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Abstract: We consider the class of multi-input multi-output, finite dimensional, state space systems of the form x = Ax + Bu,
y = Cx, where the state dimension is unknown, the system is minimum phase, and it is known that det(CB)+ 0. For this class a
universal adaptive high gain controller - not based on identification or estimation algorithms — is presented which ensures
exponential decay of the motion of the closed-loop system. It is shown that the controller is robust with respect to certain nonlinear
perturbations.
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Nomenclature

N={l,...,N}L

x|l p=+v<{x, Px) for x€R", P=PT & R"*" positive definite.
R, (R_) the set of non-negative (non-positive) real numbers.
C. (C_) open right- (left-) half complex plane.

o(A) the spectrum of the matrix 4 € C"*".

L ,(J) vector space of measurable functions f:J — R", J C R some interval, such that || f(-) | . ) <,
where

[f,” F(s)II? ds]l/p for p €[1, =).

ess sup |l f(s) for p = .

seJ

Il f(C) Il L)'=

1. Introduction

Let 3 denote the class of multi-input multi-output systems of the form
X(t) =Ax(t) +Bu(t), x(0)<R”, (1.1)
y(t) = Cx(1), '
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(A, B, C) e R x R"*™ x R™*" which satisfy the minimum phase condition

det[s"A Bl40 forallseC, (1.2)
C 0
and have invertible high-frequency gain, i.e.
det(CB) +# 0. (1.3)

Notice that the number m of inputs and outputs is fixed while the state dimension is not. The problem of
adaptively stabilizing the class ¥, i.e. constructing a (nonlinear) control law which stabilizes all systems in
3, has been studied by Byrnes and Willems [1] and Méartensson [5,6] using high-gain ideas. The stabilizing
control laws obtained in [1] and [5,6] are both based on static output feedback of the form

u(t) =k(t)K(k(t))y(t),
where the gain parameter k is adaptively increased according to k= || y||* in[1and k= yII*+ llull?
in [5,6] and the gain matrix K is adjusted by a switching strategy which is driven by k and which rotates
K among (at most) countably many different matrices K,. ! Despite the similarity of the control laws, the
proofs in [1] and [5,6] are quite different and more important, they are not convincing because they
contain gaps; see Remark 3.8 for details.

Mértensson [4] has shown that the order of any linear time-invariant stabilizing feedback controller is
a sufficient information about a minimal linear time-invariant system in order to apply an adaptive
stabilizer. Therefore it is known that adaptive stabilization is feasible for the class 3 considered in the
present paper. However, it is interesting to see how the additional asssumptions (1.2) and (1.3) can be
used to construct a less complicated controller compared to that in [4].

In this paper we present an adaptive control law which contains the controller proposed in [1] as a
special case. By bringing in an additional design parameter we modify the control law given in [1] in such
a way that the state trajectory of the closed-loop system is exponentially decaying. In particular, we close
the gap contained in the proof of [1]. Moreover we allow gain adaptations of the form k(¢) = || y(¢)| *
for p > 1, and show that closed-loop stability is retained under perturbations of (1.1) given by

x(t) =Ax(t) + Blu(t) +h(t, x(¢))], x(0)eR",
y(t) =Cx(t),

where the function #:R, X R" —» R" is measurable in ¢, locally Lipschitz in x and of finite gain. The
latter condition means that there exists an 4 > 0 such that

(1.4)

Ih(e, x) Il <hllxll forall (¢, x) € R, X R". (1.5)

The reasons to consider gain adaptation k = || y || ? for p > 1 instead of the usual p = 2 are: (i) to show
that L, techniques are appropriate in this set-up, (i) numerical simulations have shown that the
transient behaviour is better for p large since the system reacts faster and so the stabilizing gain does not
become unnecessarily large. The presentation for p > 1 is more complicated than for p = 2, the reader
can set p = 2 wherever he likes.

Exponential stabilization by high-gain adaptive controllers has previously been studied by Logemann
[3] and Ilchmann and Owens [2]. In [3] an exponentially stabilizing controller is given for a class of
single-input single-output retarded systems which are strongly minimum phase, i.e. which have no zeros
in Re(s) > —¢ for some £ > 0. It is shown that the controller is robust with respect to various nonlinear
perturbations in the state and certain sector-bounded actuator and sensor nonlinearities. In [2] a
controller is constructed which produces an exponentially decaying closed-loop trajectory for any square
finite dimensional plant, provided it is minimum phase and o(CB)c C _.

The paper is organized as follows. In Section 2 we present some basic properties of the class 3. The
main result is proved in Section 3.

! In fact it is shown in [5,6] that finitely many gain matrices K,..., K exist, where N depends on m.
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2. Properties of the class 3

In this section we derive some basic properties of the class 3 which will be used in the following.

2.1. Remark. A system of the form (1.1) is minimum phase if and only if (A, B) is stabilizable, (4, C) is
detectable, and the transfer function matrix C(sI, — A4)~'B € R(s)™>*™ has no zeros inside C .

In order to include the possibility of exponential stabilization we introduce an exponentially weighted
gain adaptation. Logemann [3] has proved that k(z) = e“'y(¢)?, u(t) = —k(t)y(t) leads, in the single-in-
put single-output case and CB > 0, to an exponentially decaying output if it is known that

det[SI” -A B
0

Ilchmann and Owens [2] do not use the additional assumption but adjust w(-) adaptively. Therefore we
introduce the following notation.

]#0 forall se Cwith Re s > —w, w > 0.

2.2. Definition Let (¢, t"), 0<ty<t'<o, be the class of continuously differentiable functions
o(-):[ty, t') > R, which satisfy

w(t) is non-increasing on [¢y, t'), (2.1)
w(t)>0 forall t€(ty, t')if () #0, (2.2)
lim w(¢) = 0. (2.3)
-1’

Let w(-):[¢,, t') > R, be continuously differentiable and v(-):{¢,, ') = R’, r €N, be a vector-valued
function. Then v,(+):[¢,, t') = R’ is defined by

v,(1) =e“Du(r). (2.4)

For the sake of simplicity the reader may set w =0 in the following and he will get the result for
asymptotic (not exponential) stabilization.

Since det(CB) # 0 the state space can be composed into the direct sum R” =im B @ ker C which
leads to the following convenient decomposition of the system (1.4).

2.3. Proposition. Suppose w(+) € 0, t') and (A, B, C)€ 3. If Ve R"*""~™ denotes a basis matrix of
ker C, then U:=[B(CB)™', V] is invertible, and under the state space transformation [yT, z']"=U"'x
and new coordinates y,, z , the equations in (1.4) are equivalent to

v (t) = [A1 + (w(1?) +a)(t)t)1m]yw(t) +A,z,(t) + CBu,(t) + CBii(t, vo(t), z,(1)), (2.5a)

2,(8) = A3y, (1) + [Ay+ (o(t) + (1)) I,_ ] 2.(1), (2.5b)
where

[Al A2]=U—IAU

A, A,

and

h(t, m, £) =e*h(t, = U [T, €T]") forall (1,7, £) ER,XR™XR""".

The minimum phase condition implies o(A4,) c C_ and (1.5) gives

1At m, ) <AIUNI[T, €7]7 1l forall (¢, m, £) € R, X R™ X R*~"™. (2.6)
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The class of systems under consideration satisfies the following fundamental inequality relating the
weighted output y (¢) at time ¢ to the weighted input u_(-) and the weighted output v, () on the past
interval [0, ¢).

2.4. Proposition. Consider system (1.4) and suppose that (A, B,C)E€X and w(-)€ Qt,, t'), where
0 <t,<t’ <. Furthermore let u(-):[t, t') - R™ be locally integrable, P € R"*" be positive definite, and
p = 1. Define

, y*+0,
B:R"->R™, y-p(y)={ llyle

0, y=0.
Then there exists M = M(x(0)) > 0 such that for all t €[1,, t'),

1 ‘ ‘
;H ym(t)||,é’sM+Mf Ny (s)IF ds+f v ()15 XB(y (s5)), PCBu,(s)> ds. (2.7)

Iy

Proof. Assume (A, B, C) is of the form (2.5). Since A, is exponentially stable, lim, , , w(¢) =0, and
(1) <0, the homogeneous part of (2.5b) is an exponentially stable system. Therefore it can be shown
(use e.g. a similar argument as in [7], p.258) that there exists an M, > 0 such that

“ Zw( ) H L(tg.) < Ml + M1 ” yw( ) || Lp(ty.t)- (28)
Let J, C[t,, t') be the set of measure zero where y_(-) is not differentiable and
‘]2 = {t E[t[)’ tl)\‘ll | yw(t) = 07 yw(t) * 0}

Now it is easy to see that ||y ()|l p is not differentiable in any point of J,. However ||y, (:)|l s is
absolutely continuous because y,(-) is and hence J, must be of measure zero. It follows that J:=J, UJ,
is of measure zero and a routine calculation gives

(Yul(8), Pru(s)

d , ,t')\J and y, #0,
= T 3 €ltor 1)\ and y, () (2.9)
0, s €[y, t')\J and y,(s) = 0.
Using (2.5a), (2.6), and (2.9) yields for an appropriate M, > 0 and all s & J,
1 d 5 5
;a(ll Yo(SHIE) <My 11y (s)IIF [II Yo() e+ 1y, ()il z,(s) ll]
+ 1y () IIF7B(v.(5)), PCBu,(5)). (2.10)

Integrating (2.10) and using the inequality

Sy 17 2y () s < Hval ) UL b 120 1 e

fo

together with (2.8) gives the result. O

3. Main result

The switching strategy is based on the following result from linear algebra.
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3.1. Lemma. There exists a finite set {K,,..., Ky} ©GL,(R) so that, for any M € GL,, there exists i €N
such that a(MK;)CC_.

Proof. See Martensson [6], Section 8, or Martensson [5], p.81. O

The set given in Lemma 3.1 is often called the unmixing set. Unfortunately, the cardinality of the
unmixing sets constructed by Martensson [5,6] is far too large than would be convenient for applications.
Hardly anything is known on the minimum cardinality of unmixing sets. However, for m =1 the set
{1, —1} is obviously unmixing, while for m = 2 there exists an unmixing set of cardinality 6 (see [6]). It
has been shown by Zhu [9] that GL ;(R) can be unmixed by a set having cardinality 32.

In order to extend the result of single-output systems with unknown high frequency gain, see Willems
and Byrnes [8], we introduce the following concept of switching sequences and functions.

3.2. Definition. A strictly increasing sequence 0 <7, <7,< --+ is called a switching sequence if it
satisfies the following growth condition
Ti-1

lim — = 0. (3.1)

i T

A function S(-):R - N, N €N, is called a switching function if there exists a switching sequence {7}, c
such that

1 ifke(-o, 1),

S(k) = 3.2
(%) i if k€[7nei> Tinsivr) for some IEN;, i€N. (3.2)

Note that a switching sequence {7}, ., necessarily satisfies
lim 7, = oo, (3.3)

i—x

3.3. Examples. (i) It is obvious that the sequence 7,:=72, for i €N, r,> 1 is a switching sequence.
(ii) The sequence 7,:=i?, i €N, has been used by Willems and Byrnes [8] in the single-input
single-output case. However, it is not a switching sequence in the sense of Definition 3.2.
(iii) The sequence 7;,, =T, + e i €N, has been suggested by Byrnes and Willems [1]. It is in fact a
switching sequence since

e(iz) -1 e(iz) el+@i-1 el+@2i-D
T/Tiz1= |1+ — and — >

T; -

BT 12 o1z 2 .
i Ti Tge U ey em T g e U g
The right hand side tends to + as i goes to + o,

In order to prove the main result the following lemma is needed.

3.4. Lemma. Suppose S(:):R—> N, Ne€N, is a switching function associated with a switching sequence
{1} <n If we define for arbitrary a > 0 and every i €N,

N 1 if S(x) =i,
fi(x) .—{—a if S(x)=+i, (3:4)
then it follows that
1
Z‘i%zfokx~f,-“(x) dx = +o (3.5)
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Proof. Without restriction of generality we only consider the function f2(-),i.e. i = N. It follows from the
definition of S(-) that

TG+ DN+ TIN+N TG+DN+1
. fa - ) _1_ 2 _1 2 12
f x fa(x)dx= / a xdx+f x dx = sa71iy,, 2(oz-}—1)7-j,\,+,\,+57(]-“),\,“.
TIN+1 TiN+1 TIN+N
Therefore
l T 1 !
U+ DN+1 TG+ DN+
[ () de = ——— ¥ [T e £ (0) dx
TarN+l — T1 77 T+ ON+1 7 T1 j=0 Tiwe
1 i -1

s 2 2 2
=37 — Yoarjye —[a+ 1078, pn + 780 na
G+DN+1 7 T1 =g

1 1

N S R 2 2
2 T — T [C”uvﬂ (a+D)7i, 8+ T(1+I)N+l]'

(3.6)
Since
T2
‘”ﬁ\wl - [a + 1]T(Z,'+1)N+ 7(2,'+1)N+1 = T(2j+l)N+ll:_(a + 1)%& + 1]
TG+DN+1

it follows from condition (3.1) that the first term in (3.6) is bounded from below by some L €R
(independent of /). Therefore

Td+DHN+1 1 7-2 T :
[ x-fm)dmﬁ*w{l_(aﬂ)(ﬂ_)] 6

Ta+nN+1 Ty 77y Ta+DN+1 Ty TU+DHN+1

1

and the second summand in (3.7) goes to + as [ tends to «. This completes the proof. O

3.5. Remark. It is easy to see that condition (3.5) is satisfied if and only if

sup kx'f,-"(x) dx=+o forall k,€R. (3.8)
k>ky k — kﬂ ky

The switching function will be build into the feedback via
u(e) =k(t) Ky (1)

where the gain k() increases monotonically and different K,’s (given by Lemma 3.1) are picked. The
intuition behind the above control law is as follows: If the ‘correct’ K; is hit, the gain k(-) is large
enough, and the time interval until the next possible switch is long enough (which is ensured by the
condition (3.1)), then the system settles down and no more switchings occur. However this does not
guarantee that the terminal gain lim, , k(¢)Kg,, is a stabilizing output feedback gain. It is only
ensured that the trajectory of the closed-loop system corresponding to a particular initial value is forced
to zero.

3.6. Theorem. Suppose p = 1, w(+) € (X0, ©), S:R > N is a switching function, and (A, B, C)E 3. Let
K,,...,K, be as in Lemma 3.1 and apply the feedback law

u(ty =k(t) Ko pyxn (1), (3.9)
k(t) = e P0yy | ?, k(0) €R,, (3.10)
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to the system (1.4). Then the resulting closed-loop system
£(1) =[A+k(t)BKs.ixnClx(t) +Bh(t, x(1)), x(0) €R",
k(1) = llet X0y (1) |17, k(0) eR,, (3.11)

has the following properties:
(i) The solution of (3.11), i.e. an absolutely continuous function satisfying (3.11) a.e. on R, exists.
(i) lim, , k(t) =k, <, and hence K g ,,,=K; for all t = t* for some i € N and some t* > 0.
(i) lim, , (@ kXt) = w, >0 if w(-)#0.
(iv) If w(-) # 0 then there exist M = M(x(0), k(0)) > 0, and A = A(x(0), k(0)) > 0 such that

lx(OHIl <Me ™ forallt>0,
while if w(-)=0 then x(-) € L (0, ©) N L (0, ») and
lim x(¢) = 0.

t—

Due to the discontinuity in k& of the right hand side of (3.11) the proof of Theorem 3.6 requires a
certain amount of technicalities. The idea is as follows. Existence and uniqueness of the solution (x, k) is
ensured on an interval where S ° k is constant. Since k(-) is monotonically increasing the solution can be
stuck together as long as k(¢) remains bounded. We will show that k(¢) cannot escape to infinity, either
in finite or infinite time, since the length of the intervals where (S ° £)¢) is kept constant is increasing,
by virtue of (3.1), and finally if the ‘correct’ gain is hit the system settles down so that no more switchings
occur. Now the properties in (iv) follow by standard arguments.

Proof. The right hand side of (3.11) is discontinuous in k, discontinuities occur for k = r,, where {7.}; .
is the switching sequence associated with S(-). Set 7, := min{k(0), 7,}. It is clear that there exists an
Jj € N such that

7o <k(0) <T;.

(a) First we investigate the solution of (3.11) under the constraint that k(¢) <r;, that means no
switching occurs. It follows from the assumptions that the right hand side of (3.11) is locally integrable in
t and locally Lipschitz in (x, k) for (x, k) € R” X[r;_,, ;). Therefore there exists a unique solution of
(3.11D) on [0, T)) for some T;> 0. Let [0, 7;) be the largest interval on which (3.11) has unique solution
(x(+), k(- with k(¢) <7, for all £ €[0, T)).

(b) Since k(¢) is bounded on [0, 7)) and A(t, x) is linearly bounded in x (uniformly in #), it follows
from the first equation of (3.11) and the theory of ordinary differential equations that x(-) € L (0, T)),
too.

(¢) If T, = o then statements (i)-(iii) follow. Suppose 7; < . We claim that the solution of (3.11) can
be extended beyond 7;. To this end notice that lim,_ k(¢+)=17; by (b) and the definition of T
Furthermore we obtain from (b) and the first equation in (3.11) that % € L (0, T;) cL (0, T)). Using the
fact that

x(t) =x(0) +ft)é(s) ds for all t €[0, T;)
0

it follows that X; := lim, _, ;- x(¢) exists. Thus there exists a maximal 7}, > T; such that on [T, T, ) the
initial value problem
#(1) = [ A+ k(1) BKsuunClx(¢) +Bh(1, x(2)), x(T;) =%,

k(1) = lle®@ XDy 117, k(T) =1,
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has a unique solution (x(-), k(+)) which satisfies k(¢) <7;,, for ¢t €[T,, T;,,) and which extends the
solution of (3.11) to [0, T;_ ).

(d) If there exists a j, €N such that T, = = then (1)—(iii) follow. Assume the contrary, i.e. there are
infinitely many switching times

T,<T,< --- <o with lmT7;,=TeR,U{ow}.

Jjx

By (a)—(c) the solution (x, k) exists on [0, T). If k(-) were bounded on [0, T') then at most finitely many
switches would occur during the time interval [0, T). This would contradict the assumption, therefore
k(-) & L0, T). We will show that this leads to a contradiction. By Lemma 3.1 there exists i € N such
that o(CBK,;)cC . Let P=PT & R™ " be the unique positive-definite solution of

KF'(CB)'P+PCBK,= —1I,.
Choose a > 0 so that
KM(CB)'P+PCBK,<al, forallleN. (3.12)
It then follows from the definition of f(-), (3.9), and from (3.12) that
2y, . x(t), PCBu, (1)) =2k(t){y,..(1), PCBK(SOkX,)ymk(tD
< —k() fER() Iy ()17 (3.13)
Since k(-) is unbounded on [0, T), we have that lim, _, ;{(w ° k)(¢) = 0. Therefore we can apply Proposi-

tion 2.4, and inserting (3.13) into the inequality yields for all ¢ € [0, T),

1 t
N YDV IE<MAM [ 1y, (5) I£ ds
p 0

~%fotﬁ“(k(S))k(S) IB(Yae k(N vy i () I1F77 ds. (3.14)
Let M, be a positive number such that for all y_ . ,(s) # 0 we have

Ny k(N Ny (HNE T =M Ny, ()17 = =M, - k(s).
Inserting this inequality into (3.14) and changing variables gives for suitable M,, M, > 0,

%H Voo k(1) 18 < M+ My[(8) = k(0)] = My [“f () dp

k(D

“Ofe(uyn dul. (3.15)

1
M, k(t) —k(0) -/;(o)

=M+ M,[ k(1) —k(O)][l _M

Since k(t) = « as t = T it follows from Lemma 3.4 that the right hand side of (3.15) becomes negative,
which is impossible. This contradiction proves that there exists a j, € N such that I, =1t remains to
prove (iv).

(e) We consider the case w # 0, only. The case w = 0 is simpler and therefore omitted. It follows from
(3.10) and statement (ii) that y,. (1) €L 0, »). Hence y,(-)€ L0, ©) for all A <[0, w,], where
w,, = lim, _, (w° kXt). Consider next (2.5b) for A instead of w(-). Then for A >0 sufficiently small
o(A,+Al,_,)cC_ and it follows from (2.5b) and from y,(-) € L (0, ) that z,(-) & L (0, ). This
together with (2.5) yields

[90)% 2] [ 2()"] € L,(0, ).
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Therefore lim, _, . [y,(1)7, z,(¢)T] =0 and we obtain

lim x(t) e* = lim U[y(t)T, z(t) T]T et =0.
t—

{— o0

Therefore (iv) is proved. O

3.7. Remark. It can be shown that Theorem 3.6 remains true if the system (1.4) is subjected to the
following additional disturbances:

£(t) =Ax(t) +g(t, x(¢)) +d(t) + Blu(t) + h(t, x(1))],
y(t) =Cx(1),

where

(3.16)

g:R,XR">R", (t,x)—g(t,x) withl|lg(t,x)l<gllxlforall (s, x)ER,XR",

is a function which is measurable in ¢, locally Lipschitz in x, and has sufficiently small gain g, and
d(-)ef e LP(O, o) for some & > 0.

If we are only interested in asymptotically stability, i.e. @(-) = 0, then we may allow that d(-) € L (0, ).
For the sake of brevity we omit the proof here.

3.8. Remark. (i) The proof of Byrnes and Willems [1] is incomplete because their inequality (3.4) is not
valid for « > 1. However, our approach is in their spirit. It is essentially Lemma 3.4 in the present paper
together with a rigorous proof that the closed loop system (3.11) with discontinuous right hand side
admits a unique absolutely continuous solution on R, which completes the argument in [1].

(ii) The incompleteness in Martensson [6], see also [5], is more subtle. The proof of Theorem 9.1 in [6]
(Th. 6.14 in [5]) is based on the claim that for the adaptive control system

x(t) =Ax(t) +Bu(t), y(t)=Cx(t), x(0)eR”,
u(t) =k(£)Qy(r)
k() =1y 12+ lu(e) 1%, k(0) €R,

there exists constants ¢, 7 > 0 such that
/ Iy(s) 12+ Nu(s) 1 ds <cllx(to) 1> for all 15> T, x(0) € R", k(0) €R,
Iy

provided that (A, B, C) is minimum phase and o(CBQ) c C _. This property is not shown in [5,6] and we
expect that it is not valid in general.
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