Rm): (3.15)
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Fig. 2. Closed-loop system with input disturbances and measurement noise.

An easy calculation leads to∣∣∣∣ ddt D2(e)
∣∣∣∣ =2D(e)‖e‖ |〈e; ė〉|62D(e)‖ė‖; (3.16)

so that from Eqs. (3.14)–(3.16) we obtain

d
dt
D2(e)∈L∞(R+;R): (3.17)

Moreover, since k ∈L∞(R+;R), we have
D2(e)∈L1(R+;R): (3.18)

Finally, Eqs. (3.17) and (3.18) show that (see e.g. Lemma 2.1.7 in [5])

lim
t→∞ D2(e(t))= 0;

which in turn implies statement (3).

The following remark shows that the controller (1.2) is robust with respect to measurement noise and input
disturbances.

Remark 3.2. (1) Suppose that the feedback system is subject to a bounded input disturbance � and W 1;∞-
measurement noise �, see Fig. 2. This means we have to replace e and u in (1.2) by e(t)=yr(t)−y(t)− �(t)
and u(t)= k(t)e(t) + �(t), respectively. Then, by absorbing � into the w̃ term (see Step 1 in the proof of
Theorem 3.1), it follows that statements (1) and (2) of Theorem 3.1 remain true and, moreover

lim sup
t→∞

‖yr(t)− y(t)− �(t)‖6�; (3.19)

provided that assumptions (A1) and (A2) hold, w; �∈L∞(R+;Rm) and yr ; �∈W 1;∞(R+; Rm). Setting �� := �+
‖�‖L∞(R+ ;Rm), Eq. (3.19) trivially implies that

lim sup
t→∞

‖yr(t)− y(t)‖6��:

(2) In applications it is often useful to modify the gain adaptation law in (1.2) to

k̇(t)=

{

(‖e(t)‖ − �)2 if ‖e(t)‖¿�;
0 if ‖e(t)‖¡�;

where 
¿0 is an additional design parameter. This modi�cation with suitably chosen 
 can be used to improve
the transient response of the closed-loop system.

4. Applications to retarded systems and integrodi�erential systems

In this section we show that Theorem 3.1 can be applied to retarded systems and integro-di�erential systems.
We solve the adaptive �-tracking problem for these classes of systems under the assumptions that the plant
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is minimum-phase and that the high-frequency gain matrix has its spectrum in the open right-half plane.
Moreover, it turns out that in both cases the internal variables of the controlled plant remain bounded.

4.1. Retarded systems

In the following we extend any function F ∈BV ([a; b];Rn×n) to the whole real axis by setting F(t)=F(a)
for t¡a and F(t)=F(b) for t¿b. Any measurable function f :
→Rn; 
⊂R, will be extended to the whole
real axis by de�ning f(t)= 0 for t 6∈
. For F =(Fij)∈BV ([0; h];Rn×n) and f=(f1; : : : ; fn)T, fi ∈L1loc(R;R),
16i6n, we de�ne

dF ∗f :=



∑n

j=1 dF1j ∗ fj
...∑n

j=1 dFnj ∗ fj


 ;

where dFij denotes the Borel measure on R induced by Fij and dFij ∗ fj denotes the convolution of the
measure dFij and the function fj (on the whole real line). If f is continuous on [−h;∞), then, of course,
dF ∗ f can be expressed as a Riemann–Stieltjes integral

(dF ∗ f)(t)=
∫ h

0
dF(�)f(t − �) for t¿0:

Consider the retarded system

ẋ=dA ∗ x + Bu; x|[−h;0] = x0 ∈C([−h; 0];Rn); (4.1a)

y=Cx; (4.1b)

where A∈BV ([0; h];Rn×n); B∈Rn×m and C ∈Rm×n. We assume that
�(CB)⊂C0 (4.2)

and

det
(
sI − Â(s) −B

C 0

)
6=0 for all s∈Ccl0 ; (4.3)

where Â(s) :=
∫ h
0 exp(−s�) dA(�) denotes the Laplace–Stieltjes transform of A. The transfer function matrix

G(s) of Eqs. (4.1a) and (4.1b) is given by G(s)=C(sI − Â(s))−1B.
Condition (4.2) is a generalization of the �nite-dimensional relative-degree-one condition, whilst Eq. (4.3)

is the so-called minumum-phase condition. As in the �nite-dimensional case, see [5], it can be shown that
Eq. (4.3) holds if and only if G(s) has no zeros in Ccl0 and the system satis�es the generalized Hautus
conditions in Ccl0 .
We show that if Eqs. (4.2) and (4.3) are satis�ed, then the retarded system (4.1) can be written in the

form (1.1) with assumptions (1) and (2) being satis�ed. The condition (4.2) means in particular that CB is
invertible. Therefore, m6n, dim ker C = n− m, dim im B=m and

ker C ∩ im B= {0}:
Let v1; : : : ; vn−m ∈Rn be a basis for ker C, then the matrix

Q := (B(CB)−1; v1; : : : ; vn−m)

is invertible, and moreover,

Q−1B=
(
CB
0

)
; CQ=(Im; 0):
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It is useful to partition the matrix Q−1A(·)Q as follows:

Q−1A(·)Q=
(
A11(·) A12(·)
A21(·) A22(·)

)
;

where A11(·), A12(·), A21(·) and A22(·) are matrices with entries in BV ([0; h];R) of size m×m, m× (n−m),
(n− m)×m and (n− m)× (n− m), respectively. Noticing that Q−1x is of the form

Q−1x=
(
Cx
�

)
;

Eq. (4.1a) can be rewritten as

ẏ=dA11 ∗ y + dA12 ∗ �+ CBu; y|[−h;0] =y0; (4.4a)

�̇=dA21 ∗ y + dA22 ∗ �; �|[−h;0] = �0; (4.4b)

where(
y0
�0

)
=Q−1x0:

Consider Eq. (4.4b) as di�erential equation in � with forcing term dA21 ∗ y and suppose for a moment
that y can be chosen arbitrarily. For given initial functions �0 and y0 and given y∈L1loc([−h;∞);Rm), let
�(t; �0; y0; y) denote the solution of the initial-value problem

�̇=dA22 ∗ �+ dA21 ∗ y; �|[−h;0] = �0; y|[−h;0] =y0:

Setting

H(y)=dA12 ∗ �(·; 0; 0; y) + dA11 ∗ y;
w=dA12 ∗ �(·; �0; y0; 0) + dA11 ∗ y0;

Eq. (4.4a) can be expressed as

ẏ=H(y) + CBu+ w; y(0)=Cx0(0):

De�ning Â22(s) :=
∫ h
0 e

−s� dA22(�), the minimum-phase assumption (4.3) implies that

det(sI − Â22(s)) 6=0 for all s∈Ccl0 ;

see [8]. This means that the zero solution of the retarded equation �̇=dA22∗� is exponentially stable, and hence
the linear operator y(·) 7→ �(·; 0; 0; y) maps the space Lp(R+;Rm) boundedly into itself for all p∈ [1;∞],
and moreover, �(·; �0; y0; 0)∈L∞(R+;Rm). Consequently, H satis�es assumption (A2) and w∈L∞(R+;Rm).
Also notice that, by Eq. (4.4b), if y(·) is bounded, then �(·), and hence x(·), are bounded.
Combining Theorem 3.1 with the above �ndings yields the following corollary.

Corollary 4.1. Assume that Eqs. (4.2) and (4.3) are satis�ed and let �¿0 be given. Then, for all initial
conditions x0 ∈C([−h; 0];Rn), k0 ∈R, all w∈L∞(R+;Rm) and all reference signals yr ∈W 1;∞(R+;Rm), the
closed-loop system given by Eqs. (4.1a) and (4.1b) and (1.2) has the following properties:
(1) The solution (x(·); k(·)) exists on [0;∞) and is unique,
(2) x(·) is bounded and limt→∞ k(t) exists and is �nite,
(3) lim supt→∞ ‖yr(t)− y(t)‖6�:
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4.2. Integrodi�erential systems

Another interesting class of systems covered by Theorem 3.1 is a class of integrodi�erential systems.
Consider the system

ẋ=A ∗ x + Bu; x(0)= x0 ∈Rn; (4.5a)

y=Cx; (4.5b)

where A∈M (R+;Rn×n), B∈Rn×m and C ∈Rm×n. The Volterra integrodi�erential system

ẋ(t)=A0x(t) +
∫ t

0
A1(t − �)x(�)d�+ Bu(t); x(0)= x0 ∈Rn;

y(t)=Cx(t)

where A0 ∈Rn×n and A1 ∈L1(R+;Rn×n), is obviously a special case of Eqs. (4.5a) and (4.5b). As in Sec-
tion 4.1 we assume that

�(CB)⊂C0 (4.6)

and

det

(
sI − Â(s) −B

C 0

)
6=0 for all s∈Ccl0 ; (4.7)

where Â(s) :=
∫∞
0 exp(−s�)dA(�).

Combining standard results from the theory of integrodi�erential equations (see [3]) with ideas similar to
those in Section 4.1, the following analogue of Corollary 4.1 for integrodi�erential systems can be proved.

Corollary 4.2. Assume that Eqs. (4.6) and (4.7) are satis�ed and let �¿0 be given. Then, for all initial
conditions x0 ∈Rn, k0 ∈R, all w∈L∞(R+;Rm) and all reference signals yr ∈W 1;∞(R+;Rm), the closed-loop
system given by Eqs. (4.5a) and (4.5b) and (1.2) has the following properties:
(1) The solution (x(·); k(·)) exists on [0;∞) and is unique,
(2) x(·) is bounded and limt→∞ k(t) exists and is �nite,
(3) lim supt→∞ ‖yr(t)− y(t)‖6�.
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