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Abstract. A stability theorem for the feedback connection of two (possibly infinite-dimensional)
time-invariant linear systems is presented. The theorem is formulated in the frequency domain and
is in the spirit of combined passivity/small-gain results. It places a mixture of positive realness
and small-gain assumptions on the two transfer functions to ensure a certain notion of input-output
stability, called Sobolev stability (which includes the classical L2-stability concept as a special case).
The result is more general than the classical passivity and small-gain theorems; strong positive
realness of either the plant or controller is not required, and the small-gain condition only needs to
hold on a suitable subset of the open right-half plane. We show that the ``mixed"" stability theorem
is applicable in settings where L2-stability of the feedback connection is not possible, such as output
regulation and disturbance rejection of certain periodic signals by so-called repetitive control.

Key words. feedback control, output regulation, passivity theorem, positive realness, small-gain
theorem, Sobolev stability
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1. Introduction. For time-invariant linear control systems, positive realness
is the frequency domain characterization of the time-domain property of passivity.
Positive realness in a circuit theory context appears to date back to the 1931/32
papers [7, 9, 10] and is nowadays a key concept in mathematical systems and control
theory. Indeed, on the one hand, it is fundamental for the analysis and synthesis of
electrical networks [4, 27]; on the other hand, it appears as a natural condition in the
study of the stability of certain nonlinear control systems, so-called absolute stability,
via the Kalman--Yakubovich--Popov (or positive real) lemma [21, 23]. The upshot
is that positive realness is a much-studied property over a vast array of literature.
For example, positive realness plays a central role in the recent monograph [6] on
dissipative systems. We refer the reader to [4, 6, 19, 26] for more background on
the positive real property and note that some authors use the term positive, rather
than positive real, such as in [42]. In the time-invariant linear case, the passivity
theorem (see [19, Theorem 6.16] for a version that captures a large class of infinite-
dimensional systems) states that the feedback connection of an L2-input--output stable
and strongly positive real plant and positive real controller is itself positive real and
L2-input-output stable. This result traces its roots back to the work of Zames [40].
Similar to passivity notions, small loop-gain ideas have been around in control theory
for a long time; the first formal statements of the small-gain theorem seem to have
appeared in [33, 40] (see also [13, Chapters III and V]). It is well known from [18] that
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A MIXED PASSIVITY/SMALL-GAIN THEOREM 3043

the conditions of the passivity and small-gain theorems may be ``shared"" or ``mixed""
across the plant and controller and still guarantee stability. We refer the reader to the
recent paper [11], and the references therein, for more background on mixed stability
results and their generalizations.

The stability criteria (passivity, small gain, and mixed) referred to above are for-
mulated within the framework of Lp-input--output stability (where, usually, p= 2 or
p = \infty ). Although this setting is sufficient for many purposes, there are situations
in the control of PDEs and repetitive control in which L2- or L\infty -stability is impos-
sible to achieve, and therefore, more refined stability concepts are required. This is
addressed by the state-space concept of polynomial stability of operator semigroups
(see, for example, [1, 5, 32]) and the related P-stability notion in the frequency domain
[25, 29]. A new stability concept called Sobolev input-output stability has been recently
introduced in [20], which contains L2- and P-stability as special cases. This concept is
applicable to a rather general class of causal translation-invariant linear input-output
operators, the domain and codomain of which are spaces of vector-valued distribu-
tions: For real numbers \alpha and \beta , Sobolev (\alpha ,\beta )-stability of an input-output operator
H simply refers to the property that H maps the Sobolev space H\alpha (\BbbR ,U) contin-
uously into the Sobolev space H\beta (\BbbR , Y ), where U and Y are Hilbert spaces. The
familiar notion of L2-stability corresponds to the case wherein \alpha = \beta = 0. In the
frequency domain, Sobolev (\alpha ,\beta )-stability can be conveniently characterized by the
condition that the function s \mapsto \rightarrow (1 + s)\beta  - \alpha H(s) is holomorphic and bounded on the
open right-half plane, where H denotes the transfer function of H; see section 3.
Obviously, if \alpha > \beta (\alpha < \beta ), then application of the input-output operator reduces
(increases) the regularity of the input.

In the current paper, we initiate the study of so-called Sobolev stabilizing feed-
backs, that is, controllers, which ensure that the closed-loop system is Sobolev stable.
The main result, a general mixed passivity/small-gain theorem, is a frequency-domain
criterion for the Sobolev stability of the feedback connection of two (possibly infinite-
dimensional) time-invariant linear systems; see Theorem 4.2. Loosely speaking, the
theorem states that a suitable mixture of positive--realness- and small--gain-type condi-
tions holding on certain subsets of the open right-half plane ensures that the feedback
system is Sobolev stable. The passivity and small-gain theorems for linear systems
in an L2-stability setting are contained in Theorem 4.2 as special cases, as is [42,
Theorem 4.2]; see section 4 for details.

We apply our mixed passivity/small-gain theorem in the context of a general
version of the output-regulation and disturbance-rejection problem (also referred to
as the servo problem). Inspired by the frequency-domain theory of the internal model
principle [24, 25, 37], a sufficient condition for a Sobolev stabilizing controller to solve
the servo problem is given in Theorem 5.1. This result is then applied to the so-
called repetitive control problem (see, for example, [38]), for which it is known that
L2-stability of the closed loop is not possible for plant transfer functions, which tend
to 0 at high frequencies. However, as we demonstrate, these feedback connections
are Sobolev stable, and Corollary 5.4 provides a sufficient condition for a Sobolev
stabilizing controller to be a solution to the servo problem in repetitive control.

The paper is organized as follows. Section 2 contains preliminaries on notation
and certain spaces of functions and distributions. In section 3, we recall a number of
results on Sobolev stability from [20] and introduce the concept of Sobolev stabilizing
feedback operators. Section 4 contains the main result, a general mixed passivity/
small-gain theorem for Sobolev stability. As has been mentioned already, Sobolev
stabilizing feedbacks are used in the context of output regulation and disturbance
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3044 CHRIS GUIVER, HARTMUT LOGEMANN, AND MARK R. OPMEER

rejection in section 5. Six examples are presented in section 6, and summarizing com-
ments appear in section 7. Some technical material relating to Example 6.7 is relegated
to the Appendix.

2. Preliminaries. We gather some preliminary material required for the state-
ment and proofs of the results in sections 3--6.

2.1. Notation. Let \BbbZ and \BbbN denote the integers and the positive integers, re-
spectively, and set \BbbN 0 :=\BbbN \cup \{ 0\} . As usual, \BbbQ , \BbbR , and \BbbC denote the fields of rational,
real, and complex numbers, respectively. For \mu \in \BbbR , we let \BbbC \mu denote the right-half
complex plane of complex numbers with real part greater than \mu .

For complex Banach spaces X and Y , we let \scrB (X,Y ) denote the vector space of
bounded linear operators X \rightarrow Y , which is a Banach space when equipped with the
uniform topology, and set \scrB (X) := \scrB (X,X). If X is a Hilbert space and T \in \scrB (X),
then we define the real part ReT of the operator T by

ReT :=
1

2
(T + T \ast ),

where T \ast denotes the adjoint of T . Furthermore, for two operators S,T \in \scrB (X), X
being a complex Hilbert space, we write T \geq S if T  - S is positive semidefinite.

2.2. Spaces of holomorphic functions. Here and throughout, U and Y de-
note complex Hilbert spaces. For nonempty, open \Omega \subset \BbbC , we define \scrH (\Omega ,\scrB (U,Y ))
as the vector space of holomorphic functions \Omega \rightarrow \scrB (U,Y ) and \scrH \ast (\Omega ,\scrB (U,Y )) as the
space of all \scrB (U,Y )-valued functions that are holomorphic on \Omega with the exception
of isolated points, namely, poles and essential singularities, understanding that re-
movable singularities have been removed by holomorphic extension. Consequently,
if H \in \scrH \ast (\Omega ,\scrB (U,Y )), then H \in \scrH (\Omega \setminus \Sigma H,\scrB (U,Y )), where \Sigma H denotes the set of
singularities (poles and essential singularities) of H in \Omega . For \mu \in \BbbR , we write

\scrH \mu (\scrB (U,Y )) :=\scrH (\BbbC \mu ,\scrB (U,Y )) and \scrH \ast 
\mu (\scrB (U,Y )) :=\scrH \ast (\BbbC \mu ,\scrB (U,Y )).

A function H \in \scrH \ast 
0(\scrB (U)) is said to be positive real if ReH(s)\geq 0 for all s \in \BbbC 0\setminus \Sigma H

and strongly positive real if there exists \delta > 0 such that ReH(s)\geq \delta I for all s\in \BbbC 0\setminus \Sigma H.
It is well known (see, for example, [19]) that, if a function H \in \scrH \ast 

0(\scrB (U)) is positive
real, then it cannot have any singularities in \BbbC 0.

Let \scrH \infty (\Omega ,\scrB (U,Y )) denote the space of all bounded holomorphic functions \Omega \rightarrow 
\scrL (U,Y ), and set \scrH \infty 

\mu (\scrB (U,Y )) :=\scrH \infty (\BbbC \mu ,\scrB (U,Y )). Endowed with the norm

\| H\| \scrH \infty 
\mu 
:= sup

s\in \BbbC \mu 

\| H(s)\| ,

\scrH \infty 
\mu (\scrB (U,Y )) is a Banach space. For brevity, we abbreviate this to \scrH \infty 

\mu when U = Y =
\BbbC . For further background on vector-valued holomorphic and meromorphic functions,
we refer the reader to, for example, [14, Chapter 9] or [31, Chapter 4].

2.3. Spaces of function and distributions and integral transforms. Let
X denote a complex Banach space. The space of m-times continuously differen-
tiable functions from J to X, J \subset \BbbR being an interval, is denoted by Cm(J,X),
while C\infty 

c (\BbbR ,X) stands for the space of infinitely differentiable functions \BbbR \rightarrow X with
compact support. We let \scrS and \scrD denote the Schwartz space of rapidly decreasing
C\infty -functions \BbbR \rightarrow \BbbC and the space of compactly supported C\infty -functions \BbbR \rightarrow \BbbC 
endowed with their usual topologies, respectively. The spaces of all continuous linear
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A MIXED PASSIVITY/SMALL-GAIN THEOREM 3045

maps \scrD \rightarrow X and \scrS \rightarrow X are denoted by \scrD \prime (X) and \scrS \prime (X), respectively. We have
that \scrS \prime (X) \subset \scrD \prime (X), and the elements in \scrD \prime (X) are called X-valued distributions.
A distribution in \scrS \prime (X) is said to be tempered (or slowly growing). The subspace
of distributions in \scrD \prime (X) with support bounded on the left is denoted by \scrD \prime 

\ell (X),
and similarly, \scrS \prime 

\ell (X) stands for the space of tempered distributions having support
bounded on the left. For more details on vector-valued distributions, we refer the
reader to, for example, [2, Chapter III: sections 4.1 and 4.2], [3, Chapter VII], [12,
Chapter XVI: section 2], [16, Chapter 8], and [41, Chapters 3, 5, and 6].

The Fourier transform of a function f \in L1(\BbbR ,X) is defined by

(\scrF f)(y) :=
\int \infty 

 - \infty 
e - iytf(t)dt \forall y \in \BbbR .

Because \scrF is an automorphism on \scrS , the definition of the Fourier transform extends
to \scrS \prime (X) via

(\scrF u)(\phi ) := u(\scrF \phi ) \forall \phi \in \scrS , where u\in \scrS \prime (X).

It is well known that the Fourier transform \scrF is an automorphism on \scrS \prime (X) with \scrF 
and \scrF  - 1 being sequentially continuous. If X = U is a complex Hilbert space, then
the restriction of \scrF : \scrS \prime (U)\rightarrow \scrS \prime (U) to L2(\BbbR ,U) is an automorphism on L2(\BbbR ,U); in
fact, (1/

\surd 
2\pi )\scrF is a unitary operator on L2(\BbbR ,U), and so, \| \scrF u\| L2(\BbbR ) =

\surd 
2\pi \| u\| L2(\BbbR )

for every u\in L2(\BbbR ,U).
Let U be a complex Hilbert space and J \subset \BbbR an interval. We set W 0,2(J,U) :=

L2(J,U), and, for m \in \BbbN , we let Wm,2(J,U) be the space of all u \in Cm - 1(J,U) such
that u(m - 1) is (locally) absolutely continuous and u(k) \in L2(J,U) for k = 0,1, . . . ,m,
endowed with the norm

\| u\| Wm,2 :=

\Biggl( 
m\sum 

k=0

\int 
J

\| u(k)(t)\| 2dt

\Biggr) 1/2

.(2.1)

For \theta \in \BbbR and U a complex Hilbert space, we define the Sobolev space (sometimes
also called the Bessel potential space)

H\theta (\BbbR ,U) :=
\bigl\{ 
u\in \scrS \prime (U) :

\bigl( 
y \mapsto \rightarrow (1 + y2)\theta /2(\scrF u)(y)

\bigr) 
\in L2(\BbbR ,U)

\bigr\} 
with inner product and associated norm given by

\langle u, v\rangle := 1

2\pi 

\int \infty 

 - \infty 
(1 + y2)\theta \langle (\scrF u)(y), (\scrF v)(y)\rangle dy \forall u, v \in H\theta (\BbbR ,U)

and

\| u\| H\theta :=

\biggl( 
1

2\pi 

\int \infty 

 - \infty 
(1 + y2)\theta \| (\scrF u)(y)\| 2 dy

\biggr) 1/2

\forall u\in H\theta (\BbbR ,U),(2.2)

respectively. The space H\theta (\BbbR ,U) is complete and hence a Hilbert space. We note
that H0(\BbbR ,U) = L2(\BbbR ,U) and \| u\| H0 = \| u\| L2 for all u \in L2(\BbbR ,U). If \theta \geq 0, then
H\theta (\BbbR ,U) \subset L2(\BbbR ,U), while H\theta (\BbbR ,U) contains nonregular distributions when \theta < 0.
We remark that Hm(\BbbR ,U) = Wm,2(\BbbR ,U) for all m \in \BbbN 0 and the norms (2.1) and
(2.2) are equivalent. Therefore, it makes sense (and simplifies notation) to set

Hm(J,U) :=Wm,2(J,U) for all m\in \BbbN 0 and all intervals J \subset \BbbR .(2.3)
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3046 CHRIS GUIVER, HARTMUT LOGEMANN, AND MARK R. OPMEER

Moreover, for arbitrary \theta \in \BbbR , let H\theta 
\ell (\BbbR ,U) denote the subspace of all distribu-

tions H\theta (\BbbR ,U) with support bounded on the left, while H\theta 
+(\BbbR ,U) consists of all

u\in H\theta (\BbbR ,U) such that suppu\subset [0,\infty ). For m\in \BbbN 0 and J \subset \BbbR being an interval, the
localized version of Hm(J,U) is denoted by Hm

loc(J,U), and Hm
loc,\ell (\BbbR ,U) stands for the

subspace of all u \in Hm
loc(\BbbR ,U) such that suppu is bounded on the left. Furthermore,

for arbitrary \theta \in \BbbR and J \subset \BbbR being an open interval, we set

H\theta (J,U) :=
\bigl\{ 
u\in \scrD \prime (J,U) : there exists v \in H\theta (\BbbR ,U) such that u= v| J

\bigr\} 
,(2.4)

where \scrD \prime (J,U) is the space of continuous linear U -valued maps defined on \scrD (J) :=
\{ \phi \in \scrD : supp\phi \subset J\} . When \theta = m \in \BbbN 0, the definitions (2.4) and (2.3) coincide.
In the case of scalar-value Sobolev spaces (that is, if U = \BbbC ), we write H\theta (\BbbR ) for
H\theta (\BbbR ,\BbbC ), H\theta 

\ell (\BbbR ) for H\theta 
\ell (\BbbR ,\BbbC ), H\theta 

+(\BbbR ) for H\theta 
+(\BbbR ,\BbbC ), etc.

The Laplace transform \scrL u of a distribution u \in \scrD \prime (X) such that suppu\subset [\tau ,\infty )
and e - \mu \cdot u\in \scrS \prime (X) for some \tau ,\mu \in \BbbR is defined by

(\scrL u)(s) :=
\bigl( 
e - \mu \cdot u

\bigr) 
(\eta e - (s - \mu ) \cdot ) \forall s\in \BbbC \mu ,

where \eta \in C\infty (\BbbR ,\BbbC ) is an arbitrary function such that there exist t1 < t0 < \tau such
that \eta (t) = 0 for all t < t1 and \eta (t) = 1 for all t > t0. It is straightforward to show that
the definition does not depend on the choice of \eta and extends the classical Laplace
transform. For u\in \scrD \prime 

\ell (X), the abscissa of convergence \sigma (u) is defined as the infimum
of all \mu \in \BbbR such that e - \mu \cdot u \in \scrS \prime (X). If no such \mu exists, then we set \sigma (u) =\infty . If
\sigma (u)<\infty , then the Laplace transform of u exists and is holomorphic on \BbbC \sigma (u), and u
is said to be Laplace transformable.

3. Sobolev input-output stability of feedback systems. In this section, we
recall the Sobolev input-output stability concept, review some relevant results from
[20, section 5], and introduce and discuss Sobolev stabilizing compensators.

3.1. Sobolev input-output stability. The class of linear, translation-invariant,
and causal input-output operators to which the Sobolev input-output stability frame-
work applies is described in terms of convolution operators with operator-valued distri-
butional kernels and is reasonably general. In particular, it includes the input-output
operators of well-posed linear systems (in the sense of [36]). We refer to [20, Appen-
dix 1] for relevant background on convolutions of vector-valued distributions. Here,
we only mention that if g \in \scrD \prime 

\ell (\scrB (U,Y )), then the convolution product g  \star u is a
well-defined distribution in \scrD \prime 

\ell (Y ) for all u\in \scrD \prime 
\ell (U).

It is known (see, for example, [20, Proposition 5.2], which, in turn, is based on
results of [41, Chapter 5]) that, if G : domG \subset \scrD \prime (U) \rightarrow \scrD \prime (Y ) is a continuous,
causal, and translation-invariant linear operator such that C\infty 

c (\BbbR ,U) \subset domG, then
there exists a unique g \in \scrD \prime (\scrB (U,Y )) such that supp g \subset [0,\infty ) and Gu = g  \star u
for all u \in \scrD \prime 

\ell (U) \cap domG. Conversely, if there exists g \in \scrD \prime (\scrB (U,Y )) such that
supp g \subset [0,\infty ) and Gu = g  \star u for all u \in C\infty 

c (\BbbR ,U), then G is continuous, causal,
and translation invariant. The distribution g is called the kernel or impulse response
of the operator G. If \sigma (g)<\infty (finite abscissa of convergence), then G(s) := (\scrL g)(s)
exists for all s \in \BbbC \sigma (g), and the function G, a \scrB (U,Y )-valued holomorphic function
defined on \BbbC \sigma (g), is referred to as the transfer function of G. If u\in \scrD \prime 

\ell (U) is such that
\sigma (u)<\infty , then g  \star u is Laplace transformable and

(\scrL Gu)(s) =G(s)(\scrL u)(s) \forall s\in \BbbC \mu ,

where \mu :=max
\bigl( 
\sigma (g), \sigma (u)

\bigr) 
.
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A MIXED PASSIVITY/SMALL-GAIN THEOREM 3047

Let \alpha ,\beta \in \BbbR . A linear operator G : domG\subset \scrD \prime (U)\rightarrow \scrD \prime (Y ) is said to be Sobolev
(\alpha ,\beta )-stable if C\infty 

c (\BbbR ,U)\subset domG, G(C\infty 
c (\BbbR ,U))\subset H\beta (\BbbR , Y ), and there exists \gamma > 0

such that

\| Gu\| H\beta \leq \gamma \| u\| H\alpha \forall u\in C\infty 
c (\BbbR ,U) .

Throughout, we shall use the function

r\alpha (s) := (1 + s) - \alpha \forall s\in \BbbC  - 1, where \alpha \in \BbbR .

On the right-hand side, we identify the complex power function with its principal
branch on the domain \BbbC \setminus ( - \infty ,0], and thus, r\alpha (s)\in (0,\infty ) for all s\in ( - 1,\infty ).

The next theorem provides several characterizations of Sobolev (\alpha ,\beta )-stability in
terms of transfer functions and is a combination of results in [20, sections 3 and 5].

Theorem 3.1 (see [20, Theorems 3.1 and 5.4]). Let G : domG\subset \scrD \prime (U)\rightarrow \scrD \prime (Y )
be a causal translation-invariant continuous linear operator such that C\infty 

c (\BbbR ,U) \subset 
domG, and let g \in \scrD \prime (\scrB (U,Y )) be the kernel of G. For arbitrary \alpha ,\beta \in \BbbR , the
following statements are equivalent.

(1) G is Sobolev (\alpha ,\beta )-stable.
(2) There exists a unique causal and translation-invariant operator Ge \in \scrB (H\alpha (\BbbR ,

U),H\beta (\BbbR , Y )) such that Geu=Gu for all u\in H\alpha (\BbbR ,U)\cap domG.
(3) g is Laplace transformable, \sigma (g) \leq 0, and r\alpha  - \beta G \in \scrH \infty 

0 (\scrB (U,Y )), where G
is the transfer function of G.

(4) g is Laplace transformable, and there exist \mu >max\{ 0, \sigma (g)\} and a holomor-
phic Ge : \BbbC 0 \rightarrow \scrB (U,Y ) that coincides with the transfer function G of G on
\BbbC max\{ 0,\sigma (g)\} and such that

sup
0<Re s<\mu 

\| r\alpha  - \beta (s)G
e(s)\| <\infty .

(5) g is Laplace transformable, and there exists a holomorphic Ge :\BbbC 0 \rightarrow \scrB (U,Y )
that coincides with the transfer function G of G on \BbbC max\{ 0,\sigma (g)\} and such
that r\alpha  - \beta G

e \in \scrH \infty 
0 (\scrB (U,Y )).

If one of the above statements holds, then

\| Ge\| \scrB (H\alpha ,H\beta ) = sup
u\in C\infty 

\mathrm{c} , u\not =0

\| Gu\| H\beta 

\| u\| H\alpha 

= \| r\alpha  - \beta G\| \scrH \infty 
0
= \| r\alpha  - \beta G

e\| \scrH \infty 
0
.

As an immediate consequence of the above theorem, we note that Sobolev (\alpha ,\beta )-
stability implies Sobolev (\alpha + \theta ,\beta + \theta )-stability for all \theta \in \BbbR . We emphasize that the
classical input-output notion of L2-stability is contained in the above concept as the
special case of Sobolev (0,0)-stability.

The following proposition shows that, under suitable assumptions, Sobolev (\alpha ,\beta )-
stability follows if the transfer function satisfies a natural boundedness condition on
the imaginary axis.

Proposition 3.2 (see [20, Corollary 5.6]). Let G : domG\subset \scrD \prime (U)\rightarrow \scrD \prime (Y ) be a
causal translation-invariant continuous linear operator such that C\infty 

c (\BbbR ,U)\subset domG,
let g \in \scrD \prime (\scrB (U,Y )) be the kernel of G, and let \alpha ,\beta \in \BbbR . Assume that g is Laplace
transformable and that there exists a holomorphic Ge : \BbbC 0 \rightarrow \scrB (U,Y ) that coincides
with the transfer function G of G on \BbbC max\{ 0,\sigma (g)\} . Furthermore, assume that U and
Y are separable and Ge is polynomially bounded on the strip 0 < Res < \mu for some
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\mu > \sigma (g). Under these conditions, the limit Ge
0(y) = limx\downarrow 0G

e(x+ iy) exists in the
strong operator topology for almost every y \in \BbbR , and, if

ess sup
y\in \BbbR 

\| r\alpha  - \beta (iy)G
e
0(y)\| <\infty ,

then G is Sobolev (\alpha ,\beta )-stable, in which case

\| r\alpha  - \beta G
e\| \scrH \infty 

0
= ess sup

y\in \BbbR 
\| r\alpha  - \beta (iy)G

e
0(y)\| .

3.2. Sobolev stabilizing feedback controllers. Following [19], we say that
K\in \scrH \ast 

\mu (\scrB (Y,U)) is an admissible feedback for P\in \scrH \ast 
\mu (\scrB (U,Y )), where \mu \in \BbbR , if

S :=

\biggl( 
I K

 - P I

\biggr) 
(3.1)

has an inverse that belongs to \scrH \ast 
\nu (\scrB (U \times Y )) for some \nu \geq \mu , or, equivalently, the set

\Xi P,K :=
\bigl\{ 
s\in \BbbC \mu \setminus 

\bigl( 
\Sigma P \cup \Sigma K) : S(s) is not invertible

\bigr\} 
does not have any accumulation points in \BbbC \nu ; in particular, the inverse

S - 1(s) :=
\bigl( 
S(s)

\bigr)  - 1
=

\biggl( 
I K(s)

 - P(s) I

\biggr)  - 1

(3.2)

exists for all s\in \BbbC \nu such that s \not \in \Sigma P \cup \Sigma K \cup \Xi P,K. This definition coincides with [19,
Definition 6.15] up to a sign change in K. A necessary and sufficient condition for K
to be an admissible feedback for P is that I +KP has an inverse in \scrH \ast 

\nu (\scrB (U)) for
some \nu \geq \mu , or, equivalently, I +PK has an inverse in \scrH \ast 

\nu (\scrB (Y )), in which case

S - 1 =

\biggl( 
I K

 - P I

\biggr)  - 1

=

\biggl( 
(I +KP) - 1  - K(I +PK) - 1

P(I +KP) - 1 (I +PK) - 1

\biggr) 
on \BbbC \nu .(3.3)

Recall that the feedback connection of P and admissible K is called well posed if there
exists \omega \geq \mu such that S - 1 \in \scrH \infty 

\omega (\scrB (U \times Y )).
The following lemma shows that, under certain conditions, admissibility of the

feedback K is guaranteed provided that S(s) is invertible at one point s= s0 in \BbbC \mu .

Lemma 3.3. Let P \in \scrH \ast 
\mu (\scrB (U,Y )) and K \in \scrH \ast 

\mu (\scrB (Y,U)), where \mu \in \BbbR , and let
s0 \in \BbbC \mu \setminus 

\bigl( 
\Sigma P \cup \Sigma K

\bigr) 
. Assume that at least one of the operators P(s) and K(s) is

compact for every s \in \BbbC \mu \setminus 
\bigl( 
\Sigma P \cup \Sigma K

\bigr) 
and that P and K are holomorphic on \BbbC \nu for

some \nu \geq \mu . If the inverse S - 1(s) in (3.2) exists for s= s0, then the set \Xi P,K does not
have any accumulation points in \BbbC \mu \setminus 

\bigl( 
\Sigma P \cup \Sigma K

\bigr) 
. Furthermore, S - 1 is meromorphic

on \BbbC \nu ; in particular, K is an admissible feedback for P.

We remark that, without the compactness assumption, Lemma 3.3 is not true;
see, for example, [26, Example 4.2]. Trivially, the compactness hypothesis is satisfied
whenever U or Y is finite dimensional.

Proof of Lemma 3.3. For s\in \BbbC \mu \setminus 
\bigl( 
\Sigma P\cup \Sigma K

\bigr) 
, the operator S(s) is invertible if and

only if I +K(s)P(s) is invertible (and S - 1(s) is given by (3.3)). Therefore,

\Xi P,K = \{ s\in \BbbC \mu \setminus 
\bigl( 
\Sigma P \cup \Sigma K

\bigr) 
: I +K(s)P(s) is not invertible\} .

BecauseK(s)P(s) is compact for all s\in \BbbC \mu \setminus 
\bigl( 
\Sigma P\cup \Sigma K

\bigr) 
, it follows from [19, Lemma 5.8]

that \Xi P,K does not have any accumulation points in \BbbC \mu \setminus 
\bigl( 
\Sigma P \cup \Sigma K

\bigr) 
and (I +KP) - 1
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A MIXED PASSIVITY/SMALL-GAIN THEOREM 3049

is meromorphic on \BbbC \mu \setminus 
\bigl( 
\Sigma P \cup \Sigma K

\bigr) 
. Because P and K are holomorphic on \BbbC \nu , we

have that \BbbC \nu \subset \BbbC \mu \setminus 
\bigl( 
\Sigma P \cup \Sigma K

\bigr) 
, and we conclude that (I +KP) - 1, and hence S - 1,

are meromorphic on \BbbC \nu .

Let K \in \scrH \ast 
\mu (\scrB (Y,U)) be an admissible feedback for P \in \scrH \ast 

\mu (\scrB (U,Y )). Then,
there exists a \nu \geq \mu such that \Xi P,K does not have any accumulation points in \BbbC \nu and
S - 1 \in \scrH \ast 

\nu (\scrB (U \times Y )). Setting

\xi = \xi P,K := inf\{ \omega \leq \nu : there exists E\in \scrH \ast 
\omega (\scrB (U \times Y )) extending S - 1\} ,

we define FP,K to be the uniquely determined function in \scrH \ast 
\xi (\scrB (U \times Y )) such that

FP,K(s) = S - 1(s) =

\biggl( 
I K(s)

 - P(s) I

\biggr)  - 1

\forall s\in \BbbC \nu \setminus 
\bigl( 
\Sigma P \cup \Sigma K \cup \Xi P,K

\bigr) 
.(3.4)

If \xi = - \infty , then \scrH \ast 
\xi (\scrB (U \times Y )) should be interpreted as \scrH \ast (\BbbC ,\scrB (U \times Y )).

Remark 3.4. In (3.4), \nu may be replaced by any \omega such that max\{ \mu , \xi \} \leq \omega \leq \nu .
To see this, we observe that, by (3.4),

S(s)FP,K(s) =FP,K(s)S(s) = I \forall s\in \BbbC \nu \setminus 
\bigl( 
\Sigma P \cup \Sigma K \cup \Xi P,K

\bigr) 
.(3.5)

Since the set \BbbC \omega \setminus 
\bigl( 
\Sigma P \cup \Sigma K \cup \Xi P,K

\bigr) 
is connected, we can invoke the identity theorem

for holomorphic functions to conclude that (3.5) extends to all s \in \BbbC \omega \setminus 
\bigl( 
\Sigma P \cup \Sigma K \cup 

\Xi P,K

\bigr) 
.

Definition 3.5. Let P\in \scrH \ast 
\mu (\scrB (U,Y )) and K\in \scrH \ast 

\mu (\scrB (Y,U)) for some \mu \in \BbbR , and
let \alpha ,\beta \in \BbbR . We say that K is a Sobolev (\alpha ,\beta )-stabilizing feedback for P if K is an
admissible feedback for P and r\alpha  - \beta FP,K \in \scrH \infty 

0 (\scrB (U \times Y )). In this case, we say that
the feedback connection (of P and K) is Sobolev (\alpha ,\beta )-stable, or just Sobolev stable.

To explain how the above frequency-domain concept is related to the time-domain
notion of Sobolev (\alpha ,\beta )-stability from subsection 3.1, assume that K is a Sobolev
(\alpha ,\beta )-stabilizing feedback for P. Then, trivially, FP,K is polynomially bounded on
\BbbC 0, and [41, Theorem 6.5-1 and Corollary 6.5-1a] guarantee that there exists a causal
translation-invariant operator F : \scrD \prime 

\ell (U \times Y ) \rightarrow \scrD \prime 
\ell (U \times Y ), the transfer function of

which is FP,K. It follows from Theorem 3.1 that F is Sobolev (\alpha ,\beta )-stable in the
sense of subsection 3.1.

We present some immediate consequences of the above definition in the following
lemma.

Lemma 3.6. Let P \in \scrH \ast 
\mu (\scrB (U,Y )) and K \in \scrH \ast 

\mu (\scrB (Y,U)) for some \mu \in \BbbR , and let
\alpha ,\beta \in \BbbR .

(1) K is a Sobolev (\alpha ,\beta )-stabilizing feedback for P if and only if P is a Sobolev
(\alpha ,\beta )-stabilizing feedback for K.

(2) Under the additional assumptions that Y = U and P and K are invertible
with inverses P - 1,K - 1 \in \scrH \ast 

\nu (\scrB (U)) for some \nu \geq \mu , the following statements
hold.
(i) If \alpha \geq \beta , then K is a Sobolev (\alpha ,\beta )-stabilizing feedback for P if and only

if K - 1 is a Sobolev (\alpha ,\beta )-stabilizing feedback for P - 1.
(ii) If K is a Sobolev (\alpha ,\beta )-stabilizing feedback for P and K - 1 is a Sobolev

(\alpha ,\beta )-stabilizing feedback for P - 1, then \alpha \geq \beta .
(3) Assume that K is holomorphic on \BbbC \nu for some \nu \geq \mu , K(s) is compact for

all s \in \BbbC \nu , and K is a Sobolev (\alpha ,\beta )-stabilizing feedback for P. Then, P is
meromorphic on \BbbC \nu .
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3050 CHRIS GUIVER, HARTMUT LOGEMANN, AND MARK R. OPMEER

An important scenario in which the invertibility assumption in statement (2)
holds is the following: If P and K are positive real (and a fortiori holomorphic on \BbbC 0

by [19, Proposition 3.3]) and there exist s1 and s2 in \BbbC 0 such that P(s1) and K(s2)
are invertible, then P(s) and K(s) are invertible for all s\in \BbbC 0, and P - 1 and K - 1 are
positive real by [26, Corollary 4.3] and hence holomorphic on \BbbC 0.

Proof of Lemma 3.6. Statement (1) follows immediately from the equality\biggl( 
I K

 - P I

\biggr) 
= - 

\biggl( 
0 I
 - I 0

\biggr) \biggl( 
I P

 - K I

\biggr) \biggl( 
0 I
 - I 0

\biggr) 
.

We proceed to prove part (i) of statement (2). Assume that K is a Sobolev (\alpha ,\beta )-
stabilizing feedback for P. Because K is an admissible feedback for P, the transfer
function I +PK has an inverse in \scrH \ast 

\omega (\scrB (U)) for some \omega \geq \mu , and the trivial identity
I+K - 1P - 1 =K - 1P - 1(I+PK) implies that K - 1 is an admissible feedback for P - 1.
Using (3.3) and

(I +K - 1P - 1) - 1 =PK(I +PK) - 1 = I  - (I +PK) - 1,

we obtain that\biggl( 
I K - 1

 - P - 1 I

\biggr)  - 1

=

\biggl( 
I 0
0 I

\biggr) 
+

\biggl( 
 - (I +PK) - 1  - P(I +KP) - 1

K(I +PK) - 1  - (I +KP) - 1

\biggr) 
=

\biggl( 
I 0
0 I

\biggr) 
+

\biggl( 
 - I 0
0 I

\biggr) \biggl( 
I P

 - K I

\biggr)  - 1\biggl( 
I 0
0  - I

\biggr) 
= I  - JFK,PJ ,(3.6)

where J := diag(I, - I). By the hypothesis and statement (1), P is a Sobolev (\alpha ,\beta )-
stabilizing feedback for K, and so, r\alpha  - \beta FK,P \in \scrH \infty 

0 (\scrB (U \times U)). Because \alpha \geq \beta , we
conclude that r\alpha  - \beta (I  - JFK,P(s)J) is also in \scrH \infty 

0 (\scrB (U \times U)). It now follows from
(3.6) that K - 1 is a Sobolev (\alpha ,\beta )-stabilizing feedback for P - 1. The converse claim
can be proved by a similar argument.

As for part (ii) of statement (2), we note that the equality (3.6), combined with
the hypotheses, yields that the function r\alpha  - \beta is bounded on \BbbC 0, implying that \alpha \geq \beta .

To establish statement (3), we observe that, by the hypothesis of K being Sobolev
stabilizing, there exists holomorphic Q : \BbbC 0 \rightarrow \scrB (U,Y )) such that Q=P(I +KP) - 1

on \BbbC \omega for some \omega \geq \mu . Because I  - KQ = (I + KP) - 1, we conclude that  - K is
an admissible feedback for Q. Because KQ is holomorphic on \BbbC \nu and K(s)Q(s) is
compact for all s\in \BbbC \nu , [19, Lemma 5.8] then shows that (I  - KQ) - 1 is meromorphic
on \BbbC \nu . The claim now follows since Q(I  - KQ) - 1 =P on \BbbC \nu .

4. A mixed passivity/small-gain condition for Sobolev input-output
stability. Here, we state our main result---a mixed passivity/small-gain theorem that
ensures that the feedback connection of P andK is Sobolev stable. By Theorem 3.1, it
follows that it is the difference \beta  - \alpha , rather than \alpha ,\beta , that is crucial in determining
Sobolev stability. Because the feedback connections to be considered do not have
any smoothing properties (frequently, they are not even L2-stable), we shall focus on
Sobolev (\theta ,0)-stabilizing feedbacks with \theta \geq 0. To simplify terminology, we refer to
these feedbacks as Sobolev \theta -stabilizing and shall say that the corresponding feedback
system is Sobolev \theta -stable.

The following subsets of the complex plane shall play a key role in our main result.

Definition 4.1. Let P,K \in \scrH \ast 
\lambda (\scrB (U)), where \lambda \in \BbbR , and let \Omega \subset \BbbC \lambda \setminus (\Sigma P \cup 

\Sigma K). For \theta \geq 0, \mu , \varepsilon , \nu > 0, and \gamma \in (0,1), set \Pi \theta (P,K;\Omega , \mu , \varepsilon ) :=
\bigl\{ 
s \in \Omega :

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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A MIXED PASSIVITY/SMALL-GAIN THEOREM 3051

ReP(s) \geq \varepsilon | r\theta (s)| I, \| P(s)\| \leq \mu and ReK(s) \geq 0
\bigr\} 

and \Gamma \theta (P,K;\Omega , \nu , \gamma ) :=
\bigl\{ 
s \in 

\Omega : max
\bigl\{ 
\| K(s)P(s)\| ,\| P(s)K(s)\| 

\bigr\} 
\leq \gamma and \| P(s)\| + \| K(s)\| \leq \nu | r - \theta (s)| 

\bigr\} 
.

We shall be mainly interested in the cases \Omega = \BbbC 0 and \Omega = i\BbbR and comment
that there exist \mu > 0 and \varepsilon > 0 such that \Pi 0(P,K;\BbbC 0, \mu , \varepsilon ) = \BbbC 0 if and only if P is
L2-stable and strongly positive real and K is positive real. Roughly speaking, the sets
\Pi \theta (P,K;\BbbC 0, \mu , \varepsilon ) are subsets of \BbbC 0 where P and K have desirable properties from the
perspective of the passivity theorem---stability (that is, boundedness) and a positive-
realness property that is ``between"" positive real and strongly positive real in the case
of P and positive realness in the case of K. Similarly, on the set \Gamma \theta (P,K;\BbbC 0, \nu , \gamma ),
the functions P and K are jointly well behaved on \BbbC 0 from a small-gain perspective.

The following theorem, the main result of the paper, provides sufficient conditions
for the feedback connection of positive real functions to be well posed or Sobolev stable
in terms of inclusion conditions involving certain unions of the \Pi \theta and \Gamma \theta sets. For
the presentation of the theorem, it is convenient to define

\Phi (x1, . . . , x6) := 2max

\biggl\{ 
1 +

x1
x2
,1 +

x3
x4
,
x21
x2
,
x23
x4
,
1

x2
,
1

x4
,

x5
1 - x6

,
1

1 - x6

\biggr\} 
,

x1, . . . , x5 > 0, x6 \in (0,1).

Theorem 4.2. Let \mu \leq 0, \eta \geq 0, \theta \geq 0, and let P,K \in \scrH \ast 
\mu (\scrB (U)) be such that P

and K are holomorphic on \BbbC 0.
(1) Assume that there exist \mu P, \varepsilon P, \mu K, \varepsilon K, \nu > 0 and \gamma \in (0,1) such that

\BbbC \eta \subseteq \Pi \theta (P,K;\BbbC 0, \mu P, \varepsilon P)\cup \Pi \theta (K,P;\BbbC 0, \mu K, \varepsilon K)\cup \Gamma \theta (P,K;\BbbC 0, \nu , \gamma ).
(4.1)

The following statements hold.
(i) The transfer function I+KP has an inverse in \scrH \ast 

\eta (\scrB (U)); in particular,
FP,K \in \scrH \ast 

\eta (\scrB (U \times U)) and K is an admissible feedback for P.
(ii) If \theta = 0, then FP,K \in \scrH \infty 

\eta (\scrB (U \times U)).
(iii) If \eta = 0, then K is a Sobolev \theta -stabilizing feedback for P, and further-

more,

\| r\theta FP,K\| \scrH \infty 
0
\leq \Phi (\mu P, \varepsilon P, \mu K, \varepsilon K, \nu , \gamma ).(4.2)

(2) Set \Sigma := \Sigma P \cup \Sigma K, and assume that U is separable, \mu < 0, I +KP has an
inverse in \scrH \ast 

0(\scrB (U)), and FP,K is polynomially bounded on \BbbC 0. If there exist
\mu P, \varepsilon P, \mu K, \varepsilon K, \nu > 0, \gamma \in (0,1), and a null set E \subset \BbbR such that

i(\BbbR \setminus E)\subset \Pi \theta (P,K; i\BbbR \setminus \Sigma , \mu P, \varepsilon P)\cup \Pi \theta (K,P; i\BbbR \setminus \Sigma , \mu K, \varepsilon K)(4.3)

\cup \Gamma \theta (P,K; i\BbbR \setminus \Sigma , \nu , \gamma ),

then K is a Sobolev \theta -stabilizing feedback for P and (4.2) holds.

Before we come to the proof of Theorem 4.2 (given below, towards the end of this
section), we provide some commentary and draw some conclusions.

Condition (4.1) involves a ``mix"" of positive real and small-gain properties (speci-
fied by \Pi \theta and \Gamma \theta sets, respectively). If \theta = \eta = 0, then the inclusion in (4.1) becomes
an equality, and the conclusion is that the feedback connection ofP andK is L2-stable.
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Definition 4.3.
(i) We say that P \in \scrH \ast 

0(\scrB (U)) is Sobolev positive real with exponent \theta \geq 0 if
there exists \varepsilon > 0 such that

ReP(s)\geq \varepsilon | r\theta (s)| I = \varepsilon | 1 + s|  - \theta I \forall s\in \BbbC 0\setminus \Sigma P.

(ii) P and K in \scrH \ast 
0(\scrB (U)) are said to satisfy a Sobolev small-gain condition with

exponent \theta \geq 0 if there exist \nu > 0 and \gamma \in (0,1) such that \Gamma \theta (P,K;\BbbC 0, \nu , \gamma ) =
\BbbC 0.

Trivially, Sobolev positive realness implies positive realness, and Sobolev positive
realness with exponent 0 is the same as strong positive realness.

The following immediate corollaries of Theorem 4.2 are generalizations of the
passivity and small-gain theorems, respectively.

Corollary 4.4. Let P\in \scrH \infty 
0 (\scrB (U)) be Sobolev positive real with exponent \theta \geq 0.

Then, every positive real K\in \scrH \ast 
0(\scrB (U)) is a Sobolev \theta -stabilizing feedback for P.

Corollary 4.5. Let P \in \scrH \ast 
0(\scrB (U)). If K \in \scrH \ast 

0(\scrB (U)) is such that P and K
satisfy a Sobolev small-gain condition with exponent \theta for some \theta \geq 0, then K is a
Sobolev \theta -stabilizing feedback for P.

In the following, for notational convenience, we shall suppress the dependence
of the sets \Pi \theta and \Gamma \theta on \mu , \varepsilon , \nu , and \gamma when the values of these constants involved
are unimportant. We remark that the sets \Pi \theta (P,K;\Omega ) and \Gamma \theta (P,K;\Omega ) have certain
obvious monotonicity properties; for example,

\Pi \theta 1(P,K;\Omega , \mu , \varepsilon )\subset \Pi \theta 2(P,K;\Omega , \mu , \varepsilon ) and

\Gamma \theta 1(P,K;\Omega , \nu , \gamma )\subset \Gamma \theta 2(P,K;\Omega , \nu , \gamma ) for 0\leq \theta 1 \leq \theta 2 .

Consequently, if, for some \theta 1, \theta 2, \theta 3 \geq 0,

\BbbC \eta \subset \Pi \theta 1(P,K;\BbbC 0, \mu P, \varepsilon P)\cup \Pi \theta 2(K,P;\BbbC 0, \mu K, \varepsilon K)\cup \Gamma \theta 3(P,K;\BbbC 0, \nu , \gamma ),(4.4)

then (4.1) holds with \theta := max\{ \theta 1, \theta 2, \theta 3\} . Moreover, an inspection of the proof
Theorem 4.2 shows that there is nothing to be gained (such as, for example, Sobolev
\theta -stability for a smaller value of \theta ) by using (4.4) instead of (4.1).

Statement (2) of Theorem 4.2 replaces (4.1) by an imaginary axis condition (which
is typically simpler to check) at the expense of imposing an additional polynomial-
boundedness hypothesis on the feedback connection. The hypothesis that P,K \in 
\scrH \ast 

\mu (\scrB (U)) for \mu < 0 gives that P and K are defined on i\BbbR with the exception of
possible imaginary axis singularities in \Sigma P and \Sigma K so that the right-hand side of (4.3)
is meaningful. In fact, if condition (4.1) holds with \eta = 0 and for some \theta = \theta 0 \geq 0, then
the hypothesis in statement (2) that FP,K is polynomially bounded on \BbbC 0 is satisfied.
Therefore, the feedback connection is Sobolev \theta 1-stable if the imaginary axis condition
(4.3) holds with \theta = \theta 1, which may yield a smaller (and hence ``improved"") \theta 1 < \theta 0.

Before we come to the proof of Theorem 4.2, we provide a comparison between
Theorem 4.2 and other results available in the literature. In particular, [28, section 3]
contains several results that are of a similar nature to Theorem 4.2 in that a frequency-
dependent lower bound on the real part of a transfer function is considered and some
type of stability is concluded. However, a detailed comparison is difficult because [28]
develops a state-space theory based on the concept of a regular infinite-dimensional lin-
ear system (see, for example, [36]). We note that the class of transfer functions consid-
ered in Theorem 4.2 is very general and contains transfer functions that do not admit
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A MIXED PASSIVITY/SMALL-GAIN THEOREM 3053

regular (or even well-posed) state-space realizations. Furthermore, we point out that
[42, Theorem 4.2] is essentially a special case of Theorem 4.2. Indeed, the hypotheses
of [42, Theorem 4.2] ensure the existence of \{ \omega 1, . . . , \omega n\} \subset \BbbR and r > 0 such that

n\bigcap 
j=1

\bigl\{ 
s\in \BbbC 0 : | s - i\omega j | \geq r

\bigr\} 
\subset \Pi 0(K,P;\BbbC 0) and

n\bigcup 
j=1

\bigl\{ 
s\in \BbbC 0 : | s - i\omega j | \leq r

\bigr\} 
\subset \Gamma 0(P,K;\BbbC 0),

and thus, an application of part of statement (1)(iii) of Theorem 4.2 (with \theta = 0) shows
thatK stabilizes P in the sense of L2-stability. Finally, we mention the papers [11, 18],
which derive mixed small-gain and passivity theorems guaranteeing L2-stability (in
incremental form in the case of [11]) for certain classes of nonlinear feedback systems.

The remainder of the section is dedicated to proving Theorem 4.2. We start with
three technical results that will facilitate the proof of Theorem 4.2. The following
lemma 4.6 is an immediate consequence of [28, Lemma A.1].

Lemma 4.6. Let A,B \in \scrB (U) and \delta A, \delta B > 0. The following statements hold.
(1) If ReA\geq 0 and ReB \geq \delta BI, then I +AB is invertible and

\| B(I +AB) - 1\| \leq \| B\| 2

\delta B
.(4.5)

(2) If ReA\geq \delta AI and ReB \geq 0, then I +AB is invertible and

\| B(I +AB) - 1\| \leq 1

\delta A
.(4.6)

From Lemma 4.6, we obtain the following corollary.

Corollary 4.7. Let S,T \in \scrB (U), and let \delta S , \delta T > 0. The following statements
hold.

(1) If ReT \geq \delta T I, then\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\biggl( 
I S
 - T I

\biggr)  - 1
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \leq 2max

\biggl\{ 
1 +

\| T\| 
\delta T

,
\| T\| 2

\delta T
,
1

\delta T

\biggr\} 
whenever ReS \geq 0.

(2) If ReS \geq \delta SI, then\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\biggl( 
I S
 - T I

\biggr)  - 1
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \leq 2max

\biggl\{ 
1 +

\| S\| 
\delta S

,
\| S\| 2

\delta S
,
1

\delta S

\biggr\} 
whenever ReT \geq 0.

Note that the right-hand sides of the inequalities in statements (1) and (2) are
independent of S and T , respectively.

Proof. To prove statement (1), we note that, by Lemma 4.6, I+ST is invertible.
Therefore, I + TS is also invertible, and so,

\biggl( 
I S
 - T I

\biggr) 
is invertible and

\biggl( 
I S
 - T I

\biggr)  - 1

=

\biggl( 
(I + ST ) - 1  - S(I + TS) - 1

T (I + ST ) - 1 (I + TS) - 1

\biggr) 
.

(4.7)
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3054 CHRIS GUIVER, HARTMUT LOGEMANN, AND MARK R. OPMEER

Using (4.5) with A= S and B = T yields that

\| T (I + ST ) - 1\| \leq \| T\| 2

\delta T
.(4.8)

From (4.6) with A= T and B = S, we have that

\| S(I + TS) - 1\| \leq 1

\delta T
.(4.9)

Because (I + ST ) - 1 = I  - S(I + TS) - 1T and (I + TS) - 1 = I  - TS(I + TS) - 1, it
follows from (4.9) that

\| (I + ST ) - 1\| \leq 1 +
\| T\| 
\delta T

and \| (I + TS) - 1\| \leq 1 +
\| T\| 
\delta T

.(4.10)

Setting

c :=max

\biggl\{ 
1 +

\| T\| 
\delta T

,
\| T\| 2

\delta T
,
1

\delta T

\biggr\} 
<\infty ,

we apply (4.7)--(4.10) to obtain that, for u1, u2 \in U ,\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\biggl( 
I S
 - T I

\biggr)  - 1\biggl( 
u1
u2

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

=
\bigm\| \bigm\| (I + ST ) - 1u1  - S(I + TS) - 1u2

\bigm\| \bigm\| 2
+
\bigm\| \bigm\| T (I + ST ) - 1u1 + (I + TS) - 1u2

\bigm\| \bigm\| 2
\leq 
\bigl( \bigm\| \bigm\| (I + ST ) - 1

\bigm\| \bigm\| \| u1\| + \bigm\| \bigm\| S(I + TS) - 1
\bigm\| \bigm\| \| u2\| \bigr) 2

+
\bigl( \bigm\| \bigm\| T (I + ST ) - 1

\bigm\| \bigm\| \| u1\| + \bigm\| \bigm\| (I + TS) - 1
\bigm\| \bigm\| \| u2\| \bigr) 2

\leq 4c2(\| u1\| 2 + \| u2\| 2)

since (\| u1\| + \| u2\| )2 \leq 2(\| u1\| 2 + \| u2\| 2). Hence,\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\biggl( 
I S
 - T I

\biggr)  - 1
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| = sup

u1,u2\in U
\| u1\| 2+\| u2\| 2=1

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\biggl( 
I S
 - T I

\biggr)  - 1\biggl( 
u1
u2

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \leq 2c ,

as required.
The second statement follows from the identity\biggl( 

I S
 - T I

\biggr)  - 1

=

\biggl( 
0 I
 - I 0

\biggr) \biggl( 
I T
 - S I

\biggr)  - 1\biggl( 
0  - I
I 0

\biggr) 
,

combined with an application of statement (1) (with the roles of S and T interchanged)
to the second operator matrix on the right-hand side.

Lemma 4.8. Let S,T \in \scrB (U). If max\{ \| ST\| ,\| TS\| \} \leq \rho < 1, then I + ST and
I + TS are invertible,\biggl( 

I S
 - T I

\biggr) 
is invertible, and

\bigm\| \bigm\| \bigm\| \biggl( I S
 - T I

\biggr)  - 1 \bigm\| \bigm\| \bigm\| \leq 2

1 - \rho 
max

\bigl\{ 
1,\| S\| ,\| T\| 

\bigr\} 
.(4.11)

Proof. It follows from the hypotheses that I+ST and I+TS are invertible, with
each inverse given in terms of a Neumann series, and

max
\bigl\{ 
\| (I + ST ) - 1\| ,\| (I + TS) - 1\| 

\bigr\} 
\leq 1/(1 - \rho ) .

The inequality in (4.11) now follows from the identity in (4.7).
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A MIXED PASSIVITY/SMALL-GAIN THEOREM 3055

Proof of Theorem 4.2. For notational convenience, we set

\Pi \theta (P,K) :=\Pi \theta (P,K;\BbbC 0, \mu P, \varepsilon P), \Pi \theta (K,P) :=\Pi \theta (K,P;\BbbC 0, \mu K, \varepsilon K),

\Gamma \theta (P,K) := \Gamma \theta (P,K;\BbbC 0, \nu , \gamma ).

(1) To prove part (i), let \theta , \eta \geq 0 be such that (4.1) holds. Because ReK(s)\geq 0 and
ReP(s) \geq \varepsilon P| r\theta (s)| for s \in \Pi \theta (P,K), it follows from Lemma 4.6 that I +K(s)P(s)
is invertible for all s \in \Pi \theta (P,K). Similarly, I + K(s)P(s) is invertible for all s \in 
\Pi \theta (K,P). An application of Lemma 4.8 with S = K(s) and T = P(s) yields that
I + K(s)P(s) is invertible for all s \in \Gamma \theta (P,K). Invoking (4.1), we conclude that
I+K(s)P(s) is invertible for all s\in \BbbC \eta . Therefore, (I+KP) - 1 \in \scrH \ast 

\eta (\scrB (U)), showing
that K is an admissible feedback for P.

To prove parts (ii) and (iii), assume that (4.1) holds with \theta , \eta \geq 0. Part (i) gives
that K is an admissible feedback for P and FP,K \in \scrH \ast 

\eta (\scrB (U\times U)). Invoking statement
(1) of Corollary 4.7 with S =K(s) and T =P(s), it follows that\bigm\| \bigm\| r\theta (s)FP,K(s)

\bigm\| \bigm\| \leq 2max

\biggl\{ 
| r\theta (s)| +

\mu P

\varepsilon P
,
\mu 2
P

\varepsilon P
,
1

\varepsilon P

\biggr\} 
\leq \Phi (\mu P, \varepsilon P, \mu K, \varepsilon K, \nu , \gamma ) \forall s\in \Pi 0(P,K).

Similarly, applying statement (2) of Corollary 4.7 with S = P(s) and T = K(s), we
obtain that \bigm\| \bigm\| r\theta (s)FP,K(s)

\bigm\| \bigm\| \leq 2max

\biggl\{ 
| r\theta (s)| +

\mu K

\varepsilon K
,
\mu 2
K

\varepsilon K
,
1

\varepsilon K

\biggr\} 
\leq \Phi (\mu P, \varepsilon P, \mu K, \varepsilon K, \nu , \gamma ) \forall s\in \Pi 0(K,P).

Furthermore, an application of Lemma 4.8 with S =K(s) and T =P(s) shows that\bigm\| \bigm\| r\theta (s)FP,K(s)
\bigm\| \bigm\| \leq 2

1 - \gamma 
max\{ | r\theta (s)| , \nu \} \leq \Phi (\mu P, \varepsilon P, \mu K, \varepsilon K, \nu , \gamma ) \forall s\in \Gamma 0(P,K) .

The last three estimates together with (4.1) yield that\bigm\| \bigm\| r\theta (s)FP,K(s)
\bigm\| \bigm\| \leq \Phi (\mu P, \varepsilon P, \mu K, \varepsilon K, \nu , \gamma ) \forall s\in \BbbC \eta .

Parts (ii) and (iii) now follow by considering the special cases \theta = 0 and \eta = 0.
(2) Assume that U is separable and \mu < 0. Because P,K \in \scrH \ast 

\mu (\scrB (U)) and both
functions are holomorphic on \BbbC 0, it follows that \BbbC 0 \cap \Sigma = \emptyset , and there exists an
open set \Omega \subset \BbbC such that

\bigl( 
\BbbC 0\setminus \Sigma 

\bigr) 
\subset \Omega \subset \BbbC \mu and S is holomorphic on \Omega , where

S is given by (3.1). By definition, F := FP,K is an extension of S - 1. Because
(I + KP) - 1 \in \scrH \ast 

0(\scrB (U)) by hypothesis, we have that S - 1 \in \scrH \ast 
0(\scrB (U \times U)), and

thus, F \in \scrH \ast 
 - \delta (\scrB (U \times U)) for some \delta \geq 0 (but, of course, there is no guarantee that

\delta > 0). Polynomial boundedness of F on \BbbC 0 implies that F is holomorphic on \BbbC 0;
in particular, S(s) is invertible for every s \in \BbbC 0. Furthermore, it follows from an
application of Proposition 3.2 (with Ge =F) that there exists a set B \subset \BbbR such that
\BbbR \setminus B is a null set and the limit F0(y) := limx\downarrow 0F(x+ iy) exists in the strong operator
topology for every y \in B. Let a > 0, and note that, by polynomial boundedness on
\BbbC 0, fy := supx\in (0,a) \| F(x+ iy)\| <\infty for every y \in \BbbR . Setting B\prime := \{ y \in B : iy \not \in \Sigma \} ,
we observe that

F(x+ iy)S(iy)u= u+F(x+ iy)
\bigl( 
S(iy)u

 - S(x+ iy)u
\bigr) 

\forall u\in U, \forall x\in (0, a), and \forall y \in B\prime .
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3056 CHRIS GUIVER, HARTMUT LOGEMANN, AND MARK R. OPMEER

Consequently, for all u\in U and all y \in B\prime ,

\| F(x+ iy)S(iy)u - u\| \leq fy\| S(iy)u - S(x+ iy)u\| \rightarrow 0 as x \downarrow 0,

showing that F0(y) is a left inverse of S(iy) for every y \in B\prime . A similar argument
shows that, for each y \in B\prime , F0(y) is also a right inverse of S(iy). Therefore,

F0(y) = (S(iy)) - 1 =

\biggl( 
I K(iy)

 - P(iy) I

\biggr)  - 1

\forall y \in B\prime .(4.12)

Defining B\prime \prime :=B\prime \setminus E, we have that, if y \in B\prime \prime , then iy is contained in the right-hand
side of the set inclusion (4.3). Together with (4.12), this means that the estimates in
the proof of parts (ii) and (iii) of statement (1) can be used to show that

\| r\theta (iy)F0(y)\| \leq \Phi (\mu P, \varepsilon P, \mu K, \varepsilon K, \nu , \gamma ) \forall y \in B\prime \prime .

Because \BbbR \setminus B\prime \prime is a null set, we conclude that

ess sup
y\in \BbbR 

\| r\theta (iy)F0(y)\| \leq \Phi (\mu P, \varepsilon P, \mu K, \varepsilon K, \nu , \gamma )<\infty .(4.13)

Proposition 3.2, together with Theorem 3.1, yields that r\theta F\in \scrH \infty 
0 (\scrB (U\times U)), showing

that K is a Sobolev \theta -stabilizing feedback for P. Furthermore,

\| r\theta F\| \scrH \infty 
0
= sup

s\in \BbbC 0

\| r\theta (s)F(s)\| = ess sup
y\in \BbbR 

\| r\theta (iy)F0(y)\| ,

and it follows from (4.13) that (4.2) holds.

Remark 4.9.
(i) An inspection of the above proof shows that statement (1) of Theorem 4.2

remains valid without the a priori assumption of holomorphicity of P and K
on \BbbC 0 provided that (4.1) is replaced by

\BbbC \eta \setminus \Sigma \subseteq \Pi \theta (P,K;\BbbC 0\setminus \Sigma , \mu P, \varepsilon P)\cup \Pi \theta (K,P;\BbbC 0\setminus \Sigma , \mu K, \varepsilon K)(4.14)

\cup \Gamma \theta (P,K;\BbbC 0\setminus \Sigma , \nu , \gamma ),

where \Sigma := \Sigma P \cup \Sigma K. However, this does not enlarge the class of transfer
functions that can be handled because it can be proved (by invoking argu-
ments similar to those used in [19, Proof of Proposition 3.3]) that, if (4.14)
holds, then \Sigma \cap \BbbC 0 = \emptyset .

(ii) The above proof suggests that Theorem 4.2 may be viewed as a special case
of a broader principle. Roughly speaking, the principle is that, if \BbbC 0 can be
divided into sets on which positive--real- or small--gain-type conditions hold
for P and K, in the sense of (4.1) with (\eta = 0), then some resulting stability
property of the feedback connection of P and K may be inferred. Indeed,
routine modifications to Lemma 4.8 and the proof of Theorem 4.2 yield that
the conclusions of Theorem 4.2 remain true if the set \Gamma \theta (P,K;\nu , \gamma ) in (4.1)
is replaced by

\Gamma \prime 
\theta (P,K;\Omega , \nu , \gamma ) :=

\bigl\{ 
s\in \Omega : \| K(s)P(s)\| \leq \gamma , \| K(s)\| \leq \nu ,

\| P(s)\| \leq \nu | r - \theta (s)| 
\bigr\} 
.

We expect that other suitable modifications of the \Pi \theta and \Gamma \theta sets are possible.
For brevity, we do not give formal statements.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/1

2/
24

 to
 8

2.
69

.5
1.

18
9 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



A MIXED PASSIVITY/SMALL-GAIN THEOREM 3057

5. Sobolev stability for output regulation and disturbance rejection.
In this section, we invoke the concept of Sobolev stability in the context of output-
regulation and disturbance-rejection problems. For this purpose, consider the follow-
ing feedback system expressed in the frequency domain:

\^y=P\^u, \^z =K\^e ,

u= d - z, e= y - r ,

\Biggr\} 
(5.1)

where y, z, e, u, r, and d denote the plant output, the controller output, the tracking
error, the plant input, the reference, and the disturbance, respectively, which we also
refer to as signals. The hat \^-notation in (5.1) denotes the bilateral Laplace transform,
and the signals are all assumed to be functions on the real axis \BbbR (or distributions) with
support bounded to the left (where we assume that input-output operators associated
with P, K and the feedback connection of P and K are causal).

Given a plant P, the objective is to design a controller K such that the error e=
y - r is in L2(\BbbR ) (or preferably better---in H1(\BbbR ), for example) for a class of persistent
reference and disturbance signals. This is a fundamental control problem (sometimes
also referred to as the servo problem) and is consequently well studied, with numerous
papers on the subject including, but by no means limited to, [22, 25, 28, 38, 39].
The well-known internal model principle (see, for example, [17], [24], [25], or [37,
section 7.5]) plays a key role in the servo problem. In the internal model principle,
it is assumed that the signals r and d are generated by two signal generators (or
exo-systems) (see the configuration shown in Figure 5.1), and the principle says,
roughly speaking, that K is a robust solution to the servo problem if and only if K is
stabilizing and ``contains"" so-called internal models of D and R (essentially meaning
that all unstable poles of D and R are also poles of K).

Inspired by the frequency-domain theory of the internal model principle [24, 25, 37],
a sufficient condition for a Sobolev stabilizing controller to solve the servo problem is
given in Theorem 5.1.

In the following result, we shall assume that the transfer functions D\in \scrH \ast 
\mu ((\scrB (V,

U)) and R\in \scrH \ast (\scrB (W,Y )) of the signal generators are polynomially bounded on some
right-half plane, where V and W are complex Hilbert spaces, the spaces in which the
functions gd and gr take their values, respectively. Then, by [41, Theorem 6.5-1 and
Corollary 6.5-1a], D and R are the transfer functions of causal translation-invariant
operators D :\scrD \prime 

\ell (V )\rightarrow \scrD \prime 
\ell (U) and R :\scrD \prime 

\ell (W )\rightarrow \scrD \prime 
\ell (Y ), respectively.

Theorem 5.1. Consider the feedback system (5.1) for given P \in \scrH \ast 
\mu (\scrB (U,Y ))

and K \in \scrH \ast 
\mu (\scrB (Y,U)), where \mu \leq 0, and let D \in \scrH \ast 

\mu (\scrB (V,U)) and R \in \scrH \ast 
\mu (\scrB (W,Y ))

be polynomially bounded on some right-half plane. Assume that there exist a func-
tion q \in \scrH 0(\BbbC ), q(s) \not \equiv 0, and \rho \in \BbbR such that r\rho qD \in \scrH \infty 

0 (\scrB (V,U)) and r\rho qR \in 
\scrH \infty 

0 (\scrB (W,Y )). Furthermore, assume that there exist an open set \Omega \subset \BbbC 0 and \sigma \in \BbbR 

P

K R

D
+

−

+

ŷ

ê

−

ẑ

û

ĝrr̂

d̂ĝd

Fig. 5.1. Feedback connection of plant P and controller K with signal generators D and R.
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such that r\sigma /q is bounded on \BbbC 0\setminus \Omega . Let \kappa \in \BbbR and \theta \geq 0. If K satisfies the two
conditions

(a) K is a Sobolev \theta -stabilizing feedback for P and
(b) K has a left-inverse K\# \in \scrH \ast (\Omega ,\scrB (U,Y )) such that (r\sigma /q)K

\# \in \scrH \infty (\Omega ,
\scrB (U,Y )),

then e \in H\kappa  - \alpha 
\ell (\BbbR , Y ) for all d \in \{ Dg : g \in H\kappa 

\ell (\BbbR , V )\} + H\kappa 
\ell (\BbbR ,U) and r \in \{ Rg :

g \in H\kappa 
\ell (\BbbR ,W )\} + H\kappa 

\ell (\BbbR , Y ), where \alpha := max\{ \theta , \rho + \sigma + \theta \} . Furthermore, e \in 
H

\kappa  - (\rho +\sigma +\theta )
\ell (\BbbR , Y ) whenever d\in \{ Dg : g \in H\kappa 

\ell (\BbbR , V )\} and r \in \{ Rg : g \in H\kappa 
\ell (\BbbR ,W )\} .

In the case wherein U = Y and P and K are holomorphic on \BbbC 0, Theorem 4.2
provides a sufficient condition for condition (a) to hold.

Remark 5.2.
(i) The above result guarantees that e \in L2(\BbbR ,U) whenever \kappa \geq \alpha , implying

tracking in measure in the sense that limT\rightarrow \infty meas
\bigl( 
\{ t\geq T : \| e(t)\| \geq \varepsilon \} 

\bigr) 
= 0

for every \varepsilon > 0, where ``meas"" denotes the Lebesgue measure. Furthermore,
e(t)\rightarrow 0 as t\rightarrow \infty (asymptotic tracking) whenever \kappa \geq \alpha + 1.

(ii) Set Zq := \{ z \in \BbbC 0 : lim infs\rightarrow z,s\in \BbbC 0 q(s) = 0\} . Clearly, Zq \cap \BbbC 0 = \{ z \in \BbbC 0 :
q(z) = 0\} . Moreover, if q has a holomorphic extension (also denoted by q) to
an open set containing \BbbC 0, then Zq = \{ z \in \BbbC 0 : q(z) = 0\} . The boundedness
of r\sigma /q on \BbbC 0\setminus \Omega implies that dist(z,\BbbC 0\setminus \Omega ) > 0 for every z \in Zq. Thus,
Zq \subset \Omega , Zq \cap \BbbC 0 \subset \Omega , and, for every z \in Zq, there exists \varepsilon z > 0 such that
\{ s\in \BbbC 0 : | s - z| < \varepsilon z\} \subset \Omega .

(iii) Let z \in \BbbC 0 be such that limsups\rightarrow z,s\in \BbbC 0

\bigl( 
\| D(s)\| +\| R(s)\| 

\bigr) 
=\infty (z is a pole of

D or R if z \in \BbbC 0). Since r\rho qD\in \scrH \infty 
0 (\scrB (V,U)) and r\rho qR\in \scrH \infty 

0 (\scrB (W,Y )), we
see that z \in Zq, and condition (b) implies that limsups\rightarrow z,s\in \BbbC 0

\| K(s)\| =\infty .

Furthermore, if \mu < 0, then it follows that every pole of D or R in \BbbC 0 is also
a pole of the controller K. Consequently, condition (b) can be viewed as a
version of the internal model principle.

(iv) Assume that U = Y and there exists \delta > 0 such that

| r - \sigma (s)q(s)| \| K(s)v\| \geq \delta \| v\| and

| r - \sigma (s)q(s)| \| K\ast (s)v\| \geq \delta \| v\| \forall s\in 
\bigl( 
\BbbC 0 \cap \Omega 

\bigr) 
\setminus \Sigma K and \forall v \in U.

Then it follows from [30, Proposition 3.2.6] that K(s) is invertible for all
s \in 

\bigl( 
\BbbC 0 \cap \Omega 

\bigr) 
\setminus \Sigma K, and the first inequality guarantees that (r\sigma /q)K

 - 1 \in 
\scrH \infty (\Omega ,\scrB (U)). Consequently, condition (b) holds in this case withK\# =K - 1.

Proof of Theorem 5.1. By hypothesis, K is a Sobolev \theta -stabilizing feedback for P
and \mu \leq 0. Hence, \Xi P,K \cap \BbbC 0 = \emptyset , and it follows from Remark 3.4 that

FP,K(s) = S - 1(s) =

\biggl( 
I K(s)

 - P(s) I

\biggr)  - 1

\forall s\in \BbbC 0\setminus 
\bigl( 
\Sigma P \cup \Sigma K

\bigr) 
.(5.2)

Let d = Dgd + hd and r = Rgr + hr, where gd \in H\kappa 
\ell (\BbbR , V ), gr \in H\kappa 

\ell (\BbbR ,W ), hd \in 
H\kappa 

\ell (\BbbR ,U), and hr \in H\kappa 
\ell (\BbbR , Y ). System (5.1) can be expressed as\biggl( 

I K
 - P I

\biggr) \biggl( 
\^u
\^e

\biggr) 
=

\biggl( 
\^d

 - \^r

\biggr) 
=

\biggl( 
D 0
0 R

\biggr) \biggl( 
\^gd
 - \^gr

\biggr) 
+

\biggl( 
\^hd
 - \^hr

\biggr) 
.

Routine calculations invoking (3.3) and (5.2) yield that
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A MIXED PASSIVITY/SMALL-GAIN THEOREM 3059

\^e=
\bigl( 
0 I

\bigr) \biggl( I K
 - P I

\biggr)  - 1\biggl( \biggl( 
D 0
0 R

\biggr) \biggl( 
\^gd
 - \^gr

\biggr) 
+

\biggl( 
\^hd
 - \^hr

\biggr) \biggr) 
=
\bigl( 
P(I +KP) - 1D, (I +PK) - 1R

\bigr) \biggl( \^gd
 - \^gr

\biggr) 
+ (0, I)FP,K

\biggl( 
\^hd
 - \^hr

\biggr) 
.

The hypothesis on D and R implies that there exist HD \in \scrH 0(\scrB (V,U)) and HR \in 
\scrH 0(\scrB (W,Y )) such that D=HD/q, R=HR/q, r\rho HD \in \scrH \infty 

0 (\scrB (V,U)), and r\rho HR \in 
\scrH \infty 

0 (\scrB (W,Y )). Defining F1 :=P(I+KP) - 1D and F2 :=P(I+PK) - 1R, we have that

\Biggl\{ 
F1 = (1/q)P(I +KP) - 1HD, F2 = (1/q)(I +PK) - 1HR on \BbbC 0 \supset \BbbC 0\setminus \Omega ,
F1 = (K\#/q)

\bigl( 
I  - (I +KP) - 1

\bigr) 
HD, F2 = (K\#/q)(I +KP) - 1KHR on \Omega .

(5.3)

The function \^e can be expressed in the form

\^e=
\bigl( 
F1,F2

\bigr) \biggl( \^gd
 - \^gr

\biggr) 
+ (0, I)FP,K

\biggl( 
\^hd
 - \^hr

\biggr) 
.(5.4)

Set \beta := \rho + \sigma + \theta so that \alpha = max\{ \theta ,\beta \} . Because K is Sobolev \theta -stabilizing for P,
r\rho HD \in \scrH \infty 

0 (\scrB (V,U)), r\rho HR \in \scrH \infty 
0 (\scrB (W,Y )), r\sigma K

\#/q \in \scrH \infty (\Omega ,\scrB (U,Y )), and r\sigma /q
is bounded on \BbbC 0\setminus \Omega , it follows from (5.3) that r\beta (F1,F2) \in \scrH \infty 

0 (\scrB (V \times W,Y )). Fur-
thermore, r\theta (0, I)FP,K \in \scrH \infty 

0 (\scrB (U \times Y,Y )). Appealing to Theorem 3.1, we conclude
that the causal translation-invariant operators that have (F1,F2) and (0, I)FP,K as
transfer functions are Sobolev \beta -stable and Sobolev \theta -stable, respectively, in the sense
of subsection 3.1. Hence, e\in H\kappa  - \alpha 

\ell (\BbbR , Y ). Finally, if hr = hd = 0, then, invoking (5.4),
it follows that e is in the image of H\kappa 

\ell (\BbbR , V \times W ) under a Sobolev \beta -stable operator,
whence e\in H\kappa  - \beta 

\ell (\BbbR , Y ), completing the proof.

Next, we apply Theorem 5.1 in the context of repetitive control, in which the
controller

K\tau (s) :=
1

1 - e - \tau s
I \forall s\in \BbbC 0, where \tau > 0,(5.5)

plays a key role. Since, for x> 0 and y \in \BbbR ,

Re
1

1 - e - \tau (x+iy)
=

1 - e - \tau x cos(\tau y)

1 + e - 2\tau x  - 2e - \tau x cos(\tau y)
\geq 1 - e - \tau x cos(\tau y)

2(1 - e - \tau x cos(\tau y))
=

1

2
,(5.6)

it follows that K\tau is strongly positive real.
We remark that K\tau qualifies as a so-called repetitive controller in the sense of

[22]. Repetitive controllers have been considered across numerous papers on output
regulation, and we refer the reader to, for example, [38] for more information. It was
noted in [22, Proposition 2] that L2-input--output stability of the feedback system
(5.1) is impossible when P(s) \rightarrow 0 as | s| \rightarrow \infty in \BbbC 0 and K has infinitely many
imaginary axis poles that accumulate at \infty (pole-zero cancelation at \infty ). However,
using Theorem 4.2, we show, for several examples in section 6, that these feedback
systems may well be Sobolev stable.

The lemma below establishes that, in a certain sense, \tau -periodic functions are the
images of suitable compactly supported functions under the input-output operator of
K\tau .
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3060 CHRIS GUIVER, HARTMUT LOGEMANN, AND MARK R. OPMEER

Lemma 5.3. Let f \in Hk
loc(\BbbR +,U) be \tau -periodic, where k \in \BbbN 0. Then, there exist

wf \in Hk
loc,\ell (\BbbR ,U) and a compactly supported g \in Hk(\BbbR ,U) such that K\tau \^g = \^wf and

wf = f on \BbbR +.

For the definition of the Sobolev spaces Hk(\BbbR ,U), Hk
loc(\BbbR +,U), and Hk

loc,\ell (\BbbR ,U),
see subsection 2.3.

Proof of Lemma 5.3. Fix \lambda \in (0, \tau ), and let \psi \in C\infty (\BbbR ,\BbbR ) be such that \psi (t) = 0
for all t \leq  - \lambda /2 and \psi (t) = 1 for all t \geq  - \lambda /4. Setting \phi (t) := \psi (t)f(t + \tau ) for all
t\in [ - \lambda ,0], we have that

\phi (m)( - \lambda ) = 0 and \phi (m)(0) = f (m)(\tau ) = f (m)(0) \forall m\in \{ 0,1, . . . , k - 1\} .(5.7)

Define

g(t) :=

\left\{               

0, t\leq  - \tau  - \lambda ,

\phi (t+ \tau ), t\in [ - \tau  - \lambda , - \tau ],
f(t+ \tau ), t\in [ - \tau , - \lambda ],
f(t+ \tau ) - \phi (t), t\in [ - \lambda ,0],
0, t\geq 0

and

wf (t) :=

\left\{     
0, t\leq  - \tau  - \lambda ,

\phi (t+ \tau ), t\in [ - \tau  - \lambda , - \tau ],
f(t+ \tau ), t\geq  - \tau .

Clearly, g is compactly supported, wf has support bounded to the left, and wf = f
on \BbbR + because f is \tau -periodic. Invoking (5.7), it is routine to also verify that g \in 
Hk(\BbbR ,U), wf \in Hk

loc,\ell (\BbbR ,U) and that

wf (t) - wf (t - \tau ) = g(t) \forall t\in \BbbR .(5.8)

Taking the (bilateral) Laplace transform of both sides of (5.8) shows that K\tau \^g= \^wf .

We comment that a simpler construction is available if either k= 0 or f (j)(0) = 0
for all j \in \{ 0, . . . , k  - 1\} when k \geq 1. Indeed, in this case, the function g : \BbbR \rightarrow U
defined by

g(t) = f(t) if t\in [0, \tau ] and g(t) = 0 if t \not \in [0, \tau ]

satisfies g \in L2(\BbbR ,U) (if k = 0) and g \in Hk(\BbbR ,U) (if k \geq 1), is compactly supported,
and K\tau \^g = \^f , showing that Lemma 5.3 holds with wf given by wf (t) = 0 for t < 0
and wf (t) = f(t) for t\geq 0.

In the following corollary, we consider the feedback system (5.1), where we assume
that U = Y and the signals r and d are in

\scrP k
\tau (U) :=

\bigl\{ 
h1 + h2 : h1 \in Hk

loc,\ell (\BbbR ,U) such that h1 is

\tau -periodic on \BbbR + and h2 \in Hk
\ell (\BbbR ,U)

\bigr\} (5.9)

for some k \in \BbbN 0.

Corollary 5.4. Consider the feedback system (5.1) for P \in \scrH \ast 
\mu (\scrB (U)) and

K = K\tau H1 + H2 with K\tau given by (5.5) and H1,H2 \in \scrH \ast 
\mu (\scrB (U)), where \mu \leq 0

and \tau > 0. Let open \Omega \subset \BbbC 0 and \sigma \in \BbbR be such that r\sigma K\tau is bounded on \BbbC 0\setminus \Omega , and
furthermore, let k \in \BbbN 0 and \theta \geq 0. If K is a Sobolev \theta -stabilizing feedback for P,
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A MIXED PASSIVITY/SMALL-GAIN THEOREM 3061

H1 +K - 1
\tau H2 is invertible in \scrH \ast (\Omega ,\scrB (U)), and r\sigma (H1 +K - 1

\tau H2)
 - 1 \in \scrH \infty (\Omega ,\scrB (U)),

then e\in Hk - \alpha 
\ell (\BbbR ,U) for all d, r \in \scrP k

\tau (U), where \alpha :=max\{ \theta ,\sigma + \theta \} .
Because r\sigma K\tau is bounded on \BbbC 0\setminus \Omega , we see that the poles pk := (i2\pi k)/\tau of K\tau 

satisfy pk \in \Omega for every k \in \BbbZ . The repetitive controller model originally considered
in [22] is of the form K(s) = e - \tau sK\tau (s) +A(s) with A \in \scrH \infty 

0 (\scrB (U)) (that is, in the
notation of the above corollary, H1(s) = e - \tau sI and H2 =A); it is straightforward to
show that the condition on H1+K - 1

\tau H2 = e - \tau \cdot I +K - 1
\tau A is satisfied with \sigma = 0 and

\Omega = \{ s\in \BbbC 0 : Res < a\} provided that a> 0 is sufficiently small and \| A\| \scrH \infty 
0
< 1/2.

Proof of Corollary 5.4. The idea is to apply Theorem 5.1 with U = V =W = Y ,
D = R = K\tau , q(s) = 1  - e - \tau s, and \rho = 0. To this end, we note that qK\tau = I \in 
\scrH \infty 

0 (\scrB (U)) and that r\sigma /q is bounded on \BbbC 0\setminus \Omega since (r\sigma /q)I = r\sigma K\tau . Furthermore,
K= (H1 + qH2)/q, and thus,

r\sigma 
q
K - 1 = r\sigma 

\bigl( 
H1 + qH2

\bigr)  - 1
= r\sigma 

\bigl( 
H1 +K - 1

\tau H2

\bigr)  - 1 \in \scrH \infty (\Omega ,\scrB (U)),

showing that condition (b) of Theorem 5.1 holds. Because K is a Sobolev \theta -stabilizing
feedback for P, condition (a) of Theorem 5.1 is also satisfied. Consequently, by
Theorem 5.1, it is now sufficient to show that

\scrP k
\tau (U)\subset \{ K\tau g+ h : g,h\in Hk

\ell (\BbbR ,U)\} ,(5.10)

where K\tau denotes the causal translation-invariant operator with transfer function
K\tau . To establish (5.10), let f \in \scrP k

\tau (U). Then, f = f1 + f2 with f1 \in Hk
loc,\ell (\BbbR ,U)

such that f1 is \tau -periodic on \BbbR + and f2 \in Hk
\ell (\BbbR ,U). By Lemma 5.3, there exists

(compactly supported) g \in Hk
\ell (\BbbR ,U) such that K\tau g \in Hk

loc,\ell (\BbbR ,U) and (K\tau g)| \BbbR +
=

f1| \BbbR +
. Consequently, setting h := f1 + f2  - K\tau g, we have that h \in Hk

\ell (\BbbR ,U) and
f =K\tau g+ h, showing that (5.10) holds.

Remark 5.5. In this remark on Corollary 5.4, we assume, for simplicity, that
d = 0; that is, we focus on the tracking problem. Corollary 5.4 guarantees that, for
any given \tau -periodic function \~r \in Hk

loc,\ell (\BbbR +,U) on the half-line, the output y of the

feedback system (5.1), driven by any reference signal r \in Hk
loc,\ell (\BbbR ,U) such that r= \~r

on \BbbR +, satisfies (y  - \~r)| (0,\infty ) \in Hk - \alpha 
\bigl( 
(0,\infty ),U

\bigr) 
; in particular, if k \geq \alpha + 1, then

\| y(t) - \~r(t)\| \rightarrow 0 as t\rightarrow \infty for any such r. Furthermore, in the case wherein \~r(0) \not = 0,
\alpha > 0, and r is defined by r(t) = 0 for t < 0 and r(t) = \~r(t) for t \geq 0 (r \in \scrP 0

\tau (U) but
r \not \in \scrP 1

\tau (U)), then e\in H - \alpha 
\ell (\BbbR ,U), and so, e may not be square integrable.

We conclude this section by discussing the relation between the results in this sub-
section to those in [25] and [28]. Both of these papers consider the output-regulation
problem when a polynomial stability condition is imposed on the closed-loop system,
referred to as P-stability. Roughly speaking, adopting an algebraic approach inspired
by the factorization approach to control system synthesis [37], the paper [25] estab-
lishes, in frequency-domain terms, an internal model principle that guarantees that
the Laplace transform of the error is bounded on \BbbC \delta for every \delta > 0 and polynomially
bounded on the imaginary axis. We note that P-stability imposes a growth bound
equal to zero (that is, FP,K is bounded on \BbbC \delta for every \delta > 0), which is not a require-
ment of Sobolev stability. For a comparison of Sobolev stability and P-stability, we
refer to [20, Proposition 5.8]. Positive realness does not play a role in [25]. The paper
[28] invokes the state-space theory of regular infinite-dimensional linear systems to
analyze the robust output-regulation problem for passive systems with reference and
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3062 CHRIS GUIVER, HARTMUT LOGEMANN, AND MARK R. OPMEER

disturbance signals being contained in various classes of trigonometric polynomials.
In particular, closed-loop exponential stability is ensured under an assumption on the
plant that resembles strong positive realness [28, Theorem 5.2]. In the absence of this
property, only strong stability of the closed-loop system is possible in general (see [28,
Theorem 5.11]), and the error is shown to satisfy a certain polynomial convergence
rate [28, Theorem 5.4]. As already noted, the class of transfer functions considered in
the current paper is very general and contains transfer functions that do not admit
regular (or even well-posed) state-space realizations. Finally, a direct comparison be-
tween our results and those in [25] or [28] is difficult owing to the different approaches
adopted; while there is some overlap, the theories developed in [25] and [28] are not
suitable to derive Theorem 5.1 and/or Corollary 5.4.

6. Examples. We illustrate the results in sections 4 and 5 with six examples.
In Examples 6.2 and 6.5, the following simple lemma will be used.

Lemma 6.1. Consider the transfer functions J(s) := 1/s and T\omega (s) := \omega /(s2+\omega 2),
where \omega > 0, and denote the corresponding causal translation-invariant operators by
J and T\omega , respectively. Let k \in \BbbN 0.

(1) If \zeta \in Hk(\BbbR ) has compact support in ( - \infty ,0) and
\int 0

 - \infty \zeta (t)dt = 1, then

J\zeta \in Hk
\ell (\BbbR ) and (J\zeta )(t) = 1 for all t\geq 0.

(2) If \phi ,\psi \in Hk(\BbbR ) have compact support in ( - \infty ,0) and satisfy\int 0

 - \infty 
cos(\omega t)\phi (t)dt= 1,

\int 0

 - \infty 
sin(\omega t)\phi (t)dt=

\int 0

 - \infty 
cos(\omega t)\psi (t)dt= 0,\int 0

 - \infty 
sin(\omega t)\psi (t)dt= - 1,

(6.1)

then T\omega \phi , T\omega \psi \in Hk
\ell (\BbbR ) and (T\omega \phi )(t) = sin(\omega t) and (T\omega \psi )(t) = cos(\omega t) for

all t\geq 0.

While the proof of the above lemma is elementary, we have, for completeness,
included it in the appendix.

Example 6.2. We consider as plant the following controlled and observed heat
equation on the unit spatial domain (0,1):

wt =w\xi \xi , w(0, t) = 0, w\xi (1, t) = u(t), y(t) =w(1, t) + \kappa w\xi (1, t) ,

where \kappa \geq 0 and u and y denote the input and output, respectively. The transfer func-
tion P is given by P(s) = \kappa +tanh(

\surd 
s)/

\surd 
s, which belongs to \scrH \infty 

0 and is positive real.
If \kappa > 0, then P is strongly positive real so that \Pi 0(P,K;\BbbC 0) =\BbbC 0 whenever K is

positive real. Consequently, Theorem 4.2 shows that any positive real K is a Sobolev
0-stabilizing feedback for P (in this scenario, Theorem 4.2 reduces to the passivity
theorem for L2-stability).

Let us now assume that \kappa = 0. Then, P is positive real, but not strongly positive
real. However, it is straightforward to establish that P is Sobolev positive real with
exponent 1/2. Consequently, because P is also in \scrH \infty 

0 , Corollary 4.4 ensures that
every positive real K is a Sobolev (1/2)-stabilizing feedback for P. We shall consider
the positive real transfer function K given by

K(s) :=
1

s
+

s

s2 + \omega 2
1

+
s

s2 + \omega 2
2

, where \omega 1, \omega 2 > 0, \omega 1 \not = \omega 2.(6.2)
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A MIXED PASSIVITY/SMALL-GAIN THEOREM 3063

An application of Theorem 5.1 with U = V = Y =\BbbC ,W =\BbbC 2, D= J, R= (T\omega 1 ,T\omega 2),
\rho = \sigma = 0, \theta = 1/2, q(s) = s(s2 + \omega 2

1)(s
2 + \omega 2

2)/(s+ 1)4, and

\Omega =
\bigcup 

\omega \in \{ 0,\pm \omega 1,\pm \omega 2\} 

\{ s\in \BbbC 0 : | s - i\omega | <a\} , where a> 0 is sufficiently small,

shows that the error e of the feedback system (5.1) satisfies

e\in H\kappa  - 1/2
\ell (\BbbR ) \forall d\in \{ Jg : g \in H\kappa 

\ell (\BbbR )\} and \forall r \in \{ T\omega 1
g1 + T\omega 2

g2 : g1, g2 \in H\kappa 
\ell (\BbbR )\} .

(6.3)

Finally, let \phi 0, \phi 1, \phi 2,\psi 1,\psi 2 \in H2(\BbbR ) be compactly supported in ( - \infty ,0) and such

that
\int 0

 - \infty \phi 0(t)dt= 1 and (6.1) holds for \omega = \omega j , \phi = \phi j , and \psi = \psi j for j = 1,2. Let
a0, a1, a2, b1, b2 \in \BbbR , and consider d := a0J\phi 0 and r = T\omega 1(a1\phi 1 + b1\psi 1) + T\omega 2(a2\phi 2 +
b2\psi 2). Appealing to Lemma 6.1, we see that d(t) = a0 and r(t) = a1 sin(\omega 1t) +
b1 cos(\omega 1t) + a2 sin(\omega 2t) + b2 cos(\omega 2t) for all t \geq 0. It follows from (6.3) that e \in 
H

3/2
\ell (\BbbR ). In particular, e\in H1

\ell (\BbbR ), and thus,

e(t) = y(t) - r(t)

= y(t) - 
\bigl( 
a1 sin(\omega 1t) + b1 cos(\omega 1t) + a2 sin(\omega 2t) + b2 cos(\omega 2t)

\bigr) 
\rightarrow 0 as t\rightarrow \infty 

in the presence of constant disturbances. By increasing the regularity of the input
functions of the signal generators, the error e becomes more regular. If, for example,
\phi 0, \phi 1, \phi 2,\psi 1,\psi 2 \in H3(\BbbR ), then e \in H5/2

\ell (\BbbR ), and we have that e(t)\rightarrow 0 and \.e(t)\rightarrow 0
as t\rightarrow \infty .

Example 6.3. To illustrate Corollary 5.4, consider again P(s) = \kappa +tanh(
\surd 
s)/

\surd 
s,

\kappa \geq 0, the transfer function of the heat equation from Example 6.2. As was noted
in Example 6.2, P \in \scrH \infty 

0 and P is Sobolev positive real with exponent 1/2 (strongly
positive real if \kappa > 0). Let K\tau , \tau > 0 be the repetitive controller given by (5.5), and
recall that K\tau is (strongly) positive real.

If \kappa > 0, it follows from Corollary 4.4 that K\tau is a Sobolev 0-stabilizing (equiva-
lently, L2-stabilizing) feedback for P, and thus, invoking Corollary 5.4 (with U = \BbbC ,
K=K\tau , and \sigma = 0), we conclude that the feedback system (5.1) with K=K\tau satisfies
e\in Hk

\ell (\BbbR ) whenever d, r \in \scrP k
\tau (\BbbC ), k \in \BbbN 0, where the space \scrP k

\tau (\BbbC ) is defined in (5.9).
Let us assume now that \kappa = 0. Applying Corollary 4.4 once more, we obtain

that K\tau is a Sobolev (1/2)-stabilizing feedback for P, and Corollary 5.4 (with U =\BbbC ,
K=K\tau and \sigma = 0) guarantees that e\in Hk - 1/2

\ell (\BbbR ) whenever d, r \in \scrP k
\tau (\BbbC ), k \in \BbbN 0. For

a numerical example, we consider the case where, in Corollary 5.4, U = \BbbC , K =K\tau ,
\sigma = 0, d(t)\equiv 0, and r is given by

r(t) =

\infty \sum 
j=0

r0(t - j\tau ), where r0(t) :=

\left\{     
at, t\in [0, \tau /2],

a(\tau  - t), t\in (\tau /2, \tau ],

0, t\in \BbbR \setminus [0, \tau ] ,
(6.4)

and a > 0 is an amplitude parameter. We see that r(t) = 0 for all t \leq 0 and, on
\BbbR +, the function r is a \tau -periodic nonnegative triangular wave obtained by periodic
extension of r0; see Figure 6.1(a). Obviously, r \in \scrP 1

\tau (\BbbC ) (but r \not \in \scrP k
\tau (\BbbC ) for k \geq 2),

whence e\in H1/2
\ell (\BbbR ). A routine calculation shows that

\^r0(s) =

\int \tau 

0

e - str0(t)dt=
a

s2
(1 - e - \tau s/2)2 \forall s\in \BbbC ,
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Fig. 6.1. Graphical illustration and numerical computation for Example 6.3 with parameter
values a= 1 and \tau = 2. (a) Graph of r(t) given by (6.4) against t. (b) Graph of error e(t) against t.

where we note that \^r0 has a removable singularity at s= 0. Consequently,

\^r(s) =

\int \infty 

0

e - str(t)dt=

\infty \sum 
j=0

e - j\tau s\^r0(s) =
\^r0(s)

1 - e - \tau s
=K\tau (s)\^r0(s) \forall s\in \BbbC 0.

The tracking error e= y - r satisfies

\^e(s) = \^y(s) - \^r(s) = - K\tau (s)\^r0(s)

1 +P(s)K\tau (s)
= - a(1 - e - \tau s/2)2

s2
\bigl[ 
1 - e - \tau s + tanh(

\surd 
s)/

\surd 
s
\bigr] \forall s\in \BbbC 0.

Computing the inverse Laplace transform of \^e above analytically seems intractable.
We numerically compute e by using a standard result from the L2-theory of the Fourier
transform, according to which

1

2\pi 

\int \omega 

 - \omega 

eiy \cdot \^e(iy)dy=
1

2\pi 

\int \omega 

 - \omega 

eiy \cdot (\scrF e)(y)dy \rightarrow e in L2(\BbbR ) as \omega \rightarrow \infty ,(6.5)

where (\scrF e)(y) :=
\int \infty 
 - \infty e - iyte(t)dt is the Fourier transform of e. For \tau = 2 and a= 1,

Figure 6.1(b) shows a plot of the error e(t) against t, where convergence of the error to
zero over time is observed. The integral in (6.5) was computed in MATLAB using the
numerical integration command quadgk. The optional error bound output of quadgk
returned values of orders between 10 - 8 and 10 - 12, varying over t\geq 0.

The next example involves an operator-valued transfer function.

Example 6.4. Consider the following heat equation on the square (0,1)\times (0,1):

wt =w\xi 1\xi 1 +w\xi 2\xi 2 , w(0, \xi 2, t) =w(1, \xi 2, t) =w\xi 2(\xi 1,0, t) = 0,

w\xi 2(\xi 1,1, t) = u(\xi 1, t), y(\xi 1, t) =w(\xi 1,1, t).

Choosing U :=L2(0,1), we have that t \mapsto \rightarrow u( \cdot , t) and t \mapsto \rightarrow y( \cdot , t) are U -valued functions.
It is shown in [19, Example 7.14] that the transfer function P of the above system,
given by

P(s)v=

\infty \sum 
k=1

\surd 
2\gamma k(v) sin(k\pi \cdot )\surd 

s+ k2\pi 2 tanh(
\surd 
s+ k2\pi 2)

\forall v \in U, where

\gamma k(v) :=
\surd 
2

\int 1

0

v(\xi ) sin(k\pi \xi )d\xi ,
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A MIXED PASSIVITY/SMALL-GAIN THEOREM 3065

is positive real. Furthermore, P \in \scrH \infty 
0 (\scrB (U)) and lim| s| \rightarrow \infty , s\in \BbbC 0

\| P(s)\| = 0. If
K \in \scrH \infty 

0 (\scrB (U)) has the property that, for every bounded set B \subset \BbbC 0, there exists
\varepsilon > 0 such that Re K(s) \geq \varepsilon I for all s \in B (for example, if K(s) = \~K(s) + 1/(s+ 1),
where \~K\in \scrH \infty 

0 (\scrB (U)) is positive real), then, for given \gamma \in (0,1), there exist \varepsilon > 0 and
r > 0 such that

\{ s\in \BbbC 0 : | s| < r\} \subset \Pi 0(K,P;\BbbC 0, \mu , \varepsilon ) and \{ s\in \BbbC 0 : | s| \geq r\} \subset \Gamma 0(P,K;\BbbC 0, \nu , \gamma ),

where \mu := \| K\| H\infty and \nu := \| P\| H\infty + \| K\| H\infty . It follows from Theorem 4.2 that K
is a L2-stabilizing feedback for P.

In the following example, the plant is a fractional derivative and hence not well
posed (in the sense of [36]).

Example 6.5. We consider the feedback system (5.1) with P and K given by

P(s) = s\delta and K(s) =
s

s2 + \omega 2
, where 0< \delta < 1 and \omega > 0.

We claim that K is a Sobolev \delta -stabilizing feedback for P. To this end, set

A\eta := \{ s\in \BbbC 0 : | s| < \eta \} \cup \{ s\in \BbbC 0 : | s| > 1/\eta \} , where \eta \in (0,1).

It is clear that A\eta \subset \Gamma \delta (P,K;\BbbC 0,2,1/2) for sufficiently small \eta \in (0,1). Moreover,

ReP(s)\geq \eta \delta cos(\pi \delta /2) =: \varepsilon > 0, \| P(s)\| \leq 1/\eta \delta and

ReK(s)\geq 0 \forall s\in \BbbC 0\setminus A\eta ,

showing that \BbbC 0\setminus A\eta \subset \Pi 0(P,K;\BbbC 0,1/\eta 
\delta , \varepsilon ). Consequently,

\BbbC 0 \subset \Pi \delta (P,K;\BbbC 0,1/\eta 
\delta , \varepsilon )\cup \Gamma \delta (P,K;\BbbC 0,2,1/2),

and Sobolev \delta -stability follows from Theorem 4.2. It is easy to see that this stability
result is optimal in the sense that K is not Sobolev \theta -stabilizing for P for any \theta < \delta .

An application of Theorem 5.1 with U = V =W = Y =\BbbC , D=R=T\omega , \rho = \sigma = 0,
\theta = \delta , q(s) = (s2 + \omega 2)/(s+ 1)2, and

\Omega = \{ s\in \BbbC 0 : | s - i\omega | <a\} \cup \{ s\in \BbbC 0 : | s+ i\omega | <a\} , where a> 0 is sufficiently small,

shows that, for all d, r \in \{ T\omega g : g \in H\kappa 
\ell (\BbbR )\} + H\kappa 

\ell (\BbbR ), the error e of the feedback
system (5.1) satisfies e\in H\kappa  - \delta 

\ell (\BbbR ). Now, let d, r \in H2
loc,\ell (\BbbR ) be such that

d(t) = ad sin(\omega t) + bd cos(\omega t) and r(t) = ar sin(\omega t) + br cos(\omega t) \forall t\geq 0

for given constants ad, bd, ar, br \in \BbbR . It follows from Lemma 6.1 that there exist gd, gr \in 
H2

\ell (\BbbR ) with support in ( - \infty ,0) such that the functions d - T\omega gd and r - T\omega gr are in
H2

\ell (\BbbR ). Consequently, e\in H
2 - \delta 
\ell (\BbbR ). In particular, because 2 - \delta > 1, it follows that

y(t) - 
\bigl( 
ar sin(\omega t) + br cos(\omega t)

\bigr) 
= e(t)\rightarrow 0 as t\rightarrow \infty 

in the presence of the persistent oscillating disturbance d.

In our final two examples, we study stability problems involving a controlled and
observed wave equation.

Example 6.6. Consider the following wave equation on the spatial domain (0,1)

wtt =w\xi \xi , w(0, t) = 0, wt(1, t) = u(t), y(t) =w\xi (1, t).(6.6)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/1

2/
24

 to
 8

2.
69

.5
1.

18
9 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



3066 CHRIS GUIVER, HARTMUT LOGEMANN, AND MARK R. OPMEER

The transfer function Q is given by

Q(s) =
1

tanh(s)
,(6.7)

and we note that Q is positive real. Let P(s) := \kappa +tanh(
\surd 
s)/

\surd 
s, \kappa \geq 0; that is, P(s)

is the transfer function of the heat equation of Example 6.2. As pointed out in Exam-
ple 6.2, the function P is Sobolev positive real with exponent 1/2 and in\scrH \infty 

0 , and thus,
an application of Corollary 4.4 shows that Q is a Sobolev (1/2)-stabilizing feedback
for P when \kappa = 0. Furthermore, if \kappa > 0, then Q is a Sobolev 0-stabilizing feedback.

Next, we consider repetitive control of the wave equation from Example 6.6.

Example 6.7. We consider again the wave equation (6.6) and its positive real
transfer function Q given by (6.7). For \tau > 0, consider the repetitive controller K\tau 

given by (5.5). The objective is to investigate the stability properties of the feedback
connection of Q and K\tau . As we shall see, this will crucially depend on the value of
\tau . It is more convenient to apply our results to 1/Q and 1/K\tau and invoke part (i) of
statement (2) of Lemma 3.6 to infer the stability properties of the original feedback
connection. Accordingly, we define

G(s) :=
1

Q(s)
= tanh(s) =

sinh(s)

cosh(s)
, H\tau (s) :=

1

K\tau (s)
= 1 - e - \tau s.

The poles pk of G and the zeros zk of H\tau are given by

pk := i
\pi 

2

\bigl( 
1 + 2k) and zk = zk(\tau ) := i

2k\pi 

\tau 
\forall k \in \BbbZ ,

and we set P := \{ pk : k \in \BbbZ \} and Z\tau := \{ zk(\tau ) : k \in \BbbZ \} . To outline what follows,
the feedback connection of G and H\tau exhibits a range of stability properties (or lack
thereof), depending crucially on whether dist (Z\tau , P ) = 0 or dist (Z\tau , P ) > 0 and so
ultimately on the value of \tau . More precisely, the following three cases are possible:
Z\tau \cap P \not = \emptyset , dist (Z\tau , P )> 0, or finally, dist (Z\tau , P ) = 0 while Z\tau \cap P = \emptyset .

Case 1: Z\tau \cap P \not = \emptyset .
There exist k, l \in \BbbZ such that pk = zl(\tau ), trivially implying that \tau is rational.

Because G and H\tau have a pole-zero cancellation at pk, it follows that G/(1 +H\tau G)
has a pole at pk. This, in turn, shows that there does not exist \theta \geq 0 such that
(1+s) - \theta FG,H\tau 

is bounded on \BbbC 0. We conclude that H\tau is not a \theta -stabilizing feedback
for G no matter what the value of \theta is.

Case 2: dist (Z\tau , P )> 0.
In this case, there exists \rho > 0 such that the disc of radius \rho centered at zk(\tau )

intersected with \BbbC 0 is a subset of \Gamma 0(G,H\tau ;\BbbC 0) for every k \in \BbbZ . The complement of
the union of these semidiscs with respect to \BbbC 0 is included in \Pi 0(H\tau ,G;\BbbC 0). Hence,
\BbbC 0 = \Pi 0(H\tau ,G;\BbbC 0) \cup \Gamma 0(G,H\tau ;\BbbC 0), and it follows from Theorem 4.2 that H\tau is a
Sobolev 0-stabilizing feedback for G; that is, the feedback system is L2-stable.

Case 3: Z\tau \cap P = \emptyset and dist (Z\tau , P ) = 0.
The above conditions can be expressed in the following equivalent form

dist (zk(\tau ), P )> 0 \forall k \in \BbbZ and lim inf
| k| \rightarrow \infty 

dist (zk(\tau ), P ) = 0.(6.8)

It is straightforward to show that, in this case, \tau must be irrational. For given \theta \geq 0,
there are two possible scenarios:

lim inf
| k| \rightarrow \infty 

| k| \theta dist (zk(\tau ), P )> 0 (S1) and lim inf
| k| \rightarrow \infty 

| k| \theta dist (zk(\tau ), P ) = 0 (S2) .
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A MIXED PASSIVITY/SMALL-GAIN THEOREM 3067

It is shown in the appendix that, if (S1) holds, then H\tau is a Sobolev (2\theta )-stabilizing
feedback forG, and if (S2) is satisfied, thenH\tau is not a Sobolev \theta -stabilizing feedback.

Discussion. We provide some comments and observations relating to the above
three cases.

\bullet As already mentioned, Case 3 requires \tau to be irrational. We claim that,
conversely, if \tau is irrational, then (6.8) holds. To see this, assume that \tau is irrational.
Then, trivially, dist (zk(\tau ), P ) > 0 for all k \in \BbbZ . Furthermore, by [35], there exist
infinitely many k \in \BbbZ and l \in \BbbN 0 such that\bigm| \bigm| \bigm| \bigm| \tau 2  - 2k

1 + 2l

\bigm| \bigm| \bigm| \bigm| < 1

(1 + 2l)2
.

Together with

| zk(\tau ) - pl| =
\pi 

\tau 
| 1 + 2l| 

\bigm| \bigm| \bigm| \bigm| \tau 2  - 2k

1 + 2l

\bigm| \bigm| \bigm| \bigm| \forall k, l \in \BbbZ ,(6.9)

this shows that lim inf | k| \rightarrow \infty dist (zk(\tau ), P ) = 0. Consequently, we have the following
equivalences:

\tau \in \BbbQ \leftrightarrow 
\bigl( 
Z\tau \cap P \not = \emptyset \vee dist (Z\tau , P )> 0

\bigr) 
and

\tau \in \BbbR \setminus \BbbQ \leftrightarrow 
\bigl( 
Z\tau \cap P = \emptyset \wedge dist (Z\tau , P ) = 0

\bigr) 
.

\bullet The conditions Z\tau \cap P \not = \emptyset and dist (Z\tau , P )> 0 are equivalent to

\tau \in \scrI :=

\biggl\{ 
4k

1 + 2l
: k, l \in \BbbN 

\biggr\} 
\subset \BbbQ \cap (0,\infty ) and \tau \in \scrI c :=

\bigl( 
\BbbQ \cap (0,\infty )

\bigr) 
\setminus \scrI ,

respectively. Because \scrI and \scrI c are dense in (0,\infty ), we see that, in every neighborhood
of a given \tau > 0, there exist \tau 1 \in \scrI and \tau 2 \in \scrI c such that H\tau 1 is not Sobolev \theta -
stabilizing for any \theta \geq 0 while H\tau 2 is a Sobolev 0-stabilizing feedback for G (that is,
the closed-loop system is L2-stable) and hence Sobolev \theta -stabilizing for every \theta \geq 0.
We conclude that the stability properties of the feedback connection of G and H\tau are
extremely sensitive to variations in \tau .

\bullet To connect the scenarios (S1) and (S2) in Case 3 more directly to \tau , we recall
that the irrationality exponent \mu (\omega ) of a real number \omega (also known as the irrationality
measure) is the supremum of all \nu > 0 such that the inequality

0<

\bigm| \bigm| \bigm| \bigm| \omega  - m

q

\bigm| \bigm| \bigm| \bigm| < 1

q\nu 

has infinitely many solutions in integers m \in \BbbZ and q \in \BbbN ; see, for example, [8,
Appendix E]. Equivalently, \mu (\omega ) is the infimum of all \nu > 0 for which there exists
q\nu \in \BbbN such that \bigm| \bigm| \bigm| \bigm| \omega  - m

q

\bigm| \bigm| \bigm| \bigm| \geq 1

q\nu 

for all integers m and q \geq q\nu . It is well known that \mu (\omega ) = 1 for rational \omega , \mu (\omega )\geq 2
for irrational \omega , and \mu (\omega ) = 2 for almost every \omega \in \BbbR (in the sense of Lebesgue
measure); see [8, Theorems E.1 and E.2]. Furthermore, Roth's theorem, a deep result
from Diophantine approximation theory, guarantees that \mu (\omega ) = 2 for every irrational
algebraic number \omega (see [8, Theorem E.7] for a statement of Roth's theorem and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/1

2/
24

 to
 8

2.
69

.5
1.

18
9 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



3068 CHRIS GUIVER, HARTMUT LOGEMANN, AND MARK R. OPMEER

[34, Chapter V] for a detailed treatment). There exist \omega \in \BbbR , the so-called Liouville
numbers, such that \mu (\omega ) =\infty . The even/odd irrationality exponent \mu eo(\omega ) of a real
number \omega is defined in the same way but restricting m and q to be even and odd,
respectively. Clearly, \mu eo(\omega ) \leq \mu (\omega ) for all \omega \in \BbbR . If \mu (\omega ) = 2, then \mu eo(\omega ) = 2, as
follows from [35]. In particular, \mu eo(\omega ) = 2 for almost every \omega \in \BbbR .

We claim that\bigl( 
1 + \theta > \mu eo(\tau /2)

\bigr) 
\Rightarrow (S1) and

\bigl( 
1 + \theta < \mu eo(\tau /2)

\bigr) 
\Rightarrow (S2).(6.10)

To show this, choose, for each k \in \BbbZ , a number l(k)\in \BbbZ such that

| zk(\tau ) - pl(k)| =dist (zk(\tau ), P )> 0.

There may be two choices for l(k), but it is irrelevant which one we make. It is clear
that

| zk(\tau ) - pl(k)| \leq \pi /2 \forall k \in \BbbZ .

Combining this with (6.9), we conclude that

0< inf
k\in \BbbZ , k \not =0

| k| 
| 1 + 2l(k)| 

\leq sup
k\in \BbbZ , k \not =0

| k| 
| 1 + 2l(k)| 

<\infty .

Consequently, invoking (6.9) once more, there exists a constant c > 0 such that

| k| \theta | zk(\tau ) - pl(k)| \geq c| 1 + 2l(k)| 1+\theta 

\bigm| \bigm| \bigm| \bigm| \tau 2  - 2k

1 + 2l(k)

\bigm| \bigm| \bigm| \bigm| \forall k \in \BbbZ , k \not = 0.(6.11)

To establish the first implication in (6.10), assume that 1 + \theta > \mu eo(\tau /2). Then, for
all sufficiently large | k| , \bigm| \bigm| \bigm| \bigm| \tau 2  - 2k

1 + 2l(k)

\bigm| \bigm| \bigm| \bigm| \geq 1

(1 + 2l(k))1+\theta 
.

It follows from (6.11) that

lim inf
| k| \rightarrow \infty 

| k| \theta | zk(\tau ) - pl(k)| > 0,

showing that (S1) holds.
To prove the second implication in (6.10), assume that 1 + \theta < \mu eo(\tau /2). Letting

\nu be such that 1+\theta < \nu < \mu eo(\tau /2), there exist kj , lj \in \BbbN , j \in \BbbN such that lj \rightarrow \infty and\bigm| \bigm| \bigm| \bigm| \tau 2  - 2kj
1 + 2lj

\bigm| \bigm| \bigm| \bigm| \leq 1

| 1 + 2lj | \nu 
\forall j \in \BbbN .(6.12)

It follows that there exists c > 0 such that | kj | \leq c| 1 + 2lj | for all j \in \BbbN . Hence, by
(6.9) and (6.12),

| kj | \theta | zkj
(\tau ) - pl(kj)| \leq | kj | \theta | zkj

(\tau ) - plj | =
\pi 

\tau 

| kj | \theta 

| 1 + 2lj | \nu  - 1
\leq c\theta \pi 

\tau 
| 1 + 2lj | 1+\theta  - \nu \rightarrow 0

as j\rightarrow \infty ,

showing that (S2) holds.
\bullet We close our discussion with the consideration of two specific irrational values for

\tau , namely, (i) \tau =
\surd 
2 (or, more generally, \tau = arbitrary irrational algebraic number)

and (ii) \tau = 4
\sum \infty 

n=1 3
 - n!.
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A MIXED PASSIVITY/SMALL-GAIN THEOREM 3069

(i) When \tau is an irrational algebraic number, then so is \tau /2, and, by the above
commentary, \mu (\tau /2) = 2 = \mu eo(\tau /2). Consequently, H\tau is a Sobolev \theta -
stabilizing feedback for G whenever \theta > 2.

(ii) Let \tau = 4
\sum \infty 

n=1 3
 - n!. Defining even and odd numbers mj := 2

\sum j
n=1 3

j! - n!

and qj := 3j!, respectively, we have that\bigm| \bigm| \bigm| \bigm| \tau 2  - mj

qj

\bigm| \bigm| \bigm| \bigm| = 2

\infty \sum 
n=j+1

1

3n!
\leq 2

3(j+1)!

\infty \sum 
n=0

1

3n
=

3

qj+1
j

\forall j \in \BbbN ,

implying that \mu eo(\tau /2) =\infty . We conclude that there does not exist any \theta \geq 0
such that H\tau is a Sobolev \theta -stabilizing feedback for G.

Summary. The stability properties of the feedback connection of G and H\tau are
extremely sensitive to variations in \tau , the sensitivity being caused by both the plant
and the controller having infinitely many poles/zeros on the imaginary axis (compare
this to the feedback system considered in Example 6.3, which is Sobolev stable for
all \tau > 0). If dist (Z\tau , P ) > 0, then the feedback H\tau is Sobolev 0-stabilizing, and if
dist (Z\tau , P ) = 0 without G and H\tau having any pole-zero cancelations, then H\tau is
Sobolev \theta -stabilizing provided that \theta > 2(\mu eo(\tau /2) - 1). In particular, as mentioned
above, \mu eo(\tau /2) = 2 for almost every \tau \in (0,\infty ), and thus, the feedback H\tau is Sobolev
\theta -stabilizing for G for almost every \tau \in (0,\infty ) whenever \theta > 2. While the example
is purely mathematical, without much relevance in a control engineering context, it
demonstrates that Theorem 4.2 can be successfully applied in a situation that does
not lack subtlety.

7. Conclusions. The concept of Sobolev stabilizing feedback compensators has
been introduced and studied, based on the Sobolev input-output stability concept
from [20]. A mixed passivity/small-gain condition has been presented and shown
to be sufficient for the feedback connection of two time-invariant linear (possibly
infinite-dimensional) systems to be Sobolev input-output stable. The result contains
the well-known passivity and small-gain theorems for L2-stability as special cases.
We have considered scenarios in which it is impossible to achieve L2-stability (for
example, if there is a ``pole-zero cancelation"" at \infty due to an infinite number of poles
in the controller and vanishing gain of the plant at high frequencies), but the mixed
passivity/small-gain theorem may be applied to establish Sobolev stability. It has
been demonstrated how Sobolev stabilizing feedback compensators can be used in the
context of a general version of the servo problem. We have shown that, if a controller
K is a Sobolev \theta -stabilizing controller, then the tracking error is in H\beta 

\ell (\BbbR ,U) provided
that K satisfies a condition that is reminiscent of the internal model principle, where
\beta depends on \theta , the regularity of the reference and disturbance signals r and d, and
properties of the stable parts of the signal generators. In particular, smaller \theta and
higher regularity of r and d give a larger \beta . The servo result has been applied to a
repetitive control problem that features a controller with infinitely many poles on the
imaginary axis.

Appendix A. In this appendix, we give a proof of Lemma 6.1 and provide details
for Example 6.7.

A.1. Proof of Lemma 6.1. The proof of statement (1) is trivial. To prove
statement (2), we note that the existence of \phi ,\psi \in Hk(\BbbR ,\BbbC ) having compact support
in ( - \infty ,0) and satisfying (6.1) follows from an inspection of the graphs of t \mapsto \rightarrow sin(\omega t)
and t \mapsto \rightarrow cos(\omega t) (a formal proof is a routine exercise, which we leave to the interested
reader). For g \in Hk

\ell (\BbbR ,\BbbC ), we have that
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(T\omega g)(t) =

\int t

 - \infty 
sin
\bigl( 
\omega (t - \tau )

\bigr) 
g(\tau )d\tau 

= sin(\omega t)

\int t

 - \infty 
cos(\omega \tau )g(\tau )d\tau  - cos(\omega t)

\int t

 - \infty 
sin(\omega \tau )g(\tau )d\tau \forall t\in \BbbR .

Let \phi ,\psi \in Hk(\BbbR ,\BbbC ) have compact support in ( - \infty ,0) and such that (6.1) is satisfied.
The claim now follows by invoking the above identity with g= \phi and g=\psi .

A.2. Details for Example 6.7. Here, we prove the following claim made in
Case 3.

Claim A.1. Assume that Z\tau \cap P = \emptyset and dist (Z\tau , P ) = 0.
(a) If (S1) holds, then H\tau is a Sobolev (2\theta )-stabilizing feedback for G.
(b) If (S2) is satisfied, then H\tau is not a Sobolev \theta -stabilizing feedback.

Proof. For ease of notation, we write zk := zk(\tau ). For k \in \BbbZ , let l(k) \in \BbbZ be such
that | zk  - pl(k)| =dist (zk, P ). Defining

K := \{ k \in \BbbZ : | zk  - pl(k)| \leq \pi /4\} \subset \BbbZ and Kc :=\BbbZ \setminus K,

it follows from (6.8) that K is infinite.
(a) Assume that (S1) holds. Then, there exists \eta > 0 such that

| k| \theta dist (zk, P )\geq \eta \forall k \in \BbbZ , k \not = 0.

The set

B :=
\bigcup 

k\in K\mathrm{c}

\bigl( 
zk + \{ s\in \BbbC 0 : | Ims| \leq \pi /8\} 

\bigr) 
has the property that dist (B,P ) \geq \pi /8 > 0 and the function G is bounded on B.
Consequently, there exists \rho \in (0, \pi /8) such that

| H\tau (s)G(s)| \leq 1/2 \forall s\in 
\bigcup 

k\in K \mathrm{c}

\bigl( 
zk + \{ s\in \BbbC 0 : | Ims| , Res\leq \rho \} 

\bigr) 
.(A.1)

Set

\kappa :=min

\Biggl\{ 
\rho ,
\eta 

2
,

1

2\tau 
\sqrt{} 
2(1 + 4/\eta 2)

\Biggr\} 
<
\pi 

8
,(A.2)

and define, for all k \in \BbbZ , rectangles Rk in \BbbC 0 by

Rk := zk +

\Biggl\{ 
\{ s\in \BbbC 0 : | Ims| , Res\leq \kappa (1 + | k| ) - \theta \} , k \in K,
\{ s\in \BbbC 0 : | Ims| , Res\leq \kappa \} , k \in Kc.

Setting R :=
\bigcup 

k\in \BbbZ Rk, we claim that

\lambda := sup
s\in R

| G(s)| 
| 1 + s| \theta 

<\infty (A.3)

and

| H\tau (s)G(s)| \leq 1/2 \forall s\in R,(A.4)
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which, when combined, yield that

R\subseteq \Gamma \theta (G,H\tau ;\BbbC 0, \nu , \gamma ) \forall k \in \BbbZ ,(A.5)

where \nu := \| H\tau \| H\infty + \lambda = 2+ \lambda and \gamma := 1/2. We additionally claim that

inf
s\in \BbbC 0\setminus R

| 1 + s| 2\theta ReH\tau (s)> 0(A.6)

so that there exists \varepsilon > 0 such that

\BbbC 0\setminus R\subseteq \Pi 2\theta (H\tau ,G;\BbbC 0,2, \varepsilon ).(A.7)

The conjunction of (A.5) and (A.7) entails condition (4.1) with \delta = 0 and \theta there
replaced by 2\theta . An application of part (iii) of statement (1) of Theorem 4.2 yields
that H is a Sobolev (2\theta )-stabilizing feedback for G.

It remains to prove (A.3), (A.4), and (A.6). To this end, it is convenient to define
the horizontal strip

Hk := zk + \{ s\in \BbbC 0 : | Ims| \leq (1 + 1/\tau )\pi /2\} \forall k \in \BbbZ .

It is clear that there exists c > 0 such that

1 + | k| \leq c| 1 + s| \forall s\in Hk and \forall k \in \BbbZ .(A.8)

As Rk \subset Hk, the above bound applies to all s\in Rk for every k \in \BbbZ .
Proof of (A.3). As Rk \subset B for all k \in Kc, we have that

sup
k\in K\mathrm{c}

\Bigl( 
sup
s\in Rk

| G(s)| 
\Bigr) 
<\infty .

Thus, it suffices to show that

sup
k\in K

\biggl( 
sup
s\in Rk

| G(s)| 
| 1 + s| \theta 

\biggr) 
<\infty .(A.9)

Therefore, let k \in K. Invoking the addition formula for the hyperbolic tangent, we
obtain, for \omega \in \BbbR and x\geq 0, that

| G(pk + i\omega + x)| 2 = | tanh(pk + i\omega + x)| 2 =
\bigm| \bigm| \bigm| \bigm| tanh(x) + i tan(Impk + \omega )

1 + i tanh(x) tan(Impk + \omega )

\bigm| \bigm| \bigm| \bigm| 2 .
Bounding the denominator from below by 1 gives

| G(pk + i\omega + x)| 2 \leq tanh2(x) + tan2(Impk + \omega ).

Using that | tanh(x)| \leq 1 and tan2(\pi /2 + \omega ) \leq 1/\omega 2 for \omega \in ( - \pi /2, \pi /2)\setminus \{ 0\} (and
periodicity) gives that

| G(pk + i\omega + x)| 2 \leq 1 + 1/\omega 2, 0< | \omega | <\pi /2 .(A.10)

Consider

\omega y := Imzk  - Impl(k) + y, | y| \leq \kappa (1 + | k| ) - \theta ,
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and note that

| \omega y| \geq | zk  - pl(k)|  - | y| \geq \eta  - \kappa 

(1 + | k| )\theta 
\geq \eta 

2(1 + | k| )\theta 
, | y| \leq \kappa 

(1 + | k| )\theta 
.

Furthermore, because k \in K,

| \omega y| \leq | zk  - pl(k)| + | y| \leq \pi 

4
+ \kappa \leq 3

\pi /8
, | y| \leq \kappa 

(1 + | k| )\theta 
.

Therefore, invoking (A.10), we obtain that

| G(zk + iy+ x)| 2 = | G(pl(k) + i\omega y + x)| 2 \leq 1 +
4(1 + | k| )2\theta 

\eta 2
, | y| \leq \kappa 

(1 + | k| )\theta 
,

and hence,

| G(s)| 2 \leq 1 +
4(1 + | k| )2\theta 

\eta 2
\forall s\in Rk and \forall k \in K.(A.11)

Invoking (A.8) yields

| G(s)| 2 \leq 1 +
4c2\theta 

\eta 2
| 1 + s| 2\theta \forall s\in Rk and \forall k \in K,

showing that (A.9) holds.
Proof of (A.4). By (A.1), | H\tau (s)G(s)| \leq 1/2 for all s \in Rk whenever k \in Kc.

Therefore, it suffices to show that

| H\tau (s)G(s)| \leq 1/2 \forall s\in Rk and \forall k \in K.(A.12)

For x\geq 0 and y \in \BbbR , we have that

| H\tau (zk + iy+ x)| 2 \geq 
\bigl( 
1 - e - \tau x

\bigr) 2
+ 2e - \tau x

\bigl( 
1 - cos(\tau y)).

Using that 1 - e - \xi \leq \xi for \xi \geq 0 and 1 - cos(\xi )\leq \xi 2/2 for \xi \in \BbbR , we obtain that

| H\tau (zk + iy+ x)| 2 \leq \tau 2(x2 + y2) \forall x\geq 0 and \forall y \in \BbbR ,

and thus,

| H\tau (s)| 2 \leq 
2\tau 2\kappa 2

(1 + | k| )2\theta 
\forall s\in Rk and \forall k \in K.(A.13)

It now follows from (A.2), (A.11), and (A.13) that (A.12) holds.
Proof of (A.6). Let s \in \BbbC 0\setminus R. There exists k \in \BbbZ such that s = zk(\tau ) + iy + x,

where x=Res and y \in \BbbR is such that | y| \leq \pi /\tau . We note that

ReH\tau (zk(\tau ) + iy+ x) = 1 - e - \tau x cos(\tau y) .(A.14)

Then, either (1) | y| \geq \pi /(2\tau ) or (2) | y| \leq \pi /(2\tau ).
(1) If | y| \geq \pi /(2\tau ), then, by (A.14),

ReH\tau (s) =ReH\tau (zk(\tau ) + iy+ x)\geq 1.

(2) If | y| \leq \pi /(2\tau ), then we distinguish the subcases (i) x > \kappa (1 + | k| ) - \theta and (ii)
x\leq \kappa (1 + | k| ) - \theta .
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(i) If x> \kappa (1 + | k| ) - \theta , then it follows from (A.14) that

ReH\tau (s) =ReH\tau (zk(\tau ) + iy+ x)\geq 1 - e - \tau \kappa (1+| k| ) - \theta 

.(A.15)

For all 0\leq \xi \leq \xi 0, \xi 0 > 0, we have that 1 - e - \xi \geq e - \xi 0\xi , as follows from an application
of the mean-value theorem. Using this estimate on the right-hand side of (A.15), we
obtain that

ReH\tau (s)\geq \tau \kappa e - \tau \kappa (1 + | k| ) - \theta \geq \tau \kappa c - \theta e - \tau \kappa | 1 + s|  - \theta ,

where we have used (A.8).
(ii) If x \leq \kappa (1 + | k| ) - \theta , then, since s \not \in Rk, it follows that | y| > \kappa (1 + | k| ) - \theta .

Because cos(\xi )\leq 1 - (2/\pi 2)/\xi 2 for \xi \in [ - \pi ,\pi ], it follows from (A.14) that

ReH\tau (s) =ReH\tau (zk(\tau ) + iy+ x)\geq 2\tau 2

\pi 2
y2 \geq 2\tau 2\kappa 2

\pi 2
(1 + | k| ) - 2\theta \geq 2\tau 2\kappa 2

c2\theta \pi 2
| 1 + s|  - 2\theta ,

where, once again, we have used (A.8).
The above analysis shows that infs\in \BbbC 0\setminus R | 1+s| 2\theta ReH\tau (s)> 0, establishing (A.6).
(b) Assume that (S2) is satisfied. Then, there exist kj , lj \in \BbbZ , j \in \BbbN such that

| kj | \rightarrow \infty and | lj | \rightarrow \infty as j\rightarrow \infty and

| kj | \theta | zkj
 - plj | \rightarrow 0 as j\rightarrow \infty .

Since tan2(\pi /2+ \xi )\geq 1/(4\xi 2) for all \xi \in ( - 1,1), \xi \not = 0, andG(iy) = tanh(iy) = i tan(y)
for all y \in \BbbR , it follows that

| G(zkj
| 2 = tan2(Imzkj

) = tan2(\pi /2 + Imzkj
 - Implj )

\geq 1

4| zkj
 - plj | 2

for all sufficiently large j.

Consequently,

| zkj |  - \theta 

\bigm| \bigm| \bigm| \bigm| G(zkj
)

1 +H\tau (zkj
)G(zkj

)

\bigm| \bigm| \bigm| \bigm| = | zkj |  - \theta | G(zkj | 

\geq \tau \theta 

21+\theta \pi \theta | kj | \theta | zkj
 - plj | 

\rightarrow \infty as j\rightarrow \infty ,

implying that H\tau is not a Sobolev \theta -stabilizing feedback for G.
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