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AN ADAPTIVE SERVOMECHANISM FOR A CLASS OF
INFINITE-DIMENSIONAL SYSTEMS*

HARTMUT LOGEMANN AND ACHIM ILCHMANN

Abstract. A universal adaptive controller is constructed that achieves asymptotic tracking of a given class of
reference signals and asymptotic rejection of a prescribed set of disturbance signals for a class of multivariable
infinite-dimensional systems that are stabilizable by high-gain output feedback. The controller does not require an
explicit identification of the system parameters or the injection of a probing signal. In contrast to most of the work in
universal adaptive control, this paper is based on an input-output approach and the results do not require a state-space
representation of the plant. The abstract input-output results are applied to retarded systems and integrodifferential
systems.
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1. Introduction. One of the most important applications of feedback is to achieve ser-
voaction, that is, to obtain a closed-loop system that tracks a given class of reference signals
and rejects a given class of external disturbances with zero asymptotic error. This problem has
been well understood for many years provided that the plant is linear and time-invariant and
the plant uncertainty is sufficiently small (see Wonham [30, p. 203] and Vidyasagar [27, p.
294] for finite-dimensional systems and Francis [4], Callier and Desoer [2], and Curtain [3] for
infinite-dimensional systems). The basic design principle in the theory of linear servomecha-
nisms, which is also referred to as the internal model principle, says (roughly speaking) that
a controller that achieves robust servoaction necessarily contains a duplicate of the dynamics
of the reference and disturbance signals.

If the plant uncertainty is large, which is the case if only certain structural information on
the plant is available to the designer, it is desirable to construct a universal adaptive servomech-
anism, that is, a fixed nonlinear controller that achieves servoaction for a whole prescribed
class of linear time-invariant systems and all possible initial conditions without explicit iden-
tification of the system parameters. Although the problem of universal adaptive stabilization
of finite and infinite-dimensional systems has received considerable attention in recent years
(cf. e.g., Mrtensson [17], [18], Logemann and Owens [14], Logemann and Mgtrtensson [13],
and the references therein), there are only few papers on universal adaptive servomechanisms,
which in addition deal exclusively with finite-dimensional systems. M,rtensson [19] pointed
out that adaptive tracking of constant reference signals can be easily achieved for a given class
of multivariable systems if a universal adaptive stabilizer is known and the class is invariant
under precompensation by an integrator. Helmke, Pritzel-Wolters, and Schmid [8] proved
a similar result for single-input single-output systems allowing for a more general class of
reference signals including ramps, linear combinations of sinusoidal signals, etc. If the plant
is known to lie in a given finite set of (multivariable) systems, if the reference and disturbance
signals belong to the solution space of a given linear autonomous differential equation, and if
an L-bound on the disturbances is known, Miller and Davison [21 constructed a switching
controller that solves the servoproblem for any plant in this finite set. In [20] Miller and Davi-
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son presented a low-gain controller that carries out asymptotic error regulation for constant
reference and disturbance signals for any multivariable plant, provided it is asymptotically
stable and has no transmission zeros at zero. For the class of all single-input single-output,
relative degree one or two, minimum-phase systems of McMillan degree less than or equal to
n, Morse [22] constructed a 4(r + 1)-dimensional model reference adaptive controller that
achieves asymptotic tracking of any signal generated by a two-dimensional reference system.
On the basis of high-gain concepts, Mareels [16] introduced a control law that solves the
tracking problem for any single-input single-output minimum-phase system of known relative
degree, provided the sign of the high-frequency gain and an upper bound on its magnitude is
known. Finally, for the class of all single-input single-output minimum-phase systems having
relative degree one, Helmke, Pritzel-Wolters, and Schmid [9] constructed a high-gain con-
troller that has the property that the resulting closed-loop system tracks any reference signal
annihilated by a given linear ordinary differential operator with constant coefficients.

The purpose of this paper is to construct a universal adaptive servomechanism for the class
of multivariable infinite-dimensional systems that are minimum-phase and have an invertible
high-frequency-gain. We show that the series interconnection of the controller presented in
Byrnes and Willems 1] and a suitable precompensator solves the adaptive servoproblem for
the class of systems under consideration. This result is also new for the finite-dimensional
case. It generalizes the result in [9], where an adaptive tracking problem was solved for finite-
dimensional single-input single-output systems. The disturbance rejection problem is not
addressed in [9]. Moreover, the proof in [9] does not extend to multivariable systems; neither
does it carry over to infinite-dimensional plants, and so the generalization is far from being
trivial. We mention that in [9] a state-space approach is used, while our treatment is based
on the input-output set-up for high-gain adaptive stabilization as developed by Logemann
and Owens [14]. So, in contrast to almost all papers in the area, our approach does not
require a state-space model of the plant. Non-zero initial conditions are taken into account by
using "initial-condition terms." The input-output results are applied to retarded systems and
integrodifferential convolution systems.

The paper is organized as follows. In 2 we introduce a class of infinite-dimensional
systems that are stabilizable by high-gain feedback and will be dealt with in the rest of the
paper. Moreover, we collect a number of results on a functional differential equation of
Volterra type that will be useful in what follows. Section 3 shows that the high-gain based
switching algorithm, introduced by Byrnes and Willems in a finite-dimensional state-space
set-up, stabilizes any infinite-dimensional plant belonging to the class of systems introduced
in 2. Section 4 contains the main result of the paper. We prove that the series connection of
the adaptive stabilizer presented in 3, followed by a suitable precompensator containing an
internal model of the dynamics of the reference and disturbance signals, achieves servoaction
for the class of systems under consideration. Section 5 is devoted to the application of the
input-output results of 4 to retarded systems and integrodifferential convolution systems. In
particular it is shown that the adaptive servomechanism presented in 4 achieves "internal
stability" in the sense that the internal variables of the plant and the precompensator remain
bounded provided that the reference signal is bounded. The proof of a technical result is
relegated to the Appendix.

Nomenclature.

C+ :: open right-half plane.
C_ :-- open left-half plane.

LLp(+, ]n) :: vector space of locally p-integrable functions defined on +
with values in It’.
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H (C, x n) :_ algebra of bounded holomorphic functions defined on C+
with values in C’.

H2(C) := the usual Hardy-Lebesgue space of order 2 of holomorphic
functions defined on C+ with values in C’.

BV([a, b], ’n) := vector space of InX-valued functions of bounded variation
defined on [a, hi.

M(11+, ]R ’) := vector space of bounded Borel measures on It+ with
values in x n.

Let f be a function defined on [0, a), where 0 < a <_ cx. Then for all 7- E [0, a),

f(t), 0 _< t _< 7-,(Trf)(t) "=
0, t > 7-.

/2 denotes the Laplace transform.
The superscript is used to denote Laplace transformed or Laplace-Stieltjes trans-

formed functions.

2. Preliminaries and system description. We shall assume that externally our plant is
described by a transfer-function matrix (7 of size m m which is meromorphic on C+ and
satisfies

(2.1) G-(s) sD- + H(s),
where D E ]mx,, det(D) # 0

Of course (2.1) is equivalent to

and H H(Cmm).

(2.2) G(s) I + -DH(s) -1D,
8 8

i.e., G is the feedback interconnection of the integrator (1/s)D and the transfer-function
matrix H.

In order to characterize condition (2.1) in terms of the zeros and the high-frequency
behavior of G, we have to make precise what we mean by a zero of a meromorphic transfer-
function matrix.

DEFINITION 2.1. Suppose that R is a matrix ofsize m whose entries are meromorphic
functions defined on a region f C C. Let (U, V) be a holomorphic right-coprimefactorization
of R over f, i.e., U and V are holomorphic matrices of size m m defined on f such that
det(V(s)) - 0, R(s) U(s)V-’ (s), and there exist holomorphic matrices X and Y of size
m redefined on f satisfying X(s)U(s)+ Y(s)V(s) I,. The zeros ofR(s) are defined
to be the zeros ofdet(g(s)).

PROPOSITION 2.2. Let G(s) be a meromorphic transfer-function matrix of size m x m

defined on a region D -+. Then G-t(s) admits a decomposition of the form (2.1) if and
only if

(i) sG(s) D O(1/s) as Is[oc in C+,

Since the ring of holomorphic functions defined on a region has the property that finitely generated ideals are

principal (see Rudin [23, p. 328]) and since the field of meromorphic functions defined on a region is the quotient
field of the ring of holomorphic functions defined on that region (see Rudin [23, p. 327]), it follows from Vidyasagar,
Schneider, and Francis [28] that such a factorization exists and is unique up to multiplication from the right by
unimodular holomorphic matrices.
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and
(ii) G(s) has no zeros in C+.
Proof. See Logemann and Zwart 15]. []

Note that condition (i) in Proposition 2.2 is a generalization of the relative-degree one
condition for finite-dimensional single-input single-output systems.

Remark 2.3. The transfer-function matrix G of a stabilizable and detectable finite-
dimensional system Az + Bu, y Cz satisfies (2.1) if and only if the system is
minimum-phase, i.e.,

det ( SI- A -B )C 0 -0 for allsEC+,

and has invertible high-frequency gain, i.e., det(CB) - 0. Moreover the matrix D in (2.1) is
given by CB.

In the following we shall assign an operator 7-/ L2(]+, C") L2(N+, C") to the
transfer-function matrix H by defining 7-/:=/2-2t4/4 E, where denotes the Laplace trans-
form and AdH denotes the multiplication by H on the Hardy space H2(C"). The operator
7-/is linear, bounded, and shift-invariant (in the sense of Vidyasagar [26]). As a consequence
7-/is causal (see [261) and therefore has a unique causal extension to LL2(N+, C’). This
extension will also be denoted by 7-/. The converse is also true, i.e., given a linear, bounded,
shift-invariant operator 7-{ L2(]+,Cm) -- L2(+,cm), there exists H E H(C"xm)
such that 7-/ -lJtdH (see Harris and Valenca [7], Logemann [12], and Weiss [29]).
Finally we mention that LL2(p+, Ilk") is an 7-/-invariant subspace of LL2(R+, C’) if and
only if H(s) H(g) for all s C+. In control applications the latter condition will always
be satisfied and it is assumed to hold in the following.

The function G satisfying (2.1) can be thought of as being the transfer-function matrix of

(2.3) {l D(u- (’Hy + w)), y(O) yo ,
$,rn L2where u LL(+, and w ($:+, ]R") takes account of non-zero initial conditions

in the system with transfer-function matrix H. The initial value problem (2.3) is a special
case of the following initial value problem, which will play an important role in this paper.
Consider

(2.4)
k(t) (Sx)(t) + f(t,x(t)) + g(t),

1,,, o c([0, ],), >_ 0,
t>_c,

where the following hold.
(i) S LL2(’+, ,n) -- LLZ(.+,.n). We assume that S(0) 0 and that there exists

> 0 such that llTrt(Sx Sx’)l < llrt(x x’)] for all x,x’ LL2(It+, ]R’) and for all
t _> 0, i.e., S is unbiased, causal, and of finite incremental gain.

(ii) f P+ x P --, : is a function. We assume that f(t, x) is continuous in t and
locally Lipschitz continuous in x, uniformly in t on bounded intervals.

(iii) 9 is in LL(]+,
Of course, if c 0 in (2.4), then C([0, c], ’) . In order to define what we mean

by a solution of the initial value problem (2.4) on [0,/3)(c < _< oc), we have to give a

meaning to Sx if x C([0, ), ]’) (remember that S operates on functions whose domain
of definition is $+). We set (Sx)(t) (STrx)(t) for 0 <_ t <_ - </3. Since S is causal, this
definition does not depend on the choice of -.

Notice that here LL2 (]+, i,rn is considered as a real vector space.
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DEFINITION 2.4. A solution of (2.4) on [0, fl)(( < /3 <_ cx) is an absolutely continuous

function x on [0,/) such that Xlt0.l x0 and the differential equation in (2.4) is satisfied by
x almost everywhere on [0,/3).

THEOREM 2.5. The initial-value problem (2.4) has a unique solution on some interval
[0,/3), where c </3 <_ cx. If fl < x and/3 cannot be increased, then there exists a strictly
increasing sequence t E (0,/3), satisfying lim t 3, such that lim__, IIx(t)ll x.

The above theorem has been proved in Logemann and Owens 14]. Similar results can
be found in Gripenberg, Londen, and Staffans [5, p. 359], and Hinrichsen and Pritchard 10].
Theorem 2.5 implies in particular that the initial value problem (2.3) has a unique solution for
all w E L2(]+, ]ra), u LL’ (]+, ’), and y0 ].

3. Adaptive stabilization. The aim of this section is to construct a universal adaptive
control law that stabilizes any system of the form (2.3), i.e., the control law does not depend
on D and 7-/, and the closed-loop system satisfies limt y(t) 0 for all Y0 ’ and
w Le(+, ’).

In the following, we need a result from linear algebra which has been proved by Mhrtensson
17], 18]. For m >_ we call a set bl C GL(m, ) unmixing, if for any A GL(m, I.) there

is a U L/such that spec(AU) c C_.
PROPOSITION 3.1 ([ 17], 18]). For allm >_ 1, there exist unmixing sets offinite cardinality.
Unfortunately the cardinality of the unmixing sets constructed in 17], 18] is far too

large than would be convenient for applications. Hardly anything is known on the minimum
cardinality of unmixing sets. However, for m the set { 1,-1 } is obviously unmixing,
while for m 2 there exists an unmixing set of cardinality 6 (see [17], [18]). It has been
shown by Zhu [31] that GL(3, ) can be unmixed by a set having cardinality 32.

In the following, let {/4,,... ,IfN} be an unmixing set for GL(rn, I). Since (2.3) can
be stabilized by high-gain feedback of the form u(t) ky(t), provided that spec(D) c C_
and k is a sufficiently large positive number, it seems reasonable to consider the following
adaptive control law"

(3.1)
u(t) k(t)K((t))y(t),
k(t) -II(t)ll 2, k(O)- co .

In (3.1) the function cr ]R -- {1,..., N} is given by

1, k [--,, -),(3.2) or(k) i, k [T1N+i TIN+i+l [_J [--TIN+i+l --"l-lN+i for some l?q0,

where the sequence (-j)j60 is defined as

(3.3) z-j+, "r, "r, > 1.

Note that the gain k(t) is monotonically increasing and thus the function cr ensures that K(e(t))
will hit some stabilizing gain matrix K if k(t) diverges. The growth condition (3.3) captures
the intuitive idea that the length of the intervals [z-j, 7-j+) should increase rapidly, in order
to enable the closed-loop system to settle down. Although the closed-loop system given by
(2.3) and (3.1) is of the form (2.4), we cannot apply Theorem 2.5 straight away in order to
establish well posedness of the closed loop, since the map ] {K,,...,/N}, k - I4cr(k
is not continuous. However, Theorem 2.5 can be used to prove the following.

LEMMA 3.2. For each pair of initial conditions (Yo, ko) I x ]R and for each w
L2(]+, rn), the closed-loop system given by (2.3)and (3.1) has a unique absolutely contin-
uous solution (y, k) that can be extended to the right as long as it remains bounded.
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Proof. See Appendix.
Now we are in the position to prove the main result of this section. It says that the control

law (3.1) stabilizes any system of the form (2.3), or in other words (3.1) is a universal adaptive
control law for this class.

THEOREM 3.3. The solution (y, k) ofthe closed-loop system given by (2.3)and (3.1) exists
on Ii+ and has thefollowing properties:

(i) limt_ k(t) exists and is finite;
(ii) y E L2(+, m) NL(+, ’);

(iii) limt_ y(t) 0.
We shall prove Theorem 3.3 by combining ideas of Byrnes and Willems 1] with the

following lemma, which can be found in Ilchmann and Logemann [11 ].
LEMMA 3.4. Suppose that cr and 7"j are given by (3.2) and (3.3), respectively, and for

a > 0 and {1,...,N} define F : {1,-a} by

l, ifo(x) i,
(3.4) F(x)= -a, ifa(x)i.

Then we have

(3.5) sup xF(x)dx +cc
>ko k kO

forallko ,a > 0, {1,...,N}.
Proof of Theorem 3.3. By assumption there exists {1,...,N} such that

spec(DKi) c C_. Hence there is a positive definite matrix Q QT GL(m,) sat-
isfying

(3.6) KDTQ+QDK -I.

Furthermore, choose a > 0 such that

(3.7) KyDTQ+QDKj <_aI for alljE{1,...,N}.

By Lemma 3.2, the closed-loop system given by (2.3) and (3.1) has a unique solution (y, k).
Let [0, t* denote its maximal interval of existence. Setting Ilzll = (<z, Oz>) /2 for z
and using (2.3), (3.4), (3.6), and (3.7) we obtain

(3.8)

d
dlly(t)ll2O (t)TQy(t) + y(t)TQ$(t)

k(t)y(t)(KT(a(t))DQ + QDK(a(t)))y(t) (7-ly)(t)TDQy(t)
w(t)TDTQy(t) y(t)TQD(7-ly)(t) y(t)TQDw(t)

< -Fff(k(t))k(t)k(t) 2y(t)TQD(Tly)(t) 2y(t)TQDw(t).

Using H61der’s inequality and the causality and boundedness of, it is easy to show that for
all f E LL2(+, Cm) and t >_ 0,

(3.9) f(-)TQD(7-lf (T)dT <_ IIQIIIIDIIIitl [[f(-) 2d.
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Integrating (3.8) from 0 to t, t < t*, changing variables, and applying (3.9) yields

fk(t) fotIly(t)ll -Ilyoll -< xF(x)dx / , Ily(r)ll2dr
d ko

/2

(3.10) + 211W112

{ 21]wll2 fk(t)xf(x)dx},((t)- 0)

where and 2 are suitable positive constants depending on , D, and Q.
In order to show global existence of the solution (y, k) on + it is (by Lemma 3.2)

sufficient to show that (y, k) is bounded on [0, t*). In order to prove that k(t) is bounded
on [0, t*), assume the contraw. It then follows from Lemma 3.4 that the limes inferior of
the right-hand side of (3.10) is -, contradicting the fact that the left-hand side of (3.10) is
bounded from below by -l]y0[[. Hence k(t)is bounded on [0, t*) and from (3.1) and (3.10)
we obtain that y L2(0, t*; >) L(0, t*; >). In pagicular we have t* , which
implies (i) and (ii). In order to prove (iii), notice that by (2.3), (i), and (ii) 9 L2(>+; >m).
As a consequence (iii) holds true.

Remark 3.5. (i) It is not difficult to see that the sequence given by (3.3) can be replaced
by any strictly increasing sequence (rj)j satisfying limj+ rj/rj_, + (cf. Ilchmann
and Logemann [11] and Ryan [24]).

(ii) Let u LL2(>+,>),w L2(>+,>) and suppose that y satisfies (2.3). If
Q x is positive definite, then the inequality

( )(3.11) II(t)ll I1011 +.
holds for all t 0, where is a suitable positive constant depending on , D, Q, and w.
Inequality (3.11) has been derived implicitly in the proof of Theorem 3.3 and may be of some
independent interest.

Remark 3.6. The controller (3.1) was introduced by Byrnes and Willems [1 in a finite-
dimensional state-space set-up. The main result in says that any finite-dimensional state-
space system with m inputs and m outputs can be stabilized by the control law (3.1), provided
it is minimum-phase and has inveible high-frequency gain. However, the proof is not con-
vincing, since the inequality (3.4) in is in general wrong. A result similar to that in can
be found in Mrtensson [17], [181. The proof in [17], [18] is not convincing either, since it is
based on the claim that for the adaptive control system

(t (t)+ e(t, (0 0 e ,
(t) (t)Q(t),
(t) l(t)ll

there exist constants c > 0 and T > 0 such that

’(l(r)ll
2 + IlY(r) ll2)dT cllx(t)[I 2

for all xo >, ko >, t T, provided that (A,B,C)is minimum-phase and
(CBO) c C_.
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Controller Plant

FIG. I. Closed-loop system.

This is not proved in 17], 18] and it seems to the authors that it is unlikely to hold true.
We close this section with a conjecture on the limiting closed-loop system. If the assump-

tions of Theorem 3.3 are satisfied, then limt k(t) =: ko(w, lo, ko) exists and is finite.
The linear system

(3.12)
D[ko(w, Yo, ko)K(k(w,vo,ao))[l ],

(0) o ’, L(:+,

is called the terminal system of the nonlinear closed-loop system given by (2.3) and (3.1). It is

easy to see that (3.12) does not satisfy limt_ )(t) 0 for arbitrary (b, )0) E L2(.+, ,m)
11. Indeed, consider the special case that 0 and choose w 0, Y0 0, and k0 0
in (2.3) and (3.1). Since k(0,0, 0) 0, it follows that the solution of (3.12) is given
by (t) 0 D f2 b(-)d’r, and hence )(t) in general does not converge to 0 as t
However, recent work of Townley [25] on adaptive stabilization of finite-dimensional systems
leads us to the following conjecture.

Conjecture. For given k0 E ]R there exists an open and dense set 27(k0) c L2([+, ,m)
1Rm such that the terminal system (3.12) is stable in the sense that

IGL2NLC(+,Nm) and lim :0(t)-0 forall(b,0)L2(I+,]R)xPm,

provided that (w, St0) 27(k0).

4. Adaptive tracking and disturbance rejection. Consider the control scheme in Fig.
1, where the plant is described by (2.1) or, equivalently, by (2.3). The aim of this section
is to construct a single controller, such that the closed-loop system asymptotically tracks a
given reference trajectory r and asymptotically rejects a given disturbance signal d for all
plants of the form (2.1). The signals r and d belong to prespecified vector spaces of functions
that are defined as follows. Let p, 6i JR[s] be monic polynomials, _< _< m, and set
p (p,..., p,)7 and 5 (6,..., ,)7. The admissible reference signals are given by

So’- r" + -+ ]R"[p r-O,i- 1,...,m

while the disturbances d are supposed to belong to ,5’ + L2(]+, m), where Se is defined
as ,5’ with pi replaced by i. The well-known internal model principle from linear control
theory (see e.g., Wonham [30, p. 203], and Vidyasagar [27, p. 294], for the finite-dimensional
case and Francis [4], Callier and Desoer [2], and Curtain [3] for the infinite-dimensional case)
suggests that the dynamics of the reference and disturbance signals should be replicated in the
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r

FIG. 2. High-gain adaptive servomechanism.

loop via a precompensator. To this end set

p(s) --lcm(s,p(s),... ,p,(s),5(s),..., 5,(s)),

where we choose p to be monic. Moreover, let q be a monic polynomial that is Hurwitz and
satisfies deg(q) deg(p). We define the precompensator M(s) containing the internal model
to be

Note that by construction M(s) contains an integrator. This is required for a purely technical
reason: Without M(s) having a pole in 0 we were not able to prove Theorem 4.1 below. Let
GM denote the precompensated plant, i.e., GM(s) G(s)M(s). Now realize that, by (2.1),

-(sD / H(s)) sD + HM(s),

where

(4.1) HM(s) s - D- +--H(s)
belongs to H(C.’’). The important point here is that the structural property (2.1) of the
plant G remains invariant under precompensation by M(s). The overall adaptive controller
we shall investigate in the following is given by

(4.2)
z(s) M(s)(s) +

k(t) -lib(t)- (t)ll 2, (0)-/co,

where cr and K,..., KN are defined as in 3 (cf. Fig. 2). Using the fact that the first equation
of (4.2)can be written as

it(s) M(s)((s) +

setting dM(t) -(M-ld)(t) and -M ’--IJHM--’,’f we obtain the following time-
domain description of the closed-loop system given by (2.3) and (4.2)"

As before, the unique causal extension ofM to LL2(]+, ]m) will be denoted by the same symbol M.
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(4.3)

9(t) D(v(t) + dM(t) (HMy)(t) WM(t)),

k(t) lit(t)- y(t)ll 2, k(0) --/co,

(o) o, WM L2(+, Im)

where as in 2 the term WM takes account of non-zero initial conditions (cf. also 5).
We are now in the position to prove the main result of this paper, which shows that the

controller (4.2) solves the servoproblem for all systems of the form (2.3).
THEOREM 4.1. The solution (y, k) of the closed-loop system (4.3) exists on ]+ and has

thefollowing properties:
(i) limt__, k(t) exists and is finite,
(ii) y r L2(]+, ]m) f’l L(+, ’),

(iii) limt__, (y(t) r(t)) O.
Proof. Rewriting the first equation of (4.3) as

_d (r y) -D(v + 7-lM(r y) + dM 7-lMr D-/ WM),
dt

we see that (i)-(iii) will follow from Theorem 3.3, provided that the term dM 7-[Mr D-/
belongs to L2(+, ’). It is easy to show that dM E L2(+, m). Indeed, by definition we
have

(4.4) dM(s) M-I (s)d(s) M-’ (s)d (s) + M-’ (s)d2(s),
where d E L2(I+, m) and d2 ,56. Now, clearly we have

(4.5) M-’ (s)di (s) e H2(cm).
Moreover, since p(d/dt)d2 0, _< < m (where d2i denotes the ith component of d2), it
follows that there exist polynomials/3 ][s] such that

Therefore

d2(8)- fli(8)
and deg(fli) <_ deg(p)- 1-deg(q)- 1.

(4.6) M_l(s)d2(s) (ft,(s) tim(S) )
T

q(8) q(s)
e H2(cm).

Combining (4.4)-(4.6) shows that M E H2((m) and hence dM L2(>+, I’). It remains
to show that Mr + D- L2(+, ). This will be done in two steps.

Step 1. Suppose that r(0) 0. Then we have

(4.7) (Mr + D-’)(s) HM(s)(s) + 8D-1(8),
and moreover (s) [1/p(s)]7(s), where 7(s) := (7,(s),...,7(s))T
deg(Ti) deg(p) 2 deg(q) 2. Using (4.1) it follows from (4.7) that

q(s)(P(S) 1) D-1

+ p(s) H(s)7(s).,, + sD-’ 7(s)l
=D_

s 7 H2() + () () (),
q(s)qls)

,7 R[s], and
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since H E H(Cmx), deg(7) < deg(q) 2 and q is Hurwitz. Hence we have shown that

7-Mr + D-I/ E L2(+, ]m),

provided that p(d/dt)r 0 and r(0) 0.
Step 2. Now suppose that r(0) r0 - 0. Define z(t) "= r(t) O(t)ro, where

0, t < O,o(t):= , t_>o;

notice that

(4.8) 7-Mr A- D-li 7{MZ + D-I + 7-M(Oro).

Since p(0) 0, it follows that p(d/dt)z 0. Moreover z(0) 0 and hence we obtain
from Step that 7-/MZ + D- E L2(+, ]m). Therefore, by (4.8) it remains to show that
7-M(OrO) LZ(+,m). To this end write p(s) s(s), [s], which is possible by
assumption. Using (4.1) it follows that

(p(s) ) (s) H2-ro= -1 D- ro+ g(s)ro (Cm)(TlM(Oro))(s) HM(S)
s \ q(s) -and hence ’M(OrO) L2(+,m). []

5. Applications to retarded systems and integrodifferential convolution systems. In
this section we show how retarded and integrodifferential convolution systems fit into the
input-output set-up developed in 3 and 4. We solve the adaptive servoproblem for these
classes of systems under the assumption that the plant is minimum-phase and has invertible
high-frequency gain. Moreover, it turns out that the internal variables of the plant and the
precompensator remain bounded, provided that the reference signal is bounded.

5.1. Retarded systems. In the following we extend any function F BV([a, hi, nn)
to the whole real axis by setting F(t) F(a) for t < a and F(t) F(b) for t > b. Any
measurable function f Ft Itr, Ft C I, will be extended to the whole real axis by defining
f(t) -0 fort ft. For F- (Fij) BV([0,h],a) and f- (f,...,f)r, fi
LL(,I), <_ <_ n, we define

ZdF,j * fj
j--l

dF.f’=

*
j--l

where dFij denote the measure on ] induced by Fy and dFij fj denotes the convolution of
the measure dFij and the function fy. If f is continuous on I-h, oc), then of course

(dF f)(t) dF(-)Z(t- ) for t _> 0.

Consider the retarded system

(5.1)

c dA x + Bu,
y Cx,

xli_h.ol xo C([-h, 0],
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where A E BV([0, h], I?, x,), B E ]R x m, and C ’x n. We assume that

(5.2) det(CB) 0

and

(5.3) det ( sI-cA(s) for all s C+,

where ft(s) f: exp(-sT")dA(-) denotes the Laplace-Stieltjes transform of A. The transfer
function matrix G(s) of (5.1) is given by

G(s) C(sI- ft(s))-B.
Remark 5.1. As in the finite-dimensional case, we shall call (5.3) the minimum-phase

condition. It can be shown that (5.3) holds if and only if the following three conditions hold"
(i) The transfer function matrix G(s) has no zeros in C+;
(ii) rk(sI A(s), B) n for all s +;

(iii) rk(Sl-cA(S) ) =n foralls+.
Let pi, i (i 1,..., m), p, , p, and q be as in 4 and let

=AM+BMV,(5.4)
z CM + Imv

(o) o *
be a stabilizable and detectable realization of M(s) [q(s)/p(s)]I,. We shall consider the
closed-loop system given by (5.1), (5.4),

(5.5) k(t) -I[(t)- r(t)ll 2, k(0) =/c0 ,
and

(5.6) u(t) z(t) + d(t),

where r So, d $6 + L2(It+, ,m) and K,..., KN and cr ] { 1,..., N} are defined
as in 3.

The following result shows that the universal adaptive controller presented in 4 achieves
asymptotic tracking and disturbance rejection for the class of retarded systems satisfying (5.2)
and (5.3).

THEOREM 5.2. If (5.2) and (5.3) are satisfied, then for any xo C([-h, 0], N’), 0., ko , r S, and d S + L2(+, m), the closed-loop system given by (5.1) and
(5.4)-(5.6) has the following properties:

(i) limt k(t) exists and is finite;
(ii) y r L2 (]P+, m) (’1L (+, I);

(iii) limt_,+ (y(t) r(t)) 0;
(iv) (x,C)7 L+(+, +t) provided r is bounded.

Proof. First of all it follows from (5.2) and (5.3) that

(5.7) G-1 (8)- ,_q(C/) -1 --where H H(C"x) (see Logemann and Mhrtensson [13]), i.e., G-1 (s) admits a decom-
position of the form (2.1). We proceed in four steps.
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(5.8)

Step 1. Recall from the proof of Theorem 4.1 that

dM(t) -’ (M-’ d)(t) L2 (:+, >m).

Defining

and setting

j’ o, t o,, t (o, ],

0 X(’)AM BM

C’=(C,O) and z’-

the series connection of (5.4) followed by (5.1) in the presence of the disturbance d can be
reformulated as follows:

(5.9)
ics dAs x, + B(v + riM),
y Cxs

Xse(t) (xO(t) forallt [-h,O].

It follows trivially from (5.2) that

(5.10) det(CseBs) 7/= O.

Moreover, since q(s) is Hurwitz, it follows from the stabilizability and detectability of (5.4)
that

(511) det ( sI-- AM --BM )CM I =/= 0 for all s C+.

Realizing that

det ( sI-fl(s)C -B

det(sI A(s))det(G(s))det(sI AM)det(M(s))

=det( sI-c (s) -B)deto (sI-AMCM --BM)i
we obtain from (5.3) and (5.11)

det ( sI- A(s)(5 12)
C8 o 0 for all s C+,

i.e., the series connection of (5.4) followed by (5.1) is minimum=phase.
Step 2. It follows from (5.10) that Rn+l kerC (R) im B. Hence there exists a

non-singular real transformation P E I(n+t)x(+) such that

c,P- (i o).
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It is useful to partition the matrix p-1Ase(.)P as follows:

)p-1Ase(.)p A21( A22

where Alj(.),A2(.),Azl(.), and Az2(.) are matrices with entries in BV([O,h],I) of size
mxm, mx (+l-m),(+l-m) xmand(+l-m) x (+l-m),respectively.
Setting se(t) P-zse(f), it follows from (5.9) that

d(P-AP) + P-B(v + d),
(5.13) CPq,

[-h,o] P- x][_,o].
Since V can be written as (y, )T, it is clear that (5.13) can be decomposed as

(5.14) $ CBv,

(5.15) il dA22 * r + dA21 * 732,

7 -(CB)-l(dAl2 * r + dAll * V2),

(5.16) Vi V %- dM "/, V2 y

(5.17) Yl[-h,O] r/l, r/{[-h,0] r/2,

where (r/l, r/z) r/,e[[-h,0] and in particular r/l Cxo. Let r/(r/2, r/l, x)) denote the solution
of the retarded system (5.15) driven by the initial conditions r/l[-h,0] r/z, Vzl[-h,0] r/i
and the input v21[0,) w E LL2(+,’). The corresponding output ")’(r/z, r/j,w) can be
written in the form

(5.18)

where

(5.19) lw -(CB)-l(dAl2 r/(O,O,w)+ dAli ,w)

and

(5.20) (v -(CB)-l(dAl2 r/(r/2, r/l, O) + dAll *

Step 3. We claim that the retarded system (5.15) is exponentially stable, which is equiva-
lentto saying thatdet(sI-Azz(s)) 0forall s E +, where Azz(s) fo exp(-sr)dAzz(r)
(cf. Hale [6, p. 165]). It follows from the properties of P that

sI A1, (s) -Al2(s)
det (sl-fts(s) -B )= det -A2,(s) sI-A22(s)C 0

I 0

Defining

I
T(s) .= o

0

0 -(sI- All(S)) )I A21 ($)
0 I

I
T(s) 0

0

0
I

-(CB)-lA12(s) O)
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we obtain

det( sI- fls(s)c -B,

det r (s) -ei,21 (s)
I

det 0 sI A22(8) 0
I 0 0

(-1) det(CB)det(sI Azz(s)).

sI- A22(s) 0 T2(s)
0 0

Hence det(sI A22(8)) 0 for all s E + by the minimum-phase property (5.12).
Step 4. As a consequence of the exponential stability of the retarded system (5.15), the

linear mapping/C defined by (5.19) is bounded from L2 (]P+, Im) into itself and the function
zb is in L2 (I1+, Im). Moreover, it is clear that the operator/C is shift-invariant. The system
given by (5.14)-(5.17) can be written as

(5.21) fi CB(v- ly- w), y(O) Cxo(O),

where w "= (v dM L2(]+, ]m). Let K be the unique element in Hm(C"xm) such that
KS - A4K/. It is easy to see that K is of the form required for the application of Theorem
4.1, i.e.,

(V(S) (CB)-’ + H(s)
\

where H(s) is given by (5.7). Statements (i)-(iii) follow now from Theorem 4.1. Finally,
suppose that r is bounded. By statement (ii) this implies that y is bounded, and hence using
the exponential stability of (5.15), we see that r/is bounded. As a consequence r/Be (r/, y)T
is bounded, which in turn implies the boundedness of xse (x, )T. []

5.2. Integrodifferential convolution systems. Another interesting class of systems cov-
ered by Theorem 4.1 is the class of integrodifferential convolution systems. Consider the
system

gc=A,x+Bu,
(5.22) y Cx,

x(0) x0

where A M(>+,>xn), B ’x,, and C It x. The Volterra integrodifferential
system

gc(t) Aox(t) + A, (t- r)x(r)dr + Bu(t),

v(t) Cx(t),
x(O) X0 ]n,

where Ao ]nn and A L (+, ]n,) is obviously a special case of (5.22). We assume
that

(5.23) det(CB) - 0
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and

(5.24) det(sI-ft(s) -B )C 0 :/:0 for allsC+,

where ft(s) f exp(-s-)dA(-).
THEOREM 5.3. If(5.23) and (5.24) are satisfied, then for any zo E ]n, o z, ko ],

r ,9o, and d 86 + L2(+, ’), the closed-loop system given by (5.22) and (5.4)-(5.6)
has the following properties:

(i) limt_ k(t) exists and is finite;
(ii) y r n2 (I+, ’) N L (JR+, ’);
(iii) limt_(y(t)) r(t)) 0;
(iv) (x,) L(]+,E+), proided r is bounded.
Proof. Defining

A 5oBCM Bse :=A :=
0 50AM BM

(x)C’-(C,O) and z’-

where 50 denotes the unit point mass at 0, the series connection of (5.4) followed by (5.22) in
the presence of the disturbance d can be formulated as follows:

5cse Ase x + B(v + dM),
(5.25) y Csxs,

where dM is given by (5.8).
Using the same coordinate transformation P as in 5. l, it is clear that (5.25) can be written

in the form

(5.26) /= CBv,

(5.27) // A22 * /-+- A21 *
7 -(CB)-(A2 * + A v2);

(5.28) vl v -t- dM 7, v2 Y,

(5.29) (y(0), r/(0))T P-’xe(O),

where (y, r/)T P-xs and the Aij are bounded matrix-valued measures on +. Let R
denote the differential resolvent of the integrodifferential system (5.27), i.e., R is the unique
solution of

/ A22 */, /(0) I.

The solution r/is then given by

r/(t) =/(t)r/(0) + (R A2 * v2)(t)
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(see Gripenberg, Londen, and Staffans [5, p. 76]) and the output "7 can be written in the form

where

(5.30) ]732 -(CB)-I(A12 * R * A2i + A) 732

and

(5.31) go -(CB)-I(A,2 R)r/(0).

Now we can show, as in 5.1, that

(5.32) det(sI- Azz(s)) # 0 for all s E +,

where A22(8) fxz exp(-sr)dA22(r), and hence R is integrable (see Gripenberg, Londen,
and Staffans [5, p. 83]). It follows that the linear operator/C defined by (5.30) is bounded
from L2 (+, ’) into itself. Moreover it is trivial to show that/C is shift-invariant. Since R
is integrable we obtain from Gripenberg, Londen, and Staffans [5, p. 83], that the entries of R
are square-integrable as well. Therefore the function zb defined by (5.31) is in L2(]R+, ]R’).
Finally it follows that the system (5.25) can be written as

9 CB(v- lCy- w), y(O) Cxo,

where w := zb dM is in L2(+, ]m) (by (5.8)) and/C L2(]+, ]m) L2(]+, ]m) is
linear bounded and shift-invariant. The claim now follows in exactly the same way as in the
proof of Theorem 5.2. []

6. Conclusions. In this paper we have presented an input-output approach to the adaptive
servoproblem for multivariable infinite-dimensional minimum-phase systems with invertible
high-frequency gains. In particular, we have shown the following:

The switching algorithm, introduced by Byrnes and Willems in a finite-dimensional
state-space set-up, stabilizes any infinite-dimensional plant belonging to the class of systems
given by (2.1).

The series interconnection of the Byrnes-Willems controller with a suitable precom-
pensator solves the adaptive servoproblem for the class of systems satisfying (2.1).

The input-output results obtained in 3 and 4 apply to retarded systems and integro-
differential convolution systems.
The adaptive control laws presented in 3 and 4 give positive answers to feasibility and
existence questions. They do not provide satisfying adaptive controllers from an engineer’s
point of view. However, the following comments show that the results of this paper might also
be of some practical importance.

It seems plausible that the technique in 4 (or variations thereof) can be used in order
to obtain adaptive servomechanisms from various adaptive stabilization algorithms available
in the literature.

If the conjecture formulated in 3 turns out to be true, the high-gain switching algorithm
can be used in order to identify a stabilizing linear controller or a linear servocompensator for
the class of infinite-dimensional systems under consideration by a single simulation.
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7. Appendix.
ProofofLemma 3.2. The closed-loop system is given by

(t) D(k(t)K(k(t))y(t) (y)(t) w(t)),
(7.1) k(t)- Ily(t)ll 2, t >_ O,

Without loss of generality we may assume that ko >_ 0. The proof is divided into three steps.
Step 1. Existence and uniqueness on a "small" interval.
Consider equation (7.1) with a(k(t)) replaced by a(k0), i.e.,

(t) D(k(t)K(o)y(t (7-t)(t) w(t)),
(7.2) k(t) II (t)ll 2, t _> 0,

By Theorem 2.5, (7.2) has a unique absolutely continuous solution (_,/c) on some interval

[0,_T). Set "r(k0)= min{-i -i > k0} and let T’ E (0, T_)be such that k(T’) < T(ko). Since
cr(k(t)) a(ko) for all t E [0, T’], it follows that (), k) is the unique solution of (7.1) on
[0, T’).

Step 2. Extended uniqueness.
Let (yi, ki) be solutions of (7. l) on [0, Tj), i l, 2. We claim that (y, k (y2, k2) on

[0, T), where T := min(T, T:). Let us assume the contrary, i.e. there exists t (0, T) for
which (y,(t),k,(t)) (y2(t),k2(t)). Defining

t* inf{t (O,T)](y(t),k(t)) (y(t),ke(t))},

it follows that t* > 0 (by Step 1) and (y (t*), k (t*)) (y2(t*), k(t*)) (by continuity). Now
set k* kl (t*) k2(t*) and realize that the initial-value problem

{l(t) D(k(t)K(.)y(t) -(7-ty)(t)- w(t)),
(7.3) k(t)- II (t)ll 2, t _> t*,

yl[o,t.] y I[o,t.], klto,t.] k
is solved by (y, k) and (y2, k2) on [0, t* + e) for some sufficiently small e > O. It follows
from Theorem 2.5 that (Yl (t), k (t)) (y2(t), k2(t)) for all t [0, t* + e), which contradicts
the definition of t*.

Step 3. Continuation of solutions.
Let (,/c) be a solution of (7.1) on [0, T), 0 < T < oo. Assume that (),/c) is bounded.

We claim that under these conditions the solution (),/c) can be continued to the rig_ht (beyo_nd
T). Since/ is bounded, continuous, and nondecreasing, it is clear that limtT k(t) kT
exists and is finite. As a consequence we have ) L2(0, T; m) and hence, by (7.1),
) L2 (0, T; m) C L (0, T; ’). Using the fact that

(t) Yo + (’r)d’r,

it follows that limtT (t) =" T exists and is finite. By Theorem 2.5 the initial-value problem

(t) D(k(t)K(T)Y(t (7-[y(t) w(t)),

k(t) [[y(t)l[, t >_ T,
; (t), t E [O,T), f /c(t), t [O,T),y(t) T, t= T, k(t) [CT, t= T,
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has a unique absolutely continuous solution (#, ) on [0, T + e) for some e > 0. Finally let
6 E (0, e) be such that

(T + (5) < min{7- 17- >/c7}.

Then (3, ) is a solution of (7.1) on [0,T + 6) extending the solution
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